1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell PTP driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/device.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 
13 #include "ptp.h"
14 #include "mbox.h"
15 #include "rvu.h"
16 
17 #define DRV_NAME				"Marvell PTP Driver"
18 
19 #define PCI_DEVID_OCTEONTX2_PTP			0xA00C
20 #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP		0xB100
21 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP		0xB200
22 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP		0xB300
23 #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP	0xB400
24 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP		0xB500
25 #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP	0xB600
26 #define PCI_DEVID_OCTEONTX2_RST			0xA085
27 #define PCI_DEVID_CN10K_PTP			0xA09E
28 
29 #define PCI_PTP_BAR_NO				0
30 #define PCI_RST_BAR_NO				0
31 
32 #define PTP_CLOCK_CFG				0xF00ULL
33 #define PTP_CLOCK_CFG_PTP_EN			BIT_ULL(0)
34 #define PTP_CLOCK_LO				0xF08ULL
35 #define PTP_CLOCK_HI				0xF10ULL
36 #define PTP_CLOCK_COMP				0xF18ULL
37 
38 #define RST_BOOT				0x1600ULL
39 #define RST_MUL_BITS				GENMASK_ULL(38, 33)
40 #define CLOCK_BASE_RATE				50000000ULL
41 
42 static struct ptp *first_ptp_block;
43 static const struct pci_device_id ptp_id_table[];
44 
45 static u64 get_clock_rate(void)
46 {
47 	u64 cfg, ret = CLOCK_BASE_RATE * 16;
48 	struct pci_dev *pdev;
49 	void __iomem *base;
50 
51 	/* To get the input clock frequency with which PTP co-processor
52 	 * block is running the base frequency(50 MHz) needs to be multiplied
53 	 * with multiplier bits present in RST_BOOT register of RESET block.
54 	 * Hence below code gets the multiplier bits from the RESET PCI
55 	 * device present in the system.
56 	 */
57 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
58 			      PCI_DEVID_OCTEONTX2_RST, NULL);
59 	if (!pdev)
60 		goto error;
61 
62 	base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
63 	if (!base)
64 		goto error_put_pdev;
65 
66 	cfg = readq(base + RST_BOOT);
67 	ret = CLOCK_BASE_RATE * FIELD_GET(RST_MUL_BITS, cfg);
68 
69 	iounmap(base);
70 
71 error_put_pdev:
72 	pci_dev_put(pdev);
73 
74 error:
75 	return ret;
76 }
77 
78 struct ptp *ptp_get(void)
79 {
80 	struct ptp *ptp = first_ptp_block;
81 
82 	/* Check PTP block is present in hardware */
83 	if (!pci_dev_present(ptp_id_table))
84 		return ERR_PTR(-ENODEV);
85 	/* Check driver is bound to PTP block */
86 	if (!ptp)
87 		ptp = ERR_PTR(-EPROBE_DEFER);
88 
89 	return ptp;
90 }
91 
92 void ptp_put(struct ptp *ptp)
93 {
94 	if (!ptp)
95 		return;
96 
97 	pci_dev_put(ptp->pdev);
98 }
99 
100 static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
101 {
102 	bool neg_adj = false;
103 	u64 comp;
104 	u64 adj;
105 	s64 ppb;
106 
107 	if (scaled_ppm < 0) {
108 		neg_adj = true;
109 		scaled_ppm = -scaled_ppm;
110 	}
111 
112 	/* The hardware adds the clock compensation value to the PTP clock
113 	 * on every coprocessor clock cycle. Typical convention is that it
114 	 * represent number of nanosecond betwen each cycle. In this
115 	 * convention compensation value is in 64 bit fixed-point
116 	 * representation where upper 32 bits are number of nanoseconds
117 	 * and lower is fractions of nanosecond.
118 	 * The scaled_ppm represent the ratio in "parts per million" by which
119 	 * the compensation value should be corrected.
120 	 * To calculate new compenstation value we use 64bit fixed point
121 	 * arithmetic on following formula
122 	 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
123 	 * where tbase is the basic compensation value calculated
124 	 * initialy in the probe function.
125 	 */
126 	comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
127 	/* convert scaled_ppm to ppb */
128 	ppb = 1 + scaled_ppm;
129 	ppb *= 125;
130 	ppb >>= 13;
131 	adj = comp * ppb;
132 	adj = div_u64(adj, 1000000000ull);
133 	comp = neg_adj ? comp - adj : comp + adj;
134 
135 	writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);
136 
137 	return 0;
138 }
139 
140 static int ptp_get_clock(struct ptp *ptp, u64 *clk)
141 {
142 	/* Return the current PTP clock */
143 	*clk = readq(ptp->reg_base + PTP_CLOCK_HI);
144 
145 	return 0;
146 }
147 
148 static int ptp_probe(struct pci_dev *pdev,
149 		     const struct pci_device_id *ent)
150 {
151 	struct device *dev = &pdev->dev;
152 	struct ptp *ptp;
153 	u64 clock_comp;
154 	u64 clock_cfg;
155 	int err;
156 
157 	ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL);
158 	if (!ptp) {
159 		err = -ENOMEM;
160 		goto error;
161 	}
162 
163 	ptp->pdev = pdev;
164 
165 	err = pcim_enable_device(pdev);
166 	if (err)
167 		goto error_free;
168 
169 	err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
170 	if (err)
171 		goto error_free;
172 
173 	ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
174 
175 	ptp->clock_rate = get_clock_rate();
176 
177 	/* Enable PTP clock */
178 	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
179 	clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
180 	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
181 
182 	clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
183 	/* Initial compensation value to start the nanosecs counter */
184 	writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
185 
186 	pci_set_drvdata(pdev, ptp);
187 	if (!first_ptp_block)
188 		first_ptp_block = ptp;
189 
190 	return 0;
191 
192 error_free:
193 	devm_kfree(dev, ptp);
194 
195 error:
196 	/* For `ptp_get()` we need to differentiate between the case
197 	 * when the core has not tried to probe this device and the case when
198 	 * the probe failed.  In the later case we pretend that the
199 	 * initialization was successful and keep the error in
200 	 * `dev->driver_data`.
201 	 */
202 	pci_set_drvdata(pdev, ERR_PTR(err));
203 	if (!first_ptp_block)
204 		first_ptp_block = ERR_PTR(err);
205 
206 	return 0;
207 }
208 
209 static void ptp_remove(struct pci_dev *pdev)
210 {
211 	struct ptp *ptp = pci_get_drvdata(pdev);
212 	u64 clock_cfg;
213 
214 	if (IS_ERR_OR_NULL(ptp))
215 		return;
216 
217 	/* Disable PTP clock */
218 	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
219 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
220 	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
221 }
222 
223 static const struct pci_device_id ptp_id_table[] = {
224 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
225 			 PCI_VENDOR_ID_CAVIUM,
226 			 PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) },
227 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
228 			 PCI_VENDOR_ID_CAVIUM,
229 			 PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) },
230 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
231 			 PCI_VENDOR_ID_CAVIUM,
232 			 PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
233 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
234 			 PCI_VENDOR_ID_CAVIUM,
235 			 PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) },
236 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
237 			 PCI_VENDOR_ID_CAVIUM,
238 			 PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
239 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
240 			 PCI_VENDOR_ID_CAVIUM,
241 			 PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) },
242 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) },
243 	{ 0, }
244 };
245 
246 struct pci_driver ptp_driver = {
247 	.name = DRV_NAME,
248 	.id_table = ptp_id_table,
249 	.probe = ptp_probe,
250 	.remove = ptp_remove,
251 };
252 
253 int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
254 			    struct ptp_rsp *rsp)
255 {
256 	int err = 0;
257 
258 	/* This function is the PTP mailbox handler invoked when
259 	 * called by AF consumers/netdev drivers via mailbox mechanism.
260 	 * It is used by netdev driver to get the PTP clock and to set
261 	 * frequency adjustments. Since mailbox can be called without
262 	 * notion of whether the driver is bound to ptp device below
263 	 * validation is needed as first step.
264 	 */
265 	if (!rvu->ptp)
266 		return -ENODEV;
267 
268 	switch (req->op) {
269 	case PTP_OP_ADJFINE:
270 		err = ptp_adjfine(rvu->ptp, req->scaled_ppm);
271 		break;
272 	case PTP_OP_GET_CLOCK:
273 		err = ptp_get_clock(rvu->ptp, &rsp->clk);
274 		break;
275 	default:
276 		err = -EINVAL;
277 		break;
278 	}
279 
280 	return err;
281 }
282