1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38 
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
41 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
42 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
43 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
44 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
45 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
46 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
47 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
49 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
52 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
53 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
55 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
57 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
60 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
62 #define MVNETA_PORT_RX_RESET                    0x1cc0
63 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
64 #define MVNETA_PHY_ADDR                         0x2000
65 #define      MVNETA_PHY_ADDR_MASK               0x1f
66 #define MVNETA_MBUS_RETRY                       0x2010
67 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
68 #define MVNETA_UNIT_CONTROL                     0x20B0
69 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
70 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
75 #define MVNETA_PORT_CONFIG                      0x2400
76 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
77 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
78 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
79 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
80 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
81 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
82 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
83 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
84 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
85 						 MVNETA_DEF_RXQ_ARP(q)	 | \
86 						 MVNETA_DEF_RXQ_TCP(q)	 | \
87 						 MVNETA_DEF_RXQ_UDP(q)	 | \
88 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
89 						 MVNETA_TX_UNSET_ERR_SUM | \
90 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
92 #define MVNETA_MAC_ADDR_LOW                      0x2414
93 #define MVNETA_MAC_ADDR_HIGH                     0x2418
94 #define MVNETA_SDMA_CONFIG                       0x241c
95 #define      MVNETA_SDMA_BRST_SIZE_16            4
96 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
97 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
98 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
99 #define      MVNETA_DESC_SWAP                    BIT(6)
100 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
101 #define MVNETA_PORT_STATUS                       0x2444
102 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
103 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
105 #define MVNETA_SERDES_CFG			 0x24A0
106 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
107 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
108 #define MVNETA_TYPE_PRIO                         0x24bc
109 #define      MVNETA_FORCE_UNI                    BIT(21)
110 #define MVNETA_TXQ_CMD_1                         0x24e4
111 #define MVNETA_TXQ_CMD                           0x2448
112 #define      MVNETA_TXQ_DISABLE_SHIFT            8
113 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
117 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
118 #define MVNETA_ACC_MODE                          0x2500
119 #define MVNETA_BM_ADDRESS                        0x2504
120 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
121 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
122 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
123 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
124 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
126 
127 /* Exception Interrupt Port/Queue Cause register
128  *
129  * Their behavior depend of the mapping done using the PCPX2Q
130  * registers. For a given CPU if the bit associated to a queue is not
131  * set, then for the register a read from this CPU will always return
132  * 0 and a write won't do anything
133  */
134 
135 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
136 #define MVNETA_INTR_NEW_MASK                     0x25a4
137 
138 /* bits  0..7  = TXQ SENT, one bit per queue.
139  * bits  8..15 = RXQ OCCUP, one bit per queue.
140  * bits 16..23 = RXQ FREE, one bit per queue.
141  * bit  29 = OLD_REG_SUM, see old reg ?
142  * bit  30 = TX_ERR_SUM, one bit for 4 ports
143  * bit  31 = MISC_SUM,   one bit for 4 ports
144  */
145 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
146 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
147 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
148 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
149 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
150 
151 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
152 #define MVNETA_INTR_OLD_MASK                     0x25ac
153 
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
156 #define MVNETA_INTR_MISC_MASK                    0x25b4
157 
158 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
159 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
160 #define      MVNETA_CAUSE_PTP                    BIT(4)
161 
162 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
163 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
164 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
165 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
166 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
167 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
168 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
169 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
170 
171 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174 
175 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
176 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178 
179 #define MVNETA_INTR_ENABLE                       0x25b8
180 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
181 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
182 
183 #define MVNETA_RXQ_CMD                           0x2680
184 #define      MVNETA_RXQ_DISABLE_SHIFT            8
185 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0                       0x2c00
189 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
190 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
191 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
192 #define MVNETA_GMAC_CTRL_2                       0x2c08
193 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
194 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
195 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
196 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
197 #define MVNETA_GMAC_STATUS                       0x2c10
198 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
199 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
200 #define      MVNETA_GMAC_SPEED_100               BIT(2)
201 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
202 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
203 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
207 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
208 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
209 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
210 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
211 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
212 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
213 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
214 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
215 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
217 #define      MVNETA_MIB_LATE_COLLISION           0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
223 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
224 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
226 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
227 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
228 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
229 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
230 #define MVNETA_PORT_TX_RESET                     0x3cf0
231 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
232 #define MVNETA_TX_MTU                            0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
234 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
236 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
237 
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
239 
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
242 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
243 
244 /* Various constants */
245 
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS		32
249 #define MVNETA_RX_COAL_USEC		100
250 
251 /* The two bytes Marvell header. Either contains a special value used
252  * by Marvell switches when a specific hardware mode is enabled (not
253  * supported by this driver) or is filled automatically by zeroes on
254  * the RX side. Those two bytes being at the front of the Ethernet
255  * header, they allow to have the IP header aligned on a 4 bytes
256  * boundary automatically: the hardware skips those two bytes on its
257  * own.
258  */
259 #define MVNETA_MH_SIZE			2
260 
261 #define MVNETA_VLAN_TAG_LEN             4
262 
263 #define MVNETA_TX_CSUM_DEF_SIZE		1600
264 #define MVNETA_TX_CSUM_MAX_SIZE		9800
265 #define MVNETA_ACC_MODE_EXT1		1
266 #define MVNETA_ACC_MODE_EXT2		2
267 
268 #define MVNETA_MAX_DECODE_WIN		6
269 
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
274 
275 #define MVNETA_TX_MTU_MAX		0x3ffff
276 
277 /* The RSS lookup table actually has 256 entries but we do not use
278  * them yet
279  */
280 #define MVNETA_RSS_LU_TABLE_SIZE	1
281 
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284 
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287 
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290 
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293 
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295 
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE	32
298 
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 	      ETH_HLEN + ETH_FCS_LEN,			     \
302 	      cache_line_size())
303 
304 #define IS_TSO_HEADER(txq, addr) \
305 	((addr >= txq->tso_hdrs_phys) && \
306 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307 
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310 
311 struct mvneta_statistic {
312 	unsigned short offset;
313 	unsigned short type;
314 	const char name[ETH_GSTRING_LEN];
315 };
316 
317 #define T_REG_32	32
318 #define T_REG_64	64
319 
320 static const struct mvneta_statistic mvneta_statistics[] = {
321 	{ 0x3000, T_REG_64, "good_octets_received", },
322 	{ 0x3010, T_REG_32, "good_frames_received", },
323 	{ 0x3008, T_REG_32, "bad_octets_received", },
324 	{ 0x3014, T_REG_32, "bad_frames_received", },
325 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
326 	{ 0x301c, T_REG_32, "multicast_frames_received", },
327 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
328 	{ 0x3058, T_REG_32, "good_fc_received", },
329 	{ 0x305c, T_REG_32, "bad_fc_received", },
330 	{ 0x3060, T_REG_32, "undersize_received", },
331 	{ 0x3064, T_REG_32, "fragments_received", },
332 	{ 0x3068, T_REG_32, "oversize_received", },
333 	{ 0x306c, T_REG_32, "jabber_received", },
334 	{ 0x3070, T_REG_32, "mac_receive_error", },
335 	{ 0x3074, T_REG_32, "bad_crc_event", },
336 	{ 0x3078, T_REG_32, "collision", },
337 	{ 0x307c, T_REG_32, "late_collision", },
338 	{ 0x2484, T_REG_32, "rx_discard", },
339 	{ 0x2488, T_REG_32, "rx_overrun", },
340 	{ 0x3020, T_REG_32, "frames_64_octets", },
341 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 	{ 0x3038, T_REG_64, "good_octets_sent", },
347 	{ 0x3040, T_REG_32, "good_frames_sent", },
348 	{ 0x3044, T_REG_32, "excessive_collision", },
349 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
350 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
351 	{ 0x3054, T_REG_32, "fc_sent", },
352 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
353 };
354 
355 struct mvneta_pcpu_stats {
356 	struct	u64_stats_sync syncp;
357 	u64	rx_packets;
358 	u64	rx_bytes;
359 	u64	tx_packets;
360 	u64	tx_bytes;
361 };
362 
363 struct mvneta_pcpu_port {
364 	/* Pointer to the shared port */
365 	struct mvneta_port	*pp;
366 
367 	/* Pointer to the CPU-local NAPI struct */
368 	struct napi_struct	napi;
369 
370 	/* Cause of the previous interrupt */
371 	u32			cause_rx_tx;
372 };
373 
374 struct mvneta_port {
375 	u8 id;
376 	struct mvneta_pcpu_port __percpu	*ports;
377 	struct mvneta_pcpu_stats __percpu	*stats;
378 
379 	int pkt_size;
380 	unsigned int frag_size;
381 	void __iomem *base;
382 	struct mvneta_rx_queue *rxqs;
383 	struct mvneta_tx_queue *txqs;
384 	struct net_device *dev;
385 	struct hlist_node node_online;
386 	struct hlist_node node_dead;
387 	int rxq_def;
388 	/* Protect the access to the percpu interrupt registers,
389 	 * ensuring that the configuration remains coherent.
390 	 */
391 	spinlock_t lock;
392 	bool is_stopped;
393 
394 	/* Core clock */
395 	struct clk *clk;
396 	/* AXI clock */
397 	struct clk *clk_bus;
398 	u8 mcast_count[256];
399 	u16 tx_ring_size;
400 	u16 rx_ring_size;
401 
402 	struct mii_bus *mii_bus;
403 	phy_interface_t phy_interface;
404 	struct device_node *phy_node;
405 	unsigned int link;
406 	unsigned int duplex;
407 	unsigned int speed;
408 	unsigned int tx_csum_limit;
409 	unsigned int use_inband_status:1;
410 
411 	struct mvneta_bm *bm_priv;
412 	struct mvneta_bm_pool *pool_long;
413 	struct mvneta_bm_pool *pool_short;
414 	int bm_win_id;
415 
416 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
417 
418 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
419 };
420 
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422  * layout of the transmit and reception DMA descriptors, and their
423  * layout is therefore defined by the hardware design
424  */
425 
426 #define MVNETA_TX_L3_OFF_SHIFT	0
427 #define MVNETA_TX_IP_HLEN_SHIFT	8
428 #define MVNETA_TX_L4_UDP	BIT(16)
429 #define MVNETA_TX_L3_IP6	BIT(17)
430 #define MVNETA_TXD_IP_CSUM	BIT(18)
431 #define MVNETA_TXD_Z_PAD	BIT(19)
432 #define MVNETA_TXD_L_DESC	BIT(20)
433 #define MVNETA_TXD_F_DESC	BIT(21)
434 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
435 				 MVNETA_TXD_L_DESC | \
436 				 MVNETA_TXD_F_DESC)
437 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
439 
440 #define MVNETA_RXD_ERR_CRC		0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT	13
442 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
445 #define MVNETA_RXD_ERR_LEN		BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4		BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
451 
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc {
454 	u32  command;		/* Options used by HW for packet transmitting.*/
455 	u16  reserverd1;	/* csum_l4 (for future use)		*/
456 	u16  data_size;		/* Data size of transmitted packet in bytes */
457 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
458 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
459 	u32  reserved3[4];	/* Reserved - (for future use)		*/
460 };
461 
462 struct mvneta_rx_desc {
463 	u32  status;		/* Info about received packet		*/
464 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
465 	u16  data_size;		/* Size of received packet in bytes	*/
466 
467 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
468 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
469 
470 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
471 	u16  reserved3;		/* prefetch_cmd, for future use		*/
472 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
473 
474 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
475 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
476 };
477 #else
478 struct mvneta_tx_desc {
479 	u16  data_size;		/* Data size of transmitted packet in bytes */
480 	u16  reserverd1;	/* csum_l4 (for future use)		*/
481 	u32  command;		/* Options used by HW for packet transmitting.*/
482 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
483 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
484 	u32  reserved3[4];	/* Reserved - (for future use)		*/
485 };
486 
487 struct mvneta_rx_desc {
488 	u16  data_size;		/* Size of received packet in bytes	*/
489 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
490 	u32  status;		/* Info about received packet		*/
491 
492 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
493 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
494 
495 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
496 	u16  reserved3;		/* prefetch_cmd, for future use		*/
497 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
498 
499 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
500 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
501 };
502 #endif
503 
504 struct mvneta_tx_queue {
505 	/* Number of this TX queue, in the range 0-7 */
506 	u8 id;
507 
508 	/* Number of TX DMA descriptors in the descriptor ring */
509 	int size;
510 
511 	/* Number of currently used TX DMA descriptor in the
512 	 * descriptor ring
513 	 */
514 	int count;
515 	int tx_stop_threshold;
516 	int tx_wake_threshold;
517 
518 	/* Array of transmitted skb */
519 	struct sk_buff **tx_skb;
520 
521 	/* Index of last TX DMA descriptor that was inserted */
522 	int txq_put_index;
523 
524 	/* Index of the TX DMA descriptor to be cleaned up */
525 	int txq_get_index;
526 
527 	u32 done_pkts_coal;
528 
529 	/* Virtual address of the TX DMA descriptors array */
530 	struct mvneta_tx_desc *descs;
531 
532 	/* DMA address of the TX DMA descriptors array */
533 	dma_addr_t descs_phys;
534 
535 	/* Index of the last TX DMA descriptor */
536 	int last_desc;
537 
538 	/* Index of the next TX DMA descriptor to process */
539 	int next_desc_to_proc;
540 
541 	/* DMA buffers for TSO headers */
542 	char *tso_hdrs;
543 
544 	/* DMA address of TSO headers */
545 	dma_addr_t tso_hdrs_phys;
546 
547 	/* Affinity mask for CPUs*/
548 	cpumask_t affinity_mask;
549 };
550 
551 struct mvneta_rx_queue {
552 	/* rx queue number, in the range 0-7 */
553 	u8 id;
554 
555 	/* num of rx descriptors in the rx descriptor ring */
556 	int size;
557 
558 	/* counter of times when mvneta_refill() failed */
559 	int missed;
560 
561 	u32 pkts_coal;
562 	u32 time_coal;
563 
564 	/* Virtual address of the RX DMA descriptors array */
565 	struct mvneta_rx_desc *descs;
566 
567 	/* DMA address of the RX DMA descriptors array */
568 	dma_addr_t descs_phys;
569 
570 	/* Index of the last RX DMA descriptor */
571 	int last_desc;
572 
573 	/* Index of the next RX DMA descriptor to process */
574 	int next_desc_to_proc;
575 };
576 
577 static enum cpuhp_state online_hpstate;
578 /* The hardware supports eight (8) rx queues, but we are only allowing
579  * the first one to be used. Therefore, let's just allocate one queue.
580  */
581 static int rxq_number = 8;
582 static int txq_number = 8;
583 
584 static int rxq_def;
585 
586 static int rx_copybreak __read_mostly = 256;
587 
588 /* HW BM need that each port be identify by a unique ID */
589 static int global_port_id;
590 
591 #define MVNETA_DRIVER_NAME "mvneta"
592 #define MVNETA_DRIVER_VERSION "1.0"
593 
594 /* Utility/helper methods */
595 
596 /* Write helper method */
597 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
598 {
599 	writel(data, pp->base + offset);
600 }
601 
602 /* Read helper method */
603 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
604 {
605 	return readl(pp->base + offset);
606 }
607 
608 /* Increment txq get counter */
609 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
610 {
611 	txq->txq_get_index++;
612 	if (txq->txq_get_index == txq->size)
613 		txq->txq_get_index = 0;
614 }
615 
616 /* Increment txq put counter */
617 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
618 {
619 	txq->txq_put_index++;
620 	if (txq->txq_put_index == txq->size)
621 		txq->txq_put_index = 0;
622 }
623 
624 
625 /* Clear all MIB counters */
626 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
627 {
628 	int i;
629 	u32 dummy;
630 
631 	/* Perform dummy reads from MIB counters */
632 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
633 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
634 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
635 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
636 }
637 
638 /* Get System Network Statistics */
639 static struct rtnl_link_stats64 *
640 mvneta_get_stats64(struct net_device *dev,
641 		   struct rtnl_link_stats64 *stats)
642 {
643 	struct mvneta_port *pp = netdev_priv(dev);
644 	unsigned int start;
645 	int cpu;
646 
647 	for_each_possible_cpu(cpu) {
648 		struct mvneta_pcpu_stats *cpu_stats;
649 		u64 rx_packets;
650 		u64 rx_bytes;
651 		u64 tx_packets;
652 		u64 tx_bytes;
653 
654 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
655 		do {
656 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
657 			rx_packets = cpu_stats->rx_packets;
658 			rx_bytes   = cpu_stats->rx_bytes;
659 			tx_packets = cpu_stats->tx_packets;
660 			tx_bytes   = cpu_stats->tx_bytes;
661 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
662 
663 		stats->rx_packets += rx_packets;
664 		stats->rx_bytes   += rx_bytes;
665 		stats->tx_packets += tx_packets;
666 		stats->tx_bytes   += tx_bytes;
667 	}
668 
669 	stats->rx_errors	= dev->stats.rx_errors;
670 	stats->rx_dropped	= dev->stats.rx_dropped;
671 
672 	stats->tx_dropped	= dev->stats.tx_dropped;
673 
674 	return stats;
675 }
676 
677 /* Rx descriptors helper methods */
678 
679 /* Checks whether the RX descriptor having this status is both the first
680  * and the last descriptor for the RX packet. Each RX packet is currently
681  * received through a single RX descriptor, so not having each RX
682  * descriptor with its first and last bits set is an error
683  */
684 static int mvneta_rxq_desc_is_first_last(u32 status)
685 {
686 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
687 		MVNETA_RXD_FIRST_LAST_DESC;
688 }
689 
690 /* Add number of descriptors ready to receive new packets */
691 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
692 					  struct mvneta_rx_queue *rxq,
693 					  int ndescs)
694 {
695 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
696 	 * be added at once
697 	 */
698 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
699 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
700 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
701 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
702 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
703 	}
704 
705 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
706 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
707 }
708 
709 /* Get number of RX descriptors occupied by received packets */
710 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
711 					struct mvneta_rx_queue *rxq)
712 {
713 	u32 val;
714 
715 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
716 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
717 }
718 
719 /* Update num of rx desc called upon return from rx path or
720  * from mvneta_rxq_drop_pkts().
721  */
722 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
723 				       struct mvneta_rx_queue *rxq,
724 				       int rx_done, int rx_filled)
725 {
726 	u32 val;
727 
728 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
729 		val = rx_done |
730 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
731 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
732 		return;
733 	}
734 
735 	/* Only 255 descriptors can be added at once */
736 	while ((rx_done > 0) || (rx_filled > 0)) {
737 		if (rx_done <= 0xff) {
738 			val = rx_done;
739 			rx_done = 0;
740 		} else {
741 			val = 0xff;
742 			rx_done -= 0xff;
743 		}
744 		if (rx_filled <= 0xff) {
745 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
746 			rx_filled = 0;
747 		} else {
748 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
749 			rx_filled -= 0xff;
750 		}
751 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
752 	}
753 }
754 
755 /* Get pointer to next RX descriptor to be processed by SW */
756 static struct mvneta_rx_desc *
757 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
758 {
759 	int rx_desc = rxq->next_desc_to_proc;
760 
761 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
762 	prefetch(rxq->descs + rxq->next_desc_to_proc);
763 	return rxq->descs + rx_desc;
764 }
765 
766 /* Change maximum receive size of the port. */
767 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
768 {
769 	u32 val;
770 
771 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
772 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
773 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
774 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
775 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
776 }
777 
778 
779 /* Set rx queue offset */
780 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
781 				  struct mvneta_rx_queue *rxq,
782 				  int offset)
783 {
784 	u32 val;
785 
786 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
787 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
788 
789 	/* Offset is in */
790 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
791 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
792 }
793 
794 
795 /* Tx descriptors helper methods */
796 
797 /* Update HW with number of TX descriptors to be sent */
798 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
799 				     struct mvneta_tx_queue *txq,
800 				     int pend_desc)
801 {
802 	u32 val;
803 
804 	/* Only 255 descriptors can be added at once ; Assume caller
805 	 * process TX desriptors in quanta less than 256
806 	 */
807 	val = pend_desc;
808 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
809 }
810 
811 /* Get pointer to next TX descriptor to be processed (send) by HW */
812 static struct mvneta_tx_desc *
813 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
814 {
815 	int tx_desc = txq->next_desc_to_proc;
816 
817 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
818 	return txq->descs + tx_desc;
819 }
820 
821 /* Release the last allocated TX descriptor. Useful to handle DMA
822  * mapping failures in the TX path.
823  */
824 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
825 {
826 	if (txq->next_desc_to_proc == 0)
827 		txq->next_desc_to_proc = txq->last_desc - 1;
828 	else
829 		txq->next_desc_to_proc--;
830 }
831 
832 /* Set rxq buf size */
833 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
834 				    struct mvneta_rx_queue *rxq,
835 				    int buf_size)
836 {
837 	u32 val;
838 
839 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
840 
841 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
842 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
843 
844 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
845 }
846 
847 /* Disable buffer management (BM) */
848 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
849 				  struct mvneta_rx_queue *rxq)
850 {
851 	u32 val;
852 
853 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
854 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
855 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
856 }
857 
858 /* Enable buffer management (BM) */
859 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
860 				 struct mvneta_rx_queue *rxq)
861 {
862 	u32 val;
863 
864 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
865 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
866 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
867 }
868 
869 /* Notify HW about port's assignment of pool for bigger packets */
870 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
871 				     struct mvneta_rx_queue *rxq)
872 {
873 	u32 val;
874 
875 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
876 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
877 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
878 
879 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
880 }
881 
882 /* Notify HW about port's assignment of pool for smaller packets */
883 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
884 				      struct mvneta_rx_queue *rxq)
885 {
886 	u32 val;
887 
888 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
889 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
890 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
891 
892 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
893 }
894 
895 /* Set port's receive buffer size for assigned BM pool */
896 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
897 					      int buf_size,
898 					      u8 pool_id)
899 {
900 	u32 val;
901 
902 	if (!IS_ALIGNED(buf_size, 8)) {
903 		dev_warn(pp->dev->dev.parent,
904 			 "illegal buf_size value %d, round to %d\n",
905 			 buf_size, ALIGN(buf_size, 8));
906 		buf_size = ALIGN(buf_size, 8);
907 	}
908 
909 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
910 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
911 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
912 }
913 
914 /* Configure MBUS window in order to enable access BM internal SRAM */
915 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
916 				  u8 target, u8 attr)
917 {
918 	u32 win_enable, win_protect;
919 	int i;
920 
921 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
922 
923 	if (pp->bm_win_id < 0) {
924 		/* Find first not occupied window */
925 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
926 			if (win_enable & (1 << i)) {
927 				pp->bm_win_id = i;
928 				break;
929 			}
930 		}
931 		if (i == MVNETA_MAX_DECODE_WIN)
932 			return -ENOMEM;
933 	} else {
934 		i = pp->bm_win_id;
935 	}
936 
937 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
938 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
939 
940 	if (i < 4)
941 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
942 
943 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
944 		    (attr << 8) | target);
945 
946 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
947 
948 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
949 	win_protect |= 3 << (2 * i);
950 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
951 
952 	win_enable &= ~(1 << i);
953 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
954 
955 	return 0;
956 }
957 
958 /* Assign and initialize pools for port. In case of fail
959  * buffer manager will remain disabled for current port.
960  */
961 static int mvneta_bm_port_init(struct platform_device *pdev,
962 			       struct mvneta_port *pp)
963 {
964 	struct device_node *dn = pdev->dev.of_node;
965 	u32 long_pool_id, short_pool_id, wsize;
966 	u8 target, attr;
967 	int err;
968 
969 	/* Get BM window information */
970 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
971 					 &target, &attr);
972 	if (err < 0)
973 		return err;
974 
975 	pp->bm_win_id = -1;
976 
977 	/* Open NETA -> BM window */
978 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
979 				     target, attr);
980 	if (err < 0) {
981 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
982 		return err;
983 	}
984 
985 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
986 		netdev_info(pp->dev, "missing long pool id\n");
987 		return -EINVAL;
988 	}
989 
990 	/* Create port's long pool depending on mtu */
991 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
992 					   MVNETA_BM_LONG, pp->id,
993 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
994 	if (!pp->pool_long) {
995 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
996 		return -ENOMEM;
997 	}
998 
999 	pp->pool_long->port_map |= 1 << pp->id;
1000 
1001 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1002 				   pp->pool_long->id);
1003 
1004 	/* If short pool id is not defined, assume using single pool */
1005 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1006 		short_pool_id = long_pool_id;
1007 
1008 	/* Create port's short pool */
1009 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1010 					    MVNETA_BM_SHORT, pp->id,
1011 					    MVNETA_BM_SHORT_PKT_SIZE);
1012 	if (!pp->pool_short) {
1013 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1014 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1015 		return -ENOMEM;
1016 	}
1017 
1018 	if (short_pool_id != long_pool_id) {
1019 		pp->pool_short->port_map |= 1 << pp->id;
1020 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1021 					   pp->pool_short->id);
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 /* Update settings of a pool for bigger packets */
1028 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1029 {
1030 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1031 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1032 	int num;
1033 
1034 	/* Release all buffers from long pool */
1035 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1036 	if (hwbm_pool->buf_num) {
1037 		WARN(1, "cannot free all buffers in pool %d\n",
1038 		     bm_pool->id);
1039 		goto bm_mtu_err;
1040 	}
1041 
1042 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1043 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1044 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1045 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1046 
1047 	/* Fill entire long pool */
1048 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1049 	if (num != hwbm_pool->size) {
1050 		WARN(1, "pool %d: %d of %d allocated\n",
1051 		     bm_pool->id, num, hwbm_pool->size);
1052 		goto bm_mtu_err;
1053 	}
1054 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1055 
1056 	return;
1057 
1058 bm_mtu_err:
1059 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1060 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1061 
1062 	pp->bm_priv = NULL;
1063 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1064 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1065 }
1066 
1067 /* Start the Ethernet port RX and TX activity */
1068 static void mvneta_port_up(struct mvneta_port *pp)
1069 {
1070 	int queue;
1071 	u32 q_map;
1072 
1073 	/* Enable all initialized TXs. */
1074 	q_map = 0;
1075 	for (queue = 0; queue < txq_number; queue++) {
1076 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1077 		if (txq->descs != NULL)
1078 			q_map |= (1 << queue);
1079 	}
1080 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1081 
1082 	/* Enable all initialized RXQs. */
1083 	for (queue = 0; queue < rxq_number; queue++) {
1084 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1085 
1086 		if (rxq->descs != NULL)
1087 			q_map |= (1 << queue);
1088 	}
1089 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1090 }
1091 
1092 /* Stop the Ethernet port activity */
1093 static void mvneta_port_down(struct mvneta_port *pp)
1094 {
1095 	u32 val;
1096 	int count;
1097 
1098 	/* Stop Rx port activity. Check port Rx activity. */
1099 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1100 
1101 	/* Issue stop command for active channels only */
1102 	if (val != 0)
1103 		mvreg_write(pp, MVNETA_RXQ_CMD,
1104 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1105 
1106 	/* Wait for all Rx activity to terminate. */
1107 	count = 0;
1108 	do {
1109 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1110 			netdev_warn(pp->dev,
1111 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1112 				    val);
1113 			break;
1114 		}
1115 		mdelay(1);
1116 
1117 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1118 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1119 
1120 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1121 	 * command for active channels only
1122 	 */
1123 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1124 
1125 	if (val != 0)
1126 		mvreg_write(pp, MVNETA_TXQ_CMD,
1127 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1128 
1129 	/* Wait for all Tx activity to terminate. */
1130 	count = 0;
1131 	do {
1132 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1133 			netdev_warn(pp->dev,
1134 				    "TIMEOUT for TX stopped status=0x%08x\n",
1135 				    val);
1136 			break;
1137 		}
1138 		mdelay(1);
1139 
1140 		/* Check TX Command reg that all Txqs are stopped */
1141 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1142 
1143 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1144 
1145 	/* Double check to verify that TX FIFO is empty */
1146 	count = 0;
1147 	do {
1148 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1149 			netdev_warn(pp->dev,
1150 				    "TX FIFO empty timeout status=0x%08x\n",
1151 				    val);
1152 			break;
1153 		}
1154 		mdelay(1);
1155 
1156 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1157 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1158 		 (val & MVNETA_TX_IN_PRGRS));
1159 
1160 	udelay(200);
1161 }
1162 
1163 /* Enable the port by setting the port enable bit of the MAC control register */
1164 static void mvneta_port_enable(struct mvneta_port *pp)
1165 {
1166 	u32 val;
1167 
1168 	/* Enable port */
1169 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1170 	val |= MVNETA_GMAC0_PORT_ENABLE;
1171 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1172 }
1173 
1174 /* Disable the port and wait for about 200 usec before retuning */
1175 static void mvneta_port_disable(struct mvneta_port *pp)
1176 {
1177 	u32 val;
1178 
1179 	/* Reset the Enable bit in the Serial Control Register */
1180 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1181 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1182 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1183 
1184 	udelay(200);
1185 }
1186 
1187 /* Multicast tables methods */
1188 
1189 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1190 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1191 {
1192 	int offset;
1193 	u32 val;
1194 
1195 	if (queue == -1) {
1196 		val = 0;
1197 	} else {
1198 		val = 0x1 | (queue << 1);
1199 		val |= (val << 24) | (val << 16) | (val << 8);
1200 	}
1201 
1202 	for (offset = 0; offset <= 0xc; offset += 4)
1203 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1204 }
1205 
1206 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1207 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1208 {
1209 	int offset;
1210 	u32 val;
1211 
1212 	if (queue == -1) {
1213 		val = 0;
1214 	} else {
1215 		val = 0x1 | (queue << 1);
1216 		val |= (val << 24) | (val << 16) | (val << 8);
1217 	}
1218 
1219 	for (offset = 0; offset <= 0xfc; offset += 4)
1220 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1221 
1222 }
1223 
1224 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1225 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1226 {
1227 	int offset;
1228 	u32 val;
1229 
1230 	if (queue == -1) {
1231 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1232 		val = 0;
1233 	} else {
1234 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1235 		val = 0x1 | (queue << 1);
1236 		val |= (val << 24) | (val << 16) | (val << 8);
1237 	}
1238 
1239 	for (offset = 0; offset <= 0xfc; offset += 4)
1240 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1241 }
1242 
1243 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1244 {
1245 	u32 val;
1246 
1247 	if (enable) {
1248 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1249 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1250 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1251 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1252 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1253 		       MVNETA_GMAC_AN_SPEED_EN |
1254 		       MVNETA_GMAC_AN_DUPLEX_EN;
1255 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1256 
1257 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1258 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1259 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1260 
1261 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1262 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1263 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1264 	} else {
1265 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1266 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1267 		       MVNETA_GMAC_AN_SPEED_EN |
1268 		       MVNETA_GMAC_AN_DUPLEX_EN);
1269 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1270 
1271 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1272 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1273 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1274 
1275 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1276 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1277 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1278 	}
1279 }
1280 
1281 static void mvneta_percpu_unmask_interrupt(void *arg)
1282 {
1283 	struct mvneta_port *pp = arg;
1284 
1285 	/* All the queue are unmasked, but actually only the ones
1286 	 * mapped to this CPU will be unmasked
1287 	 */
1288 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1289 		    MVNETA_RX_INTR_MASK_ALL |
1290 		    MVNETA_TX_INTR_MASK_ALL |
1291 		    MVNETA_MISCINTR_INTR_MASK);
1292 }
1293 
1294 static void mvneta_percpu_mask_interrupt(void *arg)
1295 {
1296 	struct mvneta_port *pp = arg;
1297 
1298 	/* All the queue are masked, but actually only the ones
1299 	 * mapped to this CPU will be masked
1300 	 */
1301 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1302 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1303 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1304 }
1305 
1306 static void mvneta_percpu_clear_intr_cause(void *arg)
1307 {
1308 	struct mvneta_port *pp = arg;
1309 
1310 	/* All the queue are cleared, but actually only the ones
1311 	 * mapped to this CPU will be cleared
1312 	 */
1313 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1314 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1315 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1316 }
1317 
1318 /* This method sets defaults to the NETA port:
1319  *	Clears interrupt Cause and Mask registers.
1320  *	Clears all MAC tables.
1321  *	Sets defaults to all registers.
1322  *	Resets RX and TX descriptor rings.
1323  *	Resets PHY.
1324  * This method can be called after mvneta_port_down() to return the port
1325  *	settings to defaults.
1326  */
1327 static void mvneta_defaults_set(struct mvneta_port *pp)
1328 {
1329 	int cpu;
1330 	int queue;
1331 	u32 val;
1332 	int max_cpu = num_present_cpus();
1333 
1334 	/* Clear all Cause registers */
1335 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1336 
1337 	/* Mask all interrupts */
1338 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1339 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1340 
1341 	/* Enable MBUS Retry bit16 */
1342 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1343 
1344 	/* Set CPU queue access map. CPUs are assigned to the RX and
1345 	 * TX queues modulo their number. If there is only one TX
1346 	 * queue then it is assigned to the CPU associated to the
1347 	 * default RX queue.
1348 	 */
1349 	for_each_present_cpu(cpu) {
1350 		int rxq_map = 0, txq_map = 0;
1351 		int rxq, txq;
1352 
1353 		for (rxq = 0; rxq < rxq_number; rxq++)
1354 			if ((rxq % max_cpu) == cpu)
1355 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1356 
1357 		for (txq = 0; txq < txq_number; txq++)
1358 			if ((txq % max_cpu) == cpu)
1359 				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1360 
1361 		/* With only one TX queue we configure a special case
1362 		 * which will allow to get all the irq on a single
1363 		 * CPU
1364 		 */
1365 		if (txq_number == 1)
1366 			txq_map = (cpu == pp->rxq_def) ?
1367 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1368 
1369 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1370 	}
1371 
1372 	/* Reset RX and TX DMAs */
1373 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1374 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1375 
1376 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1377 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1378 	for (queue = 0; queue < txq_number; queue++) {
1379 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1380 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1381 	}
1382 
1383 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1384 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1385 
1386 	/* Set Port Acceleration Mode */
1387 	if (pp->bm_priv)
1388 		/* HW buffer management + legacy parser */
1389 		val = MVNETA_ACC_MODE_EXT2;
1390 	else
1391 		/* SW buffer management + legacy parser */
1392 		val = MVNETA_ACC_MODE_EXT1;
1393 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1394 
1395 	if (pp->bm_priv)
1396 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1397 
1398 	/* Update val of portCfg register accordingly with all RxQueue types */
1399 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1400 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1401 
1402 	val = 0;
1403 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1404 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1405 
1406 	/* Build PORT_SDMA_CONFIG_REG */
1407 	val = 0;
1408 
1409 	/* Default burst size */
1410 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1411 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1412 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1413 
1414 #if defined(__BIG_ENDIAN)
1415 	val |= MVNETA_DESC_SWAP;
1416 #endif
1417 
1418 	/* Assign port SDMA configuration */
1419 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1420 
1421 	/* Disable PHY polling in hardware, since we're using the
1422 	 * kernel phylib to do this.
1423 	 */
1424 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1425 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1426 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1427 
1428 	mvneta_set_autoneg(pp, pp->use_inband_status);
1429 	mvneta_set_ucast_table(pp, -1);
1430 	mvneta_set_special_mcast_table(pp, -1);
1431 	mvneta_set_other_mcast_table(pp, -1);
1432 
1433 	/* Set port interrupt enable register - default enable all */
1434 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1435 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1436 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1437 
1438 	mvneta_mib_counters_clear(pp);
1439 }
1440 
1441 /* Set max sizes for tx queues */
1442 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1443 
1444 {
1445 	u32 val, size, mtu;
1446 	int queue;
1447 
1448 	mtu = max_tx_size * 8;
1449 	if (mtu > MVNETA_TX_MTU_MAX)
1450 		mtu = MVNETA_TX_MTU_MAX;
1451 
1452 	/* Set MTU */
1453 	val = mvreg_read(pp, MVNETA_TX_MTU);
1454 	val &= ~MVNETA_TX_MTU_MAX;
1455 	val |= mtu;
1456 	mvreg_write(pp, MVNETA_TX_MTU, val);
1457 
1458 	/* TX token size and all TXQs token size must be larger that MTU */
1459 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1460 
1461 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1462 	if (size < mtu) {
1463 		size = mtu;
1464 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1465 		val |= size;
1466 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1467 	}
1468 	for (queue = 0; queue < txq_number; queue++) {
1469 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1470 
1471 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1472 		if (size < mtu) {
1473 			size = mtu;
1474 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1475 			val |= size;
1476 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1477 		}
1478 	}
1479 }
1480 
1481 /* Set unicast address */
1482 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1483 				  int queue)
1484 {
1485 	unsigned int unicast_reg;
1486 	unsigned int tbl_offset;
1487 	unsigned int reg_offset;
1488 
1489 	/* Locate the Unicast table entry */
1490 	last_nibble = (0xf & last_nibble);
1491 
1492 	/* offset from unicast tbl base */
1493 	tbl_offset = (last_nibble / 4) * 4;
1494 
1495 	/* offset within the above reg  */
1496 	reg_offset = last_nibble % 4;
1497 
1498 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1499 
1500 	if (queue == -1) {
1501 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1502 		unicast_reg &= ~(0xff << (8 * reg_offset));
1503 	} else {
1504 		unicast_reg &= ~(0xff << (8 * reg_offset));
1505 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1506 	}
1507 
1508 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1509 }
1510 
1511 /* Set mac address */
1512 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1513 				int queue)
1514 {
1515 	unsigned int mac_h;
1516 	unsigned int mac_l;
1517 
1518 	if (queue != -1) {
1519 		mac_l = (addr[4] << 8) | (addr[5]);
1520 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1521 			(addr[2] << 8) | (addr[3] << 0);
1522 
1523 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1524 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1525 	}
1526 
1527 	/* Accept frames of this address */
1528 	mvneta_set_ucast_addr(pp, addr[5], queue);
1529 }
1530 
1531 /* Set the number of packets that will be received before RX interrupt
1532  * will be generated by HW.
1533  */
1534 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1535 				    struct mvneta_rx_queue *rxq, u32 value)
1536 {
1537 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1538 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1539 	rxq->pkts_coal = value;
1540 }
1541 
1542 /* Set the time delay in usec before RX interrupt will be generated by
1543  * HW.
1544  */
1545 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1546 				    struct mvneta_rx_queue *rxq, u32 value)
1547 {
1548 	u32 val;
1549 	unsigned long clk_rate;
1550 
1551 	clk_rate = clk_get_rate(pp->clk);
1552 	val = (clk_rate / 1000000) * value;
1553 
1554 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1555 	rxq->time_coal = value;
1556 }
1557 
1558 /* Set threshold for TX_DONE pkts coalescing */
1559 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1560 					 struct mvneta_tx_queue *txq, u32 value)
1561 {
1562 	u32 val;
1563 
1564 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1565 
1566 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1567 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1568 
1569 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1570 
1571 	txq->done_pkts_coal = value;
1572 }
1573 
1574 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1575 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1576 				u32 phys_addr, u32 cookie)
1577 {
1578 	rx_desc->buf_cookie = cookie;
1579 	rx_desc->buf_phys_addr = phys_addr;
1580 }
1581 
1582 /* Decrement sent descriptors counter */
1583 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1584 				     struct mvneta_tx_queue *txq,
1585 				     int sent_desc)
1586 {
1587 	u32 val;
1588 
1589 	/* Only 255 TX descriptors can be updated at once */
1590 	while (sent_desc > 0xff) {
1591 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1592 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1593 		sent_desc = sent_desc - 0xff;
1594 	}
1595 
1596 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1597 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1598 }
1599 
1600 /* Get number of TX descriptors already sent by HW */
1601 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1602 					struct mvneta_tx_queue *txq)
1603 {
1604 	u32 val;
1605 	int sent_desc;
1606 
1607 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1608 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1609 		MVNETA_TXQ_SENT_DESC_SHIFT;
1610 
1611 	return sent_desc;
1612 }
1613 
1614 /* Get number of sent descriptors and decrement counter.
1615  *  The number of sent descriptors is returned.
1616  */
1617 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1618 				     struct mvneta_tx_queue *txq)
1619 {
1620 	int sent_desc;
1621 
1622 	/* Get number of sent descriptors */
1623 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1624 
1625 	/* Decrement sent descriptors counter */
1626 	if (sent_desc)
1627 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1628 
1629 	return sent_desc;
1630 }
1631 
1632 /* Set TXQ descriptors fields relevant for CSUM calculation */
1633 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1634 				int ip_hdr_len, int l4_proto)
1635 {
1636 	u32 command;
1637 
1638 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1639 	 * G_L4_chk, L4_type; required only for checksum
1640 	 * calculation
1641 	 */
1642 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1643 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1644 
1645 	if (l3_proto == htons(ETH_P_IP))
1646 		command |= MVNETA_TXD_IP_CSUM;
1647 	else
1648 		command |= MVNETA_TX_L3_IP6;
1649 
1650 	if (l4_proto == IPPROTO_TCP)
1651 		command |=  MVNETA_TX_L4_CSUM_FULL;
1652 	else if (l4_proto == IPPROTO_UDP)
1653 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1654 	else
1655 		command |= MVNETA_TX_L4_CSUM_NOT;
1656 
1657 	return command;
1658 }
1659 
1660 
1661 /* Display more error info */
1662 static void mvneta_rx_error(struct mvneta_port *pp,
1663 			    struct mvneta_rx_desc *rx_desc)
1664 {
1665 	u32 status = rx_desc->status;
1666 
1667 	if (!mvneta_rxq_desc_is_first_last(status)) {
1668 		netdev_err(pp->dev,
1669 			   "bad rx status %08x (buffer oversize), size=%d\n",
1670 			   status, rx_desc->data_size);
1671 		return;
1672 	}
1673 
1674 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1675 	case MVNETA_RXD_ERR_CRC:
1676 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1677 			   status, rx_desc->data_size);
1678 		break;
1679 	case MVNETA_RXD_ERR_OVERRUN:
1680 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1681 			   status, rx_desc->data_size);
1682 		break;
1683 	case MVNETA_RXD_ERR_LEN:
1684 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1685 			   status, rx_desc->data_size);
1686 		break;
1687 	case MVNETA_RXD_ERR_RESOURCE:
1688 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1689 			   status, rx_desc->data_size);
1690 		break;
1691 	}
1692 }
1693 
1694 /* Handle RX checksum offload based on the descriptor's status */
1695 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1696 			   struct sk_buff *skb)
1697 {
1698 	if ((status & MVNETA_RXD_L3_IP4) &&
1699 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1700 		skb->csum = 0;
1701 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1702 		return;
1703 	}
1704 
1705 	skb->ip_summed = CHECKSUM_NONE;
1706 }
1707 
1708 /* Return tx queue pointer (find last set bit) according to <cause> returned
1709  * form tx_done reg. <cause> must not be null. The return value is always a
1710  * valid queue for matching the first one found in <cause>.
1711  */
1712 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1713 						     u32 cause)
1714 {
1715 	int queue = fls(cause) - 1;
1716 
1717 	return &pp->txqs[queue];
1718 }
1719 
1720 /* Free tx queue skbuffs */
1721 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1722 				 struct mvneta_tx_queue *txq, int num)
1723 {
1724 	int i;
1725 
1726 	for (i = 0; i < num; i++) {
1727 		struct mvneta_tx_desc *tx_desc = txq->descs +
1728 			txq->txq_get_index;
1729 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1730 
1731 		mvneta_txq_inc_get(txq);
1732 
1733 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1734 			dma_unmap_single(pp->dev->dev.parent,
1735 					 tx_desc->buf_phys_addr,
1736 					 tx_desc->data_size, DMA_TO_DEVICE);
1737 		if (!skb)
1738 			continue;
1739 		dev_kfree_skb_any(skb);
1740 	}
1741 }
1742 
1743 /* Handle end of transmission */
1744 static void mvneta_txq_done(struct mvneta_port *pp,
1745 			   struct mvneta_tx_queue *txq)
1746 {
1747 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1748 	int tx_done;
1749 
1750 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1751 	if (!tx_done)
1752 		return;
1753 
1754 	mvneta_txq_bufs_free(pp, txq, tx_done);
1755 
1756 	txq->count -= tx_done;
1757 
1758 	if (netif_tx_queue_stopped(nq)) {
1759 		if (txq->count <= txq->tx_wake_threshold)
1760 			netif_tx_wake_queue(nq);
1761 	}
1762 }
1763 
1764 void *mvneta_frag_alloc(unsigned int frag_size)
1765 {
1766 	if (likely(frag_size <= PAGE_SIZE))
1767 		return netdev_alloc_frag(frag_size);
1768 	else
1769 		return kmalloc(frag_size, GFP_ATOMIC);
1770 }
1771 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1772 
1773 void mvneta_frag_free(unsigned int frag_size, void *data)
1774 {
1775 	if (likely(frag_size <= PAGE_SIZE))
1776 		skb_free_frag(data);
1777 	else
1778 		kfree(data);
1779 }
1780 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1781 
1782 /* Refill processing for SW buffer management */
1783 static int mvneta_rx_refill(struct mvneta_port *pp,
1784 			    struct mvneta_rx_desc *rx_desc)
1785 
1786 {
1787 	dma_addr_t phys_addr;
1788 	void *data;
1789 
1790 	data = mvneta_frag_alloc(pp->frag_size);
1791 	if (!data)
1792 		return -ENOMEM;
1793 
1794 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1795 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1796 				   DMA_FROM_DEVICE);
1797 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1798 		mvneta_frag_free(pp->frag_size, data);
1799 		return -ENOMEM;
1800 	}
1801 
1802 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1803 	return 0;
1804 }
1805 
1806 /* Handle tx checksum */
1807 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1808 {
1809 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1810 		int ip_hdr_len = 0;
1811 		__be16 l3_proto = vlan_get_protocol(skb);
1812 		u8 l4_proto;
1813 
1814 		if (l3_proto == htons(ETH_P_IP)) {
1815 			struct iphdr *ip4h = ip_hdr(skb);
1816 
1817 			/* Calculate IPv4 checksum and L4 checksum */
1818 			ip_hdr_len = ip4h->ihl;
1819 			l4_proto = ip4h->protocol;
1820 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1821 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1822 
1823 			/* Read l4_protocol from one of IPv6 extra headers */
1824 			if (skb_network_header_len(skb) > 0)
1825 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1826 			l4_proto = ip6h->nexthdr;
1827 		} else
1828 			return MVNETA_TX_L4_CSUM_NOT;
1829 
1830 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1831 					    l3_proto, ip_hdr_len, l4_proto);
1832 	}
1833 
1834 	return MVNETA_TX_L4_CSUM_NOT;
1835 }
1836 
1837 /* Drop packets received by the RXQ and free buffers */
1838 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1839 				 struct mvneta_rx_queue *rxq)
1840 {
1841 	int rx_done, i;
1842 
1843 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1844 	if (rx_done)
1845 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1846 
1847 	if (pp->bm_priv) {
1848 		for (i = 0; i < rx_done; i++) {
1849 			struct mvneta_rx_desc *rx_desc =
1850 						  mvneta_rxq_next_desc_get(rxq);
1851 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1852 			struct mvneta_bm_pool *bm_pool;
1853 
1854 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1855 			/* Return dropped buffer to the pool */
1856 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1857 					      rx_desc->buf_phys_addr);
1858 		}
1859 		return;
1860 	}
1861 
1862 	for (i = 0; i < rxq->size; i++) {
1863 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1864 		void *data = (void *)rx_desc->buf_cookie;
1865 
1866 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1867 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1868 		mvneta_frag_free(pp->frag_size, data);
1869 	}
1870 }
1871 
1872 /* Main rx processing when using software buffer management */
1873 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1874 			  struct mvneta_rx_queue *rxq)
1875 {
1876 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1877 	struct net_device *dev = pp->dev;
1878 	int rx_done;
1879 	u32 rcvd_pkts = 0;
1880 	u32 rcvd_bytes = 0;
1881 
1882 	/* Get number of received packets */
1883 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1884 
1885 	if (rx_todo > rx_done)
1886 		rx_todo = rx_done;
1887 
1888 	rx_done = 0;
1889 
1890 	/* Fairness NAPI loop */
1891 	while (rx_done < rx_todo) {
1892 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1893 		struct sk_buff *skb;
1894 		unsigned char *data;
1895 		dma_addr_t phys_addr;
1896 		u32 rx_status, frag_size;
1897 		int rx_bytes, err;
1898 
1899 		rx_done++;
1900 		rx_status = rx_desc->status;
1901 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1902 		data = (unsigned char *)rx_desc->buf_cookie;
1903 		phys_addr = rx_desc->buf_phys_addr;
1904 
1905 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1906 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1907 err_drop_frame:
1908 			dev->stats.rx_errors++;
1909 			mvneta_rx_error(pp, rx_desc);
1910 			/* leave the descriptor untouched */
1911 			continue;
1912 		}
1913 
1914 		if (rx_bytes <= rx_copybreak) {
1915 		/* better copy a small frame and not unmap the DMA region */
1916 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1917 			if (unlikely(!skb))
1918 				goto err_drop_frame;
1919 
1920 			dma_sync_single_range_for_cpu(dev->dev.parent,
1921 						      rx_desc->buf_phys_addr,
1922 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1923 						      rx_bytes,
1924 						      DMA_FROM_DEVICE);
1925 			memcpy(skb_put(skb, rx_bytes),
1926 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1927 			       rx_bytes);
1928 
1929 			skb->protocol = eth_type_trans(skb, dev);
1930 			mvneta_rx_csum(pp, rx_status, skb);
1931 			napi_gro_receive(&port->napi, skb);
1932 
1933 			rcvd_pkts++;
1934 			rcvd_bytes += rx_bytes;
1935 
1936 			/* leave the descriptor and buffer untouched */
1937 			continue;
1938 		}
1939 
1940 		/* Refill processing */
1941 		err = mvneta_rx_refill(pp, rx_desc);
1942 		if (err) {
1943 			netdev_err(dev, "Linux processing - Can't refill\n");
1944 			rxq->missed++;
1945 			goto err_drop_frame;
1946 		}
1947 
1948 		frag_size = pp->frag_size;
1949 
1950 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1951 
1952 		/* After refill old buffer has to be unmapped regardless
1953 		 * the skb is successfully built or not.
1954 		 */
1955 		dma_unmap_single(dev->dev.parent, phys_addr,
1956 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1957 				 DMA_FROM_DEVICE);
1958 
1959 		if (!skb)
1960 			goto err_drop_frame;
1961 
1962 		rcvd_pkts++;
1963 		rcvd_bytes += rx_bytes;
1964 
1965 		/* Linux processing */
1966 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1967 		skb_put(skb, rx_bytes);
1968 
1969 		skb->protocol = eth_type_trans(skb, dev);
1970 
1971 		mvneta_rx_csum(pp, rx_status, skb);
1972 
1973 		napi_gro_receive(&port->napi, skb);
1974 	}
1975 
1976 	if (rcvd_pkts) {
1977 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1978 
1979 		u64_stats_update_begin(&stats->syncp);
1980 		stats->rx_packets += rcvd_pkts;
1981 		stats->rx_bytes   += rcvd_bytes;
1982 		u64_stats_update_end(&stats->syncp);
1983 	}
1984 
1985 	/* Update rxq management counters */
1986 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1987 
1988 	return rx_done;
1989 }
1990 
1991 /* Main rx processing when using hardware buffer management */
1992 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1993 			  struct mvneta_rx_queue *rxq)
1994 {
1995 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1996 	struct net_device *dev = pp->dev;
1997 	int rx_done;
1998 	u32 rcvd_pkts = 0;
1999 	u32 rcvd_bytes = 0;
2000 
2001 	/* Get number of received packets */
2002 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2003 
2004 	if (rx_todo > rx_done)
2005 		rx_todo = rx_done;
2006 
2007 	rx_done = 0;
2008 
2009 	/* Fairness NAPI loop */
2010 	while (rx_done < rx_todo) {
2011 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2012 		struct mvneta_bm_pool *bm_pool = NULL;
2013 		struct sk_buff *skb;
2014 		unsigned char *data;
2015 		dma_addr_t phys_addr;
2016 		u32 rx_status, frag_size;
2017 		int rx_bytes, err;
2018 		u8 pool_id;
2019 
2020 		rx_done++;
2021 		rx_status = rx_desc->status;
2022 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2023 		data = (unsigned char *)rx_desc->buf_cookie;
2024 		phys_addr = rx_desc->buf_phys_addr;
2025 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2026 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2027 
2028 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2029 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2030 err_drop_frame_ret_pool:
2031 			/* Return the buffer to the pool */
2032 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2033 					      rx_desc->buf_phys_addr);
2034 err_drop_frame:
2035 			dev->stats.rx_errors++;
2036 			mvneta_rx_error(pp, rx_desc);
2037 			/* leave the descriptor untouched */
2038 			continue;
2039 		}
2040 
2041 		if (rx_bytes <= rx_copybreak) {
2042 			/* better copy a small frame and not unmap the DMA region */
2043 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2044 			if (unlikely(!skb))
2045 				goto err_drop_frame_ret_pool;
2046 
2047 			dma_sync_single_range_for_cpu(dev->dev.parent,
2048 			                              rx_desc->buf_phys_addr,
2049 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2050 			                              rx_bytes,
2051 			                              DMA_FROM_DEVICE);
2052 			memcpy(skb_put(skb, rx_bytes),
2053 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
2054 			       rx_bytes);
2055 
2056 			skb->protocol = eth_type_trans(skb, dev);
2057 			mvneta_rx_csum(pp, rx_status, skb);
2058 			napi_gro_receive(&port->napi, skb);
2059 
2060 			rcvd_pkts++;
2061 			rcvd_bytes += rx_bytes;
2062 
2063 			/* Return the buffer to the pool */
2064 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2065 					      rx_desc->buf_phys_addr);
2066 
2067 			/* leave the descriptor and buffer untouched */
2068 			continue;
2069 		}
2070 
2071 		/* Refill processing */
2072 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2073 		if (err) {
2074 			netdev_err(dev, "Linux processing - Can't refill\n");
2075 			rxq->missed++;
2076 			goto err_drop_frame_ret_pool;
2077 		}
2078 
2079 		frag_size = bm_pool->hwbm_pool.frag_size;
2080 
2081 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2082 
2083 		/* After refill old buffer has to be unmapped regardless
2084 		 * the skb is successfully built or not.
2085 		 */
2086 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2087 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2088 		if (!skb)
2089 			goto err_drop_frame;
2090 
2091 		rcvd_pkts++;
2092 		rcvd_bytes += rx_bytes;
2093 
2094 		/* Linux processing */
2095 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2096 		skb_put(skb, rx_bytes);
2097 
2098 		skb->protocol = eth_type_trans(skb, dev);
2099 
2100 		mvneta_rx_csum(pp, rx_status, skb);
2101 
2102 		napi_gro_receive(&port->napi, skb);
2103 	}
2104 
2105 	if (rcvd_pkts) {
2106 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2107 
2108 		u64_stats_update_begin(&stats->syncp);
2109 		stats->rx_packets += rcvd_pkts;
2110 		stats->rx_bytes   += rcvd_bytes;
2111 		u64_stats_update_end(&stats->syncp);
2112 	}
2113 
2114 	/* Update rxq management counters */
2115 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2116 
2117 	return rx_done;
2118 }
2119 
2120 static inline void
2121 mvneta_tso_put_hdr(struct sk_buff *skb,
2122 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2123 {
2124 	struct mvneta_tx_desc *tx_desc;
2125 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2126 
2127 	txq->tx_skb[txq->txq_put_index] = NULL;
2128 	tx_desc = mvneta_txq_next_desc_get(txq);
2129 	tx_desc->data_size = hdr_len;
2130 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2131 	tx_desc->command |= MVNETA_TXD_F_DESC;
2132 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2133 				 txq->txq_put_index * TSO_HEADER_SIZE;
2134 	mvneta_txq_inc_put(txq);
2135 }
2136 
2137 static inline int
2138 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2139 		    struct sk_buff *skb, char *data, int size,
2140 		    bool last_tcp, bool is_last)
2141 {
2142 	struct mvneta_tx_desc *tx_desc;
2143 
2144 	tx_desc = mvneta_txq_next_desc_get(txq);
2145 	tx_desc->data_size = size;
2146 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2147 						size, DMA_TO_DEVICE);
2148 	if (unlikely(dma_mapping_error(dev->dev.parent,
2149 		     tx_desc->buf_phys_addr))) {
2150 		mvneta_txq_desc_put(txq);
2151 		return -ENOMEM;
2152 	}
2153 
2154 	tx_desc->command = 0;
2155 	txq->tx_skb[txq->txq_put_index] = NULL;
2156 
2157 	if (last_tcp) {
2158 		/* last descriptor in the TCP packet */
2159 		tx_desc->command = MVNETA_TXD_L_DESC;
2160 
2161 		/* last descriptor in SKB */
2162 		if (is_last)
2163 			txq->tx_skb[txq->txq_put_index] = skb;
2164 	}
2165 	mvneta_txq_inc_put(txq);
2166 	return 0;
2167 }
2168 
2169 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2170 			 struct mvneta_tx_queue *txq)
2171 {
2172 	int total_len, data_left;
2173 	int desc_count = 0;
2174 	struct mvneta_port *pp = netdev_priv(dev);
2175 	struct tso_t tso;
2176 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2177 	int i;
2178 
2179 	/* Count needed descriptors */
2180 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2181 		return 0;
2182 
2183 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2184 		pr_info("*** Is this even  possible???!?!?\n");
2185 		return 0;
2186 	}
2187 
2188 	/* Initialize the TSO handler, and prepare the first payload */
2189 	tso_start(skb, &tso);
2190 
2191 	total_len = skb->len - hdr_len;
2192 	while (total_len > 0) {
2193 		char *hdr;
2194 
2195 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2196 		total_len -= data_left;
2197 		desc_count++;
2198 
2199 		/* prepare packet headers: MAC + IP + TCP */
2200 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2201 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2202 
2203 		mvneta_tso_put_hdr(skb, pp, txq);
2204 
2205 		while (data_left > 0) {
2206 			int size;
2207 			desc_count++;
2208 
2209 			size = min_t(int, tso.size, data_left);
2210 
2211 			if (mvneta_tso_put_data(dev, txq, skb,
2212 						 tso.data, size,
2213 						 size == data_left,
2214 						 total_len == 0))
2215 				goto err_release;
2216 			data_left -= size;
2217 
2218 			tso_build_data(skb, &tso, size);
2219 		}
2220 	}
2221 
2222 	return desc_count;
2223 
2224 err_release:
2225 	/* Release all used data descriptors; header descriptors must not
2226 	 * be DMA-unmapped.
2227 	 */
2228 	for (i = desc_count - 1; i >= 0; i--) {
2229 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2230 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2231 			dma_unmap_single(pp->dev->dev.parent,
2232 					 tx_desc->buf_phys_addr,
2233 					 tx_desc->data_size,
2234 					 DMA_TO_DEVICE);
2235 		mvneta_txq_desc_put(txq);
2236 	}
2237 	return 0;
2238 }
2239 
2240 /* Handle tx fragmentation processing */
2241 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2242 				  struct mvneta_tx_queue *txq)
2243 {
2244 	struct mvneta_tx_desc *tx_desc;
2245 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2246 
2247 	for (i = 0; i < nr_frags; i++) {
2248 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2249 		void *addr = page_address(frag->page.p) + frag->page_offset;
2250 
2251 		tx_desc = mvneta_txq_next_desc_get(txq);
2252 		tx_desc->data_size = frag->size;
2253 
2254 		tx_desc->buf_phys_addr =
2255 			dma_map_single(pp->dev->dev.parent, addr,
2256 				       tx_desc->data_size, DMA_TO_DEVICE);
2257 
2258 		if (dma_mapping_error(pp->dev->dev.parent,
2259 				      tx_desc->buf_phys_addr)) {
2260 			mvneta_txq_desc_put(txq);
2261 			goto error;
2262 		}
2263 
2264 		if (i == nr_frags - 1) {
2265 			/* Last descriptor */
2266 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2267 			txq->tx_skb[txq->txq_put_index] = skb;
2268 		} else {
2269 			/* Descriptor in the middle: Not First, Not Last */
2270 			tx_desc->command = 0;
2271 			txq->tx_skb[txq->txq_put_index] = NULL;
2272 		}
2273 		mvneta_txq_inc_put(txq);
2274 	}
2275 
2276 	return 0;
2277 
2278 error:
2279 	/* Release all descriptors that were used to map fragments of
2280 	 * this packet, as well as the corresponding DMA mappings
2281 	 */
2282 	for (i = i - 1; i >= 0; i--) {
2283 		tx_desc = txq->descs + i;
2284 		dma_unmap_single(pp->dev->dev.parent,
2285 				 tx_desc->buf_phys_addr,
2286 				 tx_desc->data_size,
2287 				 DMA_TO_DEVICE);
2288 		mvneta_txq_desc_put(txq);
2289 	}
2290 
2291 	return -ENOMEM;
2292 }
2293 
2294 /* Main tx processing */
2295 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2296 {
2297 	struct mvneta_port *pp = netdev_priv(dev);
2298 	u16 txq_id = skb_get_queue_mapping(skb);
2299 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2300 	struct mvneta_tx_desc *tx_desc;
2301 	int len = skb->len;
2302 	int frags = 0;
2303 	u32 tx_cmd;
2304 
2305 	if (!netif_running(dev))
2306 		goto out;
2307 
2308 	if (skb_is_gso(skb)) {
2309 		frags = mvneta_tx_tso(skb, dev, txq);
2310 		goto out;
2311 	}
2312 
2313 	frags = skb_shinfo(skb)->nr_frags + 1;
2314 
2315 	/* Get a descriptor for the first part of the packet */
2316 	tx_desc = mvneta_txq_next_desc_get(txq);
2317 
2318 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2319 
2320 	tx_desc->data_size = skb_headlen(skb);
2321 
2322 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2323 						tx_desc->data_size,
2324 						DMA_TO_DEVICE);
2325 	if (unlikely(dma_mapping_error(dev->dev.parent,
2326 				       tx_desc->buf_phys_addr))) {
2327 		mvneta_txq_desc_put(txq);
2328 		frags = 0;
2329 		goto out;
2330 	}
2331 
2332 	if (frags == 1) {
2333 		/* First and Last descriptor */
2334 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2335 		tx_desc->command = tx_cmd;
2336 		txq->tx_skb[txq->txq_put_index] = skb;
2337 		mvneta_txq_inc_put(txq);
2338 	} else {
2339 		/* First but not Last */
2340 		tx_cmd |= MVNETA_TXD_F_DESC;
2341 		txq->tx_skb[txq->txq_put_index] = NULL;
2342 		mvneta_txq_inc_put(txq);
2343 		tx_desc->command = tx_cmd;
2344 		/* Continue with other skb fragments */
2345 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2346 			dma_unmap_single(dev->dev.parent,
2347 					 tx_desc->buf_phys_addr,
2348 					 tx_desc->data_size,
2349 					 DMA_TO_DEVICE);
2350 			mvneta_txq_desc_put(txq);
2351 			frags = 0;
2352 			goto out;
2353 		}
2354 	}
2355 
2356 out:
2357 	if (frags > 0) {
2358 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2359 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2360 
2361 		txq->count += frags;
2362 		mvneta_txq_pend_desc_add(pp, txq, frags);
2363 
2364 		if (txq->count >= txq->tx_stop_threshold)
2365 			netif_tx_stop_queue(nq);
2366 
2367 		u64_stats_update_begin(&stats->syncp);
2368 		stats->tx_packets++;
2369 		stats->tx_bytes  += len;
2370 		u64_stats_update_end(&stats->syncp);
2371 	} else {
2372 		dev->stats.tx_dropped++;
2373 		dev_kfree_skb_any(skb);
2374 	}
2375 
2376 	return NETDEV_TX_OK;
2377 }
2378 
2379 
2380 /* Free tx resources, when resetting a port */
2381 static void mvneta_txq_done_force(struct mvneta_port *pp,
2382 				  struct mvneta_tx_queue *txq)
2383 
2384 {
2385 	int tx_done = txq->count;
2386 
2387 	mvneta_txq_bufs_free(pp, txq, tx_done);
2388 
2389 	/* reset txq */
2390 	txq->count = 0;
2391 	txq->txq_put_index = 0;
2392 	txq->txq_get_index = 0;
2393 }
2394 
2395 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2396  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2397  */
2398 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2399 {
2400 	struct mvneta_tx_queue *txq;
2401 	struct netdev_queue *nq;
2402 
2403 	while (cause_tx_done) {
2404 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2405 
2406 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2407 		__netif_tx_lock(nq, smp_processor_id());
2408 
2409 		if (txq->count)
2410 			mvneta_txq_done(pp, txq);
2411 
2412 		__netif_tx_unlock(nq);
2413 		cause_tx_done &= ~((1 << txq->id));
2414 	}
2415 }
2416 
2417 /* Compute crc8 of the specified address, using a unique algorithm ,
2418  * according to hw spec, different than generic crc8 algorithm
2419  */
2420 static int mvneta_addr_crc(unsigned char *addr)
2421 {
2422 	int crc = 0;
2423 	int i;
2424 
2425 	for (i = 0; i < ETH_ALEN; i++) {
2426 		int j;
2427 
2428 		crc = (crc ^ addr[i]) << 8;
2429 		for (j = 7; j >= 0; j--) {
2430 			if (crc & (0x100 << j))
2431 				crc ^= 0x107 << j;
2432 		}
2433 	}
2434 
2435 	return crc;
2436 }
2437 
2438 /* This method controls the net device special MAC multicast support.
2439  * The Special Multicast Table for MAC addresses supports MAC of the form
2440  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2441  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2442  * Table entries in the DA-Filter table. This method set the Special
2443  * Multicast Table appropriate entry.
2444  */
2445 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2446 					  unsigned char last_byte,
2447 					  int queue)
2448 {
2449 	unsigned int smc_table_reg;
2450 	unsigned int tbl_offset;
2451 	unsigned int reg_offset;
2452 
2453 	/* Register offset from SMC table base    */
2454 	tbl_offset = (last_byte / 4);
2455 	/* Entry offset within the above reg */
2456 	reg_offset = last_byte % 4;
2457 
2458 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2459 					+ tbl_offset * 4));
2460 
2461 	if (queue == -1)
2462 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2463 	else {
2464 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2465 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2466 	}
2467 
2468 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2469 		    smc_table_reg);
2470 }
2471 
2472 /* This method controls the network device Other MAC multicast support.
2473  * The Other Multicast Table is used for multicast of another type.
2474  * A CRC-8 is used as an index to the Other Multicast Table entries
2475  * in the DA-Filter table.
2476  * The method gets the CRC-8 value from the calling routine and
2477  * sets the Other Multicast Table appropriate entry according to the
2478  * specified CRC-8 .
2479  */
2480 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2481 					unsigned char crc8,
2482 					int queue)
2483 {
2484 	unsigned int omc_table_reg;
2485 	unsigned int tbl_offset;
2486 	unsigned int reg_offset;
2487 
2488 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2489 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2490 
2491 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2492 
2493 	if (queue == -1) {
2494 		/* Clear accepts frame bit at specified Other DA table entry */
2495 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2496 	} else {
2497 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2498 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2499 	}
2500 
2501 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2502 }
2503 
2504 /* The network device supports multicast using two tables:
2505  *    1) Special Multicast Table for MAC addresses of the form
2506  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2507  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2508  *       Table entries in the DA-Filter table.
2509  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2510  *       is used as an index to the Other Multicast Table entries in the
2511  *       DA-Filter table.
2512  */
2513 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2514 				 int queue)
2515 {
2516 	unsigned char crc_result = 0;
2517 
2518 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2519 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2520 		return 0;
2521 	}
2522 
2523 	crc_result = mvneta_addr_crc(p_addr);
2524 	if (queue == -1) {
2525 		if (pp->mcast_count[crc_result] == 0) {
2526 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2527 				    crc_result);
2528 			return -EINVAL;
2529 		}
2530 
2531 		pp->mcast_count[crc_result]--;
2532 		if (pp->mcast_count[crc_result] != 0) {
2533 			netdev_info(pp->dev,
2534 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2535 				    pp->mcast_count[crc_result], crc_result);
2536 			return -EINVAL;
2537 		}
2538 	} else
2539 		pp->mcast_count[crc_result]++;
2540 
2541 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2542 
2543 	return 0;
2544 }
2545 
2546 /* Configure Fitering mode of Ethernet port */
2547 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2548 					  int is_promisc)
2549 {
2550 	u32 port_cfg_reg, val;
2551 
2552 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2553 
2554 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2555 
2556 	/* Set / Clear UPM bit in port configuration register */
2557 	if (is_promisc) {
2558 		/* Accept all Unicast addresses */
2559 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2560 		val |= MVNETA_FORCE_UNI;
2561 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2562 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2563 	} else {
2564 		/* Reject all Unicast addresses */
2565 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2566 		val &= ~MVNETA_FORCE_UNI;
2567 	}
2568 
2569 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2570 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2571 }
2572 
2573 /* register unicast and multicast addresses */
2574 static void mvneta_set_rx_mode(struct net_device *dev)
2575 {
2576 	struct mvneta_port *pp = netdev_priv(dev);
2577 	struct netdev_hw_addr *ha;
2578 
2579 	if (dev->flags & IFF_PROMISC) {
2580 		/* Accept all: Multicast + Unicast */
2581 		mvneta_rx_unicast_promisc_set(pp, 1);
2582 		mvneta_set_ucast_table(pp, pp->rxq_def);
2583 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2584 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2585 	} else {
2586 		/* Accept single Unicast */
2587 		mvneta_rx_unicast_promisc_set(pp, 0);
2588 		mvneta_set_ucast_table(pp, -1);
2589 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2590 
2591 		if (dev->flags & IFF_ALLMULTI) {
2592 			/* Accept all multicast */
2593 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2594 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2595 		} else {
2596 			/* Accept only initialized multicast */
2597 			mvneta_set_special_mcast_table(pp, -1);
2598 			mvneta_set_other_mcast_table(pp, -1);
2599 
2600 			if (!netdev_mc_empty(dev)) {
2601 				netdev_for_each_mc_addr(ha, dev) {
2602 					mvneta_mcast_addr_set(pp, ha->addr,
2603 							      pp->rxq_def);
2604 				}
2605 			}
2606 		}
2607 	}
2608 }
2609 
2610 /* Interrupt handling - the callback for request_irq() */
2611 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2612 {
2613 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2614 
2615 	disable_percpu_irq(port->pp->dev->irq);
2616 	napi_schedule(&port->napi);
2617 
2618 	return IRQ_HANDLED;
2619 }
2620 
2621 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2622 				    struct phy_device *phy)
2623 {
2624 	struct fixed_phy_status status;
2625 	struct fixed_phy_status changed = {};
2626 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2627 
2628 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2629 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2630 		status.speed = SPEED_1000;
2631 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2632 		status.speed = SPEED_100;
2633 	else
2634 		status.speed = SPEED_10;
2635 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2636 	changed.link = 1;
2637 	changed.speed = 1;
2638 	changed.duplex = 1;
2639 	fixed_phy_update_state(phy, &status, &changed);
2640 	return 0;
2641 }
2642 
2643 /* NAPI handler
2644  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2645  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2646  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2647  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2648  * Each CPU has its own causeRxTx register
2649  */
2650 static int mvneta_poll(struct napi_struct *napi, int budget)
2651 {
2652 	int rx_done = 0;
2653 	u32 cause_rx_tx;
2654 	int rx_queue;
2655 	struct mvneta_port *pp = netdev_priv(napi->dev);
2656 	struct net_device *ndev = pp->dev;
2657 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2658 
2659 	if (!netif_running(pp->dev)) {
2660 		napi_complete(&port->napi);
2661 		return rx_done;
2662 	}
2663 
2664 	/* Read cause register */
2665 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2666 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2667 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2668 
2669 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2670 		if (pp->use_inband_status && (cause_misc &
2671 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2672 				 MVNETA_CAUSE_LINK_CHANGE |
2673 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2674 			mvneta_fixed_link_update(pp, ndev->phydev);
2675 		}
2676 	}
2677 
2678 	/* Release Tx descriptors */
2679 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2680 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2681 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2682 	}
2683 
2684 	/* For the case where the last mvneta_poll did not process all
2685 	 * RX packets
2686 	 */
2687 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2688 
2689 	cause_rx_tx |= port->cause_rx_tx;
2690 
2691 	if (rx_queue) {
2692 		rx_queue = rx_queue - 1;
2693 		if (pp->bm_priv)
2694 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2695 		else
2696 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2697 	}
2698 
2699 	budget -= rx_done;
2700 
2701 	if (budget > 0) {
2702 		cause_rx_tx = 0;
2703 		napi_complete(&port->napi);
2704 		enable_percpu_irq(pp->dev->irq, 0);
2705 	}
2706 
2707 	port->cause_rx_tx = cause_rx_tx;
2708 	return rx_done;
2709 }
2710 
2711 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2712 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2713 			   int num)
2714 {
2715 	int i;
2716 
2717 	for (i = 0; i < num; i++) {
2718 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2719 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2720 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2721 				__func__, rxq->id, i, num);
2722 			break;
2723 		}
2724 	}
2725 
2726 	/* Add this number of RX descriptors as non occupied (ready to
2727 	 * get packets)
2728 	 */
2729 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2730 
2731 	return i;
2732 }
2733 
2734 /* Free all packets pending transmit from all TXQs and reset TX port */
2735 static void mvneta_tx_reset(struct mvneta_port *pp)
2736 {
2737 	int queue;
2738 
2739 	/* free the skb's in the tx ring */
2740 	for (queue = 0; queue < txq_number; queue++)
2741 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2742 
2743 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2744 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2745 }
2746 
2747 static void mvneta_rx_reset(struct mvneta_port *pp)
2748 {
2749 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2750 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2751 }
2752 
2753 /* Rx/Tx queue initialization/cleanup methods */
2754 
2755 /* Create a specified RX queue */
2756 static int mvneta_rxq_init(struct mvneta_port *pp,
2757 			   struct mvneta_rx_queue *rxq)
2758 
2759 {
2760 	rxq->size = pp->rx_ring_size;
2761 
2762 	/* Allocate memory for RX descriptors */
2763 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2764 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2765 					&rxq->descs_phys, GFP_KERNEL);
2766 	if (rxq->descs == NULL)
2767 		return -ENOMEM;
2768 
2769 	rxq->last_desc = rxq->size - 1;
2770 
2771 	/* Set Rx descriptors queue starting address */
2772 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2773 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2774 
2775 	/* Set Offset */
2776 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2777 
2778 	/* Set coalescing pkts and time */
2779 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2780 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2781 
2782 	if (!pp->bm_priv) {
2783 		/* Fill RXQ with buffers from RX pool */
2784 		mvneta_rxq_buf_size_set(pp, rxq,
2785 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2786 		mvneta_rxq_bm_disable(pp, rxq);
2787 	} else {
2788 		mvneta_rxq_bm_enable(pp, rxq);
2789 		mvneta_rxq_long_pool_set(pp, rxq);
2790 		mvneta_rxq_short_pool_set(pp, rxq);
2791 	}
2792 
2793 	mvneta_rxq_fill(pp, rxq, rxq->size);
2794 
2795 	return 0;
2796 }
2797 
2798 /* Cleanup Rx queue */
2799 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2800 			      struct mvneta_rx_queue *rxq)
2801 {
2802 	mvneta_rxq_drop_pkts(pp, rxq);
2803 
2804 	if (rxq->descs)
2805 		dma_free_coherent(pp->dev->dev.parent,
2806 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2807 				  rxq->descs,
2808 				  rxq->descs_phys);
2809 
2810 	rxq->descs             = NULL;
2811 	rxq->last_desc         = 0;
2812 	rxq->next_desc_to_proc = 0;
2813 	rxq->descs_phys        = 0;
2814 }
2815 
2816 /* Create and initialize a tx queue */
2817 static int mvneta_txq_init(struct mvneta_port *pp,
2818 			   struct mvneta_tx_queue *txq)
2819 {
2820 	int cpu;
2821 
2822 	txq->size = pp->tx_ring_size;
2823 
2824 	/* A queue must always have room for at least one skb.
2825 	 * Therefore, stop the queue when the free entries reaches
2826 	 * the maximum number of descriptors per skb.
2827 	 */
2828 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2829 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2830 
2831 
2832 	/* Allocate memory for TX descriptors */
2833 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2834 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2835 					&txq->descs_phys, GFP_KERNEL);
2836 	if (txq->descs == NULL)
2837 		return -ENOMEM;
2838 
2839 	txq->last_desc = txq->size - 1;
2840 
2841 	/* Set maximum bandwidth for enabled TXQs */
2842 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2843 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2844 
2845 	/* Set Tx descriptors queue starting address */
2846 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2847 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2848 
2849 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2850 	if (txq->tx_skb == NULL) {
2851 		dma_free_coherent(pp->dev->dev.parent,
2852 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2853 				  txq->descs, txq->descs_phys);
2854 		return -ENOMEM;
2855 	}
2856 
2857 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2858 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2859 					   txq->size * TSO_HEADER_SIZE,
2860 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2861 	if (txq->tso_hdrs == NULL) {
2862 		kfree(txq->tx_skb);
2863 		dma_free_coherent(pp->dev->dev.parent,
2864 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2865 				  txq->descs, txq->descs_phys);
2866 		return -ENOMEM;
2867 	}
2868 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2869 
2870 	/* Setup XPS mapping */
2871 	if (txq_number > 1)
2872 		cpu = txq->id % num_present_cpus();
2873 	else
2874 		cpu = pp->rxq_def % num_present_cpus();
2875 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2876 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2877 
2878 	return 0;
2879 }
2880 
2881 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2882 static void mvneta_txq_deinit(struct mvneta_port *pp,
2883 			      struct mvneta_tx_queue *txq)
2884 {
2885 	kfree(txq->tx_skb);
2886 
2887 	if (txq->tso_hdrs)
2888 		dma_free_coherent(pp->dev->dev.parent,
2889 				  txq->size * TSO_HEADER_SIZE,
2890 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2891 	if (txq->descs)
2892 		dma_free_coherent(pp->dev->dev.parent,
2893 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2894 				  txq->descs, txq->descs_phys);
2895 
2896 	txq->descs             = NULL;
2897 	txq->last_desc         = 0;
2898 	txq->next_desc_to_proc = 0;
2899 	txq->descs_phys        = 0;
2900 
2901 	/* Set minimum bandwidth for disabled TXQs */
2902 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2903 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2904 
2905 	/* Set Tx descriptors queue starting address and size */
2906 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2907 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2908 }
2909 
2910 /* Cleanup all Tx queues */
2911 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2912 {
2913 	int queue;
2914 
2915 	for (queue = 0; queue < txq_number; queue++)
2916 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2917 }
2918 
2919 /* Cleanup all Rx queues */
2920 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2921 {
2922 	int queue;
2923 
2924 	for (queue = 0; queue < txq_number; queue++)
2925 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2926 }
2927 
2928 
2929 /* Init all Rx queues */
2930 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2931 {
2932 	int queue;
2933 
2934 	for (queue = 0; queue < rxq_number; queue++) {
2935 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2936 
2937 		if (err) {
2938 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2939 				   __func__, queue);
2940 			mvneta_cleanup_rxqs(pp);
2941 			return err;
2942 		}
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 /* Init all tx queues */
2949 static int mvneta_setup_txqs(struct mvneta_port *pp)
2950 {
2951 	int queue;
2952 
2953 	for (queue = 0; queue < txq_number; queue++) {
2954 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2955 		if (err) {
2956 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2957 				   __func__, queue);
2958 			mvneta_cleanup_txqs(pp);
2959 			return err;
2960 		}
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 static void mvneta_start_dev(struct mvneta_port *pp)
2967 {
2968 	int cpu;
2969 	struct net_device *ndev = pp->dev;
2970 
2971 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2972 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2973 
2974 	/* start the Rx/Tx activity */
2975 	mvneta_port_enable(pp);
2976 
2977 	/* Enable polling on the port */
2978 	for_each_online_cpu(cpu) {
2979 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2980 
2981 		napi_enable(&port->napi);
2982 	}
2983 
2984 	/* Unmask interrupts. It has to be done from each CPU */
2985 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2986 
2987 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2988 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2989 		    MVNETA_CAUSE_LINK_CHANGE |
2990 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2991 
2992 	phy_start(ndev->phydev);
2993 	netif_tx_start_all_queues(pp->dev);
2994 }
2995 
2996 static void mvneta_stop_dev(struct mvneta_port *pp)
2997 {
2998 	unsigned int cpu;
2999 	struct net_device *ndev = pp->dev;
3000 
3001 	phy_stop(ndev->phydev);
3002 
3003 	for_each_online_cpu(cpu) {
3004 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3005 
3006 		napi_disable(&port->napi);
3007 	}
3008 
3009 	netif_carrier_off(pp->dev);
3010 
3011 	mvneta_port_down(pp);
3012 	netif_tx_stop_all_queues(pp->dev);
3013 
3014 	/* Stop the port activity */
3015 	mvneta_port_disable(pp);
3016 
3017 	/* Clear all ethernet port interrupts */
3018 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3019 
3020 	/* Mask all ethernet port interrupts */
3021 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3022 
3023 	mvneta_tx_reset(pp);
3024 	mvneta_rx_reset(pp);
3025 }
3026 
3027 /* Return positive if MTU is valid */
3028 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3029 {
3030 	if (mtu < 68) {
3031 		netdev_err(dev, "cannot change mtu to less than 68\n");
3032 		return -EINVAL;
3033 	}
3034 
3035 	/* 9676 == 9700 - 20 and rounding to 8 */
3036 	if (mtu > 9676) {
3037 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3038 		mtu = 9676;
3039 	}
3040 
3041 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3042 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3043 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3044 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3045 	}
3046 
3047 	return mtu;
3048 }
3049 
3050 static void mvneta_percpu_enable(void *arg)
3051 {
3052 	struct mvneta_port *pp = arg;
3053 
3054 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3055 }
3056 
3057 static void mvneta_percpu_disable(void *arg)
3058 {
3059 	struct mvneta_port *pp = arg;
3060 
3061 	disable_percpu_irq(pp->dev->irq);
3062 }
3063 
3064 /* Change the device mtu */
3065 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3066 {
3067 	struct mvneta_port *pp = netdev_priv(dev);
3068 	int ret;
3069 
3070 	mtu = mvneta_check_mtu_valid(dev, mtu);
3071 	if (mtu < 0)
3072 		return -EINVAL;
3073 
3074 	dev->mtu = mtu;
3075 
3076 	if (!netif_running(dev)) {
3077 		if (pp->bm_priv)
3078 			mvneta_bm_update_mtu(pp, mtu);
3079 
3080 		netdev_update_features(dev);
3081 		return 0;
3082 	}
3083 
3084 	/* The interface is running, so we have to force a
3085 	 * reallocation of the queues
3086 	 */
3087 	mvneta_stop_dev(pp);
3088 	on_each_cpu(mvneta_percpu_disable, pp, true);
3089 
3090 	mvneta_cleanup_txqs(pp);
3091 	mvneta_cleanup_rxqs(pp);
3092 
3093 	if (pp->bm_priv)
3094 		mvneta_bm_update_mtu(pp, mtu);
3095 
3096 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3097 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3098 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3099 
3100 	ret = mvneta_setup_rxqs(pp);
3101 	if (ret) {
3102 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3103 		return ret;
3104 	}
3105 
3106 	ret = mvneta_setup_txqs(pp);
3107 	if (ret) {
3108 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3109 		return ret;
3110 	}
3111 
3112 	on_each_cpu(mvneta_percpu_enable, pp, true);
3113 	mvneta_start_dev(pp);
3114 	mvneta_port_up(pp);
3115 
3116 	netdev_update_features(dev);
3117 
3118 	return 0;
3119 }
3120 
3121 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3122 					     netdev_features_t features)
3123 {
3124 	struct mvneta_port *pp = netdev_priv(dev);
3125 
3126 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3127 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3128 		netdev_info(dev,
3129 			    "Disable IP checksum for MTU greater than %dB\n",
3130 			    pp->tx_csum_limit);
3131 	}
3132 
3133 	return features;
3134 }
3135 
3136 /* Get mac address */
3137 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3138 {
3139 	u32 mac_addr_l, mac_addr_h;
3140 
3141 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3142 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3143 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3144 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3145 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3146 	addr[3] = mac_addr_h & 0xFF;
3147 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3148 	addr[5] = mac_addr_l & 0xFF;
3149 }
3150 
3151 /* Handle setting mac address */
3152 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3153 {
3154 	struct mvneta_port *pp = netdev_priv(dev);
3155 	struct sockaddr *sockaddr = addr;
3156 	int ret;
3157 
3158 	ret = eth_prepare_mac_addr_change(dev, addr);
3159 	if (ret < 0)
3160 		return ret;
3161 	/* Remove previous address table entry */
3162 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3163 
3164 	/* Set new addr in hw */
3165 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3166 
3167 	eth_commit_mac_addr_change(dev, addr);
3168 	return 0;
3169 }
3170 
3171 static void mvneta_adjust_link(struct net_device *ndev)
3172 {
3173 	struct mvneta_port *pp = netdev_priv(ndev);
3174 	struct phy_device *phydev = ndev->phydev;
3175 	int status_change = 0;
3176 
3177 	if (phydev->link) {
3178 		if ((pp->speed != phydev->speed) ||
3179 		    (pp->duplex != phydev->duplex)) {
3180 			u32 val;
3181 
3182 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3183 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3184 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3185 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3186 
3187 			if (phydev->duplex)
3188 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3189 
3190 			if (phydev->speed == SPEED_1000)
3191 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3192 			else if (phydev->speed == SPEED_100)
3193 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3194 
3195 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3196 
3197 			pp->duplex = phydev->duplex;
3198 			pp->speed  = phydev->speed;
3199 		}
3200 	}
3201 
3202 	if (phydev->link != pp->link) {
3203 		if (!phydev->link) {
3204 			pp->duplex = -1;
3205 			pp->speed = 0;
3206 		}
3207 
3208 		pp->link = phydev->link;
3209 		status_change = 1;
3210 	}
3211 
3212 	if (status_change) {
3213 		if (phydev->link) {
3214 			if (!pp->use_inband_status) {
3215 				u32 val = mvreg_read(pp,
3216 						  MVNETA_GMAC_AUTONEG_CONFIG);
3217 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3218 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
3219 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3220 					    val);
3221 			}
3222 			mvneta_port_up(pp);
3223 		} else {
3224 			if (!pp->use_inband_status) {
3225 				u32 val = mvreg_read(pp,
3226 						  MVNETA_GMAC_AUTONEG_CONFIG);
3227 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3228 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3229 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3230 					    val);
3231 			}
3232 			mvneta_port_down(pp);
3233 		}
3234 		phy_print_status(phydev);
3235 	}
3236 }
3237 
3238 static int mvneta_mdio_probe(struct mvneta_port *pp)
3239 {
3240 	struct phy_device *phy_dev;
3241 
3242 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3243 				 pp->phy_interface);
3244 	if (!phy_dev) {
3245 		netdev_err(pp->dev, "could not find the PHY\n");
3246 		return -ENODEV;
3247 	}
3248 
3249 	phy_dev->supported &= PHY_GBIT_FEATURES;
3250 	phy_dev->advertising = phy_dev->supported;
3251 
3252 	pp->link    = 0;
3253 	pp->duplex  = 0;
3254 	pp->speed   = 0;
3255 
3256 	return 0;
3257 }
3258 
3259 static void mvneta_mdio_remove(struct mvneta_port *pp)
3260 {
3261 	struct net_device *ndev = pp->dev;
3262 
3263 	phy_disconnect(ndev->phydev);
3264 }
3265 
3266 /* Electing a CPU must be done in an atomic way: it should be done
3267  * after or before the removal/insertion of a CPU and this function is
3268  * not reentrant.
3269  */
3270 static void mvneta_percpu_elect(struct mvneta_port *pp)
3271 {
3272 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3273 
3274 	/* Use the cpu associated to the rxq when it is online, in all
3275 	 * the other cases, use the cpu 0 which can't be offline.
3276 	 */
3277 	if (cpu_online(pp->rxq_def))
3278 		elected_cpu = pp->rxq_def;
3279 
3280 	max_cpu = num_present_cpus();
3281 
3282 	for_each_online_cpu(cpu) {
3283 		int rxq_map = 0, txq_map = 0;
3284 		int rxq;
3285 
3286 		for (rxq = 0; rxq < rxq_number; rxq++)
3287 			if ((rxq % max_cpu) == cpu)
3288 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3289 
3290 		if (cpu == elected_cpu)
3291 			/* Map the default receive queue queue to the
3292 			 * elected CPU
3293 			 */
3294 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3295 
3296 		/* We update the TX queue map only if we have one
3297 		 * queue. In this case we associate the TX queue to
3298 		 * the CPU bound to the default RX queue
3299 		 */
3300 		if (txq_number == 1)
3301 			txq_map = (cpu == elected_cpu) ?
3302 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3303 		else
3304 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3305 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3306 
3307 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3308 
3309 		/* Update the interrupt mask on each CPU according the
3310 		 * new mapping
3311 		 */
3312 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3313 					 pp, true);
3314 		i++;
3315 
3316 	}
3317 };
3318 
3319 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3320 {
3321 	int other_cpu;
3322 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3323 						  node_online);
3324 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3325 
3326 
3327 	spin_lock(&pp->lock);
3328 	/*
3329 	 * Configuring the driver for a new CPU while the driver is
3330 	 * stopping is racy, so just avoid it.
3331 	 */
3332 	if (pp->is_stopped) {
3333 		spin_unlock(&pp->lock);
3334 		return 0;
3335 	}
3336 	netif_tx_stop_all_queues(pp->dev);
3337 
3338 	/*
3339 	 * We have to synchronise on tha napi of each CPU except the one
3340 	 * just being woken up
3341 	 */
3342 	for_each_online_cpu(other_cpu) {
3343 		if (other_cpu != cpu) {
3344 			struct mvneta_pcpu_port *other_port =
3345 				per_cpu_ptr(pp->ports, other_cpu);
3346 
3347 			napi_synchronize(&other_port->napi);
3348 		}
3349 	}
3350 
3351 	/* Mask all ethernet port interrupts */
3352 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3353 	napi_enable(&port->napi);
3354 
3355 	/*
3356 	 * Enable per-CPU interrupts on the CPU that is
3357 	 * brought up.
3358 	 */
3359 	mvneta_percpu_enable(pp);
3360 
3361 	/*
3362 	 * Enable per-CPU interrupt on the one CPU we care
3363 	 * about.
3364 	 */
3365 	mvneta_percpu_elect(pp);
3366 
3367 	/* Unmask all ethernet port interrupts */
3368 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3369 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3370 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3371 		    MVNETA_CAUSE_LINK_CHANGE |
3372 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3373 	netif_tx_start_all_queues(pp->dev);
3374 	spin_unlock(&pp->lock);
3375 	return 0;
3376 }
3377 
3378 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3379 {
3380 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3381 						  node_online);
3382 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3383 
3384 	/*
3385 	 * Thanks to this lock we are sure that any pending cpu election is
3386 	 * done.
3387 	 */
3388 	spin_lock(&pp->lock);
3389 	/* Mask all ethernet port interrupts */
3390 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3391 	spin_unlock(&pp->lock);
3392 
3393 	napi_synchronize(&port->napi);
3394 	napi_disable(&port->napi);
3395 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3396 	mvneta_percpu_disable(pp);
3397 	return 0;
3398 }
3399 
3400 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3401 {
3402 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3403 						  node_dead);
3404 
3405 	/* Check if a new CPU must be elected now this on is down */
3406 	spin_lock(&pp->lock);
3407 	mvneta_percpu_elect(pp);
3408 	spin_unlock(&pp->lock);
3409 	/* Unmask all ethernet port interrupts */
3410 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3411 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3412 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3413 		    MVNETA_CAUSE_LINK_CHANGE |
3414 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3415 	netif_tx_start_all_queues(pp->dev);
3416 	return 0;
3417 }
3418 
3419 static int mvneta_open(struct net_device *dev)
3420 {
3421 	struct mvneta_port *pp = netdev_priv(dev);
3422 	int ret;
3423 
3424 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3425 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3426 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3427 
3428 	ret = mvneta_setup_rxqs(pp);
3429 	if (ret)
3430 		return ret;
3431 
3432 	ret = mvneta_setup_txqs(pp);
3433 	if (ret)
3434 		goto err_cleanup_rxqs;
3435 
3436 	/* Connect to port interrupt line */
3437 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3438 				 MVNETA_DRIVER_NAME, pp->ports);
3439 	if (ret) {
3440 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3441 		goto err_cleanup_txqs;
3442 	}
3443 
3444 	/* Enable per-CPU interrupt on all the CPU to handle our RX
3445 	 * queue interrupts
3446 	 */
3447 	on_each_cpu(mvneta_percpu_enable, pp, true);
3448 
3449 	pp->is_stopped = false;
3450 	/* Register a CPU notifier to handle the case where our CPU
3451 	 * might be taken offline.
3452 	 */
3453 	ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3454 					       &pp->node_online);
3455 	if (ret)
3456 		goto err_free_irq;
3457 
3458 	ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3459 					       &pp->node_dead);
3460 	if (ret)
3461 		goto err_free_online_hp;
3462 
3463 	/* In default link is down */
3464 	netif_carrier_off(pp->dev);
3465 
3466 	ret = mvneta_mdio_probe(pp);
3467 	if (ret < 0) {
3468 		netdev_err(dev, "cannot probe MDIO bus\n");
3469 		goto err_free_dead_hp;
3470 	}
3471 
3472 	mvneta_start_dev(pp);
3473 
3474 	return 0;
3475 
3476 err_free_dead_hp:
3477 	cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3478 					    &pp->node_dead);
3479 err_free_online_hp:
3480 	cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3481 err_free_irq:
3482 	on_each_cpu(mvneta_percpu_disable, pp, true);
3483 	free_percpu_irq(pp->dev->irq, pp->ports);
3484 err_cleanup_txqs:
3485 	mvneta_cleanup_txqs(pp);
3486 err_cleanup_rxqs:
3487 	mvneta_cleanup_rxqs(pp);
3488 	return ret;
3489 }
3490 
3491 /* Stop the port, free port interrupt line */
3492 static int mvneta_stop(struct net_device *dev)
3493 {
3494 	struct mvneta_port *pp = netdev_priv(dev);
3495 
3496 	/* Inform that we are stopping so we don't want to setup the
3497 	 * driver for new CPUs in the notifiers. The code of the
3498 	 * notifier for CPU online is protected by the same spinlock,
3499 	 * so when we get the lock, the notifer work is done.
3500 	 */
3501 	spin_lock(&pp->lock);
3502 	pp->is_stopped = true;
3503 	spin_unlock(&pp->lock);
3504 
3505 	mvneta_stop_dev(pp);
3506 	mvneta_mdio_remove(pp);
3507 
3508 	cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online);
3509 	cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3510 					    &pp->node_dead);
3511 	on_each_cpu(mvneta_percpu_disable, pp, true);
3512 	free_percpu_irq(dev->irq, pp->ports);
3513 	mvneta_cleanup_rxqs(pp);
3514 	mvneta_cleanup_txqs(pp);
3515 
3516 	return 0;
3517 }
3518 
3519 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3520 {
3521 	if (!dev->phydev)
3522 		return -ENOTSUPP;
3523 
3524 	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3525 }
3526 
3527 /* Ethtool methods */
3528 
3529 /* Set link ksettings (phy address, speed) for ethtools */
3530 static int
3531 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3532 				  const struct ethtool_link_ksettings *cmd)
3533 {
3534 	struct mvneta_port *pp = netdev_priv(ndev);
3535 	struct phy_device *phydev = ndev->phydev;
3536 
3537 	if (!phydev)
3538 		return -ENODEV;
3539 
3540 	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3541 		u32 val;
3542 
3543 		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3544 
3545 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3546 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3547 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3548 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3549 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3550 
3551 			if (phydev->duplex)
3552 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3553 
3554 			if (phydev->speed == SPEED_1000)
3555 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3556 			else if (phydev->speed == SPEED_100)
3557 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3558 
3559 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3560 		}
3561 
3562 		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3563 		netdev_info(pp->dev, "autoneg status set to %i\n",
3564 			    pp->use_inband_status);
3565 
3566 		if (netif_running(ndev)) {
3567 			mvneta_port_down(pp);
3568 			mvneta_port_up(pp);
3569 		}
3570 	}
3571 
3572 	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3573 }
3574 
3575 /* Set interrupt coalescing for ethtools */
3576 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3577 				       struct ethtool_coalesce *c)
3578 {
3579 	struct mvneta_port *pp = netdev_priv(dev);
3580 	int queue;
3581 
3582 	for (queue = 0; queue < rxq_number; queue++) {
3583 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3584 		rxq->time_coal = c->rx_coalesce_usecs;
3585 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3586 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3587 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3588 	}
3589 
3590 	for (queue = 0; queue < txq_number; queue++) {
3591 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3592 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3593 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3594 	}
3595 
3596 	return 0;
3597 }
3598 
3599 /* get coalescing for ethtools */
3600 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3601 				       struct ethtool_coalesce *c)
3602 {
3603 	struct mvneta_port *pp = netdev_priv(dev);
3604 
3605 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3606 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3607 
3608 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3609 	return 0;
3610 }
3611 
3612 
3613 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3614 				    struct ethtool_drvinfo *drvinfo)
3615 {
3616 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3617 		sizeof(drvinfo->driver));
3618 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3619 		sizeof(drvinfo->version));
3620 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3621 		sizeof(drvinfo->bus_info));
3622 }
3623 
3624 
3625 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3626 					 struct ethtool_ringparam *ring)
3627 {
3628 	struct mvneta_port *pp = netdev_priv(netdev);
3629 
3630 	ring->rx_max_pending = MVNETA_MAX_RXD;
3631 	ring->tx_max_pending = MVNETA_MAX_TXD;
3632 	ring->rx_pending = pp->rx_ring_size;
3633 	ring->tx_pending = pp->tx_ring_size;
3634 }
3635 
3636 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3637 					struct ethtool_ringparam *ring)
3638 {
3639 	struct mvneta_port *pp = netdev_priv(dev);
3640 
3641 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3642 		return -EINVAL;
3643 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3644 		ring->rx_pending : MVNETA_MAX_RXD;
3645 
3646 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3647 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3648 	if (pp->tx_ring_size != ring->tx_pending)
3649 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3650 			    pp->tx_ring_size, ring->tx_pending);
3651 
3652 	if (netif_running(dev)) {
3653 		mvneta_stop(dev);
3654 		if (mvneta_open(dev)) {
3655 			netdev_err(dev,
3656 				   "error on opening device after ring param change\n");
3657 			return -ENOMEM;
3658 		}
3659 	}
3660 
3661 	return 0;
3662 }
3663 
3664 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3665 				       u8 *data)
3666 {
3667 	if (sset == ETH_SS_STATS) {
3668 		int i;
3669 
3670 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3671 			memcpy(data + i * ETH_GSTRING_LEN,
3672 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3673 	}
3674 }
3675 
3676 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3677 {
3678 	const struct mvneta_statistic *s;
3679 	void __iomem *base = pp->base;
3680 	u32 high, low, val;
3681 	u64 val64;
3682 	int i;
3683 
3684 	for (i = 0, s = mvneta_statistics;
3685 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3686 	     s++, i++) {
3687 		switch (s->type) {
3688 		case T_REG_32:
3689 			val = readl_relaxed(base + s->offset);
3690 			pp->ethtool_stats[i] += val;
3691 			break;
3692 		case T_REG_64:
3693 			/* Docs say to read low 32-bit then high */
3694 			low = readl_relaxed(base + s->offset);
3695 			high = readl_relaxed(base + s->offset + 4);
3696 			val64 = (u64)high << 32 | low;
3697 			pp->ethtool_stats[i] += val64;
3698 			break;
3699 		}
3700 	}
3701 }
3702 
3703 static void mvneta_ethtool_get_stats(struct net_device *dev,
3704 				     struct ethtool_stats *stats, u64 *data)
3705 {
3706 	struct mvneta_port *pp = netdev_priv(dev);
3707 	int i;
3708 
3709 	mvneta_ethtool_update_stats(pp);
3710 
3711 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3712 		*data++ = pp->ethtool_stats[i];
3713 }
3714 
3715 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3716 {
3717 	if (sset == ETH_SS_STATS)
3718 		return ARRAY_SIZE(mvneta_statistics);
3719 	return -EOPNOTSUPP;
3720 }
3721 
3722 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3723 {
3724 	return MVNETA_RSS_LU_TABLE_SIZE;
3725 }
3726 
3727 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3728 				    struct ethtool_rxnfc *info,
3729 				    u32 *rules __always_unused)
3730 {
3731 	switch (info->cmd) {
3732 	case ETHTOOL_GRXRINGS:
3733 		info->data =  rxq_number;
3734 		return 0;
3735 	case ETHTOOL_GRXFH:
3736 		return -EOPNOTSUPP;
3737 	default:
3738 		return -EOPNOTSUPP;
3739 	}
3740 }
3741 
3742 static int  mvneta_config_rss(struct mvneta_port *pp)
3743 {
3744 	int cpu;
3745 	u32 val;
3746 
3747 	netif_tx_stop_all_queues(pp->dev);
3748 
3749 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3750 
3751 	/* We have to synchronise on the napi of each CPU */
3752 	for_each_online_cpu(cpu) {
3753 		struct mvneta_pcpu_port *pcpu_port =
3754 			per_cpu_ptr(pp->ports, cpu);
3755 
3756 		napi_synchronize(&pcpu_port->napi);
3757 		napi_disable(&pcpu_port->napi);
3758 	}
3759 
3760 	pp->rxq_def = pp->indir[0];
3761 
3762 	/* Update unicast mapping */
3763 	mvneta_set_rx_mode(pp->dev);
3764 
3765 	/* Update val of portCfg register accordingly with all RxQueue types */
3766 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3767 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3768 
3769 	/* Update the elected CPU matching the new rxq_def */
3770 	spin_lock(&pp->lock);
3771 	mvneta_percpu_elect(pp);
3772 	spin_unlock(&pp->lock);
3773 
3774 	/* We have to synchronise on the napi of each CPU */
3775 	for_each_online_cpu(cpu) {
3776 		struct mvneta_pcpu_port *pcpu_port =
3777 			per_cpu_ptr(pp->ports, cpu);
3778 
3779 		napi_enable(&pcpu_port->napi);
3780 	}
3781 
3782 	netif_tx_start_all_queues(pp->dev);
3783 
3784 	return 0;
3785 }
3786 
3787 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3788 				   const u8 *key, const u8 hfunc)
3789 {
3790 	struct mvneta_port *pp = netdev_priv(dev);
3791 	/* We require at least one supported parameter to be changed
3792 	 * and no change in any of the unsupported parameters
3793 	 */
3794 	if (key ||
3795 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3796 		return -EOPNOTSUPP;
3797 
3798 	if (!indir)
3799 		return 0;
3800 
3801 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3802 
3803 	return mvneta_config_rss(pp);
3804 }
3805 
3806 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3807 				   u8 *hfunc)
3808 {
3809 	struct mvneta_port *pp = netdev_priv(dev);
3810 
3811 	if (hfunc)
3812 		*hfunc = ETH_RSS_HASH_TOP;
3813 
3814 	if (!indir)
3815 		return 0;
3816 
3817 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3818 
3819 	return 0;
3820 }
3821 
3822 static const struct net_device_ops mvneta_netdev_ops = {
3823 	.ndo_open            = mvneta_open,
3824 	.ndo_stop            = mvneta_stop,
3825 	.ndo_start_xmit      = mvneta_tx,
3826 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3827 	.ndo_set_mac_address = mvneta_set_mac_addr,
3828 	.ndo_change_mtu      = mvneta_change_mtu,
3829 	.ndo_fix_features    = mvneta_fix_features,
3830 	.ndo_get_stats64     = mvneta_get_stats64,
3831 	.ndo_do_ioctl        = mvneta_ioctl,
3832 };
3833 
3834 const struct ethtool_ops mvneta_eth_tool_ops = {
3835 	.get_link       = ethtool_op_get_link,
3836 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3837 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3838 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3839 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3840 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3841 	.get_strings	= mvneta_ethtool_get_strings,
3842 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3843 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3844 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3845 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3846 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3847 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3848 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
3849 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3850 };
3851 
3852 /* Initialize hw */
3853 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3854 {
3855 	int queue;
3856 
3857 	/* Disable port */
3858 	mvneta_port_disable(pp);
3859 
3860 	/* Set port default values */
3861 	mvneta_defaults_set(pp);
3862 
3863 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3864 				GFP_KERNEL);
3865 	if (!pp->txqs)
3866 		return -ENOMEM;
3867 
3868 	/* Initialize TX descriptor rings */
3869 	for (queue = 0; queue < txq_number; queue++) {
3870 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3871 		txq->id = queue;
3872 		txq->size = pp->tx_ring_size;
3873 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3874 	}
3875 
3876 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3877 				GFP_KERNEL);
3878 	if (!pp->rxqs)
3879 		return -ENOMEM;
3880 
3881 	/* Create Rx descriptor rings */
3882 	for (queue = 0; queue < rxq_number; queue++) {
3883 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3884 		rxq->id = queue;
3885 		rxq->size = pp->rx_ring_size;
3886 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3887 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3888 	}
3889 
3890 	return 0;
3891 }
3892 
3893 /* platform glue : initialize decoding windows */
3894 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3895 				     const struct mbus_dram_target_info *dram)
3896 {
3897 	u32 win_enable;
3898 	u32 win_protect;
3899 	int i;
3900 
3901 	for (i = 0; i < 6; i++) {
3902 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3903 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3904 
3905 		if (i < 4)
3906 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3907 	}
3908 
3909 	win_enable = 0x3f;
3910 	win_protect = 0;
3911 
3912 	for (i = 0; i < dram->num_cs; i++) {
3913 		const struct mbus_dram_window *cs = dram->cs + i;
3914 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3915 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3916 
3917 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3918 			    (cs->size - 1) & 0xffff0000);
3919 
3920 		win_enable &= ~(1 << i);
3921 		win_protect |= 3 << (2 * i);
3922 	}
3923 
3924 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3925 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3926 }
3927 
3928 /* Power up the port */
3929 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3930 {
3931 	u32 ctrl;
3932 
3933 	/* MAC Cause register should be cleared */
3934 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3935 
3936 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3937 
3938 	/* Even though it might look weird, when we're configured in
3939 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3940 	 */
3941 	switch(phy_mode) {
3942 	case PHY_INTERFACE_MODE_QSGMII:
3943 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3944 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3945 		break;
3946 	case PHY_INTERFACE_MODE_SGMII:
3947 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3948 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3949 		break;
3950 	case PHY_INTERFACE_MODE_RGMII:
3951 	case PHY_INTERFACE_MODE_RGMII_ID:
3952 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3953 		break;
3954 	default:
3955 		return -EINVAL;
3956 	}
3957 
3958 	/* Cancel Port Reset */
3959 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3960 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3961 
3962 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3963 		MVNETA_GMAC2_PORT_RESET) != 0)
3964 		continue;
3965 
3966 	return 0;
3967 }
3968 
3969 /* Device initialization routine */
3970 static int mvneta_probe(struct platform_device *pdev)
3971 {
3972 	const struct mbus_dram_target_info *dram_target_info;
3973 	struct resource *res;
3974 	struct device_node *dn = pdev->dev.of_node;
3975 	struct device_node *phy_node;
3976 	struct device_node *bm_node;
3977 	struct mvneta_port *pp;
3978 	struct net_device *dev;
3979 	const char *dt_mac_addr;
3980 	char hw_mac_addr[ETH_ALEN];
3981 	const char *mac_from;
3982 	const char *managed;
3983 	int tx_csum_limit;
3984 	int phy_mode;
3985 	int err;
3986 	int cpu;
3987 
3988 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3989 	if (!dev)
3990 		return -ENOMEM;
3991 
3992 	dev->irq = irq_of_parse_and_map(dn, 0);
3993 	if (dev->irq == 0) {
3994 		err = -EINVAL;
3995 		goto err_free_netdev;
3996 	}
3997 
3998 	phy_node = of_parse_phandle(dn, "phy", 0);
3999 	if (!phy_node) {
4000 		if (!of_phy_is_fixed_link(dn)) {
4001 			dev_err(&pdev->dev, "no PHY specified\n");
4002 			err = -ENODEV;
4003 			goto err_free_irq;
4004 		}
4005 
4006 		err = of_phy_register_fixed_link(dn);
4007 		if (err < 0) {
4008 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
4009 			goto err_free_irq;
4010 		}
4011 
4012 		/* In the case of a fixed PHY, the DT node associated
4013 		 * to the PHY is the Ethernet MAC DT node.
4014 		 */
4015 		phy_node = of_node_get(dn);
4016 	}
4017 
4018 	phy_mode = of_get_phy_mode(dn);
4019 	if (phy_mode < 0) {
4020 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4021 		err = -EINVAL;
4022 		goto err_put_phy_node;
4023 	}
4024 
4025 	dev->tx_queue_len = MVNETA_MAX_TXD;
4026 	dev->watchdog_timeo = 5 * HZ;
4027 	dev->netdev_ops = &mvneta_netdev_ops;
4028 
4029 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4030 
4031 	pp = netdev_priv(dev);
4032 	spin_lock_init(&pp->lock);
4033 	pp->phy_node = phy_node;
4034 	pp->phy_interface = phy_mode;
4035 
4036 	err = of_property_read_string(dn, "managed", &managed);
4037 	pp->use_inband_status = (err == 0 &&
4038 				 strcmp(managed, "in-band-status") == 0);
4039 
4040 	pp->rxq_def = rxq_def;
4041 
4042 	pp->indir[0] = rxq_def;
4043 
4044 	pp->clk = devm_clk_get(&pdev->dev, "core");
4045 	if (IS_ERR(pp->clk))
4046 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4047 	if (IS_ERR(pp->clk)) {
4048 		err = PTR_ERR(pp->clk);
4049 		goto err_put_phy_node;
4050 	}
4051 
4052 	clk_prepare_enable(pp->clk);
4053 
4054 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4055 	if (!IS_ERR(pp->clk_bus))
4056 		clk_prepare_enable(pp->clk_bus);
4057 
4058 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4059 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4060 	if (IS_ERR(pp->base)) {
4061 		err = PTR_ERR(pp->base);
4062 		goto err_clk;
4063 	}
4064 
4065 	/* Alloc per-cpu port structure */
4066 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4067 	if (!pp->ports) {
4068 		err = -ENOMEM;
4069 		goto err_clk;
4070 	}
4071 
4072 	/* Alloc per-cpu stats */
4073 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4074 	if (!pp->stats) {
4075 		err = -ENOMEM;
4076 		goto err_free_ports;
4077 	}
4078 
4079 	dt_mac_addr = of_get_mac_address(dn);
4080 	if (dt_mac_addr) {
4081 		mac_from = "device tree";
4082 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4083 	} else {
4084 		mvneta_get_mac_addr(pp, hw_mac_addr);
4085 		if (is_valid_ether_addr(hw_mac_addr)) {
4086 			mac_from = "hardware";
4087 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4088 		} else {
4089 			mac_from = "random";
4090 			eth_hw_addr_random(dev);
4091 		}
4092 	}
4093 
4094 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4095 		if (tx_csum_limit < 0 ||
4096 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4097 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4098 			dev_info(&pdev->dev,
4099 				 "Wrong TX csum limit in DT, set to %dB\n",
4100 				 MVNETA_TX_CSUM_DEF_SIZE);
4101 		}
4102 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4103 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4104 	} else {
4105 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4106 	}
4107 
4108 	pp->tx_csum_limit = tx_csum_limit;
4109 
4110 	dram_target_info = mv_mbus_dram_info();
4111 	if (dram_target_info)
4112 		mvneta_conf_mbus_windows(pp, dram_target_info);
4113 
4114 	pp->tx_ring_size = MVNETA_MAX_TXD;
4115 	pp->rx_ring_size = MVNETA_MAX_RXD;
4116 
4117 	pp->dev = dev;
4118 	SET_NETDEV_DEV(dev, &pdev->dev);
4119 
4120 	pp->id = global_port_id++;
4121 
4122 	/* Obtain access to BM resources if enabled and already initialized */
4123 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4124 	if (bm_node && bm_node->data) {
4125 		pp->bm_priv = bm_node->data;
4126 		err = mvneta_bm_port_init(pdev, pp);
4127 		if (err < 0) {
4128 			dev_info(&pdev->dev, "use SW buffer management\n");
4129 			pp->bm_priv = NULL;
4130 		}
4131 	}
4132 	of_node_put(bm_node);
4133 
4134 	err = mvneta_init(&pdev->dev, pp);
4135 	if (err < 0)
4136 		goto err_netdev;
4137 
4138 	err = mvneta_port_power_up(pp, phy_mode);
4139 	if (err < 0) {
4140 		dev_err(&pdev->dev, "can't power up port\n");
4141 		goto err_netdev;
4142 	}
4143 
4144 	for_each_present_cpu(cpu) {
4145 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4146 
4147 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4148 		port->pp = pp;
4149 	}
4150 
4151 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4152 	dev->hw_features |= dev->features;
4153 	dev->vlan_features |= dev->features;
4154 	dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4155 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4156 
4157 	err = register_netdev(dev);
4158 	if (err < 0) {
4159 		dev_err(&pdev->dev, "failed to register\n");
4160 		goto err_free_stats;
4161 	}
4162 
4163 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4164 		    dev->dev_addr);
4165 
4166 	platform_set_drvdata(pdev, pp->dev);
4167 
4168 	if (pp->use_inband_status) {
4169 		struct phy_device *phy = of_phy_find_device(dn);
4170 
4171 		mvneta_fixed_link_update(pp, phy);
4172 
4173 		put_device(&phy->mdio.dev);
4174 	}
4175 
4176 	return 0;
4177 
4178 err_netdev:
4179 	unregister_netdev(dev);
4180 	if (pp->bm_priv) {
4181 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4182 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4183 				       1 << pp->id);
4184 	}
4185 err_free_stats:
4186 	free_percpu(pp->stats);
4187 err_free_ports:
4188 	free_percpu(pp->ports);
4189 err_clk:
4190 	clk_disable_unprepare(pp->clk_bus);
4191 	clk_disable_unprepare(pp->clk);
4192 err_put_phy_node:
4193 	of_node_put(phy_node);
4194 err_free_irq:
4195 	irq_dispose_mapping(dev->irq);
4196 err_free_netdev:
4197 	free_netdev(dev);
4198 	return err;
4199 }
4200 
4201 /* Device removal routine */
4202 static int mvneta_remove(struct platform_device *pdev)
4203 {
4204 	struct net_device  *dev = platform_get_drvdata(pdev);
4205 	struct mvneta_port *pp = netdev_priv(dev);
4206 
4207 	unregister_netdev(dev);
4208 	clk_disable_unprepare(pp->clk_bus);
4209 	clk_disable_unprepare(pp->clk);
4210 	free_percpu(pp->ports);
4211 	free_percpu(pp->stats);
4212 	irq_dispose_mapping(dev->irq);
4213 	of_node_put(pp->phy_node);
4214 	free_netdev(dev);
4215 
4216 	if (pp->bm_priv) {
4217 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4218 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4219 				       1 << pp->id);
4220 	}
4221 
4222 	return 0;
4223 }
4224 
4225 static const struct of_device_id mvneta_match[] = {
4226 	{ .compatible = "marvell,armada-370-neta" },
4227 	{ .compatible = "marvell,armada-xp-neta" },
4228 	{ }
4229 };
4230 MODULE_DEVICE_TABLE(of, mvneta_match);
4231 
4232 static struct platform_driver mvneta_driver = {
4233 	.probe = mvneta_probe,
4234 	.remove = mvneta_remove,
4235 	.driver = {
4236 		.name = MVNETA_DRIVER_NAME,
4237 		.of_match_table = mvneta_match,
4238 	},
4239 };
4240 
4241 static int __init mvneta_driver_init(void)
4242 {
4243 	int ret;
4244 
4245 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4246 				      mvneta_cpu_online,
4247 				      mvneta_cpu_down_prepare);
4248 	if (ret < 0)
4249 		goto out;
4250 	online_hpstate = ret;
4251 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4252 				      NULL, mvneta_cpu_dead);
4253 	if (ret)
4254 		goto err_dead;
4255 
4256 	ret = platform_driver_register(&mvneta_driver);
4257 	if (ret)
4258 		goto err;
4259 	return 0;
4260 
4261 err:
4262 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4263 err_dead:
4264 	cpuhp_remove_multi_state(online_hpstate);
4265 out:
4266 	return ret;
4267 }
4268 module_init(mvneta_driver_init);
4269 
4270 static void __exit mvneta_driver_exit(void)
4271 {
4272 	platform_driver_unregister(&mvneta_driver);
4273 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4274 	cpuhp_remove_multi_state(online_hpstate);
4275 }
4276 module_exit(mvneta_driver_exit);
4277 
4278 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4279 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4280 MODULE_LICENSE("GPL");
4281 
4282 module_param(rxq_number, int, S_IRUGO);
4283 module_param(txq_number, int, S_IRUGO);
4284 
4285 module_param(rxq_def, int, S_IRUGO);
4286 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4287