1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phylink.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 194 #define MVNETA_GMAC_CTRL_2 0x2c08 195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 197 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 198 #define MVNETA_GMAC2_PORT_RESET BIT(6) 199 #define MVNETA_GMAC_STATUS 0x2c10 200 #define MVNETA_GMAC_LINK_UP BIT(0) 201 #define MVNETA_GMAC_SPEED_1000 BIT(1) 202 #define MVNETA_GMAC_SPEED_100 BIT(2) 203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 208 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 209 #define MVNETA_GMAC_SYNC_OK BIT(14) 210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 224 #define MVNETA_MIB_COUNTERS_BASE 0x3000 225 #define MVNETA_MIB_LATE_COLLISION 0x7c 226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 239 #define MVNETA_PORT_TX_RESET 0x3cf0 240 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 241 #define MVNETA_TX_MTU 0x3e0c 242 #define MVNETA_TX_TOKEN_SIZE 0x3e14 243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 246 247 #define MVNETA_LPI_CTRL_0 0x2cc0 248 #define MVNETA_LPI_CTRL_1 0x2cc4 249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 250 #define MVNETA_LPI_CTRL_2 0x2cc8 251 #define MVNETA_LPI_STATUS 0x2ccc 252 253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 254 255 /* Descriptor ring Macros */ 256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 257 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 258 259 /* Various constants */ 260 261 /* Coalescing */ 262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 263 #define MVNETA_RX_COAL_PKTS 32 264 #define MVNETA_RX_COAL_USEC 100 265 266 /* The two bytes Marvell header. Either contains a special value used 267 * by Marvell switches when a specific hardware mode is enabled (not 268 * supported by this driver) or is filled automatically by zeroes on 269 * the RX side. Those two bytes being at the front of the Ethernet 270 * header, they allow to have the IP header aligned on a 4 bytes 271 * boundary automatically: the hardware skips those two bytes on its 272 * own. 273 */ 274 #define MVNETA_MH_SIZE 2 275 276 #define MVNETA_VLAN_TAG_LEN 4 277 278 #define MVNETA_TX_CSUM_DEF_SIZE 1600 279 #define MVNETA_TX_CSUM_MAX_SIZE 9800 280 #define MVNETA_ACC_MODE_EXT1 1 281 #define MVNETA_ACC_MODE_EXT2 2 282 283 #define MVNETA_MAX_DECODE_WIN 6 284 285 /* Timeout constants */ 286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 289 290 #define MVNETA_TX_MTU_MAX 0x3ffff 291 292 /* The RSS lookup table actually has 256 entries but we do not use 293 * them yet 294 */ 295 #define MVNETA_RSS_LU_TABLE_SIZE 1 296 297 /* Max number of Rx descriptors */ 298 #define MVNETA_MAX_RXD 128 299 300 /* Max number of Tx descriptors */ 301 #define MVNETA_MAX_TXD 532 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define MVNETA_MAX_TSO_SEGS 100 305 306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 307 308 /* descriptor aligned size */ 309 #define MVNETA_DESC_ALIGNED_SIZE 32 310 311 /* Number of bytes to be taken into account by HW when putting incoming data 312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 314 */ 315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 316 317 #define MVNETA_RX_PKT_SIZE(mtu) \ 318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 319 ETH_HLEN + ETH_FCS_LEN, \ 320 cache_line_size()) 321 322 #define IS_TSO_HEADER(txq, addr) \ 323 ((addr >= txq->tso_hdrs_phys) && \ 324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 325 326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 328 329 enum { 330 ETHTOOL_STAT_EEE_WAKEUP, 331 ETHTOOL_MAX_STATS, 332 }; 333 334 struct mvneta_statistic { 335 unsigned short offset; 336 unsigned short type; 337 const char name[ETH_GSTRING_LEN]; 338 }; 339 340 #define T_REG_32 32 341 #define T_REG_64 64 342 #define T_SW 1 343 344 static const struct mvneta_statistic mvneta_statistics[] = { 345 { 0x3000, T_REG_64, "good_octets_received", }, 346 { 0x3010, T_REG_32, "good_frames_received", }, 347 { 0x3008, T_REG_32, "bad_octets_received", }, 348 { 0x3014, T_REG_32, "bad_frames_received", }, 349 { 0x3018, T_REG_32, "broadcast_frames_received", }, 350 { 0x301c, T_REG_32, "multicast_frames_received", }, 351 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 352 { 0x3058, T_REG_32, "good_fc_received", }, 353 { 0x305c, T_REG_32, "bad_fc_received", }, 354 { 0x3060, T_REG_32, "undersize_received", }, 355 { 0x3064, T_REG_32, "fragments_received", }, 356 { 0x3068, T_REG_32, "oversize_received", }, 357 { 0x306c, T_REG_32, "jabber_received", }, 358 { 0x3070, T_REG_32, "mac_receive_error", }, 359 { 0x3074, T_REG_32, "bad_crc_event", }, 360 { 0x3078, T_REG_32, "collision", }, 361 { 0x307c, T_REG_32, "late_collision", }, 362 { 0x2484, T_REG_32, "rx_discard", }, 363 { 0x2488, T_REG_32, "rx_overrun", }, 364 { 0x3020, T_REG_32, "frames_64_octets", }, 365 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 366 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 367 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 368 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 369 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 370 { 0x3038, T_REG_64, "good_octets_sent", }, 371 { 0x3040, T_REG_32, "good_frames_sent", }, 372 { 0x3044, T_REG_32, "excessive_collision", }, 373 { 0x3048, T_REG_32, "multicast_frames_sent", }, 374 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 375 { 0x3054, T_REG_32, "fc_sent", }, 376 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 377 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 378 }; 379 380 struct mvneta_pcpu_stats { 381 struct u64_stats_sync syncp; 382 u64 rx_packets; 383 u64 rx_bytes; 384 u64 tx_packets; 385 u64 tx_bytes; 386 }; 387 388 struct mvneta_pcpu_port { 389 /* Pointer to the shared port */ 390 struct mvneta_port *pp; 391 392 /* Pointer to the CPU-local NAPI struct */ 393 struct napi_struct napi; 394 395 /* Cause of the previous interrupt */ 396 u32 cause_rx_tx; 397 }; 398 399 struct mvneta_port { 400 u8 id; 401 struct mvneta_pcpu_port __percpu *ports; 402 struct mvneta_pcpu_stats __percpu *stats; 403 404 int pkt_size; 405 unsigned int frag_size; 406 void __iomem *base; 407 struct mvneta_rx_queue *rxqs; 408 struct mvneta_tx_queue *txqs; 409 struct net_device *dev; 410 struct hlist_node node_online; 411 struct hlist_node node_dead; 412 int rxq_def; 413 /* Protect the access to the percpu interrupt registers, 414 * ensuring that the configuration remains coherent. 415 */ 416 spinlock_t lock; 417 bool is_stopped; 418 419 u32 cause_rx_tx; 420 struct napi_struct napi; 421 422 /* Core clock */ 423 struct clk *clk; 424 /* AXI clock */ 425 struct clk *clk_bus; 426 u8 mcast_count[256]; 427 u16 tx_ring_size; 428 u16 rx_ring_size; 429 430 phy_interface_t phy_interface; 431 struct device_node *dn; 432 unsigned int tx_csum_limit; 433 struct phylink *phylink; 434 435 struct mvneta_bm *bm_priv; 436 struct mvneta_bm_pool *pool_long; 437 struct mvneta_bm_pool *pool_short; 438 int bm_win_id; 439 440 bool eee_enabled; 441 bool eee_active; 442 bool tx_lpi_enabled; 443 444 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 445 446 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 447 448 /* Flags for special SoC configurations */ 449 bool neta_armada3700; 450 u16 rx_offset_correction; 451 const struct mbus_dram_target_info *dram_target_info; 452 }; 453 454 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 455 * layout of the transmit and reception DMA descriptors, and their 456 * layout is therefore defined by the hardware design 457 */ 458 459 #define MVNETA_TX_L3_OFF_SHIFT 0 460 #define MVNETA_TX_IP_HLEN_SHIFT 8 461 #define MVNETA_TX_L4_UDP BIT(16) 462 #define MVNETA_TX_L3_IP6 BIT(17) 463 #define MVNETA_TXD_IP_CSUM BIT(18) 464 #define MVNETA_TXD_Z_PAD BIT(19) 465 #define MVNETA_TXD_L_DESC BIT(20) 466 #define MVNETA_TXD_F_DESC BIT(21) 467 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 468 MVNETA_TXD_L_DESC | \ 469 MVNETA_TXD_F_DESC) 470 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 471 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 472 473 #define MVNETA_RXD_ERR_CRC 0x0 474 #define MVNETA_RXD_BM_POOL_SHIFT 13 475 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 476 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 477 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 478 #define MVNETA_RXD_ERR_LEN BIT(18) 479 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 480 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 481 #define MVNETA_RXD_L3_IP4 BIT(25) 482 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 483 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 484 485 #if defined(__LITTLE_ENDIAN) 486 struct mvneta_tx_desc { 487 u32 command; /* Options used by HW for packet transmitting.*/ 488 u16 reserverd1; /* csum_l4 (for future use) */ 489 u16 data_size; /* Data size of transmitted packet in bytes */ 490 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 491 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 492 u32 reserved3[4]; /* Reserved - (for future use) */ 493 }; 494 495 struct mvneta_rx_desc { 496 u32 status; /* Info about received packet */ 497 u16 reserved1; /* pnc_info - (for future use, PnC) */ 498 u16 data_size; /* Size of received packet in bytes */ 499 500 u32 buf_phys_addr; /* Physical address of the buffer */ 501 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 502 503 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 504 u16 reserved3; /* prefetch_cmd, for future use */ 505 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 506 507 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 508 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 509 }; 510 #else 511 struct mvneta_tx_desc { 512 u16 data_size; /* Data size of transmitted packet in bytes */ 513 u16 reserverd1; /* csum_l4 (for future use) */ 514 u32 command; /* Options used by HW for packet transmitting.*/ 515 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 516 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 517 u32 reserved3[4]; /* Reserved - (for future use) */ 518 }; 519 520 struct mvneta_rx_desc { 521 u16 data_size; /* Size of received packet in bytes */ 522 u16 reserved1; /* pnc_info - (for future use, PnC) */ 523 u32 status; /* Info about received packet */ 524 525 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 526 u32 buf_phys_addr; /* Physical address of the buffer */ 527 528 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 529 u16 reserved3; /* prefetch_cmd, for future use */ 530 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 531 532 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 533 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 534 }; 535 #endif 536 537 struct mvneta_tx_queue { 538 /* Number of this TX queue, in the range 0-7 */ 539 u8 id; 540 541 /* Number of TX DMA descriptors in the descriptor ring */ 542 int size; 543 544 /* Number of currently used TX DMA descriptor in the 545 * descriptor ring 546 */ 547 int count; 548 int pending; 549 int tx_stop_threshold; 550 int tx_wake_threshold; 551 552 /* Array of transmitted skb */ 553 struct sk_buff **tx_skb; 554 555 /* Index of last TX DMA descriptor that was inserted */ 556 int txq_put_index; 557 558 /* Index of the TX DMA descriptor to be cleaned up */ 559 int txq_get_index; 560 561 u32 done_pkts_coal; 562 563 /* Virtual address of the TX DMA descriptors array */ 564 struct mvneta_tx_desc *descs; 565 566 /* DMA address of the TX DMA descriptors array */ 567 dma_addr_t descs_phys; 568 569 /* Index of the last TX DMA descriptor */ 570 int last_desc; 571 572 /* Index of the next TX DMA descriptor to process */ 573 int next_desc_to_proc; 574 575 /* DMA buffers for TSO headers */ 576 char *tso_hdrs; 577 578 /* DMA address of TSO headers */ 579 dma_addr_t tso_hdrs_phys; 580 581 /* Affinity mask for CPUs*/ 582 cpumask_t affinity_mask; 583 }; 584 585 struct mvneta_rx_queue { 586 /* rx queue number, in the range 0-7 */ 587 u8 id; 588 589 /* num of rx descriptors in the rx descriptor ring */ 590 int size; 591 592 /* counter of times when mvneta_refill() failed */ 593 int missed; 594 595 u32 pkts_coal; 596 u32 time_coal; 597 598 /* Virtual address of the RX buffer */ 599 void **buf_virt_addr; 600 601 /* Virtual address of the RX DMA descriptors array */ 602 struct mvneta_rx_desc *descs; 603 604 /* DMA address of the RX DMA descriptors array */ 605 dma_addr_t descs_phys; 606 607 /* Index of the last RX DMA descriptor */ 608 int last_desc; 609 610 /* Index of the next RX DMA descriptor to process */ 611 int next_desc_to_proc; 612 }; 613 614 static enum cpuhp_state online_hpstate; 615 /* The hardware supports eight (8) rx queues, but we are only allowing 616 * the first one to be used. Therefore, let's just allocate one queue. 617 */ 618 static int rxq_number = 8; 619 static int txq_number = 8; 620 621 static int rxq_def; 622 623 static int rx_copybreak __read_mostly = 256; 624 625 /* HW BM need that each port be identify by a unique ID */ 626 static int global_port_id; 627 628 #define MVNETA_DRIVER_NAME "mvneta" 629 #define MVNETA_DRIVER_VERSION "1.0" 630 631 /* Utility/helper methods */ 632 633 /* Write helper method */ 634 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 635 { 636 writel(data, pp->base + offset); 637 } 638 639 /* Read helper method */ 640 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 641 { 642 return readl(pp->base + offset); 643 } 644 645 /* Increment txq get counter */ 646 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 647 { 648 txq->txq_get_index++; 649 if (txq->txq_get_index == txq->size) 650 txq->txq_get_index = 0; 651 } 652 653 /* Increment txq put counter */ 654 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 655 { 656 txq->txq_put_index++; 657 if (txq->txq_put_index == txq->size) 658 txq->txq_put_index = 0; 659 } 660 661 662 /* Clear all MIB counters */ 663 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 664 { 665 int i; 666 u32 dummy; 667 668 /* Perform dummy reads from MIB counters */ 669 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 670 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 671 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 672 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 673 } 674 675 /* Get System Network Statistics */ 676 static void 677 mvneta_get_stats64(struct net_device *dev, 678 struct rtnl_link_stats64 *stats) 679 { 680 struct mvneta_port *pp = netdev_priv(dev); 681 unsigned int start; 682 int cpu; 683 684 for_each_possible_cpu(cpu) { 685 struct mvneta_pcpu_stats *cpu_stats; 686 u64 rx_packets; 687 u64 rx_bytes; 688 u64 tx_packets; 689 u64 tx_bytes; 690 691 cpu_stats = per_cpu_ptr(pp->stats, cpu); 692 do { 693 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 694 rx_packets = cpu_stats->rx_packets; 695 rx_bytes = cpu_stats->rx_bytes; 696 tx_packets = cpu_stats->tx_packets; 697 tx_bytes = cpu_stats->tx_bytes; 698 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 699 700 stats->rx_packets += rx_packets; 701 stats->rx_bytes += rx_bytes; 702 stats->tx_packets += tx_packets; 703 stats->tx_bytes += tx_bytes; 704 } 705 706 stats->rx_errors = dev->stats.rx_errors; 707 stats->rx_dropped = dev->stats.rx_dropped; 708 709 stats->tx_dropped = dev->stats.tx_dropped; 710 } 711 712 /* Rx descriptors helper methods */ 713 714 /* Checks whether the RX descriptor having this status is both the first 715 * and the last descriptor for the RX packet. Each RX packet is currently 716 * received through a single RX descriptor, so not having each RX 717 * descriptor with its first and last bits set is an error 718 */ 719 static int mvneta_rxq_desc_is_first_last(u32 status) 720 { 721 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 722 MVNETA_RXD_FIRST_LAST_DESC; 723 } 724 725 /* Add number of descriptors ready to receive new packets */ 726 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 727 struct mvneta_rx_queue *rxq, 728 int ndescs) 729 { 730 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 731 * be added at once 732 */ 733 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 734 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 735 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 736 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 737 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 738 } 739 740 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 741 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 742 } 743 744 /* Get number of RX descriptors occupied by received packets */ 745 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 746 struct mvneta_rx_queue *rxq) 747 { 748 u32 val; 749 750 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 751 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 752 } 753 754 /* Update num of rx desc called upon return from rx path or 755 * from mvneta_rxq_drop_pkts(). 756 */ 757 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 758 struct mvneta_rx_queue *rxq, 759 int rx_done, int rx_filled) 760 { 761 u32 val; 762 763 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 764 val = rx_done | 765 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 767 return; 768 } 769 770 /* Only 255 descriptors can be added at once */ 771 while ((rx_done > 0) || (rx_filled > 0)) { 772 if (rx_done <= 0xff) { 773 val = rx_done; 774 rx_done = 0; 775 } else { 776 val = 0xff; 777 rx_done -= 0xff; 778 } 779 if (rx_filled <= 0xff) { 780 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 781 rx_filled = 0; 782 } else { 783 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 784 rx_filled -= 0xff; 785 } 786 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 787 } 788 } 789 790 /* Get pointer to next RX descriptor to be processed by SW */ 791 static struct mvneta_rx_desc * 792 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 793 { 794 int rx_desc = rxq->next_desc_to_proc; 795 796 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 797 prefetch(rxq->descs + rxq->next_desc_to_proc); 798 return rxq->descs + rx_desc; 799 } 800 801 /* Change maximum receive size of the port. */ 802 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 803 { 804 u32 val; 805 806 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 807 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 808 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 809 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 810 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 811 } 812 813 814 /* Set rx queue offset */ 815 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 816 struct mvneta_rx_queue *rxq, 817 int offset) 818 { 819 u32 val; 820 821 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 822 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 823 824 /* Offset is in */ 825 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 826 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 827 } 828 829 830 /* Tx descriptors helper methods */ 831 832 /* Update HW with number of TX descriptors to be sent */ 833 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 834 struct mvneta_tx_queue *txq, 835 int pend_desc) 836 { 837 u32 val; 838 839 pend_desc += txq->pending; 840 841 /* Only 255 Tx descriptors can be added at once */ 842 do { 843 val = min(pend_desc, 255); 844 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 845 pend_desc -= val; 846 } while (pend_desc > 0); 847 txq->pending = 0; 848 } 849 850 /* Get pointer to next TX descriptor to be processed (send) by HW */ 851 static struct mvneta_tx_desc * 852 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 853 { 854 int tx_desc = txq->next_desc_to_proc; 855 856 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 857 return txq->descs + tx_desc; 858 } 859 860 /* Release the last allocated TX descriptor. Useful to handle DMA 861 * mapping failures in the TX path. 862 */ 863 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 864 { 865 if (txq->next_desc_to_proc == 0) 866 txq->next_desc_to_proc = txq->last_desc - 1; 867 else 868 txq->next_desc_to_proc--; 869 } 870 871 /* Set rxq buf size */ 872 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 873 struct mvneta_rx_queue *rxq, 874 int buf_size) 875 { 876 u32 val; 877 878 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 879 880 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 881 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 882 883 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 884 } 885 886 /* Disable buffer management (BM) */ 887 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 888 struct mvneta_rx_queue *rxq) 889 { 890 u32 val; 891 892 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 893 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 894 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 895 } 896 897 /* Enable buffer management (BM) */ 898 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 899 struct mvneta_rx_queue *rxq) 900 { 901 u32 val; 902 903 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 904 val |= MVNETA_RXQ_HW_BUF_ALLOC; 905 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 906 } 907 908 /* Notify HW about port's assignment of pool for bigger packets */ 909 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 910 struct mvneta_rx_queue *rxq) 911 { 912 u32 val; 913 914 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 915 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 916 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 917 918 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 919 } 920 921 /* Notify HW about port's assignment of pool for smaller packets */ 922 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 923 struct mvneta_rx_queue *rxq) 924 { 925 u32 val; 926 927 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 928 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 929 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 930 931 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 932 } 933 934 /* Set port's receive buffer size for assigned BM pool */ 935 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 936 int buf_size, 937 u8 pool_id) 938 { 939 u32 val; 940 941 if (!IS_ALIGNED(buf_size, 8)) { 942 dev_warn(pp->dev->dev.parent, 943 "illegal buf_size value %d, round to %d\n", 944 buf_size, ALIGN(buf_size, 8)); 945 buf_size = ALIGN(buf_size, 8); 946 } 947 948 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 949 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 950 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 951 } 952 953 /* Configure MBUS window in order to enable access BM internal SRAM */ 954 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 955 u8 target, u8 attr) 956 { 957 u32 win_enable, win_protect; 958 int i; 959 960 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 961 962 if (pp->bm_win_id < 0) { 963 /* Find first not occupied window */ 964 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 965 if (win_enable & (1 << i)) { 966 pp->bm_win_id = i; 967 break; 968 } 969 } 970 if (i == MVNETA_MAX_DECODE_WIN) 971 return -ENOMEM; 972 } else { 973 i = pp->bm_win_id; 974 } 975 976 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 977 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 978 979 if (i < 4) 980 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 981 982 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 983 (attr << 8) | target); 984 985 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 986 987 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 988 win_protect |= 3 << (2 * i); 989 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 990 991 win_enable &= ~(1 << i); 992 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 993 994 return 0; 995 } 996 997 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 998 { 999 u32 wsize; 1000 u8 target, attr; 1001 int err; 1002 1003 /* Get BM window information */ 1004 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1005 &target, &attr); 1006 if (err < 0) 1007 return err; 1008 1009 pp->bm_win_id = -1; 1010 1011 /* Open NETA -> BM window */ 1012 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1013 target, attr); 1014 if (err < 0) { 1015 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1016 return err; 1017 } 1018 return 0; 1019 } 1020 1021 /* Assign and initialize pools for port. In case of fail 1022 * buffer manager will remain disabled for current port. 1023 */ 1024 static int mvneta_bm_port_init(struct platform_device *pdev, 1025 struct mvneta_port *pp) 1026 { 1027 struct device_node *dn = pdev->dev.of_node; 1028 u32 long_pool_id, short_pool_id; 1029 1030 if (!pp->neta_armada3700) { 1031 int ret; 1032 1033 ret = mvneta_bm_port_mbus_init(pp); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1039 netdev_info(pp->dev, "missing long pool id\n"); 1040 return -EINVAL; 1041 } 1042 1043 /* Create port's long pool depending on mtu */ 1044 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1045 MVNETA_BM_LONG, pp->id, 1046 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1047 if (!pp->pool_long) { 1048 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1049 return -ENOMEM; 1050 } 1051 1052 pp->pool_long->port_map |= 1 << pp->id; 1053 1054 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1055 pp->pool_long->id); 1056 1057 /* If short pool id is not defined, assume using single pool */ 1058 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1059 short_pool_id = long_pool_id; 1060 1061 /* Create port's short pool */ 1062 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1063 MVNETA_BM_SHORT, pp->id, 1064 MVNETA_BM_SHORT_PKT_SIZE); 1065 if (!pp->pool_short) { 1066 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1067 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1068 return -ENOMEM; 1069 } 1070 1071 if (short_pool_id != long_pool_id) { 1072 pp->pool_short->port_map |= 1 << pp->id; 1073 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1074 pp->pool_short->id); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* Update settings of a pool for bigger packets */ 1081 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1082 { 1083 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1084 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1085 int num; 1086 1087 /* Release all buffers from long pool */ 1088 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1089 if (hwbm_pool->buf_num) { 1090 WARN(1, "cannot free all buffers in pool %d\n", 1091 bm_pool->id); 1092 goto bm_mtu_err; 1093 } 1094 1095 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1096 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1097 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1098 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1099 1100 /* Fill entire long pool */ 1101 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1102 if (num != hwbm_pool->size) { 1103 WARN(1, "pool %d: %d of %d allocated\n", 1104 bm_pool->id, num, hwbm_pool->size); 1105 goto bm_mtu_err; 1106 } 1107 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1108 1109 return; 1110 1111 bm_mtu_err: 1112 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1113 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1114 1115 pp->bm_priv = NULL; 1116 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1117 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1118 } 1119 1120 /* Start the Ethernet port RX and TX activity */ 1121 static void mvneta_port_up(struct mvneta_port *pp) 1122 { 1123 int queue; 1124 u32 q_map; 1125 1126 /* Enable all initialized TXs. */ 1127 q_map = 0; 1128 for (queue = 0; queue < txq_number; queue++) { 1129 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1130 if (txq->descs) 1131 q_map |= (1 << queue); 1132 } 1133 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1134 1135 q_map = 0; 1136 /* Enable all initialized RXQs. */ 1137 for (queue = 0; queue < rxq_number; queue++) { 1138 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1139 1140 if (rxq->descs) 1141 q_map |= (1 << queue); 1142 } 1143 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1144 } 1145 1146 /* Stop the Ethernet port activity */ 1147 static void mvneta_port_down(struct mvneta_port *pp) 1148 { 1149 u32 val; 1150 int count; 1151 1152 /* Stop Rx port activity. Check port Rx activity. */ 1153 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1154 1155 /* Issue stop command for active channels only */ 1156 if (val != 0) 1157 mvreg_write(pp, MVNETA_RXQ_CMD, 1158 val << MVNETA_RXQ_DISABLE_SHIFT); 1159 1160 /* Wait for all Rx activity to terminate. */ 1161 count = 0; 1162 do { 1163 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1164 netdev_warn(pp->dev, 1165 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1166 val); 1167 break; 1168 } 1169 mdelay(1); 1170 1171 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1172 } while (val & MVNETA_RXQ_ENABLE_MASK); 1173 1174 /* Stop Tx port activity. Check port Tx activity. Issue stop 1175 * command for active channels only 1176 */ 1177 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1178 1179 if (val != 0) 1180 mvreg_write(pp, MVNETA_TXQ_CMD, 1181 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1182 1183 /* Wait for all Tx activity to terminate. */ 1184 count = 0; 1185 do { 1186 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1187 netdev_warn(pp->dev, 1188 "TIMEOUT for TX stopped status=0x%08x\n", 1189 val); 1190 break; 1191 } 1192 mdelay(1); 1193 1194 /* Check TX Command reg that all Txqs are stopped */ 1195 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1196 1197 } while (val & MVNETA_TXQ_ENABLE_MASK); 1198 1199 /* Double check to verify that TX FIFO is empty */ 1200 count = 0; 1201 do { 1202 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1203 netdev_warn(pp->dev, 1204 "TX FIFO empty timeout status=0x%08x\n", 1205 val); 1206 break; 1207 } 1208 mdelay(1); 1209 1210 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1211 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1212 (val & MVNETA_TX_IN_PRGRS)); 1213 1214 udelay(200); 1215 } 1216 1217 /* Enable the port by setting the port enable bit of the MAC control register */ 1218 static void mvneta_port_enable(struct mvneta_port *pp) 1219 { 1220 u32 val; 1221 1222 /* Enable port */ 1223 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1224 val |= MVNETA_GMAC0_PORT_ENABLE; 1225 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1226 } 1227 1228 /* Disable the port and wait for about 200 usec before retuning */ 1229 static void mvneta_port_disable(struct mvneta_port *pp) 1230 { 1231 u32 val; 1232 1233 /* Reset the Enable bit in the Serial Control Register */ 1234 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1235 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1236 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1237 1238 udelay(200); 1239 } 1240 1241 /* Multicast tables methods */ 1242 1243 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1244 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1245 { 1246 int offset; 1247 u32 val; 1248 1249 if (queue == -1) { 1250 val = 0; 1251 } else { 1252 val = 0x1 | (queue << 1); 1253 val |= (val << 24) | (val << 16) | (val << 8); 1254 } 1255 1256 for (offset = 0; offset <= 0xc; offset += 4) 1257 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1258 } 1259 1260 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1261 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1262 { 1263 int offset; 1264 u32 val; 1265 1266 if (queue == -1) { 1267 val = 0; 1268 } else { 1269 val = 0x1 | (queue << 1); 1270 val |= (val << 24) | (val << 16) | (val << 8); 1271 } 1272 1273 for (offset = 0; offset <= 0xfc; offset += 4) 1274 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1275 1276 } 1277 1278 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1279 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1280 { 1281 int offset; 1282 u32 val; 1283 1284 if (queue == -1) { 1285 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1286 val = 0; 1287 } else { 1288 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1289 val = 0x1 | (queue << 1); 1290 val |= (val << 24) | (val << 16) | (val << 8); 1291 } 1292 1293 for (offset = 0; offset <= 0xfc; offset += 4) 1294 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1295 } 1296 1297 static void mvneta_percpu_unmask_interrupt(void *arg) 1298 { 1299 struct mvneta_port *pp = arg; 1300 1301 /* All the queue are unmasked, but actually only the ones 1302 * mapped to this CPU will be unmasked 1303 */ 1304 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1305 MVNETA_RX_INTR_MASK_ALL | 1306 MVNETA_TX_INTR_MASK_ALL | 1307 MVNETA_MISCINTR_INTR_MASK); 1308 } 1309 1310 static void mvneta_percpu_mask_interrupt(void *arg) 1311 { 1312 struct mvneta_port *pp = arg; 1313 1314 /* All the queue are masked, but actually only the ones 1315 * mapped to this CPU will be masked 1316 */ 1317 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1318 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1319 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1320 } 1321 1322 static void mvneta_percpu_clear_intr_cause(void *arg) 1323 { 1324 struct mvneta_port *pp = arg; 1325 1326 /* All the queue are cleared, but actually only the ones 1327 * mapped to this CPU will be cleared 1328 */ 1329 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1330 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1331 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1332 } 1333 1334 /* This method sets defaults to the NETA port: 1335 * Clears interrupt Cause and Mask registers. 1336 * Clears all MAC tables. 1337 * Sets defaults to all registers. 1338 * Resets RX and TX descriptor rings. 1339 * Resets PHY. 1340 * This method can be called after mvneta_port_down() to return the port 1341 * settings to defaults. 1342 */ 1343 static void mvneta_defaults_set(struct mvneta_port *pp) 1344 { 1345 int cpu; 1346 int queue; 1347 u32 val; 1348 int max_cpu = num_present_cpus(); 1349 1350 /* Clear all Cause registers */ 1351 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1352 1353 /* Mask all interrupts */ 1354 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1355 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1356 1357 /* Enable MBUS Retry bit16 */ 1358 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1359 1360 /* Set CPU queue access map. CPUs are assigned to the RX and 1361 * TX queues modulo their number. If there is only one TX 1362 * queue then it is assigned to the CPU associated to the 1363 * default RX queue. 1364 */ 1365 for_each_present_cpu(cpu) { 1366 int rxq_map = 0, txq_map = 0; 1367 int rxq, txq; 1368 if (!pp->neta_armada3700) { 1369 for (rxq = 0; rxq < rxq_number; rxq++) 1370 if ((rxq % max_cpu) == cpu) 1371 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1372 1373 for (txq = 0; txq < txq_number; txq++) 1374 if ((txq % max_cpu) == cpu) 1375 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1376 1377 /* With only one TX queue we configure a special case 1378 * which will allow to get all the irq on a single 1379 * CPU 1380 */ 1381 if (txq_number == 1) 1382 txq_map = (cpu == pp->rxq_def) ? 1383 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1384 1385 } else { 1386 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1387 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1388 } 1389 1390 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1391 } 1392 1393 /* Reset RX and TX DMAs */ 1394 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1395 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1396 1397 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1398 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1399 for (queue = 0; queue < txq_number; queue++) { 1400 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1401 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1402 } 1403 1404 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1405 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1406 1407 /* Set Port Acceleration Mode */ 1408 if (pp->bm_priv) 1409 /* HW buffer management + legacy parser */ 1410 val = MVNETA_ACC_MODE_EXT2; 1411 else 1412 /* SW buffer management + legacy parser */ 1413 val = MVNETA_ACC_MODE_EXT1; 1414 mvreg_write(pp, MVNETA_ACC_MODE, val); 1415 1416 if (pp->bm_priv) 1417 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1418 1419 /* Update val of portCfg register accordingly with all RxQueue types */ 1420 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1421 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1422 1423 val = 0; 1424 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1425 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1426 1427 /* Build PORT_SDMA_CONFIG_REG */ 1428 val = 0; 1429 1430 /* Default burst size */ 1431 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1432 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1433 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1434 1435 #if defined(__BIG_ENDIAN) 1436 val |= MVNETA_DESC_SWAP; 1437 #endif 1438 1439 /* Assign port SDMA configuration */ 1440 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1441 1442 /* Disable PHY polling in hardware, since we're using the 1443 * kernel phylib to do this. 1444 */ 1445 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1446 val &= ~MVNETA_PHY_POLLING_ENABLE; 1447 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1448 1449 mvneta_set_ucast_table(pp, -1); 1450 mvneta_set_special_mcast_table(pp, -1); 1451 mvneta_set_other_mcast_table(pp, -1); 1452 1453 /* Set port interrupt enable register - default enable all */ 1454 mvreg_write(pp, MVNETA_INTR_ENABLE, 1455 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1456 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1457 1458 mvneta_mib_counters_clear(pp); 1459 } 1460 1461 /* Set max sizes for tx queues */ 1462 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1463 1464 { 1465 u32 val, size, mtu; 1466 int queue; 1467 1468 mtu = max_tx_size * 8; 1469 if (mtu > MVNETA_TX_MTU_MAX) 1470 mtu = MVNETA_TX_MTU_MAX; 1471 1472 /* Set MTU */ 1473 val = mvreg_read(pp, MVNETA_TX_MTU); 1474 val &= ~MVNETA_TX_MTU_MAX; 1475 val |= mtu; 1476 mvreg_write(pp, MVNETA_TX_MTU, val); 1477 1478 /* TX token size and all TXQs token size must be larger that MTU */ 1479 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1480 1481 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1482 if (size < mtu) { 1483 size = mtu; 1484 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1485 val |= size; 1486 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1487 } 1488 for (queue = 0; queue < txq_number; queue++) { 1489 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1490 1491 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1492 if (size < mtu) { 1493 size = mtu; 1494 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1495 val |= size; 1496 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1497 } 1498 } 1499 } 1500 1501 /* Set unicast address */ 1502 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1503 int queue) 1504 { 1505 unsigned int unicast_reg; 1506 unsigned int tbl_offset; 1507 unsigned int reg_offset; 1508 1509 /* Locate the Unicast table entry */ 1510 last_nibble = (0xf & last_nibble); 1511 1512 /* offset from unicast tbl base */ 1513 tbl_offset = (last_nibble / 4) * 4; 1514 1515 /* offset within the above reg */ 1516 reg_offset = last_nibble % 4; 1517 1518 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1519 1520 if (queue == -1) { 1521 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1522 unicast_reg &= ~(0xff << (8 * reg_offset)); 1523 } else { 1524 unicast_reg &= ~(0xff << (8 * reg_offset)); 1525 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1526 } 1527 1528 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1529 } 1530 1531 /* Set mac address */ 1532 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1533 int queue) 1534 { 1535 unsigned int mac_h; 1536 unsigned int mac_l; 1537 1538 if (queue != -1) { 1539 mac_l = (addr[4] << 8) | (addr[5]); 1540 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1541 (addr[2] << 8) | (addr[3] << 0); 1542 1543 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1544 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1545 } 1546 1547 /* Accept frames of this address */ 1548 mvneta_set_ucast_addr(pp, addr[5], queue); 1549 } 1550 1551 /* Set the number of packets that will be received before RX interrupt 1552 * will be generated by HW. 1553 */ 1554 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1555 struct mvneta_rx_queue *rxq, u32 value) 1556 { 1557 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1558 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1559 } 1560 1561 /* Set the time delay in usec before RX interrupt will be generated by 1562 * HW. 1563 */ 1564 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1565 struct mvneta_rx_queue *rxq, u32 value) 1566 { 1567 u32 val; 1568 unsigned long clk_rate; 1569 1570 clk_rate = clk_get_rate(pp->clk); 1571 val = (clk_rate / 1000000) * value; 1572 1573 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1574 } 1575 1576 /* Set threshold for TX_DONE pkts coalescing */ 1577 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1578 struct mvneta_tx_queue *txq, u32 value) 1579 { 1580 u32 val; 1581 1582 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1583 1584 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1585 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1586 1587 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1588 } 1589 1590 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1591 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1592 u32 phys_addr, void *virt_addr, 1593 struct mvneta_rx_queue *rxq) 1594 { 1595 int i; 1596 1597 rx_desc->buf_phys_addr = phys_addr; 1598 i = rx_desc - rxq->descs; 1599 rxq->buf_virt_addr[i] = virt_addr; 1600 } 1601 1602 /* Decrement sent descriptors counter */ 1603 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1604 struct mvneta_tx_queue *txq, 1605 int sent_desc) 1606 { 1607 u32 val; 1608 1609 /* Only 255 TX descriptors can be updated at once */ 1610 while (sent_desc > 0xff) { 1611 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1612 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1613 sent_desc = sent_desc - 0xff; 1614 } 1615 1616 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1617 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1618 } 1619 1620 /* Get number of TX descriptors already sent by HW */ 1621 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1622 struct mvneta_tx_queue *txq) 1623 { 1624 u32 val; 1625 int sent_desc; 1626 1627 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1628 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1629 MVNETA_TXQ_SENT_DESC_SHIFT; 1630 1631 return sent_desc; 1632 } 1633 1634 /* Get number of sent descriptors and decrement counter. 1635 * The number of sent descriptors is returned. 1636 */ 1637 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1638 struct mvneta_tx_queue *txq) 1639 { 1640 int sent_desc; 1641 1642 /* Get number of sent descriptors */ 1643 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1644 1645 /* Decrement sent descriptors counter */ 1646 if (sent_desc) 1647 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1648 1649 return sent_desc; 1650 } 1651 1652 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1653 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1654 int ip_hdr_len, int l4_proto) 1655 { 1656 u32 command; 1657 1658 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1659 * G_L4_chk, L4_type; required only for checksum 1660 * calculation 1661 */ 1662 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1663 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1664 1665 if (l3_proto == htons(ETH_P_IP)) 1666 command |= MVNETA_TXD_IP_CSUM; 1667 else 1668 command |= MVNETA_TX_L3_IP6; 1669 1670 if (l4_proto == IPPROTO_TCP) 1671 command |= MVNETA_TX_L4_CSUM_FULL; 1672 else if (l4_proto == IPPROTO_UDP) 1673 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1674 else 1675 command |= MVNETA_TX_L4_CSUM_NOT; 1676 1677 return command; 1678 } 1679 1680 1681 /* Display more error info */ 1682 static void mvneta_rx_error(struct mvneta_port *pp, 1683 struct mvneta_rx_desc *rx_desc) 1684 { 1685 u32 status = rx_desc->status; 1686 1687 if (!mvneta_rxq_desc_is_first_last(status)) { 1688 netdev_err(pp->dev, 1689 "bad rx status %08x (buffer oversize), size=%d\n", 1690 status, rx_desc->data_size); 1691 return; 1692 } 1693 1694 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1695 case MVNETA_RXD_ERR_CRC: 1696 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1697 status, rx_desc->data_size); 1698 break; 1699 case MVNETA_RXD_ERR_OVERRUN: 1700 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1701 status, rx_desc->data_size); 1702 break; 1703 case MVNETA_RXD_ERR_LEN: 1704 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1705 status, rx_desc->data_size); 1706 break; 1707 case MVNETA_RXD_ERR_RESOURCE: 1708 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1709 status, rx_desc->data_size); 1710 break; 1711 } 1712 } 1713 1714 /* Handle RX checksum offload based on the descriptor's status */ 1715 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1716 struct sk_buff *skb) 1717 { 1718 if ((status & MVNETA_RXD_L3_IP4) && 1719 (status & MVNETA_RXD_L4_CSUM_OK)) { 1720 skb->csum = 0; 1721 skb->ip_summed = CHECKSUM_UNNECESSARY; 1722 return; 1723 } 1724 1725 skb->ip_summed = CHECKSUM_NONE; 1726 } 1727 1728 /* Return tx queue pointer (find last set bit) according to <cause> returned 1729 * form tx_done reg. <cause> must not be null. The return value is always a 1730 * valid queue for matching the first one found in <cause>. 1731 */ 1732 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1733 u32 cause) 1734 { 1735 int queue = fls(cause) - 1; 1736 1737 return &pp->txqs[queue]; 1738 } 1739 1740 /* Free tx queue skbuffs */ 1741 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1742 struct mvneta_tx_queue *txq, int num, 1743 struct netdev_queue *nq) 1744 { 1745 unsigned int bytes_compl = 0, pkts_compl = 0; 1746 int i; 1747 1748 for (i = 0; i < num; i++) { 1749 struct mvneta_tx_desc *tx_desc = txq->descs + 1750 txq->txq_get_index; 1751 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1752 1753 if (skb) { 1754 bytes_compl += skb->len; 1755 pkts_compl++; 1756 } 1757 1758 mvneta_txq_inc_get(txq); 1759 1760 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1761 dma_unmap_single(pp->dev->dev.parent, 1762 tx_desc->buf_phys_addr, 1763 tx_desc->data_size, DMA_TO_DEVICE); 1764 if (!skb) 1765 continue; 1766 dev_kfree_skb_any(skb); 1767 } 1768 1769 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1770 } 1771 1772 /* Handle end of transmission */ 1773 static void mvneta_txq_done(struct mvneta_port *pp, 1774 struct mvneta_tx_queue *txq) 1775 { 1776 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1777 int tx_done; 1778 1779 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1780 if (!tx_done) 1781 return; 1782 1783 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1784 1785 txq->count -= tx_done; 1786 1787 if (netif_tx_queue_stopped(nq)) { 1788 if (txq->count <= txq->tx_wake_threshold) 1789 netif_tx_wake_queue(nq); 1790 } 1791 } 1792 1793 void *mvneta_frag_alloc(unsigned int frag_size) 1794 { 1795 if (likely(frag_size <= PAGE_SIZE)) 1796 return netdev_alloc_frag(frag_size); 1797 else 1798 return kmalloc(frag_size, GFP_ATOMIC); 1799 } 1800 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1801 1802 void mvneta_frag_free(unsigned int frag_size, void *data) 1803 { 1804 if (likely(frag_size <= PAGE_SIZE)) 1805 skb_free_frag(data); 1806 else 1807 kfree(data); 1808 } 1809 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1810 1811 /* Refill processing for SW buffer management */ 1812 static int mvneta_rx_refill(struct mvneta_port *pp, 1813 struct mvneta_rx_desc *rx_desc, 1814 struct mvneta_rx_queue *rxq) 1815 1816 { 1817 dma_addr_t phys_addr; 1818 void *data; 1819 1820 data = mvneta_frag_alloc(pp->frag_size); 1821 if (!data) 1822 return -ENOMEM; 1823 1824 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1825 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1826 DMA_FROM_DEVICE); 1827 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1828 mvneta_frag_free(pp->frag_size, data); 1829 return -ENOMEM; 1830 } 1831 1832 phys_addr += pp->rx_offset_correction; 1833 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1834 return 0; 1835 } 1836 1837 /* Handle tx checksum */ 1838 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1839 { 1840 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1841 int ip_hdr_len = 0; 1842 __be16 l3_proto = vlan_get_protocol(skb); 1843 u8 l4_proto; 1844 1845 if (l3_proto == htons(ETH_P_IP)) { 1846 struct iphdr *ip4h = ip_hdr(skb); 1847 1848 /* Calculate IPv4 checksum and L4 checksum */ 1849 ip_hdr_len = ip4h->ihl; 1850 l4_proto = ip4h->protocol; 1851 } else if (l3_proto == htons(ETH_P_IPV6)) { 1852 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1853 1854 /* Read l4_protocol from one of IPv6 extra headers */ 1855 if (skb_network_header_len(skb) > 0) 1856 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1857 l4_proto = ip6h->nexthdr; 1858 } else 1859 return MVNETA_TX_L4_CSUM_NOT; 1860 1861 return mvneta_txq_desc_csum(skb_network_offset(skb), 1862 l3_proto, ip_hdr_len, l4_proto); 1863 } 1864 1865 return MVNETA_TX_L4_CSUM_NOT; 1866 } 1867 1868 /* Drop packets received by the RXQ and free buffers */ 1869 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1870 struct mvneta_rx_queue *rxq) 1871 { 1872 int rx_done, i; 1873 1874 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1875 if (rx_done) 1876 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1877 1878 if (pp->bm_priv) { 1879 for (i = 0; i < rx_done; i++) { 1880 struct mvneta_rx_desc *rx_desc = 1881 mvneta_rxq_next_desc_get(rxq); 1882 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1883 struct mvneta_bm_pool *bm_pool; 1884 1885 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1886 /* Return dropped buffer to the pool */ 1887 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1888 rx_desc->buf_phys_addr); 1889 } 1890 return; 1891 } 1892 1893 for (i = 0; i < rxq->size; i++) { 1894 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1895 void *data = rxq->buf_virt_addr[i]; 1896 1897 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1898 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1899 mvneta_frag_free(pp->frag_size, data); 1900 } 1901 } 1902 1903 /* Main rx processing when using software buffer management */ 1904 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1905 struct mvneta_rx_queue *rxq) 1906 { 1907 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1908 struct net_device *dev = pp->dev; 1909 int rx_done; 1910 u32 rcvd_pkts = 0; 1911 u32 rcvd_bytes = 0; 1912 1913 /* Get number of received packets */ 1914 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1915 1916 if (rx_todo > rx_done) 1917 rx_todo = rx_done; 1918 1919 rx_done = 0; 1920 1921 /* Fairness NAPI loop */ 1922 while (rx_done < rx_todo) { 1923 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1924 struct sk_buff *skb; 1925 unsigned char *data; 1926 dma_addr_t phys_addr; 1927 u32 rx_status, frag_size; 1928 int rx_bytes, err, index; 1929 1930 rx_done++; 1931 rx_status = rx_desc->status; 1932 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1933 index = rx_desc - rxq->descs; 1934 data = rxq->buf_virt_addr[index]; 1935 phys_addr = rx_desc->buf_phys_addr; 1936 1937 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1938 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1939 mvneta_rx_error(pp, rx_desc); 1940 err_drop_frame: 1941 dev->stats.rx_errors++; 1942 /* leave the descriptor untouched */ 1943 continue; 1944 } 1945 1946 if (rx_bytes <= rx_copybreak) { 1947 /* better copy a small frame and not unmap the DMA region */ 1948 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1949 if (unlikely(!skb)) 1950 goto err_drop_frame; 1951 1952 dma_sync_single_range_for_cpu(dev->dev.parent, 1953 phys_addr, 1954 MVNETA_MH_SIZE + NET_SKB_PAD, 1955 rx_bytes, 1956 DMA_FROM_DEVICE); 1957 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 1958 rx_bytes); 1959 1960 skb->protocol = eth_type_trans(skb, dev); 1961 mvneta_rx_csum(pp, rx_status, skb); 1962 napi_gro_receive(&port->napi, skb); 1963 1964 rcvd_pkts++; 1965 rcvd_bytes += rx_bytes; 1966 1967 /* leave the descriptor and buffer untouched */ 1968 continue; 1969 } 1970 1971 /* Refill processing */ 1972 err = mvneta_rx_refill(pp, rx_desc, rxq); 1973 if (err) { 1974 netdev_err(dev, "Linux processing - Can't refill\n"); 1975 rxq->missed++; 1976 goto err_drop_frame; 1977 } 1978 1979 frag_size = pp->frag_size; 1980 1981 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 1982 1983 /* After refill old buffer has to be unmapped regardless 1984 * the skb is successfully built or not. 1985 */ 1986 dma_unmap_single(dev->dev.parent, phys_addr, 1987 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1988 DMA_FROM_DEVICE); 1989 1990 if (!skb) 1991 goto err_drop_frame; 1992 1993 rcvd_pkts++; 1994 rcvd_bytes += rx_bytes; 1995 1996 /* Linux processing */ 1997 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1998 skb_put(skb, rx_bytes); 1999 2000 skb->protocol = eth_type_trans(skb, dev); 2001 2002 mvneta_rx_csum(pp, rx_status, skb); 2003 2004 napi_gro_receive(&port->napi, skb); 2005 } 2006 2007 if (rcvd_pkts) { 2008 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2009 2010 u64_stats_update_begin(&stats->syncp); 2011 stats->rx_packets += rcvd_pkts; 2012 stats->rx_bytes += rcvd_bytes; 2013 u64_stats_update_end(&stats->syncp); 2014 } 2015 2016 /* Update rxq management counters */ 2017 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2018 2019 return rx_done; 2020 } 2021 2022 /* Main rx processing when using hardware buffer management */ 2023 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2024 struct mvneta_rx_queue *rxq) 2025 { 2026 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2027 struct net_device *dev = pp->dev; 2028 int rx_done; 2029 u32 rcvd_pkts = 0; 2030 u32 rcvd_bytes = 0; 2031 2032 /* Get number of received packets */ 2033 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2034 2035 if (rx_todo > rx_done) 2036 rx_todo = rx_done; 2037 2038 rx_done = 0; 2039 2040 /* Fairness NAPI loop */ 2041 while (rx_done < rx_todo) { 2042 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2043 struct mvneta_bm_pool *bm_pool = NULL; 2044 struct sk_buff *skb; 2045 unsigned char *data; 2046 dma_addr_t phys_addr; 2047 u32 rx_status, frag_size; 2048 int rx_bytes, err; 2049 u8 pool_id; 2050 2051 rx_done++; 2052 rx_status = rx_desc->status; 2053 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2054 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2055 phys_addr = rx_desc->buf_phys_addr; 2056 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2057 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2058 2059 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2060 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2061 err_drop_frame_ret_pool: 2062 /* Return the buffer to the pool */ 2063 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2064 rx_desc->buf_phys_addr); 2065 err_drop_frame: 2066 dev->stats.rx_errors++; 2067 mvneta_rx_error(pp, rx_desc); 2068 /* leave the descriptor untouched */ 2069 continue; 2070 } 2071 2072 if (rx_bytes <= rx_copybreak) { 2073 /* better copy a small frame and not unmap the DMA region */ 2074 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2075 if (unlikely(!skb)) 2076 goto err_drop_frame_ret_pool; 2077 2078 dma_sync_single_range_for_cpu(dev->dev.parent, 2079 rx_desc->buf_phys_addr, 2080 MVNETA_MH_SIZE + NET_SKB_PAD, 2081 rx_bytes, 2082 DMA_FROM_DEVICE); 2083 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2084 rx_bytes); 2085 2086 skb->protocol = eth_type_trans(skb, dev); 2087 mvneta_rx_csum(pp, rx_status, skb); 2088 napi_gro_receive(&port->napi, skb); 2089 2090 rcvd_pkts++; 2091 rcvd_bytes += rx_bytes; 2092 2093 /* Return the buffer to the pool */ 2094 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2095 rx_desc->buf_phys_addr); 2096 2097 /* leave the descriptor and buffer untouched */ 2098 continue; 2099 } 2100 2101 /* Refill processing */ 2102 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2103 if (err) { 2104 netdev_err(dev, "Linux processing - Can't refill\n"); 2105 rxq->missed++; 2106 goto err_drop_frame_ret_pool; 2107 } 2108 2109 frag_size = bm_pool->hwbm_pool.frag_size; 2110 2111 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2112 2113 /* After refill old buffer has to be unmapped regardless 2114 * the skb is successfully built or not. 2115 */ 2116 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2117 bm_pool->buf_size, DMA_FROM_DEVICE); 2118 if (!skb) 2119 goto err_drop_frame; 2120 2121 rcvd_pkts++; 2122 rcvd_bytes += rx_bytes; 2123 2124 /* Linux processing */ 2125 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2126 skb_put(skb, rx_bytes); 2127 2128 skb->protocol = eth_type_trans(skb, dev); 2129 2130 mvneta_rx_csum(pp, rx_status, skb); 2131 2132 napi_gro_receive(&port->napi, skb); 2133 } 2134 2135 if (rcvd_pkts) { 2136 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2137 2138 u64_stats_update_begin(&stats->syncp); 2139 stats->rx_packets += rcvd_pkts; 2140 stats->rx_bytes += rcvd_bytes; 2141 u64_stats_update_end(&stats->syncp); 2142 } 2143 2144 /* Update rxq management counters */ 2145 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2146 2147 return rx_done; 2148 } 2149 2150 static inline void 2151 mvneta_tso_put_hdr(struct sk_buff *skb, 2152 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2153 { 2154 struct mvneta_tx_desc *tx_desc; 2155 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2156 2157 txq->tx_skb[txq->txq_put_index] = NULL; 2158 tx_desc = mvneta_txq_next_desc_get(txq); 2159 tx_desc->data_size = hdr_len; 2160 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2161 tx_desc->command |= MVNETA_TXD_F_DESC; 2162 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2163 txq->txq_put_index * TSO_HEADER_SIZE; 2164 mvneta_txq_inc_put(txq); 2165 } 2166 2167 static inline int 2168 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2169 struct sk_buff *skb, char *data, int size, 2170 bool last_tcp, bool is_last) 2171 { 2172 struct mvneta_tx_desc *tx_desc; 2173 2174 tx_desc = mvneta_txq_next_desc_get(txq); 2175 tx_desc->data_size = size; 2176 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2177 size, DMA_TO_DEVICE); 2178 if (unlikely(dma_mapping_error(dev->dev.parent, 2179 tx_desc->buf_phys_addr))) { 2180 mvneta_txq_desc_put(txq); 2181 return -ENOMEM; 2182 } 2183 2184 tx_desc->command = 0; 2185 txq->tx_skb[txq->txq_put_index] = NULL; 2186 2187 if (last_tcp) { 2188 /* last descriptor in the TCP packet */ 2189 tx_desc->command = MVNETA_TXD_L_DESC; 2190 2191 /* last descriptor in SKB */ 2192 if (is_last) 2193 txq->tx_skb[txq->txq_put_index] = skb; 2194 } 2195 mvneta_txq_inc_put(txq); 2196 return 0; 2197 } 2198 2199 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2200 struct mvneta_tx_queue *txq) 2201 { 2202 int total_len, data_left; 2203 int desc_count = 0; 2204 struct mvneta_port *pp = netdev_priv(dev); 2205 struct tso_t tso; 2206 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2207 int i; 2208 2209 /* Count needed descriptors */ 2210 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2211 return 0; 2212 2213 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2214 pr_info("*** Is this even possible???!?!?\n"); 2215 return 0; 2216 } 2217 2218 /* Initialize the TSO handler, and prepare the first payload */ 2219 tso_start(skb, &tso); 2220 2221 total_len = skb->len - hdr_len; 2222 while (total_len > 0) { 2223 char *hdr; 2224 2225 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2226 total_len -= data_left; 2227 desc_count++; 2228 2229 /* prepare packet headers: MAC + IP + TCP */ 2230 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2231 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2232 2233 mvneta_tso_put_hdr(skb, pp, txq); 2234 2235 while (data_left > 0) { 2236 int size; 2237 desc_count++; 2238 2239 size = min_t(int, tso.size, data_left); 2240 2241 if (mvneta_tso_put_data(dev, txq, skb, 2242 tso.data, size, 2243 size == data_left, 2244 total_len == 0)) 2245 goto err_release; 2246 data_left -= size; 2247 2248 tso_build_data(skb, &tso, size); 2249 } 2250 } 2251 2252 return desc_count; 2253 2254 err_release: 2255 /* Release all used data descriptors; header descriptors must not 2256 * be DMA-unmapped. 2257 */ 2258 for (i = desc_count - 1; i >= 0; i--) { 2259 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2260 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2261 dma_unmap_single(pp->dev->dev.parent, 2262 tx_desc->buf_phys_addr, 2263 tx_desc->data_size, 2264 DMA_TO_DEVICE); 2265 mvneta_txq_desc_put(txq); 2266 } 2267 return 0; 2268 } 2269 2270 /* Handle tx fragmentation processing */ 2271 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2272 struct mvneta_tx_queue *txq) 2273 { 2274 struct mvneta_tx_desc *tx_desc; 2275 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2276 2277 for (i = 0; i < nr_frags; i++) { 2278 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2279 void *addr = page_address(frag->page.p) + frag->page_offset; 2280 2281 tx_desc = mvneta_txq_next_desc_get(txq); 2282 tx_desc->data_size = frag->size; 2283 2284 tx_desc->buf_phys_addr = 2285 dma_map_single(pp->dev->dev.parent, addr, 2286 tx_desc->data_size, DMA_TO_DEVICE); 2287 2288 if (dma_mapping_error(pp->dev->dev.parent, 2289 tx_desc->buf_phys_addr)) { 2290 mvneta_txq_desc_put(txq); 2291 goto error; 2292 } 2293 2294 if (i == nr_frags - 1) { 2295 /* Last descriptor */ 2296 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2297 txq->tx_skb[txq->txq_put_index] = skb; 2298 } else { 2299 /* Descriptor in the middle: Not First, Not Last */ 2300 tx_desc->command = 0; 2301 txq->tx_skb[txq->txq_put_index] = NULL; 2302 } 2303 mvneta_txq_inc_put(txq); 2304 } 2305 2306 return 0; 2307 2308 error: 2309 /* Release all descriptors that were used to map fragments of 2310 * this packet, as well as the corresponding DMA mappings 2311 */ 2312 for (i = i - 1; i >= 0; i--) { 2313 tx_desc = txq->descs + i; 2314 dma_unmap_single(pp->dev->dev.parent, 2315 tx_desc->buf_phys_addr, 2316 tx_desc->data_size, 2317 DMA_TO_DEVICE); 2318 mvneta_txq_desc_put(txq); 2319 } 2320 2321 return -ENOMEM; 2322 } 2323 2324 /* Main tx processing */ 2325 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2326 { 2327 struct mvneta_port *pp = netdev_priv(dev); 2328 u16 txq_id = skb_get_queue_mapping(skb); 2329 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2330 struct mvneta_tx_desc *tx_desc; 2331 int len = skb->len; 2332 int frags = 0; 2333 u32 tx_cmd; 2334 2335 if (!netif_running(dev)) 2336 goto out; 2337 2338 if (skb_is_gso(skb)) { 2339 frags = mvneta_tx_tso(skb, dev, txq); 2340 goto out; 2341 } 2342 2343 frags = skb_shinfo(skb)->nr_frags + 1; 2344 2345 /* Get a descriptor for the first part of the packet */ 2346 tx_desc = mvneta_txq_next_desc_get(txq); 2347 2348 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2349 2350 tx_desc->data_size = skb_headlen(skb); 2351 2352 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2353 tx_desc->data_size, 2354 DMA_TO_DEVICE); 2355 if (unlikely(dma_mapping_error(dev->dev.parent, 2356 tx_desc->buf_phys_addr))) { 2357 mvneta_txq_desc_put(txq); 2358 frags = 0; 2359 goto out; 2360 } 2361 2362 if (frags == 1) { 2363 /* First and Last descriptor */ 2364 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2365 tx_desc->command = tx_cmd; 2366 txq->tx_skb[txq->txq_put_index] = skb; 2367 mvneta_txq_inc_put(txq); 2368 } else { 2369 /* First but not Last */ 2370 tx_cmd |= MVNETA_TXD_F_DESC; 2371 txq->tx_skb[txq->txq_put_index] = NULL; 2372 mvneta_txq_inc_put(txq); 2373 tx_desc->command = tx_cmd; 2374 /* Continue with other skb fragments */ 2375 if (mvneta_tx_frag_process(pp, skb, txq)) { 2376 dma_unmap_single(dev->dev.parent, 2377 tx_desc->buf_phys_addr, 2378 tx_desc->data_size, 2379 DMA_TO_DEVICE); 2380 mvneta_txq_desc_put(txq); 2381 frags = 0; 2382 goto out; 2383 } 2384 } 2385 2386 out: 2387 if (frags > 0) { 2388 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2389 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2390 2391 netdev_tx_sent_queue(nq, len); 2392 2393 txq->count += frags; 2394 if (txq->count >= txq->tx_stop_threshold) 2395 netif_tx_stop_queue(nq); 2396 2397 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2398 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2399 mvneta_txq_pend_desc_add(pp, txq, frags); 2400 else 2401 txq->pending += frags; 2402 2403 u64_stats_update_begin(&stats->syncp); 2404 stats->tx_packets++; 2405 stats->tx_bytes += len; 2406 u64_stats_update_end(&stats->syncp); 2407 } else { 2408 dev->stats.tx_dropped++; 2409 dev_kfree_skb_any(skb); 2410 } 2411 2412 return NETDEV_TX_OK; 2413 } 2414 2415 2416 /* Free tx resources, when resetting a port */ 2417 static void mvneta_txq_done_force(struct mvneta_port *pp, 2418 struct mvneta_tx_queue *txq) 2419 2420 { 2421 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2422 int tx_done = txq->count; 2423 2424 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2425 2426 /* reset txq */ 2427 txq->count = 0; 2428 txq->txq_put_index = 0; 2429 txq->txq_get_index = 0; 2430 } 2431 2432 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2433 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2434 */ 2435 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2436 { 2437 struct mvneta_tx_queue *txq; 2438 struct netdev_queue *nq; 2439 2440 while (cause_tx_done) { 2441 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2442 2443 nq = netdev_get_tx_queue(pp->dev, txq->id); 2444 __netif_tx_lock(nq, smp_processor_id()); 2445 2446 if (txq->count) 2447 mvneta_txq_done(pp, txq); 2448 2449 __netif_tx_unlock(nq); 2450 cause_tx_done &= ~((1 << txq->id)); 2451 } 2452 } 2453 2454 /* Compute crc8 of the specified address, using a unique algorithm , 2455 * according to hw spec, different than generic crc8 algorithm 2456 */ 2457 static int mvneta_addr_crc(unsigned char *addr) 2458 { 2459 int crc = 0; 2460 int i; 2461 2462 for (i = 0; i < ETH_ALEN; i++) { 2463 int j; 2464 2465 crc = (crc ^ addr[i]) << 8; 2466 for (j = 7; j >= 0; j--) { 2467 if (crc & (0x100 << j)) 2468 crc ^= 0x107 << j; 2469 } 2470 } 2471 2472 return crc; 2473 } 2474 2475 /* This method controls the net device special MAC multicast support. 2476 * The Special Multicast Table for MAC addresses supports MAC of the form 2477 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2478 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2479 * Table entries in the DA-Filter table. This method set the Special 2480 * Multicast Table appropriate entry. 2481 */ 2482 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2483 unsigned char last_byte, 2484 int queue) 2485 { 2486 unsigned int smc_table_reg; 2487 unsigned int tbl_offset; 2488 unsigned int reg_offset; 2489 2490 /* Register offset from SMC table base */ 2491 tbl_offset = (last_byte / 4); 2492 /* Entry offset within the above reg */ 2493 reg_offset = last_byte % 4; 2494 2495 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2496 + tbl_offset * 4)); 2497 2498 if (queue == -1) 2499 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2500 else { 2501 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2502 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2503 } 2504 2505 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2506 smc_table_reg); 2507 } 2508 2509 /* This method controls the network device Other MAC multicast support. 2510 * The Other Multicast Table is used for multicast of another type. 2511 * A CRC-8 is used as an index to the Other Multicast Table entries 2512 * in the DA-Filter table. 2513 * The method gets the CRC-8 value from the calling routine and 2514 * sets the Other Multicast Table appropriate entry according to the 2515 * specified CRC-8 . 2516 */ 2517 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2518 unsigned char crc8, 2519 int queue) 2520 { 2521 unsigned int omc_table_reg; 2522 unsigned int tbl_offset; 2523 unsigned int reg_offset; 2524 2525 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2526 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2527 2528 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2529 2530 if (queue == -1) { 2531 /* Clear accepts frame bit at specified Other DA table entry */ 2532 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2533 } else { 2534 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2535 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2536 } 2537 2538 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2539 } 2540 2541 /* The network device supports multicast using two tables: 2542 * 1) Special Multicast Table for MAC addresses of the form 2543 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2544 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2545 * Table entries in the DA-Filter table. 2546 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2547 * is used as an index to the Other Multicast Table entries in the 2548 * DA-Filter table. 2549 */ 2550 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2551 int queue) 2552 { 2553 unsigned char crc_result = 0; 2554 2555 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2556 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2557 return 0; 2558 } 2559 2560 crc_result = mvneta_addr_crc(p_addr); 2561 if (queue == -1) { 2562 if (pp->mcast_count[crc_result] == 0) { 2563 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2564 crc_result); 2565 return -EINVAL; 2566 } 2567 2568 pp->mcast_count[crc_result]--; 2569 if (pp->mcast_count[crc_result] != 0) { 2570 netdev_info(pp->dev, 2571 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2572 pp->mcast_count[crc_result], crc_result); 2573 return -EINVAL; 2574 } 2575 } else 2576 pp->mcast_count[crc_result]++; 2577 2578 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2579 2580 return 0; 2581 } 2582 2583 /* Configure Fitering mode of Ethernet port */ 2584 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2585 int is_promisc) 2586 { 2587 u32 port_cfg_reg, val; 2588 2589 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2590 2591 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2592 2593 /* Set / Clear UPM bit in port configuration register */ 2594 if (is_promisc) { 2595 /* Accept all Unicast addresses */ 2596 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2597 val |= MVNETA_FORCE_UNI; 2598 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2599 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2600 } else { 2601 /* Reject all Unicast addresses */ 2602 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2603 val &= ~MVNETA_FORCE_UNI; 2604 } 2605 2606 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2607 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2608 } 2609 2610 /* register unicast and multicast addresses */ 2611 static void mvneta_set_rx_mode(struct net_device *dev) 2612 { 2613 struct mvneta_port *pp = netdev_priv(dev); 2614 struct netdev_hw_addr *ha; 2615 2616 if (dev->flags & IFF_PROMISC) { 2617 /* Accept all: Multicast + Unicast */ 2618 mvneta_rx_unicast_promisc_set(pp, 1); 2619 mvneta_set_ucast_table(pp, pp->rxq_def); 2620 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2621 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2622 } else { 2623 /* Accept single Unicast */ 2624 mvneta_rx_unicast_promisc_set(pp, 0); 2625 mvneta_set_ucast_table(pp, -1); 2626 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2627 2628 if (dev->flags & IFF_ALLMULTI) { 2629 /* Accept all multicast */ 2630 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2631 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2632 } else { 2633 /* Accept only initialized multicast */ 2634 mvneta_set_special_mcast_table(pp, -1); 2635 mvneta_set_other_mcast_table(pp, -1); 2636 2637 if (!netdev_mc_empty(dev)) { 2638 netdev_for_each_mc_addr(ha, dev) { 2639 mvneta_mcast_addr_set(pp, ha->addr, 2640 pp->rxq_def); 2641 } 2642 } 2643 } 2644 } 2645 } 2646 2647 /* Interrupt handling - the callback for request_irq() */ 2648 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2649 { 2650 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2651 2652 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2653 napi_schedule(&pp->napi); 2654 2655 return IRQ_HANDLED; 2656 } 2657 2658 /* Interrupt handling - the callback for request_percpu_irq() */ 2659 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2660 { 2661 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2662 2663 disable_percpu_irq(port->pp->dev->irq); 2664 napi_schedule(&port->napi); 2665 2666 return IRQ_HANDLED; 2667 } 2668 2669 static void mvneta_link_change(struct mvneta_port *pp) 2670 { 2671 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2672 2673 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2674 } 2675 2676 /* NAPI handler 2677 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2678 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2679 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2680 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2681 * Each CPU has its own causeRxTx register 2682 */ 2683 static int mvneta_poll(struct napi_struct *napi, int budget) 2684 { 2685 int rx_done = 0; 2686 u32 cause_rx_tx; 2687 int rx_queue; 2688 struct mvneta_port *pp = netdev_priv(napi->dev); 2689 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2690 2691 if (!netif_running(pp->dev)) { 2692 napi_complete(napi); 2693 return rx_done; 2694 } 2695 2696 /* Read cause register */ 2697 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2698 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2699 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2700 2701 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2702 2703 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2704 MVNETA_CAUSE_LINK_CHANGE)) 2705 mvneta_link_change(pp); 2706 } 2707 2708 /* Release Tx descriptors */ 2709 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2710 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2711 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2712 } 2713 2714 /* For the case where the last mvneta_poll did not process all 2715 * RX packets 2716 */ 2717 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2718 2719 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2720 port->cause_rx_tx; 2721 2722 if (rx_queue) { 2723 rx_queue = rx_queue - 1; 2724 if (pp->bm_priv) 2725 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2726 else 2727 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2728 } 2729 2730 if (rx_done < budget) { 2731 cause_rx_tx = 0; 2732 napi_complete_done(napi, rx_done); 2733 2734 if (pp->neta_armada3700) { 2735 unsigned long flags; 2736 2737 local_irq_save(flags); 2738 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2739 MVNETA_RX_INTR_MASK(rxq_number) | 2740 MVNETA_TX_INTR_MASK(txq_number) | 2741 MVNETA_MISCINTR_INTR_MASK); 2742 local_irq_restore(flags); 2743 } else { 2744 enable_percpu_irq(pp->dev->irq, 0); 2745 } 2746 } 2747 2748 if (pp->neta_armada3700) 2749 pp->cause_rx_tx = cause_rx_tx; 2750 else 2751 port->cause_rx_tx = cause_rx_tx; 2752 2753 return rx_done; 2754 } 2755 2756 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2757 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2758 int num) 2759 { 2760 int i; 2761 2762 for (i = 0; i < num; i++) { 2763 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2764 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2765 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2766 __func__, rxq->id, i, num); 2767 break; 2768 } 2769 } 2770 2771 /* Add this number of RX descriptors as non occupied (ready to 2772 * get packets) 2773 */ 2774 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2775 2776 return i; 2777 } 2778 2779 /* Free all packets pending transmit from all TXQs and reset TX port */ 2780 static void mvneta_tx_reset(struct mvneta_port *pp) 2781 { 2782 int queue; 2783 2784 /* free the skb's in the tx ring */ 2785 for (queue = 0; queue < txq_number; queue++) 2786 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2787 2788 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2789 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2790 } 2791 2792 static void mvneta_rx_reset(struct mvneta_port *pp) 2793 { 2794 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2795 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2796 } 2797 2798 /* Rx/Tx queue initialization/cleanup methods */ 2799 2800 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 2801 struct mvneta_rx_queue *rxq) 2802 { 2803 rxq->size = pp->rx_ring_size; 2804 2805 /* Allocate memory for RX descriptors */ 2806 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2807 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2808 &rxq->descs_phys, GFP_KERNEL); 2809 if (!rxq->descs) 2810 return -ENOMEM; 2811 2812 rxq->last_desc = rxq->size - 1; 2813 2814 return 0; 2815 } 2816 2817 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 2818 struct mvneta_rx_queue *rxq) 2819 { 2820 /* Set Rx descriptors queue starting address */ 2821 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2822 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2823 2824 /* Set Offset */ 2825 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2826 2827 /* Set coalescing pkts and time */ 2828 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2829 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2830 2831 if (!pp->bm_priv) { 2832 /* Fill RXQ with buffers from RX pool */ 2833 mvneta_rxq_buf_size_set(pp, rxq, 2834 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2835 mvneta_rxq_bm_disable(pp, rxq); 2836 mvneta_rxq_fill(pp, rxq, rxq->size); 2837 } else { 2838 mvneta_rxq_bm_enable(pp, rxq); 2839 mvneta_rxq_long_pool_set(pp, rxq); 2840 mvneta_rxq_short_pool_set(pp, rxq); 2841 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2842 } 2843 } 2844 2845 /* Create a specified RX queue */ 2846 static int mvneta_rxq_init(struct mvneta_port *pp, 2847 struct mvneta_rx_queue *rxq) 2848 2849 { 2850 int ret; 2851 2852 ret = mvneta_rxq_sw_init(pp, rxq); 2853 if (ret < 0) 2854 return ret; 2855 2856 mvneta_rxq_hw_init(pp, rxq); 2857 2858 return 0; 2859 } 2860 2861 /* Cleanup Rx queue */ 2862 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2863 struct mvneta_rx_queue *rxq) 2864 { 2865 mvneta_rxq_drop_pkts(pp, rxq); 2866 2867 if (rxq->descs) 2868 dma_free_coherent(pp->dev->dev.parent, 2869 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2870 rxq->descs, 2871 rxq->descs_phys); 2872 2873 rxq->descs = NULL; 2874 rxq->last_desc = 0; 2875 rxq->next_desc_to_proc = 0; 2876 rxq->descs_phys = 0; 2877 } 2878 2879 static int mvneta_txq_sw_init(struct mvneta_port *pp, 2880 struct mvneta_tx_queue *txq) 2881 { 2882 int cpu; 2883 2884 txq->size = pp->tx_ring_size; 2885 2886 /* A queue must always have room for at least one skb. 2887 * Therefore, stop the queue when the free entries reaches 2888 * the maximum number of descriptors per skb. 2889 */ 2890 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2891 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2892 2893 /* Allocate memory for TX descriptors */ 2894 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2895 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2896 &txq->descs_phys, GFP_KERNEL); 2897 if (!txq->descs) 2898 return -ENOMEM; 2899 2900 txq->last_desc = txq->size - 1; 2901 2902 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2903 GFP_KERNEL); 2904 if (!txq->tx_skb) { 2905 dma_free_coherent(pp->dev->dev.parent, 2906 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2907 txq->descs, txq->descs_phys); 2908 return -ENOMEM; 2909 } 2910 2911 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2912 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2913 txq->size * TSO_HEADER_SIZE, 2914 &txq->tso_hdrs_phys, GFP_KERNEL); 2915 if (!txq->tso_hdrs) { 2916 kfree(txq->tx_skb); 2917 dma_free_coherent(pp->dev->dev.parent, 2918 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2919 txq->descs, txq->descs_phys); 2920 return -ENOMEM; 2921 } 2922 2923 /* Setup XPS mapping */ 2924 if (txq_number > 1) 2925 cpu = txq->id % num_present_cpus(); 2926 else 2927 cpu = pp->rxq_def % num_present_cpus(); 2928 cpumask_set_cpu(cpu, &txq->affinity_mask); 2929 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2930 2931 return 0; 2932 } 2933 2934 static void mvneta_txq_hw_init(struct mvneta_port *pp, 2935 struct mvneta_tx_queue *txq) 2936 { 2937 /* Set maximum bandwidth for enabled TXQs */ 2938 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2939 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2940 2941 /* Set Tx descriptors queue starting address */ 2942 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2943 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2944 2945 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2946 } 2947 2948 /* Create and initialize a tx queue */ 2949 static int mvneta_txq_init(struct mvneta_port *pp, 2950 struct mvneta_tx_queue *txq) 2951 { 2952 int ret; 2953 2954 ret = mvneta_txq_sw_init(pp, txq); 2955 if (ret < 0) 2956 return ret; 2957 2958 mvneta_txq_hw_init(pp, txq); 2959 2960 return 0; 2961 } 2962 2963 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2964 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 2965 struct mvneta_tx_queue *txq) 2966 { 2967 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2968 2969 kfree(txq->tx_skb); 2970 2971 if (txq->tso_hdrs) 2972 dma_free_coherent(pp->dev->dev.parent, 2973 txq->size * TSO_HEADER_SIZE, 2974 txq->tso_hdrs, txq->tso_hdrs_phys); 2975 if (txq->descs) 2976 dma_free_coherent(pp->dev->dev.parent, 2977 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2978 txq->descs, txq->descs_phys); 2979 2980 netdev_tx_reset_queue(nq); 2981 2982 txq->descs = NULL; 2983 txq->last_desc = 0; 2984 txq->next_desc_to_proc = 0; 2985 txq->descs_phys = 0; 2986 } 2987 2988 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 2989 struct mvneta_tx_queue *txq) 2990 { 2991 /* Set minimum bandwidth for disabled TXQs */ 2992 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2993 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2994 2995 /* Set Tx descriptors queue starting address and size */ 2996 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2997 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2998 } 2999 3000 static void mvneta_txq_deinit(struct mvneta_port *pp, 3001 struct mvneta_tx_queue *txq) 3002 { 3003 mvneta_txq_sw_deinit(pp, txq); 3004 mvneta_txq_hw_deinit(pp, txq); 3005 } 3006 3007 /* Cleanup all Tx queues */ 3008 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3009 { 3010 int queue; 3011 3012 for (queue = 0; queue < txq_number; queue++) 3013 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3014 } 3015 3016 /* Cleanup all Rx queues */ 3017 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3018 { 3019 int queue; 3020 3021 for (queue = 0; queue < rxq_number; queue++) 3022 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3023 } 3024 3025 3026 /* Init all Rx queues */ 3027 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3028 { 3029 int queue; 3030 3031 for (queue = 0; queue < rxq_number; queue++) { 3032 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3033 3034 if (err) { 3035 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3036 __func__, queue); 3037 mvneta_cleanup_rxqs(pp); 3038 return err; 3039 } 3040 } 3041 3042 return 0; 3043 } 3044 3045 /* Init all tx queues */ 3046 static int mvneta_setup_txqs(struct mvneta_port *pp) 3047 { 3048 int queue; 3049 3050 for (queue = 0; queue < txq_number; queue++) { 3051 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3052 if (err) { 3053 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3054 __func__, queue); 3055 mvneta_cleanup_txqs(pp); 3056 return err; 3057 } 3058 } 3059 3060 return 0; 3061 } 3062 3063 static void mvneta_start_dev(struct mvneta_port *pp) 3064 { 3065 int cpu; 3066 3067 mvneta_max_rx_size_set(pp, pp->pkt_size); 3068 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3069 3070 /* start the Rx/Tx activity */ 3071 mvneta_port_enable(pp); 3072 3073 if (!pp->neta_armada3700) { 3074 /* Enable polling on the port */ 3075 for_each_online_cpu(cpu) { 3076 struct mvneta_pcpu_port *port = 3077 per_cpu_ptr(pp->ports, cpu); 3078 3079 napi_enable(&port->napi); 3080 } 3081 } else { 3082 napi_enable(&pp->napi); 3083 } 3084 3085 /* Unmask interrupts. It has to be done from each CPU */ 3086 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3087 3088 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3089 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3090 MVNETA_CAUSE_LINK_CHANGE); 3091 3092 phylink_start(pp->phylink); 3093 netif_tx_start_all_queues(pp->dev); 3094 } 3095 3096 static void mvneta_stop_dev(struct mvneta_port *pp) 3097 { 3098 unsigned int cpu; 3099 3100 phylink_stop(pp->phylink); 3101 3102 if (!pp->neta_armada3700) { 3103 for_each_online_cpu(cpu) { 3104 struct mvneta_pcpu_port *port = 3105 per_cpu_ptr(pp->ports, cpu); 3106 3107 napi_disable(&port->napi); 3108 } 3109 } else { 3110 napi_disable(&pp->napi); 3111 } 3112 3113 netif_carrier_off(pp->dev); 3114 3115 mvneta_port_down(pp); 3116 netif_tx_stop_all_queues(pp->dev); 3117 3118 /* Stop the port activity */ 3119 mvneta_port_disable(pp); 3120 3121 /* Clear all ethernet port interrupts */ 3122 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3123 3124 /* Mask all ethernet port interrupts */ 3125 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3126 3127 mvneta_tx_reset(pp); 3128 mvneta_rx_reset(pp); 3129 } 3130 3131 static void mvneta_percpu_enable(void *arg) 3132 { 3133 struct mvneta_port *pp = arg; 3134 3135 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3136 } 3137 3138 static void mvneta_percpu_disable(void *arg) 3139 { 3140 struct mvneta_port *pp = arg; 3141 3142 disable_percpu_irq(pp->dev->irq); 3143 } 3144 3145 /* Change the device mtu */ 3146 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3147 { 3148 struct mvneta_port *pp = netdev_priv(dev); 3149 int ret; 3150 3151 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3152 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3153 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3154 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3155 } 3156 3157 dev->mtu = mtu; 3158 3159 if (!netif_running(dev)) { 3160 if (pp->bm_priv) 3161 mvneta_bm_update_mtu(pp, mtu); 3162 3163 netdev_update_features(dev); 3164 return 0; 3165 } 3166 3167 /* The interface is running, so we have to force a 3168 * reallocation of the queues 3169 */ 3170 mvneta_stop_dev(pp); 3171 on_each_cpu(mvneta_percpu_disable, pp, true); 3172 3173 mvneta_cleanup_txqs(pp); 3174 mvneta_cleanup_rxqs(pp); 3175 3176 if (pp->bm_priv) 3177 mvneta_bm_update_mtu(pp, mtu); 3178 3179 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3180 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3181 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3182 3183 ret = mvneta_setup_rxqs(pp); 3184 if (ret) { 3185 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3186 return ret; 3187 } 3188 3189 ret = mvneta_setup_txqs(pp); 3190 if (ret) { 3191 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3192 return ret; 3193 } 3194 3195 on_each_cpu(mvneta_percpu_enable, pp, true); 3196 mvneta_start_dev(pp); 3197 mvneta_port_up(pp); 3198 3199 netdev_update_features(dev); 3200 3201 return 0; 3202 } 3203 3204 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3205 netdev_features_t features) 3206 { 3207 struct mvneta_port *pp = netdev_priv(dev); 3208 3209 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3210 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3211 netdev_info(dev, 3212 "Disable IP checksum for MTU greater than %dB\n", 3213 pp->tx_csum_limit); 3214 } 3215 3216 return features; 3217 } 3218 3219 /* Get mac address */ 3220 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3221 { 3222 u32 mac_addr_l, mac_addr_h; 3223 3224 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3225 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3226 addr[0] = (mac_addr_h >> 24) & 0xFF; 3227 addr[1] = (mac_addr_h >> 16) & 0xFF; 3228 addr[2] = (mac_addr_h >> 8) & 0xFF; 3229 addr[3] = mac_addr_h & 0xFF; 3230 addr[4] = (mac_addr_l >> 8) & 0xFF; 3231 addr[5] = mac_addr_l & 0xFF; 3232 } 3233 3234 /* Handle setting mac address */ 3235 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3236 { 3237 struct mvneta_port *pp = netdev_priv(dev); 3238 struct sockaddr *sockaddr = addr; 3239 int ret; 3240 3241 ret = eth_prepare_mac_addr_change(dev, addr); 3242 if (ret < 0) 3243 return ret; 3244 /* Remove previous address table entry */ 3245 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3246 3247 /* Set new addr in hw */ 3248 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3249 3250 eth_commit_mac_addr_change(dev, addr); 3251 return 0; 3252 } 3253 3254 static void mvneta_validate(struct net_device *ndev, unsigned long *supported, 3255 struct phylink_link_state *state) 3256 { 3257 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3258 3259 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3260 if (state->interface != PHY_INTERFACE_MODE_NA && 3261 state->interface != PHY_INTERFACE_MODE_QSGMII && 3262 state->interface != PHY_INTERFACE_MODE_SGMII && 3263 !phy_interface_mode_is_8023z(state->interface) && 3264 !phy_interface_mode_is_rgmii(state->interface)) { 3265 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3266 return; 3267 } 3268 3269 /* Allow all the expected bits */ 3270 phylink_set(mask, Autoneg); 3271 phylink_set_port_modes(mask); 3272 3273 /* Asymmetric pause is unsupported */ 3274 phylink_set(mask, Pause); 3275 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3276 phylink_set(mask, 1000baseT_Full); 3277 phylink_set(mask, 1000baseX_Full); 3278 3279 if (!phy_interface_mode_is_8023z(state->interface)) { 3280 /* 10M and 100M are only supported in non-802.3z mode */ 3281 phylink_set(mask, 10baseT_Half); 3282 phylink_set(mask, 10baseT_Full); 3283 phylink_set(mask, 100baseT_Half); 3284 phylink_set(mask, 100baseT_Full); 3285 } 3286 3287 bitmap_and(supported, supported, mask, 3288 __ETHTOOL_LINK_MODE_MASK_NBITS); 3289 bitmap_and(state->advertising, state->advertising, mask, 3290 __ETHTOOL_LINK_MODE_MASK_NBITS); 3291 } 3292 3293 static int mvneta_mac_link_state(struct net_device *ndev, 3294 struct phylink_link_state *state) 3295 { 3296 struct mvneta_port *pp = netdev_priv(ndev); 3297 u32 gmac_stat; 3298 3299 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3300 3301 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3302 state->speed = SPEED_1000; 3303 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3304 state->speed = SPEED_100; 3305 else 3306 state->speed = SPEED_10; 3307 3308 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3309 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3310 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3311 3312 state->pause = 0; 3313 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3314 state->pause |= MLO_PAUSE_RX; 3315 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3316 state->pause |= MLO_PAUSE_TX; 3317 3318 return 1; 3319 } 3320 3321 static void mvneta_mac_an_restart(struct net_device *ndev) 3322 { 3323 struct mvneta_port *pp = netdev_priv(ndev); 3324 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3325 3326 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3327 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3328 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3329 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3330 } 3331 3332 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode, 3333 const struct phylink_link_state *state) 3334 { 3335 struct mvneta_port *pp = netdev_priv(ndev); 3336 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3337 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3338 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3339 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3340 3341 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3342 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3343 MVNETA_GMAC2_PORT_RESET); 3344 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3345 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3346 MVNETA_GMAC_INBAND_RESTART_AN | 3347 MVNETA_GMAC_CONFIG_MII_SPEED | 3348 MVNETA_GMAC_CONFIG_GMII_SPEED | 3349 MVNETA_GMAC_AN_SPEED_EN | 3350 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3351 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3352 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3353 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3354 MVNETA_GMAC_AN_DUPLEX_EN); 3355 3356 /* Even though it might look weird, when we're configured in 3357 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3358 */ 3359 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3360 3361 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3362 state->interface == PHY_INTERFACE_MODE_SGMII || 3363 phy_interface_mode_is_8023z(state->interface)) 3364 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3365 3366 if (phylink_test(state->advertising, Pause)) 3367 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3368 if (state->pause & MLO_PAUSE_TXRX_MASK) 3369 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3370 3371 if (!phylink_autoneg_inband(mode)) { 3372 /* Phy or fixed speed */ 3373 if (state->duplex) 3374 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3375 3376 if (state->speed == SPEED_1000) 3377 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3378 else if (state->speed == SPEED_100) 3379 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3380 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3381 /* SGMII mode receives the state from the PHY */ 3382 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3383 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3384 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3385 MVNETA_GMAC_FORCE_LINK_PASS)) | 3386 MVNETA_GMAC_INBAND_AN_ENABLE | 3387 MVNETA_GMAC_AN_SPEED_EN | 3388 MVNETA_GMAC_AN_DUPLEX_EN; 3389 } else { 3390 /* 802.3z negotiation - only 1000base-X */ 3391 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3392 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3393 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3394 MVNETA_GMAC_FORCE_LINK_PASS)) | 3395 MVNETA_GMAC_INBAND_AN_ENABLE | 3396 MVNETA_GMAC_CONFIG_GMII_SPEED | 3397 /* The MAC only supports FD mode */ 3398 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3399 3400 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3401 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3402 } 3403 3404 /* Armada 370 documentation says we can only change the port mode 3405 * and in-band enable when the link is down, so force it down 3406 * while making these changes. We also do this for GMAC_CTRL2 */ 3407 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3408 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3409 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3410 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3411 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3412 MVNETA_GMAC_FORCE_LINK_DOWN); 3413 } 3414 3415 if (new_ctrl0 != gmac_ctrl0) 3416 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3417 if (new_ctrl2 != gmac_ctrl2) 3418 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3419 if (new_clk != gmac_clk) 3420 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3421 if (new_an != gmac_an) 3422 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3423 3424 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3425 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3426 MVNETA_GMAC2_PORT_RESET) != 0) 3427 continue; 3428 } 3429 } 3430 3431 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3432 { 3433 u32 lpi_ctl1; 3434 3435 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3436 if (enable) 3437 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3438 else 3439 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3440 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3441 } 3442 3443 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode, 3444 phy_interface_t interface) 3445 { 3446 struct mvneta_port *pp = netdev_priv(ndev); 3447 u32 val; 3448 3449 mvneta_port_down(pp); 3450 3451 if (!phylink_autoneg_inband(mode)) { 3452 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3453 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3454 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3455 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3456 } 3457 3458 pp->eee_active = false; 3459 mvneta_set_eee(pp, false); 3460 } 3461 3462 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode, 3463 phy_interface_t interface, 3464 struct phy_device *phy) 3465 { 3466 struct mvneta_port *pp = netdev_priv(ndev); 3467 u32 val; 3468 3469 if (!phylink_autoneg_inband(mode)) { 3470 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3471 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3472 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3473 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3474 } 3475 3476 mvneta_port_up(pp); 3477 3478 if (phy && pp->eee_enabled) { 3479 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3480 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3481 } 3482 } 3483 3484 static const struct phylink_mac_ops mvneta_phylink_ops = { 3485 .validate = mvneta_validate, 3486 .mac_link_state = mvneta_mac_link_state, 3487 .mac_an_restart = mvneta_mac_an_restart, 3488 .mac_config = mvneta_mac_config, 3489 .mac_link_down = mvneta_mac_link_down, 3490 .mac_link_up = mvneta_mac_link_up, 3491 }; 3492 3493 static int mvneta_mdio_probe(struct mvneta_port *pp) 3494 { 3495 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3496 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3497 3498 if (err) 3499 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3500 3501 phylink_ethtool_get_wol(pp->phylink, &wol); 3502 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3503 3504 return err; 3505 } 3506 3507 static void mvneta_mdio_remove(struct mvneta_port *pp) 3508 { 3509 phylink_disconnect_phy(pp->phylink); 3510 } 3511 3512 /* Electing a CPU must be done in an atomic way: it should be done 3513 * after or before the removal/insertion of a CPU and this function is 3514 * not reentrant. 3515 */ 3516 static void mvneta_percpu_elect(struct mvneta_port *pp) 3517 { 3518 int elected_cpu = 0, max_cpu, cpu, i = 0; 3519 3520 /* Use the cpu associated to the rxq when it is online, in all 3521 * the other cases, use the cpu 0 which can't be offline. 3522 */ 3523 if (cpu_online(pp->rxq_def)) 3524 elected_cpu = pp->rxq_def; 3525 3526 max_cpu = num_present_cpus(); 3527 3528 for_each_online_cpu(cpu) { 3529 int rxq_map = 0, txq_map = 0; 3530 int rxq; 3531 3532 for (rxq = 0; rxq < rxq_number; rxq++) 3533 if ((rxq % max_cpu) == cpu) 3534 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3535 3536 if (cpu == elected_cpu) 3537 /* Map the default receive queue queue to the 3538 * elected CPU 3539 */ 3540 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3541 3542 /* We update the TX queue map only if we have one 3543 * queue. In this case we associate the TX queue to 3544 * the CPU bound to the default RX queue 3545 */ 3546 if (txq_number == 1) 3547 txq_map = (cpu == elected_cpu) ? 3548 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3549 else 3550 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3551 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3552 3553 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3554 3555 /* Update the interrupt mask on each CPU according the 3556 * new mapping 3557 */ 3558 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3559 pp, true); 3560 i++; 3561 3562 } 3563 }; 3564 3565 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3566 { 3567 int other_cpu; 3568 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3569 node_online); 3570 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3571 3572 3573 spin_lock(&pp->lock); 3574 /* 3575 * Configuring the driver for a new CPU while the driver is 3576 * stopping is racy, so just avoid it. 3577 */ 3578 if (pp->is_stopped) { 3579 spin_unlock(&pp->lock); 3580 return 0; 3581 } 3582 netif_tx_stop_all_queues(pp->dev); 3583 3584 /* 3585 * We have to synchronise on tha napi of each CPU except the one 3586 * just being woken up 3587 */ 3588 for_each_online_cpu(other_cpu) { 3589 if (other_cpu != cpu) { 3590 struct mvneta_pcpu_port *other_port = 3591 per_cpu_ptr(pp->ports, other_cpu); 3592 3593 napi_synchronize(&other_port->napi); 3594 } 3595 } 3596 3597 /* Mask all ethernet port interrupts */ 3598 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3599 napi_enable(&port->napi); 3600 3601 /* 3602 * Enable per-CPU interrupts on the CPU that is 3603 * brought up. 3604 */ 3605 mvneta_percpu_enable(pp); 3606 3607 /* 3608 * Enable per-CPU interrupt on the one CPU we care 3609 * about. 3610 */ 3611 mvneta_percpu_elect(pp); 3612 3613 /* Unmask all ethernet port interrupts */ 3614 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3615 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3616 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3617 MVNETA_CAUSE_LINK_CHANGE); 3618 netif_tx_start_all_queues(pp->dev); 3619 spin_unlock(&pp->lock); 3620 return 0; 3621 } 3622 3623 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3624 { 3625 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3626 node_online); 3627 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3628 3629 /* 3630 * Thanks to this lock we are sure that any pending cpu election is 3631 * done. 3632 */ 3633 spin_lock(&pp->lock); 3634 /* Mask all ethernet port interrupts */ 3635 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3636 spin_unlock(&pp->lock); 3637 3638 napi_synchronize(&port->napi); 3639 napi_disable(&port->napi); 3640 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3641 mvneta_percpu_disable(pp); 3642 return 0; 3643 } 3644 3645 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3646 { 3647 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3648 node_dead); 3649 3650 /* Check if a new CPU must be elected now this on is down */ 3651 spin_lock(&pp->lock); 3652 mvneta_percpu_elect(pp); 3653 spin_unlock(&pp->lock); 3654 /* Unmask all ethernet port interrupts */ 3655 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3656 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3657 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3658 MVNETA_CAUSE_LINK_CHANGE); 3659 netif_tx_start_all_queues(pp->dev); 3660 return 0; 3661 } 3662 3663 static int mvneta_open(struct net_device *dev) 3664 { 3665 struct mvneta_port *pp = netdev_priv(dev); 3666 int ret; 3667 3668 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3669 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3670 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3671 3672 ret = mvneta_setup_rxqs(pp); 3673 if (ret) 3674 return ret; 3675 3676 ret = mvneta_setup_txqs(pp); 3677 if (ret) 3678 goto err_cleanup_rxqs; 3679 3680 /* Connect to port interrupt line */ 3681 if (pp->neta_armada3700) 3682 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3683 dev->name, pp); 3684 else 3685 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3686 dev->name, pp->ports); 3687 if (ret) { 3688 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3689 goto err_cleanup_txqs; 3690 } 3691 3692 if (!pp->neta_armada3700) { 3693 /* Enable per-CPU interrupt on all the CPU to handle our RX 3694 * queue interrupts 3695 */ 3696 on_each_cpu(mvneta_percpu_enable, pp, true); 3697 3698 pp->is_stopped = false; 3699 /* Register a CPU notifier to handle the case where our CPU 3700 * might be taken offline. 3701 */ 3702 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3703 &pp->node_online); 3704 if (ret) 3705 goto err_free_irq; 3706 3707 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3708 &pp->node_dead); 3709 if (ret) 3710 goto err_free_online_hp; 3711 } 3712 3713 /* In default link is down */ 3714 netif_carrier_off(pp->dev); 3715 3716 ret = mvneta_mdio_probe(pp); 3717 if (ret < 0) { 3718 netdev_err(dev, "cannot probe MDIO bus\n"); 3719 goto err_free_dead_hp; 3720 } 3721 3722 mvneta_start_dev(pp); 3723 3724 return 0; 3725 3726 err_free_dead_hp: 3727 if (!pp->neta_armada3700) 3728 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3729 &pp->node_dead); 3730 err_free_online_hp: 3731 if (!pp->neta_armada3700) 3732 cpuhp_state_remove_instance_nocalls(online_hpstate, 3733 &pp->node_online); 3734 err_free_irq: 3735 if (pp->neta_armada3700) { 3736 free_irq(pp->dev->irq, pp); 3737 } else { 3738 on_each_cpu(mvneta_percpu_disable, pp, true); 3739 free_percpu_irq(pp->dev->irq, pp->ports); 3740 } 3741 err_cleanup_txqs: 3742 mvneta_cleanup_txqs(pp); 3743 err_cleanup_rxqs: 3744 mvneta_cleanup_rxqs(pp); 3745 return ret; 3746 } 3747 3748 /* Stop the port, free port interrupt line */ 3749 static int mvneta_stop(struct net_device *dev) 3750 { 3751 struct mvneta_port *pp = netdev_priv(dev); 3752 3753 if (!pp->neta_armada3700) { 3754 /* Inform that we are stopping so we don't want to setup the 3755 * driver for new CPUs in the notifiers. The code of the 3756 * notifier for CPU online is protected by the same spinlock, 3757 * so when we get the lock, the notifer work is done. 3758 */ 3759 spin_lock(&pp->lock); 3760 pp->is_stopped = true; 3761 spin_unlock(&pp->lock); 3762 3763 mvneta_stop_dev(pp); 3764 mvneta_mdio_remove(pp); 3765 3766 cpuhp_state_remove_instance_nocalls(online_hpstate, 3767 &pp->node_online); 3768 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3769 &pp->node_dead); 3770 on_each_cpu(mvneta_percpu_disable, pp, true); 3771 free_percpu_irq(dev->irq, pp->ports); 3772 } else { 3773 mvneta_stop_dev(pp); 3774 mvneta_mdio_remove(pp); 3775 free_irq(dev->irq, pp); 3776 } 3777 3778 mvneta_cleanup_rxqs(pp); 3779 mvneta_cleanup_txqs(pp); 3780 3781 return 0; 3782 } 3783 3784 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3785 { 3786 struct mvneta_port *pp = netdev_priv(dev); 3787 3788 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 3789 } 3790 3791 /* Ethtool methods */ 3792 3793 /* Set link ksettings (phy address, speed) for ethtools */ 3794 static int 3795 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3796 const struct ethtool_link_ksettings *cmd) 3797 { 3798 struct mvneta_port *pp = netdev_priv(ndev); 3799 3800 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 3801 } 3802 3803 /* Get link ksettings for ethtools */ 3804 static int 3805 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 3806 struct ethtool_link_ksettings *cmd) 3807 { 3808 struct mvneta_port *pp = netdev_priv(ndev); 3809 3810 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 3811 } 3812 3813 static int mvneta_ethtool_nway_reset(struct net_device *dev) 3814 { 3815 struct mvneta_port *pp = netdev_priv(dev); 3816 3817 return phylink_ethtool_nway_reset(pp->phylink); 3818 } 3819 3820 /* Set interrupt coalescing for ethtools */ 3821 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3822 struct ethtool_coalesce *c) 3823 { 3824 struct mvneta_port *pp = netdev_priv(dev); 3825 int queue; 3826 3827 for (queue = 0; queue < rxq_number; queue++) { 3828 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3829 rxq->time_coal = c->rx_coalesce_usecs; 3830 rxq->pkts_coal = c->rx_max_coalesced_frames; 3831 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3832 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3833 } 3834 3835 for (queue = 0; queue < txq_number; queue++) { 3836 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3837 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3838 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3839 } 3840 3841 return 0; 3842 } 3843 3844 /* get coalescing for ethtools */ 3845 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3846 struct ethtool_coalesce *c) 3847 { 3848 struct mvneta_port *pp = netdev_priv(dev); 3849 3850 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3851 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3852 3853 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3854 return 0; 3855 } 3856 3857 3858 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3859 struct ethtool_drvinfo *drvinfo) 3860 { 3861 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3862 sizeof(drvinfo->driver)); 3863 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3864 sizeof(drvinfo->version)); 3865 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3866 sizeof(drvinfo->bus_info)); 3867 } 3868 3869 3870 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3871 struct ethtool_ringparam *ring) 3872 { 3873 struct mvneta_port *pp = netdev_priv(netdev); 3874 3875 ring->rx_max_pending = MVNETA_MAX_RXD; 3876 ring->tx_max_pending = MVNETA_MAX_TXD; 3877 ring->rx_pending = pp->rx_ring_size; 3878 ring->tx_pending = pp->tx_ring_size; 3879 } 3880 3881 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3882 struct ethtool_ringparam *ring) 3883 { 3884 struct mvneta_port *pp = netdev_priv(dev); 3885 3886 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3887 return -EINVAL; 3888 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3889 ring->rx_pending : MVNETA_MAX_RXD; 3890 3891 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3892 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3893 if (pp->tx_ring_size != ring->tx_pending) 3894 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3895 pp->tx_ring_size, ring->tx_pending); 3896 3897 if (netif_running(dev)) { 3898 mvneta_stop(dev); 3899 if (mvneta_open(dev)) { 3900 netdev_err(dev, 3901 "error on opening device after ring param change\n"); 3902 return -ENOMEM; 3903 } 3904 } 3905 3906 return 0; 3907 } 3908 3909 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 3910 struct ethtool_pauseparam *pause) 3911 { 3912 struct mvneta_port *pp = netdev_priv(dev); 3913 3914 phylink_ethtool_get_pauseparam(pp->phylink, pause); 3915 } 3916 3917 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 3918 struct ethtool_pauseparam *pause) 3919 { 3920 struct mvneta_port *pp = netdev_priv(dev); 3921 3922 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 3923 } 3924 3925 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3926 u8 *data) 3927 { 3928 if (sset == ETH_SS_STATS) { 3929 int i; 3930 3931 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3932 memcpy(data + i * ETH_GSTRING_LEN, 3933 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3934 } 3935 } 3936 3937 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3938 { 3939 const struct mvneta_statistic *s; 3940 void __iomem *base = pp->base; 3941 u32 high, low; 3942 u64 val; 3943 int i; 3944 3945 for (i = 0, s = mvneta_statistics; 3946 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3947 s++, i++) { 3948 val = 0; 3949 3950 switch (s->type) { 3951 case T_REG_32: 3952 val = readl_relaxed(base + s->offset); 3953 break; 3954 case T_REG_64: 3955 /* Docs say to read low 32-bit then high */ 3956 low = readl_relaxed(base + s->offset); 3957 high = readl_relaxed(base + s->offset + 4); 3958 val = (u64)high << 32 | low; 3959 break; 3960 case T_SW: 3961 switch (s->offset) { 3962 case ETHTOOL_STAT_EEE_WAKEUP: 3963 val = phylink_get_eee_err(pp->phylink); 3964 break; 3965 } 3966 break; 3967 } 3968 3969 pp->ethtool_stats[i] += val; 3970 } 3971 } 3972 3973 static void mvneta_ethtool_get_stats(struct net_device *dev, 3974 struct ethtool_stats *stats, u64 *data) 3975 { 3976 struct mvneta_port *pp = netdev_priv(dev); 3977 int i; 3978 3979 mvneta_ethtool_update_stats(pp); 3980 3981 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3982 *data++ = pp->ethtool_stats[i]; 3983 } 3984 3985 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3986 { 3987 if (sset == ETH_SS_STATS) 3988 return ARRAY_SIZE(mvneta_statistics); 3989 return -EOPNOTSUPP; 3990 } 3991 3992 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3993 { 3994 return MVNETA_RSS_LU_TABLE_SIZE; 3995 } 3996 3997 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3998 struct ethtool_rxnfc *info, 3999 u32 *rules __always_unused) 4000 { 4001 switch (info->cmd) { 4002 case ETHTOOL_GRXRINGS: 4003 info->data = rxq_number; 4004 return 0; 4005 case ETHTOOL_GRXFH: 4006 return -EOPNOTSUPP; 4007 default: 4008 return -EOPNOTSUPP; 4009 } 4010 } 4011 4012 static int mvneta_config_rss(struct mvneta_port *pp) 4013 { 4014 int cpu; 4015 u32 val; 4016 4017 netif_tx_stop_all_queues(pp->dev); 4018 4019 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4020 4021 /* We have to synchronise on the napi of each CPU */ 4022 for_each_online_cpu(cpu) { 4023 struct mvneta_pcpu_port *pcpu_port = 4024 per_cpu_ptr(pp->ports, cpu); 4025 4026 napi_synchronize(&pcpu_port->napi); 4027 napi_disable(&pcpu_port->napi); 4028 } 4029 4030 pp->rxq_def = pp->indir[0]; 4031 4032 /* Update unicast mapping */ 4033 mvneta_set_rx_mode(pp->dev); 4034 4035 /* Update val of portCfg register accordingly with all RxQueue types */ 4036 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4037 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4038 4039 /* Update the elected CPU matching the new rxq_def */ 4040 spin_lock(&pp->lock); 4041 mvneta_percpu_elect(pp); 4042 spin_unlock(&pp->lock); 4043 4044 /* We have to synchronise on the napi of each CPU */ 4045 for_each_online_cpu(cpu) { 4046 struct mvneta_pcpu_port *pcpu_port = 4047 per_cpu_ptr(pp->ports, cpu); 4048 4049 napi_enable(&pcpu_port->napi); 4050 } 4051 4052 netif_tx_start_all_queues(pp->dev); 4053 4054 return 0; 4055 } 4056 4057 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4058 const u8 *key, const u8 hfunc) 4059 { 4060 struct mvneta_port *pp = netdev_priv(dev); 4061 4062 /* Current code for Armada 3700 doesn't support RSS features yet */ 4063 if (pp->neta_armada3700) 4064 return -EOPNOTSUPP; 4065 4066 /* We require at least one supported parameter to be changed 4067 * and no change in any of the unsupported parameters 4068 */ 4069 if (key || 4070 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4071 return -EOPNOTSUPP; 4072 4073 if (!indir) 4074 return 0; 4075 4076 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4077 4078 return mvneta_config_rss(pp); 4079 } 4080 4081 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4082 u8 *hfunc) 4083 { 4084 struct mvneta_port *pp = netdev_priv(dev); 4085 4086 /* Current code for Armada 3700 doesn't support RSS features yet */ 4087 if (pp->neta_armada3700) 4088 return -EOPNOTSUPP; 4089 4090 if (hfunc) 4091 *hfunc = ETH_RSS_HASH_TOP; 4092 4093 if (!indir) 4094 return 0; 4095 4096 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4097 4098 return 0; 4099 } 4100 4101 static void mvneta_ethtool_get_wol(struct net_device *dev, 4102 struct ethtool_wolinfo *wol) 4103 { 4104 struct mvneta_port *pp = netdev_priv(dev); 4105 4106 phylink_ethtool_get_wol(pp->phylink, wol); 4107 } 4108 4109 static int mvneta_ethtool_set_wol(struct net_device *dev, 4110 struct ethtool_wolinfo *wol) 4111 { 4112 struct mvneta_port *pp = netdev_priv(dev); 4113 int ret; 4114 4115 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4116 if (!ret) 4117 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4118 4119 return ret; 4120 } 4121 4122 static int mvneta_ethtool_get_eee(struct net_device *dev, 4123 struct ethtool_eee *eee) 4124 { 4125 struct mvneta_port *pp = netdev_priv(dev); 4126 u32 lpi_ctl0; 4127 4128 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4129 4130 eee->eee_enabled = pp->eee_enabled; 4131 eee->eee_active = pp->eee_active; 4132 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4133 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4134 4135 return phylink_ethtool_get_eee(pp->phylink, eee); 4136 } 4137 4138 static int mvneta_ethtool_set_eee(struct net_device *dev, 4139 struct ethtool_eee *eee) 4140 { 4141 struct mvneta_port *pp = netdev_priv(dev); 4142 u32 lpi_ctl0; 4143 4144 /* The Armada 37x documents do not give limits for this other than 4145 * it being an 8-bit register. */ 4146 if (eee->tx_lpi_enabled && 4147 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255)) 4148 return -EINVAL; 4149 4150 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4151 lpi_ctl0 &= ~(0xff << 8); 4152 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4153 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4154 4155 pp->eee_enabled = eee->eee_enabled; 4156 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4157 4158 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4159 4160 return phylink_ethtool_set_eee(pp->phylink, eee); 4161 } 4162 4163 static const struct net_device_ops mvneta_netdev_ops = { 4164 .ndo_open = mvneta_open, 4165 .ndo_stop = mvneta_stop, 4166 .ndo_start_xmit = mvneta_tx, 4167 .ndo_set_rx_mode = mvneta_set_rx_mode, 4168 .ndo_set_mac_address = mvneta_set_mac_addr, 4169 .ndo_change_mtu = mvneta_change_mtu, 4170 .ndo_fix_features = mvneta_fix_features, 4171 .ndo_get_stats64 = mvneta_get_stats64, 4172 .ndo_do_ioctl = mvneta_ioctl, 4173 }; 4174 4175 static const struct ethtool_ops mvneta_eth_tool_ops = { 4176 .nway_reset = mvneta_ethtool_nway_reset, 4177 .get_link = ethtool_op_get_link, 4178 .set_coalesce = mvneta_ethtool_set_coalesce, 4179 .get_coalesce = mvneta_ethtool_get_coalesce, 4180 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4181 .get_ringparam = mvneta_ethtool_get_ringparam, 4182 .set_ringparam = mvneta_ethtool_set_ringparam, 4183 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4184 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4185 .get_strings = mvneta_ethtool_get_strings, 4186 .get_ethtool_stats = mvneta_ethtool_get_stats, 4187 .get_sset_count = mvneta_ethtool_get_sset_count, 4188 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4189 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4190 .get_rxfh = mvneta_ethtool_get_rxfh, 4191 .set_rxfh = mvneta_ethtool_set_rxfh, 4192 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4193 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4194 .get_wol = mvneta_ethtool_get_wol, 4195 .set_wol = mvneta_ethtool_set_wol, 4196 .get_eee = mvneta_ethtool_get_eee, 4197 .set_eee = mvneta_ethtool_set_eee, 4198 }; 4199 4200 /* Initialize hw */ 4201 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4202 { 4203 int queue; 4204 4205 /* Disable port */ 4206 mvneta_port_disable(pp); 4207 4208 /* Set port default values */ 4209 mvneta_defaults_set(pp); 4210 4211 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4212 if (!pp->txqs) 4213 return -ENOMEM; 4214 4215 /* Initialize TX descriptor rings */ 4216 for (queue = 0; queue < txq_number; queue++) { 4217 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4218 txq->id = queue; 4219 txq->size = pp->tx_ring_size; 4220 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4221 } 4222 4223 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4224 if (!pp->rxqs) 4225 return -ENOMEM; 4226 4227 /* Create Rx descriptor rings */ 4228 for (queue = 0; queue < rxq_number; queue++) { 4229 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4230 rxq->id = queue; 4231 rxq->size = pp->rx_ring_size; 4232 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4233 rxq->time_coal = MVNETA_RX_COAL_USEC; 4234 rxq->buf_virt_addr 4235 = devm_kmalloc_array(pp->dev->dev.parent, 4236 rxq->size, 4237 sizeof(*rxq->buf_virt_addr), 4238 GFP_KERNEL); 4239 if (!rxq->buf_virt_addr) 4240 return -ENOMEM; 4241 } 4242 4243 return 0; 4244 } 4245 4246 /* platform glue : initialize decoding windows */ 4247 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4248 const struct mbus_dram_target_info *dram) 4249 { 4250 u32 win_enable; 4251 u32 win_protect; 4252 int i; 4253 4254 for (i = 0; i < 6; i++) { 4255 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4256 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4257 4258 if (i < 4) 4259 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4260 } 4261 4262 win_enable = 0x3f; 4263 win_protect = 0; 4264 4265 if (dram) { 4266 for (i = 0; i < dram->num_cs; i++) { 4267 const struct mbus_dram_window *cs = dram->cs + i; 4268 4269 mvreg_write(pp, MVNETA_WIN_BASE(i), 4270 (cs->base & 0xffff0000) | 4271 (cs->mbus_attr << 8) | 4272 dram->mbus_dram_target_id); 4273 4274 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4275 (cs->size - 1) & 0xffff0000); 4276 4277 win_enable &= ~(1 << i); 4278 win_protect |= 3 << (2 * i); 4279 } 4280 } else { 4281 /* For Armada3700 open default 4GB Mbus window, leaving 4282 * arbitration of target/attribute to a different layer 4283 * of configuration. 4284 */ 4285 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4286 win_enable &= ~BIT(0); 4287 win_protect = 3; 4288 } 4289 4290 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4291 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4292 } 4293 4294 /* Power up the port */ 4295 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4296 { 4297 /* MAC Cause register should be cleared */ 4298 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4299 4300 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4301 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4302 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4303 phy_mode == PHY_INTERFACE_MODE_1000BASEX) 4304 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4305 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4306 return -EINVAL; 4307 4308 return 0; 4309 } 4310 4311 /* Device initialization routine */ 4312 static int mvneta_probe(struct platform_device *pdev) 4313 { 4314 struct resource *res; 4315 struct device_node *dn = pdev->dev.of_node; 4316 struct device_node *bm_node; 4317 struct mvneta_port *pp; 4318 struct net_device *dev; 4319 struct phylink *phylink; 4320 const char *dt_mac_addr; 4321 char hw_mac_addr[ETH_ALEN]; 4322 const char *mac_from; 4323 int tx_csum_limit; 4324 int phy_mode; 4325 int err; 4326 int cpu; 4327 4328 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4329 if (!dev) 4330 return -ENOMEM; 4331 4332 dev->irq = irq_of_parse_and_map(dn, 0); 4333 if (dev->irq == 0) { 4334 err = -EINVAL; 4335 goto err_free_netdev; 4336 } 4337 4338 phy_mode = of_get_phy_mode(dn); 4339 if (phy_mode < 0) { 4340 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4341 err = -EINVAL; 4342 goto err_free_irq; 4343 } 4344 4345 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode, 4346 &mvneta_phylink_ops); 4347 if (IS_ERR(phylink)) { 4348 err = PTR_ERR(phylink); 4349 goto err_free_irq; 4350 } 4351 4352 dev->tx_queue_len = MVNETA_MAX_TXD; 4353 dev->watchdog_timeo = 5 * HZ; 4354 dev->netdev_ops = &mvneta_netdev_ops; 4355 4356 dev->ethtool_ops = &mvneta_eth_tool_ops; 4357 4358 pp = netdev_priv(dev); 4359 spin_lock_init(&pp->lock); 4360 pp->phylink = phylink; 4361 pp->phy_interface = phy_mode; 4362 pp->dn = dn; 4363 4364 pp->rxq_def = rxq_def; 4365 4366 /* Set RX packet offset correction for platforms, whose 4367 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4368 * platforms and 0B for 32-bit ones. 4369 */ 4370 pp->rx_offset_correction = 4371 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4372 4373 pp->indir[0] = rxq_def; 4374 4375 /* Get special SoC configurations */ 4376 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4377 pp->neta_armada3700 = true; 4378 4379 pp->clk = devm_clk_get(&pdev->dev, "core"); 4380 if (IS_ERR(pp->clk)) 4381 pp->clk = devm_clk_get(&pdev->dev, NULL); 4382 if (IS_ERR(pp->clk)) { 4383 err = PTR_ERR(pp->clk); 4384 goto err_free_phylink; 4385 } 4386 4387 clk_prepare_enable(pp->clk); 4388 4389 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4390 if (!IS_ERR(pp->clk_bus)) 4391 clk_prepare_enable(pp->clk_bus); 4392 4393 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4394 pp->base = devm_ioremap_resource(&pdev->dev, res); 4395 if (IS_ERR(pp->base)) { 4396 err = PTR_ERR(pp->base); 4397 goto err_clk; 4398 } 4399 4400 /* Alloc per-cpu port structure */ 4401 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4402 if (!pp->ports) { 4403 err = -ENOMEM; 4404 goto err_clk; 4405 } 4406 4407 /* Alloc per-cpu stats */ 4408 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4409 if (!pp->stats) { 4410 err = -ENOMEM; 4411 goto err_free_ports; 4412 } 4413 4414 dt_mac_addr = of_get_mac_address(dn); 4415 if (dt_mac_addr) { 4416 mac_from = "device tree"; 4417 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4418 } else { 4419 mvneta_get_mac_addr(pp, hw_mac_addr); 4420 if (is_valid_ether_addr(hw_mac_addr)) { 4421 mac_from = "hardware"; 4422 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4423 } else { 4424 mac_from = "random"; 4425 eth_hw_addr_random(dev); 4426 } 4427 } 4428 4429 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4430 if (tx_csum_limit < 0 || 4431 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4432 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4433 dev_info(&pdev->dev, 4434 "Wrong TX csum limit in DT, set to %dB\n", 4435 MVNETA_TX_CSUM_DEF_SIZE); 4436 } 4437 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4438 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4439 } else { 4440 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4441 } 4442 4443 pp->tx_csum_limit = tx_csum_limit; 4444 4445 pp->dram_target_info = mv_mbus_dram_info(); 4446 /* Armada3700 requires setting default configuration of Mbus 4447 * windows, however without using filled mbus_dram_target_info 4448 * structure. 4449 */ 4450 if (pp->dram_target_info || pp->neta_armada3700) 4451 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4452 4453 pp->tx_ring_size = MVNETA_MAX_TXD; 4454 pp->rx_ring_size = MVNETA_MAX_RXD; 4455 4456 pp->dev = dev; 4457 SET_NETDEV_DEV(dev, &pdev->dev); 4458 4459 pp->id = global_port_id++; 4460 4461 /* Obtain access to BM resources if enabled and already initialized */ 4462 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4463 if (bm_node && bm_node->data) { 4464 pp->bm_priv = bm_node->data; 4465 err = mvneta_bm_port_init(pdev, pp); 4466 if (err < 0) { 4467 dev_info(&pdev->dev, "use SW buffer management\n"); 4468 pp->bm_priv = NULL; 4469 } 4470 } 4471 of_node_put(bm_node); 4472 4473 err = mvneta_init(&pdev->dev, pp); 4474 if (err < 0) 4475 goto err_netdev; 4476 4477 err = mvneta_port_power_up(pp, phy_mode); 4478 if (err < 0) { 4479 dev_err(&pdev->dev, "can't power up port\n"); 4480 goto err_netdev; 4481 } 4482 4483 /* Armada3700 network controller does not support per-cpu 4484 * operation, so only single NAPI should be initialized. 4485 */ 4486 if (pp->neta_armada3700) { 4487 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4488 } else { 4489 for_each_present_cpu(cpu) { 4490 struct mvneta_pcpu_port *port = 4491 per_cpu_ptr(pp->ports, cpu); 4492 4493 netif_napi_add(dev, &port->napi, mvneta_poll, 4494 NAPI_POLL_WEIGHT); 4495 port->pp = pp; 4496 } 4497 } 4498 4499 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO; 4500 dev->hw_features |= dev->features; 4501 dev->vlan_features |= dev->features; 4502 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4503 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4504 4505 /* MTU range: 68 - 9676 */ 4506 dev->min_mtu = ETH_MIN_MTU; 4507 /* 9676 == 9700 - 20 and rounding to 8 */ 4508 dev->max_mtu = 9676; 4509 4510 err = register_netdev(dev); 4511 if (err < 0) { 4512 dev_err(&pdev->dev, "failed to register\n"); 4513 goto err_free_stats; 4514 } 4515 4516 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4517 dev->dev_addr); 4518 4519 platform_set_drvdata(pdev, pp->dev); 4520 4521 return 0; 4522 4523 err_netdev: 4524 unregister_netdev(dev); 4525 if (pp->bm_priv) { 4526 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4527 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4528 1 << pp->id); 4529 } 4530 err_free_stats: 4531 free_percpu(pp->stats); 4532 err_free_ports: 4533 free_percpu(pp->ports); 4534 err_clk: 4535 clk_disable_unprepare(pp->clk_bus); 4536 clk_disable_unprepare(pp->clk); 4537 err_free_phylink: 4538 if (pp->phylink) 4539 phylink_destroy(pp->phylink); 4540 err_free_irq: 4541 irq_dispose_mapping(dev->irq); 4542 err_free_netdev: 4543 free_netdev(dev); 4544 return err; 4545 } 4546 4547 /* Device removal routine */ 4548 static int mvneta_remove(struct platform_device *pdev) 4549 { 4550 struct net_device *dev = platform_get_drvdata(pdev); 4551 struct mvneta_port *pp = netdev_priv(dev); 4552 4553 unregister_netdev(dev); 4554 clk_disable_unprepare(pp->clk_bus); 4555 clk_disable_unprepare(pp->clk); 4556 free_percpu(pp->ports); 4557 free_percpu(pp->stats); 4558 irq_dispose_mapping(dev->irq); 4559 phylink_destroy(pp->phylink); 4560 free_netdev(dev); 4561 4562 if (pp->bm_priv) { 4563 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4564 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4565 1 << pp->id); 4566 } 4567 4568 return 0; 4569 } 4570 4571 #ifdef CONFIG_PM_SLEEP 4572 static int mvneta_suspend(struct device *device) 4573 { 4574 int queue; 4575 struct net_device *dev = dev_get_drvdata(device); 4576 struct mvneta_port *pp = netdev_priv(dev); 4577 4578 if (!netif_running(dev)) 4579 goto clean_exit; 4580 4581 if (!pp->neta_armada3700) { 4582 spin_lock(&pp->lock); 4583 pp->is_stopped = true; 4584 spin_unlock(&pp->lock); 4585 4586 cpuhp_state_remove_instance_nocalls(online_hpstate, 4587 &pp->node_online); 4588 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4589 &pp->node_dead); 4590 } 4591 4592 rtnl_lock(); 4593 mvneta_stop_dev(pp); 4594 rtnl_unlock(); 4595 4596 for (queue = 0; queue < rxq_number; queue++) { 4597 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4598 4599 mvneta_rxq_drop_pkts(pp, rxq); 4600 } 4601 4602 for (queue = 0; queue < txq_number; queue++) { 4603 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4604 4605 mvneta_txq_hw_deinit(pp, txq); 4606 } 4607 4608 clean_exit: 4609 netif_device_detach(dev); 4610 clk_disable_unprepare(pp->clk_bus); 4611 clk_disable_unprepare(pp->clk); 4612 4613 return 0; 4614 } 4615 4616 static int mvneta_resume(struct device *device) 4617 { 4618 struct platform_device *pdev = to_platform_device(device); 4619 struct net_device *dev = dev_get_drvdata(device); 4620 struct mvneta_port *pp = netdev_priv(dev); 4621 int err, queue; 4622 4623 clk_prepare_enable(pp->clk); 4624 if (!IS_ERR(pp->clk_bus)) 4625 clk_prepare_enable(pp->clk_bus); 4626 if (pp->dram_target_info || pp->neta_armada3700) 4627 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4628 if (pp->bm_priv) { 4629 err = mvneta_bm_port_init(pdev, pp); 4630 if (err < 0) { 4631 dev_info(&pdev->dev, "use SW buffer management\n"); 4632 pp->bm_priv = NULL; 4633 } 4634 } 4635 mvneta_defaults_set(pp); 4636 err = mvneta_port_power_up(pp, pp->phy_interface); 4637 if (err < 0) { 4638 dev_err(device, "can't power up port\n"); 4639 return err; 4640 } 4641 4642 netif_device_attach(dev); 4643 4644 if (!netif_running(dev)) 4645 return 0; 4646 4647 for (queue = 0; queue < rxq_number; queue++) { 4648 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4649 4650 rxq->next_desc_to_proc = 0; 4651 mvneta_rxq_hw_init(pp, rxq); 4652 } 4653 4654 for (queue = 0; queue < txq_number; queue++) { 4655 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4656 4657 txq->next_desc_to_proc = 0; 4658 mvneta_txq_hw_init(pp, txq); 4659 } 4660 4661 if (!pp->neta_armada3700) { 4662 spin_lock(&pp->lock); 4663 pp->is_stopped = false; 4664 spin_unlock(&pp->lock); 4665 cpuhp_state_add_instance_nocalls(online_hpstate, 4666 &pp->node_online); 4667 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4668 &pp->node_dead); 4669 } 4670 4671 rtnl_lock(); 4672 mvneta_start_dev(pp); 4673 rtnl_unlock(); 4674 mvneta_set_rx_mode(dev); 4675 4676 return 0; 4677 } 4678 #endif 4679 4680 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4681 4682 static const struct of_device_id mvneta_match[] = { 4683 { .compatible = "marvell,armada-370-neta" }, 4684 { .compatible = "marvell,armada-xp-neta" }, 4685 { .compatible = "marvell,armada-3700-neta" }, 4686 { } 4687 }; 4688 MODULE_DEVICE_TABLE(of, mvneta_match); 4689 4690 static struct platform_driver mvneta_driver = { 4691 .probe = mvneta_probe, 4692 .remove = mvneta_remove, 4693 .driver = { 4694 .name = MVNETA_DRIVER_NAME, 4695 .of_match_table = mvneta_match, 4696 .pm = &mvneta_pm_ops, 4697 }, 4698 }; 4699 4700 static int __init mvneta_driver_init(void) 4701 { 4702 int ret; 4703 4704 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4705 mvneta_cpu_online, 4706 mvneta_cpu_down_prepare); 4707 if (ret < 0) 4708 goto out; 4709 online_hpstate = ret; 4710 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4711 NULL, mvneta_cpu_dead); 4712 if (ret) 4713 goto err_dead; 4714 4715 ret = platform_driver_register(&mvneta_driver); 4716 if (ret) 4717 goto err; 4718 return 0; 4719 4720 err: 4721 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4722 err_dead: 4723 cpuhp_remove_multi_state(online_hpstate); 4724 out: 4725 return ret; 4726 } 4727 module_init(mvneta_driver_init); 4728 4729 static void __exit mvneta_driver_exit(void) 4730 { 4731 platform_driver_unregister(&mvneta_driver); 4732 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4733 cpuhp_remove_multi_state(online_hpstate); 4734 } 4735 module_exit(mvneta_driver_exit); 4736 4737 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4738 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4739 MODULE_LICENSE("GPL"); 4740 4741 module_param(rxq_number, int, 0444); 4742 module_param(txq_number, int, 0444); 4743 4744 module_param(rxq_def, int, 0444); 4745 module_param(rx_copybreak, int, 0644); 4746