xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 
22 #define DRV_NAME	"octeontx2-af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 #define DRV_VERSION	"1.0"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Marvell International Ltd.");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_DEVICE_TABLE(pci, rvu_id_table);
54 
55 static char *mkex_profile; /* MKEX profile name */
56 module_param(mkex_profile, charp, 0000);
57 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
58 
59 /* Poll a RVU block's register 'offset', for a 'zero'
60  * or 'nonzero' at bits specified by 'mask'
61  */
62 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
63 {
64 	unsigned long timeout = jiffies + usecs_to_jiffies(100);
65 	void __iomem *reg;
66 	u64 reg_val;
67 
68 	reg = rvu->afreg_base + ((block << 28) | offset);
69 	while (time_before(jiffies, timeout)) {
70 		reg_val = readq(reg);
71 		if (zero && !(reg_val & mask))
72 			return 0;
73 		if (!zero && (reg_val & mask))
74 			return 0;
75 		usleep_range(1, 5);
76 		timeout--;
77 	}
78 	return -EBUSY;
79 }
80 
81 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
82 {
83 	int id;
84 
85 	if (!rsrc->bmap)
86 		return -EINVAL;
87 
88 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
89 	if (id >= rsrc->max)
90 		return -ENOSPC;
91 
92 	__set_bit(id, rsrc->bmap);
93 
94 	return id;
95 }
96 
97 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
98 {
99 	int start;
100 
101 	if (!rsrc->bmap)
102 		return -EINVAL;
103 
104 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
105 	if (start >= rsrc->max)
106 		return -ENOSPC;
107 
108 	bitmap_set(rsrc->bmap, start, nrsrc);
109 	return start;
110 }
111 
112 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
113 {
114 	if (!rsrc->bmap)
115 		return;
116 	if (start >= rsrc->max)
117 		return;
118 
119 	bitmap_clear(rsrc->bmap, start, nrsrc);
120 }
121 
122 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
123 {
124 	int start;
125 
126 	if (!rsrc->bmap)
127 		return false;
128 
129 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
130 	if (start >= rsrc->max)
131 		return false;
132 
133 	return true;
134 }
135 
136 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
137 {
138 	if (!rsrc->bmap)
139 		return;
140 
141 	__clear_bit(id, rsrc->bmap);
142 }
143 
144 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
145 {
146 	int used;
147 
148 	if (!rsrc->bmap)
149 		return 0;
150 
151 	used = bitmap_weight(rsrc->bmap, rsrc->max);
152 	return (rsrc->max - used);
153 }
154 
155 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
156 {
157 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
158 			     sizeof(long), GFP_KERNEL);
159 	if (!rsrc->bmap)
160 		return -ENOMEM;
161 	return 0;
162 }
163 
164 /* Get block LF's HW index from a PF_FUNC's block slot number */
165 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
166 {
167 	u16 match = 0;
168 	int lf;
169 
170 	mutex_lock(&rvu->rsrc_lock);
171 	for (lf = 0; lf < block->lf.max; lf++) {
172 		if (block->fn_map[lf] == pcifunc) {
173 			if (slot == match) {
174 				mutex_unlock(&rvu->rsrc_lock);
175 				return lf;
176 			}
177 			match++;
178 		}
179 	}
180 	mutex_unlock(&rvu->rsrc_lock);
181 	return -ENODEV;
182 }
183 
184 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
185  * Some silicon variants of OcteonTX2 supports
186  * multiple blocks of same type.
187  *
188  * @pcifunc has to be zero when no LF is yet attached.
189  */
190 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
191 {
192 	int devnum, blkaddr = -ENODEV;
193 	u64 cfg, reg;
194 	bool is_pf;
195 
196 	switch (blktype) {
197 	case BLKTYPE_NPC:
198 		blkaddr = BLKADDR_NPC;
199 		goto exit;
200 	case BLKTYPE_NPA:
201 		blkaddr = BLKADDR_NPA;
202 		goto exit;
203 	case BLKTYPE_NIX:
204 		/* For now assume NIX0 */
205 		if (!pcifunc) {
206 			blkaddr = BLKADDR_NIX0;
207 			goto exit;
208 		}
209 		break;
210 	case BLKTYPE_SSO:
211 		blkaddr = BLKADDR_SSO;
212 		goto exit;
213 	case BLKTYPE_SSOW:
214 		blkaddr = BLKADDR_SSOW;
215 		goto exit;
216 	case BLKTYPE_TIM:
217 		blkaddr = BLKADDR_TIM;
218 		goto exit;
219 	case BLKTYPE_CPT:
220 		/* For now assume CPT0 */
221 		if (!pcifunc) {
222 			blkaddr = BLKADDR_CPT0;
223 			goto exit;
224 		}
225 		break;
226 	}
227 
228 	/* Check if this is a RVU PF or VF */
229 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
230 		is_pf = false;
231 		devnum = rvu_get_hwvf(rvu, pcifunc);
232 	} else {
233 		is_pf = true;
234 		devnum = rvu_get_pf(pcifunc);
235 	}
236 
237 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
238 	if (blktype == BLKTYPE_NIX) {
239 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
240 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
241 		if (cfg)
242 			blkaddr = BLKADDR_NIX0;
243 	}
244 
245 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
246 	if (blktype == BLKTYPE_CPT) {
247 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
248 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
249 		if (cfg)
250 			blkaddr = BLKADDR_CPT0;
251 	}
252 
253 exit:
254 	if (is_block_implemented(rvu->hw, blkaddr))
255 		return blkaddr;
256 	return -ENODEV;
257 }
258 
259 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
260 				struct rvu_block *block, u16 pcifunc,
261 				u16 lf, bool attach)
262 {
263 	int devnum, num_lfs = 0;
264 	bool is_pf;
265 	u64 reg;
266 
267 	if (lf >= block->lf.max) {
268 		dev_err(&rvu->pdev->dev,
269 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
270 			__func__, lf, block->name, block->lf.max);
271 		return;
272 	}
273 
274 	/* Check if this is for a RVU PF or VF */
275 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
276 		is_pf = false;
277 		devnum = rvu_get_hwvf(rvu, pcifunc);
278 	} else {
279 		is_pf = true;
280 		devnum = rvu_get_pf(pcifunc);
281 	}
282 
283 	block->fn_map[lf] = attach ? pcifunc : 0;
284 
285 	switch (block->type) {
286 	case BLKTYPE_NPA:
287 		pfvf->npalf = attach ? true : false;
288 		num_lfs = pfvf->npalf;
289 		break;
290 	case BLKTYPE_NIX:
291 		pfvf->nixlf = attach ? true : false;
292 		num_lfs = pfvf->nixlf;
293 		break;
294 	case BLKTYPE_SSO:
295 		attach ? pfvf->sso++ : pfvf->sso--;
296 		num_lfs = pfvf->sso;
297 		break;
298 	case BLKTYPE_SSOW:
299 		attach ? pfvf->ssow++ : pfvf->ssow--;
300 		num_lfs = pfvf->ssow;
301 		break;
302 	case BLKTYPE_TIM:
303 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
304 		num_lfs = pfvf->timlfs;
305 		break;
306 	case BLKTYPE_CPT:
307 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
308 		num_lfs = pfvf->cptlfs;
309 		break;
310 	}
311 
312 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
313 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
314 }
315 
316 inline int rvu_get_pf(u16 pcifunc)
317 {
318 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
319 }
320 
321 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
322 {
323 	u64 cfg;
324 
325 	/* Get numVFs attached to this PF and first HWVF */
326 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
327 	*numvfs = (cfg >> 12) & 0xFF;
328 	*hwvf = cfg & 0xFFF;
329 }
330 
331 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
332 {
333 	int pf, func;
334 	u64 cfg;
335 
336 	pf = rvu_get_pf(pcifunc);
337 	func = pcifunc & RVU_PFVF_FUNC_MASK;
338 
339 	/* Get first HWVF attached to this PF */
340 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
341 
342 	return ((cfg & 0xFFF) + func - 1);
343 }
344 
345 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
346 {
347 	/* Check if it is a PF or VF */
348 	if (pcifunc & RVU_PFVF_FUNC_MASK)
349 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
350 	else
351 		return &rvu->pf[rvu_get_pf(pcifunc)];
352 }
353 
354 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
355 {
356 	int pf, vf, nvfs;
357 	u64 cfg;
358 
359 	pf = rvu_get_pf(pcifunc);
360 	if (pf >= rvu->hw->total_pfs)
361 		return false;
362 
363 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
364 		return true;
365 
366 	/* Check if VF is within number of VFs attached to this PF */
367 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
368 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
369 	nvfs = (cfg >> 12) & 0xFF;
370 	if (vf >= nvfs)
371 		return false;
372 
373 	return true;
374 }
375 
376 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
377 {
378 	struct rvu_block *block;
379 
380 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
381 		return false;
382 
383 	block = &hw->block[blkaddr];
384 	return block->implemented;
385 }
386 
387 static void rvu_check_block_implemented(struct rvu *rvu)
388 {
389 	struct rvu_hwinfo *hw = rvu->hw;
390 	struct rvu_block *block;
391 	int blkid;
392 	u64 cfg;
393 
394 	/* For each block check if 'implemented' bit is set */
395 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
396 		block = &hw->block[blkid];
397 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
398 		if (cfg & BIT_ULL(11))
399 			block->implemented = true;
400 	}
401 }
402 
403 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
404 {
405 	int err;
406 
407 	if (!block->implemented)
408 		return 0;
409 
410 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
411 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
412 			   true);
413 	return err;
414 }
415 
416 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
417 {
418 	struct rvu_block *block = &rvu->hw->block[blkaddr];
419 
420 	if (!block->implemented)
421 		return;
422 
423 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
424 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
425 }
426 
427 static void rvu_reset_all_blocks(struct rvu *rvu)
428 {
429 	/* Do a HW reset of all RVU blocks */
430 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
431 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
432 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
433 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
434 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
435 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
436 	rvu_block_reset(rvu, BLKADDR_NDC0, NDC_AF_BLK_RST);
437 	rvu_block_reset(rvu, BLKADDR_NDC1, NDC_AF_BLK_RST);
438 	rvu_block_reset(rvu, BLKADDR_NDC2, NDC_AF_BLK_RST);
439 }
440 
441 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
442 {
443 	struct rvu_pfvf *pfvf;
444 	u64 cfg;
445 	int lf;
446 
447 	for (lf = 0; lf < block->lf.max; lf++) {
448 		cfg = rvu_read64(rvu, block->addr,
449 				 block->lfcfg_reg | (lf << block->lfshift));
450 		if (!(cfg & BIT_ULL(63)))
451 			continue;
452 
453 		/* Set this resource as being used */
454 		__set_bit(lf, block->lf.bmap);
455 
456 		/* Get, to whom this LF is attached */
457 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
458 		rvu_update_rsrc_map(rvu, pfvf, block,
459 				    (cfg >> 8) & 0xFFFF, lf, true);
460 
461 		/* Set start MSIX vector for this LF within this PF/VF */
462 		rvu_set_msix_offset(rvu, pfvf, block, lf);
463 	}
464 }
465 
466 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
467 {
468 	int min_vecs;
469 
470 	if (!vf)
471 		goto check_pf;
472 
473 	if (!nvecs) {
474 		dev_warn(rvu->dev,
475 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
476 			 pf, vf - 1, nvecs);
477 	}
478 	return;
479 
480 check_pf:
481 	if (pf == 0)
482 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
483 	else
484 		min_vecs = RVU_PF_INT_VEC_CNT;
485 
486 	if (!(nvecs < min_vecs))
487 		return;
488 	dev_warn(rvu->dev,
489 		 "PF%d is configured with too few vectors, %d, min is %d\n",
490 		 pf, nvecs, min_vecs);
491 }
492 
493 static int rvu_setup_msix_resources(struct rvu *rvu)
494 {
495 	struct rvu_hwinfo *hw = rvu->hw;
496 	int pf, vf, numvfs, hwvf, err;
497 	int nvecs, offset, max_msix;
498 	struct rvu_pfvf *pfvf;
499 	u64 cfg, phy_addr;
500 	dma_addr_t iova;
501 
502 	for (pf = 0; pf < hw->total_pfs; pf++) {
503 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
504 		/* If PF is not enabled, nothing to do */
505 		if (!((cfg >> 20) & 0x01))
506 			continue;
507 
508 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
509 
510 		pfvf = &rvu->pf[pf];
511 		/* Get num of MSIX vectors attached to this PF */
512 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
513 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
514 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
515 
516 		/* Alloc msix bitmap for this PF */
517 		err = rvu_alloc_bitmap(&pfvf->msix);
518 		if (err)
519 			return err;
520 
521 		/* Allocate memory for MSIX vector to RVU block LF mapping */
522 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
523 						sizeof(u16), GFP_KERNEL);
524 		if (!pfvf->msix_lfmap)
525 			return -ENOMEM;
526 
527 		/* For PF0 (AF) firmware will set msix vector offsets for
528 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
529 		 */
530 		if (!pf)
531 			goto setup_vfmsix;
532 
533 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
534 		 * These are allocated on driver init and never freed,
535 		 * so no need to set 'msix_lfmap' for these.
536 		 */
537 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
538 		nvecs = (cfg >> 12) & 0xFF;
539 		cfg &= ~0x7FFULL;
540 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
541 		rvu_write64(rvu, BLKADDR_RVUM,
542 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
543 setup_vfmsix:
544 		/* Alloc msix bitmap for VFs */
545 		for (vf = 0; vf < numvfs; vf++) {
546 			pfvf =  &rvu->hwvf[hwvf + vf];
547 			/* Get num of MSIX vectors attached to this VF */
548 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
549 					 RVU_PRIV_PFX_MSIX_CFG(pf));
550 			pfvf->msix.max = (cfg & 0xFFF) + 1;
551 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
552 
553 			/* Alloc msix bitmap for this VF */
554 			err = rvu_alloc_bitmap(&pfvf->msix);
555 			if (err)
556 				return err;
557 
558 			pfvf->msix_lfmap =
559 				devm_kcalloc(rvu->dev, pfvf->msix.max,
560 					     sizeof(u16), GFP_KERNEL);
561 			if (!pfvf->msix_lfmap)
562 				return -ENOMEM;
563 
564 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
565 			 * These are allocated on driver init and never freed,
566 			 * so no need to set 'msix_lfmap' for these.
567 			 */
568 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
569 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
570 			nvecs = (cfg >> 12) & 0xFF;
571 			cfg &= ~0x7FFULL;
572 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
573 			rvu_write64(rvu, BLKADDR_RVUM,
574 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
575 				    cfg | offset);
576 		}
577 	}
578 
579 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
580 	 * create a IOMMU mapping for the physcial address configured by
581 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
582 	 */
583 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
584 	max_msix = cfg & 0xFFFFF;
585 	phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
586 	iova = dma_map_resource(rvu->dev, phy_addr,
587 				max_msix * PCI_MSIX_ENTRY_SIZE,
588 				DMA_BIDIRECTIONAL, 0);
589 
590 	if (dma_mapping_error(rvu->dev, iova))
591 		return -ENOMEM;
592 
593 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
594 	rvu->msix_base_iova = iova;
595 
596 	return 0;
597 }
598 
599 static void rvu_free_hw_resources(struct rvu *rvu)
600 {
601 	struct rvu_hwinfo *hw = rvu->hw;
602 	struct rvu_block *block;
603 	struct rvu_pfvf  *pfvf;
604 	int id, max_msix;
605 	u64 cfg;
606 
607 	rvu_npa_freemem(rvu);
608 	rvu_npc_freemem(rvu);
609 	rvu_nix_freemem(rvu);
610 
611 	/* Free block LF bitmaps */
612 	for (id = 0; id < BLK_COUNT; id++) {
613 		block = &hw->block[id];
614 		kfree(block->lf.bmap);
615 	}
616 
617 	/* Free MSIX bitmaps */
618 	for (id = 0; id < hw->total_pfs; id++) {
619 		pfvf = &rvu->pf[id];
620 		kfree(pfvf->msix.bmap);
621 	}
622 
623 	for (id = 0; id < hw->total_vfs; id++) {
624 		pfvf = &rvu->hwvf[id];
625 		kfree(pfvf->msix.bmap);
626 	}
627 
628 	/* Unmap MSIX vector base IOVA mapping */
629 	if (!rvu->msix_base_iova)
630 		return;
631 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
632 	max_msix = cfg & 0xFFFFF;
633 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
634 			   max_msix * PCI_MSIX_ENTRY_SIZE,
635 			   DMA_BIDIRECTIONAL, 0);
636 
637 	mutex_destroy(&rvu->rsrc_lock);
638 }
639 
640 static int rvu_setup_hw_resources(struct rvu *rvu)
641 {
642 	struct rvu_hwinfo *hw = rvu->hw;
643 	struct rvu_block *block;
644 	int blkid, err;
645 	u64 cfg;
646 
647 	/* Get HW supported max RVU PF & VF count */
648 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
649 	hw->total_pfs = (cfg >> 32) & 0xFF;
650 	hw->total_vfs = (cfg >> 20) & 0xFFF;
651 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
652 
653 	/* Init NPA LF's bitmap */
654 	block = &hw->block[BLKADDR_NPA];
655 	if (!block->implemented)
656 		goto nix;
657 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
658 	block->lf.max = (cfg >> 16) & 0xFFF;
659 	block->addr = BLKADDR_NPA;
660 	block->type = BLKTYPE_NPA;
661 	block->lfshift = 8;
662 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
663 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
664 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
665 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
666 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
667 	block->lfreset_reg = NPA_AF_LF_RST;
668 	sprintf(block->name, "NPA");
669 	err = rvu_alloc_bitmap(&block->lf);
670 	if (err)
671 		return err;
672 
673 nix:
674 	/* Init NIX LF's bitmap */
675 	block = &hw->block[BLKADDR_NIX0];
676 	if (!block->implemented)
677 		goto sso;
678 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
679 	block->lf.max = cfg & 0xFFF;
680 	block->addr = BLKADDR_NIX0;
681 	block->type = BLKTYPE_NIX;
682 	block->lfshift = 8;
683 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
684 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
685 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
686 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
687 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
688 	block->lfreset_reg = NIX_AF_LF_RST;
689 	sprintf(block->name, "NIX");
690 	err = rvu_alloc_bitmap(&block->lf);
691 	if (err)
692 		return err;
693 
694 sso:
695 	/* Init SSO group's bitmap */
696 	block = &hw->block[BLKADDR_SSO];
697 	if (!block->implemented)
698 		goto ssow;
699 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
700 	block->lf.max = cfg & 0xFFFF;
701 	block->addr = BLKADDR_SSO;
702 	block->type = BLKTYPE_SSO;
703 	block->multislot = true;
704 	block->lfshift = 3;
705 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
706 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
707 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
708 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
709 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
710 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
711 	sprintf(block->name, "SSO GROUP");
712 	err = rvu_alloc_bitmap(&block->lf);
713 	if (err)
714 		return err;
715 
716 ssow:
717 	/* Init SSO workslot's bitmap */
718 	block = &hw->block[BLKADDR_SSOW];
719 	if (!block->implemented)
720 		goto tim;
721 	block->lf.max = (cfg >> 56) & 0xFF;
722 	block->addr = BLKADDR_SSOW;
723 	block->type = BLKTYPE_SSOW;
724 	block->multislot = true;
725 	block->lfshift = 3;
726 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
727 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
728 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
729 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
730 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
731 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
732 	sprintf(block->name, "SSOWS");
733 	err = rvu_alloc_bitmap(&block->lf);
734 	if (err)
735 		return err;
736 
737 tim:
738 	/* Init TIM LF's bitmap */
739 	block = &hw->block[BLKADDR_TIM];
740 	if (!block->implemented)
741 		goto cpt;
742 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
743 	block->lf.max = cfg & 0xFFFF;
744 	block->addr = BLKADDR_TIM;
745 	block->type = BLKTYPE_TIM;
746 	block->multislot = true;
747 	block->lfshift = 3;
748 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
749 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
750 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
751 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
752 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
753 	block->lfreset_reg = TIM_AF_LF_RST;
754 	sprintf(block->name, "TIM");
755 	err = rvu_alloc_bitmap(&block->lf);
756 	if (err)
757 		return err;
758 
759 cpt:
760 	/* Init CPT LF's bitmap */
761 	block = &hw->block[BLKADDR_CPT0];
762 	if (!block->implemented)
763 		goto init;
764 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
765 	block->lf.max = cfg & 0xFF;
766 	block->addr = BLKADDR_CPT0;
767 	block->type = BLKTYPE_CPT;
768 	block->multislot = true;
769 	block->lfshift = 3;
770 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
771 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
772 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
773 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
774 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
775 	block->lfreset_reg = CPT_AF_LF_RST;
776 	sprintf(block->name, "CPT");
777 	err = rvu_alloc_bitmap(&block->lf);
778 	if (err)
779 		return err;
780 
781 init:
782 	/* Allocate memory for PFVF data */
783 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
784 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
785 	if (!rvu->pf)
786 		return -ENOMEM;
787 
788 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
789 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
790 	if (!rvu->hwvf)
791 		return -ENOMEM;
792 
793 	mutex_init(&rvu->rsrc_lock);
794 
795 	err = rvu_setup_msix_resources(rvu);
796 	if (err)
797 		return err;
798 
799 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
800 		block = &hw->block[blkid];
801 		if (!block->lf.bmap)
802 			continue;
803 
804 		/* Allocate memory for block LF/slot to pcifunc mapping info */
805 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
806 					     sizeof(u16), GFP_KERNEL);
807 		if (!block->fn_map)
808 			return -ENOMEM;
809 
810 		/* Scan all blocks to check if low level firmware has
811 		 * already provisioned any of the resources to a PF/VF.
812 		 */
813 		rvu_scan_block(rvu, block);
814 	}
815 
816 	err = rvu_npc_init(rvu);
817 	if (err)
818 		goto exit;
819 
820 	err = rvu_cgx_init(rvu);
821 	if (err)
822 		goto exit;
823 
824 	err = rvu_npa_init(rvu);
825 	if (err)
826 		goto cgx_err;
827 
828 	err = rvu_nix_init(rvu);
829 	if (err)
830 		goto cgx_err;
831 
832 	return 0;
833 
834 cgx_err:
835 	rvu_cgx_exit(rvu);
836 exit:
837 	return err;
838 }
839 
840 /* NPA and NIX admin queue APIs */
841 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
842 {
843 	if (!aq)
844 		return;
845 
846 	qmem_free(rvu->dev, aq->inst);
847 	qmem_free(rvu->dev, aq->res);
848 	devm_kfree(rvu->dev, aq);
849 }
850 
851 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
852 		 int qsize, int inst_size, int res_size)
853 {
854 	struct admin_queue *aq;
855 	int err;
856 
857 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
858 	if (!*ad_queue)
859 		return -ENOMEM;
860 	aq = *ad_queue;
861 
862 	/* Alloc memory for instructions i.e AQ */
863 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
864 	if (err) {
865 		devm_kfree(rvu->dev, aq);
866 		return err;
867 	}
868 
869 	/* Alloc memory for results */
870 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
871 	if (err) {
872 		rvu_aq_free(rvu, aq);
873 		return err;
874 	}
875 
876 	spin_lock_init(&aq->lock);
877 	return 0;
878 }
879 
880 static int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
881 				  struct ready_msg_rsp *rsp)
882 {
883 	return 0;
884 }
885 
886 /* Get current count of a RVU block's LF/slots
887  * provisioned to a given RVU func.
888  */
889 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
890 {
891 	switch (blktype) {
892 	case BLKTYPE_NPA:
893 		return pfvf->npalf ? 1 : 0;
894 	case BLKTYPE_NIX:
895 		return pfvf->nixlf ? 1 : 0;
896 	case BLKTYPE_SSO:
897 		return pfvf->sso;
898 	case BLKTYPE_SSOW:
899 		return pfvf->ssow;
900 	case BLKTYPE_TIM:
901 		return pfvf->timlfs;
902 	case BLKTYPE_CPT:
903 		return pfvf->cptlfs;
904 	}
905 	return 0;
906 }
907 
908 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
909 {
910 	struct rvu_pfvf *pfvf;
911 
912 	if (!is_pf_func_valid(rvu, pcifunc))
913 		return false;
914 
915 	pfvf = rvu_get_pfvf(rvu, pcifunc);
916 
917 	/* Check if this PFFUNC has a LF of type blktype attached */
918 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
919 		return false;
920 
921 	return true;
922 }
923 
924 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
925 			   int pcifunc, int slot)
926 {
927 	u64 val;
928 
929 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
930 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
931 	/* Wait for the lookup to finish */
932 	/* TODO: put some timeout here */
933 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
934 		;
935 
936 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
937 
938 	/* Check LF valid bit */
939 	if (!(val & (1ULL << 12)))
940 		return -1;
941 
942 	return (val & 0xFFF);
943 }
944 
945 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
946 {
947 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
948 	struct rvu_hwinfo *hw = rvu->hw;
949 	struct rvu_block *block;
950 	int slot, lf, num_lfs;
951 	int blkaddr;
952 
953 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
954 	if (blkaddr < 0)
955 		return;
956 
957 	block = &hw->block[blkaddr];
958 
959 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
960 	if (!num_lfs)
961 		return;
962 
963 	for (slot = 0; slot < num_lfs; slot++) {
964 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
965 		if (lf < 0) /* This should never happen */
966 			continue;
967 
968 		/* Disable the LF */
969 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
970 			    (lf << block->lfshift), 0x00ULL);
971 
972 		/* Update SW maintained mapping info as well */
973 		rvu_update_rsrc_map(rvu, pfvf, block,
974 				    pcifunc, lf, false);
975 
976 		/* Free the resource */
977 		rvu_free_rsrc(&block->lf, lf);
978 
979 		/* Clear MSIX vector offset for this LF */
980 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
981 	}
982 }
983 
984 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
985 			    u16 pcifunc)
986 {
987 	struct rvu_hwinfo *hw = rvu->hw;
988 	bool detach_all = true;
989 	struct rvu_block *block;
990 	int blkid;
991 
992 	mutex_lock(&rvu->rsrc_lock);
993 
994 	/* Check for partial resource detach */
995 	if (detach && detach->partial)
996 		detach_all = false;
997 
998 	/* Check for RVU block's LFs attached to this func,
999 	 * if so, detach them.
1000 	 */
1001 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1002 		block = &hw->block[blkid];
1003 		if (!block->lf.bmap)
1004 			continue;
1005 		if (!detach_all && detach) {
1006 			if (blkid == BLKADDR_NPA && !detach->npalf)
1007 				continue;
1008 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1009 				continue;
1010 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1011 				continue;
1012 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1013 				continue;
1014 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1015 				continue;
1016 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1017 				continue;
1018 		}
1019 		rvu_detach_block(rvu, pcifunc, block->type);
1020 	}
1021 
1022 	mutex_unlock(&rvu->rsrc_lock);
1023 	return 0;
1024 }
1025 
1026 static int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1027 					     struct rsrc_detach *detach,
1028 					     struct msg_rsp *rsp)
1029 {
1030 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1031 }
1032 
1033 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1034 			     int blktype, int num_lfs)
1035 {
1036 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1037 	struct rvu_hwinfo *hw = rvu->hw;
1038 	struct rvu_block *block;
1039 	int slot, lf;
1040 	int blkaddr;
1041 	u64 cfg;
1042 
1043 	if (!num_lfs)
1044 		return;
1045 
1046 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1047 	if (blkaddr < 0)
1048 		return;
1049 
1050 	block = &hw->block[blkaddr];
1051 	if (!block->lf.bmap)
1052 		return;
1053 
1054 	for (slot = 0; slot < num_lfs; slot++) {
1055 		/* Allocate the resource */
1056 		lf = rvu_alloc_rsrc(&block->lf);
1057 		if (lf < 0)
1058 			return;
1059 
1060 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1061 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1062 			    (lf << block->lfshift), cfg);
1063 		rvu_update_rsrc_map(rvu, pfvf, block,
1064 				    pcifunc, lf, true);
1065 
1066 		/* Set start MSIX vector for this LF within this PF/VF */
1067 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1068 	}
1069 }
1070 
1071 static int rvu_check_rsrc_availability(struct rvu *rvu,
1072 				       struct rsrc_attach *req, u16 pcifunc)
1073 {
1074 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1075 	struct rvu_hwinfo *hw = rvu->hw;
1076 	struct rvu_block *block;
1077 	int free_lfs, mappedlfs;
1078 
1079 	/* Only one NPA LF can be attached */
1080 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1081 		block = &hw->block[BLKADDR_NPA];
1082 		free_lfs = rvu_rsrc_free_count(&block->lf);
1083 		if (!free_lfs)
1084 			goto fail;
1085 	} else if (req->npalf) {
1086 		dev_err(&rvu->pdev->dev,
1087 			"Func 0x%x: Invalid req, already has NPA\n",
1088 			 pcifunc);
1089 		return -EINVAL;
1090 	}
1091 
1092 	/* Only one NIX LF can be attached */
1093 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1094 		block = &hw->block[BLKADDR_NIX0];
1095 		free_lfs = rvu_rsrc_free_count(&block->lf);
1096 		if (!free_lfs)
1097 			goto fail;
1098 	} else if (req->nixlf) {
1099 		dev_err(&rvu->pdev->dev,
1100 			"Func 0x%x: Invalid req, already has NIX\n",
1101 			pcifunc);
1102 		return -EINVAL;
1103 	}
1104 
1105 	if (req->sso) {
1106 		block = &hw->block[BLKADDR_SSO];
1107 		/* Is request within limits ? */
1108 		if (req->sso > block->lf.max) {
1109 			dev_err(&rvu->pdev->dev,
1110 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1111 				 pcifunc, req->sso, block->lf.max);
1112 			return -EINVAL;
1113 		}
1114 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1115 		free_lfs = rvu_rsrc_free_count(&block->lf);
1116 		/* Check if additional resources are available */
1117 		if (req->sso > mappedlfs &&
1118 		    ((req->sso - mappedlfs) > free_lfs))
1119 			goto fail;
1120 	}
1121 
1122 	if (req->ssow) {
1123 		block = &hw->block[BLKADDR_SSOW];
1124 		if (req->ssow > block->lf.max) {
1125 			dev_err(&rvu->pdev->dev,
1126 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1127 				 pcifunc, req->sso, block->lf.max);
1128 			return -EINVAL;
1129 		}
1130 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1131 		free_lfs = rvu_rsrc_free_count(&block->lf);
1132 		if (req->ssow > mappedlfs &&
1133 		    ((req->ssow - mappedlfs) > free_lfs))
1134 			goto fail;
1135 	}
1136 
1137 	if (req->timlfs) {
1138 		block = &hw->block[BLKADDR_TIM];
1139 		if (req->timlfs > block->lf.max) {
1140 			dev_err(&rvu->pdev->dev,
1141 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1142 				 pcifunc, req->timlfs, block->lf.max);
1143 			return -EINVAL;
1144 		}
1145 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1146 		free_lfs = rvu_rsrc_free_count(&block->lf);
1147 		if (req->timlfs > mappedlfs &&
1148 		    ((req->timlfs - mappedlfs) > free_lfs))
1149 			goto fail;
1150 	}
1151 
1152 	if (req->cptlfs) {
1153 		block = &hw->block[BLKADDR_CPT0];
1154 		if (req->cptlfs > block->lf.max) {
1155 			dev_err(&rvu->pdev->dev,
1156 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1157 				 pcifunc, req->cptlfs, block->lf.max);
1158 			return -EINVAL;
1159 		}
1160 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1161 		free_lfs = rvu_rsrc_free_count(&block->lf);
1162 		if (req->cptlfs > mappedlfs &&
1163 		    ((req->cptlfs - mappedlfs) > free_lfs))
1164 			goto fail;
1165 	}
1166 
1167 	return 0;
1168 
1169 fail:
1170 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1171 	return -ENOSPC;
1172 }
1173 
1174 static int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1175 					     struct rsrc_attach *attach,
1176 					     struct msg_rsp *rsp)
1177 {
1178 	u16 pcifunc = attach->hdr.pcifunc;
1179 	int err;
1180 
1181 	/* If first request, detach all existing attached resources */
1182 	if (!attach->modify)
1183 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1184 
1185 	mutex_lock(&rvu->rsrc_lock);
1186 
1187 	/* Check if the request can be accommodated */
1188 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1189 	if (err)
1190 		goto exit;
1191 
1192 	/* Now attach the requested resources */
1193 	if (attach->npalf)
1194 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1195 
1196 	if (attach->nixlf)
1197 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1198 
1199 	if (attach->sso) {
1200 		/* RVU func doesn't know which exact LF or slot is attached
1201 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1202 		 * request, simply detach all existing attached LFs/slots
1203 		 * and attach a fresh.
1204 		 */
1205 		if (attach->modify)
1206 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1207 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1208 	}
1209 
1210 	if (attach->ssow) {
1211 		if (attach->modify)
1212 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1213 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1214 	}
1215 
1216 	if (attach->timlfs) {
1217 		if (attach->modify)
1218 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1219 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1220 	}
1221 
1222 	if (attach->cptlfs) {
1223 		if (attach->modify)
1224 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1225 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1226 	}
1227 
1228 exit:
1229 	mutex_unlock(&rvu->rsrc_lock);
1230 	return err;
1231 }
1232 
1233 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1234 			       int blkaddr, int lf)
1235 {
1236 	u16 vec;
1237 
1238 	if (lf < 0)
1239 		return MSIX_VECTOR_INVALID;
1240 
1241 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1242 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1243 			return vec;
1244 	}
1245 	return MSIX_VECTOR_INVALID;
1246 }
1247 
1248 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1249 				struct rvu_block *block, int lf)
1250 {
1251 	u16 nvecs, vec, offset;
1252 	u64 cfg;
1253 
1254 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1255 			 (lf << block->lfshift));
1256 	nvecs = (cfg >> 12) & 0xFF;
1257 
1258 	/* Check and alloc MSIX vectors, must be contiguous */
1259 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1260 		return;
1261 
1262 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1263 
1264 	/* Config MSIX offset in LF */
1265 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1266 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1267 
1268 	/* Update the bitmap as well */
1269 	for (vec = 0; vec < nvecs; vec++)
1270 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1271 }
1272 
1273 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1274 				  struct rvu_block *block, int lf)
1275 {
1276 	u16 nvecs, vec, offset;
1277 	u64 cfg;
1278 
1279 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1280 			 (lf << block->lfshift));
1281 	nvecs = (cfg >> 12) & 0xFF;
1282 
1283 	/* Clear MSIX offset in LF */
1284 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1285 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1286 
1287 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1288 
1289 	/* Update the mapping */
1290 	for (vec = 0; vec < nvecs; vec++)
1291 		pfvf->msix_lfmap[offset + vec] = 0;
1292 
1293 	/* Free the same in MSIX bitmap */
1294 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1295 }
1296 
1297 static int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1298 					struct msix_offset_rsp *rsp)
1299 {
1300 	struct rvu_hwinfo *hw = rvu->hw;
1301 	u16 pcifunc = req->hdr.pcifunc;
1302 	struct rvu_pfvf *pfvf;
1303 	int lf, slot;
1304 
1305 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1306 	if (!pfvf->msix.bmap)
1307 		return 0;
1308 
1309 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1310 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1311 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1312 
1313 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1314 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1315 
1316 	rsp->sso = pfvf->sso;
1317 	for (slot = 0; slot < rsp->sso; slot++) {
1318 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1319 		rsp->sso_msixoff[slot] =
1320 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1321 	}
1322 
1323 	rsp->ssow = pfvf->ssow;
1324 	for (slot = 0; slot < rsp->ssow; slot++) {
1325 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1326 		rsp->ssow_msixoff[slot] =
1327 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1328 	}
1329 
1330 	rsp->timlfs = pfvf->timlfs;
1331 	for (slot = 0; slot < rsp->timlfs; slot++) {
1332 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1333 		rsp->timlf_msixoff[slot] =
1334 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1335 	}
1336 
1337 	rsp->cptlfs = pfvf->cptlfs;
1338 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1339 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1340 		rsp->cptlf_msixoff[slot] =
1341 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1342 	}
1343 	return 0;
1344 }
1345 
1346 static int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1347 				   struct msg_rsp *rsp)
1348 {
1349 	u16 pcifunc = req->hdr.pcifunc;
1350 	u16 vf, numvfs;
1351 	u64 cfg;
1352 
1353 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1354 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1355 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1356 	numvfs = (cfg >> 12) & 0xFF;
1357 
1358 	if (vf && vf <= numvfs)
1359 		__rvu_flr_handler(rvu, pcifunc);
1360 	else
1361 		return RVU_INVALID_VF_ID;
1362 
1363 	return 0;
1364 }
1365 
1366 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1367 				struct mbox_msghdr *req)
1368 {
1369 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1370 
1371 	/* Check if valid, if not reply with a invalid msg */
1372 	if (req->sig != OTX2_MBOX_REQ_SIG)
1373 		goto bad_message;
1374 
1375 	switch (req->id) {
1376 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1377 	case _id: {							\
1378 		struct _rsp_type *rsp;					\
1379 		int err;						\
1380 									\
1381 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1382 			mbox, devid,					\
1383 			sizeof(struct _rsp_type));			\
1384 		/* some handlers should complete even if reply */	\
1385 		/* could not be allocated */				\
1386 		if (!rsp &&						\
1387 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1388 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1389 		    _id != MBOX_MSG_VF_FLR)				\
1390 			return -ENOMEM;					\
1391 		if (rsp) {						\
1392 			rsp->hdr.id = _id;				\
1393 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1394 			rsp->hdr.pcifunc = req->pcifunc;		\
1395 			rsp->hdr.rc = 0;				\
1396 		}							\
1397 									\
1398 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1399 						    (struct _req_type *)req, \
1400 						    rsp);		\
1401 		if (rsp && err)						\
1402 			rsp->hdr.rc = err;				\
1403 									\
1404 		return rsp ? err : -ENOMEM;				\
1405 	}
1406 MBOX_MESSAGES
1407 #undef M
1408 
1409 bad_message:
1410 	default:
1411 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1412 		return -ENODEV;
1413 	}
1414 }
1415 
1416 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1417 {
1418 	struct rvu *rvu = mwork->rvu;
1419 	int offset, err, id, devid;
1420 	struct otx2_mbox_dev *mdev;
1421 	struct mbox_hdr *req_hdr;
1422 	struct mbox_msghdr *msg;
1423 	struct mbox_wq_info *mw;
1424 	struct otx2_mbox *mbox;
1425 
1426 	switch (type) {
1427 	case TYPE_AFPF:
1428 		mw = &rvu->afpf_wq_info;
1429 		break;
1430 	case TYPE_AFVF:
1431 		mw = &rvu->afvf_wq_info;
1432 		break;
1433 	default:
1434 		return;
1435 	}
1436 
1437 	devid = mwork - mw->mbox_wrk;
1438 	mbox = &mw->mbox;
1439 	mdev = &mbox->dev[devid];
1440 
1441 	/* Process received mbox messages */
1442 	req_hdr = mdev->mbase + mbox->rx_start;
1443 	if (req_hdr->num_msgs == 0)
1444 		return;
1445 
1446 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1447 
1448 	for (id = 0; id < req_hdr->num_msgs; id++) {
1449 		msg = mdev->mbase + offset;
1450 
1451 		/* Set which PF/VF sent this message based on mbox IRQ */
1452 		switch (type) {
1453 		case TYPE_AFPF:
1454 			msg->pcifunc &=
1455 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1456 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1457 			break;
1458 		case TYPE_AFVF:
1459 			msg->pcifunc &=
1460 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1461 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1462 			break;
1463 		}
1464 
1465 		err = rvu_process_mbox_msg(mbox, devid, msg);
1466 		if (!err) {
1467 			offset = mbox->rx_start + msg->next_msgoff;
1468 			continue;
1469 		}
1470 
1471 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1472 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1473 				 err, otx2_mbox_id2name(msg->id),
1474 				 msg->id, devid,
1475 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1476 		else
1477 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1478 				 err, otx2_mbox_id2name(msg->id),
1479 				 msg->id, devid);
1480 	}
1481 
1482 	/* Send mbox responses to VF/PF */
1483 	otx2_mbox_msg_send(mbox, devid);
1484 }
1485 
1486 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1487 {
1488 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1489 
1490 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1491 }
1492 
1493 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1494 {
1495 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1496 
1497 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1498 }
1499 
1500 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1501 {
1502 	struct rvu *rvu = mwork->rvu;
1503 	struct otx2_mbox_dev *mdev;
1504 	struct mbox_hdr *rsp_hdr;
1505 	struct mbox_msghdr *msg;
1506 	struct mbox_wq_info *mw;
1507 	struct otx2_mbox *mbox;
1508 	int offset, id, devid;
1509 
1510 	switch (type) {
1511 	case TYPE_AFPF:
1512 		mw = &rvu->afpf_wq_info;
1513 		break;
1514 	case TYPE_AFVF:
1515 		mw = &rvu->afvf_wq_info;
1516 		break;
1517 	default:
1518 		return;
1519 	}
1520 
1521 	devid = mwork - mw->mbox_wrk_up;
1522 	mbox = &mw->mbox_up;
1523 	mdev = &mbox->dev[devid];
1524 
1525 	rsp_hdr = mdev->mbase + mbox->rx_start;
1526 	if (rsp_hdr->num_msgs == 0) {
1527 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1528 		return;
1529 	}
1530 
1531 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1532 
1533 	for (id = 0; id < rsp_hdr->num_msgs; id++) {
1534 		msg = mdev->mbase + offset;
1535 
1536 		if (msg->id >= MBOX_MSG_MAX) {
1537 			dev_err(rvu->dev,
1538 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1539 			goto end;
1540 		}
1541 
1542 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1543 			dev_err(rvu->dev,
1544 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1545 				msg->sig, msg->id);
1546 			goto end;
1547 		}
1548 
1549 		switch (msg->id) {
1550 		case MBOX_MSG_CGX_LINK_EVENT:
1551 			break;
1552 		default:
1553 			if (msg->rc)
1554 				dev_err(rvu->dev,
1555 					"Mbox msg response has err %d, ID 0x%x\n",
1556 					msg->rc, msg->id);
1557 			break;
1558 		}
1559 end:
1560 		offset = mbox->rx_start + msg->next_msgoff;
1561 		mdev->msgs_acked++;
1562 	}
1563 
1564 	otx2_mbox_reset(mbox, devid);
1565 }
1566 
1567 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1568 {
1569 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1570 
1571 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1572 }
1573 
1574 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1575 {
1576 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1577 
1578 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1579 }
1580 
1581 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1582 			 int type, int num,
1583 			 void (mbox_handler)(struct work_struct *),
1584 			 void (mbox_up_handler)(struct work_struct *))
1585 {
1586 	void __iomem *hwbase = NULL, *reg_base;
1587 	int err, i, dir, dir_up;
1588 	struct rvu_work *mwork;
1589 	const char *name;
1590 	u64 bar4_addr;
1591 
1592 	switch (type) {
1593 	case TYPE_AFPF:
1594 		name = "rvu_afpf_mailbox";
1595 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1596 		dir = MBOX_DIR_AFPF;
1597 		dir_up = MBOX_DIR_AFPF_UP;
1598 		reg_base = rvu->afreg_base;
1599 		break;
1600 	case TYPE_AFVF:
1601 		name = "rvu_afvf_mailbox";
1602 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1603 		dir = MBOX_DIR_PFVF;
1604 		dir_up = MBOX_DIR_PFVF_UP;
1605 		reg_base = rvu->pfreg_base;
1606 		break;
1607 	default:
1608 		return -EINVAL;
1609 	}
1610 
1611 	mw->mbox_wq = alloc_workqueue(name,
1612 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1613 				      num);
1614 	if (!mw->mbox_wq)
1615 		return -ENOMEM;
1616 
1617 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1618 				    sizeof(struct rvu_work), GFP_KERNEL);
1619 	if (!mw->mbox_wrk) {
1620 		err = -ENOMEM;
1621 		goto exit;
1622 	}
1623 
1624 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1625 				       sizeof(struct rvu_work), GFP_KERNEL);
1626 	if (!mw->mbox_wrk_up) {
1627 		err = -ENOMEM;
1628 		goto exit;
1629 	}
1630 
1631 	/* Mailbox is a reserved memory (in RAM) region shared between
1632 	 * RVU devices, shouldn't be mapped as device memory to allow
1633 	 * unaligned accesses.
1634 	 */
1635 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1636 	if (!hwbase) {
1637 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1638 		err = -ENOMEM;
1639 		goto exit;
1640 	}
1641 
1642 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1643 	if (err)
1644 		goto exit;
1645 
1646 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1647 			     reg_base, dir_up, num);
1648 	if (err)
1649 		goto exit;
1650 
1651 	for (i = 0; i < num; i++) {
1652 		mwork = &mw->mbox_wrk[i];
1653 		mwork->rvu = rvu;
1654 		INIT_WORK(&mwork->work, mbox_handler);
1655 
1656 		mwork = &mw->mbox_wrk_up[i];
1657 		mwork->rvu = rvu;
1658 		INIT_WORK(&mwork->work, mbox_up_handler);
1659 	}
1660 
1661 	return 0;
1662 exit:
1663 	if (hwbase)
1664 		iounmap((void __iomem *)hwbase);
1665 	destroy_workqueue(mw->mbox_wq);
1666 	return err;
1667 }
1668 
1669 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1670 {
1671 	if (mw->mbox_wq) {
1672 		flush_workqueue(mw->mbox_wq);
1673 		destroy_workqueue(mw->mbox_wq);
1674 		mw->mbox_wq = NULL;
1675 	}
1676 
1677 	if (mw->mbox.hwbase)
1678 		iounmap((void __iomem *)mw->mbox.hwbase);
1679 
1680 	otx2_mbox_destroy(&mw->mbox);
1681 	otx2_mbox_destroy(&mw->mbox_up);
1682 }
1683 
1684 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1685 			   int mdevs, u64 intr)
1686 {
1687 	struct otx2_mbox_dev *mdev;
1688 	struct otx2_mbox *mbox;
1689 	struct mbox_hdr *hdr;
1690 	int i;
1691 
1692 	for (i = first; i < mdevs; i++) {
1693 		/* start from 0 */
1694 		if (!(intr & BIT_ULL(i - first)))
1695 			continue;
1696 
1697 		mbox = &mw->mbox;
1698 		mdev = &mbox->dev[i];
1699 		hdr = mdev->mbase + mbox->rx_start;
1700 		if (hdr->num_msgs)
1701 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1702 
1703 		mbox = &mw->mbox_up;
1704 		mdev = &mbox->dev[i];
1705 		hdr = mdev->mbase + mbox->rx_start;
1706 		if (hdr->num_msgs)
1707 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1708 	}
1709 }
1710 
1711 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1712 {
1713 	struct rvu *rvu = (struct rvu *)rvu_irq;
1714 	int vfs = rvu->vfs;
1715 	u64 intr;
1716 
1717 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1718 	/* Clear interrupts */
1719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1720 
1721 	/* Sync with mbox memory region */
1722 	rmb();
1723 
1724 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1725 
1726 	/* Handle VF interrupts */
1727 	if (vfs > 64) {
1728 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1729 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1730 
1731 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1732 		vfs -= 64;
1733 	}
1734 
1735 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1736 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1737 
1738 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1739 
1740 	return IRQ_HANDLED;
1741 }
1742 
1743 static void rvu_enable_mbox_intr(struct rvu *rvu)
1744 {
1745 	struct rvu_hwinfo *hw = rvu->hw;
1746 
1747 	/* Clear spurious irqs, if any */
1748 	rvu_write64(rvu, BLKADDR_RVUM,
1749 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1750 
1751 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1752 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1753 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1754 }
1755 
1756 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1757 {
1758 	struct rvu_block *block;
1759 	int slot, lf, num_lfs;
1760 	int err;
1761 
1762 	block = &rvu->hw->block[blkaddr];
1763 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1764 					block->type);
1765 	if (!num_lfs)
1766 		return;
1767 	for (slot = 0; slot < num_lfs; slot++) {
1768 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1769 		if (lf < 0)
1770 			continue;
1771 
1772 		/* Cleanup LF and reset it */
1773 		if (block->addr == BLKADDR_NIX0)
1774 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1775 		else if (block->addr == BLKADDR_NPA)
1776 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1777 
1778 		err = rvu_lf_reset(rvu, block, lf);
1779 		if (err) {
1780 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1781 				block->addr, lf);
1782 		}
1783 	}
1784 }
1785 
1786 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1787 {
1788 	mutex_lock(&rvu->flr_lock);
1789 	/* Reset order should reflect inter-block dependencies:
1790 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1791 	 * 2. Flush and reset SSO/SSOW
1792 	 * 3. Cleanup pools (NPA)
1793 	 */
1794 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1795 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1796 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1797 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1798 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1799 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1800 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1801 	mutex_unlock(&rvu->flr_lock);
1802 }
1803 
1804 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1805 {
1806 	int reg = 0;
1807 
1808 	/* pcifunc = 0(PF0) | (vf + 1) */
1809 	__rvu_flr_handler(rvu, vf + 1);
1810 
1811 	if (vf >= 64) {
1812 		reg = 1;
1813 		vf = vf - 64;
1814 	}
1815 
1816 	/* Signal FLR finish and enable IRQ */
1817 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1818 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1819 }
1820 
1821 static void rvu_flr_handler(struct work_struct *work)
1822 {
1823 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1824 	struct rvu *rvu = flrwork->rvu;
1825 	u16 pcifunc, numvfs, vf;
1826 	u64 cfg;
1827 	int pf;
1828 
1829 	pf = flrwork - rvu->flr_wrk;
1830 	if (pf >= rvu->hw->total_pfs) {
1831 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1832 		return;
1833 	}
1834 
1835 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
1836 	numvfs = (cfg >> 12) & 0xFF;
1837 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
1838 
1839 	for (vf = 0; vf < numvfs; vf++)
1840 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
1841 
1842 	__rvu_flr_handler(rvu, pcifunc);
1843 
1844 	/* Signal FLR finish */
1845 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
1846 
1847 	/* Enable interrupt */
1848 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
1849 }
1850 
1851 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
1852 {
1853 	int dev, vf, reg = 0;
1854 	u64 intr;
1855 
1856 	if (start_vf >= 64)
1857 		reg = 1;
1858 
1859 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
1860 	if (!intr)
1861 		return;
1862 
1863 	for (vf = 0; vf < numvfs; vf++) {
1864 		if (!(intr & BIT_ULL(vf)))
1865 			continue;
1866 		dev = vf + start_vf + rvu->hw->total_pfs;
1867 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
1868 		/* Clear and disable the interrupt */
1869 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
1870 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
1871 	}
1872 }
1873 
1874 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
1875 {
1876 	struct rvu *rvu = (struct rvu *)rvu_irq;
1877 	u64 intr;
1878 	u8  pf;
1879 
1880 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
1881 	if (!intr)
1882 		goto afvf_flr;
1883 
1884 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1885 		if (intr & (1ULL << pf)) {
1886 			/* PF is already dead do only AF related operations */
1887 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
1888 			/* clear interrupt */
1889 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
1890 				    BIT_ULL(pf));
1891 			/* Disable the interrupt */
1892 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1893 				    BIT_ULL(pf));
1894 		}
1895 	}
1896 
1897 afvf_flr:
1898 	rvu_afvf_queue_flr_work(rvu, 0, 64);
1899 	if (rvu->vfs > 64)
1900 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
1901 
1902 	return IRQ_HANDLED;
1903 }
1904 
1905 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
1906 {
1907 	int vf;
1908 
1909 	/* Nothing to be done here other than clearing the
1910 	 * TRPEND bit.
1911 	 */
1912 	for (vf = 0; vf < 64; vf++) {
1913 		if (intr & (1ULL << vf)) {
1914 			/* clear the trpend due to ME(master enable) */
1915 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
1916 			/* clear interrupt */
1917 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
1918 		}
1919 	}
1920 }
1921 
1922 /* Handles ME interrupts from VFs of AF */
1923 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
1924 {
1925 	struct rvu *rvu = (struct rvu *)rvu_irq;
1926 	int vfset;
1927 	u64 intr;
1928 
1929 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1930 
1931 	for (vfset = 0; vfset <= 1; vfset++) {
1932 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
1933 		if (intr)
1934 			rvu_me_handle_vfset(rvu, vfset, intr);
1935 	}
1936 
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 /* Handles ME interrupts from PFs */
1941 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
1942 {
1943 	struct rvu *rvu = (struct rvu *)rvu_irq;
1944 	u64 intr;
1945 	u8  pf;
1946 
1947 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1948 
1949 	/* Nothing to be done here other than clearing the
1950 	 * TRPEND bit.
1951 	 */
1952 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1953 		if (intr & (1ULL << pf)) {
1954 			/* clear the trpend due to ME(master enable) */
1955 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
1956 				    BIT_ULL(pf));
1957 			/* clear interrupt */
1958 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
1959 				    BIT_ULL(pf));
1960 		}
1961 	}
1962 
1963 	return IRQ_HANDLED;
1964 }
1965 
1966 static void rvu_unregister_interrupts(struct rvu *rvu)
1967 {
1968 	int irq;
1969 
1970 	/* Disable the Mbox interrupt */
1971 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
1972 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1973 
1974 	/* Disable the PF FLR interrupt */
1975 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1976 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1977 
1978 	/* Disable the PF ME interrupt */
1979 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
1980 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1981 
1982 	for (irq = 0; irq < rvu->num_vec; irq++) {
1983 		if (rvu->irq_allocated[irq])
1984 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
1985 	}
1986 
1987 	pci_free_irq_vectors(rvu->pdev);
1988 	rvu->num_vec = 0;
1989 }
1990 
1991 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
1992 {
1993 	struct rvu_pfvf *pfvf = &rvu->pf[0];
1994 	int offset;
1995 
1996 	pfvf = &rvu->pf[0];
1997 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
1998 
1999 	/* Make sure there are enough MSIX vectors configured so that
2000 	 * VF interrupts can be handled. Offset equal to zero means
2001 	 * that PF vectors are not configured and overlapping AF vectors.
2002 	 */
2003 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2004 	       offset;
2005 }
2006 
2007 static int rvu_register_interrupts(struct rvu *rvu)
2008 {
2009 	int ret, offset, pf_vec_start;
2010 
2011 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2012 
2013 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2014 					   NAME_SIZE, GFP_KERNEL);
2015 	if (!rvu->irq_name)
2016 		return -ENOMEM;
2017 
2018 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2019 					  sizeof(bool), GFP_KERNEL);
2020 	if (!rvu->irq_allocated)
2021 		return -ENOMEM;
2022 
2023 	/* Enable MSI-X */
2024 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2025 				    rvu->num_vec, PCI_IRQ_MSIX);
2026 	if (ret < 0) {
2027 		dev_err(rvu->dev,
2028 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2029 			rvu->num_vec, ret);
2030 		return ret;
2031 	}
2032 
2033 	/* Register mailbox interrupt handler */
2034 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2035 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2036 			  rvu_mbox_intr_handler, 0,
2037 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2038 	if (ret) {
2039 		dev_err(rvu->dev,
2040 			"RVUAF: IRQ registration failed for mbox irq\n");
2041 		goto fail;
2042 	}
2043 
2044 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2045 
2046 	/* Enable mailbox interrupts from all PFs */
2047 	rvu_enable_mbox_intr(rvu);
2048 
2049 	/* Register FLR interrupt handler */
2050 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2051 		"RVUAF FLR");
2052 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2053 			  rvu_flr_intr_handler, 0,
2054 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2055 			  rvu);
2056 	if (ret) {
2057 		dev_err(rvu->dev,
2058 			"RVUAF: IRQ registration failed for FLR\n");
2059 		goto fail;
2060 	}
2061 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2062 
2063 	/* Enable FLR interrupt for all PFs*/
2064 	rvu_write64(rvu, BLKADDR_RVUM,
2065 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2066 
2067 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2068 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2069 
2070 	/* Register ME interrupt handler */
2071 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2072 		"RVUAF ME");
2073 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2074 			  rvu_me_pf_intr_handler, 0,
2075 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2076 			  rvu);
2077 	if (ret) {
2078 		dev_err(rvu->dev,
2079 			"RVUAF: IRQ registration failed for ME\n");
2080 	}
2081 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2082 
2083 	/* Enable ME interrupt for all PFs*/
2084 	rvu_write64(rvu, BLKADDR_RVUM,
2085 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2086 
2087 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2088 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2089 
2090 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2091 		return 0;
2092 
2093 	/* Get PF MSIX vectors offset. */
2094 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2095 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2096 
2097 	/* Register MBOX0 interrupt. */
2098 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2099 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2100 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2101 			  rvu_mbox_intr_handler, 0,
2102 			  &rvu->irq_name[offset * NAME_SIZE],
2103 			  rvu);
2104 	if (ret)
2105 		dev_err(rvu->dev,
2106 			"RVUAF: IRQ registration failed for Mbox0\n");
2107 
2108 	rvu->irq_allocated[offset] = true;
2109 
2110 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2111 	 * simply increment current offset by 1.
2112 	 */
2113 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2114 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2115 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2116 			  rvu_mbox_intr_handler, 0,
2117 			  &rvu->irq_name[offset * NAME_SIZE],
2118 			  rvu);
2119 	if (ret)
2120 		dev_err(rvu->dev,
2121 			"RVUAF: IRQ registration failed for Mbox1\n");
2122 
2123 	rvu->irq_allocated[offset] = true;
2124 
2125 	/* Register FLR interrupt handler for AF's VFs */
2126 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2127 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2128 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2129 			  rvu_flr_intr_handler, 0,
2130 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2131 	if (ret) {
2132 		dev_err(rvu->dev,
2133 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2134 		goto fail;
2135 	}
2136 	rvu->irq_allocated[offset] = true;
2137 
2138 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2139 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2140 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2141 			  rvu_flr_intr_handler, 0,
2142 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2143 	if (ret) {
2144 		dev_err(rvu->dev,
2145 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2146 		goto fail;
2147 	}
2148 	rvu->irq_allocated[offset] = true;
2149 
2150 	/* Register ME interrupt handler for AF's VFs */
2151 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2152 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2153 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2154 			  rvu_me_vf_intr_handler, 0,
2155 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2156 	if (ret) {
2157 		dev_err(rvu->dev,
2158 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2159 		goto fail;
2160 	}
2161 	rvu->irq_allocated[offset] = true;
2162 
2163 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2164 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2165 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2166 			  rvu_me_vf_intr_handler, 0,
2167 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2168 	if (ret) {
2169 		dev_err(rvu->dev,
2170 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2171 		goto fail;
2172 	}
2173 	rvu->irq_allocated[offset] = true;
2174 	return 0;
2175 
2176 fail:
2177 	rvu_unregister_interrupts(rvu);
2178 	return ret;
2179 }
2180 
2181 static void rvu_flr_wq_destroy(struct rvu *rvu)
2182 {
2183 	if (rvu->flr_wq) {
2184 		flush_workqueue(rvu->flr_wq);
2185 		destroy_workqueue(rvu->flr_wq);
2186 		rvu->flr_wq = NULL;
2187 	}
2188 }
2189 
2190 static int rvu_flr_init(struct rvu *rvu)
2191 {
2192 	int dev, num_devs;
2193 	u64 cfg;
2194 	int pf;
2195 
2196 	/* Enable FLR for all PFs*/
2197 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2198 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2199 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2200 			    cfg | BIT_ULL(22));
2201 	}
2202 
2203 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2204 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2205 				       1);
2206 	if (!rvu->flr_wq)
2207 		return -ENOMEM;
2208 
2209 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2210 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2211 				    sizeof(struct rvu_work), GFP_KERNEL);
2212 	if (!rvu->flr_wrk) {
2213 		destroy_workqueue(rvu->flr_wq);
2214 		return -ENOMEM;
2215 	}
2216 
2217 	for (dev = 0; dev < num_devs; dev++) {
2218 		rvu->flr_wrk[dev].rvu = rvu;
2219 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2220 	}
2221 
2222 	mutex_init(&rvu->flr_lock);
2223 
2224 	return 0;
2225 }
2226 
2227 static void rvu_disable_afvf_intr(struct rvu *rvu)
2228 {
2229 	int vfs = rvu->vfs;
2230 
2231 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2232 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2233 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2234 	if (vfs <= 64)
2235 		return;
2236 
2237 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2238 		      INTR_MASK(vfs - 64));
2239 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2240 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2241 }
2242 
2243 static void rvu_enable_afvf_intr(struct rvu *rvu)
2244 {
2245 	int vfs = rvu->vfs;
2246 
2247 	/* Clear any pending interrupts and enable AF VF interrupts for
2248 	 * the first 64 VFs.
2249 	 */
2250 	/* Mbox */
2251 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2252 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2253 
2254 	/* FLR */
2255 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2256 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2257 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2258 
2259 	/* Same for remaining VFs, if any. */
2260 	if (vfs <= 64)
2261 		return;
2262 
2263 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2264 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2265 		      INTR_MASK(vfs - 64));
2266 
2267 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2268 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2269 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2270 }
2271 
2272 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2273 
2274 static int lbk_get_num_chans(void)
2275 {
2276 	struct pci_dev *pdev;
2277 	void __iomem *base;
2278 	int ret = -EIO;
2279 
2280 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2281 			      NULL);
2282 	if (!pdev)
2283 		goto err;
2284 
2285 	base = pci_ioremap_bar(pdev, 0);
2286 	if (!base)
2287 		goto err_put;
2288 
2289 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2290 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2291 	iounmap(base);
2292 err_put:
2293 	pci_dev_put(pdev);
2294 err:
2295 	return ret;
2296 }
2297 
2298 static int rvu_enable_sriov(struct rvu *rvu)
2299 {
2300 	struct pci_dev *pdev = rvu->pdev;
2301 	int err, chans, vfs;
2302 
2303 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2304 		dev_warn(&pdev->dev,
2305 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2306 		return 0;
2307 	}
2308 
2309 	chans = lbk_get_num_chans();
2310 	if (chans < 0)
2311 		return chans;
2312 
2313 	vfs = pci_sriov_get_totalvfs(pdev);
2314 
2315 	/* Limit VFs in case we have more VFs than LBK channels available. */
2316 	if (vfs > chans)
2317 		vfs = chans;
2318 
2319 	/* AF's VFs work in pairs and talk over consecutive loopback channels.
2320 	 * Thus we want to enable maximum even number of VFs. In case
2321 	 * odd number of VFs are available then the last VF on the list
2322 	 * remains disabled.
2323 	 */
2324 	if (vfs & 0x1) {
2325 		dev_warn(&pdev->dev,
2326 			 "Number of VFs should be even. Enabling %d out of %d.\n",
2327 			 vfs - 1, vfs);
2328 		vfs--;
2329 	}
2330 
2331 	if (!vfs)
2332 		return 0;
2333 
2334 	/* Save VFs number for reference in VF interrupts handlers.
2335 	 * Since interrupts might start arriving during SRIOV enablement
2336 	 * ordinary API cannot be used to get number of enabled VFs.
2337 	 */
2338 	rvu->vfs = vfs;
2339 
2340 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2341 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2342 	if (err)
2343 		return err;
2344 
2345 	rvu_enable_afvf_intr(rvu);
2346 	/* Make sure IRQs are enabled before SRIOV. */
2347 	mb();
2348 
2349 	err = pci_enable_sriov(pdev, vfs);
2350 	if (err) {
2351 		rvu_disable_afvf_intr(rvu);
2352 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2353 		return err;
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static void rvu_disable_sriov(struct rvu *rvu)
2360 {
2361 	rvu_disable_afvf_intr(rvu);
2362 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2363 	pci_disable_sriov(rvu->pdev);
2364 }
2365 
2366 static void rvu_update_module_params(struct rvu *rvu)
2367 {
2368 	const char *default_pfl_name = "default";
2369 
2370 	strscpy(rvu->mkex_pfl_name,
2371 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2372 }
2373 
2374 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2375 {
2376 	struct device *dev = &pdev->dev;
2377 	struct rvu *rvu;
2378 	int    err;
2379 
2380 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2381 	if (!rvu)
2382 		return -ENOMEM;
2383 
2384 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2385 	if (!rvu->hw) {
2386 		devm_kfree(dev, rvu);
2387 		return -ENOMEM;
2388 	}
2389 
2390 	pci_set_drvdata(pdev, rvu);
2391 	rvu->pdev = pdev;
2392 	rvu->dev = &pdev->dev;
2393 
2394 	err = pci_enable_device(pdev);
2395 	if (err) {
2396 		dev_err(dev, "Failed to enable PCI device\n");
2397 		goto err_freemem;
2398 	}
2399 
2400 	err = pci_request_regions(pdev, DRV_NAME);
2401 	if (err) {
2402 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2403 		goto err_disable_device;
2404 	}
2405 
2406 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2407 	if (err) {
2408 		dev_err(dev, "Unable to set DMA mask\n");
2409 		goto err_release_regions;
2410 	}
2411 
2412 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2413 	if (err) {
2414 		dev_err(dev, "Unable to set consistent DMA mask\n");
2415 		goto err_release_regions;
2416 	}
2417 
2418 	/* Map Admin function CSRs */
2419 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2420 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2421 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2422 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2423 		err = -ENOMEM;
2424 		goto err_release_regions;
2425 	}
2426 
2427 	/* Store module params in rvu structure */
2428 	rvu_update_module_params(rvu);
2429 
2430 	/* Check which blocks the HW supports */
2431 	rvu_check_block_implemented(rvu);
2432 
2433 	rvu_reset_all_blocks(rvu);
2434 
2435 	err = rvu_setup_hw_resources(rvu);
2436 	if (err)
2437 		goto err_release_regions;
2438 
2439 	/* Init mailbox btw AF and PFs */
2440 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2441 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2442 			    rvu_afpf_mbox_up_handler);
2443 	if (err)
2444 		goto err_hwsetup;
2445 
2446 	err = rvu_flr_init(rvu);
2447 	if (err)
2448 		goto err_mbox;
2449 
2450 	err = rvu_register_interrupts(rvu);
2451 	if (err)
2452 		goto err_flr;
2453 
2454 	/* Enable AF's VFs (if any) */
2455 	err = rvu_enable_sriov(rvu);
2456 	if (err)
2457 		goto err_irq;
2458 
2459 	return 0;
2460 err_irq:
2461 	rvu_unregister_interrupts(rvu);
2462 err_flr:
2463 	rvu_flr_wq_destroy(rvu);
2464 err_mbox:
2465 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2466 err_hwsetup:
2467 	rvu_cgx_exit(rvu);
2468 	rvu_reset_all_blocks(rvu);
2469 	rvu_free_hw_resources(rvu);
2470 err_release_regions:
2471 	pci_release_regions(pdev);
2472 err_disable_device:
2473 	pci_disable_device(pdev);
2474 err_freemem:
2475 	pci_set_drvdata(pdev, NULL);
2476 	devm_kfree(&pdev->dev, rvu->hw);
2477 	devm_kfree(dev, rvu);
2478 	return err;
2479 }
2480 
2481 static void rvu_remove(struct pci_dev *pdev)
2482 {
2483 	struct rvu *rvu = pci_get_drvdata(pdev);
2484 
2485 	rvu_unregister_interrupts(rvu);
2486 	rvu_flr_wq_destroy(rvu);
2487 	rvu_cgx_exit(rvu);
2488 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2489 	rvu_disable_sriov(rvu);
2490 	rvu_reset_all_blocks(rvu);
2491 	rvu_free_hw_resources(rvu);
2492 
2493 	pci_release_regions(pdev);
2494 	pci_disable_device(pdev);
2495 	pci_set_drvdata(pdev, NULL);
2496 
2497 	devm_kfree(&pdev->dev, rvu->hw);
2498 	devm_kfree(&pdev->dev, rvu);
2499 }
2500 
2501 static struct pci_driver rvu_driver = {
2502 	.name = DRV_NAME,
2503 	.id_table = rvu_id_table,
2504 	.probe = rvu_probe,
2505 	.remove = rvu_remove,
2506 };
2507 
2508 static int __init rvu_init_module(void)
2509 {
2510 	int err;
2511 
2512 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2513 
2514 	err = pci_register_driver(&cgx_driver);
2515 	if (err < 0)
2516 		return err;
2517 
2518 	err =  pci_register_driver(&rvu_driver);
2519 	if (err < 0)
2520 		pci_unregister_driver(&cgx_driver);
2521 
2522 	return err;
2523 }
2524 
2525 static void __exit rvu_cleanup_module(void)
2526 {
2527 	pci_unregister_driver(&rvu_driver);
2528 	pci_unregister_driver(&cgx_driver);
2529 }
2530 
2531 module_init(rvu_init_module);
2532 module_exit(rvu_cleanup_module);
2533