1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/if_vlan.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/io.h> 27 #include <net/tso.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/of_address.h> 33 #include <linux/phy.h> 34 #include <linux/clk.h> 35 36 /* Registers */ 37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 52 #define MVNETA_PORT_RX_RESET 0x1cc0 53 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 54 #define MVNETA_PHY_ADDR 0x2000 55 #define MVNETA_PHY_ADDR_MASK 0x1f 56 #define MVNETA_MBUS_RETRY 0x2010 57 #define MVNETA_UNIT_INTR_CAUSE 0x2080 58 #define MVNETA_UNIT_CONTROL 0x20B0 59 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 63 #define MVNETA_BASE_ADDR_ENABLE 0x2290 64 #define MVNETA_PORT_CONFIG 0x2400 65 #define MVNETA_UNI_PROMISC_MODE BIT(0) 66 #define MVNETA_DEF_RXQ(q) ((q) << 1) 67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 74 MVNETA_DEF_RXQ_ARP(q) | \ 75 MVNETA_DEF_RXQ_TCP(q) | \ 76 MVNETA_DEF_RXQ_UDP(q) | \ 77 MVNETA_DEF_RXQ_BPDU(q) | \ 78 MVNETA_TX_UNSET_ERR_SUM | \ 79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 81 #define MVNETA_MAC_ADDR_LOW 0x2414 82 #define MVNETA_MAC_ADDR_HIGH 0x2418 83 #define MVNETA_SDMA_CONFIG 0x241c 84 #define MVNETA_SDMA_BRST_SIZE_16 4 85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 86 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 87 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 88 #define MVNETA_DESC_SWAP BIT(6) 89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 90 #define MVNETA_PORT_STATUS 0x2444 91 #define MVNETA_TX_IN_PRGRS BIT(1) 92 #define MVNETA_TX_FIFO_EMPTY BIT(8) 93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 94 #define MVNETA_SERDES_CFG 0x24A0 95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 97 #define MVNETA_TYPE_PRIO 0x24bc 98 #define MVNETA_FORCE_UNI BIT(21) 99 #define MVNETA_TXQ_CMD_1 0x24e4 100 #define MVNETA_TXQ_CMD 0x2448 101 #define MVNETA_TXQ_DISABLE_SHIFT 8 102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 103 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 104 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 105 #define MVNETA_ACC_MODE 0x2500 106 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 107 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 108 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 109 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 110 111 /* Exception Interrupt Port/Queue Cause register */ 112 113 #define MVNETA_INTR_NEW_CAUSE 0x25a0 114 #define MVNETA_INTR_NEW_MASK 0x25a4 115 116 /* bits 0..7 = TXQ SENT, one bit per queue. 117 * bits 8..15 = RXQ OCCUP, one bit per queue. 118 * bits 16..23 = RXQ FREE, one bit per queue. 119 * bit 29 = OLD_REG_SUM, see old reg ? 120 * bit 30 = TX_ERR_SUM, one bit for 4 ports 121 * bit 31 = MISC_SUM, one bit for 4 ports 122 */ 123 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 124 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 125 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 126 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 127 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 128 129 #define MVNETA_INTR_OLD_CAUSE 0x25a8 130 #define MVNETA_INTR_OLD_MASK 0x25ac 131 132 /* Data Path Port/Queue Cause Register */ 133 #define MVNETA_INTR_MISC_CAUSE 0x25b0 134 #define MVNETA_INTR_MISC_MASK 0x25b4 135 136 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 137 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 138 #define MVNETA_CAUSE_PTP BIT(4) 139 140 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 141 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 142 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 143 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 144 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 145 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 146 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 147 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 148 149 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 150 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 151 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 152 153 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 154 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 155 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 156 157 #define MVNETA_INTR_ENABLE 0x25b8 158 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 159 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 160 161 #define MVNETA_RXQ_CMD 0x2680 162 #define MVNETA_RXQ_DISABLE_SHIFT 8 163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 166 #define MVNETA_GMAC_CTRL_0 0x2c00 167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 170 #define MVNETA_GMAC_CTRL_2 0x2c08 171 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 172 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 173 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 174 #define MVNETA_GMAC2_PORT_RESET BIT(6) 175 #define MVNETA_GMAC_STATUS 0x2c10 176 #define MVNETA_GMAC_LINK_UP BIT(0) 177 #define MVNETA_GMAC_SPEED_1000 BIT(1) 178 #define MVNETA_GMAC_SPEED_100 BIT(2) 179 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 180 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 181 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 182 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 183 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 184 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 185 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 186 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 187 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 191 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 192 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 193 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 194 #define MVNETA_MIB_COUNTERS_BASE 0x3080 195 #define MVNETA_MIB_LATE_COLLISION 0x7c 196 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 197 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 198 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 199 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 200 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 201 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 202 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 203 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 204 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 205 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 206 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 207 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 208 #define MVNETA_PORT_TX_RESET 0x3cf0 209 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 210 #define MVNETA_TX_MTU 0x3e0c 211 #define MVNETA_TX_TOKEN_SIZE 0x3e14 212 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 214 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 215 216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 217 218 /* Descriptor ring Macros */ 219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 220 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 221 222 /* Various constants */ 223 224 /* Coalescing */ 225 #define MVNETA_TXDONE_COAL_PKTS 1 226 #define MVNETA_RX_COAL_PKTS 32 227 #define MVNETA_RX_COAL_USEC 100 228 229 /* The two bytes Marvell header. Either contains a special value used 230 * by Marvell switches when a specific hardware mode is enabled (not 231 * supported by this driver) or is filled automatically by zeroes on 232 * the RX side. Those two bytes being at the front of the Ethernet 233 * header, they allow to have the IP header aligned on a 4 bytes 234 * boundary automatically: the hardware skips those two bytes on its 235 * own. 236 */ 237 #define MVNETA_MH_SIZE 2 238 239 #define MVNETA_VLAN_TAG_LEN 4 240 241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 242 #define MVNETA_TX_CSUM_MAX_SIZE 9800 243 #define MVNETA_ACC_MODE_EXT 1 244 245 /* Timeout constants */ 246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 249 250 #define MVNETA_TX_MTU_MAX 0x3ffff 251 252 /* TSO header size */ 253 #define TSO_HEADER_SIZE 128 254 255 /* Max number of Rx descriptors */ 256 #define MVNETA_MAX_RXD 128 257 258 /* Max number of Tx descriptors */ 259 #define MVNETA_MAX_TXD 532 260 261 /* Max number of allowed TCP segments for software TSO */ 262 #define MVNETA_MAX_TSO_SEGS 100 263 264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 265 266 /* descriptor aligned size */ 267 #define MVNETA_DESC_ALIGNED_SIZE 32 268 269 #define MVNETA_RX_PKT_SIZE(mtu) \ 270 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 271 ETH_HLEN + ETH_FCS_LEN, \ 272 MVNETA_CPU_D_CACHE_LINE_SIZE) 273 274 #define IS_TSO_HEADER(txq, addr) \ 275 ((addr >= txq->tso_hdrs_phys) && \ 276 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 277 278 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 279 280 struct mvneta_pcpu_stats { 281 struct u64_stats_sync syncp; 282 u64 rx_packets; 283 u64 rx_bytes; 284 u64 tx_packets; 285 u64 tx_bytes; 286 }; 287 288 struct mvneta_port { 289 int pkt_size; 290 unsigned int frag_size; 291 void __iomem *base; 292 struct mvneta_rx_queue *rxqs; 293 struct mvneta_tx_queue *txqs; 294 struct net_device *dev; 295 296 u32 cause_rx_tx; 297 struct napi_struct napi; 298 299 /* Core clock */ 300 struct clk *clk; 301 u8 mcast_count[256]; 302 u16 tx_ring_size; 303 u16 rx_ring_size; 304 struct mvneta_pcpu_stats *stats; 305 306 struct mii_bus *mii_bus; 307 struct phy_device *phy_dev; 308 phy_interface_t phy_interface; 309 struct device_node *phy_node; 310 unsigned int link; 311 unsigned int duplex; 312 unsigned int speed; 313 unsigned int tx_csum_limit; 314 int use_inband_status:1; 315 }; 316 317 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 318 * layout of the transmit and reception DMA descriptors, and their 319 * layout is therefore defined by the hardware design 320 */ 321 322 #define MVNETA_TX_L3_OFF_SHIFT 0 323 #define MVNETA_TX_IP_HLEN_SHIFT 8 324 #define MVNETA_TX_L4_UDP BIT(16) 325 #define MVNETA_TX_L3_IP6 BIT(17) 326 #define MVNETA_TXD_IP_CSUM BIT(18) 327 #define MVNETA_TXD_Z_PAD BIT(19) 328 #define MVNETA_TXD_L_DESC BIT(20) 329 #define MVNETA_TXD_F_DESC BIT(21) 330 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 331 MVNETA_TXD_L_DESC | \ 332 MVNETA_TXD_F_DESC) 333 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 334 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 335 336 #define MVNETA_RXD_ERR_CRC 0x0 337 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 338 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 339 #define MVNETA_RXD_ERR_LEN BIT(18) 340 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 341 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 342 #define MVNETA_RXD_L3_IP4 BIT(25) 343 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 344 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 345 346 #if defined(__LITTLE_ENDIAN) 347 struct mvneta_tx_desc { 348 u32 command; /* Options used by HW for packet transmitting.*/ 349 u16 reserverd1; /* csum_l4 (for future use) */ 350 u16 data_size; /* Data size of transmitted packet in bytes */ 351 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 352 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 353 u32 reserved3[4]; /* Reserved - (for future use) */ 354 }; 355 356 struct mvneta_rx_desc { 357 u32 status; /* Info about received packet */ 358 u16 reserved1; /* pnc_info - (for future use, PnC) */ 359 u16 data_size; /* Size of received packet in bytes */ 360 361 u32 buf_phys_addr; /* Physical address of the buffer */ 362 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 363 364 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 365 u16 reserved3; /* prefetch_cmd, for future use */ 366 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 367 368 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 369 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 370 }; 371 #else 372 struct mvneta_tx_desc { 373 u16 data_size; /* Data size of transmitted packet in bytes */ 374 u16 reserverd1; /* csum_l4 (for future use) */ 375 u32 command; /* Options used by HW for packet transmitting.*/ 376 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 377 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 378 u32 reserved3[4]; /* Reserved - (for future use) */ 379 }; 380 381 struct mvneta_rx_desc { 382 u16 data_size; /* Size of received packet in bytes */ 383 u16 reserved1; /* pnc_info - (for future use, PnC) */ 384 u32 status; /* Info about received packet */ 385 386 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 387 u32 buf_phys_addr; /* Physical address of the buffer */ 388 389 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 390 u16 reserved3; /* prefetch_cmd, for future use */ 391 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 392 393 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 394 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 395 }; 396 #endif 397 398 struct mvneta_tx_queue { 399 /* Number of this TX queue, in the range 0-7 */ 400 u8 id; 401 402 /* Number of TX DMA descriptors in the descriptor ring */ 403 int size; 404 405 /* Number of currently used TX DMA descriptor in the 406 * descriptor ring 407 */ 408 int count; 409 int tx_stop_threshold; 410 int tx_wake_threshold; 411 412 /* Array of transmitted skb */ 413 struct sk_buff **tx_skb; 414 415 /* Index of last TX DMA descriptor that was inserted */ 416 int txq_put_index; 417 418 /* Index of the TX DMA descriptor to be cleaned up */ 419 int txq_get_index; 420 421 u32 done_pkts_coal; 422 423 /* Virtual address of the TX DMA descriptors array */ 424 struct mvneta_tx_desc *descs; 425 426 /* DMA address of the TX DMA descriptors array */ 427 dma_addr_t descs_phys; 428 429 /* Index of the last TX DMA descriptor */ 430 int last_desc; 431 432 /* Index of the next TX DMA descriptor to process */ 433 int next_desc_to_proc; 434 435 /* DMA buffers for TSO headers */ 436 char *tso_hdrs; 437 438 /* DMA address of TSO headers */ 439 dma_addr_t tso_hdrs_phys; 440 }; 441 442 struct mvneta_rx_queue { 443 /* rx queue number, in the range 0-7 */ 444 u8 id; 445 446 /* num of rx descriptors in the rx descriptor ring */ 447 int size; 448 449 /* counter of times when mvneta_refill() failed */ 450 int missed; 451 452 u32 pkts_coal; 453 u32 time_coal; 454 455 /* Virtual address of the RX DMA descriptors array */ 456 struct mvneta_rx_desc *descs; 457 458 /* DMA address of the RX DMA descriptors array */ 459 dma_addr_t descs_phys; 460 461 /* Index of the last RX DMA descriptor */ 462 int last_desc; 463 464 /* Index of the next RX DMA descriptor to process */ 465 int next_desc_to_proc; 466 }; 467 468 /* The hardware supports eight (8) rx queues, but we are only allowing 469 * the first one to be used. Therefore, let's just allocate one queue. 470 */ 471 static int rxq_number = 1; 472 static int txq_number = 8; 473 474 static int rxq_def; 475 476 static int rx_copybreak __read_mostly = 256; 477 478 #define MVNETA_DRIVER_NAME "mvneta" 479 #define MVNETA_DRIVER_VERSION "1.0" 480 481 /* Utility/helper methods */ 482 483 /* Write helper method */ 484 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 485 { 486 writel(data, pp->base + offset); 487 } 488 489 /* Read helper method */ 490 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 491 { 492 return readl(pp->base + offset); 493 } 494 495 /* Increment txq get counter */ 496 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 497 { 498 txq->txq_get_index++; 499 if (txq->txq_get_index == txq->size) 500 txq->txq_get_index = 0; 501 } 502 503 /* Increment txq put counter */ 504 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 505 { 506 txq->txq_put_index++; 507 if (txq->txq_put_index == txq->size) 508 txq->txq_put_index = 0; 509 } 510 511 512 /* Clear all MIB counters */ 513 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 514 { 515 int i; 516 u32 dummy; 517 518 /* Perform dummy reads from MIB counters */ 519 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 520 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 521 } 522 523 /* Get System Network Statistics */ 524 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 525 struct rtnl_link_stats64 *stats) 526 { 527 struct mvneta_port *pp = netdev_priv(dev); 528 unsigned int start; 529 int cpu; 530 531 for_each_possible_cpu(cpu) { 532 struct mvneta_pcpu_stats *cpu_stats; 533 u64 rx_packets; 534 u64 rx_bytes; 535 u64 tx_packets; 536 u64 tx_bytes; 537 538 cpu_stats = per_cpu_ptr(pp->stats, cpu); 539 do { 540 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 541 rx_packets = cpu_stats->rx_packets; 542 rx_bytes = cpu_stats->rx_bytes; 543 tx_packets = cpu_stats->tx_packets; 544 tx_bytes = cpu_stats->tx_bytes; 545 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 546 547 stats->rx_packets += rx_packets; 548 stats->rx_bytes += rx_bytes; 549 stats->tx_packets += tx_packets; 550 stats->tx_bytes += tx_bytes; 551 } 552 553 stats->rx_errors = dev->stats.rx_errors; 554 stats->rx_dropped = dev->stats.rx_dropped; 555 556 stats->tx_dropped = dev->stats.tx_dropped; 557 558 return stats; 559 } 560 561 /* Rx descriptors helper methods */ 562 563 /* Checks whether the RX descriptor having this status is both the first 564 * and the last descriptor for the RX packet. Each RX packet is currently 565 * received through a single RX descriptor, so not having each RX 566 * descriptor with its first and last bits set is an error 567 */ 568 static int mvneta_rxq_desc_is_first_last(u32 status) 569 { 570 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 571 MVNETA_RXD_FIRST_LAST_DESC; 572 } 573 574 /* Add number of descriptors ready to receive new packets */ 575 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 576 struct mvneta_rx_queue *rxq, 577 int ndescs) 578 { 579 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 580 * be added at once 581 */ 582 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 583 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 584 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 585 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 586 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 587 } 588 589 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 590 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 591 } 592 593 /* Get number of RX descriptors occupied by received packets */ 594 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 595 struct mvneta_rx_queue *rxq) 596 { 597 u32 val; 598 599 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 600 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 601 } 602 603 /* Update num of rx desc called upon return from rx path or 604 * from mvneta_rxq_drop_pkts(). 605 */ 606 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 607 struct mvneta_rx_queue *rxq, 608 int rx_done, int rx_filled) 609 { 610 u32 val; 611 612 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 613 val = rx_done | 614 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 615 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 616 return; 617 } 618 619 /* Only 255 descriptors can be added at once */ 620 while ((rx_done > 0) || (rx_filled > 0)) { 621 if (rx_done <= 0xff) { 622 val = rx_done; 623 rx_done = 0; 624 } else { 625 val = 0xff; 626 rx_done -= 0xff; 627 } 628 if (rx_filled <= 0xff) { 629 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 630 rx_filled = 0; 631 } else { 632 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 633 rx_filled -= 0xff; 634 } 635 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 636 } 637 } 638 639 /* Get pointer to next RX descriptor to be processed by SW */ 640 static struct mvneta_rx_desc * 641 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 642 { 643 int rx_desc = rxq->next_desc_to_proc; 644 645 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 646 prefetch(rxq->descs + rxq->next_desc_to_proc); 647 return rxq->descs + rx_desc; 648 } 649 650 /* Change maximum receive size of the port. */ 651 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 652 { 653 u32 val; 654 655 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 656 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 657 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 658 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 659 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 660 } 661 662 663 /* Set rx queue offset */ 664 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 665 struct mvneta_rx_queue *rxq, 666 int offset) 667 { 668 u32 val; 669 670 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 671 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 672 673 /* Offset is in */ 674 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 675 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 676 } 677 678 679 /* Tx descriptors helper methods */ 680 681 /* Update HW with number of TX descriptors to be sent */ 682 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 683 struct mvneta_tx_queue *txq, 684 int pend_desc) 685 { 686 u32 val; 687 688 /* Only 255 descriptors can be added at once ; Assume caller 689 * process TX desriptors in quanta less than 256 690 */ 691 val = pend_desc; 692 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 693 } 694 695 /* Get pointer to next TX descriptor to be processed (send) by HW */ 696 static struct mvneta_tx_desc * 697 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 698 { 699 int tx_desc = txq->next_desc_to_proc; 700 701 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 702 return txq->descs + tx_desc; 703 } 704 705 /* Release the last allocated TX descriptor. Useful to handle DMA 706 * mapping failures in the TX path. 707 */ 708 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 709 { 710 if (txq->next_desc_to_proc == 0) 711 txq->next_desc_to_proc = txq->last_desc - 1; 712 else 713 txq->next_desc_to_proc--; 714 } 715 716 /* Set rxq buf size */ 717 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 718 struct mvneta_rx_queue *rxq, 719 int buf_size) 720 { 721 u32 val; 722 723 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 724 725 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 726 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 727 728 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 729 } 730 731 /* Disable buffer management (BM) */ 732 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 733 struct mvneta_rx_queue *rxq) 734 { 735 u32 val; 736 737 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 738 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 739 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 740 } 741 742 /* Start the Ethernet port RX and TX activity */ 743 static void mvneta_port_up(struct mvneta_port *pp) 744 { 745 int queue; 746 u32 q_map; 747 748 /* Enable all initialized TXs. */ 749 mvneta_mib_counters_clear(pp); 750 q_map = 0; 751 for (queue = 0; queue < txq_number; queue++) { 752 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 753 if (txq->descs != NULL) 754 q_map |= (1 << queue); 755 } 756 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 757 758 /* Enable all initialized RXQs. */ 759 q_map = 0; 760 for (queue = 0; queue < rxq_number; queue++) { 761 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 762 if (rxq->descs != NULL) 763 q_map |= (1 << queue); 764 } 765 766 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 767 } 768 769 /* Stop the Ethernet port activity */ 770 static void mvneta_port_down(struct mvneta_port *pp) 771 { 772 u32 val; 773 int count; 774 775 /* Stop Rx port activity. Check port Rx activity. */ 776 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 777 778 /* Issue stop command for active channels only */ 779 if (val != 0) 780 mvreg_write(pp, MVNETA_RXQ_CMD, 781 val << MVNETA_RXQ_DISABLE_SHIFT); 782 783 /* Wait for all Rx activity to terminate. */ 784 count = 0; 785 do { 786 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 787 netdev_warn(pp->dev, 788 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 789 val); 790 break; 791 } 792 mdelay(1); 793 794 val = mvreg_read(pp, MVNETA_RXQ_CMD); 795 } while (val & 0xff); 796 797 /* Stop Tx port activity. Check port Tx activity. Issue stop 798 * command for active channels only 799 */ 800 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 801 802 if (val != 0) 803 mvreg_write(pp, MVNETA_TXQ_CMD, 804 (val << MVNETA_TXQ_DISABLE_SHIFT)); 805 806 /* Wait for all Tx activity to terminate. */ 807 count = 0; 808 do { 809 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 810 netdev_warn(pp->dev, 811 "TIMEOUT for TX stopped status=0x%08x\n", 812 val); 813 break; 814 } 815 mdelay(1); 816 817 /* Check TX Command reg that all Txqs are stopped */ 818 val = mvreg_read(pp, MVNETA_TXQ_CMD); 819 820 } while (val & 0xff); 821 822 /* Double check to verify that TX FIFO is empty */ 823 count = 0; 824 do { 825 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 826 netdev_warn(pp->dev, 827 "TX FIFO empty timeout status=0x08%x\n", 828 val); 829 break; 830 } 831 mdelay(1); 832 833 val = mvreg_read(pp, MVNETA_PORT_STATUS); 834 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 835 (val & MVNETA_TX_IN_PRGRS)); 836 837 udelay(200); 838 } 839 840 /* Enable the port by setting the port enable bit of the MAC control register */ 841 static void mvneta_port_enable(struct mvneta_port *pp) 842 { 843 u32 val; 844 845 /* Enable port */ 846 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 847 val |= MVNETA_GMAC0_PORT_ENABLE; 848 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 849 } 850 851 /* Disable the port and wait for about 200 usec before retuning */ 852 static void mvneta_port_disable(struct mvneta_port *pp) 853 { 854 u32 val; 855 856 /* Reset the Enable bit in the Serial Control Register */ 857 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 858 val &= ~MVNETA_GMAC0_PORT_ENABLE; 859 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 860 861 udelay(200); 862 } 863 864 /* Multicast tables methods */ 865 866 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 867 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 868 { 869 int offset; 870 u32 val; 871 872 if (queue == -1) { 873 val = 0; 874 } else { 875 val = 0x1 | (queue << 1); 876 val |= (val << 24) | (val << 16) | (val << 8); 877 } 878 879 for (offset = 0; offset <= 0xc; offset += 4) 880 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 881 } 882 883 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 884 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 885 { 886 int offset; 887 u32 val; 888 889 if (queue == -1) { 890 val = 0; 891 } else { 892 val = 0x1 | (queue << 1); 893 val |= (val << 24) | (val << 16) | (val << 8); 894 } 895 896 for (offset = 0; offset <= 0xfc; offset += 4) 897 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 898 899 } 900 901 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 902 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 903 { 904 int offset; 905 u32 val; 906 907 if (queue == -1) { 908 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 909 val = 0; 910 } else { 911 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 912 val = 0x1 | (queue << 1); 913 val |= (val << 24) | (val << 16) | (val << 8); 914 } 915 916 for (offset = 0; offset <= 0xfc; offset += 4) 917 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 918 } 919 920 /* This method sets defaults to the NETA port: 921 * Clears interrupt Cause and Mask registers. 922 * Clears all MAC tables. 923 * Sets defaults to all registers. 924 * Resets RX and TX descriptor rings. 925 * Resets PHY. 926 * This method can be called after mvneta_port_down() to return the port 927 * settings to defaults. 928 */ 929 static void mvneta_defaults_set(struct mvneta_port *pp) 930 { 931 int cpu; 932 int queue; 933 u32 val; 934 935 /* Clear all Cause registers */ 936 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 937 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 938 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 939 940 /* Mask all interrupts */ 941 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 942 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 943 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 944 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 945 946 /* Enable MBUS Retry bit16 */ 947 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 948 949 /* Set CPU queue access map - all CPUs have access to all RX 950 * queues and to all TX queues 951 */ 952 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 953 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 954 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 955 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 956 957 /* Reset RX and TX DMAs */ 958 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 959 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 960 961 /* Disable Legacy WRR, Disable EJP, Release from reset */ 962 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 963 for (queue = 0; queue < txq_number; queue++) { 964 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 965 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 966 } 967 968 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 969 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 970 971 /* Set Port Acceleration Mode */ 972 val = MVNETA_ACC_MODE_EXT; 973 mvreg_write(pp, MVNETA_ACC_MODE, val); 974 975 /* Update val of portCfg register accordingly with all RxQueue types */ 976 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 977 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 978 979 val = 0; 980 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 981 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 982 983 /* Build PORT_SDMA_CONFIG_REG */ 984 val = 0; 985 986 /* Default burst size */ 987 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 988 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 989 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 990 991 #if defined(__BIG_ENDIAN) 992 val |= MVNETA_DESC_SWAP; 993 #endif 994 995 /* Assign port SDMA configuration */ 996 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 997 998 /* Disable PHY polling in hardware, since we're using the 999 * kernel phylib to do this. 1000 */ 1001 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1002 val &= ~MVNETA_PHY_POLLING_ENABLE; 1003 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1004 1005 if (pp->use_inband_status) { 1006 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1007 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1008 MVNETA_GMAC_FORCE_LINK_DOWN | 1009 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1010 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1011 MVNETA_GMAC_AN_SPEED_EN | 1012 MVNETA_GMAC_AN_DUPLEX_EN; 1013 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1014 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1015 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1016 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1017 } else { 1018 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1019 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1020 MVNETA_GMAC_AN_SPEED_EN | 1021 MVNETA_GMAC_AN_DUPLEX_EN); 1022 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1023 } 1024 1025 mvneta_set_ucast_table(pp, -1); 1026 mvneta_set_special_mcast_table(pp, -1); 1027 mvneta_set_other_mcast_table(pp, -1); 1028 1029 /* Set port interrupt enable register - default enable all */ 1030 mvreg_write(pp, MVNETA_INTR_ENABLE, 1031 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1032 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1033 } 1034 1035 /* Set max sizes for tx queues */ 1036 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1037 1038 { 1039 u32 val, size, mtu; 1040 int queue; 1041 1042 mtu = max_tx_size * 8; 1043 if (mtu > MVNETA_TX_MTU_MAX) 1044 mtu = MVNETA_TX_MTU_MAX; 1045 1046 /* Set MTU */ 1047 val = mvreg_read(pp, MVNETA_TX_MTU); 1048 val &= ~MVNETA_TX_MTU_MAX; 1049 val |= mtu; 1050 mvreg_write(pp, MVNETA_TX_MTU, val); 1051 1052 /* TX token size and all TXQs token size must be larger that MTU */ 1053 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1054 1055 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1056 if (size < mtu) { 1057 size = mtu; 1058 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1059 val |= size; 1060 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1061 } 1062 for (queue = 0; queue < txq_number; queue++) { 1063 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1064 1065 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1066 if (size < mtu) { 1067 size = mtu; 1068 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1069 val |= size; 1070 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1071 } 1072 } 1073 } 1074 1075 /* Set unicast address */ 1076 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1077 int queue) 1078 { 1079 unsigned int unicast_reg; 1080 unsigned int tbl_offset; 1081 unsigned int reg_offset; 1082 1083 /* Locate the Unicast table entry */ 1084 last_nibble = (0xf & last_nibble); 1085 1086 /* offset from unicast tbl base */ 1087 tbl_offset = (last_nibble / 4) * 4; 1088 1089 /* offset within the above reg */ 1090 reg_offset = last_nibble % 4; 1091 1092 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1093 1094 if (queue == -1) { 1095 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1096 unicast_reg &= ~(0xff << (8 * reg_offset)); 1097 } else { 1098 unicast_reg &= ~(0xff << (8 * reg_offset)); 1099 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1100 } 1101 1102 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1103 } 1104 1105 /* Set mac address */ 1106 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1107 int queue) 1108 { 1109 unsigned int mac_h; 1110 unsigned int mac_l; 1111 1112 if (queue != -1) { 1113 mac_l = (addr[4] << 8) | (addr[5]); 1114 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1115 (addr[2] << 8) | (addr[3] << 0); 1116 1117 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1118 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1119 } 1120 1121 /* Accept frames of this address */ 1122 mvneta_set_ucast_addr(pp, addr[5], queue); 1123 } 1124 1125 /* Set the number of packets that will be received before RX interrupt 1126 * will be generated by HW. 1127 */ 1128 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1129 struct mvneta_rx_queue *rxq, u32 value) 1130 { 1131 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1132 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1133 rxq->pkts_coal = value; 1134 } 1135 1136 /* Set the time delay in usec before RX interrupt will be generated by 1137 * HW. 1138 */ 1139 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1140 struct mvneta_rx_queue *rxq, u32 value) 1141 { 1142 u32 val; 1143 unsigned long clk_rate; 1144 1145 clk_rate = clk_get_rate(pp->clk); 1146 val = (clk_rate / 1000000) * value; 1147 1148 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1149 rxq->time_coal = value; 1150 } 1151 1152 /* Set threshold for TX_DONE pkts coalescing */ 1153 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1154 struct mvneta_tx_queue *txq, u32 value) 1155 { 1156 u32 val; 1157 1158 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1159 1160 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1161 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1162 1163 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1164 1165 txq->done_pkts_coal = value; 1166 } 1167 1168 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1169 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1170 u32 phys_addr, u32 cookie) 1171 { 1172 rx_desc->buf_cookie = cookie; 1173 rx_desc->buf_phys_addr = phys_addr; 1174 } 1175 1176 /* Decrement sent descriptors counter */ 1177 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1178 struct mvneta_tx_queue *txq, 1179 int sent_desc) 1180 { 1181 u32 val; 1182 1183 /* Only 255 TX descriptors can be updated at once */ 1184 while (sent_desc > 0xff) { 1185 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1186 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1187 sent_desc = sent_desc - 0xff; 1188 } 1189 1190 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1191 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1192 } 1193 1194 /* Get number of TX descriptors already sent by HW */ 1195 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1196 struct mvneta_tx_queue *txq) 1197 { 1198 u32 val; 1199 int sent_desc; 1200 1201 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1202 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1203 MVNETA_TXQ_SENT_DESC_SHIFT; 1204 1205 return sent_desc; 1206 } 1207 1208 /* Get number of sent descriptors and decrement counter. 1209 * The number of sent descriptors is returned. 1210 */ 1211 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1212 struct mvneta_tx_queue *txq) 1213 { 1214 int sent_desc; 1215 1216 /* Get number of sent descriptors */ 1217 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1218 1219 /* Decrement sent descriptors counter */ 1220 if (sent_desc) 1221 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1222 1223 return sent_desc; 1224 } 1225 1226 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1227 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1228 int ip_hdr_len, int l4_proto) 1229 { 1230 u32 command; 1231 1232 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1233 * G_L4_chk, L4_type; required only for checksum 1234 * calculation 1235 */ 1236 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1237 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1238 1239 if (l3_proto == htons(ETH_P_IP)) 1240 command |= MVNETA_TXD_IP_CSUM; 1241 else 1242 command |= MVNETA_TX_L3_IP6; 1243 1244 if (l4_proto == IPPROTO_TCP) 1245 command |= MVNETA_TX_L4_CSUM_FULL; 1246 else if (l4_proto == IPPROTO_UDP) 1247 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1248 else 1249 command |= MVNETA_TX_L4_CSUM_NOT; 1250 1251 return command; 1252 } 1253 1254 1255 /* Display more error info */ 1256 static void mvneta_rx_error(struct mvneta_port *pp, 1257 struct mvneta_rx_desc *rx_desc) 1258 { 1259 u32 status = rx_desc->status; 1260 1261 if (!mvneta_rxq_desc_is_first_last(status)) { 1262 netdev_err(pp->dev, 1263 "bad rx status %08x (buffer oversize), size=%d\n", 1264 status, rx_desc->data_size); 1265 return; 1266 } 1267 1268 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1269 case MVNETA_RXD_ERR_CRC: 1270 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1271 status, rx_desc->data_size); 1272 break; 1273 case MVNETA_RXD_ERR_OVERRUN: 1274 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1275 status, rx_desc->data_size); 1276 break; 1277 case MVNETA_RXD_ERR_LEN: 1278 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1279 status, rx_desc->data_size); 1280 break; 1281 case MVNETA_RXD_ERR_RESOURCE: 1282 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1283 status, rx_desc->data_size); 1284 break; 1285 } 1286 } 1287 1288 /* Handle RX checksum offload based on the descriptor's status */ 1289 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1290 struct sk_buff *skb) 1291 { 1292 if ((status & MVNETA_RXD_L3_IP4) && 1293 (status & MVNETA_RXD_L4_CSUM_OK)) { 1294 skb->csum = 0; 1295 skb->ip_summed = CHECKSUM_UNNECESSARY; 1296 return; 1297 } 1298 1299 skb->ip_summed = CHECKSUM_NONE; 1300 } 1301 1302 /* Return tx queue pointer (find last set bit) according to <cause> returned 1303 * form tx_done reg. <cause> must not be null. The return value is always a 1304 * valid queue for matching the first one found in <cause>. 1305 */ 1306 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1307 u32 cause) 1308 { 1309 int queue = fls(cause) - 1; 1310 1311 return &pp->txqs[queue]; 1312 } 1313 1314 /* Free tx queue skbuffs */ 1315 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1316 struct mvneta_tx_queue *txq, int num) 1317 { 1318 int i; 1319 1320 for (i = 0; i < num; i++) { 1321 struct mvneta_tx_desc *tx_desc = txq->descs + 1322 txq->txq_get_index; 1323 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1324 1325 mvneta_txq_inc_get(txq); 1326 1327 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1328 dma_unmap_single(pp->dev->dev.parent, 1329 tx_desc->buf_phys_addr, 1330 tx_desc->data_size, DMA_TO_DEVICE); 1331 if (!skb) 1332 continue; 1333 dev_kfree_skb_any(skb); 1334 } 1335 } 1336 1337 /* Handle end of transmission */ 1338 static void mvneta_txq_done(struct mvneta_port *pp, 1339 struct mvneta_tx_queue *txq) 1340 { 1341 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1342 int tx_done; 1343 1344 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1345 if (!tx_done) 1346 return; 1347 1348 mvneta_txq_bufs_free(pp, txq, tx_done); 1349 1350 txq->count -= tx_done; 1351 1352 if (netif_tx_queue_stopped(nq)) { 1353 if (txq->count <= txq->tx_wake_threshold) 1354 netif_tx_wake_queue(nq); 1355 } 1356 } 1357 1358 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1359 { 1360 if (likely(pp->frag_size <= PAGE_SIZE)) 1361 return netdev_alloc_frag(pp->frag_size); 1362 else 1363 return kmalloc(pp->frag_size, GFP_ATOMIC); 1364 } 1365 1366 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1367 { 1368 if (likely(pp->frag_size <= PAGE_SIZE)) 1369 skb_free_frag(data); 1370 else 1371 kfree(data); 1372 } 1373 1374 /* Refill processing */ 1375 static int mvneta_rx_refill(struct mvneta_port *pp, 1376 struct mvneta_rx_desc *rx_desc) 1377 1378 { 1379 dma_addr_t phys_addr; 1380 void *data; 1381 1382 data = mvneta_frag_alloc(pp); 1383 if (!data) 1384 return -ENOMEM; 1385 1386 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1387 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1388 DMA_FROM_DEVICE); 1389 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1390 mvneta_frag_free(pp, data); 1391 return -ENOMEM; 1392 } 1393 1394 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1395 return 0; 1396 } 1397 1398 /* Handle tx checksum */ 1399 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1400 { 1401 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1402 int ip_hdr_len = 0; 1403 __be16 l3_proto = vlan_get_protocol(skb); 1404 u8 l4_proto; 1405 1406 if (l3_proto == htons(ETH_P_IP)) { 1407 struct iphdr *ip4h = ip_hdr(skb); 1408 1409 /* Calculate IPv4 checksum and L4 checksum */ 1410 ip_hdr_len = ip4h->ihl; 1411 l4_proto = ip4h->protocol; 1412 } else if (l3_proto == htons(ETH_P_IPV6)) { 1413 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1414 1415 /* Read l4_protocol from one of IPv6 extra headers */ 1416 if (skb_network_header_len(skb) > 0) 1417 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1418 l4_proto = ip6h->nexthdr; 1419 } else 1420 return MVNETA_TX_L4_CSUM_NOT; 1421 1422 return mvneta_txq_desc_csum(skb_network_offset(skb), 1423 l3_proto, ip_hdr_len, l4_proto); 1424 } 1425 1426 return MVNETA_TX_L4_CSUM_NOT; 1427 } 1428 1429 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1430 * value 1431 */ 1432 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1433 u32 cause) 1434 { 1435 int queue = fls(cause >> 8) - 1; 1436 1437 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1438 } 1439 1440 /* Drop packets received by the RXQ and free buffers */ 1441 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1442 struct mvneta_rx_queue *rxq) 1443 { 1444 int rx_done, i; 1445 1446 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1447 for (i = 0; i < rxq->size; i++) { 1448 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1449 void *data = (void *)rx_desc->buf_cookie; 1450 1451 mvneta_frag_free(pp, data); 1452 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1453 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1454 } 1455 1456 if (rx_done) 1457 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1458 } 1459 1460 /* Main rx processing */ 1461 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1462 struct mvneta_rx_queue *rxq) 1463 { 1464 struct net_device *dev = pp->dev; 1465 int rx_done; 1466 u32 rcvd_pkts = 0; 1467 u32 rcvd_bytes = 0; 1468 1469 /* Get number of received packets */ 1470 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1471 1472 if (rx_todo > rx_done) 1473 rx_todo = rx_done; 1474 1475 rx_done = 0; 1476 1477 /* Fairness NAPI loop */ 1478 while (rx_done < rx_todo) { 1479 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1480 struct sk_buff *skb; 1481 unsigned char *data; 1482 dma_addr_t phys_addr; 1483 u32 rx_status; 1484 int rx_bytes, err; 1485 1486 rx_done++; 1487 rx_status = rx_desc->status; 1488 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1489 data = (unsigned char *)rx_desc->buf_cookie; 1490 phys_addr = rx_desc->buf_phys_addr; 1491 1492 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1493 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1494 err_drop_frame: 1495 dev->stats.rx_errors++; 1496 mvneta_rx_error(pp, rx_desc); 1497 /* leave the descriptor untouched */ 1498 continue; 1499 } 1500 1501 if (rx_bytes <= rx_copybreak) { 1502 /* better copy a small frame and not unmap the DMA region */ 1503 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1504 if (unlikely(!skb)) 1505 goto err_drop_frame; 1506 1507 dma_sync_single_range_for_cpu(dev->dev.parent, 1508 rx_desc->buf_phys_addr, 1509 MVNETA_MH_SIZE + NET_SKB_PAD, 1510 rx_bytes, 1511 DMA_FROM_DEVICE); 1512 memcpy(skb_put(skb, rx_bytes), 1513 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1514 rx_bytes); 1515 1516 skb->protocol = eth_type_trans(skb, dev); 1517 mvneta_rx_csum(pp, rx_status, skb); 1518 napi_gro_receive(&pp->napi, skb); 1519 1520 rcvd_pkts++; 1521 rcvd_bytes += rx_bytes; 1522 1523 /* leave the descriptor and buffer untouched */ 1524 continue; 1525 } 1526 1527 /* Refill processing */ 1528 err = mvneta_rx_refill(pp, rx_desc); 1529 if (err) { 1530 netdev_err(dev, "Linux processing - Can't refill\n"); 1531 rxq->missed++; 1532 goto err_drop_frame; 1533 } 1534 1535 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1536 if (!skb) 1537 goto err_drop_frame; 1538 1539 dma_unmap_single(dev->dev.parent, phys_addr, 1540 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1541 1542 rcvd_pkts++; 1543 rcvd_bytes += rx_bytes; 1544 1545 /* Linux processing */ 1546 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1547 skb_put(skb, rx_bytes); 1548 1549 skb->protocol = eth_type_trans(skb, dev); 1550 1551 mvneta_rx_csum(pp, rx_status, skb); 1552 1553 napi_gro_receive(&pp->napi, skb); 1554 } 1555 1556 if (rcvd_pkts) { 1557 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1558 1559 u64_stats_update_begin(&stats->syncp); 1560 stats->rx_packets += rcvd_pkts; 1561 stats->rx_bytes += rcvd_bytes; 1562 u64_stats_update_end(&stats->syncp); 1563 } 1564 1565 /* Update rxq management counters */ 1566 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1567 1568 return rx_done; 1569 } 1570 1571 static inline void 1572 mvneta_tso_put_hdr(struct sk_buff *skb, 1573 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1574 { 1575 struct mvneta_tx_desc *tx_desc; 1576 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1577 1578 txq->tx_skb[txq->txq_put_index] = NULL; 1579 tx_desc = mvneta_txq_next_desc_get(txq); 1580 tx_desc->data_size = hdr_len; 1581 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1582 tx_desc->command |= MVNETA_TXD_F_DESC; 1583 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1584 txq->txq_put_index * TSO_HEADER_SIZE; 1585 mvneta_txq_inc_put(txq); 1586 } 1587 1588 static inline int 1589 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1590 struct sk_buff *skb, char *data, int size, 1591 bool last_tcp, bool is_last) 1592 { 1593 struct mvneta_tx_desc *tx_desc; 1594 1595 tx_desc = mvneta_txq_next_desc_get(txq); 1596 tx_desc->data_size = size; 1597 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1598 size, DMA_TO_DEVICE); 1599 if (unlikely(dma_mapping_error(dev->dev.parent, 1600 tx_desc->buf_phys_addr))) { 1601 mvneta_txq_desc_put(txq); 1602 return -ENOMEM; 1603 } 1604 1605 tx_desc->command = 0; 1606 txq->tx_skb[txq->txq_put_index] = NULL; 1607 1608 if (last_tcp) { 1609 /* last descriptor in the TCP packet */ 1610 tx_desc->command = MVNETA_TXD_L_DESC; 1611 1612 /* last descriptor in SKB */ 1613 if (is_last) 1614 txq->tx_skb[txq->txq_put_index] = skb; 1615 } 1616 mvneta_txq_inc_put(txq); 1617 return 0; 1618 } 1619 1620 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1621 struct mvneta_tx_queue *txq) 1622 { 1623 int total_len, data_left; 1624 int desc_count = 0; 1625 struct mvneta_port *pp = netdev_priv(dev); 1626 struct tso_t tso; 1627 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1628 int i; 1629 1630 /* Count needed descriptors */ 1631 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1632 return 0; 1633 1634 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1635 pr_info("*** Is this even possible???!?!?\n"); 1636 return 0; 1637 } 1638 1639 /* Initialize the TSO handler, and prepare the first payload */ 1640 tso_start(skb, &tso); 1641 1642 total_len = skb->len - hdr_len; 1643 while (total_len > 0) { 1644 char *hdr; 1645 1646 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1647 total_len -= data_left; 1648 desc_count++; 1649 1650 /* prepare packet headers: MAC + IP + TCP */ 1651 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1652 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1653 1654 mvneta_tso_put_hdr(skb, pp, txq); 1655 1656 while (data_left > 0) { 1657 int size; 1658 desc_count++; 1659 1660 size = min_t(int, tso.size, data_left); 1661 1662 if (mvneta_tso_put_data(dev, txq, skb, 1663 tso.data, size, 1664 size == data_left, 1665 total_len == 0)) 1666 goto err_release; 1667 data_left -= size; 1668 1669 tso_build_data(skb, &tso, size); 1670 } 1671 } 1672 1673 return desc_count; 1674 1675 err_release: 1676 /* Release all used data descriptors; header descriptors must not 1677 * be DMA-unmapped. 1678 */ 1679 for (i = desc_count - 1; i >= 0; i--) { 1680 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1681 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1682 dma_unmap_single(pp->dev->dev.parent, 1683 tx_desc->buf_phys_addr, 1684 tx_desc->data_size, 1685 DMA_TO_DEVICE); 1686 mvneta_txq_desc_put(txq); 1687 } 1688 return 0; 1689 } 1690 1691 /* Handle tx fragmentation processing */ 1692 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1693 struct mvneta_tx_queue *txq) 1694 { 1695 struct mvneta_tx_desc *tx_desc; 1696 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1697 1698 for (i = 0; i < nr_frags; i++) { 1699 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1700 void *addr = page_address(frag->page.p) + frag->page_offset; 1701 1702 tx_desc = mvneta_txq_next_desc_get(txq); 1703 tx_desc->data_size = frag->size; 1704 1705 tx_desc->buf_phys_addr = 1706 dma_map_single(pp->dev->dev.parent, addr, 1707 tx_desc->data_size, DMA_TO_DEVICE); 1708 1709 if (dma_mapping_error(pp->dev->dev.parent, 1710 tx_desc->buf_phys_addr)) { 1711 mvneta_txq_desc_put(txq); 1712 goto error; 1713 } 1714 1715 if (i == nr_frags - 1) { 1716 /* Last descriptor */ 1717 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1718 txq->tx_skb[txq->txq_put_index] = skb; 1719 } else { 1720 /* Descriptor in the middle: Not First, Not Last */ 1721 tx_desc->command = 0; 1722 txq->tx_skb[txq->txq_put_index] = NULL; 1723 } 1724 mvneta_txq_inc_put(txq); 1725 } 1726 1727 return 0; 1728 1729 error: 1730 /* Release all descriptors that were used to map fragments of 1731 * this packet, as well as the corresponding DMA mappings 1732 */ 1733 for (i = i - 1; i >= 0; i--) { 1734 tx_desc = txq->descs + i; 1735 dma_unmap_single(pp->dev->dev.parent, 1736 tx_desc->buf_phys_addr, 1737 tx_desc->data_size, 1738 DMA_TO_DEVICE); 1739 mvneta_txq_desc_put(txq); 1740 } 1741 1742 return -ENOMEM; 1743 } 1744 1745 /* Main tx processing */ 1746 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1747 { 1748 struct mvneta_port *pp = netdev_priv(dev); 1749 u16 txq_id = skb_get_queue_mapping(skb); 1750 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1751 struct mvneta_tx_desc *tx_desc; 1752 int len = skb->len; 1753 int frags = 0; 1754 u32 tx_cmd; 1755 1756 if (!netif_running(dev)) 1757 goto out; 1758 1759 if (skb_is_gso(skb)) { 1760 frags = mvneta_tx_tso(skb, dev, txq); 1761 goto out; 1762 } 1763 1764 frags = skb_shinfo(skb)->nr_frags + 1; 1765 1766 /* Get a descriptor for the first part of the packet */ 1767 tx_desc = mvneta_txq_next_desc_get(txq); 1768 1769 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1770 1771 tx_desc->data_size = skb_headlen(skb); 1772 1773 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1774 tx_desc->data_size, 1775 DMA_TO_DEVICE); 1776 if (unlikely(dma_mapping_error(dev->dev.parent, 1777 tx_desc->buf_phys_addr))) { 1778 mvneta_txq_desc_put(txq); 1779 frags = 0; 1780 goto out; 1781 } 1782 1783 if (frags == 1) { 1784 /* First and Last descriptor */ 1785 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1786 tx_desc->command = tx_cmd; 1787 txq->tx_skb[txq->txq_put_index] = skb; 1788 mvneta_txq_inc_put(txq); 1789 } else { 1790 /* First but not Last */ 1791 tx_cmd |= MVNETA_TXD_F_DESC; 1792 txq->tx_skb[txq->txq_put_index] = NULL; 1793 mvneta_txq_inc_put(txq); 1794 tx_desc->command = tx_cmd; 1795 /* Continue with other skb fragments */ 1796 if (mvneta_tx_frag_process(pp, skb, txq)) { 1797 dma_unmap_single(dev->dev.parent, 1798 tx_desc->buf_phys_addr, 1799 tx_desc->data_size, 1800 DMA_TO_DEVICE); 1801 mvneta_txq_desc_put(txq); 1802 frags = 0; 1803 goto out; 1804 } 1805 } 1806 1807 out: 1808 if (frags > 0) { 1809 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1810 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1811 1812 txq->count += frags; 1813 mvneta_txq_pend_desc_add(pp, txq, frags); 1814 1815 if (txq->count >= txq->tx_stop_threshold) 1816 netif_tx_stop_queue(nq); 1817 1818 u64_stats_update_begin(&stats->syncp); 1819 stats->tx_packets++; 1820 stats->tx_bytes += len; 1821 u64_stats_update_end(&stats->syncp); 1822 } else { 1823 dev->stats.tx_dropped++; 1824 dev_kfree_skb_any(skb); 1825 } 1826 1827 return NETDEV_TX_OK; 1828 } 1829 1830 1831 /* Free tx resources, when resetting a port */ 1832 static void mvneta_txq_done_force(struct mvneta_port *pp, 1833 struct mvneta_tx_queue *txq) 1834 1835 { 1836 int tx_done = txq->count; 1837 1838 mvneta_txq_bufs_free(pp, txq, tx_done); 1839 1840 /* reset txq */ 1841 txq->count = 0; 1842 txq->txq_put_index = 0; 1843 txq->txq_get_index = 0; 1844 } 1845 1846 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1847 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1848 */ 1849 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1850 { 1851 struct mvneta_tx_queue *txq; 1852 struct netdev_queue *nq; 1853 1854 while (cause_tx_done) { 1855 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1856 1857 nq = netdev_get_tx_queue(pp->dev, txq->id); 1858 __netif_tx_lock(nq, smp_processor_id()); 1859 1860 if (txq->count) 1861 mvneta_txq_done(pp, txq); 1862 1863 __netif_tx_unlock(nq); 1864 cause_tx_done &= ~((1 << txq->id)); 1865 } 1866 } 1867 1868 /* Compute crc8 of the specified address, using a unique algorithm , 1869 * according to hw spec, different than generic crc8 algorithm 1870 */ 1871 static int mvneta_addr_crc(unsigned char *addr) 1872 { 1873 int crc = 0; 1874 int i; 1875 1876 for (i = 0; i < ETH_ALEN; i++) { 1877 int j; 1878 1879 crc = (crc ^ addr[i]) << 8; 1880 for (j = 7; j >= 0; j--) { 1881 if (crc & (0x100 << j)) 1882 crc ^= 0x107 << j; 1883 } 1884 } 1885 1886 return crc; 1887 } 1888 1889 /* This method controls the net device special MAC multicast support. 1890 * The Special Multicast Table for MAC addresses supports MAC of the form 1891 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1892 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1893 * Table entries in the DA-Filter table. This method set the Special 1894 * Multicast Table appropriate entry. 1895 */ 1896 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1897 unsigned char last_byte, 1898 int queue) 1899 { 1900 unsigned int smc_table_reg; 1901 unsigned int tbl_offset; 1902 unsigned int reg_offset; 1903 1904 /* Register offset from SMC table base */ 1905 tbl_offset = (last_byte / 4); 1906 /* Entry offset within the above reg */ 1907 reg_offset = last_byte % 4; 1908 1909 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1910 + tbl_offset * 4)); 1911 1912 if (queue == -1) 1913 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1914 else { 1915 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1916 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1917 } 1918 1919 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1920 smc_table_reg); 1921 } 1922 1923 /* This method controls the network device Other MAC multicast support. 1924 * The Other Multicast Table is used for multicast of another type. 1925 * A CRC-8 is used as an index to the Other Multicast Table entries 1926 * in the DA-Filter table. 1927 * The method gets the CRC-8 value from the calling routine and 1928 * sets the Other Multicast Table appropriate entry according to the 1929 * specified CRC-8 . 1930 */ 1931 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1932 unsigned char crc8, 1933 int queue) 1934 { 1935 unsigned int omc_table_reg; 1936 unsigned int tbl_offset; 1937 unsigned int reg_offset; 1938 1939 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1940 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1941 1942 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1943 1944 if (queue == -1) { 1945 /* Clear accepts frame bit at specified Other DA table entry */ 1946 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1947 } else { 1948 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1949 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1950 } 1951 1952 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1953 } 1954 1955 /* The network device supports multicast using two tables: 1956 * 1) Special Multicast Table for MAC addresses of the form 1957 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1958 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1959 * Table entries in the DA-Filter table. 1960 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1961 * is used as an index to the Other Multicast Table entries in the 1962 * DA-Filter table. 1963 */ 1964 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1965 int queue) 1966 { 1967 unsigned char crc_result = 0; 1968 1969 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1970 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1971 return 0; 1972 } 1973 1974 crc_result = mvneta_addr_crc(p_addr); 1975 if (queue == -1) { 1976 if (pp->mcast_count[crc_result] == 0) { 1977 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1978 crc_result); 1979 return -EINVAL; 1980 } 1981 1982 pp->mcast_count[crc_result]--; 1983 if (pp->mcast_count[crc_result] != 0) { 1984 netdev_info(pp->dev, 1985 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1986 pp->mcast_count[crc_result], crc_result); 1987 return -EINVAL; 1988 } 1989 } else 1990 pp->mcast_count[crc_result]++; 1991 1992 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1993 1994 return 0; 1995 } 1996 1997 /* Configure Fitering mode of Ethernet port */ 1998 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1999 int is_promisc) 2000 { 2001 u32 port_cfg_reg, val; 2002 2003 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2004 2005 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2006 2007 /* Set / Clear UPM bit in port configuration register */ 2008 if (is_promisc) { 2009 /* Accept all Unicast addresses */ 2010 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2011 val |= MVNETA_FORCE_UNI; 2012 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2013 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2014 } else { 2015 /* Reject all Unicast addresses */ 2016 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2017 val &= ~MVNETA_FORCE_UNI; 2018 } 2019 2020 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2021 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2022 } 2023 2024 /* register unicast and multicast addresses */ 2025 static void mvneta_set_rx_mode(struct net_device *dev) 2026 { 2027 struct mvneta_port *pp = netdev_priv(dev); 2028 struct netdev_hw_addr *ha; 2029 2030 if (dev->flags & IFF_PROMISC) { 2031 /* Accept all: Multicast + Unicast */ 2032 mvneta_rx_unicast_promisc_set(pp, 1); 2033 mvneta_set_ucast_table(pp, rxq_def); 2034 mvneta_set_special_mcast_table(pp, rxq_def); 2035 mvneta_set_other_mcast_table(pp, rxq_def); 2036 } else { 2037 /* Accept single Unicast */ 2038 mvneta_rx_unicast_promisc_set(pp, 0); 2039 mvneta_set_ucast_table(pp, -1); 2040 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2041 2042 if (dev->flags & IFF_ALLMULTI) { 2043 /* Accept all multicast */ 2044 mvneta_set_special_mcast_table(pp, rxq_def); 2045 mvneta_set_other_mcast_table(pp, rxq_def); 2046 } else { 2047 /* Accept only initialized multicast */ 2048 mvneta_set_special_mcast_table(pp, -1); 2049 mvneta_set_other_mcast_table(pp, -1); 2050 2051 if (!netdev_mc_empty(dev)) { 2052 netdev_for_each_mc_addr(ha, dev) { 2053 mvneta_mcast_addr_set(pp, ha->addr, 2054 rxq_def); 2055 } 2056 } 2057 } 2058 } 2059 } 2060 2061 /* Interrupt handling - the callback for request_irq() */ 2062 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2063 { 2064 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2065 2066 /* Mask all interrupts */ 2067 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2068 2069 napi_schedule(&pp->napi); 2070 2071 return IRQ_HANDLED; 2072 } 2073 2074 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2075 struct phy_device *phy) 2076 { 2077 struct fixed_phy_status status; 2078 struct fixed_phy_status changed = {}; 2079 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2080 2081 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2082 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2083 status.speed = SPEED_1000; 2084 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2085 status.speed = SPEED_100; 2086 else 2087 status.speed = SPEED_10; 2088 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2089 changed.link = 1; 2090 changed.speed = 1; 2091 changed.duplex = 1; 2092 fixed_phy_update_state(phy, &status, &changed); 2093 return 0; 2094 } 2095 2096 /* NAPI handler 2097 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2098 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2099 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2100 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2101 * Each CPU has its own causeRxTx register 2102 */ 2103 static int mvneta_poll(struct napi_struct *napi, int budget) 2104 { 2105 int rx_done = 0; 2106 u32 cause_rx_tx; 2107 unsigned long flags; 2108 struct mvneta_port *pp = netdev_priv(napi->dev); 2109 2110 if (!netif_running(pp->dev)) { 2111 napi_complete(napi); 2112 return rx_done; 2113 } 2114 2115 /* Read cause register */ 2116 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2117 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2118 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2119 2120 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2121 if (pp->use_inband_status && (cause_misc & 2122 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2123 MVNETA_CAUSE_LINK_CHANGE | 2124 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2125 mvneta_fixed_link_update(pp, pp->phy_dev); 2126 } 2127 } 2128 2129 /* Release Tx descriptors */ 2130 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2131 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2132 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2133 } 2134 2135 /* For the case where the last mvneta_poll did not process all 2136 * RX packets 2137 */ 2138 cause_rx_tx |= pp->cause_rx_tx; 2139 if (rxq_number > 1) { 2140 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) { 2141 int count; 2142 struct mvneta_rx_queue *rxq; 2143 /* get rx queue number from cause_rx_tx */ 2144 rxq = mvneta_rx_policy(pp, cause_rx_tx); 2145 if (!rxq) 2146 break; 2147 2148 /* process the packet in that rx queue */ 2149 count = mvneta_rx(pp, budget, rxq); 2150 rx_done += count; 2151 budget -= count; 2152 if (budget > 0) { 2153 /* set off the rx bit of the 2154 * corresponding bit in the cause rx 2155 * tx register, so that next iteration 2156 * will find the next rx queue where 2157 * packets are received on 2158 */ 2159 cause_rx_tx &= ~((1 << rxq->id) << 8); 2160 } 2161 } 2162 } else { 2163 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2164 budget -= rx_done; 2165 } 2166 2167 if (budget > 0) { 2168 cause_rx_tx = 0; 2169 napi_complete(napi); 2170 local_irq_save(flags); 2171 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2172 MVNETA_RX_INTR_MASK(rxq_number) | 2173 MVNETA_TX_INTR_MASK(txq_number) | 2174 MVNETA_MISCINTR_INTR_MASK); 2175 local_irq_restore(flags); 2176 } 2177 2178 pp->cause_rx_tx = cause_rx_tx; 2179 return rx_done; 2180 } 2181 2182 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2183 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2184 int num) 2185 { 2186 int i; 2187 2188 for (i = 0; i < num; i++) { 2189 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2190 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2191 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2192 __func__, rxq->id, i, num); 2193 break; 2194 } 2195 } 2196 2197 /* Add this number of RX descriptors as non occupied (ready to 2198 * get packets) 2199 */ 2200 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2201 2202 return i; 2203 } 2204 2205 /* Free all packets pending transmit from all TXQs and reset TX port */ 2206 static void mvneta_tx_reset(struct mvneta_port *pp) 2207 { 2208 int queue; 2209 2210 /* free the skb's in the tx ring */ 2211 for (queue = 0; queue < txq_number; queue++) 2212 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2213 2214 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2215 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2216 } 2217 2218 static void mvneta_rx_reset(struct mvneta_port *pp) 2219 { 2220 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2221 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2222 } 2223 2224 /* Rx/Tx queue initialization/cleanup methods */ 2225 2226 /* Create a specified RX queue */ 2227 static int mvneta_rxq_init(struct mvneta_port *pp, 2228 struct mvneta_rx_queue *rxq) 2229 2230 { 2231 rxq->size = pp->rx_ring_size; 2232 2233 /* Allocate memory for RX descriptors */ 2234 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2235 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2236 &rxq->descs_phys, GFP_KERNEL); 2237 if (rxq->descs == NULL) 2238 return -ENOMEM; 2239 2240 BUG_ON(rxq->descs != 2241 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2242 2243 rxq->last_desc = rxq->size - 1; 2244 2245 /* Set Rx descriptors queue starting address */ 2246 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2247 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2248 2249 /* Set Offset */ 2250 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2251 2252 /* Set coalescing pkts and time */ 2253 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2254 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2255 2256 /* Fill RXQ with buffers from RX pool */ 2257 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2258 mvneta_rxq_bm_disable(pp, rxq); 2259 mvneta_rxq_fill(pp, rxq, rxq->size); 2260 2261 return 0; 2262 } 2263 2264 /* Cleanup Rx queue */ 2265 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2266 struct mvneta_rx_queue *rxq) 2267 { 2268 mvneta_rxq_drop_pkts(pp, rxq); 2269 2270 if (rxq->descs) 2271 dma_free_coherent(pp->dev->dev.parent, 2272 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2273 rxq->descs, 2274 rxq->descs_phys); 2275 2276 rxq->descs = NULL; 2277 rxq->last_desc = 0; 2278 rxq->next_desc_to_proc = 0; 2279 rxq->descs_phys = 0; 2280 } 2281 2282 /* Create and initialize a tx queue */ 2283 static int mvneta_txq_init(struct mvneta_port *pp, 2284 struct mvneta_tx_queue *txq) 2285 { 2286 txq->size = pp->tx_ring_size; 2287 2288 /* A queue must always have room for at least one skb. 2289 * Therefore, stop the queue when the free entries reaches 2290 * the maximum number of descriptors per skb. 2291 */ 2292 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2293 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2294 2295 2296 /* Allocate memory for TX descriptors */ 2297 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2298 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2299 &txq->descs_phys, GFP_KERNEL); 2300 if (txq->descs == NULL) 2301 return -ENOMEM; 2302 2303 /* Make sure descriptor address is cache line size aligned */ 2304 BUG_ON(txq->descs != 2305 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2306 2307 txq->last_desc = txq->size - 1; 2308 2309 /* Set maximum bandwidth for enabled TXQs */ 2310 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2311 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2312 2313 /* Set Tx descriptors queue starting address */ 2314 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2315 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2316 2317 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2318 if (txq->tx_skb == NULL) { 2319 dma_free_coherent(pp->dev->dev.parent, 2320 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2321 txq->descs, txq->descs_phys); 2322 return -ENOMEM; 2323 } 2324 2325 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2326 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2327 txq->size * TSO_HEADER_SIZE, 2328 &txq->tso_hdrs_phys, GFP_KERNEL); 2329 if (txq->tso_hdrs == NULL) { 2330 kfree(txq->tx_skb); 2331 dma_free_coherent(pp->dev->dev.parent, 2332 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2333 txq->descs, txq->descs_phys); 2334 return -ENOMEM; 2335 } 2336 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2337 2338 return 0; 2339 } 2340 2341 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2342 static void mvneta_txq_deinit(struct mvneta_port *pp, 2343 struct mvneta_tx_queue *txq) 2344 { 2345 kfree(txq->tx_skb); 2346 2347 if (txq->tso_hdrs) 2348 dma_free_coherent(pp->dev->dev.parent, 2349 txq->size * TSO_HEADER_SIZE, 2350 txq->tso_hdrs, txq->tso_hdrs_phys); 2351 if (txq->descs) 2352 dma_free_coherent(pp->dev->dev.parent, 2353 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2354 txq->descs, txq->descs_phys); 2355 2356 txq->descs = NULL; 2357 txq->last_desc = 0; 2358 txq->next_desc_to_proc = 0; 2359 txq->descs_phys = 0; 2360 2361 /* Set minimum bandwidth for disabled TXQs */ 2362 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2363 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2364 2365 /* Set Tx descriptors queue starting address and size */ 2366 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2367 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2368 } 2369 2370 /* Cleanup all Tx queues */ 2371 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2372 { 2373 int queue; 2374 2375 for (queue = 0; queue < txq_number; queue++) 2376 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2377 } 2378 2379 /* Cleanup all Rx queues */ 2380 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2381 { 2382 int queue; 2383 2384 for (queue = 0; queue < rxq_number; queue++) 2385 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2386 } 2387 2388 2389 /* Init all Rx queues */ 2390 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2391 { 2392 int queue; 2393 2394 for (queue = 0; queue < rxq_number; queue++) { 2395 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2396 if (err) { 2397 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2398 __func__, queue); 2399 mvneta_cleanup_rxqs(pp); 2400 return err; 2401 } 2402 } 2403 2404 return 0; 2405 } 2406 2407 /* Init all tx queues */ 2408 static int mvneta_setup_txqs(struct mvneta_port *pp) 2409 { 2410 int queue; 2411 2412 for (queue = 0; queue < txq_number; queue++) { 2413 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2414 if (err) { 2415 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2416 __func__, queue); 2417 mvneta_cleanup_txqs(pp); 2418 return err; 2419 } 2420 } 2421 2422 return 0; 2423 } 2424 2425 static void mvneta_start_dev(struct mvneta_port *pp) 2426 { 2427 mvneta_max_rx_size_set(pp, pp->pkt_size); 2428 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2429 2430 /* start the Rx/Tx activity */ 2431 mvneta_port_enable(pp); 2432 2433 /* Enable polling on the port */ 2434 napi_enable(&pp->napi); 2435 2436 /* Unmask interrupts */ 2437 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2438 MVNETA_RX_INTR_MASK(rxq_number) | 2439 MVNETA_TX_INTR_MASK(txq_number) | 2440 MVNETA_MISCINTR_INTR_MASK); 2441 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2442 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2443 MVNETA_CAUSE_LINK_CHANGE | 2444 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2445 2446 phy_start(pp->phy_dev); 2447 netif_tx_start_all_queues(pp->dev); 2448 } 2449 2450 static void mvneta_stop_dev(struct mvneta_port *pp) 2451 { 2452 phy_stop(pp->phy_dev); 2453 2454 napi_disable(&pp->napi); 2455 2456 netif_carrier_off(pp->dev); 2457 2458 mvneta_port_down(pp); 2459 netif_tx_stop_all_queues(pp->dev); 2460 2461 /* Stop the port activity */ 2462 mvneta_port_disable(pp); 2463 2464 /* Clear all ethernet port interrupts */ 2465 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2466 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2467 2468 /* Mask all ethernet port interrupts */ 2469 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2470 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2471 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2472 2473 mvneta_tx_reset(pp); 2474 mvneta_rx_reset(pp); 2475 } 2476 2477 /* Return positive if MTU is valid */ 2478 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2479 { 2480 if (mtu < 68) { 2481 netdev_err(dev, "cannot change mtu to less than 68\n"); 2482 return -EINVAL; 2483 } 2484 2485 /* 9676 == 9700 - 20 and rounding to 8 */ 2486 if (mtu > 9676) { 2487 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2488 mtu = 9676; 2489 } 2490 2491 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2492 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2493 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2494 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2495 } 2496 2497 return mtu; 2498 } 2499 2500 /* Change the device mtu */ 2501 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2502 { 2503 struct mvneta_port *pp = netdev_priv(dev); 2504 int ret; 2505 2506 mtu = mvneta_check_mtu_valid(dev, mtu); 2507 if (mtu < 0) 2508 return -EINVAL; 2509 2510 dev->mtu = mtu; 2511 2512 if (!netif_running(dev)) { 2513 netdev_update_features(dev); 2514 return 0; 2515 } 2516 2517 /* The interface is running, so we have to force a 2518 * reallocation of the queues 2519 */ 2520 mvneta_stop_dev(pp); 2521 2522 mvneta_cleanup_txqs(pp); 2523 mvneta_cleanup_rxqs(pp); 2524 2525 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2526 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2527 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2528 2529 ret = mvneta_setup_rxqs(pp); 2530 if (ret) { 2531 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2532 return ret; 2533 } 2534 2535 ret = mvneta_setup_txqs(pp); 2536 if (ret) { 2537 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2538 return ret; 2539 } 2540 2541 mvneta_start_dev(pp); 2542 mvneta_port_up(pp); 2543 2544 netdev_update_features(dev); 2545 2546 return 0; 2547 } 2548 2549 static netdev_features_t mvneta_fix_features(struct net_device *dev, 2550 netdev_features_t features) 2551 { 2552 struct mvneta_port *pp = netdev_priv(dev); 2553 2554 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2555 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2556 netdev_info(dev, 2557 "Disable IP checksum for MTU greater than %dB\n", 2558 pp->tx_csum_limit); 2559 } 2560 2561 return features; 2562 } 2563 2564 /* Get mac address */ 2565 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2566 { 2567 u32 mac_addr_l, mac_addr_h; 2568 2569 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2570 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2571 addr[0] = (mac_addr_h >> 24) & 0xFF; 2572 addr[1] = (mac_addr_h >> 16) & 0xFF; 2573 addr[2] = (mac_addr_h >> 8) & 0xFF; 2574 addr[3] = mac_addr_h & 0xFF; 2575 addr[4] = (mac_addr_l >> 8) & 0xFF; 2576 addr[5] = mac_addr_l & 0xFF; 2577 } 2578 2579 /* Handle setting mac address */ 2580 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2581 { 2582 struct mvneta_port *pp = netdev_priv(dev); 2583 struct sockaddr *sockaddr = addr; 2584 int ret; 2585 2586 ret = eth_prepare_mac_addr_change(dev, addr); 2587 if (ret < 0) 2588 return ret; 2589 /* Remove previous address table entry */ 2590 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2591 2592 /* Set new addr in hw */ 2593 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2594 2595 eth_commit_mac_addr_change(dev, addr); 2596 return 0; 2597 } 2598 2599 static void mvneta_adjust_link(struct net_device *ndev) 2600 { 2601 struct mvneta_port *pp = netdev_priv(ndev); 2602 struct phy_device *phydev = pp->phy_dev; 2603 int status_change = 0; 2604 2605 if (phydev->link) { 2606 if ((pp->speed != phydev->speed) || 2607 (pp->duplex != phydev->duplex)) { 2608 u32 val; 2609 2610 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2611 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2612 MVNETA_GMAC_CONFIG_GMII_SPEED | 2613 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2614 2615 if (phydev->duplex) 2616 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2617 2618 if (phydev->speed == SPEED_1000) 2619 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2620 else if (phydev->speed == SPEED_100) 2621 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2622 2623 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2624 2625 pp->duplex = phydev->duplex; 2626 pp->speed = phydev->speed; 2627 } 2628 } 2629 2630 if (phydev->link != pp->link) { 2631 if (!phydev->link) { 2632 pp->duplex = -1; 2633 pp->speed = 0; 2634 } 2635 2636 pp->link = phydev->link; 2637 status_change = 1; 2638 } 2639 2640 if (status_change) { 2641 if (phydev->link) { 2642 if (!pp->use_inband_status) { 2643 u32 val = mvreg_read(pp, 2644 MVNETA_GMAC_AUTONEG_CONFIG); 2645 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2646 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2647 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2648 val); 2649 } 2650 mvneta_port_up(pp); 2651 } else { 2652 if (!pp->use_inband_status) { 2653 u32 val = mvreg_read(pp, 2654 MVNETA_GMAC_AUTONEG_CONFIG); 2655 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2656 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2657 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2658 val); 2659 } 2660 mvneta_port_down(pp); 2661 } 2662 phy_print_status(phydev); 2663 } 2664 } 2665 2666 static int mvneta_mdio_probe(struct mvneta_port *pp) 2667 { 2668 struct phy_device *phy_dev; 2669 2670 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2671 pp->phy_interface); 2672 if (!phy_dev) { 2673 netdev_err(pp->dev, "could not find the PHY\n"); 2674 return -ENODEV; 2675 } 2676 2677 phy_dev->supported &= PHY_GBIT_FEATURES; 2678 phy_dev->advertising = phy_dev->supported; 2679 2680 pp->phy_dev = phy_dev; 2681 pp->link = 0; 2682 pp->duplex = 0; 2683 pp->speed = 0; 2684 2685 return 0; 2686 } 2687 2688 static void mvneta_mdio_remove(struct mvneta_port *pp) 2689 { 2690 phy_disconnect(pp->phy_dev); 2691 pp->phy_dev = NULL; 2692 } 2693 2694 static int mvneta_open(struct net_device *dev) 2695 { 2696 struct mvneta_port *pp = netdev_priv(dev); 2697 int ret; 2698 2699 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2700 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2701 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2702 2703 ret = mvneta_setup_rxqs(pp); 2704 if (ret) 2705 return ret; 2706 2707 ret = mvneta_setup_txqs(pp); 2708 if (ret) 2709 goto err_cleanup_rxqs; 2710 2711 /* Connect to port interrupt line */ 2712 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2713 MVNETA_DRIVER_NAME, pp); 2714 if (ret) { 2715 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2716 goto err_cleanup_txqs; 2717 } 2718 2719 /* In default link is down */ 2720 netif_carrier_off(pp->dev); 2721 2722 ret = mvneta_mdio_probe(pp); 2723 if (ret < 0) { 2724 netdev_err(dev, "cannot probe MDIO bus\n"); 2725 goto err_free_irq; 2726 } 2727 2728 mvneta_start_dev(pp); 2729 2730 return 0; 2731 2732 err_free_irq: 2733 free_irq(pp->dev->irq, pp); 2734 err_cleanup_txqs: 2735 mvneta_cleanup_txqs(pp); 2736 err_cleanup_rxqs: 2737 mvneta_cleanup_rxqs(pp); 2738 return ret; 2739 } 2740 2741 /* Stop the port, free port interrupt line */ 2742 static int mvneta_stop(struct net_device *dev) 2743 { 2744 struct mvneta_port *pp = netdev_priv(dev); 2745 2746 mvneta_stop_dev(pp); 2747 mvneta_mdio_remove(pp); 2748 free_irq(dev->irq, pp); 2749 mvneta_cleanup_rxqs(pp); 2750 mvneta_cleanup_txqs(pp); 2751 2752 return 0; 2753 } 2754 2755 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2756 { 2757 struct mvneta_port *pp = netdev_priv(dev); 2758 2759 if (!pp->phy_dev) 2760 return -ENOTSUPP; 2761 2762 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2763 } 2764 2765 /* Ethtool methods */ 2766 2767 /* Get settings (phy address, speed) for ethtools */ 2768 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2769 { 2770 struct mvneta_port *pp = netdev_priv(dev); 2771 2772 if (!pp->phy_dev) 2773 return -ENODEV; 2774 2775 return phy_ethtool_gset(pp->phy_dev, cmd); 2776 } 2777 2778 /* Set settings (phy address, speed) for ethtools */ 2779 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2780 { 2781 struct mvneta_port *pp = netdev_priv(dev); 2782 2783 if (!pp->phy_dev) 2784 return -ENODEV; 2785 2786 return phy_ethtool_sset(pp->phy_dev, cmd); 2787 } 2788 2789 /* Set interrupt coalescing for ethtools */ 2790 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2791 struct ethtool_coalesce *c) 2792 { 2793 struct mvneta_port *pp = netdev_priv(dev); 2794 int queue; 2795 2796 for (queue = 0; queue < rxq_number; queue++) { 2797 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2798 rxq->time_coal = c->rx_coalesce_usecs; 2799 rxq->pkts_coal = c->rx_max_coalesced_frames; 2800 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2801 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2802 } 2803 2804 for (queue = 0; queue < txq_number; queue++) { 2805 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2806 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2807 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2808 } 2809 2810 return 0; 2811 } 2812 2813 /* get coalescing for ethtools */ 2814 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2815 struct ethtool_coalesce *c) 2816 { 2817 struct mvneta_port *pp = netdev_priv(dev); 2818 2819 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2820 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2821 2822 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2823 return 0; 2824 } 2825 2826 2827 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2828 struct ethtool_drvinfo *drvinfo) 2829 { 2830 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2831 sizeof(drvinfo->driver)); 2832 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2833 sizeof(drvinfo->version)); 2834 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2835 sizeof(drvinfo->bus_info)); 2836 } 2837 2838 2839 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2840 struct ethtool_ringparam *ring) 2841 { 2842 struct mvneta_port *pp = netdev_priv(netdev); 2843 2844 ring->rx_max_pending = MVNETA_MAX_RXD; 2845 ring->tx_max_pending = MVNETA_MAX_TXD; 2846 ring->rx_pending = pp->rx_ring_size; 2847 ring->tx_pending = pp->tx_ring_size; 2848 } 2849 2850 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2851 struct ethtool_ringparam *ring) 2852 { 2853 struct mvneta_port *pp = netdev_priv(dev); 2854 2855 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2856 return -EINVAL; 2857 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2858 ring->rx_pending : MVNETA_MAX_RXD; 2859 2860 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 2861 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 2862 if (pp->tx_ring_size != ring->tx_pending) 2863 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 2864 pp->tx_ring_size, ring->tx_pending); 2865 2866 if (netif_running(dev)) { 2867 mvneta_stop(dev); 2868 if (mvneta_open(dev)) { 2869 netdev_err(dev, 2870 "error on opening device after ring param change\n"); 2871 return -ENOMEM; 2872 } 2873 } 2874 2875 return 0; 2876 } 2877 2878 static const struct net_device_ops mvneta_netdev_ops = { 2879 .ndo_open = mvneta_open, 2880 .ndo_stop = mvneta_stop, 2881 .ndo_start_xmit = mvneta_tx, 2882 .ndo_set_rx_mode = mvneta_set_rx_mode, 2883 .ndo_set_mac_address = mvneta_set_mac_addr, 2884 .ndo_change_mtu = mvneta_change_mtu, 2885 .ndo_fix_features = mvneta_fix_features, 2886 .ndo_get_stats64 = mvneta_get_stats64, 2887 .ndo_do_ioctl = mvneta_ioctl, 2888 }; 2889 2890 const struct ethtool_ops mvneta_eth_tool_ops = { 2891 .get_link = ethtool_op_get_link, 2892 .get_settings = mvneta_ethtool_get_settings, 2893 .set_settings = mvneta_ethtool_set_settings, 2894 .set_coalesce = mvneta_ethtool_set_coalesce, 2895 .get_coalesce = mvneta_ethtool_get_coalesce, 2896 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2897 .get_ringparam = mvneta_ethtool_get_ringparam, 2898 .set_ringparam = mvneta_ethtool_set_ringparam, 2899 }; 2900 2901 /* Initialize hw */ 2902 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 2903 { 2904 int queue; 2905 2906 /* Disable port */ 2907 mvneta_port_disable(pp); 2908 2909 /* Set port default values */ 2910 mvneta_defaults_set(pp); 2911 2912 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 2913 GFP_KERNEL); 2914 if (!pp->txqs) 2915 return -ENOMEM; 2916 2917 /* Initialize TX descriptor rings */ 2918 for (queue = 0; queue < txq_number; queue++) { 2919 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2920 txq->id = queue; 2921 txq->size = pp->tx_ring_size; 2922 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2923 } 2924 2925 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 2926 GFP_KERNEL); 2927 if (!pp->rxqs) 2928 return -ENOMEM; 2929 2930 /* Create Rx descriptor rings */ 2931 for (queue = 0; queue < rxq_number; queue++) { 2932 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2933 rxq->id = queue; 2934 rxq->size = pp->rx_ring_size; 2935 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2936 rxq->time_coal = MVNETA_RX_COAL_USEC; 2937 } 2938 2939 return 0; 2940 } 2941 2942 /* platform glue : initialize decoding windows */ 2943 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2944 const struct mbus_dram_target_info *dram) 2945 { 2946 u32 win_enable; 2947 u32 win_protect; 2948 int i; 2949 2950 for (i = 0; i < 6; i++) { 2951 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2952 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2953 2954 if (i < 4) 2955 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2956 } 2957 2958 win_enable = 0x3f; 2959 win_protect = 0; 2960 2961 for (i = 0; i < dram->num_cs; i++) { 2962 const struct mbus_dram_window *cs = dram->cs + i; 2963 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2964 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2965 2966 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2967 (cs->size - 1) & 0xffff0000); 2968 2969 win_enable &= ~(1 << i); 2970 win_protect |= 3 << (2 * i); 2971 } 2972 2973 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2974 } 2975 2976 /* Power up the port */ 2977 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2978 { 2979 u32 ctrl; 2980 2981 /* MAC Cause register should be cleared */ 2982 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2983 2984 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2985 2986 /* Even though it might look weird, when we're configured in 2987 * SGMII or QSGMII mode, the RGMII bit needs to be set. 2988 */ 2989 switch(phy_mode) { 2990 case PHY_INTERFACE_MODE_QSGMII: 2991 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 2992 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2993 break; 2994 case PHY_INTERFACE_MODE_SGMII: 2995 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 2996 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2997 break; 2998 case PHY_INTERFACE_MODE_RGMII: 2999 case PHY_INTERFACE_MODE_RGMII_ID: 3000 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3001 break; 3002 default: 3003 return -EINVAL; 3004 } 3005 3006 if (pp->use_inband_status) 3007 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3008 3009 /* Cancel Port Reset */ 3010 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3011 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3012 3013 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3014 MVNETA_GMAC2_PORT_RESET) != 0) 3015 continue; 3016 3017 return 0; 3018 } 3019 3020 /* Device initialization routine */ 3021 static int mvneta_probe(struct platform_device *pdev) 3022 { 3023 const struct mbus_dram_target_info *dram_target_info; 3024 struct resource *res; 3025 struct device_node *dn = pdev->dev.of_node; 3026 struct device_node *phy_node; 3027 struct mvneta_port *pp; 3028 struct net_device *dev; 3029 const char *dt_mac_addr; 3030 char hw_mac_addr[ETH_ALEN]; 3031 const char *mac_from; 3032 const char *managed; 3033 int phy_mode; 3034 int err; 3035 3036 /* Our multiqueue support is not complete, so for now, only 3037 * allow the usage of the first RX queue 3038 */ 3039 if (rxq_def != 0) { 3040 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 3041 return -EINVAL; 3042 } 3043 3044 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3045 if (!dev) 3046 return -ENOMEM; 3047 3048 dev->irq = irq_of_parse_and_map(dn, 0); 3049 if (dev->irq == 0) { 3050 err = -EINVAL; 3051 goto err_free_netdev; 3052 } 3053 3054 phy_node = of_parse_phandle(dn, "phy", 0); 3055 if (!phy_node) { 3056 if (!of_phy_is_fixed_link(dn)) { 3057 dev_err(&pdev->dev, "no PHY specified\n"); 3058 err = -ENODEV; 3059 goto err_free_irq; 3060 } 3061 3062 err = of_phy_register_fixed_link(dn); 3063 if (err < 0) { 3064 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3065 goto err_free_irq; 3066 } 3067 3068 /* In the case of a fixed PHY, the DT node associated 3069 * to the PHY is the Ethernet MAC DT node. 3070 */ 3071 phy_node = of_node_get(dn); 3072 } 3073 3074 phy_mode = of_get_phy_mode(dn); 3075 if (phy_mode < 0) { 3076 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3077 err = -EINVAL; 3078 goto err_put_phy_node; 3079 } 3080 3081 dev->tx_queue_len = MVNETA_MAX_TXD; 3082 dev->watchdog_timeo = 5 * HZ; 3083 dev->netdev_ops = &mvneta_netdev_ops; 3084 3085 dev->ethtool_ops = &mvneta_eth_tool_ops; 3086 3087 pp = netdev_priv(dev); 3088 pp->phy_node = phy_node; 3089 pp->phy_interface = phy_mode; 3090 3091 err = of_property_read_string(dn, "managed", &managed); 3092 pp->use_inband_status = (err == 0 && 3093 strcmp(managed, "in-band-status") == 0); 3094 3095 pp->clk = devm_clk_get(&pdev->dev, NULL); 3096 if (IS_ERR(pp->clk)) { 3097 err = PTR_ERR(pp->clk); 3098 goto err_put_phy_node; 3099 } 3100 3101 clk_prepare_enable(pp->clk); 3102 3103 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3104 pp->base = devm_ioremap_resource(&pdev->dev, res); 3105 if (IS_ERR(pp->base)) { 3106 err = PTR_ERR(pp->base); 3107 goto err_clk; 3108 } 3109 3110 /* Alloc per-cpu stats */ 3111 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3112 if (!pp->stats) { 3113 err = -ENOMEM; 3114 goto err_clk; 3115 } 3116 3117 dt_mac_addr = of_get_mac_address(dn); 3118 if (dt_mac_addr) { 3119 mac_from = "device tree"; 3120 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3121 } else { 3122 mvneta_get_mac_addr(pp, hw_mac_addr); 3123 if (is_valid_ether_addr(hw_mac_addr)) { 3124 mac_from = "hardware"; 3125 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3126 } else { 3127 mac_from = "random"; 3128 eth_hw_addr_random(dev); 3129 } 3130 } 3131 3132 if (of_device_is_compatible(dn, "marvell,armada-370-neta")) 3133 pp->tx_csum_limit = 1600; 3134 3135 pp->tx_ring_size = MVNETA_MAX_TXD; 3136 pp->rx_ring_size = MVNETA_MAX_RXD; 3137 3138 pp->dev = dev; 3139 SET_NETDEV_DEV(dev, &pdev->dev); 3140 3141 err = mvneta_init(&pdev->dev, pp); 3142 if (err < 0) 3143 goto err_free_stats; 3144 3145 err = mvneta_port_power_up(pp, phy_mode); 3146 if (err < 0) { 3147 dev_err(&pdev->dev, "can't power up port\n"); 3148 goto err_free_stats; 3149 } 3150 3151 dram_target_info = mv_mbus_dram_info(); 3152 if (dram_target_info) 3153 mvneta_conf_mbus_windows(pp, dram_target_info); 3154 3155 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3156 3157 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3158 dev->hw_features |= dev->features; 3159 dev->vlan_features |= dev->features; 3160 dev->priv_flags |= IFF_UNICAST_FLT; 3161 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3162 3163 err = register_netdev(dev); 3164 if (err < 0) { 3165 dev_err(&pdev->dev, "failed to register\n"); 3166 goto err_free_stats; 3167 } 3168 3169 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3170 dev->dev_addr); 3171 3172 platform_set_drvdata(pdev, pp->dev); 3173 3174 if (pp->use_inband_status) { 3175 struct phy_device *phy = of_phy_find_device(dn); 3176 3177 mvneta_fixed_link_update(pp, phy); 3178 3179 put_device(&phy->dev); 3180 } 3181 3182 return 0; 3183 3184 err_free_stats: 3185 free_percpu(pp->stats); 3186 err_clk: 3187 clk_disable_unprepare(pp->clk); 3188 err_put_phy_node: 3189 of_node_put(phy_node); 3190 err_free_irq: 3191 irq_dispose_mapping(dev->irq); 3192 err_free_netdev: 3193 free_netdev(dev); 3194 return err; 3195 } 3196 3197 /* Device removal routine */ 3198 static int mvneta_remove(struct platform_device *pdev) 3199 { 3200 struct net_device *dev = platform_get_drvdata(pdev); 3201 struct mvneta_port *pp = netdev_priv(dev); 3202 3203 unregister_netdev(dev); 3204 clk_disable_unprepare(pp->clk); 3205 free_percpu(pp->stats); 3206 irq_dispose_mapping(dev->irq); 3207 of_node_put(pp->phy_node); 3208 free_netdev(dev); 3209 3210 return 0; 3211 } 3212 3213 static const struct of_device_id mvneta_match[] = { 3214 { .compatible = "marvell,armada-370-neta" }, 3215 { .compatible = "marvell,armada-xp-neta" }, 3216 { } 3217 }; 3218 MODULE_DEVICE_TABLE(of, mvneta_match); 3219 3220 static struct platform_driver mvneta_driver = { 3221 .probe = mvneta_probe, 3222 .remove = mvneta_remove, 3223 .driver = { 3224 .name = MVNETA_DRIVER_NAME, 3225 .of_match_table = mvneta_match, 3226 }, 3227 }; 3228 3229 module_platform_driver(mvneta_driver); 3230 3231 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3232 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3233 MODULE_LICENSE("GPL"); 3234 3235 module_param(rxq_number, int, S_IRUGO); 3236 module_param(txq_number, int, S_IRUGO); 3237 3238 module_param(rxq_def, int, S_IRUGO); 3239 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3240