1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RSS and Classifier helpers for Marvell PPv2 Network Controller
4  *
5  * Copyright (C) 2014 Marvell
6  *
7  * Marcin Wojtas <mw@semihalf.com>
8  */
9 
10 #include "mvpp2.h"
11 #include "mvpp2_cls.h"
12 #include "mvpp2_prs.h"
13 
14 #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
15 {								\
16 	.flow_type = _type,					\
17 	.flow_id = _id,						\
18 	.supported_hash_opts = _opts,				\
19 	.prs_ri = {						\
20 		.ri = _ri,					\
21 		.ri_mask = _ri_mask				\
22 	}							\
23 }
24 
25 static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26 	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28 		       MVPP22_CLS_HEK_IP4_5T,
29 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30 		       MVPP2_PRS_RI_L4_TCP,
31 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32 
33 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34 		       MVPP22_CLS_HEK_IP4_5T,
35 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36 		       MVPP2_PRS_RI_L4_TCP,
37 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38 
39 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40 		       MVPP22_CLS_HEK_IP4_5T,
41 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42 		       MVPP2_PRS_RI_L4_TCP,
43 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44 
45 	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49 		       MVPP2_PRS_IP_MASK),
50 
51 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54 		       MVPP2_PRS_IP_MASK),
55 
56 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59 		       MVPP2_PRS_IP_MASK),
60 
61 	/* TCP over IPv4 flows, fragmented, no vlan tag */
62 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63 		       MVPP22_CLS_HEK_IP4_2T,
64 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65 		       MVPP2_PRS_RI_L4_TCP,
66 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67 
68 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69 		       MVPP22_CLS_HEK_IP4_2T,
70 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71 		       MVPP2_PRS_RI_L4_TCP,
72 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73 
74 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75 		       MVPP22_CLS_HEK_IP4_2T,
76 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77 		       MVPP2_PRS_RI_L4_TCP,
78 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79 
80 	/* TCP over IPv4 flows, fragmented, with vlan tag */
81 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
84 		       MVPP2_PRS_IP_MASK),
85 
86 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
87 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
88 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
89 		       MVPP2_PRS_IP_MASK),
90 
91 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
92 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
93 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
94 		       MVPP2_PRS_IP_MASK),
95 
96 	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
97 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
98 		       MVPP22_CLS_HEK_IP4_5T,
99 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
100 		       MVPP2_PRS_RI_L4_UDP,
101 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
102 
103 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
104 		       MVPP22_CLS_HEK_IP4_5T,
105 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
106 		       MVPP2_PRS_RI_L4_UDP,
107 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
108 
109 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
110 		       MVPP22_CLS_HEK_IP4_5T,
111 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
112 		       MVPP2_PRS_RI_L4_UDP,
113 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
114 
115 	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
116 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
117 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
118 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
119 		       MVPP2_PRS_IP_MASK),
120 
121 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
122 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
123 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
124 		       MVPP2_PRS_IP_MASK),
125 
126 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
127 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
128 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
129 		       MVPP2_PRS_IP_MASK),
130 
131 	/* UDP over IPv4 flows, fragmented, no vlan tag */
132 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
133 		       MVPP22_CLS_HEK_IP4_2T,
134 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
135 		       MVPP2_PRS_RI_L4_UDP,
136 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
137 
138 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
139 		       MVPP22_CLS_HEK_IP4_2T,
140 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
141 		       MVPP2_PRS_RI_L4_UDP,
142 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
143 
144 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
145 		       MVPP22_CLS_HEK_IP4_2T,
146 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
147 		       MVPP2_PRS_RI_L4_UDP,
148 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
149 
150 	/* UDP over IPv4 flows, fragmented, with vlan tag */
151 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
152 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
153 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
154 		       MVPP2_PRS_IP_MASK),
155 
156 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
157 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
158 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
159 		       MVPP2_PRS_IP_MASK),
160 
161 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
162 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
163 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
164 		       MVPP2_PRS_IP_MASK),
165 
166 	/* TCP over IPv6 flows, not fragmented, no vlan tag */
167 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
168 		       MVPP22_CLS_HEK_IP6_5T,
169 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
170 		       MVPP2_PRS_RI_L4_TCP,
171 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
172 
173 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174 		       MVPP22_CLS_HEK_IP6_5T,
175 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
176 		       MVPP2_PRS_RI_L4_TCP,
177 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178 
179 	/* TCP over IPv6 flows, not fragmented, with vlan tag */
180 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
181 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
182 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
183 		       MVPP2_PRS_IP_MASK),
184 
185 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
186 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
187 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
188 		       MVPP2_PRS_IP_MASK),
189 
190 	/* TCP over IPv6 flows, fragmented, no vlan tag */
191 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
192 		       MVPP22_CLS_HEK_IP6_2T,
193 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
194 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
195 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
196 
197 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198 		       MVPP22_CLS_HEK_IP6_2T,
199 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
200 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202 
203 	/* TCP over IPv6 flows, fragmented, with vlan tag */
204 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
205 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
206 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
207 		       MVPP2_PRS_RI_L4_TCP,
208 		       MVPP2_PRS_IP_MASK),
209 
210 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
213 		       MVPP2_PRS_RI_L4_TCP,
214 		       MVPP2_PRS_IP_MASK),
215 
216 	/* UDP over IPv6 flows, not fragmented, no vlan tag */
217 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
218 		       MVPP22_CLS_HEK_IP6_5T,
219 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
220 		       MVPP2_PRS_RI_L4_UDP,
221 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
222 
223 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224 		       MVPP22_CLS_HEK_IP6_5T,
225 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
226 		       MVPP2_PRS_RI_L4_UDP,
227 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228 
229 	/* UDP over IPv6 flows, not fragmented, with vlan tag */
230 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
231 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
232 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
233 		       MVPP2_PRS_IP_MASK),
234 
235 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
236 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
237 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
238 		       MVPP2_PRS_IP_MASK),
239 
240 	/* UDP over IPv6 flows, fragmented, no vlan tag */
241 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
242 		       MVPP22_CLS_HEK_IP6_2T,
243 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
244 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
245 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
246 
247 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248 		       MVPP22_CLS_HEK_IP6_2T,
249 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
250 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252 
253 	/* UDP over IPv6 flows, fragmented, with vlan tag */
254 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
255 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
256 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
257 		       MVPP2_PRS_RI_L4_UDP,
258 		       MVPP2_PRS_IP_MASK),
259 
260 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
263 		       MVPP2_PRS_RI_L4_UDP,
264 		       MVPP2_PRS_IP_MASK),
265 
266 	/* IPv4 flows, no vlan tag */
267 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
268 		       MVPP22_CLS_HEK_IP4_2T,
269 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
270 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
271 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
272 		       MVPP22_CLS_HEK_IP4_2T,
273 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
274 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
275 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
276 		       MVPP22_CLS_HEK_IP4_2T,
277 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
278 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
279 
280 	/* IPv4 flows, with vlan tag */
281 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
282 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
283 		       MVPP2_PRS_RI_L3_IP4,
284 		       MVPP2_PRS_RI_L3_PROTO_MASK),
285 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
286 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
287 		       MVPP2_PRS_RI_L3_IP4_OPT,
288 		       MVPP2_PRS_RI_L3_PROTO_MASK),
289 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
290 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
291 		       MVPP2_PRS_RI_L3_IP4_OTHER,
292 		       MVPP2_PRS_RI_L3_PROTO_MASK),
293 
294 	/* IPv6 flows, no vlan tag */
295 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
296 		       MVPP22_CLS_HEK_IP6_2T,
297 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
298 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
299 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
300 		       MVPP22_CLS_HEK_IP6_2T,
301 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
302 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
303 
304 	/* IPv6 flows, with vlan tag */
305 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
306 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
307 		       MVPP2_PRS_RI_L3_IP6,
308 		       MVPP2_PRS_RI_L3_PROTO_MASK),
309 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
310 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
311 		       MVPP2_PRS_RI_L3_IP6,
312 		       MVPP2_PRS_RI_L3_PROTO_MASK),
313 
314 	/* Non IP flow, no vlan tag */
315 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
316 		       0,
317 		       MVPP2_PRS_RI_VLAN_NONE,
318 		       MVPP2_PRS_RI_VLAN_MASK),
319 	/* Non IP flow, with vlan tag */
320 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
321 		       MVPP22_CLS_HEK_OPT_VLAN,
322 		       0, 0),
323 };
324 
325 u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
326 {
327 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
328 
329 	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
330 }
331 
332 void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
333 			 struct mvpp2_cls_flow_entry *fe)
334 {
335 	fe->index = index;
336 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
337 	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
338 	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
339 	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
340 }
341 
342 /* Update classification flow table registers */
343 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
344 				 struct mvpp2_cls_flow_entry *fe)
345 {
346 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
347 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
348 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
349 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
350 }
351 
352 u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
353 {
354 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
355 
356 	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
357 }
358 
359 void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
360 			   struct mvpp2_cls_lookup_entry *le)
361 {
362 	u32 val;
363 
364 	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
365 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
366 	le->way = way;
367 	le->lkpid = lkpid;
368 	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
369 }
370 
371 /* Update classification lookup table register */
372 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
373 				   struct mvpp2_cls_lookup_entry *le)
374 {
375 	u32 val;
376 
377 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
378 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
379 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
380 }
381 
382 /* Operations on flow entry */
383 static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
384 {
385 	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
386 }
387 
388 static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
389 				       int num_of_fields)
390 {
391 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
393 }
394 
395 static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
396 				  int field_index)
397 {
398 	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
399 		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
400 }
401 
402 static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
403 				   int field_index, int field_id)
404 {
405 	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
406 						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
407 	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
408 }
409 
410 static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
411 				   int engine)
412 {
413 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
414 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
415 }
416 
417 int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
418 {
419 	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
420 		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
421 }
422 
423 static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
424 				       bool from_packet)
425 {
426 	if (from_packet)
427 		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
428 	else
429 		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
430 }
431 
432 static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
433 				    bool is_last)
434 {
435 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
436 	fe->data[0] |= !!is_last;
437 }
438 
439 static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
440 {
441 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
442 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
443 }
444 
445 static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
446 				    u32 port)
447 {
448 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
449 }
450 
451 static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
452 				       u32 port)
453 {
454 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455 }
456 
457 static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
458 				       u8 lu_type)
459 {
460 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
461 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
462 }
463 
464 /* Initialize the parser entry for the given flow */
465 static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
466 				    const struct mvpp2_cls_flow *flow)
467 {
468 	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
469 			   flow->prs_ri.ri_mask);
470 }
471 
472 /* Initialize the Lookup Id table entry for the given flow */
473 static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
474 				    const struct mvpp2_cls_flow *flow)
475 {
476 	struct mvpp2_cls_lookup_entry le;
477 
478 	le.way = 0;
479 	le.lkpid = flow->flow_id;
480 
481 	/* The default RxQ for this port is set in the C2 lookup */
482 	le.data = 0;
483 
484 	/* We point on the first lookup in the sequence for the flow, that is
485 	 * the C2 lookup.
486 	 */
487 	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
488 
489 	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
490 	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
491 
492 	mvpp2_cls_lookup_write(priv, &le);
493 }
494 
495 static void mvpp2_cls_c2_write(struct mvpp2 *priv,
496 			       struct mvpp2_cls_c2_entry *c2)
497 {
498 	u32 val;
499 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
500 
501 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
502 	if (c2->valid)
503 		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
504 	else
505 		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
506 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
507 
508 	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
509 
510 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
511 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
512 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
513 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
514 
515 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
516 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
517 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
518 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
519 	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
520 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
521 }
522 
523 void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
524 		       struct mvpp2_cls_c2_entry *c2)
525 {
526 	u32 val;
527 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
528 
529 	c2->index = index;
530 
531 	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
532 	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
533 	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
534 	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
535 	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
536 
537 	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
538 
539 	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
540 	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
541 	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
542 	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
543 
544 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
545 	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
546 }
547 
548 static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
549 {
550 	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
551 	case ETHER_FLOW:
552 		return MVPP22_FLOW_ETHERNET;
553 	case TCP_V4_FLOW:
554 		return MVPP22_FLOW_TCP4;
555 	case TCP_V6_FLOW:
556 		return MVPP22_FLOW_TCP6;
557 	case UDP_V4_FLOW:
558 		return MVPP22_FLOW_UDP4;
559 	case UDP_V6_FLOW:
560 		return MVPP22_FLOW_UDP6;
561 	case IPV4_FLOW:
562 		return MVPP22_FLOW_IP4;
563 	case IPV6_FLOW:
564 		return MVPP22_FLOW_IP6;
565 	default:
566 		return -EOPNOTSUPP;
567 	}
568 }
569 
570 static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
571 {
572 	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
573 }
574 
575 /* Initialize the flow table entries for the given flow */
576 static void mvpp2_cls_flow_init(struct mvpp2 *priv,
577 				const struct mvpp2_cls_flow *flow)
578 {
579 	struct mvpp2_cls_flow_entry fe;
580 	int i, pri = 0;
581 
582 	/* Assign default values to all entries in the flow */
583 	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
584 	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
585 		memset(&fe, 0, sizeof(fe));
586 		fe.index = i;
587 		mvpp2_cls_flow_pri_set(&fe, pri++);
588 
589 		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
590 			mvpp2_cls_flow_last_set(&fe, 1);
591 
592 		mvpp2_cls_flow_write(priv, &fe);
593 	}
594 
595 	/* RSS config C2 lookup */
596 	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
597 			    &fe);
598 
599 	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
600 	mvpp2_cls_flow_port_id_sel(&fe, true);
601 	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
602 
603 	/* Add all ports */
604 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
605 		mvpp2_cls_flow_port_add(&fe, BIT(i));
606 
607 	mvpp2_cls_flow_write(priv, &fe);
608 
609 	/* C3Hx lookups */
610 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
611 		mvpp2_cls_flow_read(priv,
612 				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
613 				    &fe);
614 
615 		/* Set a default engine. Will be overwritten when setting the
616 		 * real HEK parameters
617 		 */
618 		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
619 		mvpp2_cls_flow_port_id_sel(&fe, true);
620 		mvpp2_cls_flow_port_add(&fe, BIT(i));
621 
622 		mvpp2_cls_flow_write(priv, &fe);
623 	}
624 }
625 
626 /* Adds a field to the Header Extracted Key generation parameters*/
627 static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
628 				    u32 field_id)
629 {
630 	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
631 
632 	if (nb_fields == MVPP2_FLOW_N_FIELDS)
633 		return -EINVAL;
634 
635 	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
636 
637 	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
638 
639 	return 0;
640 }
641 
642 static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
643 				     unsigned long hash_opts)
644 {
645 	u32 field_id;
646 	int i;
647 
648 	/* Clear old fields */
649 	mvpp2_cls_flow_hek_num_set(fe, 0);
650 	fe->data[2] = 0;
651 
652 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
653 		switch (BIT(i)) {
654 		case MVPP22_CLS_HEK_OPT_MAC_DA:
655 			field_id = MVPP22_CLS_FIELD_MAC_DA;
656 			break;
657 		case MVPP22_CLS_HEK_OPT_VLAN:
658 			field_id = MVPP22_CLS_FIELD_VLAN;
659 			break;
660 		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
661 			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
662 			break;
663 		case MVPP22_CLS_HEK_OPT_IP4SA:
664 			field_id = MVPP22_CLS_FIELD_IP4SA;
665 			break;
666 		case MVPP22_CLS_HEK_OPT_IP4DA:
667 			field_id = MVPP22_CLS_FIELD_IP4DA;
668 			break;
669 		case MVPP22_CLS_HEK_OPT_IP6SA:
670 			field_id = MVPP22_CLS_FIELD_IP6SA;
671 			break;
672 		case MVPP22_CLS_HEK_OPT_IP6DA:
673 			field_id = MVPP22_CLS_FIELD_IP6DA;
674 			break;
675 		case MVPP22_CLS_HEK_OPT_L4SIP:
676 			field_id = MVPP22_CLS_FIELD_L4SIP;
677 			break;
678 		case MVPP22_CLS_HEK_OPT_L4DIP:
679 			field_id = MVPP22_CLS_FIELD_L4DIP;
680 			break;
681 		default:
682 			return -EINVAL;
683 		}
684 		if (mvpp2_flow_add_hek_field(fe, field_id))
685 			return -EINVAL;
686 	}
687 
688 	return 0;
689 }
690 
691 /* Returns the size, in bits, of the corresponding HEK field */
692 static int mvpp2_cls_hek_field_size(u32 field)
693 {
694 	switch (field) {
695 	case MVPP22_CLS_HEK_OPT_MAC_DA:
696 		return 48;
697 	case MVPP22_CLS_HEK_OPT_VLAN:
698 		return 12;
699 	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
700 		return 3;
701 	case MVPP22_CLS_HEK_OPT_IP4SA:
702 	case MVPP22_CLS_HEK_OPT_IP4DA:
703 		return 32;
704 	case MVPP22_CLS_HEK_OPT_IP6SA:
705 	case MVPP22_CLS_HEK_OPT_IP6DA:
706 		return 128;
707 	case MVPP22_CLS_HEK_OPT_L4SIP:
708 	case MVPP22_CLS_HEK_OPT_L4DIP:
709 		return 16;
710 	default:
711 		return -1;
712 	}
713 }
714 
715 const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
716 {
717 	if (flow >= MVPP2_N_PRS_FLOWS)
718 		return NULL;
719 
720 	return &cls_flows[flow];
721 }
722 
723 /* Set the hash generation options for the given traffic flow.
724  * One traffic flow (in the ethtool sense) has multiple classification flows,
725  * to handle specific cases such as fragmentation, or the presence of a
726  * VLAN / DSA Tag.
727  *
728  * Each of these individual flows has different constraints, for example we
729  * can't hash fragmented packets on L4 data (else we would risk having packet
730  * re-ordering), so each classification flows masks the options with their
731  * supported ones.
732  *
733  */
734 static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
735 					u16 requested_opts)
736 {
737 	const struct mvpp2_cls_flow *flow;
738 	struct mvpp2_cls_flow_entry fe;
739 	int i, engine, flow_index;
740 	u16 hash_opts;
741 
742 	for_each_cls_flow_id_with_type(i, flow_type) {
743 		flow = mvpp2_cls_flow_get(i);
744 		if (!flow)
745 			return -EINVAL;
746 
747 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
748 
749 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
750 
751 		hash_opts = flow->supported_hash_opts & requested_opts;
752 
753 		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
754 		 * hash parameters
755 		 */
756 		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
757 			engine = MVPP22_CLS_ENGINE_C3HB;
758 		else
759 			engine = MVPP22_CLS_ENGINE_C3HA;
760 
761 		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
762 			return -EINVAL;
763 
764 		mvpp2_cls_flow_eng_set(&fe, engine);
765 
766 		mvpp2_cls_flow_write(port->priv, &fe);
767 	}
768 
769 	return 0;
770 }
771 
772 u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
773 {
774 	u16 hash_opts = 0;
775 	int n_fields, i, field;
776 
777 	n_fields = mvpp2_cls_flow_hek_num_get(fe);
778 
779 	for (i = 0; i < n_fields; i++) {
780 		field = mvpp2_cls_flow_hek_get(fe, i);
781 
782 		switch (field) {
783 		case MVPP22_CLS_FIELD_MAC_DA:
784 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
785 			break;
786 		case MVPP22_CLS_FIELD_VLAN:
787 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
788 			break;
789 		case MVPP22_CLS_FIELD_VLAN_PRI:
790 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
791 			break;
792 		case MVPP22_CLS_FIELD_L3_PROTO:
793 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
794 			break;
795 		case MVPP22_CLS_FIELD_IP4SA:
796 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
797 			break;
798 		case MVPP22_CLS_FIELD_IP4DA:
799 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
800 			break;
801 		case MVPP22_CLS_FIELD_IP6SA:
802 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
803 			break;
804 		case MVPP22_CLS_FIELD_IP6DA:
805 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
806 			break;
807 		case MVPP22_CLS_FIELD_L4SIP:
808 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
809 			break;
810 		case MVPP22_CLS_FIELD_L4DIP:
811 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
812 			break;
813 		default:
814 			break;
815 		}
816 	}
817 	return hash_opts;
818 }
819 
820 /* Returns the hash opts for this flow. There are several classifier flows
821  * for one traffic flow, this returns an aggregation of all configurations.
822  */
823 static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
824 {
825 	const struct mvpp2_cls_flow *flow;
826 	struct mvpp2_cls_flow_entry fe;
827 	int i, flow_index;
828 	u16 hash_opts = 0;
829 
830 	for_each_cls_flow_id_with_type(i, flow_type) {
831 		flow = mvpp2_cls_flow_get(i);
832 		if (!flow)
833 			return 0;
834 
835 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
836 
837 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
838 
839 		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
840 	}
841 
842 	return hash_opts;
843 }
844 
845 static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
846 {
847 	const struct mvpp2_cls_flow *flow;
848 	int i;
849 
850 	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
851 		flow = mvpp2_cls_flow_get(i);
852 		if (!flow)
853 			break;
854 
855 		mvpp2_cls_flow_prs_init(priv, flow);
856 		mvpp2_cls_flow_lkp_init(priv, flow);
857 		mvpp2_cls_flow_init(priv, flow);
858 	}
859 }
860 
861 static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
862 {
863 	struct mvpp2_cls_c2_entry c2;
864 	u8 qh, ql, pmap;
865 
866 	memset(&c2, 0, sizeof(c2));
867 
868 	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
869 
870 	pmap = BIT(port->id);
871 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
872 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
873 
874 	/* Match on Lookup Type */
875 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
876 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
877 
878 	/* Update RSS status after matching this entry */
879 	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
880 
881 	/* Mark packet as "forwarded to software", needed for RSS */
882 	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
883 
884 	/* Configure the default rx queue : Update Queue Low and Queue High, but
885 	 * don't lock, since the rx queue selection might be overridden by RSS
886 	 */
887 	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
888 		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
889 
890 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
891 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
892 
893 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
894 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
895 
896 	c2.valid = true;
897 
898 	mvpp2_cls_c2_write(port->priv, &c2);
899 }
900 
901 /* Classifier default initialization */
902 void mvpp2_cls_init(struct mvpp2 *priv)
903 {
904 	struct mvpp2_cls_lookup_entry le;
905 	struct mvpp2_cls_flow_entry fe;
906 	struct mvpp2_cls_c2_entry c2;
907 	int index;
908 
909 	/* Enable classifier */
910 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
911 
912 	/* Clear classifier flow table */
913 	memset(&fe.data, 0, sizeof(fe.data));
914 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
915 		fe.index = index;
916 		mvpp2_cls_flow_write(priv, &fe);
917 	}
918 
919 	/* Clear classifier lookup table */
920 	le.data = 0;
921 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
922 		le.lkpid = index;
923 		le.way = 0;
924 		mvpp2_cls_lookup_write(priv, &le);
925 
926 		le.way = 1;
927 		mvpp2_cls_lookup_write(priv, &le);
928 	}
929 
930 	/* Clear C2 TCAM engine table */
931 	memset(&c2, 0, sizeof(c2));
932 	c2.valid = false;
933 	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
934 		c2.index = index;
935 		mvpp2_cls_c2_write(priv, &c2);
936 	}
937 
938 	/* Disable the FIFO stages in C2 engine, which are only used in BIST
939 	 * mode
940 	 */
941 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
942 		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
943 
944 	mvpp2_cls_port_init_flows(priv);
945 }
946 
947 void mvpp2_cls_port_config(struct mvpp2_port *port)
948 {
949 	struct mvpp2_cls_lookup_entry le;
950 	u32 val;
951 
952 	/* Set way for the port */
953 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
954 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
955 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
956 
957 	/* Pick the entry to be accessed in lookup ID decoding table
958 	 * according to the way and lkpid.
959 	 */
960 	le.lkpid = port->id;
961 	le.way = 0;
962 	le.data = 0;
963 
964 	/* Set initial CPU queue for receiving packets */
965 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
966 	le.data |= port->first_rxq;
967 
968 	/* Disable classification engines */
969 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
970 
971 	/* Update lookup ID table entry */
972 	mvpp2_cls_lookup_write(port->priv, &le);
973 
974 	mvpp2_port_c2_cls_init(port);
975 }
976 
977 u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
978 {
979 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
980 
981 	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
982 }
983 
984 static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
985 {
986 	struct mvpp2_cls_c2_entry c2;
987 	u8 qh, ql;
988 
989 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
990 
991 	/* The RxQ number is used to select the RSS table. It that case, we set
992 	 * it to be the ctx number.
993 	 */
994 	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
995 	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
996 
997 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
998 		     MVPP22_CLS_C2_ATTR0_QLOW(ql);
999 
1000 	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1001 
1002 	mvpp2_cls_c2_write(port->priv, &c2);
1003 }
1004 
1005 static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1006 {
1007 	struct mvpp2_cls_c2_entry c2;
1008 	u8 qh, ql;
1009 
1010 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1011 
1012 	/* Reset the default destination RxQ to the port's first rx queue. */
1013 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1014 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1015 
1016 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1017 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1018 
1019 	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1020 
1021 	mvpp2_cls_c2_write(port->priv, &c2);
1022 }
1023 
1024 static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1025 {
1026 	return port->rss_ctx[port_rss_ctx];
1027 }
1028 
1029 int mvpp22_port_rss_enable(struct mvpp2_port *port)
1030 {
1031 	if (mvpp22_rss_ctx(port, 0) < 0)
1032 		return -EINVAL;
1033 
1034 	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1035 
1036 	return 0;
1037 }
1038 
1039 int mvpp22_port_rss_disable(struct mvpp2_port *port)
1040 {
1041 	if (mvpp22_rss_ctx(port, 0) < 0)
1042 		return -EINVAL;
1043 
1044 	mvpp2_rss_port_c2_disable(port);
1045 
1046 	return 0;
1047 }
1048 
1049 static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1050 {
1051 	struct mvpp2_cls_c2_entry c2;
1052 
1053 	mvpp2_cls_c2_read(port->priv, entry, &c2);
1054 
1055 	/* Clear the port map so that the entry doesn't match anymore */
1056 	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1057 
1058 	mvpp2_cls_c2_write(port->priv, &c2);
1059 }
1060 
1061 /* Set CPU queue number for oversize packets */
1062 void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1063 {
1064 	u32 val;
1065 
1066 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1067 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1068 
1069 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1070 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1071 
1072 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1073 	val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1074 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1075 }
1076 
1077 static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1078 				       struct mvpp2_rfs_rule *rule)
1079 {
1080 	struct flow_action_entry *act;
1081 	struct mvpp2_cls_c2_entry c2;
1082 	u8 qh, ql, pmap;
1083 	int index, ctx;
1084 
1085 	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1086 		return -EOPNOTSUPP;
1087 
1088 	memset(&c2, 0, sizeof(c2));
1089 
1090 	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1091 	if (index < 0)
1092 		return -EINVAL;
1093 	c2.index = index;
1094 
1095 	act = &rule->flow->action.entries[0];
1096 
1097 	rule->c2_index = c2.index;
1098 
1099 	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1100 		     ((rule->c2_tcam_mask & 0xffff) << 16);
1101 	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1102 		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1103 	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1104 		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1105 	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1106 		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1107 
1108 	pmap = BIT(port->id);
1109 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1110 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1111 
1112 	/* Match on Lookup Type */
1113 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1114 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1115 
1116 	if (act->id == FLOW_ACTION_DROP) {
1117 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1118 	} else {
1119 		/* We want to keep the default color derived from the Header
1120 		 * Parser drop entries, for VLAN and MAC filtering. This will
1121 		 * assign a default color of Green or Red, and we want matches
1122 		 * with a non-drop action to keep that color.
1123 		 */
1124 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1125 
1126 		/* Update RSS status after matching this entry */
1127 		if (act->queue.ctx)
1128 			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1129 
1130 		/* Always lock the RSS_EN decision. We might have high prio
1131 		 * rules steering to an RXQ, and a lower one steering to RSS,
1132 		 * we don't want the low prio RSS rule overwriting this flag.
1133 		 */
1134 		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1135 
1136 		/* Mark packet as "forwarded to software", needed for RSS */
1137 		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1138 
1139 		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1140 			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1141 
1142 		if (act->queue.ctx) {
1143 			/* Get the global ctx number */
1144 			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1145 			if (ctx < 0)
1146 				return -EINVAL;
1147 
1148 			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1149 			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1150 		} else {
1151 			qh = ((act->queue.index + port->first_rxq) >> 3) &
1152 			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1153 			ql = (act->queue.index + port->first_rxq) &
1154 			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1155 		}
1156 
1157 		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1158 			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1159 	}
1160 
1161 	c2.valid = true;
1162 
1163 	mvpp2_cls_c2_write(port->priv, &c2);
1164 
1165 	return 0;
1166 }
1167 
1168 static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1169 					 struct mvpp2_rfs_rule *rule)
1170 {
1171 	return mvpp2_port_c2_tcam_rule_add(port, rule);
1172 }
1173 
1174 static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1175 					  struct mvpp2_rfs_rule *rule)
1176 {
1177 	const struct mvpp2_cls_flow *flow;
1178 	struct mvpp2_cls_flow_entry fe;
1179 	int index, i;
1180 
1181 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1182 		flow = mvpp2_cls_flow_get(i);
1183 		if (!flow)
1184 			return 0;
1185 
1186 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1187 
1188 		mvpp2_cls_flow_read(port->priv, index, &fe);
1189 		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1190 		mvpp2_cls_flow_write(port->priv, &fe);
1191 	}
1192 
1193 	if (rule->c2_index >= 0)
1194 		mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1195 
1196 	return 0;
1197 }
1198 
1199 static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1200 					  struct mvpp2_rfs_rule *rule)
1201 {
1202 	const struct mvpp2_cls_flow *flow;
1203 	struct mvpp2 *priv = port->priv;
1204 	struct mvpp2_cls_flow_entry fe;
1205 	int index, ret, i;
1206 
1207 	if (rule->engine != MVPP22_CLS_ENGINE_C2)
1208 		return -EOPNOTSUPP;
1209 
1210 	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1211 	if (ret)
1212 		return ret;
1213 
1214 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1215 		flow = mvpp2_cls_flow_get(i);
1216 		if (!flow)
1217 			return 0;
1218 
1219 		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1220 			continue;
1221 
1222 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1223 
1224 		mvpp2_cls_flow_read(priv, index, &fe);
1225 		mvpp2_cls_flow_eng_set(&fe, rule->engine);
1226 		mvpp2_cls_flow_port_id_sel(&fe, true);
1227 		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1228 		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1229 		mvpp2_cls_flow_port_add(&fe, 0xf);
1230 
1231 		mvpp2_cls_flow_write(priv, &fe);
1232 	}
1233 
1234 	return 0;
1235 }
1236 
1237 static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1238 {
1239 	struct flow_rule *flow = rule->flow;
1240 	int offs = 0;
1241 
1242 	/* The order of insertion in C2 tcam must match the order in which
1243 	 * the fields are found in the header
1244 	 */
1245 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1246 		struct flow_match_vlan match;
1247 
1248 		flow_rule_match_vlan(flow, &match);
1249 		if (match.mask->vlan_id) {
1250 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1251 
1252 			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1253 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1254 
1255 			/* Don't update the offset yet */
1256 		}
1257 
1258 		if (match.mask->vlan_priority) {
1259 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1260 
1261 			/* VLAN pri is always at offset 13 relative to the
1262 			 * current offset
1263 			 */
1264 			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1265 				(offs + 13);
1266 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1267 				(offs + 13);
1268 		}
1269 
1270 		if (match.mask->vlan_dei)
1271 			return -EOPNOTSUPP;
1272 
1273 		/* vlan id and prio always seem to take a full 16-bit slot in
1274 		 * the Header Extracted Key.
1275 		 */
1276 		offs += 16;
1277 	}
1278 
1279 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1280 		struct flow_match_ports match;
1281 
1282 		flow_rule_match_ports(flow, &match);
1283 		if (match.mask->src) {
1284 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1285 
1286 			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1287 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1288 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1289 		}
1290 
1291 		if (match.mask->dst) {
1292 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1293 
1294 			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1295 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1296 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1297 		}
1298 	}
1299 
1300 	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1301 		return -EOPNOTSUPP;
1302 
1303 	return 0;
1304 }
1305 
1306 static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1307 {
1308 	struct flow_rule *flow = rule->flow;
1309 	struct flow_action_entry *act;
1310 
1311 	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1312 		return -EOPNOTSUPP;
1313 
1314 	act = &flow->action.entries[0];
1315 	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1316 		return -EOPNOTSUPP;
1317 
1318 	/* When both an RSS context and an queue index are set, the index
1319 	 * is considered as an offset to be added to the indirection table
1320 	 * entries. We don't support this, so reject this rule.
1321 	 */
1322 	if (act->queue.ctx && act->queue.index)
1323 		return -EOPNOTSUPP;
1324 
1325 	/* For now, only use the C2 engine which has a HEK size limited to 64
1326 	 * bits for TCAM matching.
1327 	 */
1328 	rule->engine = MVPP22_CLS_ENGINE_C2;
1329 
1330 	if (mvpp2_cls_c2_build_match(rule))
1331 		return -EINVAL;
1332 
1333 	return 0;
1334 }
1335 
1336 int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1337 			       struct ethtool_rxnfc *rxnfc)
1338 {
1339 	struct mvpp2_ethtool_fs *efs;
1340 
1341 	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1342 		return -EINVAL;
1343 
1344 	efs = port->rfs_rules[rxnfc->fs.location];
1345 	if (!efs)
1346 		return -ENOENT;
1347 
1348 	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1349 
1350 	return 0;
1351 }
1352 
1353 int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1354 			       struct ethtool_rxnfc *info)
1355 {
1356 	struct ethtool_rx_flow_spec_input input = {};
1357 	struct ethtool_rx_flow_rule *ethtool_rule;
1358 	struct mvpp2_ethtool_fs *efs, *old_efs;
1359 	int ret = 0;
1360 
1361 	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1362 		return -EINVAL;
1363 
1364 	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1365 	if (!efs)
1366 		return -ENOMEM;
1367 
1368 	input.fs = &info->fs;
1369 
1370 	/* We need to manually set the rss_ctx, since this info isn't present
1371 	 * in info->fs
1372 	 */
1373 	if (info->fs.flow_type & FLOW_RSS)
1374 		input.rss_ctx = info->rss_context;
1375 
1376 	ethtool_rule = ethtool_rx_flow_rule_create(&input);
1377 	if (IS_ERR(ethtool_rule)) {
1378 		ret = PTR_ERR(ethtool_rule);
1379 		goto clean_rule;
1380 	}
1381 
1382 	efs->rule.flow = ethtool_rule->rule;
1383 	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1384 	if (efs->rule.flow_type < 0) {
1385 		ret = efs->rule.flow_type;
1386 		goto clean_rule;
1387 	}
1388 
1389 	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1390 	if (ret)
1391 		goto clean_eth_rule;
1392 
1393 	efs->rule.loc = info->fs.location;
1394 
1395 	/* Replace an already existing rule */
1396 	if (port->rfs_rules[efs->rule.loc]) {
1397 		old_efs = port->rfs_rules[efs->rule.loc];
1398 		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1399 		if (ret)
1400 			goto clean_eth_rule;
1401 		kfree(old_efs);
1402 		port->n_rfs_rules--;
1403 	}
1404 
1405 	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1406 	if (ret)
1407 		goto clean_eth_rule;
1408 
1409 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1410 	efs->rule.flow = NULL;
1411 
1412 	memcpy(&efs->rxnfc, info, sizeof(*info));
1413 	port->rfs_rules[efs->rule.loc] = efs;
1414 	port->n_rfs_rules++;
1415 
1416 	return ret;
1417 
1418 clean_eth_rule:
1419 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1420 clean_rule:
1421 	kfree(efs);
1422 	return ret;
1423 }
1424 
1425 int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1426 			       struct ethtool_rxnfc *info)
1427 {
1428 	struct mvpp2_ethtool_fs *efs;
1429 	int ret;
1430 
1431 	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1432 		return -EINVAL;
1433 
1434 	efs = port->rfs_rules[info->fs.location];
1435 	if (!efs)
1436 		return -EINVAL;
1437 
1438 	/* Remove the rule from the engines. */
1439 	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1440 	if (ret)
1441 		return ret;
1442 
1443 	port->n_rfs_rules--;
1444 	port->rfs_rules[info->fs.location] = NULL;
1445 	kfree(efs);
1446 
1447 	return 0;
1448 }
1449 
1450 static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1451 {
1452 	int nrxqs, cpu, cpus = num_possible_cpus();
1453 
1454 	/* Number of RXQs per CPU */
1455 	nrxqs = port->nrxqs / cpus;
1456 
1457 	/* CPU that will handle this rx queue */
1458 	cpu = rxq / nrxqs;
1459 
1460 	if (!cpu_online(cpu))
1461 		return port->first_rxq;
1462 
1463 	/* Indirection to better distribute the paquets on the CPUs when
1464 	 * configuring the RSS queues.
1465 	 */
1466 	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1467 }
1468 
1469 static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1470 				  struct mvpp2_rss_table *table,
1471 				  u32 rss_ctx)
1472 {
1473 	struct mvpp2 *priv = port->priv;
1474 	int i;
1475 
1476 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1477 		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1478 			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1479 		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1480 
1481 		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1482 			    mvpp22_rxfh_indir(port, table->indir[i]));
1483 	}
1484 }
1485 
1486 static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1487 {
1488 	struct mvpp2 *priv = port->priv;
1489 	u32 ctx;
1490 
1491 	/* Find the first free RSS table */
1492 	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1493 		if (!priv->rss_tables[ctx])
1494 			break;
1495 	}
1496 
1497 	if (ctx == MVPP22_N_RSS_TABLES)
1498 		return -EINVAL;
1499 
1500 	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1501 					GFP_KERNEL);
1502 	if (!priv->rss_tables[ctx])
1503 		return -ENOMEM;
1504 
1505 	*rss_ctx = ctx;
1506 
1507 	/* Set the table width: replace the whole classifier Rx queue number
1508 	 * with the ones configured in RSS table entries.
1509 	 */
1510 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1511 	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1512 
1513 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1514 	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1515 
1516 	return 0;
1517 }
1518 
1519 int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
1520 {
1521 	u32 rss_ctx;
1522 	int ret, i;
1523 
1524 	ret = mvpp22_rss_context_create(port, &rss_ctx);
1525 	if (ret)
1526 		return ret;
1527 
1528 	/* Find the first available context number in the port, starting from 1.
1529 	 * Context 0 on each port is reserved for the default context.
1530 	 */
1531 	for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
1532 		if (port->rss_ctx[i] < 0)
1533 			break;
1534 	}
1535 
1536 	if (i == MVPP22_N_RSS_TABLES)
1537 		return -EINVAL;
1538 
1539 	port->rss_ctx[i] = rss_ctx;
1540 	*port_ctx = i;
1541 
1542 	return 0;
1543 }
1544 
1545 static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1546 						    int rss_ctx)
1547 {
1548 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1549 		return NULL;
1550 
1551 	return priv->rss_tables[rss_ctx];
1552 }
1553 
1554 int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1555 {
1556 	struct mvpp2 *priv = port->priv;
1557 	struct ethtool_rxnfc *rxnfc;
1558 	int i, rss_ctx, ret;
1559 
1560 	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1561 
1562 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1563 		return -EINVAL;
1564 
1565 	/* Invalidate any active classification rule that use this context */
1566 	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1567 		if (!port->rfs_rules[i])
1568 			continue;
1569 
1570 		rxnfc = &port->rfs_rules[i]->rxnfc;
1571 		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1572 		    rxnfc->rss_context != port_ctx)
1573 			continue;
1574 
1575 		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1576 		if (ret) {
1577 			netdev_warn(port->dev,
1578 				    "couldn't remove classification rule %d associated to this context",
1579 				    rxnfc->fs.location);
1580 		}
1581 	}
1582 
1583 	kfree(priv->rss_tables[rss_ctx]);
1584 
1585 	priv->rss_tables[rss_ctx] = NULL;
1586 	port->rss_ctx[port_ctx] = -1;
1587 
1588 	return 0;
1589 }
1590 
1591 int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1592 				  const u32 *indir)
1593 {
1594 	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1595 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1596 								 rss_ctx);
1597 
1598 	if (!rss_table)
1599 		return -EINVAL;
1600 
1601 	memcpy(rss_table->indir, indir,
1602 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1603 
1604 	mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1605 
1606 	return 0;
1607 }
1608 
1609 int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1610 				  u32 *indir)
1611 {
1612 	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1613 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1614 								 rss_ctx);
1615 
1616 	if (!rss_table)
1617 		return -EINVAL;
1618 
1619 	memcpy(indir, rss_table->indir,
1620 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1621 
1622 	return 0;
1623 }
1624 
1625 int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1626 {
1627 	u16 hash_opts = 0;
1628 	u32 flow_type;
1629 
1630 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1631 
1632 	switch (flow_type) {
1633 	case MVPP22_FLOW_TCP4:
1634 	case MVPP22_FLOW_UDP4:
1635 	case MVPP22_FLOW_TCP6:
1636 	case MVPP22_FLOW_UDP6:
1637 		if (info->data & RXH_L4_B_0_1)
1638 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1639 		if (info->data & RXH_L4_B_2_3)
1640 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1641 		/* Fallthrough */
1642 	case MVPP22_FLOW_IP4:
1643 	case MVPP22_FLOW_IP6:
1644 		if (info->data & RXH_L2DA)
1645 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1646 		if (info->data & RXH_VLAN)
1647 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1648 		if (info->data & RXH_L3_PROTO)
1649 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1650 		if (info->data & RXH_IP_SRC)
1651 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1652 				     MVPP22_CLS_HEK_OPT_IP6SA);
1653 		if (info->data & RXH_IP_DST)
1654 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1655 				     MVPP22_CLS_HEK_OPT_IP6DA);
1656 		break;
1657 	default: return -EOPNOTSUPP;
1658 	}
1659 
1660 	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1661 }
1662 
1663 int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1664 {
1665 	unsigned long hash_opts;
1666 	u32 flow_type;
1667 	int i;
1668 
1669 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1670 
1671 	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1672 	info->data = 0;
1673 
1674 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1675 		switch (BIT(i)) {
1676 		case MVPP22_CLS_HEK_OPT_MAC_DA:
1677 			info->data |= RXH_L2DA;
1678 			break;
1679 		case MVPP22_CLS_HEK_OPT_VLAN:
1680 			info->data |= RXH_VLAN;
1681 			break;
1682 		case MVPP22_CLS_HEK_OPT_L3_PROTO:
1683 			info->data |= RXH_L3_PROTO;
1684 			break;
1685 		case MVPP22_CLS_HEK_OPT_IP4SA:
1686 		case MVPP22_CLS_HEK_OPT_IP6SA:
1687 			info->data |= RXH_IP_SRC;
1688 			break;
1689 		case MVPP22_CLS_HEK_OPT_IP4DA:
1690 		case MVPP22_CLS_HEK_OPT_IP6DA:
1691 			info->data |= RXH_IP_DST;
1692 			break;
1693 		case MVPP22_CLS_HEK_OPT_L4SIP:
1694 			info->data |= RXH_L4_B_0_1;
1695 			break;
1696 		case MVPP22_CLS_HEK_OPT_L4DIP:
1697 			info->data |= RXH_L4_B_2_3;
1698 			break;
1699 		default:
1700 			return -EINVAL;
1701 		}
1702 	}
1703 	return 0;
1704 }
1705 
1706 int mvpp22_port_rss_init(struct mvpp2_port *port)
1707 {
1708 	struct mvpp2_rss_table *table;
1709 	u32 context = 0;
1710 	int i, ret;
1711 
1712 	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1713 		port->rss_ctx[i] = -1;
1714 
1715 	ret = mvpp22_rss_context_create(port, &context);
1716 	if (ret)
1717 		return ret;
1718 
1719 	table = mvpp22_rss_table_get(port->priv, context);
1720 	if (!table)
1721 		return -EINVAL;
1722 
1723 	port->rss_ctx[0] = context;
1724 
1725 	/* Configure the first table to evenly distribute the packets across
1726 	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1727 	 */
1728 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1729 		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1730 
1731 	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1732 
1733 	/* Configure default flows */
1734 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1735 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1736 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1737 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1738 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1739 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1740 
1741 	return 0;
1742 }
1743