1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
193 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
194 #define MVNETA_GMAC_CTRL_2                       0x2c08
195 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
196 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
197 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
198 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
199 #define MVNETA_GMAC_STATUS                       0x2c10
200 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
201 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
202 #define      MVNETA_GMAC_SPEED_100               BIT(2)
203 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
206 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
207 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
208 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
209 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
211 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
212 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
213 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
214 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
215 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
216 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
217 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
218 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
219 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
220 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
221 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
222 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
223 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
225 #define      MVNETA_MIB_LATE_COLLISION           0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
231 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
232 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
234 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
235 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
236 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
237 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
238 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
239 #define MVNETA_PORT_TX_RESET                     0x3cf0
240 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
241 #define MVNETA_TX_MTU                            0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
243 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
245 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
246 
247 #define MVNETA_LPI_CTRL_0                        0x2cc0
248 #define MVNETA_LPI_CTRL_1                        0x2cc4
249 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
250 #define MVNETA_LPI_CTRL_2                        0x2cc8
251 #define MVNETA_LPI_STATUS                        0x2ccc
252 
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
254 
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
257 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
258 
259 /* Various constants */
260 
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS		32
264 #define MVNETA_RX_COAL_USEC		100
265 
266 /* The two bytes Marvell header. Either contains a special value used
267  * by Marvell switches when a specific hardware mode is enabled (not
268  * supported by this driver) or is filled automatically by zeroes on
269  * the RX side. Those two bytes being at the front of the Ethernet
270  * header, they allow to have the IP header aligned on a 4 bytes
271  * boundary automatically: the hardware skips those two bytes on its
272  * own.
273  */
274 #define MVNETA_MH_SIZE			2
275 
276 #define MVNETA_VLAN_TAG_LEN             4
277 
278 #define MVNETA_TX_CSUM_DEF_SIZE		1600
279 #define MVNETA_TX_CSUM_MAX_SIZE		9800
280 #define MVNETA_ACC_MODE_EXT1		1
281 #define MVNETA_ACC_MODE_EXT2		2
282 
283 #define MVNETA_MAX_DECODE_WIN		6
284 
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
289 
290 #define MVNETA_TX_MTU_MAX		0x3ffff
291 
292 /* The RSS lookup table actually has 256 entries but we do not use
293  * them yet
294  */
295 #define MVNETA_RSS_LU_TABLE_SIZE	1
296 
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 512
299 
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 1024
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305 
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307 
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE	32
310 
311 /* Number of bytes to be taken into account by HW when putting incoming data
312  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314  */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
316 
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 	      ETH_HLEN + ETH_FCS_LEN,			     \
320 	      cache_line_size())
321 
322 #define IS_TSO_HEADER(txq, addr) \
323 	((addr >= txq->tso_hdrs_phys) && \
324 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325 
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328 
329 enum {
330 	ETHTOOL_STAT_EEE_WAKEUP,
331 	ETHTOOL_STAT_SKB_ALLOC_ERR,
332 	ETHTOOL_STAT_REFILL_ERR,
333 	ETHTOOL_MAX_STATS,
334 };
335 
336 struct mvneta_statistic {
337 	unsigned short offset;
338 	unsigned short type;
339 	const char name[ETH_GSTRING_LEN];
340 };
341 
342 #define T_REG_32	32
343 #define T_REG_64	64
344 #define T_SW		1
345 
346 static const struct mvneta_statistic mvneta_statistics[] = {
347 	{ 0x3000, T_REG_64, "good_octets_received", },
348 	{ 0x3010, T_REG_32, "good_frames_received", },
349 	{ 0x3008, T_REG_32, "bad_octets_received", },
350 	{ 0x3014, T_REG_32, "bad_frames_received", },
351 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
352 	{ 0x301c, T_REG_32, "multicast_frames_received", },
353 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
354 	{ 0x3058, T_REG_32, "good_fc_received", },
355 	{ 0x305c, T_REG_32, "bad_fc_received", },
356 	{ 0x3060, T_REG_32, "undersize_received", },
357 	{ 0x3064, T_REG_32, "fragments_received", },
358 	{ 0x3068, T_REG_32, "oversize_received", },
359 	{ 0x306c, T_REG_32, "jabber_received", },
360 	{ 0x3070, T_REG_32, "mac_receive_error", },
361 	{ 0x3074, T_REG_32, "bad_crc_event", },
362 	{ 0x3078, T_REG_32, "collision", },
363 	{ 0x307c, T_REG_32, "late_collision", },
364 	{ 0x2484, T_REG_32, "rx_discard", },
365 	{ 0x2488, T_REG_32, "rx_overrun", },
366 	{ 0x3020, T_REG_32, "frames_64_octets", },
367 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
368 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
369 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
370 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
371 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
372 	{ 0x3038, T_REG_64, "good_octets_sent", },
373 	{ 0x3040, T_REG_32, "good_frames_sent", },
374 	{ 0x3044, T_REG_32, "excessive_collision", },
375 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
376 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
377 	{ 0x3054, T_REG_32, "fc_sent", },
378 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
379 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
380 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
381 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
382 };
383 
384 struct mvneta_pcpu_stats {
385 	struct	u64_stats_sync syncp;
386 	u64	rx_packets;
387 	u64	rx_bytes;
388 	u64	tx_packets;
389 	u64	tx_bytes;
390 };
391 
392 struct mvneta_pcpu_port {
393 	/* Pointer to the shared port */
394 	struct mvneta_port	*pp;
395 
396 	/* Pointer to the CPU-local NAPI struct */
397 	struct napi_struct	napi;
398 
399 	/* Cause of the previous interrupt */
400 	u32			cause_rx_tx;
401 };
402 
403 struct mvneta_port {
404 	u8 id;
405 	struct mvneta_pcpu_port __percpu	*ports;
406 	struct mvneta_pcpu_stats __percpu	*stats;
407 
408 	int pkt_size;
409 	unsigned int frag_size;
410 	void __iomem *base;
411 	struct mvneta_rx_queue *rxqs;
412 	struct mvneta_tx_queue *txqs;
413 	struct net_device *dev;
414 	struct hlist_node node_online;
415 	struct hlist_node node_dead;
416 	int rxq_def;
417 	/* Protect the access to the percpu interrupt registers,
418 	 * ensuring that the configuration remains coherent.
419 	 */
420 	spinlock_t lock;
421 	bool is_stopped;
422 
423 	u32 cause_rx_tx;
424 	struct napi_struct napi;
425 
426 	/* Core clock */
427 	struct clk *clk;
428 	/* AXI clock */
429 	struct clk *clk_bus;
430 	u8 mcast_count[256];
431 	u16 tx_ring_size;
432 	u16 rx_ring_size;
433 
434 	phy_interface_t phy_interface;
435 	struct device_node *dn;
436 	unsigned int tx_csum_limit;
437 	struct phylink *phylink;
438 
439 	struct mvneta_bm *bm_priv;
440 	struct mvneta_bm_pool *pool_long;
441 	struct mvneta_bm_pool *pool_short;
442 	int bm_win_id;
443 
444 	bool eee_enabled;
445 	bool eee_active;
446 	bool tx_lpi_enabled;
447 
448 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
449 
450 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
451 
452 	/* Flags for special SoC configurations */
453 	bool neta_armada3700;
454 	u16 rx_offset_correction;
455 	const struct mbus_dram_target_info *dram_target_info;
456 };
457 
458 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
459  * layout of the transmit and reception DMA descriptors, and their
460  * layout is therefore defined by the hardware design
461  */
462 
463 #define MVNETA_TX_L3_OFF_SHIFT	0
464 #define MVNETA_TX_IP_HLEN_SHIFT	8
465 #define MVNETA_TX_L4_UDP	BIT(16)
466 #define MVNETA_TX_L3_IP6	BIT(17)
467 #define MVNETA_TXD_IP_CSUM	BIT(18)
468 #define MVNETA_TXD_Z_PAD	BIT(19)
469 #define MVNETA_TXD_L_DESC	BIT(20)
470 #define MVNETA_TXD_F_DESC	BIT(21)
471 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
472 				 MVNETA_TXD_L_DESC | \
473 				 MVNETA_TXD_F_DESC)
474 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
475 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
476 
477 #define MVNETA_RXD_ERR_CRC		0x0
478 #define MVNETA_RXD_BM_POOL_SHIFT	13
479 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
480 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
481 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
482 #define MVNETA_RXD_ERR_LEN		BIT(18)
483 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
484 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
485 #define MVNETA_RXD_L3_IP4		BIT(25)
486 #define MVNETA_RXD_LAST_DESC		BIT(26)
487 #define MVNETA_RXD_FIRST_DESC		BIT(27)
488 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
489 					 MVNETA_RXD_LAST_DESC)
490 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
491 
492 #if defined(__LITTLE_ENDIAN)
493 struct mvneta_tx_desc {
494 	u32  command;		/* Options used by HW for packet transmitting.*/
495 	u16  reserverd1;	/* csum_l4 (for future use)		*/
496 	u16  data_size;		/* Data size of transmitted packet in bytes */
497 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
498 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
499 	u32  reserved3[4];	/* Reserved - (for future use)		*/
500 };
501 
502 struct mvneta_rx_desc {
503 	u32  status;		/* Info about received packet		*/
504 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
505 	u16  data_size;		/* Size of received packet in bytes	*/
506 
507 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
508 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
509 
510 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
511 	u16  reserved3;		/* prefetch_cmd, for future use		*/
512 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
513 
514 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
515 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
516 };
517 #else
518 struct mvneta_tx_desc {
519 	u16  data_size;		/* Data size of transmitted packet in bytes */
520 	u16  reserverd1;	/* csum_l4 (for future use)		*/
521 	u32  command;		/* Options used by HW for packet transmitting.*/
522 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
523 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
524 	u32  reserved3[4];	/* Reserved - (for future use)		*/
525 };
526 
527 struct mvneta_rx_desc {
528 	u16  data_size;		/* Size of received packet in bytes	*/
529 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
530 	u32  status;		/* Info about received packet		*/
531 
532 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
533 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
534 
535 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
536 	u16  reserved3;		/* prefetch_cmd, for future use		*/
537 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
538 
539 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
540 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
541 };
542 #endif
543 
544 struct mvneta_tx_queue {
545 	/* Number of this TX queue, in the range 0-7 */
546 	u8 id;
547 
548 	/* Number of TX DMA descriptors in the descriptor ring */
549 	int size;
550 
551 	/* Number of currently used TX DMA descriptor in the
552 	 * descriptor ring
553 	 */
554 	int count;
555 	int pending;
556 	int tx_stop_threshold;
557 	int tx_wake_threshold;
558 
559 	/* Array of transmitted skb */
560 	struct sk_buff **tx_skb;
561 
562 	/* Index of last TX DMA descriptor that was inserted */
563 	int txq_put_index;
564 
565 	/* Index of the TX DMA descriptor to be cleaned up */
566 	int txq_get_index;
567 
568 	u32 done_pkts_coal;
569 
570 	/* Virtual address of the TX DMA descriptors array */
571 	struct mvneta_tx_desc *descs;
572 
573 	/* DMA address of the TX DMA descriptors array */
574 	dma_addr_t descs_phys;
575 
576 	/* Index of the last TX DMA descriptor */
577 	int last_desc;
578 
579 	/* Index of the next TX DMA descriptor to process */
580 	int next_desc_to_proc;
581 
582 	/* DMA buffers for TSO headers */
583 	char *tso_hdrs;
584 
585 	/* DMA address of TSO headers */
586 	dma_addr_t tso_hdrs_phys;
587 
588 	/* Affinity mask for CPUs*/
589 	cpumask_t affinity_mask;
590 };
591 
592 struct mvneta_rx_queue {
593 	/* rx queue number, in the range 0-7 */
594 	u8 id;
595 
596 	/* num of rx descriptors in the rx descriptor ring */
597 	int size;
598 
599 	u32 pkts_coal;
600 	u32 time_coal;
601 
602 	/* Virtual address of the RX buffer */
603 	void  **buf_virt_addr;
604 
605 	/* Virtual address of the RX DMA descriptors array */
606 	struct mvneta_rx_desc *descs;
607 
608 	/* DMA address of the RX DMA descriptors array */
609 	dma_addr_t descs_phys;
610 
611 	/* Index of the last RX DMA descriptor */
612 	int last_desc;
613 
614 	/* Index of the next RX DMA descriptor to process */
615 	int next_desc_to_proc;
616 
617 	/* Index of first RX DMA descriptor to refill */
618 	int first_to_refill;
619 	u32 refill_num;
620 
621 	/* pointer to uncomplete skb buffer */
622 	struct sk_buff *skb;
623 	int left_size;
624 
625 	/* error counters */
626 	u32 skb_alloc_err;
627 	u32 refill_err;
628 };
629 
630 static enum cpuhp_state online_hpstate;
631 /* The hardware supports eight (8) rx queues, but we are only allowing
632  * the first one to be used. Therefore, let's just allocate one queue.
633  */
634 static int rxq_number = 8;
635 static int txq_number = 8;
636 
637 static int rxq_def;
638 
639 static int rx_copybreak __read_mostly = 256;
640 static int rx_header_size __read_mostly = 128;
641 
642 /* HW BM need that each port be identify by a unique ID */
643 static int global_port_id;
644 
645 #define MVNETA_DRIVER_NAME "mvneta"
646 #define MVNETA_DRIVER_VERSION "1.0"
647 
648 /* Utility/helper methods */
649 
650 /* Write helper method */
651 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
652 {
653 	writel(data, pp->base + offset);
654 }
655 
656 /* Read helper method */
657 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
658 {
659 	return readl(pp->base + offset);
660 }
661 
662 /* Increment txq get counter */
663 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
664 {
665 	txq->txq_get_index++;
666 	if (txq->txq_get_index == txq->size)
667 		txq->txq_get_index = 0;
668 }
669 
670 /* Increment txq put counter */
671 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
672 {
673 	txq->txq_put_index++;
674 	if (txq->txq_put_index == txq->size)
675 		txq->txq_put_index = 0;
676 }
677 
678 
679 /* Clear all MIB counters */
680 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
681 {
682 	int i;
683 	u32 dummy;
684 
685 	/* Perform dummy reads from MIB counters */
686 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
687 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
688 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
689 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
690 }
691 
692 /* Get System Network Statistics */
693 static void
694 mvneta_get_stats64(struct net_device *dev,
695 		   struct rtnl_link_stats64 *stats)
696 {
697 	struct mvneta_port *pp = netdev_priv(dev);
698 	unsigned int start;
699 	int cpu;
700 
701 	for_each_possible_cpu(cpu) {
702 		struct mvneta_pcpu_stats *cpu_stats;
703 		u64 rx_packets;
704 		u64 rx_bytes;
705 		u64 tx_packets;
706 		u64 tx_bytes;
707 
708 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
709 		do {
710 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
711 			rx_packets = cpu_stats->rx_packets;
712 			rx_bytes   = cpu_stats->rx_bytes;
713 			tx_packets = cpu_stats->tx_packets;
714 			tx_bytes   = cpu_stats->tx_bytes;
715 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
716 
717 		stats->rx_packets += rx_packets;
718 		stats->rx_bytes   += rx_bytes;
719 		stats->tx_packets += tx_packets;
720 		stats->tx_bytes   += tx_bytes;
721 	}
722 
723 	stats->rx_errors	= dev->stats.rx_errors;
724 	stats->rx_dropped	= dev->stats.rx_dropped;
725 
726 	stats->tx_dropped	= dev->stats.tx_dropped;
727 }
728 
729 /* Rx descriptors helper methods */
730 
731 /* Checks whether the RX descriptor having this status is both the first
732  * and the last descriptor for the RX packet. Each RX packet is currently
733  * received through a single RX descriptor, so not having each RX
734  * descriptor with its first and last bits set is an error
735  */
736 static int mvneta_rxq_desc_is_first_last(u32 status)
737 {
738 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
739 		MVNETA_RXD_FIRST_LAST_DESC;
740 }
741 
742 /* Add number of descriptors ready to receive new packets */
743 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
744 					  struct mvneta_rx_queue *rxq,
745 					  int ndescs)
746 {
747 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
748 	 * be added at once
749 	 */
750 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
751 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
752 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
753 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
754 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
755 	}
756 
757 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
758 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
759 }
760 
761 /* Get number of RX descriptors occupied by received packets */
762 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
763 					struct mvneta_rx_queue *rxq)
764 {
765 	u32 val;
766 
767 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
768 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
769 }
770 
771 /* Update num of rx desc called upon return from rx path or
772  * from mvneta_rxq_drop_pkts().
773  */
774 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
775 				       struct mvneta_rx_queue *rxq,
776 				       int rx_done, int rx_filled)
777 {
778 	u32 val;
779 
780 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
781 		val = rx_done |
782 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
783 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
784 		return;
785 	}
786 
787 	/* Only 255 descriptors can be added at once */
788 	while ((rx_done > 0) || (rx_filled > 0)) {
789 		if (rx_done <= 0xff) {
790 			val = rx_done;
791 			rx_done = 0;
792 		} else {
793 			val = 0xff;
794 			rx_done -= 0xff;
795 		}
796 		if (rx_filled <= 0xff) {
797 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
798 			rx_filled = 0;
799 		} else {
800 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
801 			rx_filled -= 0xff;
802 		}
803 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
804 	}
805 }
806 
807 /* Get pointer to next RX descriptor to be processed by SW */
808 static struct mvneta_rx_desc *
809 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
810 {
811 	int rx_desc = rxq->next_desc_to_proc;
812 
813 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
814 	prefetch(rxq->descs + rxq->next_desc_to_proc);
815 	return rxq->descs + rx_desc;
816 }
817 
818 /* Change maximum receive size of the port. */
819 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
820 {
821 	u32 val;
822 
823 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
824 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
825 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
826 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
827 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
828 }
829 
830 
831 /* Set rx queue offset */
832 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
833 				  struct mvneta_rx_queue *rxq,
834 				  int offset)
835 {
836 	u32 val;
837 
838 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
839 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
840 
841 	/* Offset is in */
842 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
843 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
844 }
845 
846 
847 /* Tx descriptors helper methods */
848 
849 /* Update HW with number of TX descriptors to be sent */
850 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
851 				     struct mvneta_tx_queue *txq,
852 				     int pend_desc)
853 {
854 	u32 val;
855 
856 	pend_desc += txq->pending;
857 
858 	/* Only 255 Tx descriptors can be added at once */
859 	do {
860 		val = min(pend_desc, 255);
861 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
862 		pend_desc -= val;
863 	} while (pend_desc > 0);
864 	txq->pending = 0;
865 }
866 
867 /* Get pointer to next TX descriptor to be processed (send) by HW */
868 static struct mvneta_tx_desc *
869 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
870 {
871 	int tx_desc = txq->next_desc_to_proc;
872 
873 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
874 	return txq->descs + tx_desc;
875 }
876 
877 /* Release the last allocated TX descriptor. Useful to handle DMA
878  * mapping failures in the TX path.
879  */
880 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
881 {
882 	if (txq->next_desc_to_proc == 0)
883 		txq->next_desc_to_proc = txq->last_desc - 1;
884 	else
885 		txq->next_desc_to_proc--;
886 }
887 
888 /* Set rxq buf size */
889 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
890 				    struct mvneta_rx_queue *rxq,
891 				    int buf_size)
892 {
893 	u32 val;
894 
895 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
896 
897 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
898 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
899 
900 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
901 }
902 
903 /* Disable buffer management (BM) */
904 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
905 				  struct mvneta_rx_queue *rxq)
906 {
907 	u32 val;
908 
909 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
910 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
911 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913 
914 /* Enable buffer management (BM) */
915 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
916 				 struct mvneta_rx_queue *rxq)
917 {
918 	u32 val;
919 
920 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
921 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
922 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
923 }
924 
925 /* Notify HW about port's assignment of pool for bigger packets */
926 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
927 				     struct mvneta_rx_queue *rxq)
928 {
929 	u32 val;
930 
931 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
932 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
933 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
934 
935 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
936 }
937 
938 /* Notify HW about port's assignment of pool for smaller packets */
939 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
940 				      struct mvneta_rx_queue *rxq)
941 {
942 	u32 val;
943 
944 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
945 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
946 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
947 
948 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
949 }
950 
951 /* Set port's receive buffer size for assigned BM pool */
952 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
953 					      int buf_size,
954 					      u8 pool_id)
955 {
956 	u32 val;
957 
958 	if (!IS_ALIGNED(buf_size, 8)) {
959 		dev_warn(pp->dev->dev.parent,
960 			 "illegal buf_size value %d, round to %d\n",
961 			 buf_size, ALIGN(buf_size, 8));
962 		buf_size = ALIGN(buf_size, 8);
963 	}
964 
965 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
966 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
967 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
968 }
969 
970 /* Configure MBUS window in order to enable access BM internal SRAM */
971 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
972 				  u8 target, u8 attr)
973 {
974 	u32 win_enable, win_protect;
975 	int i;
976 
977 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
978 
979 	if (pp->bm_win_id < 0) {
980 		/* Find first not occupied window */
981 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
982 			if (win_enable & (1 << i)) {
983 				pp->bm_win_id = i;
984 				break;
985 			}
986 		}
987 		if (i == MVNETA_MAX_DECODE_WIN)
988 			return -ENOMEM;
989 	} else {
990 		i = pp->bm_win_id;
991 	}
992 
993 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
994 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
995 
996 	if (i < 4)
997 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
998 
999 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1000 		    (attr << 8) | target);
1001 
1002 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1003 
1004 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1005 	win_protect |= 3 << (2 * i);
1006 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1007 
1008 	win_enable &= ~(1 << i);
1009 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1010 
1011 	return 0;
1012 }
1013 
1014 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1015 {
1016 	u32 wsize;
1017 	u8 target, attr;
1018 	int err;
1019 
1020 	/* Get BM window information */
1021 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1022 					 &target, &attr);
1023 	if (err < 0)
1024 		return err;
1025 
1026 	pp->bm_win_id = -1;
1027 
1028 	/* Open NETA -> BM window */
1029 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1030 				     target, attr);
1031 	if (err < 0) {
1032 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1033 		return err;
1034 	}
1035 	return 0;
1036 }
1037 
1038 /* Assign and initialize pools for port. In case of fail
1039  * buffer manager will remain disabled for current port.
1040  */
1041 static int mvneta_bm_port_init(struct platform_device *pdev,
1042 			       struct mvneta_port *pp)
1043 {
1044 	struct device_node *dn = pdev->dev.of_node;
1045 	u32 long_pool_id, short_pool_id;
1046 
1047 	if (!pp->neta_armada3700) {
1048 		int ret;
1049 
1050 		ret = mvneta_bm_port_mbus_init(pp);
1051 		if (ret)
1052 			return ret;
1053 	}
1054 
1055 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1056 		netdev_info(pp->dev, "missing long pool id\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	/* Create port's long pool depending on mtu */
1061 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1062 					   MVNETA_BM_LONG, pp->id,
1063 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1064 	if (!pp->pool_long) {
1065 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1066 		return -ENOMEM;
1067 	}
1068 
1069 	pp->pool_long->port_map |= 1 << pp->id;
1070 
1071 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1072 				   pp->pool_long->id);
1073 
1074 	/* If short pool id is not defined, assume using single pool */
1075 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1076 		short_pool_id = long_pool_id;
1077 
1078 	/* Create port's short pool */
1079 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1080 					    MVNETA_BM_SHORT, pp->id,
1081 					    MVNETA_BM_SHORT_PKT_SIZE);
1082 	if (!pp->pool_short) {
1083 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1084 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1085 		return -ENOMEM;
1086 	}
1087 
1088 	if (short_pool_id != long_pool_id) {
1089 		pp->pool_short->port_map |= 1 << pp->id;
1090 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1091 					   pp->pool_short->id);
1092 	}
1093 
1094 	return 0;
1095 }
1096 
1097 /* Update settings of a pool for bigger packets */
1098 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1099 {
1100 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1101 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1102 	int num;
1103 
1104 	/* Release all buffers from long pool */
1105 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1106 	if (hwbm_pool->buf_num) {
1107 		WARN(1, "cannot free all buffers in pool %d\n",
1108 		     bm_pool->id);
1109 		goto bm_mtu_err;
1110 	}
1111 
1112 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1113 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1114 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1115 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1116 
1117 	/* Fill entire long pool */
1118 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1119 	if (num != hwbm_pool->size) {
1120 		WARN(1, "pool %d: %d of %d allocated\n",
1121 		     bm_pool->id, num, hwbm_pool->size);
1122 		goto bm_mtu_err;
1123 	}
1124 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1125 
1126 	return;
1127 
1128 bm_mtu_err:
1129 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1130 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1131 
1132 	pp->bm_priv = NULL;
1133 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1134 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1135 }
1136 
1137 /* Start the Ethernet port RX and TX activity */
1138 static void mvneta_port_up(struct mvneta_port *pp)
1139 {
1140 	int queue;
1141 	u32 q_map;
1142 
1143 	/* Enable all initialized TXs. */
1144 	q_map = 0;
1145 	for (queue = 0; queue < txq_number; queue++) {
1146 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1147 		if (txq->descs)
1148 			q_map |= (1 << queue);
1149 	}
1150 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1151 
1152 	q_map = 0;
1153 	/* Enable all initialized RXQs. */
1154 	for (queue = 0; queue < rxq_number; queue++) {
1155 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1156 
1157 		if (rxq->descs)
1158 			q_map |= (1 << queue);
1159 	}
1160 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1161 }
1162 
1163 /* Stop the Ethernet port activity */
1164 static void mvneta_port_down(struct mvneta_port *pp)
1165 {
1166 	u32 val;
1167 	int count;
1168 
1169 	/* Stop Rx port activity. Check port Rx activity. */
1170 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1171 
1172 	/* Issue stop command for active channels only */
1173 	if (val != 0)
1174 		mvreg_write(pp, MVNETA_RXQ_CMD,
1175 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1176 
1177 	/* Wait for all Rx activity to terminate. */
1178 	count = 0;
1179 	do {
1180 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1181 			netdev_warn(pp->dev,
1182 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1183 				    val);
1184 			break;
1185 		}
1186 		mdelay(1);
1187 
1188 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1189 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1190 
1191 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1192 	 * command for active channels only
1193 	 */
1194 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1195 
1196 	if (val != 0)
1197 		mvreg_write(pp, MVNETA_TXQ_CMD,
1198 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1199 
1200 	/* Wait for all Tx activity to terminate. */
1201 	count = 0;
1202 	do {
1203 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1204 			netdev_warn(pp->dev,
1205 				    "TIMEOUT for TX stopped status=0x%08x\n",
1206 				    val);
1207 			break;
1208 		}
1209 		mdelay(1);
1210 
1211 		/* Check TX Command reg that all Txqs are stopped */
1212 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1213 
1214 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1215 
1216 	/* Double check to verify that TX FIFO is empty */
1217 	count = 0;
1218 	do {
1219 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1220 			netdev_warn(pp->dev,
1221 				    "TX FIFO empty timeout status=0x%08x\n",
1222 				    val);
1223 			break;
1224 		}
1225 		mdelay(1);
1226 
1227 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1228 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1229 		 (val & MVNETA_TX_IN_PRGRS));
1230 
1231 	udelay(200);
1232 }
1233 
1234 /* Enable the port by setting the port enable bit of the MAC control register */
1235 static void mvneta_port_enable(struct mvneta_port *pp)
1236 {
1237 	u32 val;
1238 
1239 	/* Enable port */
1240 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1241 	val |= MVNETA_GMAC0_PORT_ENABLE;
1242 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1243 }
1244 
1245 /* Disable the port and wait for about 200 usec before retuning */
1246 static void mvneta_port_disable(struct mvneta_port *pp)
1247 {
1248 	u32 val;
1249 
1250 	/* Reset the Enable bit in the Serial Control Register */
1251 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1252 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1253 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1254 
1255 	udelay(200);
1256 }
1257 
1258 /* Multicast tables methods */
1259 
1260 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1261 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1262 {
1263 	int offset;
1264 	u32 val;
1265 
1266 	if (queue == -1) {
1267 		val = 0;
1268 	} else {
1269 		val = 0x1 | (queue << 1);
1270 		val |= (val << 24) | (val << 16) | (val << 8);
1271 	}
1272 
1273 	for (offset = 0; offset <= 0xc; offset += 4)
1274 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1275 }
1276 
1277 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1278 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1279 {
1280 	int offset;
1281 	u32 val;
1282 
1283 	if (queue == -1) {
1284 		val = 0;
1285 	} else {
1286 		val = 0x1 | (queue << 1);
1287 		val |= (val << 24) | (val << 16) | (val << 8);
1288 	}
1289 
1290 	for (offset = 0; offset <= 0xfc; offset += 4)
1291 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1292 
1293 }
1294 
1295 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1296 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1297 {
1298 	int offset;
1299 	u32 val;
1300 
1301 	if (queue == -1) {
1302 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1303 		val = 0;
1304 	} else {
1305 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1306 		val = 0x1 | (queue << 1);
1307 		val |= (val << 24) | (val << 16) | (val << 8);
1308 	}
1309 
1310 	for (offset = 0; offset <= 0xfc; offset += 4)
1311 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1312 }
1313 
1314 static void mvneta_percpu_unmask_interrupt(void *arg)
1315 {
1316 	struct mvneta_port *pp = arg;
1317 
1318 	/* All the queue are unmasked, but actually only the ones
1319 	 * mapped to this CPU will be unmasked
1320 	 */
1321 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322 		    MVNETA_RX_INTR_MASK_ALL |
1323 		    MVNETA_TX_INTR_MASK_ALL |
1324 		    MVNETA_MISCINTR_INTR_MASK);
1325 }
1326 
1327 static void mvneta_percpu_mask_interrupt(void *arg)
1328 {
1329 	struct mvneta_port *pp = arg;
1330 
1331 	/* All the queue are masked, but actually only the ones
1332 	 * mapped to this CPU will be masked
1333 	 */
1334 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337 }
1338 
1339 static void mvneta_percpu_clear_intr_cause(void *arg)
1340 {
1341 	struct mvneta_port *pp = arg;
1342 
1343 	/* All the queue are cleared, but actually only the ones
1344 	 * mapped to this CPU will be cleared
1345 	 */
1346 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349 }
1350 
1351 /* This method sets defaults to the NETA port:
1352  *	Clears interrupt Cause and Mask registers.
1353  *	Clears all MAC tables.
1354  *	Sets defaults to all registers.
1355  *	Resets RX and TX descriptor rings.
1356  *	Resets PHY.
1357  * This method can be called after mvneta_port_down() to return the port
1358  *	settings to defaults.
1359  */
1360 static void mvneta_defaults_set(struct mvneta_port *pp)
1361 {
1362 	int cpu;
1363 	int queue;
1364 	u32 val;
1365 	int max_cpu = num_present_cpus();
1366 
1367 	/* Clear all Cause registers */
1368 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369 
1370 	/* Mask all interrupts */
1371 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373 
1374 	/* Enable MBUS Retry bit16 */
1375 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376 
1377 	/* Set CPU queue access map. CPUs are assigned to the RX and
1378 	 * TX queues modulo their number. If there is only one TX
1379 	 * queue then it is assigned to the CPU associated to the
1380 	 * default RX queue.
1381 	 */
1382 	for_each_present_cpu(cpu) {
1383 		int rxq_map = 0, txq_map = 0;
1384 		int rxq, txq;
1385 		if (!pp->neta_armada3700) {
1386 			for (rxq = 0; rxq < rxq_number; rxq++)
1387 				if ((rxq % max_cpu) == cpu)
1388 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389 
1390 			for (txq = 0; txq < txq_number; txq++)
1391 				if ((txq % max_cpu) == cpu)
1392 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393 
1394 			/* With only one TX queue we configure a special case
1395 			 * which will allow to get all the irq on a single
1396 			 * CPU
1397 			 */
1398 			if (txq_number == 1)
1399 				txq_map = (cpu == pp->rxq_def) ?
1400 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401 
1402 		} else {
1403 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405 		}
1406 
1407 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408 	}
1409 
1410 	/* Reset RX and TX DMAs */
1411 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413 
1414 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1415 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416 	for (queue = 0; queue < txq_number; queue++) {
1417 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419 	}
1420 
1421 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423 
1424 	/* Set Port Acceleration Mode */
1425 	if (pp->bm_priv)
1426 		/* HW buffer management + legacy parser */
1427 		val = MVNETA_ACC_MODE_EXT2;
1428 	else
1429 		/* SW buffer management + legacy parser */
1430 		val = MVNETA_ACC_MODE_EXT1;
1431 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1432 
1433 	if (pp->bm_priv)
1434 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435 
1436 	/* Update val of portCfg register accordingly with all RxQueue types */
1437 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439 
1440 	val = 0;
1441 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443 
1444 	/* Build PORT_SDMA_CONFIG_REG */
1445 	val = 0;
1446 
1447 	/* Default burst size */
1448 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451 
1452 #if defined(__BIG_ENDIAN)
1453 	val |= MVNETA_DESC_SWAP;
1454 #endif
1455 
1456 	/* Assign port SDMA configuration */
1457 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458 
1459 	/* Disable PHY polling in hardware, since we're using the
1460 	 * kernel phylib to do this.
1461 	 */
1462 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1464 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465 
1466 	mvneta_set_ucast_table(pp, -1);
1467 	mvneta_set_special_mcast_table(pp, -1);
1468 	mvneta_set_other_mcast_table(pp, -1);
1469 
1470 	/* Set port interrupt enable register - default enable all */
1471 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1472 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1473 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1474 
1475 	mvneta_mib_counters_clear(pp);
1476 }
1477 
1478 /* Set max sizes for tx queues */
1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1480 
1481 {
1482 	u32 val, size, mtu;
1483 	int queue;
1484 
1485 	mtu = max_tx_size * 8;
1486 	if (mtu > MVNETA_TX_MTU_MAX)
1487 		mtu = MVNETA_TX_MTU_MAX;
1488 
1489 	/* Set MTU */
1490 	val = mvreg_read(pp, MVNETA_TX_MTU);
1491 	val &= ~MVNETA_TX_MTU_MAX;
1492 	val |= mtu;
1493 	mvreg_write(pp, MVNETA_TX_MTU, val);
1494 
1495 	/* TX token size and all TXQs token size must be larger that MTU */
1496 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1497 
1498 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1499 	if (size < mtu) {
1500 		size = mtu;
1501 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1502 		val |= size;
1503 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1504 	}
1505 	for (queue = 0; queue < txq_number; queue++) {
1506 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1507 
1508 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1509 		if (size < mtu) {
1510 			size = mtu;
1511 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1512 			val |= size;
1513 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1514 		}
1515 	}
1516 }
1517 
1518 /* Set unicast address */
1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1520 				  int queue)
1521 {
1522 	unsigned int unicast_reg;
1523 	unsigned int tbl_offset;
1524 	unsigned int reg_offset;
1525 
1526 	/* Locate the Unicast table entry */
1527 	last_nibble = (0xf & last_nibble);
1528 
1529 	/* offset from unicast tbl base */
1530 	tbl_offset = (last_nibble / 4) * 4;
1531 
1532 	/* offset within the above reg  */
1533 	reg_offset = last_nibble % 4;
1534 
1535 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1536 
1537 	if (queue == -1) {
1538 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1539 		unicast_reg &= ~(0xff << (8 * reg_offset));
1540 	} else {
1541 		unicast_reg &= ~(0xff << (8 * reg_offset));
1542 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1543 	}
1544 
1545 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1546 }
1547 
1548 /* Set mac address */
1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1550 				int queue)
1551 {
1552 	unsigned int mac_h;
1553 	unsigned int mac_l;
1554 
1555 	if (queue != -1) {
1556 		mac_l = (addr[4] << 8) | (addr[5]);
1557 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1558 			(addr[2] << 8) | (addr[3] << 0);
1559 
1560 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1561 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1562 	}
1563 
1564 	/* Accept frames of this address */
1565 	mvneta_set_ucast_addr(pp, addr[5], queue);
1566 }
1567 
1568 /* Set the number of packets that will be received before RX interrupt
1569  * will be generated by HW.
1570  */
1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1572 				    struct mvneta_rx_queue *rxq, u32 value)
1573 {
1574 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1575 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1576 }
1577 
1578 /* Set the time delay in usec before RX interrupt will be generated by
1579  * HW.
1580  */
1581 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1582 				    struct mvneta_rx_queue *rxq, u32 value)
1583 {
1584 	u32 val;
1585 	unsigned long clk_rate;
1586 
1587 	clk_rate = clk_get_rate(pp->clk);
1588 	val = (clk_rate / 1000000) * value;
1589 
1590 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1591 }
1592 
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 					 struct mvneta_tx_queue *txq, u32 value)
1596 {
1597 	u32 val;
1598 
1599 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1600 
1601 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1603 
1604 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1605 }
1606 
1607 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1608 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1609 				u32 phys_addr, void *virt_addr,
1610 				struct mvneta_rx_queue *rxq)
1611 {
1612 	int i;
1613 
1614 	rx_desc->buf_phys_addr = phys_addr;
1615 	i = rx_desc - rxq->descs;
1616 	rxq->buf_virt_addr[i] = virt_addr;
1617 }
1618 
1619 /* Decrement sent descriptors counter */
1620 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1621 				     struct mvneta_tx_queue *txq,
1622 				     int sent_desc)
1623 {
1624 	u32 val;
1625 
1626 	/* Only 255 TX descriptors can be updated at once */
1627 	while (sent_desc > 0xff) {
1628 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1629 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1630 		sent_desc = sent_desc - 0xff;
1631 	}
1632 
1633 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1634 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635 }
1636 
1637 /* Get number of TX descriptors already sent by HW */
1638 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1639 					struct mvneta_tx_queue *txq)
1640 {
1641 	u32 val;
1642 	int sent_desc;
1643 
1644 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1645 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1646 		MVNETA_TXQ_SENT_DESC_SHIFT;
1647 
1648 	return sent_desc;
1649 }
1650 
1651 /* Get number of sent descriptors and decrement counter.
1652  *  The number of sent descriptors is returned.
1653  */
1654 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1655 				     struct mvneta_tx_queue *txq)
1656 {
1657 	int sent_desc;
1658 
1659 	/* Get number of sent descriptors */
1660 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1661 
1662 	/* Decrement sent descriptors counter */
1663 	if (sent_desc)
1664 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1665 
1666 	return sent_desc;
1667 }
1668 
1669 /* Set TXQ descriptors fields relevant for CSUM calculation */
1670 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1671 				int ip_hdr_len, int l4_proto)
1672 {
1673 	u32 command;
1674 
1675 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1676 	 * G_L4_chk, L4_type; required only for checksum
1677 	 * calculation
1678 	 */
1679 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1680 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1681 
1682 	if (l3_proto == htons(ETH_P_IP))
1683 		command |= MVNETA_TXD_IP_CSUM;
1684 	else
1685 		command |= MVNETA_TX_L3_IP6;
1686 
1687 	if (l4_proto == IPPROTO_TCP)
1688 		command |=  MVNETA_TX_L4_CSUM_FULL;
1689 	else if (l4_proto == IPPROTO_UDP)
1690 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1691 	else
1692 		command |= MVNETA_TX_L4_CSUM_NOT;
1693 
1694 	return command;
1695 }
1696 
1697 
1698 /* Display more error info */
1699 static void mvneta_rx_error(struct mvneta_port *pp,
1700 			    struct mvneta_rx_desc *rx_desc)
1701 {
1702 	u32 status = rx_desc->status;
1703 
1704 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1705 	case MVNETA_RXD_ERR_CRC:
1706 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1707 			   status, rx_desc->data_size);
1708 		break;
1709 	case MVNETA_RXD_ERR_OVERRUN:
1710 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1711 			   status, rx_desc->data_size);
1712 		break;
1713 	case MVNETA_RXD_ERR_LEN:
1714 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1715 			   status, rx_desc->data_size);
1716 		break;
1717 	case MVNETA_RXD_ERR_RESOURCE:
1718 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1719 			   status, rx_desc->data_size);
1720 		break;
1721 	}
1722 }
1723 
1724 /* Handle RX checksum offload based on the descriptor's status */
1725 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1726 			   struct sk_buff *skb)
1727 {
1728 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1729 	    (status & MVNETA_RXD_L3_IP4) &&
1730 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1731 		skb->csum = 0;
1732 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1733 		return;
1734 	}
1735 
1736 	skb->ip_summed = CHECKSUM_NONE;
1737 }
1738 
1739 /* Return tx queue pointer (find last set bit) according to <cause> returned
1740  * form tx_done reg. <cause> must not be null. The return value is always a
1741  * valid queue for matching the first one found in <cause>.
1742  */
1743 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1744 						     u32 cause)
1745 {
1746 	int queue = fls(cause) - 1;
1747 
1748 	return &pp->txqs[queue];
1749 }
1750 
1751 /* Free tx queue skbuffs */
1752 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1753 				 struct mvneta_tx_queue *txq, int num,
1754 				 struct netdev_queue *nq)
1755 {
1756 	unsigned int bytes_compl = 0, pkts_compl = 0;
1757 	int i;
1758 
1759 	for (i = 0; i < num; i++) {
1760 		struct mvneta_tx_desc *tx_desc = txq->descs +
1761 			txq->txq_get_index;
1762 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1763 
1764 		if (skb) {
1765 			bytes_compl += skb->len;
1766 			pkts_compl++;
1767 		}
1768 
1769 		mvneta_txq_inc_get(txq);
1770 
1771 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1772 			dma_unmap_single(pp->dev->dev.parent,
1773 					 tx_desc->buf_phys_addr,
1774 					 tx_desc->data_size, DMA_TO_DEVICE);
1775 		if (!skb)
1776 			continue;
1777 		dev_kfree_skb_any(skb);
1778 	}
1779 
1780 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1781 }
1782 
1783 /* Handle end of transmission */
1784 static void mvneta_txq_done(struct mvneta_port *pp,
1785 			   struct mvneta_tx_queue *txq)
1786 {
1787 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1788 	int tx_done;
1789 
1790 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1791 	if (!tx_done)
1792 		return;
1793 
1794 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1795 
1796 	txq->count -= tx_done;
1797 
1798 	if (netif_tx_queue_stopped(nq)) {
1799 		if (txq->count <= txq->tx_wake_threshold)
1800 			netif_tx_wake_queue(nq);
1801 	}
1802 }
1803 
1804 /* Refill processing for SW buffer management */
1805 /* Allocate page per descriptor */
1806 static int mvneta_rx_refill(struct mvneta_port *pp,
1807 			    struct mvneta_rx_desc *rx_desc,
1808 			    struct mvneta_rx_queue *rxq,
1809 			    gfp_t gfp_mask)
1810 {
1811 	dma_addr_t phys_addr;
1812 	struct page *page;
1813 
1814 	page = __dev_alloc_page(gfp_mask);
1815 	if (!page)
1816 		return -ENOMEM;
1817 
1818 	/* map page for use */
1819 	phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1820 				 DMA_FROM_DEVICE);
1821 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1822 		__free_page(page);
1823 		return -ENOMEM;
1824 	}
1825 
1826 	phys_addr += pp->rx_offset_correction;
1827 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1828 	return 0;
1829 }
1830 
1831 /* Handle tx checksum */
1832 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1833 {
1834 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1835 		int ip_hdr_len = 0;
1836 		__be16 l3_proto = vlan_get_protocol(skb);
1837 		u8 l4_proto;
1838 
1839 		if (l3_proto == htons(ETH_P_IP)) {
1840 			struct iphdr *ip4h = ip_hdr(skb);
1841 
1842 			/* Calculate IPv4 checksum and L4 checksum */
1843 			ip_hdr_len = ip4h->ihl;
1844 			l4_proto = ip4h->protocol;
1845 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1846 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1847 
1848 			/* Read l4_protocol from one of IPv6 extra headers */
1849 			if (skb_network_header_len(skb) > 0)
1850 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1851 			l4_proto = ip6h->nexthdr;
1852 		} else
1853 			return MVNETA_TX_L4_CSUM_NOT;
1854 
1855 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1856 					    l3_proto, ip_hdr_len, l4_proto);
1857 	}
1858 
1859 	return MVNETA_TX_L4_CSUM_NOT;
1860 }
1861 
1862 /* Drop packets received by the RXQ and free buffers */
1863 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1864 				 struct mvneta_rx_queue *rxq)
1865 {
1866 	int rx_done, i;
1867 
1868 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1869 	if (rx_done)
1870 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1871 
1872 	if (pp->bm_priv) {
1873 		for (i = 0; i < rx_done; i++) {
1874 			struct mvneta_rx_desc *rx_desc =
1875 						  mvneta_rxq_next_desc_get(rxq);
1876 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1877 			struct mvneta_bm_pool *bm_pool;
1878 
1879 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1880 			/* Return dropped buffer to the pool */
1881 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1882 					      rx_desc->buf_phys_addr);
1883 		}
1884 		return;
1885 	}
1886 
1887 	for (i = 0; i < rxq->size; i++) {
1888 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1889 		void *data = rxq->buf_virt_addr[i];
1890 		if (!data || !(rx_desc->buf_phys_addr))
1891 			continue;
1892 
1893 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1894 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1895 		__free_page(data);
1896 	}
1897 }
1898 
1899 static inline
1900 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1901 {
1902 	struct mvneta_rx_desc *rx_desc;
1903 	int curr_desc = rxq->first_to_refill;
1904 	int i;
1905 
1906 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1907 		rx_desc = rxq->descs + curr_desc;
1908 		if (!(rx_desc->buf_phys_addr)) {
1909 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1910 				pr_err("Can't refill queue %d. Done %d from %d\n",
1911 				       rxq->id, i, rxq->refill_num);
1912 				rxq->refill_err++;
1913 				break;
1914 			}
1915 		}
1916 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1917 	}
1918 	rxq->refill_num -= i;
1919 	rxq->first_to_refill = curr_desc;
1920 
1921 	return i;
1922 }
1923 
1924 /* Main rx processing when using software buffer management */
1925 static int mvneta_rx_swbm(struct napi_struct *napi,
1926 			  struct mvneta_port *pp, int budget,
1927 			  struct mvneta_rx_queue *rxq)
1928 {
1929 	struct net_device *dev = pp->dev;
1930 	int rx_todo, rx_proc;
1931 	int refill = 0;
1932 	u32 rcvd_pkts = 0;
1933 	u32 rcvd_bytes = 0;
1934 
1935 	/* Get number of received packets */
1936 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937 	rx_proc = 0;
1938 
1939 	/* Fairness NAPI loop */
1940 	while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1941 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1942 		unsigned char *data;
1943 		struct page *page;
1944 		dma_addr_t phys_addr;
1945 		u32 rx_status, index;
1946 		int rx_bytes, skb_size, copy_size;
1947 		int frag_num, frag_size, frag_offset;
1948 
1949 		index = rx_desc - rxq->descs;
1950 		page = (struct page *)rxq->buf_virt_addr[index];
1951 		data = page_address(page);
1952 		/* Prefetch header */
1953 		prefetch(data);
1954 
1955 		phys_addr = rx_desc->buf_phys_addr;
1956 		rx_status = rx_desc->status;
1957 		rx_proc++;
1958 		rxq->refill_num++;
1959 
1960 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
1961 			/* Check errors only for FIRST descriptor */
1962 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1963 				mvneta_rx_error(pp, rx_desc);
1964 				dev->stats.rx_errors++;
1965 				/* leave the descriptor untouched */
1966 				continue;
1967 			}
1968 			rx_bytes = rx_desc->data_size -
1969 				   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1970 
1971 			/* Allocate small skb for each new packet */
1972 			skb_size = max(rx_copybreak, rx_header_size);
1973 			rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1974 			if (unlikely(!rxq->skb)) {
1975 				netdev_err(dev,
1976 					   "Can't allocate skb on queue %d\n",
1977 					   rxq->id);
1978 				dev->stats.rx_dropped++;
1979 				rxq->skb_alloc_err++;
1980 				continue;
1981 			}
1982 			copy_size = min(skb_size, rx_bytes);
1983 
1984 			/* Copy data from buffer to SKB, skip Marvell header */
1985 			memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1986 			       copy_size);
1987 			skb_put(rxq->skb, copy_size);
1988 			rxq->left_size = rx_bytes - copy_size;
1989 
1990 			mvneta_rx_csum(pp, rx_status, rxq->skb);
1991 			if (rxq->left_size == 0) {
1992 				int size = copy_size + MVNETA_MH_SIZE;
1993 
1994 				dma_sync_single_range_for_cpu(dev->dev.parent,
1995 							      phys_addr, 0,
1996 							      size,
1997 							      DMA_FROM_DEVICE);
1998 
1999 				/* leave the descriptor and buffer untouched */
2000 			} else {
2001 				/* refill descriptor with new buffer later */
2002 				rx_desc->buf_phys_addr = 0;
2003 
2004 				frag_num = 0;
2005 				frag_offset = copy_size + MVNETA_MH_SIZE;
2006 				frag_size = min(rxq->left_size,
2007 						(int)(PAGE_SIZE - frag_offset));
2008 				skb_add_rx_frag(rxq->skb, frag_num, page,
2009 						frag_offset, frag_size,
2010 						PAGE_SIZE);
2011 				dma_unmap_single(dev->dev.parent, phys_addr,
2012 						 PAGE_SIZE, DMA_FROM_DEVICE);
2013 				rxq->left_size -= frag_size;
2014 			}
2015 		} else {
2016 			/* Middle or Last descriptor */
2017 			if (unlikely(!rxq->skb)) {
2018 				pr_debug("no skb for rx_status 0x%x\n",
2019 					 rx_status);
2020 				continue;
2021 			}
2022 			if (!rxq->left_size) {
2023 				/* last descriptor has only FCS */
2024 				/* and can be discarded */
2025 				dma_sync_single_range_for_cpu(dev->dev.parent,
2026 							      phys_addr, 0,
2027 							      ETH_FCS_LEN,
2028 							      DMA_FROM_DEVICE);
2029 				/* leave the descriptor and buffer untouched */
2030 			} else {
2031 				/* refill descriptor with new buffer later */
2032 				rx_desc->buf_phys_addr = 0;
2033 
2034 				frag_num = skb_shinfo(rxq->skb)->nr_frags;
2035 				frag_offset = 0;
2036 				frag_size = min(rxq->left_size,
2037 						(int)(PAGE_SIZE - frag_offset));
2038 				skb_add_rx_frag(rxq->skb, frag_num, page,
2039 						frag_offset, frag_size,
2040 						PAGE_SIZE);
2041 
2042 				dma_unmap_single(dev->dev.parent, phys_addr,
2043 						 PAGE_SIZE,
2044 						 DMA_FROM_DEVICE);
2045 
2046 				rxq->left_size -= frag_size;
2047 			}
2048 		} /* Middle or Last descriptor */
2049 
2050 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2051 			/* no last descriptor this time */
2052 			continue;
2053 
2054 		if (rxq->left_size) {
2055 			pr_err("get last desc, but left_size (%d) != 0\n",
2056 			       rxq->left_size);
2057 			dev_kfree_skb_any(rxq->skb);
2058 			rxq->left_size = 0;
2059 			rxq->skb = NULL;
2060 			continue;
2061 		}
2062 		rcvd_pkts++;
2063 		rcvd_bytes += rxq->skb->len;
2064 
2065 		/* Linux processing */
2066 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2067 
2068 		if (dev->features & NETIF_F_GRO)
2069 			napi_gro_receive(napi, rxq->skb);
2070 		else
2071 			netif_receive_skb(rxq->skb);
2072 
2073 		/* clean uncomplete skb pointer in queue */
2074 		rxq->skb = NULL;
2075 		rxq->left_size = 0;
2076 	}
2077 
2078 	if (rcvd_pkts) {
2079 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2080 
2081 		u64_stats_update_begin(&stats->syncp);
2082 		stats->rx_packets += rcvd_pkts;
2083 		stats->rx_bytes   += rcvd_bytes;
2084 		u64_stats_update_end(&stats->syncp);
2085 	}
2086 
2087 	/* return some buffers to hardware queue, one at a time is too slow */
2088 	refill = mvneta_rx_refill_queue(pp, rxq);
2089 
2090 	/* Update rxq management counters */
2091 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2092 
2093 	return rcvd_pkts;
2094 }
2095 
2096 /* Main rx processing when using hardware buffer management */
2097 static int mvneta_rx_hwbm(struct napi_struct *napi,
2098 			  struct mvneta_port *pp, int rx_todo,
2099 			  struct mvneta_rx_queue *rxq)
2100 {
2101 	struct net_device *dev = pp->dev;
2102 	int rx_done;
2103 	u32 rcvd_pkts = 0;
2104 	u32 rcvd_bytes = 0;
2105 
2106 	/* Get number of received packets */
2107 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2108 
2109 	if (rx_todo > rx_done)
2110 		rx_todo = rx_done;
2111 
2112 	rx_done = 0;
2113 
2114 	/* Fairness NAPI loop */
2115 	while (rx_done < rx_todo) {
2116 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2117 		struct mvneta_bm_pool *bm_pool = NULL;
2118 		struct sk_buff *skb;
2119 		unsigned char *data;
2120 		dma_addr_t phys_addr;
2121 		u32 rx_status, frag_size;
2122 		int rx_bytes, err;
2123 		u8 pool_id;
2124 
2125 		rx_done++;
2126 		rx_status = rx_desc->status;
2127 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2128 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2129 		phys_addr = rx_desc->buf_phys_addr;
2130 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2131 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2132 
2133 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2134 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2135 err_drop_frame_ret_pool:
2136 			/* Return the buffer to the pool */
2137 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2138 					      rx_desc->buf_phys_addr);
2139 err_drop_frame:
2140 			dev->stats.rx_errors++;
2141 			mvneta_rx_error(pp, rx_desc);
2142 			/* leave the descriptor untouched */
2143 			continue;
2144 		}
2145 
2146 		if (rx_bytes <= rx_copybreak) {
2147 			/* better copy a small frame and not unmap the DMA region */
2148 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2149 			if (unlikely(!skb))
2150 				goto err_drop_frame_ret_pool;
2151 
2152 			dma_sync_single_range_for_cpu(dev->dev.parent,
2153 			                              rx_desc->buf_phys_addr,
2154 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2155 			                              rx_bytes,
2156 			                              DMA_FROM_DEVICE);
2157 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2158 				     rx_bytes);
2159 
2160 			skb->protocol = eth_type_trans(skb, dev);
2161 			mvneta_rx_csum(pp, rx_status, skb);
2162 			napi_gro_receive(napi, skb);
2163 
2164 			rcvd_pkts++;
2165 			rcvd_bytes += rx_bytes;
2166 
2167 			/* Return the buffer to the pool */
2168 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2169 					      rx_desc->buf_phys_addr);
2170 
2171 			/* leave the descriptor and buffer untouched */
2172 			continue;
2173 		}
2174 
2175 		/* Refill processing */
2176 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2177 		if (err) {
2178 			netdev_err(dev, "Linux processing - Can't refill\n");
2179 			rxq->refill_err++;
2180 			goto err_drop_frame_ret_pool;
2181 		}
2182 
2183 		frag_size = bm_pool->hwbm_pool.frag_size;
2184 
2185 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2186 
2187 		/* After refill old buffer has to be unmapped regardless
2188 		 * the skb is successfully built or not.
2189 		 */
2190 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2191 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2192 		if (!skb)
2193 			goto err_drop_frame;
2194 
2195 		rcvd_pkts++;
2196 		rcvd_bytes += rx_bytes;
2197 
2198 		/* Linux processing */
2199 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2200 		skb_put(skb, rx_bytes);
2201 
2202 		skb->protocol = eth_type_trans(skb, dev);
2203 
2204 		mvneta_rx_csum(pp, rx_status, skb);
2205 
2206 		napi_gro_receive(napi, skb);
2207 	}
2208 
2209 	if (rcvd_pkts) {
2210 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2211 
2212 		u64_stats_update_begin(&stats->syncp);
2213 		stats->rx_packets += rcvd_pkts;
2214 		stats->rx_bytes   += rcvd_bytes;
2215 		u64_stats_update_end(&stats->syncp);
2216 	}
2217 
2218 	/* Update rxq management counters */
2219 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2220 
2221 	return rx_done;
2222 }
2223 
2224 static inline void
2225 mvneta_tso_put_hdr(struct sk_buff *skb,
2226 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2227 {
2228 	struct mvneta_tx_desc *tx_desc;
2229 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2230 
2231 	txq->tx_skb[txq->txq_put_index] = NULL;
2232 	tx_desc = mvneta_txq_next_desc_get(txq);
2233 	tx_desc->data_size = hdr_len;
2234 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2235 	tx_desc->command |= MVNETA_TXD_F_DESC;
2236 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2237 				 txq->txq_put_index * TSO_HEADER_SIZE;
2238 	mvneta_txq_inc_put(txq);
2239 }
2240 
2241 static inline int
2242 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2243 		    struct sk_buff *skb, char *data, int size,
2244 		    bool last_tcp, bool is_last)
2245 {
2246 	struct mvneta_tx_desc *tx_desc;
2247 
2248 	tx_desc = mvneta_txq_next_desc_get(txq);
2249 	tx_desc->data_size = size;
2250 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2251 						size, DMA_TO_DEVICE);
2252 	if (unlikely(dma_mapping_error(dev->dev.parent,
2253 		     tx_desc->buf_phys_addr))) {
2254 		mvneta_txq_desc_put(txq);
2255 		return -ENOMEM;
2256 	}
2257 
2258 	tx_desc->command = 0;
2259 	txq->tx_skb[txq->txq_put_index] = NULL;
2260 
2261 	if (last_tcp) {
2262 		/* last descriptor in the TCP packet */
2263 		tx_desc->command = MVNETA_TXD_L_DESC;
2264 
2265 		/* last descriptor in SKB */
2266 		if (is_last)
2267 			txq->tx_skb[txq->txq_put_index] = skb;
2268 	}
2269 	mvneta_txq_inc_put(txq);
2270 	return 0;
2271 }
2272 
2273 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2274 			 struct mvneta_tx_queue *txq)
2275 {
2276 	int total_len, data_left;
2277 	int desc_count = 0;
2278 	struct mvneta_port *pp = netdev_priv(dev);
2279 	struct tso_t tso;
2280 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2281 	int i;
2282 
2283 	/* Count needed descriptors */
2284 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2285 		return 0;
2286 
2287 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2288 		pr_info("*** Is this even  possible???!?!?\n");
2289 		return 0;
2290 	}
2291 
2292 	/* Initialize the TSO handler, and prepare the first payload */
2293 	tso_start(skb, &tso);
2294 
2295 	total_len = skb->len - hdr_len;
2296 	while (total_len > 0) {
2297 		char *hdr;
2298 
2299 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2300 		total_len -= data_left;
2301 		desc_count++;
2302 
2303 		/* prepare packet headers: MAC + IP + TCP */
2304 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2305 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2306 
2307 		mvneta_tso_put_hdr(skb, pp, txq);
2308 
2309 		while (data_left > 0) {
2310 			int size;
2311 			desc_count++;
2312 
2313 			size = min_t(int, tso.size, data_left);
2314 
2315 			if (mvneta_tso_put_data(dev, txq, skb,
2316 						 tso.data, size,
2317 						 size == data_left,
2318 						 total_len == 0))
2319 				goto err_release;
2320 			data_left -= size;
2321 
2322 			tso_build_data(skb, &tso, size);
2323 		}
2324 	}
2325 
2326 	return desc_count;
2327 
2328 err_release:
2329 	/* Release all used data descriptors; header descriptors must not
2330 	 * be DMA-unmapped.
2331 	 */
2332 	for (i = desc_count - 1; i >= 0; i--) {
2333 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2334 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2335 			dma_unmap_single(pp->dev->dev.parent,
2336 					 tx_desc->buf_phys_addr,
2337 					 tx_desc->data_size,
2338 					 DMA_TO_DEVICE);
2339 		mvneta_txq_desc_put(txq);
2340 	}
2341 	return 0;
2342 }
2343 
2344 /* Handle tx fragmentation processing */
2345 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2346 				  struct mvneta_tx_queue *txq)
2347 {
2348 	struct mvneta_tx_desc *tx_desc;
2349 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2350 
2351 	for (i = 0; i < nr_frags; i++) {
2352 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2353 		void *addr = page_address(frag->page.p) + frag->page_offset;
2354 
2355 		tx_desc = mvneta_txq_next_desc_get(txq);
2356 		tx_desc->data_size = frag->size;
2357 
2358 		tx_desc->buf_phys_addr =
2359 			dma_map_single(pp->dev->dev.parent, addr,
2360 				       tx_desc->data_size, DMA_TO_DEVICE);
2361 
2362 		if (dma_mapping_error(pp->dev->dev.parent,
2363 				      tx_desc->buf_phys_addr)) {
2364 			mvneta_txq_desc_put(txq);
2365 			goto error;
2366 		}
2367 
2368 		if (i == nr_frags - 1) {
2369 			/* Last descriptor */
2370 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2371 			txq->tx_skb[txq->txq_put_index] = skb;
2372 		} else {
2373 			/* Descriptor in the middle: Not First, Not Last */
2374 			tx_desc->command = 0;
2375 			txq->tx_skb[txq->txq_put_index] = NULL;
2376 		}
2377 		mvneta_txq_inc_put(txq);
2378 	}
2379 
2380 	return 0;
2381 
2382 error:
2383 	/* Release all descriptors that were used to map fragments of
2384 	 * this packet, as well as the corresponding DMA mappings
2385 	 */
2386 	for (i = i - 1; i >= 0; i--) {
2387 		tx_desc = txq->descs + i;
2388 		dma_unmap_single(pp->dev->dev.parent,
2389 				 tx_desc->buf_phys_addr,
2390 				 tx_desc->data_size,
2391 				 DMA_TO_DEVICE);
2392 		mvneta_txq_desc_put(txq);
2393 	}
2394 
2395 	return -ENOMEM;
2396 }
2397 
2398 /* Main tx processing */
2399 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2400 {
2401 	struct mvneta_port *pp = netdev_priv(dev);
2402 	u16 txq_id = skb_get_queue_mapping(skb);
2403 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2404 	struct mvneta_tx_desc *tx_desc;
2405 	int len = skb->len;
2406 	int frags = 0;
2407 	u32 tx_cmd;
2408 
2409 	if (!netif_running(dev))
2410 		goto out;
2411 
2412 	if (skb_is_gso(skb)) {
2413 		frags = mvneta_tx_tso(skb, dev, txq);
2414 		goto out;
2415 	}
2416 
2417 	frags = skb_shinfo(skb)->nr_frags + 1;
2418 
2419 	/* Get a descriptor for the first part of the packet */
2420 	tx_desc = mvneta_txq_next_desc_get(txq);
2421 
2422 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2423 
2424 	tx_desc->data_size = skb_headlen(skb);
2425 
2426 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2427 						tx_desc->data_size,
2428 						DMA_TO_DEVICE);
2429 	if (unlikely(dma_mapping_error(dev->dev.parent,
2430 				       tx_desc->buf_phys_addr))) {
2431 		mvneta_txq_desc_put(txq);
2432 		frags = 0;
2433 		goto out;
2434 	}
2435 
2436 	if (frags == 1) {
2437 		/* First and Last descriptor */
2438 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2439 		tx_desc->command = tx_cmd;
2440 		txq->tx_skb[txq->txq_put_index] = skb;
2441 		mvneta_txq_inc_put(txq);
2442 	} else {
2443 		/* First but not Last */
2444 		tx_cmd |= MVNETA_TXD_F_DESC;
2445 		txq->tx_skb[txq->txq_put_index] = NULL;
2446 		mvneta_txq_inc_put(txq);
2447 		tx_desc->command = tx_cmd;
2448 		/* Continue with other skb fragments */
2449 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2450 			dma_unmap_single(dev->dev.parent,
2451 					 tx_desc->buf_phys_addr,
2452 					 tx_desc->data_size,
2453 					 DMA_TO_DEVICE);
2454 			mvneta_txq_desc_put(txq);
2455 			frags = 0;
2456 			goto out;
2457 		}
2458 	}
2459 
2460 out:
2461 	if (frags > 0) {
2462 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2463 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2464 
2465 		netdev_tx_sent_queue(nq, len);
2466 
2467 		txq->count += frags;
2468 		if (txq->count >= txq->tx_stop_threshold)
2469 			netif_tx_stop_queue(nq);
2470 
2471 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2472 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2473 			mvneta_txq_pend_desc_add(pp, txq, frags);
2474 		else
2475 			txq->pending += frags;
2476 
2477 		u64_stats_update_begin(&stats->syncp);
2478 		stats->tx_packets++;
2479 		stats->tx_bytes  += len;
2480 		u64_stats_update_end(&stats->syncp);
2481 	} else {
2482 		dev->stats.tx_dropped++;
2483 		dev_kfree_skb_any(skb);
2484 	}
2485 
2486 	return NETDEV_TX_OK;
2487 }
2488 
2489 
2490 /* Free tx resources, when resetting a port */
2491 static void mvneta_txq_done_force(struct mvneta_port *pp,
2492 				  struct mvneta_tx_queue *txq)
2493 
2494 {
2495 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2496 	int tx_done = txq->count;
2497 
2498 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2499 
2500 	/* reset txq */
2501 	txq->count = 0;
2502 	txq->txq_put_index = 0;
2503 	txq->txq_get_index = 0;
2504 }
2505 
2506 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2507  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2508  */
2509 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2510 {
2511 	struct mvneta_tx_queue *txq;
2512 	struct netdev_queue *nq;
2513 
2514 	while (cause_tx_done) {
2515 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2516 
2517 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2518 		__netif_tx_lock(nq, smp_processor_id());
2519 
2520 		if (txq->count)
2521 			mvneta_txq_done(pp, txq);
2522 
2523 		__netif_tx_unlock(nq);
2524 		cause_tx_done &= ~((1 << txq->id));
2525 	}
2526 }
2527 
2528 /* Compute crc8 of the specified address, using a unique algorithm ,
2529  * according to hw spec, different than generic crc8 algorithm
2530  */
2531 static int mvneta_addr_crc(unsigned char *addr)
2532 {
2533 	int crc = 0;
2534 	int i;
2535 
2536 	for (i = 0; i < ETH_ALEN; i++) {
2537 		int j;
2538 
2539 		crc = (crc ^ addr[i]) << 8;
2540 		for (j = 7; j >= 0; j--) {
2541 			if (crc & (0x100 << j))
2542 				crc ^= 0x107 << j;
2543 		}
2544 	}
2545 
2546 	return crc;
2547 }
2548 
2549 /* This method controls the net device special MAC multicast support.
2550  * The Special Multicast Table for MAC addresses supports MAC of the form
2551  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2552  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2553  * Table entries in the DA-Filter table. This method set the Special
2554  * Multicast Table appropriate entry.
2555  */
2556 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2557 					  unsigned char last_byte,
2558 					  int queue)
2559 {
2560 	unsigned int smc_table_reg;
2561 	unsigned int tbl_offset;
2562 	unsigned int reg_offset;
2563 
2564 	/* Register offset from SMC table base    */
2565 	tbl_offset = (last_byte / 4);
2566 	/* Entry offset within the above reg */
2567 	reg_offset = last_byte % 4;
2568 
2569 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2570 					+ tbl_offset * 4));
2571 
2572 	if (queue == -1)
2573 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2574 	else {
2575 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2576 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2577 	}
2578 
2579 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2580 		    smc_table_reg);
2581 }
2582 
2583 /* This method controls the network device Other MAC multicast support.
2584  * The Other Multicast Table is used for multicast of another type.
2585  * A CRC-8 is used as an index to the Other Multicast Table entries
2586  * in the DA-Filter table.
2587  * The method gets the CRC-8 value from the calling routine and
2588  * sets the Other Multicast Table appropriate entry according to the
2589  * specified CRC-8 .
2590  */
2591 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2592 					unsigned char crc8,
2593 					int queue)
2594 {
2595 	unsigned int omc_table_reg;
2596 	unsigned int tbl_offset;
2597 	unsigned int reg_offset;
2598 
2599 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2600 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2601 
2602 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2603 
2604 	if (queue == -1) {
2605 		/* Clear accepts frame bit at specified Other DA table entry */
2606 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2607 	} else {
2608 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2609 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2610 	}
2611 
2612 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2613 }
2614 
2615 /* The network device supports multicast using two tables:
2616  *    1) Special Multicast Table for MAC addresses of the form
2617  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2618  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2619  *       Table entries in the DA-Filter table.
2620  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2621  *       is used as an index to the Other Multicast Table entries in the
2622  *       DA-Filter table.
2623  */
2624 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2625 				 int queue)
2626 {
2627 	unsigned char crc_result = 0;
2628 
2629 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2630 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2631 		return 0;
2632 	}
2633 
2634 	crc_result = mvneta_addr_crc(p_addr);
2635 	if (queue == -1) {
2636 		if (pp->mcast_count[crc_result] == 0) {
2637 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2638 				    crc_result);
2639 			return -EINVAL;
2640 		}
2641 
2642 		pp->mcast_count[crc_result]--;
2643 		if (pp->mcast_count[crc_result] != 0) {
2644 			netdev_info(pp->dev,
2645 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2646 				    pp->mcast_count[crc_result], crc_result);
2647 			return -EINVAL;
2648 		}
2649 	} else
2650 		pp->mcast_count[crc_result]++;
2651 
2652 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2653 
2654 	return 0;
2655 }
2656 
2657 /* Configure Fitering mode of Ethernet port */
2658 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2659 					  int is_promisc)
2660 {
2661 	u32 port_cfg_reg, val;
2662 
2663 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2664 
2665 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2666 
2667 	/* Set / Clear UPM bit in port configuration register */
2668 	if (is_promisc) {
2669 		/* Accept all Unicast addresses */
2670 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2671 		val |= MVNETA_FORCE_UNI;
2672 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2673 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2674 	} else {
2675 		/* Reject all Unicast addresses */
2676 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2677 		val &= ~MVNETA_FORCE_UNI;
2678 	}
2679 
2680 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2681 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2682 }
2683 
2684 /* register unicast and multicast addresses */
2685 static void mvneta_set_rx_mode(struct net_device *dev)
2686 {
2687 	struct mvneta_port *pp = netdev_priv(dev);
2688 	struct netdev_hw_addr *ha;
2689 
2690 	if (dev->flags & IFF_PROMISC) {
2691 		/* Accept all: Multicast + Unicast */
2692 		mvneta_rx_unicast_promisc_set(pp, 1);
2693 		mvneta_set_ucast_table(pp, pp->rxq_def);
2694 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2695 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2696 	} else {
2697 		/* Accept single Unicast */
2698 		mvneta_rx_unicast_promisc_set(pp, 0);
2699 		mvneta_set_ucast_table(pp, -1);
2700 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2701 
2702 		if (dev->flags & IFF_ALLMULTI) {
2703 			/* Accept all multicast */
2704 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2705 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2706 		} else {
2707 			/* Accept only initialized multicast */
2708 			mvneta_set_special_mcast_table(pp, -1);
2709 			mvneta_set_other_mcast_table(pp, -1);
2710 
2711 			if (!netdev_mc_empty(dev)) {
2712 				netdev_for_each_mc_addr(ha, dev) {
2713 					mvneta_mcast_addr_set(pp, ha->addr,
2714 							      pp->rxq_def);
2715 				}
2716 			}
2717 		}
2718 	}
2719 }
2720 
2721 /* Interrupt handling - the callback for request_irq() */
2722 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2723 {
2724 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2725 
2726 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2727 	napi_schedule(&pp->napi);
2728 
2729 	return IRQ_HANDLED;
2730 }
2731 
2732 /* Interrupt handling - the callback for request_percpu_irq() */
2733 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2734 {
2735 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2736 
2737 	disable_percpu_irq(port->pp->dev->irq);
2738 	napi_schedule(&port->napi);
2739 
2740 	return IRQ_HANDLED;
2741 }
2742 
2743 static void mvneta_link_change(struct mvneta_port *pp)
2744 {
2745 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2746 
2747 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2748 }
2749 
2750 /* NAPI handler
2751  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2752  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2753  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2754  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2755  * Each CPU has its own causeRxTx register
2756  */
2757 static int mvneta_poll(struct napi_struct *napi, int budget)
2758 {
2759 	int rx_done = 0;
2760 	u32 cause_rx_tx;
2761 	int rx_queue;
2762 	struct mvneta_port *pp = netdev_priv(napi->dev);
2763 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2764 
2765 	if (!netif_running(pp->dev)) {
2766 		napi_complete(napi);
2767 		return rx_done;
2768 	}
2769 
2770 	/* Read cause register */
2771 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2772 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2773 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2774 
2775 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2776 
2777 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2778 				  MVNETA_CAUSE_LINK_CHANGE))
2779 			mvneta_link_change(pp);
2780 	}
2781 
2782 	/* Release Tx descriptors */
2783 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2784 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2785 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2786 	}
2787 
2788 	/* For the case where the last mvneta_poll did not process all
2789 	 * RX packets
2790 	 */
2791 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2792 
2793 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2794 		port->cause_rx_tx;
2795 
2796 	if (rx_queue) {
2797 		rx_queue = rx_queue - 1;
2798 		if (pp->bm_priv)
2799 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
2800 						 &pp->rxqs[rx_queue]);
2801 		else
2802 			rx_done = mvneta_rx_swbm(napi, pp, budget,
2803 						 &pp->rxqs[rx_queue]);
2804 	}
2805 
2806 	if (rx_done < budget) {
2807 		cause_rx_tx = 0;
2808 		napi_complete_done(napi, rx_done);
2809 
2810 		if (pp->neta_armada3700) {
2811 			unsigned long flags;
2812 
2813 			local_irq_save(flags);
2814 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2815 				    MVNETA_RX_INTR_MASK(rxq_number) |
2816 				    MVNETA_TX_INTR_MASK(txq_number) |
2817 				    MVNETA_MISCINTR_INTR_MASK);
2818 			local_irq_restore(flags);
2819 		} else {
2820 			enable_percpu_irq(pp->dev->irq, 0);
2821 		}
2822 	}
2823 
2824 	if (pp->neta_armada3700)
2825 		pp->cause_rx_tx = cause_rx_tx;
2826 	else
2827 		port->cause_rx_tx = cause_rx_tx;
2828 
2829 	return rx_done;
2830 }
2831 
2832 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2833 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2834 			   int num)
2835 {
2836 	int i;
2837 
2838 	for (i = 0; i < num; i++) {
2839 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2840 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2841 				     GFP_KERNEL) != 0) {
2842 			netdev_err(pp->dev,
2843 				   "%s:rxq %d, %d of %d buffs  filled\n",
2844 				   __func__, rxq->id, i, num);
2845 			break;
2846 		}
2847 	}
2848 
2849 	/* Add this number of RX descriptors as non occupied (ready to
2850 	 * get packets)
2851 	 */
2852 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2853 
2854 	return i;
2855 }
2856 
2857 /* Free all packets pending transmit from all TXQs and reset TX port */
2858 static void mvneta_tx_reset(struct mvneta_port *pp)
2859 {
2860 	int queue;
2861 
2862 	/* free the skb's in the tx ring */
2863 	for (queue = 0; queue < txq_number; queue++)
2864 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2865 
2866 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2867 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2868 }
2869 
2870 static void mvneta_rx_reset(struct mvneta_port *pp)
2871 {
2872 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2873 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2874 }
2875 
2876 /* Rx/Tx queue initialization/cleanup methods */
2877 
2878 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2879 			      struct mvneta_rx_queue *rxq)
2880 {
2881 	rxq->size = pp->rx_ring_size;
2882 
2883 	/* Allocate memory for RX descriptors */
2884 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2885 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2886 					&rxq->descs_phys, GFP_KERNEL);
2887 	if (!rxq->descs)
2888 		return -ENOMEM;
2889 
2890 	rxq->last_desc = rxq->size - 1;
2891 
2892 	return 0;
2893 }
2894 
2895 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2896 			       struct mvneta_rx_queue *rxq)
2897 {
2898 	/* Set Rx descriptors queue starting address */
2899 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2900 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2901 
2902 	/* Set coalescing pkts and time */
2903 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2904 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2905 
2906 	if (!pp->bm_priv) {
2907 		/* Set Offset */
2908 		mvneta_rxq_offset_set(pp, rxq, 0);
2909 		mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size);
2910 		mvneta_rxq_bm_disable(pp, rxq);
2911 		mvneta_rxq_fill(pp, rxq, rxq->size);
2912 	} else {
2913 		/* Set Offset */
2914 		mvneta_rxq_offset_set(pp, rxq,
2915 				      NET_SKB_PAD - pp->rx_offset_correction);
2916 
2917 		mvneta_rxq_bm_enable(pp, rxq);
2918 		/* Fill RXQ with buffers from RX pool */
2919 		mvneta_rxq_long_pool_set(pp, rxq);
2920 		mvneta_rxq_short_pool_set(pp, rxq);
2921 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2922 	}
2923 }
2924 
2925 /* Create a specified RX queue */
2926 static int mvneta_rxq_init(struct mvneta_port *pp,
2927 			   struct mvneta_rx_queue *rxq)
2928 
2929 {
2930 	int ret;
2931 
2932 	ret = mvneta_rxq_sw_init(pp, rxq);
2933 	if (ret < 0)
2934 		return ret;
2935 
2936 	mvneta_rxq_hw_init(pp, rxq);
2937 
2938 	return 0;
2939 }
2940 
2941 /* Cleanup Rx queue */
2942 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2943 			      struct mvneta_rx_queue *rxq)
2944 {
2945 	mvneta_rxq_drop_pkts(pp, rxq);
2946 
2947 	if (rxq->skb)
2948 		dev_kfree_skb_any(rxq->skb);
2949 
2950 	if (rxq->descs)
2951 		dma_free_coherent(pp->dev->dev.parent,
2952 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2953 				  rxq->descs,
2954 				  rxq->descs_phys);
2955 
2956 	rxq->descs             = NULL;
2957 	rxq->last_desc         = 0;
2958 	rxq->next_desc_to_proc = 0;
2959 	rxq->descs_phys        = 0;
2960 	rxq->first_to_refill   = 0;
2961 	rxq->refill_num        = 0;
2962 	rxq->skb               = NULL;
2963 	rxq->left_size         = 0;
2964 }
2965 
2966 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2967 			      struct mvneta_tx_queue *txq)
2968 {
2969 	int cpu;
2970 
2971 	txq->size = pp->tx_ring_size;
2972 
2973 	/* A queue must always have room for at least one skb.
2974 	 * Therefore, stop the queue when the free entries reaches
2975 	 * the maximum number of descriptors per skb.
2976 	 */
2977 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2978 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2979 
2980 	/* Allocate memory for TX descriptors */
2981 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2982 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2983 					&txq->descs_phys, GFP_KERNEL);
2984 	if (!txq->descs)
2985 		return -ENOMEM;
2986 
2987 	txq->last_desc = txq->size - 1;
2988 
2989 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2990 				    GFP_KERNEL);
2991 	if (!txq->tx_skb) {
2992 		dma_free_coherent(pp->dev->dev.parent,
2993 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2994 				  txq->descs, txq->descs_phys);
2995 		return -ENOMEM;
2996 	}
2997 
2998 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2999 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3000 					   txq->size * TSO_HEADER_SIZE,
3001 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3002 	if (!txq->tso_hdrs) {
3003 		kfree(txq->tx_skb);
3004 		dma_free_coherent(pp->dev->dev.parent,
3005 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3006 				  txq->descs, txq->descs_phys);
3007 		return -ENOMEM;
3008 	}
3009 
3010 	/* Setup XPS mapping */
3011 	if (txq_number > 1)
3012 		cpu = txq->id % num_present_cpus();
3013 	else
3014 		cpu = pp->rxq_def % num_present_cpus();
3015 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3016 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3017 
3018 	return 0;
3019 }
3020 
3021 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3022 			       struct mvneta_tx_queue *txq)
3023 {
3024 	/* Set maximum bandwidth for enabled TXQs */
3025 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3026 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3027 
3028 	/* Set Tx descriptors queue starting address */
3029 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3030 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3031 
3032 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3033 }
3034 
3035 /* Create and initialize a tx queue */
3036 static int mvneta_txq_init(struct mvneta_port *pp,
3037 			   struct mvneta_tx_queue *txq)
3038 {
3039 	int ret;
3040 
3041 	ret = mvneta_txq_sw_init(pp, txq);
3042 	if (ret < 0)
3043 		return ret;
3044 
3045 	mvneta_txq_hw_init(pp, txq);
3046 
3047 	return 0;
3048 }
3049 
3050 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3051 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3052 				 struct mvneta_tx_queue *txq)
3053 {
3054 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3055 
3056 	kfree(txq->tx_skb);
3057 
3058 	if (txq->tso_hdrs)
3059 		dma_free_coherent(pp->dev->dev.parent,
3060 				  txq->size * TSO_HEADER_SIZE,
3061 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3062 	if (txq->descs)
3063 		dma_free_coherent(pp->dev->dev.parent,
3064 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3065 				  txq->descs, txq->descs_phys);
3066 
3067 	netdev_tx_reset_queue(nq);
3068 
3069 	txq->descs             = NULL;
3070 	txq->last_desc         = 0;
3071 	txq->next_desc_to_proc = 0;
3072 	txq->descs_phys        = 0;
3073 }
3074 
3075 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3076 				 struct mvneta_tx_queue *txq)
3077 {
3078 	/* Set minimum bandwidth for disabled TXQs */
3079 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3080 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3081 
3082 	/* Set Tx descriptors queue starting address and size */
3083 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3084 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3085 }
3086 
3087 static void mvneta_txq_deinit(struct mvneta_port *pp,
3088 			      struct mvneta_tx_queue *txq)
3089 {
3090 	mvneta_txq_sw_deinit(pp, txq);
3091 	mvneta_txq_hw_deinit(pp, txq);
3092 }
3093 
3094 /* Cleanup all Tx queues */
3095 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3096 {
3097 	int queue;
3098 
3099 	for (queue = 0; queue < txq_number; queue++)
3100 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3101 }
3102 
3103 /* Cleanup all Rx queues */
3104 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3105 {
3106 	int queue;
3107 
3108 	for (queue = 0; queue < rxq_number; queue++)
3109 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3110 }
3111 
3112 
3113 /* Init all Rx queues */
3114 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3115 {
3116 	int queue;
3117 
3118 	for (queue = 0; queue < rxq_number; queue++) {
3119 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3120 
3121 		if (err) {
3122 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3123 				   __func__, queue);
3124 			mvneta_cleanup_rxqs(pp);
3125 			return err;
3126 		}
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 /* Init all tx queues */
3133 static int mvneta_setup_txqs(struct mvneta_port *pp)
3134 {
3135 	int queue;
3136 
3137 	for (queue = 0; queue < txq_number; queue++) {
3138 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3139 		if (err) {
3140 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3141 				   __func__, queue);
3142 			mvneta_cleanup_txqs(pp);
3143 			return err;
3144 		}
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 static void mvneta_start_dev(struct mvneta_port *pp)
3151 {
3152 	int cpu;
3153 
3154 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3155 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3156 
3157 	/* start the Rx/Tx activity */
3158 	mvneta_port_enable(pp);
3159 
3160 	if (!pp->neta_armada3700) {
3161 		/* Enable polling on the port */
3162 		for_each_online_cpu(cpu) {
3163 			struct mvneta_pcpu_port *port =
3164 				per_cpu_ptr(pp->ports, cpu);
3165 
3166 			napi_enable(&port->napi);
3167 		}
3168 	} else {
3169 		napi_enable(&pp->napi);
3170 	}
3171 
3172 	/* Unmask interrupts. It has to be done from each CPU */
3173 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3174 
3175 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3176 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3177 		    MVNETA_CAUSE_LINK_CHANGE);
3178 
3179 	phylink_start(pp->phylink);
3180 	netif_tx_start_all_queues(pp->dev);
3181 }
3182 
3183 static void mvneta_stop_dev(struct mvneta_port *pp)
3184 {
3185 	unsigned int cpu;
3186 
3187 	phylink_stop(pp->phylink);
3188 
3189 	if (!pp->neta_armada3700) {
3190 		for_each_online_cpu(cpu) {
3191 			struct mvneta_pcpu_port *port =
3192 				per_cpu_ptr(pp->ports, cpu);
3193 
3194 			napi_disable(&port->napi);
3195 		}
3196 	} else {
3197 		napi_disable(&pp->napi);
3198 	}
3199 
3200 	netif_carrier_off(pp->dev);
3201 
3202 	mvneta_port_down(pp);
3203 	netif_tx_stop_all_queues(pp->dev);
3204 
3205 	/* Stop the port activity */
3206 	mvneta_port_disable(pp);
3207 
3208 	/* Clear all ethernet port interrupts */
3209 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3210 
3211 	/* Mask all ethernet port interrupts */
3212 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3213 
3214 	mvneta_tx_reset(pp);
3215 	mvneta_rx_reset(pp);
3216 }
3217 
3218 static void mvneta_percpu_enable(void *arg)
3219 {
3220 	struct mvneta_port *pp = arg;
3221 
3222 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3223 }
3224 
3225 static void mvneta_percpu_disable(void *arg)
3226 {
3227 	struct mvneta_port *pp = arg;
3228 
3229 	disable_percpu_irq(pp->dev->irq);
3230 }
3231 
3232 /* Change the device mtu */
3233 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3234 {
3235 	struct mvneta_port *pp = netdev_priv(dev);
3236 	int ret;
3237 
3238 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3239 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3240 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3241 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3242 	}
3243 
3244 	dev->mtu = mtu;
3245 
3246 	if (!netif_running(dev)) {
3247 		if (pp->bm_priv)
3248 			mvneta_bm_update_mtu(pp, mtu);
3249 
3250 		netdev_update_features(dev);
3251 		return 0;
3252 	}
3253 
3254 	/* The interface is running, so we have to force a
3255 	 * reallocation of the queues
3256 	 */
3257 	mvneta_stop_dev(pp);
3258 	on_each_cpu(mvneta_percpu_disable, pp, true);
3259 
3260 	mvneta_cleanup_txqs(pp);
3261 	mvneta_cleanup_rxqs(pp);
3262 
3263 	if (pp->bm_priv)
3264 		mvneta_bm_update_mtu(pp, mtu);
3265 
3266 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3267 
3268 	ret = mvneta_setup_rxqs(pp);
3269 	if (ret) {
3270 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3271 		return ret;
3272 	}
3273 
3274 	ret = mvneta_setup_txqs(pp);
3275 	if (ret) {
3276 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3277 		return ret;
3278 	}
3279 
3280 	on_each_cpu(mvneta_percpu_enable, pp, true);
3281 	mvneta_start_dev(pp);
3282 
3283 	netdev_update_features(dev);
3284 
3285 	return 0;
3286 }
3287 
3288 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3289 					     netdev_features_t features)
3290 {
3291 	struct mvneta_port *pp = netdev_priv(dev);
3292 
3293 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3294 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3295 		netdev_info(dev,
3296 			    "Disable IP checksum for MTU greater than %dB\n",
3297 			    pp->tx_csum_limit);
3298 	}
3299 
3300 	return features;
3301 }
3302 
3303 /* Get mac address */
3304 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3305 {
3306 	u32 mac_addr_l, mac_addr_h;
3307 
3308 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3309 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3310 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3311 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3312 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3313 	addr[3] = mac_addr_h & 0xFF;
3314 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3315 	addr[5] = mac_addr_l & 0xFF;
3316 }
3317 
3318 /* Handle setting mac address */
3319 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3320 {
3321 	struct mvneta_port *pp = netdev_priv(dev);
3322 	struct sockaddr *sockaddr = addr;
3323 	int ret;
3324 
3325 	ret = eth_prepare_mac_addr_change(dev, addr);
3326 	if (ret < 0)
3327 		return ret;
3328 	/* Remove previous address table entry */
3329 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3330 
3331 	/* Set new addr in hw */
3332 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3333 
3334 	eth_commit_mac_addr_change(dev, addr);
3335 	return 0;
3336 }
3337 
3338 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3339 			    struct phylink_link_state *state)
3340 {
3341 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3342 
3343 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3344 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3345 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3346 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3347 	    !phy_interface_mode_is_8023z(state->interface) &&
3348 	    !phy_interface_mode_is_rgmii(state->interface)) {
3349 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3350 		return;
3351 	}
3352 
3353 	/* Allow all the expected bits */
3354 	phylink_set(mask, Autoneg);
3355 	phylink_set_port_modes(mask);
3356 
3357 	/* Asymmetric pause is unsupported */
3358 	phylink_set(mask, Pause);
3359 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3360 	phylink_set(mask, 1000baseT_Full);
3361 	phylink_set(mask, 1000baseX_Full);
3362 
3363 	if (!phy_interface_mode_is_8023z(state->interface)) {
3364 		/* 10M and 100M are only supported in non-802.3z mode */
3365 		phylink_set(mask, 10baseT_Half);
3366 		phylink_set(mask, 10baseT_Full);
3367 		phylink_set(mask, 100baseT_Half);
3368 		phylink_set(mask, 100baseT_Full);
3369 	}
3370 
3371 	bitmap_and(supported, supported, mask,
3372 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3373 	bitmap_and(state->advertising, state->advertising, mask,
3374 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3375 }
3376 
3377 static int mvneta_mac_link_state(struct net_device *ndev,
3378 				 struct phylink_link_state *state)
3379 {
3380 	struct mvneta_port *pp = netdev_priv(ndev);
3381 	u32 gmac_stat;
3382 
3383 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3384 
3385 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3386 		state->speed = SPEED_1000;
3387 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3388 		state->speed = SPEED_100;
3389 	else
3390 		state->speed = SPEED_10;
3391 
3392 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3393 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3394 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3395 
3396 	state->pause = 0;
3397 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3398 		state->pause |= MLO_PAUSE_RX;
3399 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3400 		state->pause |= MLO_PAUSE_TX;
3401 
3402 	return 1;
3403 }
3404 
3405 static void mvneta_mac_an_restart(struct net_device *ndev)
3406 {
3407 	struct mvneta_port *pp = netdev_priv(ndev);
3408 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3409 
3410 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3411 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3412 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3413 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3414 }
3415 
3416 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3417 	const struct phylink_link_state *state)
3418 {
3419 	struct mvneta_port *pp = netdev_priv(ndev);
3420 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3421 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3422 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3423 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3424 
3425 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3426 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3427 				   MVNETA_GMAC2_PORT_RESET);
3428 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3429 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3430 			     MVNETA_GMAC_INBAND_RESTART_AN |
3431 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3432 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3433 			     MVNETA_GMAC_AN_SPEED_EN |
3434 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3435 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3436 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3437 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3438 			     MVNETA_GMAC_AN_DUPLEX_EN);
3439 
3440 	/* Even though it might look weird, when we're configured in
3441 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3442 	 */
3443 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3444 
3445 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3446 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3447 	    phy_interface_mode_is_8023z(state->interface))
3448 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3449 
3450 	if (phylink_test(state->advertising, Pause))
3451 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3452 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3453 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3454 
3455 	if (!phylink_autoneg_inband(mode)) {
3456 		/* Phy or fixed speed */
3457 		if (state->duplex)
3458 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3459 
3460 		if (state->speed == SPEED_1000)
3461 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3462 		else if (state->speed == SPEED_100)
3463 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3464 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3465 		/* SGMII mode receives the state from the PHY */
3466 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3467 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3468 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3469 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3470 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3471 			 MVNETA_GMAC_AN_SPEED_EN |
3472 			 MVNETA_GMAC_AN_DUPLEX_EN;
3473 	} else {
3474 		/* 802.3z negotiation - only 1000base-X */
3475 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3476 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3477 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3478 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3479 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3480 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3481 			 /* The MAC only supports FD mode */
3482 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3483 
3484 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3485 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3486 	}
3487 
3488 	/* Armada 370 documentation says we can only change the port mode
3489 	 * and in-band enable when the link is down, so force it down
3490 	 * while making these changes. We also do this for GMAC_CTRL2 */
3491 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3492 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3493 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3494 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3495 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3496 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3497 	}
3498 
3499 	if (new_ctrl0 != gmac_ctrl0)
3500 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3501 	if (new_ctrl2 != gmac_ctrl2)
3502 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3503 	if (new_clk != gmac_clk)
3504 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3505 	if (new_an != gmac_an)
3506 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3507 
3508 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3509 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3510 			MVNETA_GMAC2_PORT_RESET) != 0)
3511 			continue;
3512 	}
3513 }
3514 
3515 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3516 {
3517 	u32 lpi_ctl1;
3518 
3519 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3520 	if (enable)
3521 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3522 	else
3523 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3524 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3525 }
3526 
3527 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3528 				 phy_interface_t interface)
3529 {
3530 	struct mvneta_port *pp = netdev_priv(ndev);
3531 	u32 val;
3532 
3533 	mvneta_port_down(pp);
3534 
3535 	if (!phylink_autoneg_inband(mode)) {
3536 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3537 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3538 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3539 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3540 	}
3541 
3542 	pp->eee_active = false;
3543 	mvneta_set_eee(pp, false);
3544 }
3545 
3546 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3547 			       phy_interface_t interface,
3548 			       struct phy_device *phy)
3549 {
3550 	struct mvneta_port *pp = netdev_priv(ndev);
3551 	u32 val;
3552 
3553 	if (!phylink_autoneg_inband(mode)) {
3554 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3555 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3556 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3557 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3558 	}
3559 
3560 	mvneta_port_up(pp);
3561 
3562 	if (phy && pp->eee_enabled) {
3563 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3564 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3565 	}
3566 }
3567 
3568 static const struct phylink_mac_ops mvneta_phylink_ops = {
3569 	.validate = mvneta_validate,
3570 	.mac_link_state = mvneta_mac_link_state,
3571 	.mac_an_restart = mvneta_mac_an_restart,
3572 	.mac_config = mvneta_mac_config,
3573 	.mac_link_down = mvneta_mac_link_down,
3574 	.mac_link_up = mvneta_mac_link_up,
3575 };
3576 
3577 static int mvneta_mdio_probe(struct mvneta_port *pp)
3578 {
3579 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3580 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3581 
3582 	if (err)
3583 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3584 
3585 	phylink_ethtool_get_wol(pp->phylink, &wol);
3586 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3587 
3588 	return err;
3589 }
3590 
3591 static void mvneta_mdio_remove(struct mvneta_port *pp)
3592 {
3593 	phylink_disconnect_phy(pp->phylink);
3594 }
3595 
3596 /* Electing a CPU must be done in an atomic way: it should be done
3597  * after or before the removal/insertion of a CPU and this function is
3598  * not reentrant.
3599  */
3600 static void mvneta_percpu_elect(struct mvneta_port *pp)
3601 {
3602 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3603 
3604 	/* Use the cpu associated to the rxq when it is online, in all
3605 	 * the other cases, use the cpu 0 which can't be offline.
3606 	 */
3607 	if (cpu_online(pp->rxq_def))
3608 		elected_cpu = pp->rxq_def;
3609 
3610 	max_cpu = num_present_cpus();
3611 
3612 	for_each_online_cpu(cpu) {
3613 		int rxq_map = 0, txq_map = 0;
3614 		int rxq;
3615 
3616 		for (rxq = 0; rxq < rxq_number; rxq++)
3617 			if ((rxq % max_cpu) == cpu)
3618 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3619 
3620 		if (cpu == elected_cpu)
3621 			/* Map the default receive queue queue to the
3622 			 * elected CPU
3623 			 */
3624 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3625 
3626 		/* We update the TX queue map only if we have one
3627 		 * queue. In this case we associate the TX queue to
3628 		 * the CPU bound to the default RX queue
3629 		 */
3630 		if (txq_number == 1)
3631 			txq_map = (cpu == elected_cpu) ?
3632 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3633 		else
3634 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3635 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3636 
3637 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3638 
3639 		/* Update the interrupt mask on each CPU according the
3640 		 * new mapping
3641 		 */
3642 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3643 					 pp, true);
3644 		i++;
3645 
3646 	}
3647 };
3648 
3649 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3650 {
3651 	int other_cpu;
3652 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3653 						  node_online);
3654 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3655 
3656 
3657 	spin_lock(&pp->lock);
3658 	/*
3659 	 * Configuring the driver for a new CPU while the driver is
3660 	 * stopping is racy, so just avoid it.
3661 	 */
3662 	if (pp->is_stopped) {
3663 		spin_unlock(&pp->lock);
3664 		return 0;
3665 	}
3666 	netif_tx_stop_all_queues(pp->dev);
3667 
3668 	/*
3669 	 * We have to synchronise on tha napi of each CPU except the one
3670 	 * just being woken up
3671 	 */
3672 	for_each_online_cpu(other_cpu) {
3673 		if (other_cpu != cpu) {
3674 			struct mvneta_pcpu_port *other_port =
3675 				per_cpu_ptr(pp->ports, other_cpu);
3676 
3677 			napi_synchronize(&other_port->napi);
3678 		}
3679 	}
3680 
3681 	/* Mask all ethernet port interrupts */
3682 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3683 	napi_enable(&port->napi);
3684 
3685 	/*
3686 	 * Enable per-CPU interrupts on the CPU that is
3687 	 * brought up.
3688 	 */
3689 	mvneta_percpu_enable(pp);
3690 
3691 	/*
3692 	 * Enable per-CPU interrupt on the one CPU we care
3693 	 * about.
3694 	 */
3695 	mvneta_percpu_elect(pp);
3696 
3697 	/* Unmask all ethernet port interrupts */
3698 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3699 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3700 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3701 		    MVNETA_CAUSE_LINK_CHANGE);
3702 	netif_tx_start_all_queues(pp->dev);
3703 	spin_unlock(&pp->lock);
3704 	return 0;
3705 }
3706 
3707 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3708 {
3709 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3710 						  node_online);
3711 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3712 
3713 	/*
3714 	 * Thanks to this lock we are sure that any pending cpu election is
3715 	 * done.
3716 	 */
3717 	spin_lock(&pp->lock);
3718 	/* Mask all ethernet port interrupts */
3719 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3720 	spin_unlock(&pp->lock);
3721 
3722 	napi_synchronize(&port->napi);
3723 	napi_disable(&port->napi);
3724 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3725 	mvneta_percpu_disable(pp);
3726 	return 0;
3727 }
3728 
3729 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3730 {
3731 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3732 						  node_dead);
3733 
3734 	/* Check if a new CPU must be elected now this on is down */
3735 	spin_lock(&pp->lock);
3736 	mvneta_percpu_elect(pp);
3737 	spin_unlock(&pp->lock);
3738 	/* Unmask all ethernet port interrupts */
3739 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3740 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3741 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3742 		    MVNETA_CAUSE_LINK_CHANGE);
3743 	netif_tx_start_all_queues(pp->dev);
3744 	return 0;
3745 }
3746 
3747 static int mvneta_open(struct net_device *dev)
3748 {
3749 	struct mvneta_port *pp = netdev_priv(dev);
3750 	int ret;
3751 
3752 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3753 	pp->frag_size = PAGE_SIZE;
3754 
3755 	ret = mvneta_setup_rxqs(pp);
3756 	if (ret)
3757 		return ret;
3758 
3759 	ret = mvneta_setup_txqs(pp);
3760 	if (ret)
3761 		goto err_cleanup_rxqs;
3762 
3763 	/* Connect to port interrupt line */
3764 	if (pp->neta_armada3700)
3765 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3766 				  dev->name, pp);
3767 	else
3768 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3769 					 dev->name, pp->ports);
3770 	if (ret) {
3771 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3772 		goto err_cleanup_txqs;
3773 	}
3774 
3775 	if (!pp->neta_armada3700) {
3776 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3777 		 * queue interrupts
3778 		 */
3779 		on_each_cpu(mvneta_percpu_enable, pp, true);
3780 
3781 		pp->is_stopped = false;
3782 		/* Register a CPU notifier to handle the case where our CPU
3783 		 * might be taken offline.
3784 		 */
3785 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3786 						       &pp->node_online);
3787 		if (ret)
3788 			goto err_free_irq;
3789 
3790 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3791 						       &pp->node_dead);
3792 		if (ret)
3793 			goto err_free_online_hp;
3794 	}
3795 
3796 	/* In default link is down */
3797 	netif_carrier_off(pp->dev);
3798 
3799 	ret = mvneta_mdio_probe(pp);
3800 	if (ret < 0) {
3801 		netdev_err(dev, "cannot probe MDIO bus\n");
3802 		goto err_free_dead_hp;
3803 	}
3804 
3805 	mvneta_start_dev(pp);
3806 
3807 	return 0;
3808 
3809 err_free_dead_hp:
3810 	if (!pp->neta_armada3700)
3811 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3812 						    &pp->node_dead);
3813 err_free_online_hp:
3814 	if (!pp->neta_armada3700)
3815 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3816 						    &pp->node_online);
3817 err_free_irq:
3818 	if (pp->neta_armada3700) {
3819 		free_irq(pp->dev->irq, pp);
3820 	} else {
3821 		on_each_cpu(mvneta_percpu_disable, pp, true);
3822 		free_percpu_irq(pp->dev->irq, pp->ports);
3823 	}
3824 err_cleanup_txqs:
3825 	mvneta_cleanup_txqs(pp);
3826 err_cleanup_rxqs:
3827 	mvneta_cleanup_rxqs(pp);
3828 	return ret;
3829 }
3830 
3831 /* Stop the port, free port interrupt line */
3832 static int mvneta_stop(struct net_device *dev)
3833 {
3834 	struct mvneta_port *pp = netdev_priv(dev);
3835 
3836 	if (!pp->neta_armada3700) {
3837 		/* Inform that we are stopping so we don't want to setup the
3838 		 * driver for new CPUs in the notifiers. The code of the
3839 		 * notifier for CPU online is protected by the same spinlock,
3840 		 * so when we get the lock, the notifer work is done.
3841 		 */
3842 		spin_lock(&pp->lock);
3843 		pp->is_stopped = true;
3844 		spin_unlock(&pp->lock);
3845 
3846 		mvneta_stop_dev(pp);
3847 		mvneta_mdio_remove(pp);
3848 
3849 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3850 						    &pp->node_online);
3851 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3852 						    &pp->node_dead);
3853 		on_each_cpu(mvneta_percpu_disable, pp, true);
3854 		free_percpu_irq(dev->irq, pp->ports);
3855 	} else {
3856 		mvneta_stop_dev(pp);
3857 		mvneta_mdio_remove(pp);
3858 		free_irq(dev->irq, pp);
3859 	}
3860 
3861 	mvneta_cleanup_rxqs(pp);
3862 	mvneta_cleanup_txqs(pp);
3863 
3864 	return 0;
3865 }
3866 
3867 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3868 {
3869 	struct mvneta_port *pp = netdev_priv(dev);
3870 
3871 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3872 }
3873 
3874 /* Ethtool methods */
3875 
3876 /* Set link ksettings (phy address, speed) for ethtools */
3877 static int
3878 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3879 				  const struct ethtool_link_ksettings *cmd)
3880 {
3881 	struct mvneta_port *pp = netdev_priv(ndev);
3882 
3883 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3884 }
3885 
3886 /* Get link ksettings for ethtools */
3887 static int
3888 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3889 				  struct ethtool_link_ksettings *cmd)
3890 {
3891 	struct mvneta_port *pp = netdev_priv(ndev);
3892 
3893 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3894 }
3895 
3896 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3897 {
3898 	struct mvneta_port *pp = netdev_priv(dev);
3899 
3900 	return phylink_ethtool_nway_reset(pp->phylink);
3901 }
3902 
3903 /* Set interrupt coalescing for ethtools */
3904 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3905 				       struct ethtool_coalesce *c)
3906 {
3907 	struct mvneta_port *pp = netdev_priv(dev);
3908 	int queue;
3909 
3910 	for (queue = 0; queue < rxq_number; queue++) {
3911 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3912 		rxq->time_coal = c->rx_coalesce_usecs;
3913 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3914 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3915 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3916 	}
3917 
3918 	for (queue = 0; queue < txq_number; queue++) {
3919 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3920 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3921 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 /* get coalescing for ethtools */
3928 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3929 				       struct ethtool_coalesce *c)
3930 {
3931 	struct mvneta_port *pp = netdev_priv(dev);
3932 
3933 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3934 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3935 
3936 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3937 	return 0;
3938 }
3939 
3940 
3941 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3942 				    struct ethtool_drvinfo *drvinfo)
3943 {
3944 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3945 		sizeof(drvinfo->driver));
3946 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3947 		sizeof(drvinfo->version));
3948 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3949 		sizeof(drvinfo->bus_info));
3950 }
3951 
3952 
3953 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3954 					 struct ethtool_ringparam *ring)
3955 {
3956 	struct mvneta_port *pp = netdev_priv(netdev);
3957 
3958 	ring->rx_max_pending = MVNETA_MAX_RXD;
3959 	ring->tx_max_pending = MVNETA_MAX_TXD;
3960 	ring->rx_pending = pp->rx_ring_size;
3961 	ring->tx_pending = pp->tx_ring_size;
3962 }
3963 
3964 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3965 					struct ethtool_ringparam *ring)
3966 {
3967 	struct mvneta_port *pp = netdev_priv(dev);
3968 
3969 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3970 		return -EINVAL;
3971 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3972 		ring->rx_pending : MVNETA_MAX_RXD;
3973 
3974 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3975 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3976 	if (pp->tx_ring_size != ring->tx_pending)
3977 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3978 			    pp->tx_ring_size, ring->tx_pending);
3979 
3980 	if (netif_running(dev)) {
3981 		mvneta_stop(dev);
3982 		if (mvneta_open(dev)) {
3983 			netdev_err(dev,
3984 				   "error on opening device after ring param change\n");
3985 			return -ENOMEM;
3986 		}
3987 	}
3988 
3989 	return 0;
3990 }
3991 
3992 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3993 					  struct ethtool_pauseparam *pause)
3994 {
3995 	struct mvneta_port *pp = netdev_priv(dev);
3996 
3997 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
3998 }
3999 
4000 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4001 					 struct ethtool_pauseparam *pause)
4002 {
4003 	struct mvneta_port *pp = netdev_priv(dev);
4004 
4005 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4006 }
4007 
4008 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4009 				       u8 *data)
4010 {
4011 	if (sset == ETH_SS_STATS) {
4012 		int i;
4013 
4014 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4015 			memcpy(data + i * ETH_GSTRING_LEN,
4016 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4017 	}
4018 }
4019 
4020 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4021 {
4022 	const struct mvneta_statistic *s;
4023 	void __iomem *base = pp->base;
4024 	u32 high, low;
4025 	u64 val;
4026 	int i;
4027 
4028 	for (i = 0, s = mvneta_statistics;
4029 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4030 	     s++, i++) {
4031 		val = 0;
4032 
4033 		switch (s->type) {
4034 		case T_REG_32:
4035 			val = readl_relaxed(base + s->offset);
4036 			break;
4037 		case T_REG_64:
4038 			/* Docs say to read low 32-bit then high */
4039 			low = readl_relaxed(base + s->offset);
4040 			high = readl_relaxed(base + s->offset + 4);
4041 			val = (u64)high << 32 | low;
4042 			break;
4043 		case T_SW:
4044 			switch (s->offset) {
4045 			case ETHTOOL_STAT_EEE_WAKEUP:
4046 				val = phylink_get_eee_err(pp->phylink);
4047 				break;
4048 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4049 				val = pp->rxqs[0].skb_alloc_err;
4050 				break;
4051 			case ETHTOOL_STAT_REFILL_ERR:
4052 				val = pp->rxqs[0].refill_err;
4053 				break;
4054 			}
4055 			break;
4056 		}
4057 
4058 		pp->ethtool_stats[i] += val;
4059 	}
4060 }
4061 
4062 static void mvneta_ethtool_get_stats(struct net_device *dev,
4063 				     struct ethtool_stats *stats, u64 *data)
4064 {
4065 	struct mvneta_port *pp = netdev_priv(dev);
4066 	int i;
4067 
4068 	mvneta_ethtool_update_stats(pp);
4069 
4070 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4071 		*data++ = pp->ethtool_stats[i];
4072 }
4073 
4074 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4075 {
4076 	if (sset == ETH_SS_STATS)
4077 		return ARRAY_SIZE(mvneta_statistics);
4078 	return -EOPNOTSUPP;
4079 }
4080 
4081 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4082 {
4083 	return MVNETA_RSS_LU_TABLE_SIZE;
4084 }
4085 
4086 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4087 				    struct ethtool_rxnfc *info,
4088 				    u32 *rules __always_unused)
4089 {
4090 	switch (info->cmd) {
4091 	case ETHTOOL_GRXRINGS:
4092 		info->data =  rxq_number;
4093 		return 0;
4094 	case ETHTOOL_GRXFH:
4095 		return -EOPNOTSUPP;
4096 	default:
4097 		return -EOPNOTSUPP;
4098 	}
4099 }
4100 
4101 static int  mvneta_config_rss(struct mvneta_port *pp)
4102 {
4103 	int cpu;
4104 	u32 val;
4105 
4106 	netif_tx_stop_all_queues(pp->dev);
4107 
4108 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4109 
4110 	if (!pp->neta_armada3700) {
4111 		/* We have to synchronise on the napi of each CPU */
4112 		for_each_online_cpu(cpu) {
4113 			struct mvneta_pcpu_port *pcpu_port =
4114 				per_cpu_ptr(pp->ports, cpu);
4115 
4116 			napi_synchronize(&pcpu_port->napi);
4117 			napi_disable(&pcpu_port->napi);
4118 		}
4119 	} else {
4120 		napi_synchronize(&pp->napi);
4121 		napi_disable(&pp->napi);
4122 	}
4123 
4124 	pp->rxq_def = pp->indir[0];
4125 
4126 	/* Update unicast mapping */
4127 	mvneta_set_rx_mode(pp->dev);
4128 
4129 	/* Update val of portCfg register accordingly with all RxQueue types */
4130 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4131 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4132 
4133 	/* Update the elected CPU matching the new rxq_def */
4134 	spin_lock(&pp->lock);
4135 	mvneta_percpu_elect(pp);
4136 	spin_unlock(&pp->lock);
4137 
4138 	if (!pp->neta_armada3700) {
4139 		/* We have to synchronise on the napi of each CPU */
4140 		for_each_online_cpu(cpu) {
4141 			struct mvneta_pcpu_port *pcpu_port =
4142 				per_cpu_ptr(pp->ports, cpu);
4143 
4144 			napi_enable(&pcpu_port->napi);
4145 		}
4146 	} else {
4147 		napi_enable(&pp->napi);
4148 	}
4149 
4150 	netif_tx_start_all_queues(pp->dev);
4151 
4152 	return 0;
4153 }
4154 
4155 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4156 				   const u8 *key, const u8 hfunc)
4157 {
4158 	struct mvneta_port *pp = netdev_priv(dev);
4159 
4160 	/* Current code for Armada 3700 doesn't support RSS features yet */
4161 	if (pp->neta_armada3700)
4162 		return -EOPNOTSUPP;
4163 
4164 	/* We require at least one supported parameter to be changed
4165 	 * and no change in any of the unsupported parameters
4166 	 */
4167 	if (key ||
4168 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4169 		return -EOPNOTSUPP;
4170 
4171 	if (!indir)
4172 		return 0;
4173 
4174 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4175 
4176 	return mvneta_config_rss(pp);
4177 }
4178 
4179 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4180 				   u8 *hfunc)
4181 {
4182 	struct mvneta_port *pp = netdev_priv(dev);
4183 
4184 	/* Current code for Armada 3700 doesn't support RSS features yet */
4185 	if (pp->neta_armada3700)
4186 		return -EOPNOTSUPP;
4187 
4188 	if (hfunc)
4189 		*hfunc = ETH_RSS_HASH_TOP;
4190 
4191 	if (!indir)
4192 		return 0;
4193 
4194 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4195 
4196 	return 0;
4197 }
4198 
4199 static void mvneta_ethtool_get_wol(struct net_device *dev,
4200 				   struct ethtool_wolinfo *wol)
4201 {
4202 	struct mvneta_port *pp = netdev_priv(dev);
4203 
4204 	phylink_ethtool_get_wol(pp->phylink, wol);
4205 }
4206 
4207 static int mvneta_ethtool_set_wol(struct net_device *dev,
4208 				  struct ethtool_wolinfo *wol)
4209 {
4210 	struct mvneta_port *pp = netdev_priv(dev);
4211 	int ret;
4212 
4213 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4214 	if (!ret)
4215 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4216 
4217 	return ret;
4218 }
4219 
4220 static int mvneta_ethtool_get_eee(struct net_device *dev,
4221 				  struct ethtool_eee *eee)
4222 {
4223 	struct mvneta_port *pp = netdev_priv(dev);
4224 	u32 lpi_ctl0;
4225 
4226 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4227 
4228 	eee->eee_enabled = pp->eee_enabled;
4229 	eee->eee_active = pp->eee_active;
4230 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4231 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4232 
4233 	return phylink_ethtool_get_eee(pp->phylink, eee);
4234 }
4235 
4236 static int mvneta_ethtool_set_eee(struct net_device *dev,
4237 				  struct ethtool_eee *eee)
4238 {
4239 	struct mvneta_port *pp = netdev_priv(dev);
4240 	u32 lpi_ctl0;
4241 
4242 	/* The Armada 37x documents do not give limits for this other than
4243 	 * it being an 8-bit register. */
4244 	if (eee->tx_lpi_enabled &&
4245 	    (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4246 		return -EINVAL;
4247 
4248 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4249 	lpi_ctl0 &= ~(0xff << 8);
4250 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4251 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4252 
4253 	pp->eee_enabled = eee->eee_enabled;
4254 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4255 
4256 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4257 
4258 	return phylink_ethtool_set_eee(pp->phylink, eee);
4259 }
4260 
4261 static const struct net_device_ops mvneta_netdev_ops = {
4262 	.ndo_open            = mvneta_open,
4263 	.ndo_stop            = mvneta_stop,
4264 	.ndo_start_xmit      = mvneta_tx,
4265 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4266 	.ndo_set_mac_address = mvneta_set_mac_addr,
4267 	.ndo_change_mtu      = mvneta_change_mtu,
4268 	.ndo_fix_features    = mvneta_fix_features,
4269 	.ndo_get_stats64     = mvneta_get_stats64,
4270 	.ndo_do_ioctl        = mvneta_ioctl,
4271 };
4272 
4273 static const struct ethtool_ops mvneta_eth_tool_ops = {
4274 	.nway_reset	= mvneta_ethtool_nway_reset,
4275 	.get_link       = ethtool_op_get_link,
4276 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4277 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4278 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4279 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4280 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4281 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4282 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4283 	.get_strings	= mvneta_ethtool_get_strings,
4284 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4285 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4286 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4287 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4288 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4289 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4290 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4291 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4292 	.get_wol        = mvneta_ethtool_get_wol,
4293 	.set_wol        = mvneta_ethtool_set_wol,
4294 	.get_eee	= mvneta_ethtool_get_eee,
4295 	.set_eee	= mvneta_ethtool_set_eee,
4296 };
4297 
4298 /* Initialize hw */
4299 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4300 {
4301 	int queue;
4302 
4303 	/* Disable port */
4304 	mvneta_port_disable(pp);
4305 
4306 	/* Set port default values */
4307 	mvneta_defaults_set(pp);
4308 
4309 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4310 	if (!pp->txqs)
4311 		return -ENOMEM;
4312 
4313 	/* Initialize TX descriptor rings */
4314 	for (queue = 0; queue < txq_number; queue++) {
4315 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4316 		txq->id = queue;
4317 		txq->size = pp->tx_ring_size;
4318 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4319 	}
4320 
4321 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4322 	if (!pp->rxqs)
4323 		return -ENOMEM;
4324 
4325 	/* Create Rx descriptor rings */
4326 	for (queue = 0; queue < rxq_number; queue++) {
4327 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4328 		rxq->id = queue;
4329 		rxq->size = pp->rx_ring_size;
4330 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4331 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4332 		rxq->buf_virt_addr
4333 			= devm_kmalloc_array(pp->dev->dev.parent,
4334 					     rxq->size,
4335 					     sizeof(*rxq->buf_virt_addr),
4336 					     GFP_KERNEL);
4337 		if (!rxq->buf_virt_addr)
4338 			return -ENOMEM;
4339 	}
4340 
4341 	return 0;
4342 }
4343 
4344 /* platform glue : initialize decoding windows */
4345 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4346 				     const struct mbus_dram_target_info *dram)
4347 {
4348 	u32 win_enable;
4349 	u32 win_protect;
4350 	int i;
4351 
4352 	for (i = 0; i < 6; i++) {
4353 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4354 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4355 
4356 		if (i < 4)
4357 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4358 	}
4359 
4360 	win_enable = 0x3f;
4361 	win_protect = 0;
4362 
4363 	if (dram) {
4364 		for (i = 0; i < dram->num_cs; i++) {
4365 			const struct mbus_dram_window *cs = dram->cs + i;
4366 
4367 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4368 				    (cs->base & 0xffff0000) |
4369 				    (cs->mbus_attr << 8) |
4370 				    dram->mbus_dram_target_id);
4371 
4372 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4373 				    (cs->size - 1) & 0xffff0000);
4374 
4375 			win_enable &= ~(1 << i);
4376 			win_protect |= 3 << (2 * i);
4377 		}
4378 	} else {
4379 		/* For Armada3700 open default 4GB Mbus window, leaving
4380 		 * arbitration of target/attribute to a different layer
4381 		 * of configuration.
4382 		 */
4383 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4384 		win_enable &= ~BIT(0);
4385 		win_protect = 3;
4386 	}
4387 
4388 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4389 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4390 }
4391 
4392 /* Power up the port */
4393 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4394 {
4395 	/* MAC Cause register should be cleared */
4396 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4397 
4398 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4399 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4400 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4401 		 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4402 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4403 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4404 		return -EINVAL;
4405 
4406 	return 0;
4407 }
4408 
4409 /* Device initialization routine */
4410 static int mvneta_probe(struct platform_device *pdev)
4411 {
4412 	struct resource *res;
4413 	struct device_node *dn = pdev->dev.of_node;
4414 	struct device_node *bm_node;
4415 	struct mvneta_port *pp;
4416 	struct net_device *dev;
4417 	struct phylink *phylink;
4418 	const char *dt_mac_addr;
4419 	char hw_mac_addr[ETH_ALEN];
4420 	const char *mac_from;
4421 	int tx_csum_limit;
4422 	int phy_mode;
4423 	int err;
4424 	int cpu;
4425 
4426 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4427 	if (!dev)
4428 		return -ENOMEM;
4429 
4430 	dev->irq = irq_of_parse_and_map(dn, 0);
4431 	if (dev->irq == 0) {
4432 		err = -EINVAL;
4433 		goto err_free_netdev;
4434 	}
4435 
4436 	phy_mode = of_get_phy_mode(dn);
4437 	if (phy_mode < 0) {
4438 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4439 		err = -EINVAL;
4440 		goto err_free_irq;
4441 	}
4442 
4443 	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4444 				 &mvneta_phylink_ops);
4445 	if (IS_ERR(phylink)) {
4446 		err = PTR_ERR(phylink);
4447 		goto err_free_irq;
4448 	}
4449 
4450 	dev->tx_queue_len = MVNETA_MAX_TXD;
4451 	dev->watchdog_timeo = 5 * HZ;
4452 	dev->netdev_ops = &mvneta_netdev_ops;
4453 
4454 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4455 
4456 	pp = netdev_priv(dev);
4457 	spin_lock_init(&pp->lock);
4458 	pp->phylink = phylink;
4459 	pp->phy_interface = phy_mode;
4460 	pp->dn = dn;
4461 
4462 	pp->rxq_def = rxq_def;
4463 	pp->indir[0] = rxq_def;
4464 
4465 	/* Get special SoC configurations */
4466 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4467 		pp->neta_armada3700 = true;
4468 
4469 	pp->clk = devm_clk_get(&pdev->dev, "core");
4470 	if (IS_ERR(pp->clk))
4471 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4472 	if (IS_ERR(pp->clk)) {
4473 		err = PTR_ERR(pp->clk);
4474 		goto err_free_phylink;
4475 	}
4476 
4477 	clk_prepare_enable(pp->clk);
4478 
4479 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4480 	if (!IS_ERR(pp->clk_bus))
4481 		clk_prepare_enable(pp->clk_bus);
4482 
4483 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4484 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4485 	if (IS_ERR(pp->base)) {
4486 		err = PTR_ERR(pp->base);
4487 		goto err_clk;
4488 	}
4489 
4490 	/* Alloc per-cpu port structure */
4491 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4492 	if (!pp->ports) {
4493 		err = -ENOMEM;
4494 		goto err_clk;
4495 	}
4496 
4497 	/* Alloc per-cpu stats */
4498 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4499 	if (!pp->stats) {
4500 		err = -ENOMEM;
4501 		goto err_free_ports;
4502 	}
4503 
4504 	dt_mac_addr = of_get_mac_address(dn);
4505 	if (dt_mac_addr) {
4506 		mac_from = "device tree";
4507 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4508 	} else {
4509 		mvneta_get_mac_addr(pp, hw_mac_addr);
4510 		if (is_valid_ether_addr(hw_mac_addr)) {
4511 			mac_from = "hardware";
4512 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4513 		} else {
4514 			mac_from = "random";
4515 			eth_hw_addr_random(dev);
4516 		}
4517 	}
4518 
4519 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4520 		if (tx_csum_limit < 0 ||
4521 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4522 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4523 			dev_info(&pdev->dev,
4524 				 "Wrong TX csum limit in DT, set to %dB\n",
4525 				 MVNETA_TX_CSUM_DEF_SIZE);
4526 		}
4527 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4528 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4529 	} else {
4530 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4531 	}
4532 
4533 	pp->tx_csum_limit = tx_csum_limit;
4534 
4535 	pp->dram_target_info = mv_mbus_dram_info();
4536 	/* Armada3700 requires setting default configuration of Mbus
4537 	 * windows, however without using filled mbus_dram_target_info
4538 	 * structure.
4539 	 */
4540 	if (pp->dram_target_info || pp->neta_armada3700)
4541 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4542 
4543 	pp->tx_ring_size = MVNETA_MAX_TXD;
4544 	pp->rx_ring_size = MVNETA_MAX_RXD;
4545 
4546 	pp->dev = dev;
4547 	SET_NETDEV_DEV(dev, &pdev->dev);
4548 
4549 	pp->id = global_port_id++;
4550 	pp->rx_offset_correction = 0; /* not relevant for SW BM */
4551 
4552 	/* Obtain access to BM resources if enabled and already initialized */
4553 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4554 	if (bm_node) {
4555 		pp->bm_priv = mvneta_bm_get(bm_node);
4556 		if (pp->bm_priv) {
4557 			err = mvneta_bm_port_init(pdev, pp);
4558 			if (err < 0) {
4559 				dev_info(&pdev->dev,
4560 					 "use SW buffer management\n");
4561 				mvneta_bm_put(pp->bm_priv);
4562 				pp->bm_priv = NULL;
4563 			}
4564 		}
4565 		/* Set RX packet offset correction for platforms, whose
4566 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4567 		 * platforms and 0B for 32-bit ones.
4568 		 */
4569 		pp->rx_offset_correction = max(0,
4570 					       NET_SKB_PAD -
4571 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4572 	}
4573 	of_node_put(bm_node);
4574 
4575 	err = mvneta_init(&pdev->dev, pp);
4576 	if (err < 0)
4577 		goto err_netdev;
4578 
4579 	err = mvneta_port_power_up(pp, phy_mode);
4580 	if (err < 0) {
4581 		dev_err(&pdev->dev, "can't power up port\n");
4582 		goto err_netdev;
4583 	}
4584 
4585 	/* Armada3700 network controller does not support per-cpu
4586 	 * operation, so only single NAPI should be initialized.
4587 	 */
4588 	if (pp->neta_armada3700) {
4589 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4590 	} else {
4591 		for_each_present_cpu(cpu) {
4592 			struct mvneta_pcpu_port *port =
4593 				per_cpu_ptr(pp->ports, cpu);
4594 
4595 			netif_napi_add(dev, &port->napi, mvneta_poll,
4596 				       NAPI_POLL_WEIGHT);
4597 			port->pp = pp;
4598 		}
4599 	}
4600 
4601 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4602 	dev->hw_features |= dev->features;
4603 	dev->vlan_features |= dev->features;
4604 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4605 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4606 
4607 	/* MTU range: 68 - 9676 */
4608 	dev->min_mtu = ETH_MIN_MTU;
4609 	/* 9676 == 9700 - 20 and rounding to 8 */
4610 	dev->max_mtu = 9676;
4611 
4612 	err = register_netdev(dev);
4613 	if (err < 0) {
4614 		dev_err(&pdev->dev, "failed to register\n");
4615 		goto err_free_stats;
4616 	}
4617 
4618 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4619 		    dev->dev_addr);
4620 
4621 	platform_set_drvdata(pdev, pp->dev);
4622 
4623 	return 0;
4624 
4625 err_netdev:
4626 	unregister_netdev(dev);
4627 	if (pp->bm_priv) {
4628 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4629 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4630 				       1 << pp->id);
4631 		mvneta_bm_put(pp->bm_priv);
4632 	}
4633 err_free_stats:
4634 	free_percpu(pp->stats);
4635 err_free_ports:
4636 	free_percpu(pp->ports);
4637 err_clk:
4638 	clk_disable_unprepare(pp->clk_bus);
4639 	clk_disable_unprepare(pp->clk);
4640 err_free_phylink:
4641 	if (pp->phylink)
4642 		phylink_destroy(pp->phylink);
4643 err_free_irq:
4644 	irq_dispose_mapping(dev->irq);
4645 err_free_netdev:
4646 	free_netdev(dev);
4647 	return err;
4648 }
4649 
4650 /* Device removal routine */
4651 static int mvneta_remove(struct platform_device *pdev)
4652 {
4653 	struct net_device  *dev = platform_get_drvdata(pdev);
4654 	struct mvneta_port *pp = netdev_priv(dev);
4655 
4656 	unregister_netdev(dev);
4657 	clk_disable_unprepare(pp->clk_bus);
4658 	clk_disable_unprepare(pp->clk);
4659 	free_percpu(pp->ports);
4660 	free_percpu(pp->stats);
4661 	irq_dispose_mapping(dev->irq);
4662 	phylink_destroy(pp->phylink);
4663 	free_netdev(dev);
4664 
4665 	if (pp->bm_priv) {
4666 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4667 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4668 				       1 << pp->id);
4669 		mvneta_bm_put(pp->bm_priv);
4670 	}
4671 
4672 	return 0;
4673 }
4674 
4675 #ifdef CONFIG_PM_SLEEP
4676 static int mvneta_suspend(struct device *device)
4677 {
4678 	int queue;
4679 	struct net_device *dev = dev_get_drvdata(device);
4680 	struct mvneta_port *pp = netdev_priv(dev);
4681 
4682 	if (!netif_running(dev))
4683 		goto clean_exit;
4684 
4685 	if (!pp->neta_armada3700) {
4686 		spin_lock(&pp->lock);
4687 		pp->is_stopped = true;
4688 		spin_unlock(&pp->lock);
4689 
4690 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4691 						    &pp->node_online);
4692 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4693 						    &pp->node_dead);
4694 	}
4695 
4696 	rtnl_lock();
4697 	mvneta_stop_dev(pp);
4698 	rtnl_unlock();
4699 
4700 	for (queue = 0; queue < rxq_number; queue++) {
4701 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4702 
4703 		mvneta_rxq_drop_pkts(pp, rxq);
4704 	}
4705 
4706 	for (queue = 0; queue < txq_number; queue++) {
4707 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4708 
4709 		mvneta_txq_hw_deinit(pp, txq);
4710 	}
4711 
4712 clean_exit:
4713 	netif_device_detach(dev);
4714 	clk_disable_unprepare(pp->clk_bus);
4715 	clk_disable_unprepare(pp->clk);
4716 
4717 	return 0;
4718 }
4719 
4720 static int mvneta_resume(struct device *device)
4721 {
4722 	struct platform_device *pdev = to_platform_device(device);
4723 	struct net_device *dev = dev_get_drvdata(device);
4724 	struct mvneta_port *pp = netdev_priv(dev);
4725 	int err, queue;
4726 
4727 	clk_prepare_enable(pp->clk);
4728 	if (!IS_ERR(pp->clk_bus))
4729 		clk_prepare_enable(pp->clk_bus);
4730 	if (pp->dram_target_info || pp->neta_armada3700)
4731 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4732 	if (pp->bm_priv) {
4733 		err = mvneta_bm_port_init(pdev, pp);
4734 		if (err < 0) {
4735 			dev_info(&pdev->dev, "use SW buffer management\n");
4736 			pp->bm_priv = NULL;
4737 		}
4738 	}
4739 	mvneta_defaults_set(pp);
4740 	err = mvneta_port_power_up(pp, pp->phy_interface);
4741 	if (err < 0) {
4742 		dev_err(device, "can't power up port\n");
4743 		return err;
4744 	}
4745 
4746 	netif_device_attach(dev);
4747 
4748 	if (!netif_running(dev))
4749 		return 0;
4750 
4751 	for (queue = 0; queue < rxq_number; queue++) {
4752 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4753 
4754 		rxq->next_desc_to_proc = 0;
4755 		mvneta_rxq_hw_init(pp, rxq);
4756 	}
4757 
4758 	for (queue = 0; queue < txq_number; queue++) {
4759 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4760 
4761 		txq->next_desc_to_proc = 0;
4762 		mvneta_txq_hw_init(pp, txq);
4763 	}
4764 
4765 	if (!pp->neta_armada3700) {
4766 		spin_lock(&pp->lock);
4767 		pp->is_stopped = false;
4768 		spin_unlock(&pp->lock);
4769 		cpuhp_state_add_instance_nocalls(online_hpstate,
4770 						 &pp->node_online);
4771 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4772 						 &pp->node_dead);
4773 	}
4774 
4775 	rtnl_lock();
4776 	mvneta_start_dev(pp);
4777 	rtnl_unlock();
4778 	mvneta_set_rx_mode(dev);
4779 
4780 	return 0;
4781 }
4782 #endif
4783 
4784 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4785 
4786 static const struct of_device_id mvneta_match[] = {
4787 	{ .compatible = "marvell,armada-370-neta" },
4788 	{ .compatible = "marvell,armada-xp-neta" },
4789 	{ .compatible = "marvell,armada-3700-neta" },
4790 	{ }
4791 };
4792 MODULE_DEVICE_TABLE(of, mvneta_match);
4793 
4794 static struct platform_driver mvneta_driver = {
4795 	.probe = mvneta_probe,
4796 	.remove = mvneta_remove,
4797 	.driver = {
4798 		.name = MVNETA_DRIVER_NAME,
4799 		.of_match_table = mvneta_match,
4800 		.pm = &mvneta_pm_ops,
4801 	},
4802 };
4803 
4804 static int __init mvneta_driver_init(void)
4805 {
4806 	int ret;
4807 
4808 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4809 				      mvneta_cpu_online,
4810 				      mvneta_cpu_down_prepare);
4811 	if (ret < 0)
4812 		goto out;
4813 	online_hpstate = ret;
4814 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4815 				      NULL, mvneta_cpu_dead);
4816 	if (ret)
4817 		goto err_dead;
4818 
4819 	ret = platform_driver_register(&mvneta_driver);
4820 	if (ret)
4821 		goto err;
4822 	return 0;
4823 
4824 err:
4825 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4826 err_dead:
4827 	cpuhp_remove_multi_state(online_hpstate);
4828 out:
4829 	return ret;
4830 }
4831 module_init(mvneta_driver_init);
4832 
4833 static void __exit mvneta_driver_exit(void)
4834 {
4835 	platform_driver_unregister(&mvneta_driver);
4836 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4837 	cpuhp_remove_multi_state(online_hpstate);
4838 }
4839 module_exit(mvneta_driver_exit);
4840 
4841 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4842 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4843 MODULE_LICENSE("GPL");
4844 
4845 module_param(rxq_number, int, 0444);
4846 module_param(txq_number, int, 0444);
4847 
4848 module_param(rxq_def, int, 0444);
4849 module_param(rx_copybreak, int, 0644);
4850