1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell Octeon EP (EndPoint) Ethernet Driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/types.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/aer.h> 12 #include <linux/netdevice.h> 13 #include <linux/etherdevice.h> 14 #include <linux/rtnetlink.h> 15 #include <linux/vmalloc.h> 16 17 #include "octep_config.h" 18 #include "octep_main.h" 19 #include "octep_ctrl_net.h" 20 21 struct workqueue_struct *octep_wq; 22 23 /* Supported Devices */ 24 static const struct pci_device_id octep_pci_id_tbl[] = { 25 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)}, 26 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)}, 27 {0, }, 28 }; 29 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl); 30 31 MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>"); 32 MODULE_DESCRIPTION(OCTEP_DRV_STRING); 33 MODULE_LICENSE("GPL"); 34 35 /** 36 * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info. 37 * 38 * @oct: Octeon device private data structure. 39 * 40 * Allocate resources to hold per Tx/Rx queue interrupt info. 41 * This is the information passed to interrupt handler, from which napi poll 42 * is scheduled and includes quick access to private data of Tx/Rx queue 43 * corresponding to the interrupt being handled. 44 * 45 * Return: 0, on successful allocation of resources for all queue interrupts. 46 * -1, if failed to allocate any resource. 47 */ 48 static int octep_alloc_ioq_vectors(struct octep_device *oct) 49 { 50 int i; 51 struct octep_ioq_vector *ioq_vector; 52 53 for (i = 0; i < oct->num_oqs; i++) { 54 oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i])); 55 if (!oct->ioq_vector[i]) 56 goto free_ioq_vector; 57 58 ioq_vector = oct->ioq_vector[i]; 59 ioq_vector->iq = oct->iq[i]; 60 ioq_vector->oq = oct->oq[i]; 61 ioq_vector->octep_dev = oct; 62 } 63 64 dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs); 65 return 0; 66 67 free_ioq_vector: 68 while (i) { 69 i--; 70 vfree(oct->ioq_vector[i]); 71 oct->ioq_vector[i] = NULL; 72 } 73 return -1; 74 } 75 76 /** 77 * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info. 78 * 79 * @oct: Octeon device private data structure. 80 */ 81 static void octep_free_ioq_vectors(struct octep_device *oct) 82 { 83 int i; 84 85 for (i = 0; i < oct->num_oqs; i++) { 86 if (oct->ioq_vector[i]) { 87 vfree(oct->ioq_vector[i]); 88 oct->ioq_vector[i] = NULL; 89 } 90 } 91 netdev_info(oct->netdev, "Freed IOQ Vectors\n"); 92 } 93 94 /** 95 * octep_enable_msix_range() - enable MSI-x interrupts. 96 * 97 * @oct: Octeon device private data structure. 98 * 99 * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts) 100 * for the Octeon device. 101 * 102 * Return: 0, on successfully enabling all MSI-x interrupts. 103 * -1, if failed to enable any MSI-x interrupt. 104 */ 105 static int octep_enable_msix_range(struct octep_device *oct) 106 { 107 int num_msix, msix_allocated; 108 int i; 109 110 /* Generic interrupts apart from input/output queues */ 111 num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf); 112 oct->msix_entries = kcalloc(num_msix, 113 sizeof(struct msix_entry), GFP_KERNEL); 114 if (!oct->msix_entries) 115 goto msix_alloc_err; 116 117 for (i = 0; i < num_msix; i++) 118 oct->msix_entries[i].entry = i; 119 120 msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries, 121 num_msix, num_msix); 122 if (msix_allocated != num_msix) { 123 dev_err(&oct->pdev->dev, 124 "Failed to enable %d msix irqs; got only %d\n", 125 num_msix, msix_allocated); 126 goto enable_msix_err; 127 } 128 oct->num_irqs = msix_allocated; 129 dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n"); 130 131 return 0; 132 133 enable_msix_err: 134 if (msix_allocated > 0) 135 pci_disable_msix(oct->pdev); 136 kfree(oct->msix_entries); 137 oct->msix_entries = NULL; 138 msix_alloc_err: 139 return -1; 140 } 141 142 /** 143 * octep_disable_msix() - disable MSI-x interrupts. 144 * 145 * @oct: Octeon device private data structure. 146 * 147 * Disable MSI-x on the Octeon device. 148 */ 149 static void octep_disable_msix(struct octep_device *oct) 150 { 151 pci_disable_msix(oct->pdev); 152 kfree(oct->msix_entries); 153 oct->msix_entries = NULL; 154 dev_info(&oct->pdev->dev, "Disabled MSI-X\n"); 155 } 156 157 /** 158 * octep_non_ioq_intr_handler() - common handler for all generic interrupts. 159 * 160 * @irq: Interrupt number. 161 * @data: interrupt data. 162 * 163 * this is common handler for all non-queue (generic) interrupts. 164 */ 165 static irqreturn_t octep_non_ioq_intr_handler(int irq, void *data) 166 { 167 struct octep_device *oct = data; 168 169 return oct->hw_ops.non_ioq_intr_handler(oct); 170 } 171 172 /** 173 * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts. 174 * 175 * @irq: Interrupt number. 176 * @data: interrupt data contains pointers to Tx/Rx queue private data 177 * and correspong NAPI context. 178 * 179 * this is common handler for all non-queue (generic) interrupts. 180 */ 181 static irqreturn_t octep_ioq_intr_handler(int irq, void *data) 182 { 183 struct octep_ioq_vector *ioq_vector = data; 184 struct octep_device *oct = ioq_vector->octep_dev; 185 186 return oct->hw_ops.ioq_intr_handler(ioq_vector); 187 } 188 189 /** 190 * octep_request_irqs() - Register interrupt handlers. 191 * 192 * @oct: Octeon device private data structure. 193 * 194 * Register handlers for all queue and non-queue interrupts. 195 * 196 * Return: 0, on successful registration of all interrupt handlers. 197 * -1, on any error. 198 */ 199 static int octep_request_irqs(struct octep_device *oct) 200 { 201 struct net_device *netdev = oct->netdev; 202 struct octep_ioq_vector *ioq_vector; 203 struct msix_entry *msix_entry; 204 char **non_ioq_msix_names; 205 int num_non_ioq_msix; 206 int ret, i, j; 207 208 num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf); 209 non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf); 210 211 oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix, 212 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL); 213 if (!oct->non_ioq_irq_names) 214 goto alloc_err; 215 216 /* First few MSI-X interrupts are non-queue interrupts */ 217 for (i = 0; i < num_non_ioq_msix; i++) { 218 char *irq_name; 219 220 irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE]; 221 msix_entry = &oct->msix_entries[i]; 222 223 snprintf(irq_name, OCTEP_MSIX_NAME_SIZE, 224 "%s-%s", netdev->name, non_ioq_msix_names[i]); 225 ret = request_irq(msix_entry->vector, 226 octep_non_ioq_intr_handler, 0, 227 irq_name, oct); 228 if (ret) { 229 netdev_err(netdev, 230 "request_irq failed for %s; err=%d", 231 irq_name, ret); 232 goto non_ioq_irq_err; 233 } 234 } 235 236 /* Request IRQs for Tx/Rx queues */ 237 for (j = 0; j < oct->num_oqs; j++) { 238 ioq_vector = oct->ioq_vector[j]; 239 msix_entry = &oct->msix_entries[j + num_non_ioq_msix]; 240 241 snprintf(ioq_vector->name, sizeof(ioq_vector->name), 242 "%s-q%d", netdev->name, j); 243 ret = request_irq(msix_entry->vector, 244 octep_ioq_intr_handler, 0, 245 ioq_vector->name, ioq_vector); 246 if (ret) { 247 netdev_err(netdev, 248 "request_irq failed for Q-%d; err=%d", 249 j, ret); 250 goto ioq_irq_err; 251 } 252 253 cpumask_set_cpu(j % num_online_cpus(), 254 &ioq_vector->affinity_mask); 255 irq_set_affinity_hint(msix_entry->vector, 256 &ioq_vector->affinity_mask); 257 } 258 259 return 0; 260 ioq_irq_err: 261 while (j) { 262 --j; 263 ioq_vector = oct->ioq_vector[j]; 264 msix_entry = &oct->msix_entries[j + num_non_ioq_msix]; 265 266 irq_set_affinity_hint(msix_entry->vector, NULL); 267 free_irq(msix_entry->vector, ioq_vector); 268 } 269 non_ioq_irq_err: 270 while (i) { 271 --i; 272 free_irq(oct->msix_entries[i].vector, oct); 273 } 274 kfree(oct->non_ioq_irq_names); 275 oct->non_ioq_irq_names = NULL; 276 alloc_err: 277 return -1; 278 } 279 280 /** 281 * octep_free_irqs() - free all registered interrupts. 282 * 283 * @oct: Octeon device private data structure. 284 * 285 * Free all queue and non-queue interrupts of the Octeon device. 286 */ 287 static void octep_free_irqs(struct octep_device *oct) 288 { 289 int i; 290 291 /* First few MSI-X interrupts are non queue interrupts; free them */ 292 for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++) 293 free_irq(oct->msix_entries[i].vector, oct); 294 kfree(oct->non_ioq_irq_names); 295 296 /* Free IRQs for Input/Output (Tx/Rx) queues */ 297 for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) { 298 irq_set_affinity_hint(oct->msix_entries[i].vector, NULL); 299 free_irq(oct->msix_entries[i].vector, 300 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]); 301 } 302 netdev_info(oct->netdev, "IRQs freed\n"); 303 } 304 305 /** 306 * octep_setup_irqs() - setup interrupts for the Octeon device. 307 * 308 * @oct: Octeon device private data structure. 309 * 310 * Allocate data structures to hold per interrupt information, allocate/enable 311 * MSI-x interrupt and register interrupt handlers. 312 * 313 * Return: 0, on successful allocation and registration of all interrupts. 314 * -1, on any error. 315 */ 316 static int octep_setup_irqs(struct octep_device *oct) 317 { 318 if (octep_alloc_ioq_vectors(oct)) 319 goto ioq_vector_err; 320 321 if (octep_enable_msix_range(oct)) 322 goto enable_msix_err; 323 324 if (octep_request_irqs(oct)) 325 goto request_irq_err; 326 327 return 0; 328 329 request_irq_err: 330 octep_disable_msix(oct); 331 enable_msix_err: 332 octep_free_ioq_vectors(oct); 333 ioq_vector_err: 334 return -1; 335 } 336 337 /** 338 * octep_clean_irqs() - free all interrupts and its resources. 339 * 340 * @oct: Octeon device private data structure. 341 */ 342 static void octep_clean_irqs(struct octep_device *oct) 343 { 344 octep_free_irqs(oct); 345 octep_disable_msix(oct); 346 octep_free_ioq_vectors(oct); 347 } 348 349 /** 350 * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue. 351 * 352 * @iq: Octeon Tx queue data structure. 353 * @oq: Octeon Rx queue data structure. 354 */ 355 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq) 356 { 357 u32 pkts_pend = oq->pkts_pending; 358 359 netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no); 360 if (iq->pkts_processed) { 361 writel(iq->pkts_processed, iq->inst_cnt_reg); 362 iq->pkt_in_done -= iq->pkts_processed; 363 iq->pkts_processed = 0; 364 } 365 if (oq->last_pkt_count - pkts_pend) { 366 writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg); 367 oq->last_pkt_count = pkts_pend; 368 } 369 370 /* Flush the previous wrties before writing to RESEND bit */ 371 wmb(); 372 writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg); 373 writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg); 374 } 375 376 /** 377 * octep_napi_poll() - NAPI poll function for Tx/Rx. 378 * 379 * @napi: pointer to napi context. 380 * @budget: max number of packets to be processed in single invocation. 381 */ 382 static int octep_napi_poll(struct napi_struct *napi, int budget) 383 { 384 struct octep_ioq_vector *ioq_vector = 385 container_of(napi, struct octep_ioq_vector, napi); 386 u32 tx_pending, rx_done; 387 388 tx_pending = octep_iq_process_completions(ioq_vector->iq, budget); 389 rx_done = octep_oq_process_rx(ioq_vector->oq, budget); 390 391 /* need more polling if tx completion processing is still pending or 392 * processed at least 'budget' number of rx packets. 393 */ 394 if (tx_pending || rx_done >= budget) 395 return budget; 396 397 napi_complete(napi); 398 octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq); 399 return rx_done; 400 } 401 402 /** 403 * octep_napi_add() - Add NAPI poll for all Tx/Rx queues. 404 * 405 * @oct: Octeon device private data structure. 406 */ 407 static void octep_napi_add(struct octep_device *oct) 408 { 409 int i; 410 411 for (i = 0; i < oct->num_oqs; i++) { 412 netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i); 413 netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi, 414 octep_napi_poll); 415 oct->oq[i]->napi = &oct->ioq_vector[i]->napi; 416 } 417 } 418 419 /** 420 * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues. 421 * 422 * @oct: Octeon device private data structure. 423 */ 424 static void octep_napi_delete(struct octep_device *oct) 425 { 426 int i; 427 428 for (i = 0; i < oct->num_oqs; i++) { 429 netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i); 430 netif_napi_del(&oct->ioq_vector[i]->napi); 431 oct->oq[i]->napi = NULL; 432 } 433 } 434 435 /** 436 * octep_napi_enable() - enable NAPI for all Tx/Rx queues. 437 * 438 * @oct: Octeon device private data structure. 439 */ 440 static void octep_napi_enable(struct octep_device *oct) 441 { 442 int i; 443 444 for (i = 0; i < oct->num_oqs; i++) { 445 netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i); 446 napi_enable(&oct->ioq_vector[i]->napi); 447 } 448 } 449 450 /** 451 * octep_napi_disable() - disable NAPI for all Tx/Rx queues. 452 * 453 * @oct: Octeon device private data structure. 454 */ 455 static void octep_napi_disable(struct octep_device *oct) 456 { 457 int i; 458 459 for (i = 0; i < oct->num_oqs; i++) { 460 netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i); 461 napi_disable(&oct->ioq_vector[i]->napi); 462 } 463 } 464 465 static void octep_link_up(struct net_device *netdev) 466 { 467 netif_carrier_on(netdev); 468 netif_tx_start_all_queues(netdev); 469 } 470 471 /** 472 * octep_open() - start the octeon network device. 473 * 474 * @netdev: pointer to kernel network device. 475 * 476 * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues 477 * and interrupts.. 478 * 479 * Return: 0, on successfully setting up device and bring it up. 480 * -1, on any error. 481 */ 482 static int octep_open(struct net_device *netdev) 483 { 484 struct octep_device *oct = netdev_priv(netdev); 485 int err, ret; 486 487 netdev_info(netdev, "Starting netdev ...\n"); 488 netif_carrier_off(netdev); 489 490 oct->hw_ops.reset_io_queues(oct); 491 492 if (octep_setup_iqs(oct)) 493 goto setup_iq_err; 494 if (octep_setup_oqs(oct)) 495 goto setup_oq_err; 496 if (octep_setup_irqs(oct)) 497 goto setup_irq_err; 498 499 err = netif_set_real_num_tx_queues(netdev, oct->num_oqs); 500 if (err) 501 goto set_queues_err; 502 err = netif_set_real_num_rx_queues(netdev, oct->num_iqs); 503 if (err) 504 goto set_queues_err; 505 506 octep_napi_add(oct); 507 octep_napi_enable(oct); 508 509 oct->link_info.admin_up = 1; 510 octep_set_rx_state(oct, true); 511 512 ret = octep_get_link_status(oct); 513 if (!ret) 514 octep_set_link_status(oct, true); 515 516 /* Enable the input and output queues for this Octeon device */ 517 oct->hw_ops.enable_io_queues(oct); 518 519 /* Enable Octeon device interrupts */ 520 oct->hw_ops.enable_interrupts(oct); 521 522 octep_oq_dbell_init(oct); 523 524 ret = octep_get_link_status(oct); 525 if (ret > 0) 526 octep_link_up(netdev); 527 528 return 0; 529 530 set_queues_err: 531 octep_clean_irqs(oct); 532 setup_irq_err: 533 octep_free_oqs(oct); 534 setup_oq_err: 535 octep_free_iqs(oct); 536 setup_iq_err: 537 return -1; 538 } 539 540 /** 541 * octep_stop() - stop the octeon network device. 542 * 543 * @netdev: pointer to kernel network device. 544 * 545 * stop the device Tx/Rx operations, bring down the link and 546 * free up all resources allocated for Tx/Rx queues and interrupts. 547 */ 548 static int octep_stop(struct net_device *netdev) 549 { 550 struct octep_device *oct = netdev_priv(netdev); 551 552 netdev_info(netdev, "Stopping the device ...\n"); 553 554 /* Stop Tx from stack */ 555 netif_tx_stop_all_queues(netdev); 556 netif_carrier_off(netdev); 557 netif_tx_disable(netdev); 558 559 octep_set_link_status(oct, false); 560 octep_set_rx_state(oct, false); 561 562 oct->link_info.admin_up = 0; 563 oct->link_info.oper_up = 0; 564 565 oct->hw_ops.disable_interrupts(oct); 566 octep_napi_disable(oct); 567 octep_napi_delete(oct); 568 569 octep_clean_irqs(oct); 570 octep_clean_iqs(oct); 571 572 oct->hw_ops.disable_io_queues(oct); 573 oct->hw_ops.reset_io_queues(oct); 574 octep_free_oqs(oct); 575 octep_free_iqs(oct); 576 netdev_info(netdev, "Device stopped !!\n"); 577 return 0; 578 } 579 580 /** 581 * octep_iq_full_check() - check if a Tx queue is full. 582 * 583 * @iq: Octeon Tx queue data structure. 584 * 585 * Return: 0, if the Tx queue is not full. 586 * 1, if the Tx queue is full. 587 */ 588 static inline int octep_iq_full_check(struct octep_iq *iq) 589 { 590 if (likely((iq->max_count - atomic_read(&iq->instr_pending)) >= 591 OCTEP_WAKE_QUEUE_THRESHOLD)) 592 return 0; 593 594 /* Stop the queue if unable to send */ 595 netif_stop_subqueue(iq->netdev, iq->q_no); 596 597 /* check again and restart the queue, in case NAPI has just freed 598 * enough Tx ring entries. 599 */ 600 if (unlikely((iq->max_count - atomic_read(&iq->instr_pending)) >= 601 OCTEP_WAKE_QUEUE_THRESHOLD)) { 602 netif_start_subqueue(iq->netdev, iq->q_no); 603 iq->stats.restart_cnt++; 604 return 0; 605 } 606 607 return 1; 608 } 609 610 /** 611 * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue. 612 * 613 * @skb: packet skbuff pointer. 614 * @netdev: kernel network device. 615 * 616 * Return: NETDEV_TX_BUSY, if Tx Queue is full. 617 * NETDEV_TX_OK, if successfully enqueued to hardware Tx queue. 618 */ 619 static netdev_tx_t octep_start_xmit(struct sk_buff *skb, 620 struct net_device *netdev) 621 { 622 struct octep_device *oct = netdev_priv(netdev); 623 struct octep_tx_sglist_desc *sglist; 624 struct octep_tx_buffer *tx_buffer; 625 struct octep_tx_desc_hw *hw_desc; 626 struct skb_shared_info *shinfo; 627 struct octep_instr_hdr *ih; 628 struct octep_iq *iq; 629 skb_frag_t *frag; 630 u16 nr_frags, si; 631 u16 q_no, wi; 632 633 q_no = skb_get_queue_mapping(skb); 634 if (q_no >= oct->num_iqs) { 635 netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no); 636 q_no = q_no % oct->num_iqs; 637 } 638 639 iq = oct->iq[q_no]; 640 if (octep_iq_full_check(iq)) { 641 iq->stats.tx_busy++; 642 return NETDEV_TX_BUSY; 643 } 644 645 shinfo = skb_shinfo(skb); 646 nr_frags = shinfo->nr_frags; 647 648 wi = iq->host_write_index; 649 hw_desc = &iq->desc_ring[wi]; 650 hw_desc->ih64 = 0; 651 652 tx_buffer = iq->buff_info + wi; 653 tx_buffer->skb = skb; 654 655 ih = &hw_desc->ih; 656 ih->tlen = skb->len; 657 ih->pkind = oct->pkind; 658 659 if (!nr_frags) { 660 tx_buffer->gather = 0; 661 tx_buffer->dma = dma_map_single(iq->dev, skb->data, 662 skb->len, DMA_TO_DEVICE); 663 if (dma_mapping_error(iq->dev, tx_buffer->dma)) 664 goto dma_map_err; 665 hw_desc->dptr = tx_buffer->dma; 666 } else { 667 /* Scatter/Gather */ 668 dma_addr_t dma; 669 u16 len; 670 671 sglist = tx_buffer->sglist; 672 673 ih->gsz = nr_frags + 1; 674 ih->gather = 1; 675 tx_buffer->gather = 1; 676 677 len = skb_headlen(skb); 678 dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE); 679 if (dma_mapping_error(iq->dev, dma)) 680 goto dma_map_err; 681 682 dma_sync_single_for_cpu(iq->dev, tx_buffer->sglist_dma, 683 OCTEP_SGLIST_SIZE_PER_PKT, 684 DMA_TO_DEVICE); 685 memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT); 686 sglist[0].len[3] = len; 687 sglist[0].dma_ptr[0] = dma; 688 689 si = 1; /* entry 0 is main skb, mapped above */ 690 frag = &shinfo->frags[0]; 691 while (nr_frags--) { 692 len = skb_frag_size(frag); 693 dma = skb_frag_dma_map(iq->dev, frag, 0, 694 len, DMA_TO_DEVICE); 695 if (dma_mapping_error(iq->dev, dma)) 696 goto dma_map_sg_err; 697 698 sglist[si >> 2].len[3 - (si & 3)] = len; 699 sglist[si >> 2].dma_ptr[si & 3] = dma; 700 701 frag++; 702 si++; 703 } 704 dma_sync_single_for_device(iq->dev, tx_buffer->sglist_dma, 705 OCTEP_SGLIST_SIZE_PER_PKT, 706 DMA_TO_DEVICE); 707 708 hw_desc->dptr = tx_buffer->sglist_dma; 709 } 710 711 /* Flush the hw descriptor before writing to doorbell */ 712 wmb(); 713 714 /* Ring Doorbell to notify the NIC there is a new packet */ 715 writel(1, iq->doorbell_reg); 716 atomic_inc(&iq->instr_pending); 717 wi++; 718 if (wi == iq->max_count) 719 wi = 0; 720 iq->host_write_index = wi; 721 722 netdev_tx_sent_queue(iq->netdev_q, skb->len); 723 iq->stats.instr_posted++; 724 skb_tx_timestamp(skb); 725 return NETDEV_TX_OK; 726 727 dma_map_sg_err: 728 if (si > 0) { 729 dma_unmap_single(iq->dev, sglist[0].dma_ptr[0], 730 sglist[0].len[0], DMA_TO_DEVICE); 731 sglist[0].len[0] = 0; 732 } 733 while (si > 1) { 734 dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3], 735 sglist[si >> 2].len[si & 3], DMA_TO_DEVICE); 736 sglist[si >> 2].len[si & 3] = 0; 737 si--; 738 } 739 tx_buffer->gather = 0; 740 dma_map_err: 741 dev_kfree_skb_any(skb); 742 return NETDEV_TX_OK; 743 } 744 745 /** 746 * octep_get_stats64() - Get Octeon network device statistics. 747 * 748 * @netdev: kernel network device. 749 * @stats: pointer to stats structure to be filled in. 750 */ 751 static void octep_get_stats64(struct net_device *netdev, 752 struct rtnl_link_stats64 *stats) 753 { 754 u64 tx_packets, tx_bytes, rx_packets, rx_bytes; 755 struct octep_device *oct = netdev_priv(netdev); 756 int q; 757 758 octep_get_if_stats(oct); 759 tx_packets = 0; 760 tx_bytes = 0; 761 rx_packets = 0; 762 rx_bytes = 0; 763 for (q = 0; q < oct->num_oqs; q++) { 764 struct octep_iq *iq = oct->iq[q]; 765 struct octep_oq *oq = oct->oq[q]; 766 767 tx_packets += iq->stats.instr_completed; 768 tx_bytes += iq->stats.bytes_sent; 769 rx_packets += oq->stats.packets; 770 rx_bytes += oq->stats.bytes; 771 } 772 stats->tx_packets = tx_packets; 773 stats->tx_bytes = tx_bytes; 774 stats->rx_packets = rx_packets; 775 stats->rx_bytes = rx_bytes; 776 stats->multicast = oct->iface_rx_stats.mcast_pkts; 777 stats->rx_errors = oct->iface_rx_stats.err_pkts; 778 stats->collisions = oct->iface_tx_stats.xscol; 779 stats->tx_fifo_errors = oct->iface_tx_stats.undflw; 780 } 781 782 /** 783 * octep_tx_timeout_task - work queue task to Handle Tx queue timeout. 784 * 785 * @work: pointer to Tx queue timeout work_struct 786 * 787 * Stop and start the device so that it frees up all queue resources 788 * and restarts the queues, that potentially clears a Tx queue timeout 789 * condition. 790 **/ 791 static void octep_tx_timeout_task(struct work_struct *work) 792 { 793 struct octep_device *oct = container_of(work, struct octep_device, 794 tx_timeout_task); 795 struct net_device *netdev = oct->netdev; 796 797 rtnl_lock(); 798 if (netif_running(netdev)) { 799 octep_stop(netdev); 800 octep_open(netdev); 801 } 802 rtnl_unlock(); 803 } 804 805 /** 806 * octep_tx_timeout() - Handle Tx Queue timeout. 807 * 808 * @netdev: pointer to kernel network device. 809 * @txqueue: Timed out Tx queue number. 810 * 811 * Schedule a work to handle Tx queue timeout. 812 */ 813 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue) 814 { 815 struct octep_device *oct = netdev_priv(netdev); 816 817 queue_work(octep_wq, &oct->tx_timeout_task); 818 } 819 820 static int octep_set_mac(struct net_device *netdev, void *p) 821 { 822 struct octep_device *oct = netdev_priv(netdev); 823 struct sockaddr *addr = (struct sockaddr *)p; 824 int err; 825 826 if (!is_valid_ether_addr(addr->sa_data)) 827 return -EADDRNOTAVAIL; 828 829 err = octep_set_mac_addr(oct, addr->sa_data); 830 if (err) 831 return err; 832 833 memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN); 834 eth_hw_addr_set(netdev, addr->sa_data); 835 836 return 0; 837 } 838 839 static int octep_change_mtu(struct net_device *netdev, int new_mtu) 840 { 841 struct octep_device *oct = netdev_priv(netdev); 842 struct octep_iface_link_info *link_info; 843 int err = 0; 844 845 link_info = &oct->link_info; 846 if (link_info->mtu == new_mtu) 847 return 0; 848 849 err = octep_set_mtu(oct, new_mtu); 850 if (!err) { 851 oct->link_info.mtu = new_mtu; 852 netdev->mtu = new_mtu; 853 } 854 855 return err; 856 } 857 858 static const struct net_device_ops octep_netdev_ops = { 859 .ndo_open = octep_open, 860 .ndo_stop = octep_stop, 861 .ndo_start_xmit = octep_start_xmit, 862 .ndo_get_stats64 = octep_get_stats64, 863 .ndo_tx_timeout = octep_tx_timeout, 864 .ndo_set_mac_address = octep_set_mac, 865 .ndo_change_mtu = octep_change_mtu, 866 }; 867 868 /** 869 * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages. 870 * 871 * @work: pointer to ctrl mbox work_struct 872 * 873 * Poll ctrl mbox message queue and handle control messages from firmware. 874 **/ 875 static void octep_ctrl_mbox_task(struct work_struct *work) 876 { 877 struct octep_device *oct = container_of(work, struct octep_device, 878 ctrl_mbox_task); 879 struct net_device *netdev = oct->netdev; 880 struct octep_ctrl_net_f2h_req req = {}; 881 struct octep_ctrl_mbox_msg msg; 882 int ret = 0; 883 884 msg.msg = &req; 885 while (true) { 886 ret = octep_ctrl_mbox_recv(&oct->ctrl_mbox, &msg); 887 if (ret) 888 break; 889 890 switch (req.hdr.cmd) { 891 case OCTEP_CTRL_NET_F2H_CMD_LINK_STATUS: 892 if (netif_running(netdev)) { 893 if (req.link.state) { 894 dev_info(&oct->pdev->dev, "netif_carrier_on\n"); 895 netif_carrier_on(netdev); 896 } else { 897 dev_info(&oct->pdev->dev, "netif_carrier_off\n"); 898 netif_carrier_off(netdev); 899 } 900 } 901 break; 902 default: 903 pr_info("Unknown mbox req : %u\n", req.hdr.cmd); 904 break; 905 } 906 } 907 } 908 909 static const char *octep_devid_to_str(struct octep_device *oct) 910 { 911 switch (oct->chip_id) { 912 case OCTEP_PCI_DEVICE_ID_CN93_PF: 913 return "CN93XX"; 914 case OCTEP_PCI_DEVICE_ID_CNF95N_PF: 915 return "CNF95N"; 916 default: 917 return "Unsupported"; 918 } 919 } 920 921 /** 922 * octep_device_setup() - Setup Octeon Device. 923 * 924 * @oct: Octeon device private data structure. 925 * 926 * Setup Octeon device hardware operations, configuration, etc ... 927 */ 928 int octep_device_setup(struct octep_device *oct) 929 { 930 struct octep_ctrl_mbox *ctrl_mbox; 931 struct pci_dev *pdev = oct->pdev; 932 int i, ret; 933 934 /* allocate memory for oct->conf */ 935 oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL); 936 if (!oct->conf) 937 return -ENOMEM; 938 939 /* Map BAR regions */ 940 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) { 941 oct->mmio[i].hw_addr = 942 ioremap(pci_resource_start(oct->pdev, i * 2), 943 pci_resource_len(oct->pdev, i * 2)); 944 oct->mmio[i].mapped = 1; 945 } 946 947 oct->chip_id = pdev->device; 948 oct->rev_id = pdev->revision; 949 dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device); 950 951 switch (oct->chip_id) { 952 case OCTEP_PCI_DEVICE_ID_CN93_PF: 953 case OCTEP_PCI_DEVICE_ID_CNF95N_PF: 954 dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n", 955 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct), 956 OCTEP_MINOR_REV(oct)); 957 octep_device_setup_cn93_pf(oct); 958 break; 959 default: 960 dev_err(&pdev->dev, 961 "%s: unsupported device\n", __func__); 962 goto unsupported_dev; 963 } 964 965 oct->pkind = CFG_GET_IQ_PKIND(oct->conf); 966 967 /* Initialize control mbox */ 968 ctrl_mbox = &oct->ctrl_mbox; 969 ctrl_mbox->barmem = CFG_GET_CTRL_MBOX_MEM_ADDR(oct->conf); 970 ret = octep_ctrl_mbox_init(ctrl_mbox); 971 if (ret) { 972 dev_err(&pdev->dev, "Failed to initialize control mbox\n"); 973 goto unsupported_dev; 974 } 975 oct->ctrl_mbox_ifstats_offset = OCTEP_CTRL_MBOX_SZ(ctrl_mbox->h2fq.elem_sz, 976 ctrl_mbox->h2fq.elem_cnt, 977 ctrl_mbox->f2hq.elem_sz, 978 ctrl_mbox->f2hq.elem_cnt); 979 980 return 0; 981 982 unsupported_dev: 983 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) 984 iounmap(oct->mmio[i].hw_addr); 985 986 kfree(oct->conf); 987 return -1; 988 } 989 990 /** 991 * octep_device_cleanup() - Cleanup Octeon Device. 992 * 993 * @oct: Octeon device private data structure. 994 * 995 * Cleanup Octeon device allocated resources. 996 */ 997 static void octep_device_cleanup(struct octep_device *oct) 998 { 999 int i; 1000 1001 dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n"); 1002 1003 for (i = 0; i < OCTEP_MAX_VF; i++) { 1004 vfree(oct->mbox[i]); 1005 oct->mbox[i] = NULL; 1006 } 1007 1008 octep_ctrl_mbox_uninit(&oct->ctrl_mbox); 1009 1010 oct->hw_ops.soft_reset(oct); 1011 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) { 1012 if (oct->mmio[i].mapped) 1013 iounmap(oct->mmio[i].hw_addr); 1014 } 1015 1016 kfree(oct->conf); 1017 oct->conf = NULL; 1018 } 1019 1020 /** 1021 * octep_probe() - Octeon PCI device probe handler. 1022 * 1023 * @pdev: PCI device structure. 1024 * @ent: entry in Octeon PCI device ID table. 1025 * 1026 * Initializes and enables the Octeon PCI device for network operations. 1027 * Initializes Octeon private data structure and registers a network device. 1028 */ 1029 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1030 { 1031 struct octep_device *octep_dev = NULL; 1032 struct net_device *netdev; 1033 int err; 1034 1035 err = pci_enable_device(pdev); 1036 if (err) { 1037 dev_err(&pdev->dev, "Failed to enable PCI device\n"); 1038 return err; 1039 } 1040 1041 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1042 if (err) { 1043 dev_err(&pdev->dev, "Failed to set DMA mask !!\n"); 1044 goto err_dma_mask; 1045 } 1046 1047 err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME); 1048 if (err) { 1049 dev_err(&pdev->dev, "Failed to map PCI memory regions\n"); 1050 goto err_pci_regions; 1051 } 1052 1053 pci_enable_pcie_error_reporting(pdev); 1054 pci_set_master(pdev); 1055 1056 netdev = alloc_etherdev_mq(sizeof(struct octep_device), 1057 OCTEP_MAX_QUEUES); 1058 if (!netdev) { 1059 dev_err(&pdev->dev, "Failed to allocate netdev\n"); 1060 err = -ENOMEM; 1061 goto err_alloc_netdev; 1062 } 1063 SET_NETDEV_DEV(netdev, &pdev->dev); 1064 1065 octep_dev = netdev_priv(netdev); 1066 octep_dev->netdev = netdev; 1067 octep_dev->pdev = pdev; 1068 octep_dev->dev = &pdev->dev; 1069 pci_set_drvdata(pdev, octep_dev); 1070 1071 err = octep_device_setup(octep_dev); 1072 if (err) { 1073 dev_err(&pdev->dev, "Device setup failed\n"); 1074 goto err_octep_config; 1075 } 1076 INIT_WORK(&octep_dev->tx_timeout_task, octep_tx_timeout_task); 1077 INIT_WORK(&octep_dev->ctrl_mbox_task, octep_ctrl_mbox_task); 1078 1079 netdev->netdev_ops = &octep_netdev_ops; 1080 octep_set_ethtool_ops(netdev); 1081 netif_carrier_off(netdev); 1082 1083 netdev->hw_features = NETIF_F_SG; 1084 netdev->features |= netdev->hw_features; 1085 netdev->min_mtu = OCTEP_MIN_MTU; 1086 netdev->max_mtu = OCTEP_MAX_MTU; 1087 netdev->mtu = OCTEP_DEFAULT_MTU; 1088 1089 err = octep_get_mac_addr(octep_dev, octep_dev->mac_addr); 1090 if (err) { 1091 dev_err(&pdev->dev, "Failed to get mac address\n"); 1092 goto register_dev_err; 1093 } 1094 eth_hw_addr_set(netdev, octep_dev->mac_addr); 1095 1096 err = register_netdev(netdev); 1097 if (err) { 1098 dev_err(&pdev->dev, "Failed to register netdev\n"); 1099 goto register_dev_err; 1100 } 1101 dev_info(&pdev->dev, "Device probe successful\n"); 1102 return 0; 1103 1104 register_dev_err: 1105 octep_device_cleanup(octep_dev); 1106 err_octep_config: 1107 free_netdev(netdev); 1108 err_alloc_netdev: 1109 pci_disable_pcie_error_reporting(pdev); 1110 pci_release_mem_regions(pdev); 1111 err_pci_regions: 1112 err_dma_mask: 1113 pci_disable_device(pdev); 1114 return err; 1115 } 1116 1117 /** 1118 * octep_remove() - Remove Octeon PCI device from driver control. 1119 * 1120 * @pdev: PCI device structure of the Octeon device. 1121 * 1122 * Cleanup all resources allocated for the Octeon device. 1123 * Unregister from network device and disable the PCI device. 1124 */ 1125 static void octep_remove(struct pci_dev *pdev) 1126 { 1127 struct octep_device *oct = pci_get_drvdata(pdev); 1128 struct net_device *netdev; 1129 1130 if (!oct) 1131 return; 1132 1133 cancel_work_sync(&oct->tx_timeout_task); 1134 cancel_work_sync(&oct->ctrl_mbox_task); 1135 netdev = oct->netdev; 1136 if (netdev->reg_state == NETREG_REGISTERED) 1137 unregister_netdev(netdev); 1138 1139 octep_device_cleanup(oct); 1140 pci_release_mem_regions(pdev); 1141 free_netdev(netdev); 1142 pci_disable_pcie_error_reporting(pdev); 1143 pci_disable_device(pdev); 1144 } 1145 1146 static struct pci_driver octep_driver = { 1147 .name = OCTEP_DRV_NAME, 1148 .id_table = octep_pci_id_tbl, 1149 .probe = octep_probe, 1150 .remove = octep_remove, 1151 }; 1152 1153 /** 1154 * octep_init_module() - Module initialiation. 1155 * 1156 * create common resource for the driver and register PCI driver. 1157 */ 1158 static int __init octep_init_module(void) 1159 { 1160 int ret; 1161 1162 pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING); 1163 1164 /* work queue for all deferred tasks */ 1165 octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME); 1166 if (!octep_wq) { 1167 pr_err("%s: Failed to create common workqueue\n", 1168 OCTEP_DRV_NAME); 1169 return -ENOMEM; 1170 } 1171 1172 ret = pci_register_driver(&octep_driver); 1173 if (ret < 0) { 1174 pr_err("%s: Failed to register PCI driver; err=%d\n", 1175 OCTEP_DRV_NAME, ret); 1176 destroy_workqueue(octep_wq); 1177 return ret; 1178 } 1179 1180 pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME); 1181 1182 return ret; 1183 } 1184 1185 /** 1186 * octep_exit_module() - Module exit routine. 1187 * 1188 * unregister the driver with PCI subsystem and cleanup common resources. 1189 */ 1190 static void __exit octep_exit_module(void) 1191 { 1192 pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME); 1193 1194 pci_unregister_driver(&octep_driver); 1195 destroy_workqueue(octep_wq); 1196 1197 pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME); 1198 } 1199 1200 module_init(octep_init_module); 1201 module_exit(octep_exit_module); 1202