xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/ptp.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell PTP driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/device.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 
12 #include "ptp.h"
13 #include "mbox.h"
14 #include "rvu.h"
15 
16 #define DRV_NAME				"Marvell PTP Driver"
17 
18 #define PCI_DEVID_OCTEONTX2_PTP			0xA00C
19 #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP		0xB100
20 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP		0xB200
21 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP		0xB300
22 #define PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP		0xB400
23 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP		0xB500
24 #define PCI_DEVID_OCTEONTX2_RST			0xA085
25 
26 #define PCI_PTP_BAR_NO				0
27 #define PCI_RST_BAR_NO				0
28 
29 #define PTP_CLOCK_CFG				0xF00ULL
30 #define PTP_CLOCK_CFG_PTP_EN			BIT_ULL(0)
31 #define PTP_CLOCK_LO				0xF08ULL
32 #define PTP_CLOCK_HI				0xF10ULL
33 #define PTP_CLOCK_COMP				0xF18ULL
34 
35 #define RST_BOOT				0x1600ULL
36 #define RST_MUL_BITS				GENMASK_ULL(38, 33)
37 #define CLOCK_BASE_RATE				50000000ULL
38 
39 static u64 get_clock_rate(void)
40 {
41 	u64 cfg, ret = CLOCK_BASE_RATE * 16;
42 	struct pci_dev *pdev;
43 	void __iomem *base;
44 
45 	/* To get the input clock frequency with which PTP co-processor
46 	 * block is running the base frequency(50 MHz) needs to be multiplied
47 	 * with multiplier bits present in RST_BOOT register of RESET block.
48 	 * Hence below code gets the multiplier bits from the RESET PCI
49 	 * device present in the system.
50 	 */
51 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
52 			      PCI_DEVID_OCTEONTX2_RST, NULL);
53 	if (!pdev)
54 		goto error;
55 
56 	base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
57 	if (!base)
58 		goto error_put_pdev;
59 
60 	cfg = readq(base + RST_BOOT);
61 	ret = CLOCK_BASE_RATE * FIELD_GET(RST_MUL_BITS, cfg);
62 
63 	iounmap(base);
64 
65 error_put_pdev:
66 	pci_dev_put(pdev);
67 
68 error:
69 	return ret;
70 }
71 
72 struct ptp *ptp_get(void)
73 {
74 	struct pci_dev *pdev;
75 	struct ptp *ptp;
76 
77 	/* If the PTP pci device is found on the system and ptp
78 	 * driver is bound to it then the PTP pci device is returned
79 	 * to the caller(rvu driver).
80 	 */
81 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
82 			      PCI_DEVID_OCTEONTX2_PTP, NULL);
83 	if (!pdev)
84 		return ERR_PTR(-ENODEV);
85 
86 	ptp = pci_get_drvdata(pdev);
87 	if (!ptp)
88 		ptp = ERR_PTR(-EPROBE_DEFER);
89 	if (IS_ERR(ptp))
90 		pci_dev_put(pdev);
91 
92 	return ptp;
93 }
94 
95 void ptp_put(struct ptp *ptp)
96 {
97 	if (!ptp)
98 		return;
99 
100 	pci_dev_put(ptp->pdev);
101 }
102 
103 static int ptp_adjfine(struct ptp *ptp, long scaled_ppm)
104 {
105 	bool neg_adj = false;
106 	u64 comp;
107 	u64 adj;
108 	s64 ppb;
109 
110 	if (scaled_ppm < 0) {
111 		neg_adj = true;
112 		scaled_ppm = -scaled_ppm;
113 	}
114 
115 	/* The hardware adds the clock compensation value to the PTP clock
116 	 * on every coprocessor clock cycle. Typical convention is that it
117 	 * represent number of nanosecond betwen each cycle. In this
118 	 * convention compensation value is in 64 bit fixed-point
119 	 * representation where upper 32 bits are number of nanoseconds
120 	 * and lower is fractions of nanosecond.
121 	 * The scaled_ppm represent the ratio in "parts per million" by which
122 	 * the compensation value should be corrected.
123 	 * To calculate new compenstation value we use 64bit fixed point
124 	 * arithmetic on following formula
125 	 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
126 	 * where tbase is the basic compensation value calculated
127 	 * initialy in the probe function.
128 	 */
129 	comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
130 	/* convert scaled_ppm to ppb */
131 	ppb = 1 + scaled_ppm;
132 	ppb *= 125;
133 	ppb >>= 13;
134 	adj = comp * ppb;
135 	adj = div_u64(adj, 1000000000ull);
136 	comp = neg_adj ? comp - adj : comp + adj;
137 
138 	writeq(comp, ptp->reg_base + PTP_CLOCK_COMP);
139 
140 	return 0;
141 }
142 
143 static int ptp_get_clock(struct ptp *ptp, u64 *clk)
144 {
145 	/* Return the current PTP clock */
146 	*clk = readq(ptp->reg_base + PTP_CLOCK_HI);
147 
148 	return 0;
149 }
150 
151 static int ptp_probe(struct pci_dev *pdev,
152 		     const struct pci_device_id *ent)
153 {
154 	struct device *dev = &pdev->dev;
155 	struct ptp *ptp;
156 	u64 clock_comp;
157 	u64 clock_cfg;
158 	int err;
159 
160 	ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL);
161 	if (!ptp) {
162 		err = -ENOMEM;
163 		goto error;
164 	}
165 
166 	ptp->pdev = pdev;
167 
168 	err = pcim_enable_device(pdev);
169 	if (err)
170 		goto error_free;
171 
172 	err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
173 	if (err)
174 		goto error_free;
175 
176 	ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
177 
178 	ptp->clock_rate = get_clock_rate();
179 
180 	/* Enable PTP clock */
181 	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
182 	clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
183 	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
184 
185 	clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate;
186 	/* Initial compensation value to start the nanosecs counter */
187 	writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP);
188 
189 	pci_set_drvdata(pdev, ptp);
190 
191 	return 0;
192 
193 error_free:
194 	devm_kfree(dev, ptp);
195 
196 error:
197 	/* For `ptp_get()` we need to differentiate between the case
198 	 * when the core has not tried to probe this device and the case when
199 	 * the probe failed.  In the later case we pretend that the
200 	 * initialization was successful and keep the error in
201 	 * `dev->driver_data`.
202 	 */
203 	pci_set_drvdata(pdev, ERR_PTR(err));
204 	return 0;
205 }
206 
207 static void ptp_remove(struct pci_dev *pdev)
208 {
209 	struct ptp *ptp = pci_get_drvdata(pdev);
210 	u64 clock_cfg;
211 
212 	if (IS_ERR_OR_NULL(ptp))
213 		return;
214 
215 	/* Disable PTP clock */
216 	clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG);
217 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
218 	writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG);
219 }
220 
221 static const struct pci_device_id ptp_id_table[] = {
222 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
223 			 PCI_VENDOR_ID_CAVIUM,
224 			 PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) },
225 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
226 			 PCI_VENDOR_ID_CAVIUM,
227 			 PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) },
228 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
229 			 PCI_VENDOR_ID_CAVIUM,
230 			 PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) },
231 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
232 			 PCI_VENDOR_ID_CAVIUM,
233 			 PCI_SUBSYS_DEVID_OCTX2_LOKI_PTP) },
234 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP,
235 			 PCI_VENDOR_ID_CAVIUM,
236 			 PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) },
237 	{ 0, }
238 };
239 
240 struct pci_driver ptp_driver = {
241 	.name = DRV_NAME,
242 	.id_table = ptp_id_table,
243 	.probe = ptp_probe,
244 	.remove = ptp_remove,
245 };
246 
247 int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req,
248 			    struct ptp_rsp *rsp)
249 {
250 	int err = 0;
251 
252 	/* This function is the PTP mailbox handler invoked when
253 	 * called by AF consumers/netdev drivers via mailbox mechanism.
254 	 * It is used by netdev driver to get the PTP clock and to set
255 	 * frequency adjustments. Since mailbox can be called without
256 	 * notion of whether the driver is bound to ptp device below
257 	 * validation is needed as first step.
258 	 */
259 	if (!rvu->ptp)
260 		return -ENODEV;
261 
262 	switch (req->op) {
263 	case PTP_OP_ADJFINE:
264 		err = ptp_adjfine(rvu->ptp, req->scaled_ppm);
265 		break;
266 	case PTP_OP_GET_CLOCK:
267 		err = ptp_get_clock(rvu->ptp, &rsp->clk);
268 		break;
269 	default:
270 		err = -EINVAL;
271 		break;
272 	}
273 
274 	return err;
275 }
276