xref: /openbmc/linux/drivers/net/ethernet/marvell/octeon_ep/octep_main.c (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/types.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/aer.h>
12 #include <linux/netdevice.h>
13 #include <linux/etherdevice.h>
14 #include <linux/rtnetlink.h>
15 #include <linux/vmalloc.h>
16 
17 #include "octep_config.h"
18 #include "octep_main.h"
19 #include "octep_ctrl_net.h"
20 
21 struct workqueue_struct *octep_wq;
22 
23 /* Supported Devices */
24 static const struct pci_device_id octep_pci_id_tbl[] = {
25 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
26 	{0, },
27 };
28 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
29 
30 MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>");
31 MODULE_DESCRIPTION(OCTEP_DRV_STRING);
32 MODULE_LICENSE("GPL");
33 
34 /**
35  * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
36  *
37  * @oct: Octeon device private data structure.
38  *
39  * Allocate resources to hold per Tx/Rx queue interrupt info.
40  * This is the information passed to interrupt handler, from which napi poll
41  * is scheduled and includes quick access to private data of Tx/Rx queue
42  * corresponding to the interrupt being handled.
43  *
44  * Return: 0, on successful allocation of resources for all queue interrupts.
45  *         -1, if failed to allocate any resource.
46  */
47 static int octep_alloc_ioq_vectors(struct octep_device *oct)
48 {
49 	int i;
50 	struct octep_ioq_vector *ioq_vector;
51 
52 	for (i = 0; i < oct->num_oqs; i++) {
53 		oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
54 		if (!oct->ioq_vector[i])
55 			goto free_ioq_vector;
56 
57 		ioq_vector = oct->ioq_vector[i];
58 		ioq_vector->iq = oct->iq[i];
59 		ioq_vector->oq = oct->oq[i];
60 		ioq_vector->octep_dev = oct;
61 	}
62 
63 	dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
64 	return 0;
65 
66 free_ioq_vector:
67 	while (i) {
68 		i--;
69 		vfree(oct->ioq_vector[i]);
70 		oct->ioq_vector[i] = NULL;
71 	}
72 	return -1;
73 }
74 
75 /**
76  * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
77  *
78  * @oct: Octeon device private data structure.
79  */
80 static void octep_free_ioq_vectors(struct octep_device *oct)
81 {
82 	int i;
83 
84 	for (i = 0; i < oct->num_oqs; i++) {
85 		if (oct->ioq_vector[i]) {
86 			vfree(oct->ioq_vector[i]);
87 			oct->ioq_vector[i] = NULL;
88 		}
89 	}
90 	netdev_info(oct->netdev, "Freed IOQ Vectors\n");
91 }
92 
93 /**
94  * octep_enable_msix_range() - enable MSI-x interrupts.
95  *
96  * @oct: Octeon device private data structure.
97  *
98  * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
99  * for the Octeon device.
100  *
101  * Return: 0, on successfully enabling all MSI-x interrupts.
102  *         -1, if failed to enable any MSI-x interrupt.
103  */
104 static int octep_enable_msix_range(struct octep_device *oct)
105 {
106 	int num_msix, msix_allocated;
107 	int i;
108 
109 	/* Generic interrupts apart from input/output queues */
110 	num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
111 	oct->msix_entries = kcalloc(num_msix,
112 				    sizeof(struct msix_entry), GFP_KERNEL);
113 	if (!oct->msix_entries)
114 		goto msix_alloc_err;
115 
116 	for (i = 0; i < num_msix; i++)
117 		oct->msix_entries[i].entry = i;
118 
119 	msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
120 					       num_msix, num_msix);
121 	if (msix_allocated != num_msix) {
122 		dev_err(&oct->pdev->dev,
123 			"Failed to enable %d msix irqs; got only %d\n",
124 			num_msix, msix_allocated);
125 		goto enable_msix_err;
126 	}
127 	oct->num_irqs = msix_allocated;
128 	dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
129 
130 	return 0;
131 
132 enable_msix_err:
133 	if (msix_allocated > 0)
134 		pci_disable_msix(oct->pdev);
135 	kfree(oct->msix_entries);
136 	oct->msix_entries = NULL;
137 msix_alloc_err:
138 	return -1;
139 }
140 
141 /**
142  * octep_disable_msix() - disable MSI-x interrupts.
143  *
144  * @oct: Octeon device private data structure.
145  *
146  * Disable MSI-x on the Octeon device.
147  */
148 static void octep_disable_msix(struct octep_device *oct)
149 {
150 	pci_disable_msix(oct->pdev);
151 	kfree(oct->msix_entries);
152 	oct->msix_entries = NULL;
153 	dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
154 }
155 
156 /**
157  * octep_non_ioq_intr_handler() - common handler for all generic interrupts.
158  *
159  * @irq: Interrupt number.
160  * @data: interrupt data.
161  *
162  * this is common handler for all non-queue (generic) interrupts.
163  */
164 static irqreturn_t octep_non_ioq_intr_handler(int irq, void *data)
165 {
166 	struct octep_device *oct = data;
167 
168 	return oct->hw_ops.non_ioq_intr_handler(oct);
169 }
170 
171 /**
172  * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
173  *
174  * @irq: Interrupt number.
175  * @data: interrupt data contains pointers to Tx/Rx queue private data
176  *         and correspong NAPI context.
177  *
178  * this is common handler for all non-queue (generic) interrupts.
179  */
180 static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
181 {
182 	struct octep_ioq_vector *ioq_vector = data;
183 	struct octep_device *oct = ioq_vector->octep_dev;
184 
185 	return oct->hw_ops.ioq_intr_handler(ioq_vector);
186 }
187 
188 /**
189  * octep_request_irqs() - Register interrupt handlers.
190  *
191  * @oct: Octeon device private data structure.
192  *
193  * Register handlers for all queue and non-queue interrupts.
194  *
195  * Return: 0, on successful registration of all interrupt handlers.
196  *         -1, on any error.
197  */
198 static int octep_request_irqs(struct octep_device *oct)
199 {
200 	struct net_device *netdev = oct->netdev;
201 	struct octep_ioq_vector *ioq_vector;
202 	struct msix_entry *msix_entry;
203 	char **non_ioq_msix_names;
204 	int num_non_ioq_msix;
205 	int ret, i;
206 
207 	num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
208 	non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
209 
210 	oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
211 					 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
212 	if (!oct->non_ioq_irq_names)
213 		goto alloc_err;
214 
215 	/* First few MSI-X interrupts are non-queue interrupts */
216 	for (i = 0; i < num_non_ioq_msix; i++) {
217 		char *irq_name;
218 
219 		irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
220 		msix_entry = &oct->msix_entries[i];
221 
222 		snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
223 			 "%s-%s", netdev->name, non_ioq_msix_names[i]);
224 		ret = request_irq(msix_entry->vector,
225 				  octep_non_ioq_intr_handler, 0,
226 				  irq_name, oct);
227 		if (ret) {
228 			netdev_err(netdev,
229 				   "request_irq failed for %s; err=%d",
230 				   irq_name, ret);
231 			goto non_ioq_irq_err;
232 		}
233 	}
234 
235 	/* Request IRQs for Tx/Rx queues */
236 	for (i = 0; i < oct->num_oqs; i++) {
237 		ioq_vector = oct->ioq_vector[i];
238 		msix_entry = &oct->msix_entries[i + num_non_ioq_msix];
239 
240 		snprintf(ioq_vector->name, sizeof(ioq_vector->name),
241 			 "%s-q%d", netdev->name, i);
242 		ret = request_irq(msix_entry->vector,
243 				  octep_ioq_intr_handler, 0,
244 				  ioq_vector->name, ioq_vector);
245 		if (ret) {
246 			netdev_err(netdev,
247 				   "request_irq failed for Q-%d; err=%d",
248 				   i, ret);
249 			goto ioq_irq_err;
250 		}
251 
252 		cpumask_set_cpu(i % num_online_cpus(),
253 				&ioq_vector->affinity_mask);
254 		irq_set_affinity_hint(msix_entry->vector,
255 				      &ioq_vector->affinity_mask);
256 	}
257 
258 	return 0;
259 ioq_irq_err:
260 	while (i > num_non_ioq_msix) {
261 		--i;
262 		irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
263 		free_irq(oct->msix_entries[i].vector, oct->ioq_vector[i]);
264 	}
265 non_ioq_irq_err:
266 	while (i) {
267 		--i;
268 		free_irq(oct->msix_entries[i].vector, oct);
269 	}
270 alloc_err:
271 	return -1;
272 }
273 
274 /**
275  * octep_free_irqs() - free all registered interrupts.
276  *
277  * @oct: Octeon device private data structure.
278  *
279  * Free all queue and non-queue interrupts of the Octeon device.
280  */
281 static void octep_free_irqs(struct octep_device *oct)
282 {
283 	int i;
284 
285 	/* First few MSI-X interrupts are non queue interrupts; free them */
286 	for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
287 		free_irq(oct->msix_entries[i].vector, oct);
288 	kfree(oct->non_ioq_irq_names);
289 
290 	/* Free IRQs for Input/Output (Tx/Rx) queues */
291 	for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
292 		irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
293 		free_irq(oct->msix_entries[i].vector,
294 			 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
295 	}
296 	netdev_info(oct->netdev, "IRQs freed\n");
297 }
298 
299 /**
300  * octep_setup_irqs() - setup interrupts for the Octeon device.
301  *
302  * @oct: Octeon device private data structure.
303  *
304  * Allocate data structures to hold per interrupt information, allocate/enable
305  * MSI-x interrupt and register interrupt handlers.
306  *
307  * Return: 0, on successful allocation and registration of all interrupts.
308  *         -1, on any error.
309  */
310 static int octep_setup_irqs(struct octep_device *oct)
311 {
312 	if (octep_alloc_ioq_vectors(oct))
313 		goto ioq_vector_err;
314 
315 	if (octep_enable_msix_range(oct))
316 		goto enable_msix_err;
317 
318 	if (octep_request_irqs(oct))
319 		goto request_irq_err;
320 
321 	return 0;
322 
323 request_irq_err:
324 	octep_disable_msix(oct);
325 enable_msix_err:
326 	octep_free_ioq_vectors(oct);
327 ioq_vector_err:
328 	return -1;
329 }
330 
331 /**
332  * octep_clean_irqs() - free all interrupts and its resources.
333  *
334  * @oct: Octeon device private data structure.
335  */
336 static void octep_clean_irqs(struct octep_device *oct)
337 {
338 	octep_free_irqs(oct);
339 	octep_disable_msix(oct);
340 	octep_free_ioq_vectors(oct);
341 }
342 
343 /**
344  * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
345  *
346  * @iq: Octeon Tx queue data structure.
347  * @oq: Octeon Rx queue data structure.
348  */
349 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
350 {
351 	u32 pkts_pend = oq->pkts_pending;
352 
353 	netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
354 	if (iq->pkts_processed) {
355 		writel(iq->pkts_processed, iq->inst_cnt_reg);
356 		iq->pkt_in_done -= iq->pkts_processed;
357 		iq->pkts_processed = 0;
358 	}
359 	if (oq->last_pkt_count - pkts_pend) {
360 		writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
361 		oq->last_pkt_count = pkts_pend;
362 	}
363 
364 	/* Flush the previous wrties before writing to RESEND bit */
365 	wmb();
366 	writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
367 	writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
368 }
369 
370 /**
371  * octep_napi_poll() - NAPI poll function for Tx/Rx.
372  *
373  * @napi: pointer to napi context.
374  * @budget: max number of packets to be processed in single invocation.
375  */
376 static int octep_napi_poll(struct napi_struct *napi, int budget)
377 {
378 	struct octep_ioq_vector *ioq_vector =
379 		container_of(napi, struct octep_ioq_vector, napi);
380 	u32 tx_pending, rx_done;
381 
382 	tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
383 	rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
384 
385 	/* need more polling if tx completion processing is still pending or
386 	 * processed at least 'budget' number of rx packets.
387 	 */
388 	if (tx_pending || rx_done >= budget)
389 		return budget;
390 
391 	napi_complete(napi);
392 	octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
393 	return rx_done;
394 }
395 
396 /**
397  * octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
398  *
399  * @oct: Octeon device private data structure.
400  */
401 static void octep_napi_add(struct octep_device *oct)
402 {
403 	int i;
404 
405 	for (i = 0; i < oct->num_oqs; i++) {
406 		netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
407 		netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
408 			       octep_napi_poll, 64);
409 		oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
410 	}
411 }
412 
413 /**
414  * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
415  *
416  * @oct: Octeon device private data structure.
417  */
418 static void octep_napi_delete(struct octep_device *oct)
419 {
420 	int i;
421 
422 	for (i = 0; i < oct->num_oqs; i++) {
423 		netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
424 		netif_napi_del(&oct->ioq_vector[i]->napi);
425 		oct->oq[i]->napi = NULL;
426 	}
427 }
428 
429 /**
430  * octep_napi_enable() - enable NAPI for all Tx/Rx queues.
431  *
432  * @oct: Octeon device private data structure.
433  */
434 static void octep_napi_enable(struct octep_device *oct)
435 {
436 	int i;
437 
438 	for (i = 0; i < oct->num_oqs; i++) {
439 		netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
440 		napi_enable(&oct->ioq_vector[i]->napi);
441 	}
442 }
443 
444 /**
445  * octep_napi_disable() - disable NAPI for all Tx/Rx queues.
446  *
447  * @oct: Octeon device private data structure.
448  */
449 static void octep_napi_disable(struct octep_device *oct)
450 {
451 	int i;
452 
453 	for (i = 0; i < oct->num_oqs; i++) {
454 		netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
455 		napi_disable(&oct->ioq_vector[i]->napi);
456 	}
457 }
458 
459 static void octep_link_up(struct net_device *netdev)
460 {
461 	netif_carrier_on(netdev);
462 	netif_tx_start_all_queues(netdev);
463 }
464 
465 /**
466  * octep_open() - start the octeon network device.
467  *
468  * @netdev: pointer to kernel network device.
469  *
470  * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
471  * and interrupts..
472  *
473  * Return: 0, on successfully setting up device and bring it up.
474  *         -1, on any error.
475  */
476 static int octep_open(struct net_device *netdev)
477 {
478 	struct octep_device *oct = netdev_priv(netdev);
479 	int err, ret;
480 
481 	netdev_info(netdev, "Starting netdev ...\n");
482 	netif_carrier_off(netdev);
483 
484 	oct->hw_ops.reset_io_queues(oct);
485 
486 	if (octep_setup_iqs(oct))
487 		goto setup_iq_err;
488 	if (octep_setup_oqs(oct))
489 		goto setup_oq_err;
490 	if (octep_setup_irqs(oct))
491 		goto setup_irq_err;
492 
493 	err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
494 	if (err)
495 		goto set_queues_err;
496 	err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
497 	if (err)
498 		goto set_queues_err;
499 
500 	octep_napi_add(oct);
501 	octep_napi_enable(oct);
502 
503 	oct->link_info.admin_up = 1;
504 	octep_set_rx_state(oct, true);
505 
506 	ret = octep_get_link_status(oct);
507 	if (!ret)
508 		octep_set_link_status(oct, true);
509 
510 	/* Enable the input and output queues for this Octeon device */
511 	oct->hw_ops.enable_io_queues(oct);
512 
513 	/* Enable Octeon device interrupts */
514 	oct->hw_ops.enable_interrupts(oct);
515 
516 	octep_oq_dbell_init(oct);
517 
518 	ret = octep_get_link_status(oct);
519 	if (ret)
520 		octep_link_up(netdev);
521 
522 	return 0;
523 
524 set_queues_err:
525 	octep_napi_disable(oct);
526 	octep_napi_delete(oct);
527 	octep_clean_irqs(oct);
528 setup_irq_err:
529 	octep_free_oqs(oct);
530 setup_oq_err:
531 	octep_free_iqs(oct);
532 setup_iq_err:
533 	return -1;
534 }
535 
536 /**
537  * octep_stop() - stop the octeon network device.
538  *
539  * @netdev: pointer to kernel network device.
540  *
541  * stop the device Tx/Rx operations, bring down the link and
542  * free up all resources allocated for Tx/Rx queues and interrupts.
543  */
544 static int octep_stop(struct net_device *netdev)
545 {
546 	struct octep_device *oct = netdev_priv(netdev);
547 
548 	netdev_info(netdev, "Stopping the device ...\n");
549 
550 	/* Stop Tx from stack */
551 	netif_tx_stop_all_queues(netdev);
552 	netif_carrier_off(netdev);
553 	netif_tx_disable(netdev);
554 
555 	octep_set_link_status(oct, false);
556 	octep_set_rx_state(oct, false);
557 
558 	oct->link_info.admin_up = 0;
559 	oct->link_info.oper_up = 0;
560 
561 	oct->hw_ops.disable_interrupts(oct);
562 	octep_napi_disable(oct);
563 	octep_napi_delete(oct);
564 
565 	octep_clean_irqs(oct);
566 	octep_clean_iqs(oct);
567 
568 	oct->hw_ops.disable_io_queues(oct);
569 	oct->hw_ops.reset_io_queues(oct);
570 	octep_free_oqs(oct);
571 	octep_free_iqs(oct);
572 	netdev_info(netdev, "Device stopped !!\n");
573 	return 0;
574 }
575 
576 /**
577  * octep_iq_full_check() - check if a Tx queue is full.
578  *
579  * @iq: Octeon Tx queue data structure.
580  *
581  * Return: 0, if the Tx queue is not full.
582  *         1, if the Tx queue is full.
583  */
584 static inline int octep_iq_full_check(struct octep_iq *iq)
585 {
586 	if (likely((iq->max_count - atomic_read(&iq->instr_pending)) >=
587 		   OCTEP_WAKE_QUEUE_THRESHOLD))
588 		return 0;
589 
590 	/* Stop the queue if unable to send */
591 	netif_stop_subqueue(iq->netdev, iq->q_no);
592 
593 	/* check again and restart the queue, in case NAPI has just freed
594 	 * enough Tx ring entries.
595 	 */
596 	if (unlikely((iq->max_count - atomic_read(&iq->instr_pending)) >=
597 		     OCTEP_WAKE_QUEUE_THRESHOLD)) {
598 		netif_start_subqueue(iq->netdev, iq->q_no);
599 		iq->stats.restart_cnt++;
600 		return 0;
601 	}
602 
603 	return 1;
604 }
605 
606 /**
607  * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
608  *
609  * @skb: packet skbuff pointer.
610  * @netdev: kernel network device.
611  *
612  * Return: NETDEV_TX_BUSY, if Tx Queue is full.
613  *         NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
614  */
615 static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
616 				    struct net_device *netdev)
617 {
618 	struct octep_device *oct = netdev_priv(netdev);
619 	struct octep_tx_sglist_desc *sglist;
620 	struct octep_tx_buffer *tx_buffer;
621 	struct octep_tx_desc_hw *hw_desc;
622 	struct skb_shared_info *shinfo;
623 	struct octep_instr_hdr *ih;
624 	struct octep_iq *iq;
625 	skb_frag_t *frag;
626 	u16 nr_frags, si;
627 	u16 q_no, wi;
628 
629 	q_no = skb_get_queue_mapping(skb);
630 	if (q_no >= oct->num_iqs) {
631 		netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
632 		q_no = q_no % oct->num_iqs;
633 	}
634 
635 	iq = oct->iq[q_no];
636 	if (octep_iq_full_check(iq)) {
637 		iq->stats.tx_busy++;
638 		return NETDEV_TX_BUSY;
639 	}
640 
641 	shinfo = skb_shinfo(skb);
642 	nr_frags = shinfo->nr_frags;
643 
644 	wi = iq->host_write_index;
645 	hw_desc = &iq->desc_ring[wi];
646 	hw_desc->ih64 = 0;
647 
648 	tx_buffer = iq->buff_info + wi;
649 	tx_buffer->skb = skb;
650 
651 	ih = &hw_desc->ih;
652 	ih->tlen = skb->len;
653 	ih->pkind = oct->pkind;
654 
655 	if (!nr_frags) {
656 		tx_buffer->gather = 0;
657 		tx_buffer->dma = dma_map_single(iq->dev, skb->data,
658 						skb->len, DMA_TO_DEVICE);
659 		if (dma_mapping_error(iq->dev, tx_buffer->dma))
660 			goto dma_map_err;
661 		hw_desc->dptr = tx_buffer->dma;
662 	} else {
663 		/* Scatter/Gather */
664 		dma_addr_t dma;
665 		u16 len;
666 
667 		sglist = tx_buffer->sglist;
668 
669 		ih->gsz = nr_frags + 1;
670 		ih->gather = 1;
671 		tx_buffer->gather = 1;
672 
673 		len = skb_headlen(skb);
674 		dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
675 		if (dma_mapping_error(iq->dev, dma))
676 			goto dma_map_err;
677 
678 		dma_sync_single_for_cpu(iq->dev, tx_buffer->sglist_dma,
679 					OCTEP_SGLIST_SIZE_PER_PKT,
680 					DMA_TO_DEVICE);
681 		memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
682 		sglist[0].len[3] = len;
683 		sglist[0].dma_ptr[0] = dma;
684 
685 		si = 1; /* entry 0 is main skb, mapped above */
686 		frag = &shinfo->frags[0];
687 		while (nr_frags--) {
688 			len = skb_frag_size(frag);
689 			dma = skb_frag_dma_map(iq->dev, frag, 0,
690 					       len, DMA_TO_DEVICE);
691 			if (dma_mapping_error(iq->dev, dma))
692 				goto dma_map_sg_err;
693 
694 			sglist[si >> 2].len[3 - (si & 3)] = len;
695 			sglist[si >> 2].dma_ptr[si & 3] = dma;
696 
697 			frag++;
698 			si++;
699 		}
700 		dma_sync_single_for_device(iq->dev, tx_buffer->sglist_dma,
701 					   OCTEP_SGLIST_SIZE_PER_PKT,
702 					   DMA_TO_DEVICE);
703 
704 		hw_desc->dptr = tx_buffer->sglist_dma;
705 	}
706 
707 	/* Flush the hw descriptor before writing to doorbell */
708 	wmb();
709 
710 	/* Ring Doorbell to notify the NIC there is a new packet */
711 	writel(1, iq->doorbell_reg);
712 	atomic_inc(&iq->instr_pending);
713 	wi++;
714 	if (wi == iq->max_count)
715 		wi = 0;
716 	iq->host_write_index = wi;
717 
718 	netdev_tx_sent_queue(iq->netdev_q, skb->len);
719 	iq->stats.instr_posted++;
720 	skb_tx_timestamp(skb);
721 	return NETDEV_TX_OK;
722 
723 dma_map_sg_err:
724 	if (si > 0) {
725 		dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
726 				 sglist[0].len[0], DMA_TO_DEVICE);
727 		sglist[0].len[0] = 0;
728 	}
729 	while (si > 1) {
730 		dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
731 			       sglist[si >> 2].len[si & 3], DMA_TO_DEVICE);
732 		sglist[si >> 2].len[si & 3] = 0;
733 		si--;
734 	}
735 	tx_buffer->gather = 0;
736 dma_map_err:
737 	dev_kfree_skb_any(skb);
738 	return NETDEV_TX_OK;
739 }
740 
741 /**
742  * octep_get_stats64() - Get Octeon network device statistics.
743  *
744  * @netdev: kernel network device.
745  * @stats: pointer to stats structure to be filled in.
746  */
747 static void octep_get_stats64(struct net_device *netdev,
748 			      struct rtnl_link_stats64 *stats)
749 {
750 	u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
751 	struct octep_device *oct = netdev_priv(netdev);
752 	int q;
753 
754 	octep_get_if_stats(oct);
755 	tx_packets = 0;
756 	tx_bytes = 0;
757 	rx_packets = 0;
758 	rx_bytes = 0;
759 	for (q = 0; q < oct->num_oqs; q++) {
760 		struct octep_iq *iq = oct->iq[q];
761 		struct octep_oq *oq = oct->oq[q];
762 
763 		tx_packets += iq->stats.instr_completed;
764 		tx_bytes += iq->stats.bytes_sent;
765 		rx_packets += oq->stats.packets;
766 		rx_bytes += oq->stats.bytes;
767 	}
768 	stats->tx_packets = tx_packets;
769 	stats->tx_bytes = tx_bytes;
770 	stats->rx_packets = rx_packets;
771 	stats->rx_bytes = rx_bytes;
772 	stats->multicast = oct->iface_rx_stats.mcast_pkts;
773 	stats->rx_errors = oct->iface_rx_stats.err_pkts;
774 	stats->collisions = oct->iface_tx_stats.xscol;
775 	stats->tx_fifo_errors = oct->iface_tx_stats.undflw;
776 }
777 
778 /**
779  * octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
780  *
781  * @work: pointer to Tx queue timeout work_struct
782  *
783  * Stop and start the device so that it frees up all queue resources
784  * and restarts the queues, that potentially clears a Tx queue timeout
785  * condition.
786  **/
787 static void octep_tx_timeout_task(struct work_struct *work)
788 {
789 	struct octep_device *oct = container_of(work, struct octep_device,
790 						tx_timeout_task);
791 	struct net_device *netdev = oct->netdev;
792 
793 	rtnl_lock();
794 	if (netif_running(netdev)) {
795 		octep_stop(netdev);
796 		octep_open(netdev);
797 	}
798 	rtnl_unlock();
799 }
800 
801 /**
802  * octep_tx_timeout() - Handle Tx Queue timeout.
803  *
804  * @netdev: pointer to kernel network device.
805  * @txqueue: Timed out Tx queue number.
806  *
807  * Schedule a work to handle Tx queue timeout.
808  */
809 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
810 {
811 	struct octep_device *oct = netdev_priv(netdev);
812 
813 	queue_work(octep_wq, &oct->tx_timeout_task);
814 }
815 
816 static int octep_set_mac(struct net_device *netdev, void *p)
817 {
818 	struct octep_device *oct = netdev_priv(netdev);
819 	struct sockaddr *addr = (struct sockaddr *)p;
820 	int err;
821 
822 	if (!is_valid_ether_addr(addr->sa_data))
823 		return -EADDRNOTAVAIL;
824 
825 	err = octep_set_mac_addr(oct, addr->sa_data);
826 	if (err)
827 		return err;
828 
829 	memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
830 	eth_hw_addr_set(netdev, addr->sa_data);
831 
832 	return 0;
833 }
834 
835 static int octep_change_mtu(struct net_device *netdev, int new_mtu)
836 {
837 	struct octep_device *oct = netdev_priv(netdev);
838 	struct octep_iface_link_info *link_info;
839 	int err = 0;
840 
841 	link_info = &oct->link_info;
842 	if (link_info->mtu == new_mtu)
843 		return 0;
844 
845 	err = octep_set_mtu(oct, new_mtu);
846 	if (!err) {
847 		oct->link_info.mtu = new_mtu;
848 		netdev->mtu = new_mtu;
849 	}
850 
851 	return err;
852 }
853 
854 static const struct net_device_ops octep_netdev_ops = {
855 	.ndo_open                = octep_open,
856 	.ndo_stop                = octep_stop,
857 	.ndo_start_xmit          = octep_start_xmit,
858 	.ndo_get_stats64         = octep_get_stats64,
859 	.ndo_tx_timeout          = octep_tx_timeout,
860 	.ndo_set_mac_address     = octep_set_mac,
861 	.ndo_change_mtu          = octep_change_mtu,
862 };
863 
864 /**
865  * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
866  *
867  * @work: pointer to ctrl mbox work_struct
868  *
869  * Poll ctrl mbox message queue and handle control messages from firmware.
870  **/
871 static void octep_ctrl_mbox_task(struct work_struct *work)
872 {
873 	struct octep_device *oct = container_of(work, struct octep_device,
874 						ctrl_mbox_task);
875 	struct net_device *netdev = oct->netdev;
876 	struct octep_ctrl_net_f2h_req req = {};
877 	struct octep_ctrl_mbox_msg msg;
878 	int ret = 0;
879 
880 	msg.msg = &req;
881 	while (true) {
882 		ret = octep_ctrl_mbox_recv(&oct->ctrl_mbox, &msg);
883 		if (ret)
884 			break;
885 
886 		switch (req.hdr.cmd) {
887 		case OCTEP_CTRL_NET_F2H_CMD_LINK_STATUS:
888 			if (netif_running(netdev)) {
889 				if (req.link.state) {
890 					dev_info(&oct->pdev->dev, "netif_carrier_on\n");
891 					netif_carrier_on(netdev);
892 				} else {
893 					dev_info(&oct->pdev->dev, "netif_carrier_off\n");
894 					netif_carrier_off(netdev);
895 				}
896 			}
897 			break;
898 		default:
899 			pr_info("Unknown mbox req : %u\n", req.hdr.cmd);
900 			break;
901 		}
902 	}
903 }
904 
905 /**
906  * octep_device_setup() - Setup Octeon Device.
907  *
908  * @oct: Octeon device private data structure.
909  *
910  * Setup Octeon device hardware operations, configuration, etc ...
911  */
912 int octep_device_setup(struct octep_device *oct)
913 {
914 	struct octep_ctrl_mbox *ctrl_mbox;
915 	struct pci_dev *pdev = oct->pdev;
916 	int i, ret;
917 
918 	/* allocate memory for oct->conf */
919 	oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
920 	if (!oct->conf)
921 		return -ENOMEM;
922 
923 	/* Map BAR regions */
924 	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
925 		oct->mmio[i].hw_addr =
926 			ioremap(pci_resource_start(oct->pdev, i * 2),
927 				pci_resource_len(oct->pdev, i * 2));
928 		oct->mmio[i].mapped = 1;
929 	}
930 
931 	oct->chip_id = pdev->device;
932 	oct->rev_id = pdev->revision;
933 	dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
934 
935 	switch (oct->chip_id) {
936 	case OCTEP_PCI_DEVICE_ID_CN93_PF:
937 		dev_info(&pdev->dev,
938 			 "Setting up OCTEON CN93XX PF PASS%d.%d\n",
939 			 OCTEP_MAJOR_REV(oct), OCTEP_MINOR_REV(oct));
940 		octep_device_setup_cn93_pf(oct);
941 		break;
942 	default:
943 		dev_err(&pdev->dev,
944 			"%s: unsupported device\n", __func__);
945 		goto unsupported_dev;
946 	}
947 
948 	oct->pkind = CFG_GET_IQ_PKIND(oct->conf);
949 
950 	/* Initialize control mbox */
951 	ctrl_mbox = &oct->ctrl_mbox;
952 	ctrl_mbox->barmem = CFG_GET_CTRL_MBOX_MEM_ADDR(oct->conf);
953 	ret = octep_ctrl_mbox_init(ctrl_mbox);
954 	if (ret) {
955 		dev_err(&pdev->dev, "Failed to initialize control mbox\n");
956 		return -1;
957 	}
958 	oct->ctrl_mbox_ifstats_offset = OCTEP_CTRL_MBOX_SZ(ctrl_mbox->h2fq.elem_sz,
959 							   ctrl_mbox->h2fq.elem_cnt,
960 							   ctrl_mbox->f2hq.elem_sz,
961 							   ctrl_mbox->f2hq.elem_cnt);
962 
963 	return 0;
964 
965 unsupported_dev:
966 	return -1;
967 }
968 
969 /**
970  * octep_device_cleanup() - Cleanup Octeon Device.
971  *
972  * @oct: Octeon device private data structure.
973  *
974  * Cleanup Octeon device allocated resources.
975  */
976 static void octep_device_cleanup(struct octep_device *oct)
977 {
978 	int i;
979 
980 	dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
981 
982 	for (i = 0; i < OCTEP_MAX_VF; i++) {
983 		if (oct->mbox[i])
984 			vfree(oct->mbox[i]);
985 		oct->mbox[i] = NULL;
986 	}
987 
988 	octep_ctrl_mbox_uninit(&oct->ctrl_mbox);
989 
990 	oct->hw_ops.soft_reset(oct);
991 	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
992 		if (oct->mmio[i].mapped)
993 			iounmap(oct->mmio[i].hw_addr);
994 	}
995 
996 	kfree(oct->conf);
997 	oct->conf = NULL;
998 }
999 
1000 /**
1001  * octep_probe() - Octeon PCI device probe handler.
1002  *
1003  * @pdev: PCI device structure.
1004  * @ent: entry in Octeon PCI device ID table.
1005  *
1006  * Initializes and enables the Octeon PCI device for network operations.
1007  * Initializes Octeon private data structure and registers a network device.
1008  */
1009 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1010 {
1011 	struct octep_device *octep_dev = NULL;
1012 	struct net_device *netdev;
1013 	int err;
1014 
1015 	err = pci_enable_device(pdev);
1016 	if (err) {
1017 		dev_err(&pdev->dev, "Failed to enable PCI device\n");
1018 		return  err;
1019 	}
1020 
1021 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1022 	if (err) {
1023 		dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1024 		goto err_dma_mask;
1025 	}
1026 
1027 	err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
1028 	if (err) {
1029 		dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1030 		goto err_pci_regions;
1031 	}
1032 
1033 	pci_enable_pcie_error_reporting(pdev);
1034 	pci_set_master(pdev);
1035 
1036 	netdev = alloc_etherdev_mq(sizeof(struct octep_device),
1037 				   OCTEP_MAX_QUEUES);
1038 	if (!netdev) {
1039 		dev_err(&pdev->dev, "Failed to allocate netdev\n");
1040 		err = -ENOMEM;
1041 		goto err_alloc_netdev;
1042 	}
1043 	SET_NETDEV_DEV(netdev, &pdev->dev);
1044 
1045 	octep_dev = netdev_priv(netdev);
1046 	octep_dev->netdev = netdev;
1047 	octep_dev->pdev = pdev;
1048 	octep_dev->dev = &pdev->dev;
1049 	pci_set_drvdata(pdev, octep_dev);
1050 
1051 	err = octep_device_setup(octep_dev);
1052 	if (err) {
1053 		dev_err(&pdev->dev, "Device setup failed\n");
1054 		goto err_octep_config;
1055 	}
1056 	INIT_WORK(&octep_dev->tx_timeout_task, octep_tx_timeout_task);
1057 	INIT_WORK(&octep_dev->ctrl_mbox_task, octep_ctrl_mbox_task);
1058 
1059 	netdev->netdev_ops = &octep_netdev_ops;
1060 	octep_set_ethtool_ops(netdev);
1061 	netif_carrier_off(netdev);
1062 
1063 	netdev->hw_features = NETIF_F_SG;
1064 	netdev->features |= netdev->hw_features;
1065 	netdev->min_mtu = OCTEP_MIN_MTU;
1066 	netdev->max_mtu = OCTEP_MAX_MTU;
1067 	netdev->mtu = OCTEP_DEFAULT_MTU;
1068 
1069 	octep_get_mac_addr(octep_dev, octep_dev->mac_addr);
1070 	eth_hw_addr_set(netdev, octep_dev->mac_addr);
1071 
1072 	err = register_netdev(netdev);
1073 	if (err) {
1074 		dev_err(&pdev->dev, "Failed to register netdev\n");
1075 		goto register_dev_err;
1076 	}
1077 	dev_info(&pdev->dev, "Device probe successful\n");
1078 	return 0;
1079 
1080 register_dev_err:
1081 	octep_device_cleanup(octep_dev);
1082 err_octep_config:
1083 	free_netdev(netdev);
1084 err_alloc_netdev:
1085 	pci_disable_pcie_error_reporting(pdev);
1086 	pci_release_mem_regions(pdev);
1087 err_pci_regions:
1088 err_dma_mask:
1089 	pci_disable_device(pdev);
1090 	return err;
1091 }
1092 
1093 /**
1094  * octep_remove() - Remove Octeon PCI device from driver control.
1095  *
1096  * @pdev: PCI device structure of the Octeon device.
1097  *
1098  * Cleanup all resources allocated for the Octeon device.
1099  * Unregister from network device and disable the PCI device.
1100  */
1101 static void octep_remove(struct pci_dev *pdev)
1102 {
1103 	struct octep_device *oct = pci_get_drvdata(pdev);
1104 	struct net_device *netdev;
1105 
1106 	if (!oct)
1107 		return;
1108 
1109 	cancel_work_sync(&oct->tx_timeout_task);
1110 	cancel_work_sync(&oct->ctrl_mbox_task);
1111 	netdev = oct->netdev;
1112 	if (netdev->reg_state == NETREG_REGISTERED)
1113 		unregister_netdev(netdev);
1114 
1115 	octep_device_cleanup(oct);
1116 	pci_release_mem_regions(pdev);
1117 	free_netdev(netdev);
1118 	pci_disable_pcie_error_reporting(pdev);
1119 	pci_disable_device(pdev);
1120 }
1121 
1122 static struct pci_driver octep_driver = {
1123 	.name = OCTEP_DRV_NAME,
1124 	.id_table = octep_pci_id_tbl,
1125 	.probe = octep_probe,
1126 	.remove = octep_remove,
1127 };
1128 
1129 /**
1130  * octep_init_module() - Module initialiation.
1131  *
1132  * create common resource for the driver and register PCI driver.
1133  */
1134 static int __init octep_init_module(void)
1135 {
1136 	int ret;
1137 
1138 	pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
1139 
1140 	/* work queue for all deferred tasks */
1141 	octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
1142 	if (!octep_wq) {
1143 		pr_err("%s: Failed to create common workqueue\n",
1144 		       OCTEP_DRV_NAME);
1145 		return -ENOMEM;
1146 	}
1147 
1148 	ret = pci_register_driver(&octep_driver);
1149 	if (ret < 0) {
1150 		pr_err("%s: Failed to register PCI driver; err=%d\n",
1151 		       OCTEP_DRV_NAME, ret);
1152 		return ret;
1153 	}
1154 
1155 	pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
1156 
1157 	return ret;
1158 }
1159 
1160 /**
1161  * octep_exit_module() - Module exit routine.
1162  *
1163  * unregister the driver with PCI subsystem and cleanup common resources.
1164  */
1165 static void __exit octep_exit_module(void)
1166 {
1167 	pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
1168 
1169 	pci_unregister_driver(&octep_driver);
1170 	destroy_workqueue(octep_wq);
1171 
1172 	pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
1173 }
1174 
1175 module_init(octep_init_module);
1176 module_exit(octep_exit_module);
1177