1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * RSS and Classifier helpers for Marvell PPv2 Network Controller 4 * 5 * Copyright (C) 2014 Marvell 6 * 7 * Marcin Wojtas <mw@semihalf.com> 8 */ 9 10 #include "mvpp2.h" 11 #include "mvpp2_cls.h" 12 #include "mvpp2_prs.h" 13 14 #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask) \ 15 { \ 16 .flow_type = _type, \ 17 .flow_id = _id, \ 18 .supported_hash_opts = _opts, \ 19 .prs_ri = { \ 20 .ri = _ri, \ 21 .ri_mask = _ri_mask \ 22 } \ 23 } 24 25 static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = { 26 /* TCP over IPv4 flows, Not fragmented, no vlan tag */ 27 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, 28 MVPP22_CLS_HEK_IP4_5T, 29 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | 30 MVPP2_PRS_RI_L4_TCP, 31 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 32 33 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, 34 MVPP22_CLS_HEK_IP4_5T, 35 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | 36 MVPP2_PRS_RI_L4_TCP, 37 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 38 39 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG, 40 MVPP22_CLS_HEK_IP4_5T, 41 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | 42 MVPP2_PRS_RI_L4_TCP, 43 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 44 45 /* TCP over IPv4 flows, Not fragmented, with vlan tag */ 46 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, 47 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 48 MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, 49 MVPP2_PRS_IP_MASK), 50 51 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, 52 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 53 MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, 54 MVPP2_PRS_IP_MASK), 55 56 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG, 57 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 58 MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, 59 MVPP2_PRS_IP_MASK), 60 61 /* TCP over IPv4 flows, fragmented, no vlan tag */ 62 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, 63 MVPP22_CLS_HEK_IP4_2T, 64 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | 65 MVPP2_PRS_RI_L4_TCP, 66 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 67 68 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, 69 MVPP22_CLS_HEK_IP4_2T, 70 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | 71 MVPP2_PRS_RI_L4_TCP, 72 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 73 74 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG, 75 MVPP22_CLS_HEK_IP4_2T, 76 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | 77 MVPP2_PRS_RI_L4_TCP, 78 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 79 80 /* TCP over IPv4 flows, fragmented, with vlan tag */ 81 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, 82 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 83 MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP, 84 MVPP2_PRS_IP_MASK), 85 86 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, 87 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 88 MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP, 89 MVPP2_PRS_IP_MASK), 90 91 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG, 92 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 93 MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP, 94 MVPP2_PRS_IP_MASK), 95 96 /* UDP over IPv4 flows, Not fragmented, no vlan tag */ 97 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, 98 MVPP22_CLS_HEK_IP4_5T, 99 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | 100 MVPP2_PRS_RI_L4_UDP, 101 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 102 103 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, 104 MVPP22_CLS_HEK_IP4_5T, 105 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | 106 MVPP2_PRS_RI_L4_UDP, 107 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 108 109 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG, 110 MVPP22_CLS_HEK_IP4_5T, 111 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | 112 MVPP2_PRS_RI_L4_UDP, 113 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 114 115 /* UDP over IPv4 flows, Not fragmented, with vlan tag */ 116 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, 117 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 118 MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, 119 MVPP2_PRS_IP_MASK), 120 121 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, 122 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 123 MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, 124 MVPP2_PRS_IP_MASK), 125 126 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG, 127 MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_OPT_VLAN, 128 MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, 129 MVPP2_PRS_IP_MASK), 130 131 /* UDP over IPv4 flows, fragmented, no vlan tag */ 132 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, 133 MVPP22_CLS_HEK_IP4_2T, 134 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 | 135 MVPP2_PRS_RI_L4_UDP, 136 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 137 138 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, 139 MVPP22_CLS_HEK_IP4_2T, 140 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT | 141 MVPP2_PRS_RI_L4_UDP, 142 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 143 144 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG, 145 MVPP22_CLS_HEK_IP4_2T, 146 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER | 147 MVPP2_PRS_RI_L4_UDP, 148 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 149 150 /* UDP over IPv4 flows, fragmented, with vlan tag */ 151 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, 152 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 153 MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP, 154 MVPP2_PRS_IP_MASK), 155 156 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, 157 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 158 MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP, 159 MVPP2_PRS_IP_MASK), 160 161 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG, 162 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 163 MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP, 164 MVPP2_PRS_IP_MASK), 165 166 /* TCP over IPv6 flows, not fragmented, no vlan tag */ 167 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG, 168 MVPP22_CLS_HEK_IP6_5T, 169 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | 170 MVPP2_PRS_RI_L4_TCP, 171 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 172 173 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG, 174 MVPP22_CLS_HEK_IP6_5T, 175 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | 176 MVPP2_PRS_RI_L4_TCP, 177 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 178 179 /* TCP over IPv6 flows, not fragmented, with vlan tag */ 180 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG, 181 MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, 182 MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP, 183 MVPP2_PRS_IP_MASK), 184 185 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG, 186 MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, 187 MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP, 188 MVPP2_PRS_IP_MASK), 189 190 /* TCP over IPv6 flows, fragmented, no vlan tag */ 191 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG, 192 MVPP22_CLS_HEK_IP6_2T, 193 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | 194 MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, 195 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 196 197 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG, 198 MVPP22_CLS_HEK_IP6_2T, 199 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | 200 MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP, 201 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 202 203 /* TCP over IPv6 flows, fragmented, with vlan tag */ 204 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG, 205 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 206 MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | 207 MVPP2_PRS_RI_L4_TCP, 208 MVPP2_PRS_IP_MASK), 209 210 MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG, 211 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 212 MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | 213 MVPP2_PRS_RI_L4_TCP, 214 MVPP2_PRS_IP_MASK), 215 216 /* UDP over IPv6 flows, not fragmented, no vlan tag */ 217 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG, 218 MVPP22_CLS_HEK_IP6_5T, 219 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | 220 MVPP2_PRS_RI_L4_UDP, 221 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 222 223 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG, 224 MVPP22_CLS_HEK_IP6_5T, 225 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | 226 MVPP2_PRS_RI_L4_UDP, 227 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 228 229 /* UDP over IPv6 flows, not fragmented, with vlan tag */ 230 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG, 231 MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, 232 MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP, 233 MVPP2_PRS_IP_MASK), 234 235 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG, 236 MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_OPT_VLAN, 237 MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP, 238 MVPP2_PRS_IP_MASK), 239 240 /* UDP over IPv6 flows, fragmented, no vlan tag */ 241 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG, 242 MVPP22_CLS_HEK_IP6_2T, 243 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 | 244 MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, 245 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 246 247 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG, 248 MVPP22_CLS_HEK_IP6_2T, 249 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT | 250 MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP, 251 MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK), 252 253 /* UDP over IPv6 flows, fragmented, with vlan tag */ 254 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG, 255 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 256 MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE | 257 MVPP2_PRS_RI_L4_UDP, 258 MVPP2_PRS_IP_MASK), 259 260 MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG, 261 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 262 MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE | 263 MVPP2_PRS_RI_L4_UDP, 264 MVPP2_PRS_IP_MASK), 265 266 /* IPv4 flows, no vlan tag */ 267 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, 268 MVPP22_CLS_HEK_IP4_2T, 269 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4, 270 MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), 271 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, 272 MVPP22_CLS_HEK_IP4_2T, 273 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT, 274 MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), 275 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG, 276 MVPP22_CLS_HEK_IP4_2T, 277 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER, 278 MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), 279 280 /* IPv4 flows, with vlan tag */ 281 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, 282 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 283 MVPP2_PRS_RI_L3_IP4, 284 MVPP2_PRS_RI_L3_PROTO_MASK), 285 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, 286 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 287 MVPP2_PRS_RI_L3_IP4_OPT, 288 MVPP2_PRS_RI_L3_PROTO_MASK), 289 MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG, 290 MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_OPT_VLAN, 291 MVPP2_PRS_RI_L3_IP4_OTHER, 292 MVPP2_PRS_RI_L3_PROTO_MASK), 293 294 /* IPv6 flows, no vlan tag */ 295 MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG, 296 MVPP22_CLS_HEK_IP6_2T, 297 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, 298 MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), 299 MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG, 300 MVPP22_CLS_HEK_IP6_2T, 301 MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6, 302 MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK), 303 304 /* IPv6 flows, with vlan tag */ 305 MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG, 306 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 307 MVPP2_PRS_RI_L3_IP6, 308 MVPP2_PRS_RI_L3_PROTO_MASK), 309 MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG, 310 MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_OPT_VLAN, 311 MVPP2_PRS_RI_L3_IP6, 312 MVPP2_PRS_RI_L3_PROTO_MASK), 313 314 /* Non IP flow, no vlan tag */ 315 MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG, 316 0, 317 MVPP2_PRS_RI_VLAN_NONE, 318 MVPP2_PRS_RI_VLAN_MASK), 319 /* Non IP flow, with vlan tag */ 320 MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG, 321 MVPP22_CLS_HEK_OPT_VLAN, 322 0, 0), 323 }; 324 325 u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index) 326 { 327 mvpp2_write(priv, MVPP2_CTRS_IDX, index); 328 329 return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR); 330 } 331 332 void mvpp2_cls_flow_read(struct mvpp2 *priv, int index, 333 struct mvpp2_cls_flow_entry *fe) 334 { 335 fe->index = index; 336 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index); 337 fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG); 338 fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG); 339 fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG); 340 } 341 342 /* Update classification flow table registers */ 343 static void mvpp2_cls_flow_write(struct mvpp2 *priv, 344 struct mvpp2_cls_flow_entry *fe) 345 { 346 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); 347 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); 348 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); 349 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); 350 } 351 352 u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index) 353 { 354 mvpp2_write(priv, MVPP2_CTRS_IDX, index); 355 356 return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR); 357 } 358 359 void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way, 360 struct mvpp2_cls_lookup_entry *le) 361 { 362 u32 val; 363 364 val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid; 365 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 366 le->way = way; 367 le->lkpid = lkpid; 368 le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG); 369 } 370 371 /* Update classification lookup table register */ 372 static void mvpp2_cls_lookup_write(struct mvpp2 *priv, 373 struct mvpp2_cls_lookup_entry *le) 374 { 375 u32 val; 376 377 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; 378 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); 379 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); 380 } 381 382 /* Operations on flow entry */ 383 static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe) 384 { 385 return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; 386 } 387 388 static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe, 389 int num_of_fields) 390 { 391 fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK; 392 fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields); 393 } 394 395 static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe, 396 int field_index) 397 { 398 return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) & 399 MVPP2_CLS_FLOW_TBL2_FLD_MASK; 400 } 401 402 static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe, 403 int field_index, int field_id) 404 { 405 fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index, 406 MVPP2_CLS_FLOW_TBL2_FLD_MASK); 407 fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id); 408 } 409 410 static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe, 411 int engine) 412 { 413 fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK); 414 fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine); 415 } 416 417 int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe) 418 { 419 return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) & 420 MVPP2_CLS_FLOW_TBL0_ENG_MASK; 421 } 422 423 static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe, 424 bool from_packet) 425 { 426 if (from_packet) 427 fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; 428 else 429 fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL; 430 } 431 432 static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe, 433 bool is_last) 434 { 435 fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST; 436 fe->data[0] |= !!is_last; 437 } 438 439 static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio) 440 { 441 fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK); 442 fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio); 443 } 444 445 static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe, 446 u32 port) 447 { 448 fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port); 449 } 450 451 static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe, 452 u32 port) 453 { 454 fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port); 455 } 456 457 static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe, 458 u8 lu_type) 459 { 460 fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK); 461 fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type); 462 } 463 464 /* Initialize the parser entry for the given flow */ 465 static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv, 466 const struct mvpp2_cls_flow *flow) 467 { 468 mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri, 469 flow->prs_ri.ri_mask); 470 } 471 472 /* Initialize the Lookup Id table entry for the given flow */ 473 static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv, 474 const struct mvpp2_cls_flow *flow) 475 { 476 struct mvpp2_cls_lookup_entry le; 477 478 le.way = 0; 479 le.lkpid = flow->flow_id; 480 481 /* The default RxQ for this port is set in the C2 lookup */ 482 le.data = 0; 483 484 /* We point on the first lookup in the sequence for the flow, that is 485 * the C2 lookup. 486 */ 487 le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id)); 488 489 /* CLS is always enabled, RSS is enabled/disabled in C2 lookup */ 490 le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 491 492 mvpp2_cls_lookup_write(priv, &le); 493 } 494 495 static void mvpp2_cls_c2_write(struct mvpp2 *priv, 496 struct mvpp2_cls_c2_entry *c2) 497 { 498 u32 val; 499 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index); 500 501 val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV); 502 if (c2->valid) 503 val &= ~MVPP22_CLS_C2_TCAM_INV_BIT; 504 else 505 val |= MVPP22_CLS_C2_TCAM_INV_BIT; 506 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val); 507 508 mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act); 509 510 mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]); 511 mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]); 512 mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]); 513 mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]); 514 515 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]); 516 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]); 517 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]); 518 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]); 519 /* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */ 520 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]); 521 } 522 523 void mvpp2_cls_c2_read(struct mvpp2 *priv, int index, 524 struct mvpp2_cls_c2_entry *c2) 525 { 526 u32 val; 527 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index); 528 529 c2->index = index; 530 531 c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0); 532 c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1); 533 c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2); 534 c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3); 535 c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4); 536 537 c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT); 538 539 c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0); 540 c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1); 541 c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2); 542 c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3); 543 544 val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV); 545 c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT); 546 } 547 548 static int mvpp2_cls_ethtool_flow_to_type(int flow_type) 549 { 550 switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) { 551 case TCP_V4_FLOW: 552 return MVPP22_FLOW_TCP4; 553 case TCP_V6_FLOW: 554 return MVPP22_FLOW_TCP6; 555 case UDP_V4_FLOW: 556 return MVPP22_FLOW_UDP4; 557 case UDP_V6_FLOW: 558 return MVPP22_FLOW_UDP6; 559 case IPV4_FLOW: 560 return MVPP22_FLOW_IP4; 561 case IPV6_FLOW: 562 return MVPP22_FLOW_IP6; 563 default: 564 return -EOPNOTSUPP; 565 } 566 } 567 568 static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc) 569 { 570 return MVPP22_CLS_C2_RFS_LOC(port->id, loc); 571 } 572 573 /* Initialize the flow table entries for the given flow */ 574 static void mvpp2_cls_flow_init(struct mvpp2 *priv, 575 const struct mvpp2_cls_flow *flow) 576 { 577 struct mvpp2_cls_flow_entry fe; 578 int i, pri = 0; 579 580 /* Assign default values to all entries in the flow */ 581 for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id); 582 i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) { 583 memset(&fe, 0, sizeof(fe)); 584 fe.index = i; 585 mvpp2_cls_flow_pri_set(&fe, pri++); 586 587 if (i == MVPP2_CLS_FLT_LAST(flow->flow_id)) 588 mvpp2_cls_flow_last_set(&fe, 1); 589 590 mvpp2_cls_flow_write(priv, &fe); 591 } 592 593 /* RSS config C2 lookup */ 594 mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id), 595 &fe); 596 597 mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2); 598 mvpp2_cls_flow_port_id_sel(&fe, true); 599 mvpp2_cls_flow_lu_type_set(&fe, MVPP22_FLOW_ETHERNET); 600 601 /* Add all ports */ 602 for (i = 0; i < MVPP2_MAX_PORTS; i++) 603 mvpp2_cls_flow_port_add(&fe, BIT(i)); 604 605 mvpp2_cls_flow_write(priv, &fe); 606 607 /* C3Hx lookups */ 608 for (i = 0; i < MVPP2_MAX_PORTS; i++) { 609 mvpp2_cls_flow_read(priv, 610 MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id), 611 &fe); 612 613 /* Set a default engine. Will be overwritten when setting the 614 * real HEK parameters 615 */ 616 mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA); 617 mvpp2_cls_flow_port_id_sel(&fe, true); 618 mvpp2_cls_flow_port_add(&fe, BIT(i)); 619 620 mvpp2_cls_flow_write(priv, &fe); 621 } 622 } 623 624 /* Adds a field to the Header Extracted Key generation parameters*/ 625 static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe, 626 u32 field_id) 627 { 628 int nb_fields = mvpp2_cls_flow_hek_num_get(fe); 629 630 if (nb_fields == MVPP2_FLOW_N_FIELDS) 631 return -EINVAL; 632 633 mvpp2_cls_flow_hek_set(fe, nb_fields, field_id); 634 635 mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1); 636 637 return 0; 638 } 639 640 static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe, 641 unsigned long hash_opts) 642 { 643 u32 field_id; 644 int i; 645 646 /* Clear old fields */ 647 mvpp2_cls_flow_hek_num_set(fe, 0); 648 fe->data[2] = 0; 649 650 for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { 651 switch (BIT(i)) { 652 case MVPP22_CLS_HEK_OPT_MAC_DA: 653 field_id = MVPP22_CLS_FIELD_MAC_DA; 654 break; 655 case MVPP22_CLS_HEK_OPT_VLAN: 656 field_id = MVPP22_CLS_FIELD_VLAN; 657 break; 658 case MVPP22_CLS_HEK_OPT_IP4SA: 659 field_id = MVPP22_CLS_FIELD_IP4SA; 660 break; 661 case MVPP22_CLS_HEK_OPT_IP4DA: 662 field_id = MVPP22_CLS_FIELD_IP4DA; 663 break; 664 case MVPP22_CLS_HEK_OPT_IP6SA: 665 field_id = MVPP22_CLS_FIELD_IP6SA; 666 break; 667 case MVPP22_CLS_HEK_OPT_IP6DA: 668 field_id = MVPP22_CLS_FIELD_IP6DA; 669 break; 670 case MVPP22_CLS_HEK_OPT_L4SIP: 671 field_id = MVPP22_CLS_FIELD_L4SIP; 672 break; 673 case MVPP22_CLS_HEK_OPT_L4DIP: 674 field_id = MVPP22_CLS_FIELD_L4DIP; 675 break; 676 default: 677 return -EINVAL; 678 } 679 if (mvpp2_flow_add_hek_field(fe, field_id)) 680 return -EINVAL; 681 } 682 683 return 0; 684 } 685 686 /* Returns the size, in bits, of the corresponding HEK field */ 687 static int mvpp2_cls_hek_field_size(u32 field) 688 { 689 switch (field) { 690 case MVPP22_CLS_HEK_OPT_MAC_DA: 691 return 48; 692 case MVPP22_CLS_HEK_OPT_IP4SA: 693 case MVPP22_CLS_HEK_OPT_IP4DA: 694 return 32; 695 case MVPP22_CLS_HEK_OPT_IP6SA: 696 case MVPP22_CLS_HEK_OPT_IP6DA: 697 return 128; 698 case MVPP22_CLS_HEK_OPT_L4SIP: 699 case MVPP22_CLS_HEK_OPT_L4DIP: 700 return 16; 701 default: 702 return -1; 703 } 704 } 705 706 const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow) 707 { 708 if (flow >= MVPP2_N_PRS_FLOWS) 709 return NULL; 710 711 return &cls_flows[flow]; 712 } 713 714 /* Set the hash generation options for the given traffic flow. 715 * One traffic flow (in the ethtool sense) has multiple classification flows, 716 * to handle specific cases such as fragmentation, or the presence of a 717 * VLAN / DSA Tag. 718 * 719 * Each of these individual flows has different constraints, for example we 720 * can't hash fragmented packets on L4 data (else we would risk having packet 721 * re-ordering), so each classification flows masks the options with their 722 * supported ones. 723 * 724 */ 725 static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type, 726 u16 requested_opts) 727 { 728 const struct mvpp2_cls_flow *flow; 729 struct mvpp2_cls_flow_entry fe; 730 int i, engine, flow_index; 731 u16 hash_opts; 732 733 for_each_cls_flow_id_with_type(i, flow_type) { 734 flow = mvpp2_cls_flow_get(i); 735 if (!flow) 736 return -EINVAL; 737 738 flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id); 739 740 mvpp2_cls_flow_read(port->priv, flow_index, &fe); 741 742 hash_opts = flow->supported_hash_opts & requested_opts; 743 744 /* Use C3HB engine to access L4 infos. This adds L4 infos to the 745 * hash parameters 746 */ 747 if (hash_opts & MVPP22_CLS_HEK_L4_OPTS) 748 engine = MVPP22_CLS_ENGINE_C3HB; 749 else 750 engine = MVPP22_CLS_ENGINE_C3HA; 751 752 if (mvpp2_flow_set_hek_fields(&fe, hash_opts)) 753 return -EINVAL; 754 755 mvpp2_cls_flow_eng_set(&fe, engine); 756 757 mvpp2_cls_flow_write(port->priv, &fe); 758 } 759 760 return 0; 761 } 762 763 u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe) 764 { 765 u16 hash_opts = 0; 766 int n_fields, i, field; 767 768 n_fields = mvpp2_cls_flow_hek_num_get(fe); 769 770 for (i = 0; i < n_fields; i++) { 771 field = mvpp2_cls_flow_hek_get(fe, i); 772 773 switch (field) { 774 case MVPP22_CLS_FIELD_MAC_DA: 775 hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; 776 break; 777 case MVPP22_CLS_FIELD_VLAN: 778 hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; 779 break; 780 case MVPP22_CLS_FIELD_L3_PROTO: 781 hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; 782 break; 783 case MVPP22_CLS_FIELD_IP4SA: 784 hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA; 785 break; 786 case MVPP22_CLS_FIELD_IP4DA: 787 hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA; 788 break; 789 case MVPP22_CLS_FIELD_IP6SA: 790 hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA; 791 break; 792 case MVPP22_CLS_FIELD_IP6DA: 793 hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA; 794 break; 795 case MVPP22_CLS_FIELD_L4SIP: 796 hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; 797 break; 798 case MVPP22_CLS_FIELD_L4DIP: 799 hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; 800 break; 801 default: 802 break; 803 } 804 } 805 return hash_opts; 806 } 807 808 /* Returns the hash opts for this flow. There are several classifier flows 809 * for one traffic flow, this returns an aggregation of all configurations. 810 */ 811 static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type) 812 { 813 const struct mvpp2_cls_flow *flow; 814 struct mvpp2_cls_flow_entry fe; 815 int i, flow_index; 816 u16 hash_opts = 0; 817 818 for_each_cls_flow_id_with_type(i, flow_type) { 819 flow = mvpp2_cls_flow_get(i); 820 if (!flow) 821 return 0; 822 823 flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id); 824 825 mvpp2_cls_flow_read(port->priv, flow_index, &fe); 826 827 hash_opts |= mvpp2_flow_get_hek_fields(&fe); 828 } 829 830 return hash_opts; 831 } 832 833 static void mvpp2_cls_port_init_flows(struct mvpp2 *priv) 834 { 835 const struct mvpp2_cls_flow *flow; 836 int i; 837 838 for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) { 839 flow = mvpp2_cls_flow_get(i); 840 if (!flow) 841 break; 842 843 mvpp2_cls_flow_prs_init(priv, flow); 844 mvpp2_cls_flow_lkp_init(priv, flow); 845 mvpp2_cls_flow_init(priv, flow); 846 } 847 } 848 849 static void mvpp2_port_c2_cls_init(struct mvpp2_port *port) 850 { 851 struct mvpp2_cls_c2_entry c2; 852 u8 qh, ql, pmap; 853 854 memset(&c2, 0, sizeof(c2)); 855 856 c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id); 857 858 pmap = BIT(port->id); 859 c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap); 860 c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap)); 861 862 /* Match on Lookup Type */ 863 c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK)); 864 c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_FLOW_ETHERNET); 865 866 /* Update RSS status after matching this entry */ 867 c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK); 868 869 /* Mark packet as "forwarded to software", needed for RSS */ 870 c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK); 871 872 /* Configure the default rx queue : Update Queue Low and Queue High, but 873 * don't lock, since the rx queue selection might be overridden by RSS 874 */ 875 c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) | 876 MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD); 877 878 qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; 879 ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK; 880 881 c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | 882 MVPP22_CLS_C2_ATTR0_QLOW(ql); 883 884 c2.valid = true; 885 886 mvpp2_cls_c2_write(port->priv, &c2); 887 } 888 889 /* Classifier default initialization */ 890 void mvpp2_cls_init(struct mvpp2 *priv) 891 { 892 struct mvpp2_cls_lookup_entry le; 893 struct mvpp2_cls_flow_entry fe; 894 struct mvpp2_cls_c2_entry c2; 895 int index; 896 897 /* Enable classifier */ 898 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); 899 900 /* Clear classifier flow table */ 901 memset(&fe.data, 0, sizeof(fe.data)); 902 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { 903 fe.index = index; 904 mvpp2_cls_flow_write(priv, &fe); 905 } 906 907 /* Clear classifier lookup table */ 908 le.data = 0; 909 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { 910 le.lkpid = index; 911 le.way = 0; 912 mvpp2_cls_lookup_write(priv, &le); 913 914 le.way = 1; 915 mvpp2_cls_lookup_write(priv, &le); 916 } 917 918 /* Clear C2 TCAM engine table */ 919 memset(&c2, 0, sizeof(c2)); 920 c2.valid = false; 921 for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) { 922 c2.index = index; 923 mvpp2_cls_c2_write(priv, &c2); 924 } 925 926 mvpp2_cls_port_init_flows(priv); 927 } 928 929 void mvpp2_cls_port_config(struct mvpp2_port *port) 930 { 931 struct mvpp2_cls_lookup_entry le; 932 u32 val; 933 934 /* Set way for the port */ 935 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); 936 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); 937 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); 938 939 /* Pick the entry to be accessed in lookup ID decoding table 940 * according to the way and lkpid. 941 */ 942 le.lkpid = port->id; 943 le.way = 0; 944 le.data = 0; 945 946 /* Set initial CPU queue for receiving packets */ 947 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; 948 le.data |= port->first_rxq; 949 950 /* Disable classification engines */ 951 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; 952 953 /* Update lookup ID table entry */ 954 mvpp2_cls_lookup_write(port->priv, &le); 955 956 mvpp2_port_c2_cls_init(port); 957 } 958 959 u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index) 960 { 961 mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index); 962 963 return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR); 964 } 965 966 static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port) 967 { 968 struct mvpp2_cls_c2_entry c2; 969 970 mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); 971 972 c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN; 973 974 mvpp2_cls_c2_write(port->priv, &c2); 975 } 976 977 static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port) 978 { 979 struct mvpp2_cls_c2_entry c2; 980 981 mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2); 982 983 c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN; 984 985 mvpp2_cls_c2_write(port->priv, &c2); 986 } 987 988 void mvpp22_port_rss_enable(struct mvpp2_port *port) 989 { 990 mvpp2_rss_port_c2_enable(port); 991 } 992 993 void mvpp22_port_rss_disable(struct mvpp2_port *port) 994 { 995 mvpp2_rss_port_c2_disable(port); 996 } 997 998 static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry) 999 { 1000 struct mvpp2_cls_c2_entry c2; 1001 1002 mvpp2_cls_c2_read(port->priv, entry, &c2); 1003 1004 /* Clear the port map so that the entry doesn't match anymore */ 1005 c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id))); 1006 1007 mvpp2_cls_c2_write(port->priv, &c2); 1008 } 1009 1010 /* Set CPU queue number for oversize packets */ 1011 void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) 1012 { 1013 u32 val; 1014 1015 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), 1016 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); 1017 1018 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), 1019 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); 1020 1021 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); 1022 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); 1023 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); 1024 } 1025 1026 static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port, 1027 struct mvpp2_rfs_rule *rule) 1028 { 1029 struct flow_action_entry *act; 1030 struct mvpp2_cls_c2_entry c2; 1031 u8 qh, ql, pmap; 1032 int index; 1033 1034 memset(&c2, 0, sizeof(c2)); 1035 1036 index = mvpp2_cls_c2_port_flow_index(port, rule->loc); 1037 if (index < 0) 1038 return -EINVAL; 1039 c2.index = index; 1040 1041 act = &rule->flow->action.entries[0]; 1042 1043 rule->c2_index = c2.index; 1044 1045 c2.tcam[0] = (rule->c2_tcam & 0xffff) | 1046 ((rule->c2_tcam_mask & 0xffff) << 16); 1047 c2.tcam[1] = ((rule->c2_tcam >> 16) & 0xffff) | 1048 (((rule->c2_tcam_mask >> 16) & 0xffff) << 16); 1049 c2.tcam[2] = ((rule->c2_tcam >> 32) & 0xffff) | 1050 (((rule->c2_tcam_mask >> 32) & 0xffff) << 16); 1051 c2.tcam[3] = ((rule->c2_tcam >> 48) & 0xffff) | 1052 (((rule->c2_tcam_mask >> 48) & 0xffff) << 16); 1053 1054 pmap = BIT(port->id); 1055 c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap); 1056 c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap)); 1057 1058 /* Match on Lookup Type */ 1059 c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK)); 1060 c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc); 1061 1062 if (act->id == FLOW_ACTION_DROP) { 1063 c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK); 1064 } else { 1065 /* We want to keep the default color derived from the Header 1066 * Parser drop entries, for VLAN and MAC filtering. This will 1067 * assign a default color of Green or Red, and we want matches 1068 * with a non-drop action to keep that color. 1069 */ 1070 c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK); 1071 1072 /* Mark packet as "forwarded to software", needed for RSS */ 1073 c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK); 1074 1075 c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) | 1076 MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK); 1077 1078 qh = ((act->queue.index + port->first_rxq) >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK; 1079 ql = (act->queue.index + port->first_rxq) & MVPP22_CLS_C2_ATTR0_QLOW_MASK; 1080 1081 c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) | 1082 MVPP22_CLS_C2_ATTR0_QLOW(ql); 1083 } 1084 1085 c2.valid = true; 1086 1087 mvpp2_cls_c2_write(port->priv, &c2); 1088 1089 return 0; 1090 } 1091 1092 static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port, 1093 struct mvpp2_rfs_rule *rule) 1094 { 1095 return mvpp2_port_c2_tcam_rule_add(port, rule); 1096 } 1097 1098 static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port, 1099 struct mvpp2_rfs_rule *rule) 1100 { 1101 const struct mvpp2_cls_flow *flow; 1102 struct mvpp2_cls_flow_entry fe; 1103 int index, i; 1104 1105 for_each_cls_flow_id_containing_type(i, rule->flow_type) { 1106 flow = mvpp2_cls_flow_get(i); 1107 if (!flow) 1108 return 0; 1109 1110 index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc); 1111 1112 mvpp2_cls_flow_read(port->priv, index, &fe); 1113 mvpp2_cls_flow_port_remove(&fe, BIT(port->id)); 1114 mvpp2_cls_flow_write(port->priv, &fe); 1115 } 1116 1117 if (rule->c2_index >= 0) 1118 mvpp22_port_c2_lookup_disable(port, rule->c2_index); 1119 1120 return 0; 1121 } 1122 1123 static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port, 1124 struct mvpp2_rfs_rule *rule) 1125 { 1126 const struct mvpp2_cls_flow *flow; 1127 struct mvpp2 *priv = port->priv; 1128 struct mvpp2_cls_flow_entry fe; 1129 int index, ret, i; 1130 1131 if (rule->engine != MVPP22_CLS_ENGINE_C2) 1132 return -EOPNOTSUPP; 1133 1134 ret = mvpp2_port_c2_rfs_rule_insert(port, rule); 1135 if (ret) 1136 return ret; 1137 1138 for_each_cls_flow_id_containing_type(i, rule->flow_type) { 1139 flow = mvpp2_cls_flow_get(i); 1140 if (!flow) 1141 return 0; 1142 1143 index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc); 1144 1145 mvpp2_cls_flow_read(priv, index, &fe); 1146 mvpp2_cls_flow_eng_set(&fe, rule->engine); 1147 mvpp2_cls_flow_port_id_sel(&fe, true); 1148 mvpp2_flow_set_hek_fields(&fe, rule->hek_fields); 1149 mvpp2_cls_flow_lu_type_set(&fe, rule->loc); 1150 mvpp2_cls_flow_port_add(&fe, 0xf); 1151 1152 mvpp2_cls_flow_write(priv, &fe); 1153 } 1154 1155 return 0; 1156 } 1157 1158 static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule) 1159 { 1160 struct flow_rule *flow = rule->flow; 1161 int offs = 64; 1162 1163 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) { 1164 struct flow_match_ports match; 1165 1166 flow_rule_match_ports(flow, &match); 1167 if (match.mask->src) { 1168 rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP; 1169 offs -= mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP); 1170 1171 rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs; 1172 rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs; 1173 } 1174 1175 if (match.mask->dst) { 1176 rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP; 1177 offs -= mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP); 1178 1179 rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs; 1180 rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs; 1181 } 1182 } 1183 1184 if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS) 1185 return -EOPNOTSUPP; 1186 1187 return 0; 1188 } 1189 1190 static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule) 1191 { 1192 struct flow_rule *flow = rule->flow; 1193 struct flow_action_entry *act; 1194 1195 act = &flow->action.entries[0]; 1196 if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP) 1197 return -EOPNOTSUPP; 1198 1199 /* For now, only use the C2 engine which has a HEK size limited to 64 1200 * bits for TCAM matching. 1201 */ 1202 rule->engine = MVPP22_CLS_ENGINE_C2; 1203 1204 if (mvpp2_cls_c2_build_match(rule)) 1205 return -EINVAL; 1206 1207 return 0; 1208 } 1209 1210 int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port, 1211 struct ethtool_rxnfc *rxnfc) 1212 { 1213 struct mvpp2_ethtool_fs *efs; 1214 1215 if (rxnfc->fs.location >= MVPP2_N_RFS_RULES) 1216 return -EINVAL; 1217 1218 efs = port->rfs_rules[rxnfc->fs.location]; 1219 if (!efs) 1220 return -ENOENT; 1221 1222 memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc)); 1223 1224 return 0; 1225 } 1226 1227 int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port, 1228 struct ethtool_rxnfc *info) 1229 { 1230 struct ethtool_rx_flow_spec_input input = {}; 1231 struct ethtool_rx_flow_rule *ethtool_rule; 1232 struct mvpp2_ethtool_fs *efs, *old_efs; 1233 int ret = 0; 1234 1235 if (info->fs.location >= 4 || 1236 info->fs.location < 0) 1237 return -EINVAL; 1238 1239 efs = kzalloc(sizeof(*efs), GFP_KERNEL); 1240 if (!efs) 1241 return -ENOMEM; 1242 1243 input.fs = &info->fs; 1244 1245 ethtool_rule = ethtool_rx_flow_rule_create(&input); 1246 if (IS_ERR(ethtool_rule)) { 1247 ret = PTR_ERR(ethtool_rule); 1248 goto clean_rule; 1249 } 1250 1251 efs->rule.flow = ethtool_rule->rule; 1252 efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type); 1253 1254 ret = mvpp2_cls_rfs_parse_rule(&efs->rule); 1255 if (ret) 1256 goto clean_eth_rule; 1257 1258 efs->rule.loc = info->fs.location; 1259 1260 /* Replace an already existing rule */ 1261 if (port->rfs_rules[efs->rule.loc]) { 1262 old_efs = port->rfs_rules[efs->rule.loc]; 1263 ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule); 1264 if (ret) 1265 goto clean_eth_rule; 1266 kfree(old_efs); 1267 port->n_rfs_rules--; 1268 } 1269 1270 ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule); 1271 if (ret) 1272 goto clean_eth_rule; 1273 1274 memcpy(&efs->rxnfc, info, sizeof(*info)); 1275 port->rfs_rules[efs->rule.loc] = efs; 1276 port->n_rfs_rules++; 1277 1278 return ret; 1279 1280 clean_eth_rule: 1281 ethtool_rx_flow_rule_destroy(ethtool_rule); 1282 clean_rule: 1283 kfree(efs); 1284 return ret; 1285 } 1286 1287 int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port, 1288 struct ethtool_rxnfc *info) 1289 { 1290 struct mvpp2_ethtool_fs *efs; 1291 int ret; 1292 1293 efs = port->rfs_rules[info->fs.location]; 1294 if (!efs) 1295 return -EINVAL; 1296 1297 /* Remove the rule from the engines. */ 1298 ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule); 1299 if (ret) 1300 return ret; 1301 1302 port->n_rfs_rules--; 1303 port->rfs_rules[info->fs.location] = NULL; 1304 kfree(efs); 1305 1306 return 0; 1307 } 1308 1309 static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq) 1310 { 1311 int nrxqs, cpu, cpus = num_possible_cpus(); 1312 1313 /* Number of RXQs per CPU */ 1314 nrxqs = port->nrxqs / cpus; 1315 1316 /* CPU that will handle this rx queue */ 1317 cpu = rxq / nrxqs; 1318 1319 if (!cpu_online(cpu)) 1320 return port->first_rxq; 1321 1322 /* Indirection to better distribute the paquets on the CPUs when 1323 * configuring the RSS queues. 1324 */ 1325 return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs); 1326 } 1327 1328 void mvpp22_rss_fill_table(struct mvpp2_port *port, u32 table) 1329 { 1330 struct mvpp2 *priv = port->priv; 1331 int i; 1332 1333 for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) { 1334 u32 sel = MVPP22_RSS_INDEX_TABLE(table) | 1335 MVPP22_RSS_INDEX_TABLE_ENTRY(i); 1336 mvpp2_write(priv, MVPP22_RSS_INDEX, sel); 1337 1338 mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY, 1339 mvpp22_rxfh_indir(port, port->indir[i])); 1340 } 1341 } 1342 1343 int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info) 1344 { 1345 u16 hash_opts = 0; 1346 u32 flow_type; 1347 1348 flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type); 1349 1350 switch (flow_type) { 1351 case MVPP22_FLOW_TCP4: 1352 case MVPP22_FLOW_UDP4: 1353 case MVPP22_FLOW_TCP6: 1354 case MVPP22_FLOW_UDP6: 1355 if (info->data & RXH_L4_B_0_1) 1356 hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP; 1357 if (info->data & RXH_L4_B_2_3) 1358 hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP; 1359 /* Fallthrough */ 1360 case MVPP22_FLOW_IP4: 1361 case MVPP22_FLOW_IP6: 1362 if (info->data & RXH_L2DA) 1363 hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA; 1364 if (info->data & RXH_VLAN) 1365 hash_opts |= MVPP22_CLS_HEK_OPT_VLAN; 1366 if (info->data & RXH_L3_PROTO) 1367 hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO; 1368 if (info->data & RXH_IP_SRC) 1369 hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA | 1370 MVPP22_CLS_HEK_OPT_IP6SA); 1371 if (info->data & RXH_IP_DST) 1372 hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA | 1373 MVPP22_CLS_HEK_OPT_IP6DA); 1374 break; 1375 default: return -EOPNOTSUPP; 1376 } 1377 1378 return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts); 1379 } 1380 1381 int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info) 1382 { 1383 unsigned long hash_opts; 1384 u32 flow_type; 1385 int i; 1386 1387 flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type); 1388 1389 hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type); 1390 info->data = 0; 1391 1392 for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) { 1393 switch (BIT(i)) { 1394 case MVPP22_CLS_HEK_OPT_MAC_DA: 1395 info->data |= RXH_L2DA; 1396 break; 1397 case MVPP22_CLS_HEK_OPT_VLAN: 1398 info->data |= RXH_VLAN; 1399 break; 1400 case MVPP22_CLS_HEK_OPT_L3_PROTO: 1401 info->data |= RXH_L3_PROTO; 1402 break; 1403 case MVPP22_CLS_HEK_OPT_IP4SA: 1404 case MVPP22_CLS_HEK_OPT_IP6SA: 1405 info->data |= RXH_IP_SRC; 1406 break; 1407 case MVPP22_CLS_HEK_OPT_IP4DA: 1408 case MVPP22_CLS_HEK_OPT_IP6DA: 1409 info->data |= RXH_IP_DST; 1410 break; 1411 case MVPP22_CLS_HEK_OPT_L4SIP: 1412 info->data |= RXH_L4_B_0_1; 1413 break; 1414 case MVPP22_CLS_HEK_OPT_L4DIP: 1415 info->data |= RXH_L4_B_2_3; 1416 break; 1417 default: 1418 return -EINVAL; 1419 } 1420 } 1421 return 0; 1422 } 1423 1424 void mvpp22_port_rss_init(struct mvpp2_port *port) 1425 { 1426 struct mvpp2 *priv = port->priv; 1427 int i; 1428 1429 /* Set the table width: replace the whole classifier Rx queue number 1430 * with the ones configured in RSS table entries. 1431 */ 1432 mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(port->id)); 1433 mvpp2_write(priv, MVPP22_RSS_WIDTH, 8); 1434 1435 /* The default RxQ is used as a key to select the RSS table to use. 1436 * We use one RSS table per port. 1437 */ 1438 mvpp2_write(priv, MVPP22_RSS_INDEX, 1439 MVPP22_RSS_INDEX_QUEUE(port->first_rxq)); 1440 mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, 1441 MVPP22_RSS_TABLE_POINTER(port->id)); 1442 1443 /* Configure the first table to evenly distribute the packets across 1444 * real Rx Queues. The table entries map a hash to a port Rx Queue. 1445 */ 1446 for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) 1447 port->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs); 1448 1449 mvpp22_rss_fill_table(port, port->id); 1450 1451 /* Configure default flows */ 1452 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T); 1453 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T); 1454 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T); 1455 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T); 1456 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T); 1457 mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T); 1458 } 1459