xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #define DRV_NAME	"octeontx2-af"
24 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_DEVICE_TABLE(pci, rvu_id_table);
53 
54 static char *mkex_profile; /* MKEX profile name */
55 module_param(mkex_profile, charp, 0000);
56 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
57 
58 static void rvu_setup_hw_capabilities(struct rvu *rvu)
59 {
60 	struct rvu_hwinfo *hw = rvu->hw;
61 
62 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
63 	hw->cap.nix_fixed_txschq_mapping = false;
64 	hw->cap.nix_shaping = true;
65 	hw->cap.nix_tx_link_bp = true;
66 	hw->cap.nix_rx_multicast = true;
67 
68 	if (is_rvu_96xx_B0(rvu)) {
69 		hw->cap.nix_fixed_txschq_mapping = true;
70 		hw->cap.nix_txsch_per_cgx_lmac = 4;
71 		hw->cap.nix_txsch_per_lbk_lmac = 132;
72 		hw->cap.nix_txsch_per_sdp_lmac = 76;
73 		hw->cap.nix_shaping = false;
74 		hw->cap.nix_tx_link_bp = false;
75 		if (is_rvu_96xx_A0(rvu))
76 			hw->cap.nix_rx_multicast = false;
77 	}
78 }
79 
80 /* Poll a RVU block's register 'offset', for a 'zero'
81  * or 'nonzero' at bits specified by 'mask'
82  */
83 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
84 {
85 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
86 	void __iomem *reg;
87 	u64 reg_val;
88 
89 	reg = rvu->afreg_base + ((block << 28) | offset);
90 again:
91 	reg_val = readq(reg);
92 	if (zero && !(reg_val & mask))
93 		return 0;
94 	if (!zero && (reg_val & mask))
95 		return 0;
96 	if (time_before(jiffies, timeout)) {
97 		usleep_range(1, 5);
98 		goto again;
99 	}
100 	return -EBUSY;
101 }
102 
103 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
104 {
105 	int id;
106 
107 	if (!rsrc->bmap)
108 		return -EINVAL;
109 
110 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
111 	if (id >= rsrc->max)
112 		return -ENOSPC;
113 
114 	__set_bit(id, rsrc->bmap);
115 
116 	return id;
117 }
118 
119 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
120 {
121 	int start;
122 
123 	if (!rsrc->bmap)
124 		return -EINVAL;
125 
126 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
127 	if (start >= rsrc->max)
128 		return -ENOSPC;
129 
130 	bitmap_set(rsrc->bmap, start, nrsrc);
131 	return start;
132 }
133 
134 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
135 {
136 	if (!rsrc->bmap)
137 		return;
138 	if (start >= rsrc->max)
139 		return;
140 
141 	bitmap_clear(rsrc->bmap, start, nrsrc);
142 }
143 
144 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return false;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return false;
154 
155 	return true;
156 }
157 
158 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
159 {
160 	if (!rsrc->bmap)
161 		return;
162 
163 	__clear_bit(id, rsrc->bmap);
164 }
165 
166 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
167 {
168 	int used;
169 
170 	if (!rsrc->bmap)
171 		return 0;
172 
173 	used = bitmap_weight(rsrc->bmap, rsrc->max);
174 	return (rsrc->max - used);
175 }
176 
177 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
178 {
179 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
180 			     sizeof(long), GFP_KERNEL);
181 	if (!rsrc->bmap)
182 		return -ENOMEM;
183 	return 0;
184 }
185 
186 /* Get block LF's HW index from a PF_FUNC's block slot number */
187 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
188 {
189 	u16 match = 0;
190 	int lf;
191 
192 	mutex_lock(&rvu->rsrc_lock);
193 	for (lf = 0; lf < block->lf.max; lf++) {
194 		if (block->fn_map[lf] == pcifunc) {
195 			if (slot == match) {
196 				mutex_unlock(&rvu->rsrc_lock);
197 				return lf;
198 			}
199 			match++;
200 		}
201 	}
202 	mutex_unlock(&rvu->rsrc_lock);
203 	return -ENODEV;
204 }
205 
206 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
207  * Some silicon variants of OcteonTX2 supports
208  * multiple blocks of same type.
209  *
210  * @pcifunc has to be zero when no LF is yet attached.
211  */
212 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
213 {
214 	int devnum, blkaddr = -ENODEV;
215 	u64 cfg, reg;
216 	bool is_pf;
217 
218 	switch (blktype) {
219 	case BLKTYPE_NPC:
220 		blkaddr = BLKADDR_NPC;
221 		goto exit;
222 	case BLKTYPE_NPA:
223 		blkaddr = BLKADDR_NPA;
224 		goto exit;
225 	case BLKTYPE_NIX:
226 		/* For now assume NIX0 */
227 		if (!pcifunc) {
228 			blkaddr = BLKADDR_NIX0;
229 			goto exit;
230 		}
231 		break;
232 	case BLKTYPE_SSO:
233 		blkaddr = BLKADDR_SSO;
234 		goto exit;
235 	case BLKTYPE_SSOW:
236 		blkaddr = BLKADDR_SSOW;
237 		goto exit;
238 	case BLKTYPE_TIM:
239 		blkaddr = BLKADDR_TIM;
240 		goto exit;
241 	case BLKTYPE_CPT:
242 		/* For now assume CPT0 */
243 		if (!pcifunc) {
244 			blkaddr = BLKADDR_CPT0;
245 			goto exit;
246 		}
247 		break;
248 	}
249 
250 	/* Check if this is a RVU PF or VF */
251 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
252 		is_pf = false;
253 		devnum = rvu_get_hwvf(rvu, pcifunc);
254 	} else {
255 		is_pf = true;
256 		devnum = rvu_get_pf(pcifunc);
257 	}
258 
259 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
260 	if (blktype == BLKTYPE_NIX) {
261 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
262 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
263 		if (cfg)
264 			blkaddr = BLKADDR_NIX0;
265 	}
266 
267 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
268 	if (blktype == BLKTYPE_CPT) {
269 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
270 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
271 		if (cfg)
272 			blkaddr = BLKADDR_CPT0;
273 	}
274 
275 exit:
276 	if (is_block_implemented(rvu->hw, blkaddr))
277 		return blkaddr;
278 	return -ENODEV;
279 }
280 
281 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
282 				struct rvu_block *block, u16 pcifunc,
283 				u16 lf, bool attach)
284 {
285 	int devnum, num_lfs = 0;
286 	bool is_pf;
287 	u64 reg;
288 
289 	if (lf >= block->lf.max) {
290 		dev_err(&rvu->pdev->dev,
291 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
292 			__func__, lf, block->name, block->lf.max);
293 		return;
294 	}
295 
296 	/* Check if this is for a RVU PF or VF */
297 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
298 		is_pf = false;
299 		devnum = rvu_get_hwvf(rvu, pcifunc);
300 	} else {
301 		is_pf = true;
302 		devnum = rvu_get_pf(pcifunc);
303 	}
304 
305 	block->fn_map[lf] = attach ? pcifunc : 0;
306 
307 	switch (block->type) {
308 	case BLKTYPE_NPA:
309 		pfvf->npalf = attach ? true : false;
310 		num_lfs = pfvf->npalf;
311 		break;
312 	case BLKTYPE_NIX:
313 		pfvf->nixlf = attach ? true : false;
314 		num_lfs = pfvf->nixlf;
315 		break;
316 	case BLKTYPE_SSO:
317 		attach ? pfvf->sso++ : pfvf->sso--;
318 		num_lfs = pfvf->sso;
319 		break;
320 	case BLKTYPE_SSOW:
321 		attach ? pfvf->ssow++ : pfvf->ssow--;
322 		num_lfs = pfvf->ssow;
323 		break;
324 	case BLKTYPE_TIM:
325 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
326 		num_lfs = pfvf->timlfs;
327 		break;
328 	case BLKTYPE_CPT:
329 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
330 		num_lfs = pfvf->cptlfs;
331 		break;
332 	}
333 
334 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
335 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
336 }
337 
338 inline int rvu_get_pf(u16 pcifunc)
339 {
340 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
341 }
342 
343 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
344 {
345 	u64 cfg;
346 
347 	/* Get numVFs attached to this PF and first HWVF */
348 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
349 	*numvfs = (cfg >> 12) & 0xFF;
350 	*hwvf = cfg & 0xFFF;
351 }
352 
353 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
354 {
355 	int pf, func;
356 	u64 cfg;
357 
358 	pf = rvu_get_pf(pcifunc);
359 	func = pcifunc & RVU_PFVF_FUNC_MASK;
360 
361 	/* Get first HWVF attached to this PF */
362 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
363 
364 	return ((cfg & 0xFFF) + func - 1);
365 }
366 
367 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
368 {
369 	/* Check if it is a PF or VF */
370 	if (pcifunc & RVU_PFVF_FUNC_MASK)
371 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
372 	else
373 		return &rvu->pf[rvu_get_pf(pcifunc)];
374 }
375 
376 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
377 {
378 	int pf, vf, nvfs;
379 	u64 cfg;
380 
381 	pf = rvu_get_pf(pcifunc);
382 	if (pf >= rvu->hw->total_pfs)
383 		return false;
384 
385 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
386 		return true;
387 
388 	/* Check if VF is within number of VFs attached to this PF */
389 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
390 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
391 	nvfs = (cfg >> 12) & 0xFF;
392 	if (vf >= nvfs)
393 		return false;
394 
395 	return true;
396 }
397 
398 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
399 {
400 	struct rvu_block *block;
401 
402 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
403 		return false;
404 
405 	block = &hw->block[blkaddr];
406 	return block->implemented;
407 }
408 
409 static void rvu_check_block_implemented(struct rvu *rvu)
410 {
411 	struct rvu_hwinfo *hw = rvu->hw;
412 	struct rvu_block *block;
413 	int blkid;
414 	u64 cfg;
415 
416 	/* For each block check if 'implemented' bit is set */
417 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
418 		block = &hw->block[blkid];
419 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
420 		if (cfg & BIT_ULL(11))
421 			block->implemented = true;
422 	}
423 }
424 
425 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
426 {
427 	rvu_write64(rvu, BLKADDR_RVUM,
428 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
429 		    RVU_BLK_RVUM_REVID);
430 }
431 
432 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
433 {
434 	rvu_write64(rvu, BLKADDR_RVUM,
435 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
436 }
437 
438 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
439 {
440 	int err;
441 
442 	if (!block->implemented)
443 		return 0;
444 
445 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
446 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
447 			   true);
448 	return err;
449 }
450 
451 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
452 {
453 	struct rvu_block *block = &rvu->hw->block[blkaddr];
454 
455 	if (!block->implemented)
456 		return;
457 
458 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
459 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
460 }
461 
462 static void rvu_reset_all_blocks(struct rvu *rvu)
463 {
464 	/* Do a HW reset of all RVU blocks */
465 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
466 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
467 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
468 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
469 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
470 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
471 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
472 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
473 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
474 }
475 
476 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
477 {
478 	struct rvu_pfvf *pfvf;
479 	u64 cfg;
480 	int lf;
481 
482 	for (lf = 0; lf < block->lf.max; lf++) {
483 		cfg = rvu_read64(rvu, block->addr,
484 				 block->lfcfg_reg | (lf << block->lfshift));
485 		if (!(cfg & BIT_ULL(63)))
486 			continue;
487 
488 		/* Set this resource as being used */
489 		__set_bit(lf, block->lf.bmap);
490 
491 		/* Get, to whom this LF is attached */
492 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
493 		rvu_update_rsrc_map(rvu, pfvf, block,
494 				    (cfg >> 8) & 0xFFFF, lf, true);
495 
496 		/* Set start MSIX vector for this LF within this PF/VF */
497 		rvu_set_msix_offset(rvu, pfvf, block, lf);
498 	}
499 }
500 
501 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
502 {
503 	int min_vecs;
504 
505 	if (!vf)
506 		goto check_pf;
507 
508 	if (!nvecs) {
509 		dev_warn(rvu->dev,
510 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
511 			 pf, vf - 1, nvecs);
512 	}
513 	return;
514 
515 check_pf:
516 	if (pf == 0)
517 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
518 	else
519 		min_vecs = RVU_PF_INT_VEC_CNT;
520 
521 	if (!(nvecs < min_vecs))
522 		return;
523 	dev_warn(rvu->dev,
524 		 "PF%d is configured with too few vectors, %d, min is %d\n",
525 		 pf, nvecs, min_vecs);
526 }
527 
528 static int rvu_setup_msix_resources(struct rvu *rvu)
529 {
530 	struct rvu_hwinfo *hw = rvu->hw;
531 	int pf, vf, numvfs, hwvf, err;
532 	int nvecs, offset, max_msix;
533 	struct rvu_pfvf *pfvf;
534 	u64 cfg, phy_addr;
535 	dma_addr_t iova;
536 
537 	for (pf = 0; pf < hw->total_pfs; pf++) {
538 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
539 		/* If PF is not enabled, nothing to do */
540 		if (!((cfg >> 20) & 0x01))
541 			continue;
542 
543 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
544 
545 		pfvf = &rvu->pf[pf];
546 		/* Get num of MSIX vectors attached to this PF */
547 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
548 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
549 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
550 
551 		/* Alloc msix bitmap for this PF */
552 		err = rvu_alloc_bitmap(&pfvf->msix);
553 		if (err)
554 			return err;
555 
556 		/* Allocate memory for MSIX vector to RVU block LF mapping */
557 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
558 						sizeof(u16), GFP_KERNEL);
559 		if (!pfvf->msix_lfmap)
560 			return -ENOMEM;
561 
562 		/* For PF0 (AF) firmware will set msix vector offsets for
563 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
564 		 */
565 		if (!pf)
566 			goto setup_vfmsix;
567 
568 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
569 		 * These are allocated on driver init and never freed,
570 		 * so no need to set 'msix_lfmap' for these.
571 		 */
572 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
573 		nvecs = (cfg >> 12) & 0xFF;
574 		cfg &= ~0x7FFULL;
575 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
576 		rvu_write64(rvu, BLKADDR_RVUM,
577 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
578 setup_vfmsix:
579 		/* Alloc msix bitmap for VFs */
580 		for (vf = 0; vf < numvfs; vf++) {
581 			pfvf =  &rvu->hwvf[hwvf + vf];
582 			/* Get num of MSIX vectors attached to this VF */
583 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
584 					 RVU_PRIV_PFX_MSIX_CFG(pf));
585 			pfvf->msix.max = (cfg & 0xFFF) + 1;
586 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
587 
588 			/* Alloc msix bitmap for this VF */
589 			err = rvu_alloc_bitmap(&pfvf->msix);
590 			if (err)
591 				return err;
592 
593 			pfvf->msix_lfmap =
594 				devm_kcalloc(rvu->dev, pfvf->msix.max,
595 					     sizeof(u16), GFP_KERNEL);
596 			if (!pfvf->msix_lfmap)
597 				return -ENOMEM;
598 
599 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
600 			 * These are allocated on driver init and never freed,
601 			 * so no need to set 'msix_lfmap' for these.
602 			 */
603 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
604 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
605 			nvecs = (cfg >> 12) & 0xFF;
606 			cfg &= ~0x7FFULL;
607 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
608 			rvu_write64(rvu, BLKADDR_RVUM,
609 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
610 				    cfg | offset);
611 		}
612 	}
613 
614 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
615 	 * create a IOMMU mapping for the physcial address configured by
616 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
617 	 */
618 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
619 	max_msix = cfg & 0xFFFFF;
620 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
621 		phy_addr = rvu->fwdata->msixtr_base;
622 	else
623 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
624 
625 	iova = dma_map_resource(rvu->dev, phy_addr,
626 				max_msix * PCI_MSIX_ENTRY_SIZE,
627 				DMA_BIDIRECTIONAL, 0);
628 
629 	if (dma_mapping_error(rvu->dev, iova))
630 		return -ENOMEM;
631 
632 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
633 	rvu->msix_base_iova = iova;
634 	rvu->msixtr_base_phy = phy_addr;
635 
636 	return 0;
637 }
638 
639 static void rvu_reset_msix(struct rvu *rvu)
640 {
641 	/* Restore msixtr base register */
642 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
643 		    rvu->msixtr_base_phy);
644 }
645 
646 static void rvu_free_hw_resources(struct rvu *rvu)
647 {
648 	struct rvu_hwinfo *hw = rvu->hw;
649 	struct rvu_block *block;
650 	struct rvu_pfvf  *pfvf;
651 	int id, max_msix;
652 	u64 cfg;
653 
654 	rvu_npa_freemem(rvu);
655 	rvu_npc_freemem(rvu);
656 	rvu_nix_freemem(rvu);
657 
658 	/* Free block LF bitmaps */
659 	for (id = 0; id < BLK_COUNT; id++) {
660 		block = &hw->block[id];
661 		kfree(block->lf.bmap);
662 	}
663 
664 	/* Free MSIX bitmaps */
665 	for (id = 0; id < hw->total_pfs; id++) {
666 		pfvf = &rvu->pf[id];
667 		kfree(pfvf->msix.bmap);
668 	}
669 
670 	for (id = 0; id < hw->total_vfs; id++) {
671 		pfvf = &rvu->hwvf[id];
672 		kfree(pfvf->msix.bmap);
673 	}
674 
675 	/* Unmap MSIX vector base IOVA mapping */
676 	if (!rvu->msix_base_iova)
677 		return;
678 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
679 	max_msix = cfg & 0xFFFFF;
680 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
681 			   max_msix * PCI_MSIX_ENTRY_SIZE,
682 			   DMA_BIDIRECTIONAL, 0);
683 
684 	rvu_reset_msix(rvu);
685 	mutex_destroy(&rvu->rsrc_lock);
686 }
687 
688 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
689 {
690 	struct rvu_hwinfo *hw = rvu->hw;
691 	int pf, vf, numvfs, hwvf;
692 	struct rvu_pfvf *pfvf;
693 	u64 *mac;
694 
695 	for (pf = 0; pf < hw->total_pfs; pf++) {
696 		if (!is_pf_cgxmapped(rvu, pf))
697 			continue;
698 		/* Assign MAC address to PF */
699 		pfvf = &rvu->pf[pf];
700 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
701 			mac = &rvu->fwdata->pf_macs[pf];
702 			if (*mac)
703 				u64_to_ether_addr(*mac, pfvf->mac_addr);
704 			else
705 				eth_random_addr(pfvf->mac_addr);
706 		} else {
707 			eth_random_addr(pfvf->mac_addr);
708 		}
709 
710 		/* Assign MAC address to VFs */
711 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
712 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
713 			pfvf = &rvu->hwvf[hwvf];
714 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
715 				mac = &rvu->fwdata->vf_macs[hwvf];
716 				if (*mac)
717 					u64_to_ether_addr(*mac, pfvf->mac_addr);
718 				else
719 					eth_random_addr(pfvf->mac_addr);
720 			} else {
721 				eth_random_addr(pfvf->mac_addr);
722 			}
723 		}
724 	}
725 }
726 
727 static int rvu_fwdata_init(struct rvu *rvu)
728 {
729 	u64 fwdbase;
730 	int err;
731 
732 	/* Get firmware data base address */
733 	err = cgx_get_fwdata_base(&fwdbase);
734 	if (err)
735 		goto fail;
736 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
737 	if (!rvu->fwdata)
738 		goto fail;
739 	if (!is_rvu_fwdata_valid(rvu)) {
740 		dev_err(rvu->dev,
741 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
742 		iounmap(rvu->fwdata);
743 		rvu->fwdata = NULL;
744 		return -EINVAL;
745 	}
746 	return 0;
747 fail:
748 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
749 	return -EIO;
750 }
751 
752 static void rvu_fwdata_exit(struct rvu *rvu)
753 {
754 	if (rvu->fwdata)
755 		iounmap(rvu->fwdata);
756 }
757 
758 static int rvu_setup_hw_resources(struct rvu *rvu)
759 {
760 	struct rvu_hwinfo *hw = rvu->hw;
761 	struct rvu_block *block;
762 	int blkid, err;
763 	u64 cfg;
764 
765 	/* Get HW supported max RVU PF & VF count */
766 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
767 	hw->total_pfs = (cfg >> 32) & 0xFF;
768 	hw->total_vfs = (cfg >> 20) & 0xFFF;
769 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
770 
771 	/* Init NPA LF's bitmap */
772 	block = &hw->block[BLKADDR_NPA];
773 	if (!block->implemented)
774 		goto nix;
775 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
776 	block->lf.max = (cfg >> 16) & 0xFFF;
777 	block->addr = BLKADDR_NPA;
778 	block->type = BLKTYPE_NPA;
779 	block->lfshift = 8;
780 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
781 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
782 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
783 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
784 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
785 	block->lfreset_reg = NPA_AF_LF_RST;
786 	sprintf(block->name, "NPA");
787 	err = rvu_alloc_bitmap(&block->lf);
788 	if (err)
789 		return err;
790 
791 nix:
792 	/* Init NIX LF's bitmap */
793 	block = &hw->block[BLKADDR_NIX0];
794 	if (!block->implemented)
795 		goto sso;
796 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
797 	block->lf.max = cfg & 0xFFF;
798 	block->addr = BLKADDR_NIX0;
799 	block->type = BLKTYPE_NIX;
800 	block->lfshift = 8;
801 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
802 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
803 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
804 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
805 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
806 	block->lfreset_reg = NIX_AF_LF_RST;
807 	sprintf(block->name, "NIX");
808 	err = rvu_alloc_bitmap(&block->lf);
809 	if (err)
810 		return err;
811 
812 sso:
813 	/* Init SSO group's bitmap */
814 	block = &hw->block[BLKADDR_SSO];
815 	if (!block->implemented)
816 		goto ssow;
817 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
818 	block->lf.max = cfg & 0xFFFF;
819 	block->addr = BLKADDR_SSO;
820 	block->type = BLKTYPE_SSO;
821 	block->multislot = true;
822 	block->lfshift = 3;
823 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
824 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
825 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
826 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
827 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
828 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
829 	sprintf(block->name, "SSO GROUP");
830 	err = rvu_alloc_bitmap(&block->lf);
831 	if (err)
832 		return err;
833 
834 ssow:
835 	/* Init SSO workslot's bitmap */
836 	block = &hw->block[BLKADDR_SSOW];
837 	if (!block->implemented)
838 		goto tim;
839 	block->lf.max = (cfg >> 56) & 0xFF;
840 	block->addr = BLKADDR_SSOW;
841 	block->type = BLKTYPE_SSOW;
842 	block->multislot = true;
843 	block->lfshift = 3;
844 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
845 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
846 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
847 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
848 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
849 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
850 	sprintf(block->name, "SSOWS");
851 	err = rvu_alloc_bitmap(&block->lf);
852 	if (err)
853 		return err;
854 
855 tim:
856 	/* Init TIM LF's bitmap */
857 	block = &hw->block[BLKADDR_TIM];
858 	if (!block->implemented)
859 		goto cpt;
860 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
861 	block->lf.max = cfg & 0xFFFF;
862 	block->addr = BLKADDR_TIM;
863 	block->type = BLKTYPE_TIM;
864 	block->multislot = true;
865 	block->lfshift = 3;
866 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
867 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
868 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
869 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
870 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
871 	block->lfreset_reg = TIM_AF_LF_RST;
872 	sprintf(block->name, "TIM");
873 	err = rvu_alloc_bitmap(&block->lf);
874 	if (err)
875 		return err;
876 
877 cpt:
878 	/* Init CPT LF's bitmap */
879 	block = &hw->block[BLKADDR_CPT0];
880 	if (!block->implemented)
881 		goto init;
882 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
883 	block->lf.max = cfg & 0xFF;
884 	block->addr = BLKADDR_CPT0;
885 	block->type = BLKTYPE_CPT;
886 	block->multislot = true;
887 	block->lfshift = 3;
888 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
889 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
890 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
891 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
892 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
893 	block->lfreset_reg = CPT_AF_LF_RST;
894 	sprintf(block->name, "CPT");
895 	err = rvu_alloc_bitmap(&block->lf);
896 	if (err)
897 		return err;
898 
899 init:
900 	/* Allocate memory for PFVF data */
901 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
902 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
903 	if (!rvu->pf)
904 		return -ENOMEM;
905 
906 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
907 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
908 	if (!rvu->hwvf)
909 		return -ENOMEM;
910 
911 	mutex_init(&rvu->rsrc_lock);
912 
913 	rvu_fwdata_init(rvu);
914 
915 	err = rvu_setup_msix_resources(rvu);
916 	if (err)
917 		return err;
918 
919 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
920 		block = &hw->block[blkid];
921 		if (!block->lf.bmap)
922 			continue;
923 
924 		/* Allocate memory for block LF/slot to pcifunc mapping info */
925 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
926 					     sizeof(u16), GFP_KERNEL);
927 		if (!block->fn_map) {
928 			err = -ENOMEM;
929 			goto msix_err;
930 		}
931 
932 		/* Scan all blocks to check if low level firmware has
933 		 * already provisioned any of the resources to a PF/VF.
934 		 */
935 		rvu_scan_block(rvu, block);
936 	}
937 
938 	err = rvu_npc_init(rvu);
939 	if (err)
940 		goto npc_err;
941 
942 	err = rvu_cgx_init(rvu);
943 	if (err)
944 		goto cgx_err;
945 
946 	/* Assign MACs for CGX mapped functions */
947 	rvu_setup_pfvf_macaddress(rvu);
948 
949 	err = rvu_npa_init(rvu);
950 	if (err)
951 		goto npa_err;
952 
953 	err = rvu_nix_init(rvu);
954 	if (err)
955 		goto nix_err;
956 
957 	return 0;
958 
959 nix_err:
960 	rvu_nix_freemem(rvu);
961 npa_err:
962 	rvu_npa_freemem(rvu);
963 cgx_err:
964 	rvu_cgx_exit(rvu);
965 npc_err:
966 	rvu_npc_freemem(rvu);
967 	rvu_fwdata_exit(rvu);
968 msix_err:
969 	rvu_reset_msix(rvu);
970 	return err;
971 }
972 
973 /* NPA and NIX admin queue APIs */
974 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
975 {
976 	if (!aq)
977 		return;
978 
979 	qmem_free(rvu->dev, aq->inst);
980 	qmem_free(rvu->dev, aq->res);
981 	devm_kfree(rvu->dev, aq);
982 }
983 
984 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
985 		 int qsize, int inst_size, int res_size)
986 {
987 	struct admin_queue *aq;
988 	int err;
989 
990 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
991 	if (!*ad_queue)
992 		return -ENOMEM;
993 	aq = *ad_queue;
994 
995 	/* Alloc memory for instructions i.e AQ */
996 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
997 	if (err) {
998 		devm_kfree(rvu->dev, aq);
999 		return err;
1000 	}
1001 
1002 	/* Alloc memory for results */
1003 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1004 	if (err) {
1005 		rvu_aq_free(rvu, aq);
1006 		return err;
1007 	}
1008 
1009 	spin_lock_init(&aq->lock);
1010 	return 0;
1011 }
1012 
1013 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1014 			   struct ready_msg_rsp *rsp)
1015 {
1016 	if (rvu->fwdata) {
1017 		rsp->rclk_freq = rvu->fwdata->rclk;
1018 		rsp->sclk_freq = rvu->fwdata->sclk;
1019 	}
1020 	return 0;
1021 }
1022 
1023 /* Get current count of a RVU block's LF/slots
1024  * provisioned to a given RVU func.
1025  */
1026 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
1027 {
1028 	switch (blktype) {
1029 	case BLKTYPE_NPA:
1030 		return pfvf->npalf ? 1 : 0;
1031 	case BLKTYPE_NIX:
1032 		return pfvf->nixlf ? 1 : 0;
1033 	case BLKTYPE_SSO:
1034 		return pfvf->sso;
1035 	case BLKTYPE_SSOW:
1036 		return pfvf->ssow;
1037 	case BLKTYPE_TIM:
1038 		return pfvf->timlfs;
1039 	case BLKTYPE_CPT:
1040 		return pfvf->cptlfs;
1041 	}
1042 	return 0;
1043 }
1044 
1045 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1046 {
1047 	struct rvu_pfvf *pfvf;
1048 
1049 	if (!is_pf_func_valid(rvu, pcifunc))
1050 		return false;
1051 
1052 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1053 
1054 	/* Check if this PFFUNC has a LF of type blktype attached */
1055 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
1056 		return false;
1057 
1058 	return true;
1059 }
1060 
1061 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1062 			   int pcifunc, int slot)
1063 {
1064 	u64 val;
1065 
1066 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1067 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1068 	/* Wait for the lookup to finish */
1069 	/* TODO: put some timeout here */
1070 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1071 		;
1072 
1073 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1074 
1075 	/* Check LF valid bit */
1076 	if (!(val & (1ULL << 12)))
1077 		return -1;
1078 
1079 	return (val & 0xFFF);
1080 }
1081 
1082 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1083 {
1084 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1085 	struct rvu_hwinfo *hw = rvu->hw;
1086 	struct rvu_block *block;
1087 	int slot, lf, num_lfs;
1088 	int blkaddr;
1089 
1090 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1091 	if (blkaddr < 0)
1092 		return;
1093 
1094 	block = &hw->block[blkaddr];
1095 
1096 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1097 	if (!num_lfs)
1098 		return;
1099 
1100 	for (slot = 0; slot < num_lfs; slot++) {
1101 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1102 		if (lf < 0) /* This should never happen */
1103 			continue;
1104 
1105 		/* Disable the LF */
1106 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1107 			    (lf << block->lfshift), 0x00ULL);
1108 
1109 		/* Update SW maintained mapping info as well */
1110 		rvu_update_rsrc_map(rvu, pfvf, block,
1111 				    pcifunc, lf, false);
1112 
1113 		/* Free the resource */
1114 		rvu_free_rsrc(&block->lf, lf);
1115 
1116 		/* Clear MSIX vector offset for this LF */
1117 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1118 	}
1119 }
1120 
1121 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1122 			    u16 pcifunc)
1123 {
1124 	struct rvu_hwinfo *hw = rvu->hw;
1125 	bool detach_all = true;
1126 	struct rvu_block *block;
1127 	int blkid;
1128 
1129 	mutex_lock(&rvu->rsrc_lock);
1130 
1131 	/* Check for partial resource detach */
1132 	if (detach && detach->partial)
1133 		detach_all = false;
1134 
1135 	/* Check for RVU block's LFs attached to this func,
1136 	 * if so, detach them.
1137 	 */
1138 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1139 		block = &hw->block[blkid];
1140 		if (!block->lf.bmap)
1141 			continue;
1142 		if (!detach_all && detach) {
1143 			if (blkid == BLKADDR_NPA && !detach->npalf)
1144 				continue;
1145 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1146 				continue;
1147 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1148 				continue;
1149 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1150 				continue;
1151 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1152 				continue;
1153 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1154 				continue;
1155 		}
1156 		rvu_detach_block(rvu, pcifunc, block->type);
1157 	}
1158 
1159 	mutex_unlock(&rvu->rsrc_lock);
1160 	return 0;
1161 }
1162 
1163 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1164 				      struct rsrc_detach *detach,
1165 				      struct msg_rsp *rsp)
1166 {
1167 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1168 }
1169 
1170 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1171 			     int blktype, int num_lfs)
1172 {
1173 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1174 	struct rvu_hwinfo *hw = rvu->hw;
1175 	struct rvu_block *block;
1176 	int slot, lf;
1177 	int blkaddr;
1178 	u64 cfg;
1179 
1180 	if (!num_lfs)
1181 		return;
1182 
1183 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1184 	if (blkaddr < 0)
1185 		return;
1186 
1187 	block = &hw->block[blkaddr];
1188 	if (!block->lf.bmap)
1189 		return;
1190 
1191 	for (slot = 0; slot < num_lfs; slot++) {
1192 		/* Allocate the resource */
1193 		lf = rvu_alloc_rsrc(&block->lf);
1194 		if (lf < 0)
1195 			return;
1196 
1197 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1198 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1199 			    (lf << block->lfshift), cfg);
1200 		rvu_update_rsrc_map(rvu, pfvf, block,
1201 				    pcifunc, lf, true);
1202 
1203 		/* Set start MSIX vector for this LF within this PF/VF */
1204 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1205 	}
1206 }
1207 
1208 static int rvu_check_rsrc_availability(struct rvu *rvu,
1209 				       struct rsrc_attach *req, u16 pcifunc)
1210 {
1211 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1212 	struct rvu_hwinfo *hw = rvu->hw;
1213 	struct rvu_block *block;
1214 	int free_lfs, mappedlfs;
1215 
1216 	/* Only one NPA LF can be attached */
1217 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1218 		block = &hw->block[BLKADDR_NPA];
1219 		free_lfs = rvu_rsrc_free_count(&block->lf);
1220 		if (!free_lfs)
1221 			goto fail;
1222 	} else if (req->npalf) {
1223 		dev_err(&rvu->pdev->dev,
1224 			"Func 0x%x: Invalid req, already has NPA\n",
1225 			 pcifunc);
1226 		return -EINVAL;
1227 	}
1228 
1229 	/* Only one NIX LF can be attached */
1230 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1231 		block = &hw->block[BLKADDR_NIX0];
1232 		free_lfs = rvu_rsrc_free_count(&block->lf);
1233 		if (!free_lfs)
1234 			goto fail;
1235 	} else if (req->nixlf) {
1236 		dev_err(&rvu->pdev->dev,
1237 			"Func 0x%x: Invalid req, already has NIX\n",
1238 			pcifunc);
1239 		return -EINVAL;
1240 	}
1241 
1242 	if (req->sso) {
1243 		block = &hw->block[BLKADDR_SSO];
1244 		/* Is request within limits ? */
1245 		if (req->sso > block->lf.max) {
1246 			dev_err(&rvu->pdev->dev,
1247 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1248 				 pcifunc, req->sso, block->lf.max);
1249 			return -EINVAL;
1250 		}
1251 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1252 		free_lfs = rvu_rsrc_free_count(&block->lf);
1253 		/* Check if additional resources are available */
1254 		if (req->sso > mappedlfs &&
1255 		    ((req->sso - mappedlfs) > free_lfs))
1256 			goto fail;
1257 	}
1258 
1259 	if (req->ssow) {
1260 		block = &hw->block[BLKADDR_SSOW];
1261 		if (req->ssow > block->lf.max) {
1262 			dev_err(&rvu->pdev->dev,
1263 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1264 				 pcifunc, req->sso, block->lf.max);
1265 			return -EINVAL;
1266 		}
1267 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1268 		free_lfs = rvu_rsrc_free_count(&block->lf);
1269 		if (req->ssow > mappedlfs &&
1270 		    ((req->ssow - mappedlfs) > free_lfs))
1271 			goto fail;
1272 	}
1273 
1274 	if (req->timlfs) {
1275 		block = &hw->block[BLKADDR_TIM];
1276 		if (req->timlfs > block->lf.max) {
1277 			dev_err(&rvu->pdev->dev,
1278 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1279 				 pcifunc, req->timlfs, block->lf.max);
1280 			return -EINVAL;
1281 		}
1282 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1283 		free_lfs = rvu_rsrc_free_count(&block->lf);
1284 		if (req->timlfs > mappedlfs &&
1285 		    ((req->timlfs - mappedlfs) > free_lfs))
1286 			goto fail;
1287 	}
1288 
1289 	if (req->cptlfs) {
1290 		block = &hw->block[BLKADDR_CPT0];
1291 		if (req->cptlfs > block->lf.max) {
1292 			dev_err(&rvu->pdev->dev,
1293 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1294 				 pcifunc, req->cptlfs, block->lf.max);
1295 			return -EINVAL;
1296 		}
1297 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1298 		free_lfs = rvu_rsrc_free_count(&block->lf);
1299 		if (req->cptlfs > mappedlfs &&
1300 		    ((req->cptlfs - mappedlfs) > free_lfs))
1301 			goto fail;
1302 	}
1303 
1304 	return 0;
1305 
1306 fail:
1307 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1308 	return -ENOSPC;
1309 }
1310 
1311 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1312 				      struct rsrc_attach *attach,
1313 				      struct msg_rsp *rsp)
1314 {
1315 	u16 pcifunc = attach->hdr.pcifunc;
1316 	int err;
1317 
1318 	/* If first request, detach all existing attached resources */
1319 	if (!attach->modify)
1320 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1321 
1322 	mutex_lock(&rvu->rsrc_lock);
1323 
1324 	/* Check if the request can be accommodated */
1325 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1326 	if (err)
1327 		goto exit;
1328 
1329 	/* Now attach the requested resources */
1330 	if (attach->npalf)
1331 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1332 
1333 	if (attach->nixlf)
1334 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1335 
1336 	if (attach->sso) {
1337 		/* RVU func doesn't know which exact LF or slot is attached
1338 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1339 		 * request, simply detach all existing attached LFs/slots
1340 		 * and attach a fresh.
1341 		 */
1342 		if (attach->modify)
1343 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1344 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1345 	}
1346 
1347 	if (attach->ssow) {
1348 		if (attach->modify)
1349 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1350 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1351 	}
1352 
1353 	if (attach->timlfs) {
1354 		if (attach->modify)
1355 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1356 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1357 	}
1358 
1359 	if (attach->cptlfs) {
1360 		if (attach->modify)
1361 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1362 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1363 	}
1364 
1365 exit:
1366 	mutex_unlock(&rvu->rsrc_lock);
1367 	return err;
1368 }
1369 
1370 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1371 			       int blkaddr, int lf)
1372 {
1373 	u16 vec;
1374 
1375 	if (lf < 0)
1376 		return MSIX_VECTOR_INVALID;
1377 
1378 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1379 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1380 			return vec;
1381 	}
1382 	return MSIX_VECTOR_INVALID;
1383 }
1384 
1385 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1386 				struct rvu_block *block, int lf)
1387 {
1388 	u16 nvecs, vec, offset;
1389 	u64 cfg;
1390 
1391 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1392 			 (lf << block->lfshift));
1393 	nvecs = (cfg >> 12) & 0xFF;
1394 
1395 	/* Check and alloc MSIX vectors, must be contiguous */
1396 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1397 		return;
1398 
1399 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1400 
1401 	/* Config MSIX offset in LF */
1402 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1403 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1404 
1405 	/* Update the bitmap as well */
1406 	for (vec = 0; vec < nvecs; vec++)
1407 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1408 }
1409 
1410 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1411 				  struct rvu_block *block, int lf)
1412 {
1413 	u16 nvecs, vec, offset;
1414 	u64 cfg;
1415 
1416 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1417 			 (lf << block->lfshift));
1418 	nvecs = (cfg >> 12) & 0xFF;
1419 
1420 	/* Clear MSIX offset in LF */
1421 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1422 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1423 
1424 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1425 
1426 	/* Update the mapping */
1427 	for (vec = 0; vec < nvecs; vec++)
1428 		pfvf->msix_lfmap[offset + vec] = 0;
1429 
1430 	/* Free the same in MSIX bitmap */
1431 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1432 }
1433 
1434 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1435 				 struct msix_offset_rsp *rsp)
1436 {
1437 	struct rvu_hwinfo *hw = rvu->hw;
1438 	u16 pcifunc = req->hdr.pcifunc;
1439 	struct rvu_pfvf *pfvf;
1440 	int lf, slot;
1441 
1442 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1443 	if (!pfvf->msix.bmap)
1444 		return 0;
1445 
1446 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1447 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1448 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1449 
1450 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1451 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1452 
1453 	rsp->sso = pfvf->sso;
1454 	for (slot = 0; slot < rsp->sso; slot++) {
1455 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1456 		rsp->sso_msixoff[slot] =
1457 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1458 	}
1459 
1460 	rsp->ssow = pfvf->ssow;
1461 	for (slot = 0; slot < rsp->ssow; slot++) {
1462 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1463 		rsp->ssow_msixoff[slot] =
1464 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1465 	}
1466 
1467 	rsp->timlfs = pfvf->timlfs;
1468 	for (slot = 0; slot < rsp->timlfs; slot++) {
1469 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1470 		rsp->timlf_msixoff[slot] =
1471 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1472 	}
1473 
1474 	rsp->cptlfs = pfvf->cptlfs;
1475 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1476 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1477 		rsp->cptlf_msixoff[slot] =
1478 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1479 	}
1480 	return 0;
1481 }
1482 
1483 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1484 			    struct msg_rsp *rsp)
1485 {
1486 	u16 pcifunc = req->hdr.pcifunc;
1487 	u16 vf, numvfs;
1488 	u64 cfg;
1489 
1490 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1491 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1492 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1493 	numvfs = (cfg >> 12) & 0xFF;
1494 
1495 	if (vf && vf <= numvfs)
1496 		__rvu_flr_handler(rvu, pcifunc);
1497 	else
1498 		return RVU_INVALID_VF_ID;
1499 
1500 	return 0;
1501 }
1502 
1503 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1504 				struct get_hw_cap_rsp *rsp)
1505 {
1506 	struct rvu_hwinfo *hw = rvu->hw;
1507 
1508 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1509 	rsp->nix_shaping = hw->cap.nix_shaping;
1510 
1511 	return 0;
1512 }
1513 
1514 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1515 				struct mbox_msghdr *req)
1516 {
1517 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1518 
1519 	/* Check if valid, if not reply with a invalid msg */
1520 	if (req->sig != OTX2_MBOX_REQ_SIG)
1521 		goto bad_message;
1522 
1523 	switch (req->id) {
1524 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1525 	case _id: {							\
1526 		struct _rsp_type *rsp;					\
1527 		int err;						\
1528 									\
1529 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1530 			mbox, devid,					\
1531 			sizeof(struct _rsp_type));			\
1532 		/* some handlers should complete even if reply */	\
1533 		/* could not be allocated */				\
1534 		if (!rsp &&						\
1535 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1536 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1537 		    _id != MBOX_MSG_VF_FLR)				\
1538 			return -ENOMEM;					\
1539 		if (rsp) {						\
1540 			rsp->hdr.id = _id;				\
1541 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1542 			rsp->hdr.pcifunc = req->pcifunc;		\
1543 			rsp->hdr.rc = 0;				\
1544 		}							\
1545 									\
1546 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1547 						    (struct _req_type *)req, \
1548 						    rsp);		\
1549 		if (rsp && err)						\
1550 			rsp->hdr.rc = err;				\
1551 									\
1552 		return rsp ? err : -ENOMEM;				\
1553 	}
1554 MBOX_MESSAGES
1555 #undef M
1556 
1557 bad_message:
1558 	default:
1559 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1560 		return -ENODEV;
1561 	}
1562 }
1563 
1564 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1565 {
1566 	struct rvu *rvu = mwork->rvu;
1567 	int offset, err, id, devid;
1568 	struct otx2_mbox_dev *mdev;
1569 	struct mbox_hdr *req_hdr;
1570 	struct mbox_msghdr *msg;
1571 	struct mbox_wq_info *mw;
1572 	struct otx2_mbox *mbox;
1573 
1574 	switch (type) {
1575 	case TYPE_AFPF:
1576 		mw = &rvu->afpf_wq_info;
1577 		break;
1578 	case TYPE_AFVF:
1579 		mw = &rvu->afvf_wq_info;
1580 		break;
1581 	default:
1582 		return;
1583 	}
1584 
1585 	devid = mwork - mw->mbox_wrk;
1586 	mbox = &mw->mbox;
1587 	mdev = &mbox->dev[devid];
1588 
1589 	/* Process received mbox messages */
1590 	req_hdr = mdev->mbase + mbox->rx_start;
1591 	if (mw->mbox_wrk[devid].num_msgs == 0)
1592 		return;
1593 
1594 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1595 
1596 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1597 		msg = mdev->mbase + offset;
1598 
1599 		/* Set which PF/VF sent this message based on mbox IRQ */
1600 		switch (type) {
1601 		case TYPE_AFPF:
1602 			msg->pcifunc &=
1603 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1604 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1605 			break;
1606 		case TYPE_AFVF:
1607 			msg->pcifunc &=
1608 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1609 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1610 			break;
1611 		}
1612 
1613 		err = rvu_process_mbox_msg(mbox, devid, msg);
1614 		if (!err) {
1615 			offset = mbox->rx_start + msg->next_msgoff;
1616 			continue;
1617 		}
1618 
1619 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1620 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1621 				 err, otx2_mbox_id2name(msg->id),
1622 				 msg->id, rvu_get_pf(msg->pcifunc),
1623 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1624 		else
1625 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1626 				 err, otx2_mbox_id2name(msg->id),
1627 				 msg->id, devid);
1628 	}
1629 	mw->mbox_wrk[devid].num_msgs = 0;
1630 
1631 	/* Send mbox responses to VF/PF */
1632 	otx2_mbox_msg_send(mbox, devid);
1633 }
1634 
1635 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1636 {
1637 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1638 
1639 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1640 }
1641 
1642 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1643 {
1644 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1645 
1646 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1647 }
1648 
1649 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1650 {
1651 	struct rvu *rvu = mwork->rvu;
1652 	struct otx2_mbox_dev *mdev;
1653 	struct mbox_hdr *rsp_hdr;
1654 	struct mbox_msghdr *msg;
1655 	struct mbox_wq_info *mw;
1656 	struct otx2_mbox *mbox;
1657 	int offset, id, devid;
1658 
1659 	switch (type) {
1660 	case TYPE_AFPF:
1661 		mw = &rvu->afpf_wq_info;
1662 		break;
1663 	case TYPE_AFVF:
1664 		mw = &rvu->afvf_wq_info;
1665 		break;
1666 	default:
1667 		return;
1668 	}
1669 
1670 	devid = mwork - mw->mbox_wrk_up;
1671 	mbox = &mw->mbox_up;
1672 	mdev = &mbox->dev[devid];
1673 
1674 	rsp_hdr = mdev->mbase + mbox->rx_start;
1675 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1676 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1677 		return;
1678 	}
1679 
1680 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1681 
1682 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1683 		msg = mdev->mbase + offset;
1684 
1685 		if (msg->id >= MBOX_MSG_MAX) {
1686 			dev_err(rvu->dev,
1687 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1688 			goto end;
1689 		}
1690 
1691 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1692 			dev_err(rvu->dev,
1693 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1694 				msg->sig, msg->id);
1695 			goto end;
1696 		}
1697 
1698 		switch (msg->id) {
1699 		case MBOX_MSG_CGX_LINK_EVENT:
1700 			break;
1701 		default:
1702 			if (msg->rc)
1703 				dev_err(rvu->dev,
1704 					"Mbox msg response has err %d, ID 0x%x\n",
1705 					msg->rc, msg->id);
1706 			break;
1707 		}
1708 end:
1709 		offset = mbox->rx_start + msg->next_msgoff;
1710 		mdev->msgs_acked++;
1711 	}
1712 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1713 
1714 	otx2_mbox_reset(mbox, devid);
1715 }
1716 
1717 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1718 {
1719 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1720 
1721 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1722 }
1723 
1724 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1725 {
1726 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1727 
1728 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1729 }
1730 
1731 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1732 			 int type, int num,
1733 			 void (mbox_handler)(struct work_struct *),
1734 			 void (mbox_up_handler)(struct work_struct *))
1735 {
1736 	void __iomem *hwbase = NULL, *reg_base;
1737 	int err, i, dir, dir_up;
1738 	struct rvu_work *mwork;
1739 	const char *name;
1740 	u64 bar4_addr;
1741 
1742 	switch (type) {
1743 	case TYPE_AFPF:
1744 		name = "rvu_afpf_mailbox";
1745 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1746 		dir = MBOX_DIR_AFPF;
1747 		dir_up = MBOX_DIR_AFPF_UP;
1748 		reg_base = rvu->afreg_base;
1749 		break;
1750 	case TYPE_AFVF:
1751 		name = "rvu_afvf_mailbox";
1752 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1753 		dir = MBOX_DIR_PFVF;
1754 		dir_up = MBOX_DIR_PFVF_UP;
1755 		reg_base = rvu->pfreg_base;
1756 		break;
1757 	default:
1758 		return -EINVAL;
1759 	}
1760 
1761 	mw->mbox_wq = alloc_workqueue(name,
1762 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1763 				      num);
1764 	if (!mw->mbox_wq)
1765 		return -ENOMEM;
1766 
1767 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1768 				    sizeof(struct rvu_work), GFP_KERNEL);
1769 	if (!mw->mbox_wrk) {
1770 		err = -ENOMEM;
1771 		goto exit;
1772 	}
1773 
1774 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1775 				       sizeof(struct rvu_work), GFP_KERNEL);
1776 	if (!mw->mbox_wrk_up) {
1777 		err = -ENOMEM;
1778 		goto exit;
1779 	}
1780 
1781 	/* Mailbox is a reserved memory (in RAM) region shared between
1782 	 * RVU devices, shouldn't be mapped as device memory to allow
1783 	 * unaligned accesses.
1784 	 */
1785 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1786 	if (!hwbase) {
1787 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1788 		err = -ENOMEM;
1789 		goto exit;
1790 	}
1791 
1792 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1793 	if (err)
1794 		goto exit;
1795 
1796 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1797 			     reg_base, dir_up, num);
1798 	if (err)
1799 		goto exit;
1800 
1801 	for (i = 0; i < num; i++) {
1802 		mwork = &mw->mbox_wrk[i];
1803 		mwork->rvu = rvu;
1804 		INIT_WORK(&mwork->work, mbox_handler);
1805 
1806 		mwork = &mw->mbox_wrk_up[i];
1807 		mwork->rvu = rvu;
1808 		INIT_WORK(&mwork->work, mbox_up_handler);
1809 	}
1810 
1811 	return 0;
1812 exit:
1813 	if (hwbase)
1814 		iounmap((void __iomem *)hwbase);
1815 	destroy_workqueue(mw->mbox_wq);
1816 	return err;
1817 }
1818 
1819 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1820 {
1821 	if (mw->mbox_wq) {
1822 		flush_workqueue(mw->mbox_wq);
1823 		destroy_workqueue(mw->mbox_wq);
1824 		mw->mbox_wq = NULL;
1825 	}
1826 
1827 	if (mw->mbox.hwbase)
1828 		iounmap((void __iomem *)mw->mbox.hwbase);
1829 
1830 	otx2_mbox_destroy(&mw->mbox);
1831 	otx2_mbox_destroy(&mw->mbox_up);
1832 }
1833 
1834 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1835 			   int mdevs, u64 intr)
1836 {
1837 	struct otx2_mbox_dev *mdev;
1838 	struct otx2_mbox *mbox;
1839 	struct mbox_hdr *hdr;
1840 	int i;
1841 
1842 	for (i = first; i < mdevs; i++) {
1843 		/* start from 0 */
1844 		if (!(intr & BIT_ULL(i - first)))
1845 			continue;
1846 
1847 		mbox = &mw->mbox;
1848 		mdev = &mbox->dev[i];
1849 		hdr = mdev->mbase + mbox->rx_start;
1850 
1851 		/*The hdr->num_msgs is set to zero immediately in the interrupt
1852 		 * handler to  ensure that it holds a correct value next time
1853 		 * when the interrupt handler is called.
1854 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
1855 		 * pf>mbox.up_num_msgs holds the data for use in
1856 		 * pfaf_mbox_up_handler.
1857 		 */
1858 
1859 		if (hdr->num_msgs) {
1860 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
1861 			hdr->num_msgs = 0;
1862 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1863 		}
1864 		mbox = &mw->mbox_up;
1865 		mdev = &mbox->dev[i];
1866 		hdr = mdev->mbase + mbox->rx_start;
1867 		if (hdr->num_msgs) {
1868 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
1869 			hdr->num_msgs = 0;
1870 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1871 		}
1872 	}
1873 }
1874 
1875 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1876 {
1877 	struct rvu *rvu = (struct rvu *)rvu_irq;
1878 	int vfs = rvu->vfs;
1879 	u64 intr;
1880 
1881 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1882 	/* Clear interrupts */
1883 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1884 
1885 	/* Sync with mbox memory region */
1886 	rmb();
1887 
1888 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1889 
1890 	/* Handle VF interrupts */
1891 	if (vfs > 64) {
1892 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1893 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1894 
1895 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1896 		vfs -= 64;
1897 	}
1898 
1899 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1900 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1901 
1902 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1903 
1904 	return IRQ_HANDLED;
1905 }
1906 
1907 static void rvu_enable_mbox_intr(struct rvu *rvu)
1908 {
1909 	struct rvu_hwinfo *hw = rvu->hw;
1910 
1911 	/* Clear spurious irqs, if any */
1912 	rvu_write64(rvu, BLKADDR_RVUM,
1913 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1914 
1915 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1916 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1917 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1918 }
1919 
1920 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1921 {
1922 	struct rvu_block *block;
1923 	int slot, lf, num_lfs;
1924 	int err;
1925 
1926 	block = &rvu->hw->block[blkaddr];
1927 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1928 					block->type);
1929 	if (!num_lfs)
1930 		return;
1931 	for (slot = 0; slot < num_lfs; slot++) {
1932 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1933 		if (lf < 0)
1934 			continue;
1935 
1936 		/* Cleanup LF and reset it */
1937 		if (block->addr == BLKADDR_NIX0)
1938 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1939 		else if (block->addr == BLKADDR_NPA)
1940 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1941 
1942 		err = rvu_lf_reset(rvu, block, lf);
1943 		if (err) {
1944 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1945 				block->addr, lf);
1946 		}
1947 	}
1948 }
1949 
1950 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1951 {
1952 	mutex_lock(&rvu->flr_lock);
1953 	/* Reset order should reflect inter-block dependencies:
1954 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1955 	 * 2. Flush and reset SSO/SSOW
1956 	 * 3. Cleanup pools (NPA)
1957 	 */
1958 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1959 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1960 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1961 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1962 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1963 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1964 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1965 	mutex_unlock(&rvu->flr_lock);
1966 }
1967 
1968 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1969 {
1970 	int reg = 0;
1971 
1972 	/* pcifunc = 0(PF0) | (vf + 1) */
1973 	__rvu_flr_handler(rvu, vf + 1);
1974 
1975 	if (vf >= 64) {
1976 		reg = 1;
1977 		vf = vf - 64;
1978 	}
1979 
1980 	/* Signal FLR finish and enable IRQ */
1981 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1982 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1983 }
1984 
1985 static void rvu_flr_handler(struct work_struct *work)
1986 {
1987 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1988 	struct rvu *rvu = flrwork->rvu;
1989 	u16 pcifunc, numvfs, vf;
1990 	u64 cfg;
1991 	int pf;
1992 
1993 	pf = flrwork - rvu->flr_wrk;
1994 	if (pf >= rvu->hw->total_pfs) {
1995 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1996 		return;
1997 	}
1998 
1999 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2000 	numvfs = (cfg >> 12) & 0xFF;
2001 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2002 
2003 	for (vf = 0; vf < numvfs; vf++)
2004 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2005 
2006 	__rvu_flr_handler(rvu, pcifunc);
2007 
2008 	/* Signal FLR finish */
2009 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2010 
2011 	/* Enable interrupt */
2012 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2013 }
2014 
2015 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2016 {
2017 	int dev, vf, reg = 0;
2018 	u64 intr;
2019 
2020 	if (start_vf >= 64)
2021 		reg = 1;
2022 
2023 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2024 	if (!intr)
2025 		return;
2026 
2027 	for (vf = 0; vf < numvfs; vf++) {
2028 		if (!(intr & BIT_ULL(vf)))
2029 			continue;
2030 		dev = vf + start_vf + rvu->hw->total_pfs;
2031 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2032 		/* Clear and disable the interrupt */
2033 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2034 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2035 	}
2036 }
2037 
2038 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2039 {
2040 	struct rvu *rvu = (struct rvu *)rvu_irq;
2041 	u64 intr;
2042 	u8  pf;
2043 
2044 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2045 	if (!intr)
2046 		goto afvf_flr;
2047 
2048 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2049 		if (intr & (1ULL << pf)) {
2050 			/* PF is already dead do only AF related operations */
2051 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2052 			/* clear interrupt */
2053 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2054 				    BIT_ULL(pf));
2055 			/* Disable the interrupt */
2056 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2057 				    BIT_ULL(pf));
2058 		}
2059 	}
2060 
2061 afvf_flr:
2062 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2063 	if (rvu->vfs > 64)
2064 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2065 
2066 	return IRQ_HANDLED;
2067 }
2068 
2069 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2070 {
2071 	int vf;
2072 
2073 	/* Nothing to be done here other than clearing the
2074 	 * TRPEND bit.
2075 	 */
2076 	for (vf = 0; vf < 64; vf++) {
2077 		if (intr & (1ULL << vf)) {
2078 			/* clear the trpend due to ME(master enable) */
2079 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2080 			/* clear interrupt */
2081 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2082 		}
2083 	}
2084 }
2085 
2086 /* Handles ME interrupts from VFs of AF */
2087 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2088 {
2089 	struct rvu *rvu = (struct rvu *)rvu_irq;
2090 	int vfset;
2091 	u64 intr;
2092 
2093 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2094 
2095 	for (vfset = 0; vfset <= 1; vfset++) {
2096 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2097 		if (intr)
2098 			rvu_me_handle_vfset(rvu, vfset, intr);
2099 	}
2100 
2101 	return IRQ_HANDLED;
2102 }
2103 
2104 /* Handles ME interrupts from PFs */
2105 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2106 {
2107 	struct rvu *rvu = (struct rvu *)rvu_irq;
2108 	u64 intr;
2109 	u8  pf;
2110 
2111 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2112 
2113 	/* Nothing to be done here other than clearing the
2114 	 * TRPEND bit.
2115 	 */
2116 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2117 		if (intr & (1ULL << pf)) {
2118 			/* clear the trpend due to ME(master enable) */
2119 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2120 				    BIT_ULL(pf));
2121 			/* clear interrupt */
2122 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2123 				    BIT_ULL(pf));
2124 		}
2125 	}
2126 
2127 	return IRQ_HANDLED;
2128 }
2129 
2130 static void rvu_unregister_interrupts(struct rvu *rvu)
2131 {
2132 	int irq;
2133 
2134 	/* Disable the Mbox interrupt */
2135 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2136 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2137 
2138 	/* Disable the PF FLR interrupt */
2139 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2140 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2141 
2142 	/* Disable the PF ME interrupt */
2143 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2144 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2145 
2146 	for (irq = 0; irq < rvu->num_vec; irq++) {
2147 		if (rvu->irq_allocated[irq])
2148 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2149 	}
2150 
2151 	pci_free_irq_vectors(rvu->pdev);
2152 	rvu->num_vec = 0;
2153 }
2154 
2155 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2156 {
2157 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2158 	int offset;
2159 
2160 	pfvf = &rvu->pf[0];
2161 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2162 
2163 	/* Make sure there are enough MSIX vectors configured so that
2164 	 * VF interrupts can be handled. Offset equal to zero means
2165 	 * that PF vectors are not configured and overlapping AF vectors.
2166 	 */
2167 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2168 	       offset;
2169 }
2170 
2171 static int rvu_register_interrupts(struct rvu *rvu)
2172 {
2173 	int ret, offset, pf_vec_start;
2174 
2175 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2176 
2177 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2178 					   NAME_SIZE, GFP_KERNEL);
2179 	if (!rvu->irq_name)
2180 		return -ENOMEM;
2181 
2182 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2183 					  sizeof(bool), GFP_KERNEL);
2184 	if (!rvu->irq_allocated)
2185 		return -ENOMEM;
2186 
2187 	/* Enable MSI-X */
2188 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2189 				    rvu->num_vec, PCI_IRQ_MSIX);
2190 	if (ret < 0) {
2191 		dev_err(rvu->dev,
2192 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2193 			rvu->num_vec, ret);
2194 		return ret;
2195 	}
2196 
2197 	/* Register mailbox interrupt handler */
2198 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2199 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2200 			  rvu_mbox_intr_handler, 0,
2201 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2202 	if (ret) {
2203 		dev_err(rvu->dev,
2204 			"RVUAF: IRQ registration failed for mbox irq\n");
2205 		goto fail;
2206 	}
2207 
2208 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2209 
2210 	/* Enable mailbox interrupts from all PFs */
2211 	rvu_enable_mbox_intr(rvu);
2212 
2213 	/* Register FLR interrupt handler */
2214 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2215 		"RVUAF FLR");
2216 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2217 			  rvu_flr_intr_handler, 0,
2218 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2219 			  rvu);
2220 	if (ret) {
2221 		dev_err(rvu->dev,
2222 			"RVUAF: IRQ registration failed for FLR\n");
2223 		goto fail;
2224 	}
2225 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2226 
2227 	/* Enable FLR interrupt for all PFs*/
2228 	rvu_write64(rvu, BLKADDR_RVUM,
2229 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2230 
2231 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2232 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2233 
2234 	/* Register ME interrupt handler */
2235 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2236 		"RVUAF ME");
2237 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2238 			  rvu_me_pf_intr_handler, 0,
2239 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2240 			  rvu);
2241 	if (ret) {
2242 		dev_err(rvu->dev,
2243 			"RVUAF: IRQ registration failed for ME\n");
2244 	}
2245 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2246 
2247 	/* Clear TRPEND bit for all PF */
2248 	rvu_write64(rvu, BLKADDR_RVUM,
2249 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2250 	/* Enable ME interrupt for all PFs*/
2251 	rvu_write64(rvu, BLKADDR_RVUM,
2252 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2253 
2254 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2255 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2256 
2257 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2258 		return 0;
2259 
2260 	/* Get PF MSIX vectors offset. */
2261 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2262 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2263 
2264 	/* Register MBOX0 interrupt. */
2265 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2266 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2267 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2268 			  rvu_mbox_intr_handler, 0,
2269 			  &rvu->irq_name[offset * NAME_SIZE],
2270 			  rvu);
2271 	if (ret)
2272 		dev_err(rvu->dev,
2273 			"RVUAF: IRQ registration failed for Mbox0\n");
2274 
2275 	rvu->irq_allocated[offset] = true;
2276 
2277 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2278 	 * simply increment current offset by 1.
2279 	 */
2280 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2281 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2282 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2283 			  rvu_mbox_intr_handler, 0,
2284 			  &rvu->irq_name[offset * NAME_SIZE],
2285 			  rvu);
2286 	if (ret)
2287 		dev_err(rvu->dev,
2288 			"RVUAF: IRQ registration failed for Mbox1\n");
2289 
2290 	rvu->irq_allocated[offset] = true;
2291 
2292 	/* Register FLR interrupt handler for AF's VFs */
2293 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2294 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2295 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2296 			  rvu_flr_intr_handler, 0,
2297 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2298 	if (ret) {
2299 		dev_err(rvu->dev,
2300 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2301 		goto fail;
2302 	}
2303 	rvu->irq_allocated[offset] = true;
2304 
2305 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2306 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2307 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2308 			  rvu_flr_intr_handler, 0,
2309 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2310 	if (ret) {
2311 		dev_err(rvu->dev,
2312 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2313 		goto fail;
2314 	}
2315 	rvu->irq_allocated[offset] = true;
2316 
2317 	/* Register ME interrupt handler for AF's VFs */
2318 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2319 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2320 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2321 			  rvu_me_vf_intr_handler, 0,
2322 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2323 	if (ret) {
2324 		dev_err(rvu->dev,
2325 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2326 		goto fail;
2327 	}
2328 	rvu->irq_allocated[offset] = true;
2329 
2330 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2331 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2332 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2333 			  rvu_me_vf_intr_handler, 0,
2334 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2335 	if (ret) {
2336 		dev_err(rvu->dev,
2337 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2338 		goto fail;
2339 	}
2340 	rvu->irq_allocated[offset] = true;
2341 	return 0;
2342 
2343 fail:
2344 	rvu_unregister_interrupts(rvu);
2345 	return ret;
2346 }
2347 
2348 static void rvu_flr_wq_destroy(struct rvu *rvu)
2349 {
2350 	if (rvu->flr_wq) {
2351 		flush_workqueue(rvu->flr_wq);
2352 		destroy_workqueue(rvu->flr_wq);
2353 		rvu->flr_wq = NULL;
2354 	}
2355 }
2356 
2357 static int rvu_flr_init(struct rvu *rvu)
2358 {
2359 	int dev, num_devs;
2360 	u64 cfg;
2361 	int pf;
2362 
2363 	/* Enable FLR for all PFs*/
2364 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2365 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2366 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2367 			    cfg | BIT_ULL(22));
2368 	}
2369 
2370 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2371 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2372 				       1);
2373 	if (!rvu->flr_wq)
2374 		return -ENOMEM;
2375 
2376 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2377 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2378 				    sizeof(struct rvu_work), GFP_KERNEL);
2379 	if (!rvu->flr_wrk) {
2380 		destroy_workqueue(rvu->flr_wq);
2381 		return -ENOMEM;
2382 	}
2383 
2384 	for (dev = 0; dev < num_devs; dev++) {
2385 		rvu->flr_wrk[dev].rvu = rvu;
2386 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2387 	}
2388 
2389 	mutex_init(&rvu->flr_lock);
2390 
2391 	return 0;
2392 }
2393 
2394 static void rvu_disable_afvf_intr(struct rvu *rvu)
2395 {
2396 	int vfs = rvu->vfs;
2397 
2398 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2399 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2400 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2401 	if (vfs <= 64)
2402 		return;
2403 
2404 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2405 		      INTR_MASK(vfs - 64));
2406 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2407 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2408 }
2409 
2410 static void rvu_enable_afvf_intr(struct rvu *rvu)
2411 {
2412 	int vfs = rvu->vfs;
2413 
2414 	/* Clear any pending interrupts and enable AF VF interrupts for
2415 	 * the first 64 VFs.
2416 	 */
2417 	/* Mbox */
2418 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2419 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2420 
2421 	/* FLR */
2422 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2423 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2424 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2425 
2426 	/* Same for remaining VFs, if any. */
2427 	if (vfs <= 64)
2428 		return;
2429 
2430 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2431 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2432 		      INTR_MASK(vfs - 64));
2433 
2434 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2435 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2436 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2437 }
2438 
2439 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2440 
2441 static int lbk_get_num_chans(void)
2442 {
2443 	struct pci_dev *pdev;
2444 	void __iomem *base;
2445 	int ret = -EIO;
2446 
2447 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2448 			      NULL);
2449 	if (!pdev)
2450 		goto err;
2451 
2452 	base = pci_ioremap_bar(pdev, 0);
2453 	if (!base)
2454 		goto err_put;
2455 
2456 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2457 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2458 	iounmap(base);
2459 err_put:
2460 	pci_dev_put(pdev);
2461 err:
2462 	return ret;
2463 }
2464 
2465 static int rvu_enable_sriov(struct rvu *rvu)
2466 {
2467 	struct pci_dev *pdev = rvu->pdev;
2468 	int err, chans, vfs;
2469 
2470 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2471 		dev_warn(&pdev->dev,
2472 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2473 		return 0;
2474 	}
2475 
2476 	chans = lbk_get_num_chans();
2477 	if (chans < 0)
2478 		return chans;
2479 
2480 	vfs = pci_sriov_get_totalvfs(pdev);
2481 
2482 	/* Limit VFs in case we have more VFs than LBK channels available. */
2483 	if (vfs > chans)
2484 		vfs = chans;
2485 
2486 	if (!vfs)
2487 		return 0;
2488 
2489 	/* Save VFs number for reference in VF interrupts handlers.
2490 	 * Since interrupts might start arriving during SRIOV enablement
2491 	 * ordinary API cannot be used to get number of enabled VFs.
2492 	 */
2493 	rvu->vfs = vfs;
2494 
2495 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2496 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2497 	if (err)
2498 		return err;
2499 
2500 	rvu_enable_afvf_intr(rvu);
2501 	/* Make sure IRQs are enabled before SRIOV. */
2502 	mb();
2503 
2504 	err = pci_enable_sriov(pdev, vfs);
2505 	if (err) {
2506 		rvu_disable_afvf_intr(rvu);
2507 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2508 		return err;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 static void rvu_disable_sriov(struct rvu *rvu)
2515 {
2516 	rvu_disable_afvf_intr(rvu);
2517 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2518 	pci_disable_sriov(rvu->pdev);
2519 }
2520 
2521 static void rvu_update_module_params(struct rvu *rvu)
2522 {
2523 	const char *default_pfl_name = "default";
2524 
2525 	strscpy(rvu->mkex_pfl_name,
2526 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2527 }
2528 
2529 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2530 {
2531 	struct device *dev = &pdev->dev;
2532 	struct rvu *rvu;
2533 	int    err;
2534 
2535 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2536 	if (!rvu)
2537 		return -ENOMEM;
2538 
2539 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2540 	if (!rvu->hw) {
2541 		devm_kfree(dev, rvu);
2542 		return -ENOMEM;
2543 	}
2544 
2545 	pci_set_drvdata(pdev, rvu);
2546 	rvu->pdev = pdev;
2547 	rvu->dev = &pdev->dev;
2548 
2549 	err = pci_enable_device(pdev);
2550 	if (err) {
2551 		dev_err(dev, "Failed to enable PCI device\n");
2552 		goto err_freemem;
2553 	}
2554 
2555 	err = pci_request_regions(pdev, DRV_NAME);
2556 	if (err) {
2557 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2558 		goto err_disable_device;
2559 	}
2560 
2561 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2562 	if (err) {
2563 		dev_err(dev, "DMA mask config failed, abort\n");
2564 		goto err_release_regions;
2565 	}
2566 
2567 	pci_set_master(pdev);
2568 
2569 	rvu->ptp = ptp_get();
2570 	if (IS_ERR(rvu->ptp)) {
2571 		err = PTR_ERR(rvu->ptp);
2572 		if (err == -EPROBE_DEFER)
2573 			goto err_release_regions;
2574 		rvu->ptp = NULL;
2575 	}
2576 
2577 	/* Map Admin function CSRs */
2578 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2579 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2580 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2581 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2582 		err = -ENOMEM;
2583 		goto err_put_ptp;
2584 	}
2585 
2586 	/* Store module params in rvu structure */
2587 	rvu_update_module_params(rvu);
2588 
2589 	/* Check which blocks the HW supports */
2590 	rvu_check_block_implemented(rvu);
2591 
2592 	rvu_reset_all_blocks(rvu);
2593 
2594 	rvu_setup_hw_capabilities(rvu);
2595 
2596 	err = rvu_setup_hw_resources(rvu);
2597 	if (err)
2598 		goto err_put_ptp;
2599 
2600 	/* Init mailbox btw AF and PFs */
2601 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2602 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2603 			    rvu_afpf_mbox_up_handler);
2604 	if (err)
2605 		goto err_hwsetup;
2606 
2607 	err = rvu_flr_init(rvu);
2608 	if (err)
2609 		goto err_mbox;
2610 
2611 	err = rvu_register_interrupts(rvu);
2612 	if (err)
2613 		goto err_flr;
2614 
2615 	rvu_setup_rvum_blk_revid(rvu);
2616 
2617 	/* Enable AF's VFs (if any) */
2618 	err = rvu_enable_sriov(rvu);
2619 	if (err)
2620 		goto err_irq;
2621 
2622 	/* Initialize debugfs */
2623 	rvu_dbg_init(rvu);
2624 
2625 	return 0;
2626 err_irq:
2627 	rvu_unregister_interrupts(rvu);
2628 err_flr:
2629 	rvu_flr_wq_destroy(rvu);
2630 err_mbox:
2631 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2632 err_hwsetup:
2633 	rvu_cgx_exit(rvu);
2634 	rvu_fwdata_exit(rvu);
2635 	rvu_reset_all_blocks(rvu);
2636 	rvu_free_hw_resources(rvu);
2637 	rvu_clear_rvum_blk_revid(rvu);
2638 err_put_ptp:
2639 	ptp_put(rvu->ptp);
2640 err_release_regions:
2641 	pci_release_regions(pdev);
2642 err_disable_device:
2643 	pci_disable_device(pdev);
2644 err_freemem:
2645 	pci_set_drvdata(pdev, NULL);
2646 	devm_kfree(&pdev->dev, rvu->hw);
2647 	devm_kfree(dev, rvu);
2648 	return err;
2649 }
2650 
2651 static void rvu_remove(struct pci_dev *pdev)
2652 {
2653 	struct rvu *rvu = pci_get_drvdata(pdev);
2654 
2655 	rvu_dbg_exit(rvu);
2656 	rvu_unregister_interrupts(rvu);
2657 	rvu_flr_wq_destroy(rvu);
2658 	rvu_cgx_exit(rvu);
2659 	rvu_fwdata_exit(rvu);
2660 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2661 	rvu_disable_sriov(rvu);
2662 	rvu_reset_all_blocks(rvu);
2663 	rvu_free_hw_resources(rvu);
2664 	rvu_clear_rvum_blk_revid(rvu);
2665 	ptp_put(rvu->ptp);
2666 	pci_release_regions(pdev);
2667 	pci_disable_device(pdev);
2668 	pci_set_drvdata(pdev, NULL);
2669 
2670 	devm_kfree(&pdev->dev, rvu->hw);
2671 	devm_kfree(&pdev->dev, rvu);
2672 }
2673 
2674 static struct pci_driver rvu_driver = {
2675 	.name = DRV_NAME,
2676 	.id_table = rvu_id_table,
2677 	.probe = rvu_probe,
2678 	.remove = rvu_remove,
2679 };
2680 
2681 static int __init rvu_init_module(void)
2682 {
2683 	int err;
2684 
2685 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2686 
2687 	err = pci_register_driver(&cgx_driver);
2688 	if (err < 0)
2689 		return err;
2690 
2691 	err = pci_register_driver(&ptp_driver);
2692 	if (err < 0)
2693 		goto ptp_err;
2694 
2695 	err =  pci_register_driver(&rvu_driver);
2696 	if (err < 0)
2697 		goto rvu_err;
2698 
2699 	return 0;
2700 rvu_err:
2701 	pci_unregister_driver(&ptp_driver);
2702 ptp_err:
2703 	pci_unregister_driver(&cgx_driver);
2704 
2705 	return err;
2706 }
2707 
2708 static void __exit rvu_cleanup_module(void)
2709 {
2710 	pci_unregister_driver(&rvu_driver);
2711 	pci_unregister_driver(&ptp_driver);
2712 	pci_unregister_driver(&cgx_driver);
2713 }
2714 
2715 module_init(rvu_init_module);
2716 module_exit(rvu_cleanup_module);
2717