1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/platform_device.h> 32 #include <linux/skbuff.h> 33 #include <net/hwbm.h> 34 #include "mvneta_bm.h" 35 #include <net/ip.h> 36 #include <net/ipv6.h> 37 #include <net/tso.h> 38 39 /* Registers */ 40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 62 #define MVNETA_PORT_RX_RESET 0x1cc0 63 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 64 #define MVNETA_PHY_ADDR 0x2000 65 #define MVNETA_PHY_ADDR_MASK 0x1f 66 #define MVNETA_MBUS_RETRY 0x2010 67 #define MVNETA_UNIT_INTR_CAUSE 0x2080 68 #define MVNETA_UNIT_CONTROL 0x20B0 69 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 73 #define MVNETA_BASE_ADDR_ENABLE 0x2290 74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 75 #define MVNETA_PORT_CONFIG 0x2400 76 #define MVNETA_UNI_PROMISC_MODE BIT(0) 77 #define MVNETA_DEF_RXQ(q) ((q) << 1) 78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 85 MVNETA_DEF_RXQ_ARP(q) | \ 86 MVNETA_DEF_RXQ_TCP(q) | \ 87 MVNETA_DEF_RXQ_UDP(q) | \ 88 MVNETA_DEF_RXQ_BPDU(q) | \ 89 MVNETA_TX_UNSET_ERR_SUM | \ 90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 92 #define MVNETA_MAC_ADDR_LOW 0x2414 93 #define MVNETA_MAC_ADDR_HIGH 0x2418 94 #define MVNETA_SDMA_CONFIG 0x241c 95 #define MVNETA_SDMA_BRST_SIZE_16 4 96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 97 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 98 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 99 #define MVNETA_DESC_SWAP BIT(6) 100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 101 #define MVNETA_PORT_STATUS 0x2444 102 #define MVNETA_TX_IN_PRGRS BIT(1) 103 #define MVNETA_TX_FIFO_EMPTY BIT(8) 104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 105 #define MVNETA_SERDES_CFG 0x24A0 106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 108 #define MVNETA_TYPE_PRIO 0x24bc 109 #define MVNETA_FORCE_UNI BIT(21) 110 #define MVNETA_TXQ_CMD_1 0x24e4 111 #define MVNETA_TXQ_CMD 0x2448 112 #define MVNETA_TXQ_DISABLE_SHIFT 8 113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 118 #define MVNETA_ACC_MODE 0x2500 119 #define MVNETA_BM_ADDRESS 0x2504 120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 126 127 /* Exception Interrupt Port/Queue Cause register 128 * 129 * Their behavior depend of the mapping done using the PCPX2Q 130 * registers. For a given CPU if the bit associated to a queue is not 131 * set, then for the register a read from this CPU will always return 132 * 0 and a write won't do anything 133 */ 134 135 #define MVNETA_INTR_NEW_CAUSE 0x25a0 136 #define MVNETA_INTR_NEW_MASK 0x25a4 137 138 /* bits 0..7 = TXQ SENT, one bit per queue. 139 * bits 8..15 = RXQ OCCUP, one bit per queue. 140 * bits 16..23 = RXQ FREE, one bit per queue. 141 * bit 29 = OLD_REG_SUM, see old reg ? 142 * bit 30 = TX_ERR_SUM, one bit for 4 ports 143 * bit 31 = MISC_SUM, one bit for 4 ports 144 */ 145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 149 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 150 151 #define MVNETA_INTR_OLD_CAUSE 0x25a8 152 #define MVNETA_INTR_OLD_MASK 0x25ac 153 154 /* Data Path Port/Queue Cause Register */ 155 #define MVNETA_INTR_MISC_CAUSE 0x25b0 156 #define MVNETA_INTR_MISC_MASK 0x25b4 157 158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 160 #define MVNETA_CAUSE_PTP BIT(4) 161 162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 167 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 170 171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 174 175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 178 179 #define MVNETA_INTR_ENABLE 0x25b8 180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 182 183 #define MVNETA_RXQ_CMD 0x2680 184 #define MVNETA_RXQ_DISABLE_SHIFT 8 185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 188 #define MVNETA_GMAC_CTRL_0 0x2c00 189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 192 #define MVNETA_GMAC_CTRL_2 0x2c08 193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 195 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 196 #define MVNETA_GMAC2_PORT_RESET BIT(6) 197 #define MVNETA_GMAC_STATUS 0x2c10 198 #define MVNETA_GMAC_LINK_UP BIT(0) 199 #define MVNETA_GMAC_SPEED_1000 BIT(1) 200 #define MVNETA_GMAC_SPEED_100 BIT(2) 201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 216 #define MVNETA_MIB_COUNTERS_BASE 0x3000 217 #define MVNETA_MIB_LATE_COLLISION 0x7c 218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 230 #define MVNETA_PORT_TX_RESET 0x3cf0 231 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 232 #define MVNETA_TX_MTU 0x3e0c 233 #define MVNETA_TX_TOKEN_SIZE 0x3e14 234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 237 238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 239 240 /* Descriptor ring Macros */ 241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 242 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 243 244 /* Various constants */ 245 246 /* Coalescing */ 247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 248 #define MVNETA_RX_COAL_PKTS 32 249 #define MVNETA_RX_COAL_USEC 100 250 251 /* The two bytes Marvell header. Either contains a special value used 252 * by Marvell switches when a specific hardware mode is enabled (not 253 * supported by this driver) or is filled automatically by zeroes on 254 * the RX side. Those two bytes being at the front of the Ethernet 255 * header, they allow to have the IP header aligned on a 4 bytes 256 * boundary automatically: the hardware skips those two bytes on its 257 * own. 258 */ 259 #define MVNETA_MH_SIZE 2 260 261 #define MVNETA_VLAN_TAG_LEN 4 262 263 #define MVNETA_TX_CSUM_DEF_SIZE 1600 264 #define MVNETA_TX_CSUM_MAX_SIZE 9800 265 #define MVNETA_ACC_MODE_EXT1 1 266 #define MVNETA_ACC_MODE_EXT2 2 267 268 #define MVNETA_MAX_DECODE_WIN 6 269 270 /* Timeout constants */ 271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 274 275 #define MVNETA_TX_MTU_MAX 0x3ffff 276 277 /* The RSS lookup table actually has 256 entries but we do not use 278 * them yet 279 */ 280 #define MVNETA_RSS_LU_TABLE_SIZE 1 281 282 /* TSO header size */ 283 #define TSO_HEADER_SIZE 128 284 285 /* Max number of Rx descriptors */ 286 #define MVNETA_MAX_RXD 128 287 288 /* Max number of Tx descriptors */ 289 #define MVNETA_MAX_TXD 532 290 291 /* Max number of allowed TCP segments for software TSO */ 292 #define MVNETA_MAX_TSO_SEGS 100 293 294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 295 296 /* descriptor aligned size */ 297 #define MVNETA_DESC_ALIGNED_SIZE 32 298 299 #define MVNETA_RX_PKT_SIZE(mtu) \ 300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 301 ETH_HLEN + ETH_FCS_LEN, \ 302 cache_line_size()) 303 304 #define IS_TSO_HEADER(txq, addr) \ 305 ((addr >= txq->tso_hdrs_phys) && \ 306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 307 308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 310 311 struct mvneta_statistic { 312 unsigned short offset; 313 unsigned short type; 314 const char name[ETH_GSTRING_LEN]; 315 }; 316 317 #define T_REG_32 32 318 #define T_REG_64 64 319 320 static const struct mvneta_statistic mvneta_statistics[] = { 321 { 0x3000, T_REG_64, "good_octets_received", }, 322 { 0x3010, T_REG_32, "good_frames_received", }, 323 { 0x3008, T_REG_32, "bad_octets_received", }, 324 { 0x3014, T_REG_32, "bad_frames_received", }, 325 { 0x3018, T_REG_32, "broadcast_frames_received", }, 326 { 0x301c, T_REG_32, "multicast_frames_received", }, 327 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 328 { 0x3058, T_REG_32, "good_fc_received", }, 329 { 0x305c, T_REG_32, "bad_fc_received", }, 330 { 0x3060, T_REG_32, "undersize_received", }, 331 { 0x3064, T_REG_32, "fragments_received", }, 332 { 0x3068, T_REG_32, "oversize_received", }, 333 { 0x306c, T_REG_32, "jabber_received", }, 334 { 0x3070, T_REG_32, "mac_receive_error", }, 335 { 0x3074, T_REG_32, "bad_crc_event", }, 336 { 0x3078, T_REG_32, "collision", }, 337 { 0x307c, T_REG_32, "late_collision", }, 338 { 0x2484, T_REG_32, "rx_discard", }, 339 { 0x2488, T_REG_32, "rx_overrun", }, 340 { 0x3020, T_REG_32, "frames_64_octets", }, 341 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 342 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 343 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 346 { 0x3038, T_REG_64, "good_octets_sent", }, 347 { 0x3040, T_REG_32, "good_frames_sent", }, 348 { 0x3044, T_REG_32, "excessive_collision", }, 349 { 0x3048, T_REG_32, "multicast_frames_sent", }, 350 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 351 { 0x3054, T_REG_32, "fc_sent", }, 352 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 353 }; 354 355 struct mvneta_pcpu_stats { 356 struct u64_stats_sync syncp; 357 u64 rx_packets; 358 u64 rx_bytes; 359 u64 tx_packets; 360 u64 tx_bytes; 361 }; 362 363 struct mvneta_pcpu_port { 364 /* Pointer to the shared port */ 365 struct mvneta_port *pp; 366 367 /* Pointer to the CPU-local NAPI struct */ 368 struct napi_struct napi; 369 370 /* Cause of the previous interrupt */ 371 u32 cause_rx_tx; 372 }; 373 374 struct mvneta_port { 375 u8 id; 376 struct mvneta_pcpu_port __percpu *ports; 377 struct mvneta_pcpu_stats __percpu *stats; 378 379 int pkt_size; 380 unsigned int frag_size; 381 void __iomem *base; 382 struct mvneta_rx_queue *rxqs; 383 struct mvneta_tx_queue *txqs; 384 struct net_device *dev; 385 struct hlist_node node_online; 386 struct hlist_node node_dead; 387 int rxq_def; 388 /* Protect the access to the percpu interrupt registers, 389 * ensuring that the configuration remains coherent. 390 */ 391 spinlock_t lock; 392 bool is_stopped; 393 394 /* Core clock */ 395 struct clk *clk; 396 /* AXI clock */ 397 struct clk *clk_bus; 398 u8 mcast_count[256]; 399 u16 tx_ring_size; 400 u16 rx_ring_size; 401 402 struct mii_bus *mii_bus; 403 phy_interface_t phy_interface; 404 struct device_node *phy_node; 405 unsigned int link; 406 unsigned int duplex; 407 unsigned int speed; 408 unsigned int tx_csum_limit; 409 unsigned int use_inband_status:1; 410 411 struct mvneta_bm *bm_priv; 412 struct mvneta_bm_pool *pool_long; 413 struct mvneta_bm_pool *pool_short; 414 int bm_win_id; 415 416 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 417 418 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 419 }; 420 421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 422 * layout of the transmit and reception DMA descriptors, and their 423 * layout is therefore defined by the hardware design 424 */ 425 426 #define MVNETA_TX_L3_OFF_SHIFT 0 427 #define MVNETA_TX_IP_HLEN_SHIFT 8 428 #define MVNETA_TX_L4_UDP BIT(16) 429 #define MVNETA_TX_L3_IP6 BIT(17) 430 #define MVNETA_TXD_IP_CSUM BIT(18) 431 #define MVNETA_TXD_Z_PAD BIT(19) 432 #define MVNETA_TXD_L_DESC BIT(20) 433 #define MVNETA_TXD_F_DESC BIT(21) 434 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 435 MVNETA_TXD_L_DESC | \ 436 MVNETA_TXD_F_DESC) 437 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 438 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 439 440 #define MVNETA_RXD_ERR_CRC 0x0 441 #define MVNETA_RXD_BM_POOL_SHIFT 13 442 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 443 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 444 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 445 #define MVNETA_RXD_ERR_LEN BIT(18) 446 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 447 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 448 #define MVNETA_RXD_L3_IP4 BIT(25) 449 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 450 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 451 452 #if defined(__LITTLE_ENDIAN) 453 struct mvneta_tx_desc { 454 u32 command; /* Options used by HW for packet transmitting.*/ 455 u16 reserverd1; /* csum_l4 (for future use) */ 456 u16 data_size; /* Data size of transmitted packet in bytes */ 457 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 458 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 459 u32 reserved3[4]; /* Reserved - (for future use) */ 460 }; 461 462 struct mvneta_rx_desc { 463 u32 status; /* Info about received packet */ 464 u16 reserved1; /* pnc_info - (for future use, PnC) */ 465 u16 data_size; /* Size of received packet in bytes */ 466 467 u32 buf_phys_addr; /* Physical address of the buffer */ 468 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 469 470 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 471 u16 reserved3; /* prefetch_cmd, for future use */ 472 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 473 474 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 475 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 476 }; 477 #else 478 struct mvneta_tx_desc { 479 u16 data_size; /* Data size of transmitted packet in bytes */ 480 u16 reserverd1; /* csum_l4 (for future use) */ 481 u32 command; /* Options used by HW for packet transmitting.*/ 482 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 483 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 484 u32 reserved3[4]; /* Reserved - (for future use) */ 485 }; 486 487 struct mvneta_rx_desc { 488 u16 data_size; /* Size of received packet in bytes */ 489 u16 reserved1; /* pnc_info - (for future use, PnC) */ 490 u32 status; /* Info about received packet */ 491 492 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 493 u32 buf_phys_addr; /* Physical address of the buffer */ 494 495 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 496 u16 reserved3; /* prefetch_cmd, for future use */ 497 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 498 499 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 500 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 501 }; 502 #endif 503 504 struct mvneta_tx_queue { 505 /* Number of this TX queue, in the range 0-7 */ 506 u8 id; 507 508 /* Number of TX DMA descriptors in the descriptor ring */ 509 int size; 510 511 /* Number of currently used TX DMA descriptor in the 512 * descriptor ring 513 */ 514 int count; 515 int tx_stop_threshold; 516 int tx_wake_threshold; 517 518 /* Array of transmitted skb */ 519 struct sk_buff **tx_skb; 520 521 /* Index of last TX DMA descriptor that was inserted */ 522 int txq_put_index; 523 524 /* Index of the TX DMA descriptor to be cleaned up */ 525 int txq_get_index; 526 527 u32 done_pkts_coal; 528 529 /* Virtual address of the TX DMA descriptors array */ 530 struct mvneta_tx_desc *descs; 531 532 /* DMA address of the TX DMA descriptors array */ 533 dma_addr_t descs_phys; 534 535 /* Index of the last TX DMA descriptor */ 536 int last_desc; 537 538 /* Index of the next TX DMA descriptor to process */ 539 int next_desc_to_proc; 540 541 /* DMA buffers for TSO headers */ 542 char *tso_hdrs; 543 544 /* DMA address of TSO headers */ 545 dma_addr_t tso_hdrs_phys; 546 547 /* Affinity mask for CPUs*/ 548 cpumask_t affinity_mask; 549 }; 550 551 struct mvneta_rx_queue { 552 /* rx queue number, in the range 0-7 */ 553 u8 id; 554 555 /* num of rx descriptors in the rx descriptor ring */ 556 int size; 557 558 /* counter of times when mvneta_refill() failed */ 559 int missed; 560 561 u32 pkts_coal; 562 u32 time_coal; 563 564 /* Virtual address of the RX DMA descriptors array */ 565 struct mvneta_rx_desc *descs; 566 567 /* DMA address of the RX DMA descriptors array */ 568 dma_addr_t descs_phys; 569 570 /* Index of the last RX DMA descriptor */ 571 int last_desc; 572 573 /* Index of the next RX DMA descriptor to process */ 574 int next_desc_to_proc; 575 }; 576 577 static enum cpuhp_state online_hpstate; 578 /* The hardware supports eight (8) rx queues, but we are only allowing 579 * the first one to be used. Therefore, let's just allocate one queue. 580 */ 581 static int rxq_number = 8; 582 static int txq_number = 8; 583 584 static int rxq_def; 585 586 static int rx_copybreak __read_mostly = 256; 587 588 /* HW BM need that each port be identify by a unique ID */ 589 static int global_port_id; 590 591 #define MVNETA_DRIVER_NAME "mvneta" 592 #define MVNETA_DRIVER_VERSION "1.0" 593 594 /* Utility/helper methods */ 595 596 /* Write helper method */ 597 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 598 { 599 writel(data, pp->base + offset); 600 } 601 602 /* Read helper method */ 603 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 604 { 605 return readl(pp->base + offset); 606 } 607 608 /* Increment txq get counter */ 609 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 610 { 611 txq->txq_get_index++; 612 if (txq->txq_get_index == txq->size) 613 txq->txq_get_index = 0; 614 } 615 616 /* Increment txq put counter */ 617 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 618 { 619 txq->txq_put_index++; 620 if (txq->txq_put_index == txq->size) 621 txq->txq_put_index = 0; 622 } 623 624 625 /* Clear all MIB counters */ 626 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 627 { 628 int i; 629 u32 dummy; 630 631 /* Perform dummy reads from MIB counters */ 632 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 633 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 634 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 635 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 636 } 637 638 /* Get System Network Statistics */ 639 static struct rtnl_link_stats64 * 640 mvneta_get_stats64(struct net_device *dev, 641 struct rtnl_link_stats64 *stats) 642 { 643 struct mvneta_port *pp = netdev_priv(dev); 644 unsigned int start; 645 int cpu; 646 647 for_each_possible_cpu(cpu) { 648 struct mvneta_pcpu_stats *cpu_stats; 649 u64 rx_packets; 650 u64 rx_bytes; 651 u64 tx_packets; 652 u64 tx_bytes; 653 654 cpu_stats = per_cpu_ptr(pp->stats, cpu); 655 do { 656 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 657 rx_packets = cpu_stats->rx_packets; 658 rx_bytes = cpu_stats->rx_bytes; 659 tx_packets = cpu_stats->tx_packets; 660 tx_bytes = cpu_stats->tx_bytes; 661 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 662 663 stats->rx_packets += rx_packets; 664 stats->rx_bytes += rx_bytes; 665 stats->tx_packets += tx_packets; 666 stats->tx_bytes += tx_bytes; 667 } 668 669 stats->rx_errors = dev->stats.rx_errors; 670 stats->rx_dropped = dev->stats.rx_dropped; 671 672 stats->tx_dropped = dev->stats.tx_dropped; 673 674 return stats; 675 } 676 677 /* Rx descriptors helper methods */ 678 679 /* Checks whether the RX descriptor having this status is both the first 680 * and the last descriptor for the RX packet. Each RX packet is currently 681 * received through a single RX descriptor, so not having each RX 682 * descriptor with its first and last bits set is an error 683 */ 684 static int mvneta_rxq_desc_is_first_last(u32 status) 685 { 686 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 687 MVNETA_RXD_FIRST_LAST_DESC; 688 } 689 690 /* Add number of descriptors ready to receive new packets */ 691 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 692 struct mvneta_rx_queue *rxq, 693 int ndescs) 694 { 695 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 696 * be added at once 697 */ 698 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 699 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 700 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 701 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 702 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 703 } 704 705 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 706 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 707 } 708 709 /* Get number of RX descriptors occupied by received packets */ 710 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 711 struct mvneta_rx_queue *rxq) 712 { 713 u32 val; 714 715 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 716 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 717 } 718 719 /* Update num of rx desc called upon return from rx path or 720 * from mvneta_rxq_drop_pkts(). 721 */ 722 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 723 struct mvneta_rx_queue *rxq, 724 int rx_done, int rx_filled) 725 { 726 u32 val; 727 728 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 729 val = rx_done | 730 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 731 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 732 return; 733 } 734 735 /* Only 255 descriptors can be added at once */ 736 while ((rx_done > 0) || (rx_filled > 0)) { 737 if (rx_done <= 0xff) { 738 val = rx_done; 739 rx_done = 0; 740 } else { 741 val = 0xff; 742 rx_done -= 0xff; 743 } 744 if (rx_filled <= 0xff) { 745 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 746 rx_filled = 0; 747 } else { 748 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 749 rx_filled -= 0xff; 750 } 751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 752 } 753 } 754 755 /* Get pointer to next RX descriptor to be processed by SW */ 756 static struct mvneta_rx_desc * 757 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 758 { 759 int rx_desc = rxq->next_desc_to_proc; 760 761 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 762 prefetch(rxq->descs + rxq->next_desc_to_proc); 763 return rxq->descs + rx_desc; 764 } 765 766 /* Change maximum receive size of the port. */ 767 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 768 { 769 u32 val; 770 771 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 772 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 773 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 774 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 775 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 776 } 777 778 779 /* Set rx queue offset */ 780 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 781 struct mvneta_rx_queue *rxq, 782 int offset) 783 { 784 u32 val; 785 786 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 787 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 788 789 /* Offset is in */ 790 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 791 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 792 } 793 794 795 /* Tx descriptors helper methods */ 796 797 /* Update HW with number of TX descriptors to be sent */ 798 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 799 struct mvneta_tx_queue *txq, 800 int pend_desc) 801 { 802 u32 val; 803 804 /* Only 255 descriptors can be added at once ; Assume caller 805 * process TX desriptors in quanta less than 256 806 */ 807 val = pend_desc; 808 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 809 } 810 811 /* Get pointer to next TX descriptor to be processed (send) by HW */ 812 static struct mvneta_tx_desc * 813 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 814 { 815 int tx_desc = txq->next_desc_to_proc; 816 817 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 818 return txq->descs + tx_desc; 819 } 820 821 /* Release the last allocated TX descriptor. Useful to handle DMA 822 * mapping failures in the TX path. 823 */ 824 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 825 { 826 if (txq->next_desc_to_proc == 0) 827 txq->next_desc_to_proc = txq->last_desc - 1; 828 else 829 txq->next_desc_to_proc--; 830 } 831 832 /* Set rxq buf size */ 833 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 834 struct mvneta_rx_queue *rxq, 835 int buf_size) 836 { 837 u32 val; 838 839 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 840 841 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 842 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 843 844 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 845 } 846 847 /* Disable buffer management (BM) */ 848 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 849 struct mvneta_rx_queue *rxq) 850 { 851 u32 val; 852 853 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 854 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 855 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 856 } 857 858 /* Enable buffer management (BM) */ 859 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 860 struct mvneta_rx_queue *rxq) 861 { 862 u32 val; 863 864 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 865 val |= MVNETA_RXQ_HW_BUF_ALLOC; 866 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 867 } 868 869 /* Notify HW about port's assignment of pool for bigger packets */ 870 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 871 struct mvneta_rx_queue *rxq) 872 { 873 u32 val; 874 875 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 876 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 877 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 878 879 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 880 } 881 882 /* Notify HW about port's assignment of pool for smaller packets */ 883 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 884 struct mvneta_rx_queue *rxq) 885 { 886 u32 val; 887 888 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 889 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 890 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 891 892 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 893 } 894 895 /* Set port's receive buffer size for assigned BM pool */ 896 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 897 int buf_size, 898 u8 pool_id) 899 { 900 u32 val; 901 902 if (!IS_ALIGNED(buf_size, 8)) { 903 dev_warn(pp->dev->dev.parent, 904 "illegal buf_size value %d, round to %d\n", 905 buf_size, ALIGN(buf_size, 8)); 906 buf_size = ALIGN(buf_size, 8); 907 } 908 909 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 910 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 911 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 912 } 913 914 /* Configure MBUS window in order to enable access BM internal SRAM */ 915 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 916 u8 target, u8 attr) 917 { 918 u32 win_enable, win_protect; 919 int i; 920 921 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 922 923 if (pp->bm_win_id < 0) { 924 /* Find first not occupied window */ 925 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 926 if (win_enable & (1 << i)) { 927 pp->bm_win_id = i; 928 break; 929 } 930 } 931 if (i == MVNETA_MAX_DECODE_WIN) 932 return -ENOMEM; 933 } else { 934 i = pp->bm_win_id; 935 } 936 937 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 938 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 939 940 if (i < 4) 941 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 942 943 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 944 (attr << 8) | target); 945 946 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 947 948 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 949 win_protect |= 3 << (2 * i); 950 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 951 952 win_enable &= ~(1 << i); 953 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 954 955 return 0; 956 } 957 958 /* Assign and initialize pools for port. In case of fail 959 * buffer manager will remain disabled for current port. 960 */ 961 static int mvneta_bm_port_init(struct platform_device *pdev, 962 struct mvneta_port *pp) 963 { 964 struct device_node *dn = pdev->dev.of_node; 965 u32 long_pool_id, short_pool_id, wsize; 966 u8 target, attr; 967 int err; 968 969 /* Get BM window information */ 970 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 971 &target, &attr); 972 if (err < 0) 973 return err; 974 975 pp->bm_win_id = -1; 976 977 /* Open NETA -> BM window */ 978 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 979 target, attr); 980 if (err < 0) { 981 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 982 return err; 983 } 984 985 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 986 netdev_info(pp->dev, "missing long pool id\n"); 987 return -EINVAL; 988 } 989 990 /* Create port's long pool depending on mtu */ 991 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 992 MVNETA_BM_LONG, pp->id, 993 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 994 if (!pp->pool_long) { 995 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 996 return -ENOMEM; 997 } 998 999 pp->pool_long->port_map |= 1 << pp->id; 1000 1001 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1002 pp->pool_long->id); 1003 1004 /* If short pool id is not defined, assume using single pool */ 1005 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1006 short_pool_id = long_pool_id; 1007 1008 /* Create port's short pool */ 1009 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1010 MVNETA_BM_SHORT, pp->id, 1011 MVNETA_BM_SHORT_PKT_SIZE); 1012 if (!pp->pool_short) { 1013 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1014 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1015 return -ENOMEM; 1016 } 1017 1018 if (short_pool_id != long_pool_id) { 1019 pp->pool_short->port_map |= 1 << pp->id; 1020 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1021 pp->pool_short->id); 1022 } 1023 1024 return 0; 1025 } 1026 1027 /* Update settings of a pool for bigger packets */ 1028 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1029 { 1030 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1031 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1032 int num; 1033 1034 /* Release all buffers from long pool */ 1035 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1036 if (hwbm_pool->buf_num) { 1037 WARN(1, "cannot free all buffers in pool %d\n", 1038 bm_pool->id); 1039 goto bm_mtu_err; 1040 } 1041 1042 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1043 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1044 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1045 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1046 1047 /* Fill entire long pool */ 1048 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1049 if (num != hwbm_pool->size) { 1050 WARN(1, "pool %d: %d of %d allocated\n", 1051 bm_pool->id, num, hwbm_pool->size); 1052 goto bm_mtu_err; 1053 } 1054 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1055 1056 return; 1057 1058 bm_mtu_err: 1059 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1060 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1061 1062 pp->bm_priv = NULL; 1063 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1064 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1065 } 1066 1067 /* Start the Ethernet port RX and TX activity */ 1068 static void mvneta_port_up(struct mvneta_port *pp) 1069 { 1070 int queue; 1071 u32 q_map; 1072 1073 /* Enable all initialized TXs. */ 1074 q_map = 0; 1075 for (queue = 0; queue < txq_number; queue++) { 1076 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1077 if (txq->descs != NULL) 1078 q_map |= (1 << queue); 1079 } 1080 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1081 1082 /* Enable all initialized RXQs. */ 1083 for (queue = 0; queue < rxq_number; queue++) { 1084 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1085 1086 if (rxq->descs != NULL) 1087 q_map |= (1 << queue); 1088 } 1089 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1090 } 1091 1092 /* Stop the Ethernet port activity */ 1093 static void mvneta_port_down(struct mvneta_port *pp) 1094 { 1095 u32 val; 1096 int count; 1097 1098 /* Stop Rx port activity. Check port Rx activity. */ 1099 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1100 1101 /* Issue stop command for active channels only */ 1102 if (val != 0) 1103 mvreg_write(pp, MVNETA_RXQ_CMD, 1104 val << MVNETA_RXQ_DISABLE_SHIFT); 1105 1106 /* Wait for all Rx activity to terminate. */ 1107 count = 0; 1108 do { 1109 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1110 netdev_warn(pp->dev, 1111 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1112 val); 1113 break; 1114 } 1115 mdelay(1); 1116 1117 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1118 } while (val & MVNETA_RXQ_ENABLE_MASK); 1119 1120 /* Stop Tx port activity. Check port Tx activity. Issue stop 1121 * command for active channels only 1122 */ 1123 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1124 1125 if (val != 0) 1126 mvreg_write(pp, MVNETA_TXQ_CMD, 1127 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1128 1129 /* Wait for all Tx activity to terminate. */ 1130 count = 0; 1131 do { 1132 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1133 netdev_warn(pp->dev, 1134 "TIMEOUT for TX stopped status=0x%08x\n", 1135 val); 1136 break; 1137 } 1138 mdelay(1); 1139 1140 /* Check TX Command reg that all Txqs are stopped */ 1141 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1142 1143 } while (val & MVNETA_TXQ_ENABLE_MASK); 1144 1145 /* Double check to verify that TX FIFO is empty */ 1146 count = 0; 1147 do { 1148 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1149 netdev_warn(pp->dev, 1150 "TX FIFO empty timeout status=0x%08x\n", 1151 val); 1152 break; 1153 } 1154 mdelay(1); 1155 1156 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1157 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1158 (val & MVNETA_TX_IN_PRGRS)); 1159 1160 udelay(200); 1161 } 1162 1163 /* Enable the port by setting the port enable bit of the MAC control register */ 1164 static void mvneta_port_enable(struct mvneta_port *pp) 1165 { 1166 u32 val; 1167 1168 /* Enable port */ 1169 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1170 val |= MVNETA_GMAC0_PORT_ENABLE; 1171 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1172 } 1173 1174 /* Disable the port and wait for about 200 usec before retuning */ 1175 static void mvneta_port_disable(struct mvneta_port *pp) 1176 { 1177 u32 val; 1178 1179 /* Reset the Enable bit in the Serial Control Register */ 1180 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1181 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1182 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1183 1184 udelay(200); 1185 } 1186 1187 /* Multicast tables methods */ 1188 1189 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1190 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1191 { 1192 int offset; 1193 u32 val; 1194 1195 if (queue == -1) { 1196 val = 0; 1197 } else { 1198 val = 0x1 | (queue << 1); 1199 val |= (val << 24) | (val << 16) | (val << 8); 1200 } 1201 1202 for (offset = 0; offset <= 0xc; offset += 4) 1203 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1204 } 1205 1206 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1207 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1208 { 1209 int offset; 1210 u32 val; 1211 1212 if (queue == -1) { 1213 val = 0; 1214 } else { 1215 val = 0x1 | (queue << 1); 1216 val |= (val << 24) | (val << 16) | (val << 8); 1217 } 1218 1219 for (offset = 0; offset <= 0xfc; offset += 4) 1220 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1221 1222 } 1223 1224 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1225 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1226 { 1227 int offset; 1228 u32 val; 1229 1230 if (queue == -1) { 1231 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1232 val = 0; 1233 } else { 1234 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1235 val = 0x1 | (queue << 1); 1236 val |= (val << 24) | (val << 16) | (val << 8); 1237 } 1238 1239 for (offset = 0; offset <= 0xfc; offset += 4) 1240 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1241 } 1242 1243 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1244 { 1245 u32 val; 1246 1247 if (enable) { 1248 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1249 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1250 MVNETA_GMAC_FORCE_LINK_DOWN | 1251 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1252 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1253 MVNETA_GMAC_AN_SPEED_EN | 1254 MVNETA_GMAC_AN_DUPLEX_EN; 1255 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1256 1257 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1258 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1259 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1260 1261 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1262 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1263 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1264 } else { 1265 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1266 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1267 MVNETA_GMAC_AN_SPEED_EN | 1268 MVNETA_GMAC_AN_DUPLEX_EN); 1269 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1270 1271 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1272 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1273 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1274 1275 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1276 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1277 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1278 } 1279 } 1280 1281 static void mvneta_percpu_unmask_interrupt(void *arg) 1282 { 1283 struct mvneta_port *pp = arg; 1284 1285 /* All the queue are unmasked, but actually only the ones 1286 * mapped to this CPU will be unmasked 1287 */ 1288 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1289 MVNETA_RX_INTR_MASK_ALL | 1290 MVNETA_TX_INTR_MASK_ALL | 1291 MVNETA_MISCINTR_INTR_MASK); 1292 } 1293 1294 static void mvneta_percpu_mask_interrupt(void *arg) 1295 { 1296 struct mvneta_port *pp = arg; 1297 1298 /* All the queue are masked, but actually only the ones 1299 * mapped to this CPU will be masked 1300 */ 1301 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1302 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1303 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1304 } 1305 1306 static void mvneta_percpu_clear_intr_cause(void *arg) 1307 { 1308 struct mvneta_port *pp = arg; 1309 1310 /* All the queue are cleared, but actually only the ones 1311 * mapped to this CPU will be cleared 1312 */ 1313 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1314 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1315 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1316 } 1317 1318 /* This method sets defaults to the NETA port: 1319 * Clears interrupt Cause and Mask registers. 1320 * Clears all MAC tables. 1321 * Sets defaults to all registers. 1322 * Resets RX and TX descriptor rings. 1323 * Resets PHY. 1324 * This method can be called after mvneta_port_down() to return the port 1325 * settings to defaults. 1326 */ 1327 static void mvneta_defaults_set(struct mvneta_port *pp) 1328 { 1329 int cpu; 1330 int queue; 1331 u32 val; 1332 int max_cpu = num_present_cpus(); 1333 1334 /* Clear all Cause registers */ 1335 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1336 1337 /* Mask all interrupts */ 1338 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1339 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1340 1341 /* Enable MBUS Retry bit16 */ 1342 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1343 1344 /* Set CPU queue access map. CPUs are assigned to the RX and 1345 * TX queues modulo their number. If there is only one TX 1346 * queue then it is assigned to the CPU associated to the 1347 * default RX queue. 1348 */ 1349 for_each_present_cpu(cpu) { 1350 int rxq_map = 0, txq_map = 0; 1351 int rxq, txq; 1352 1353 for (rxq = 0; rxq < rxq_number; rxq++) 1354 if ((rxq % max_cpu) == cpu) 1355 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1356 1357 for (txq = 0; txq < txq_number; txq++) 1358 if ((txq % max_cpu) == cpu) 1359 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1360 1361 /* With only one TX queue we configure a special case 1362 * which will allow to get all the irq on a single 1363 * CPU 1364 */ 1365 if (txq_number == 1) 1366 txq_map = (cpu == pp->rxq_def) ? 1367 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1368 1369 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1370 } 1371 1372 /* Reset RX and TX DMAs */ 1373 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1374 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1375 1376 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1377 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1378 for (queue = 0; queue < txq_number; queue++) { 1379 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1380 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1381 } 1382 1383 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1384 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1385 1386 /* Set Port Acceleration Mode */ 1387 if (pp->bm_priv) 1388 /* HW buffer management + legacy parser */ 1389 val = MVNETA_ACC_MODE_EXT2; 1390 else 1391 /* SW buffer management + legacy parser */ 1392 val = MVNETA_ACC_MODE_EXT1; 1393 mvreg_write(pp, MVNETA_ACC_MODE, val); 1394 1395 if (pp->bm_priv) 1396 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1397 1398 /* Update val of portCfg register accordingly with all RxQueue types */ 1399 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1400 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1401 1402 val = 0; 1403 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1404 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1405 1406 /* Build PORT_SDMA_CONFIG_REG */ 1407 val = 0; 1408 1409 /* Default burst size */ 1410 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1411 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1412 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1413 1414 #if defined(__BIG_ENDIAN) 1415 val |= MVNETA_DESC_SWAP; 1416 #endif 1417 1418 /* Assign port SDMA configuration */ 1419 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1420 1421 /* Disable PHY polling in hardware, since we're using the 1422 * kernel phylib to do this. 1423 */ 1424 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1425 val &= ~MVNETA_PHY_POLLING_ENABLE; 1426 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1427 1428 mvneta_set_autoneg(pp, pp->use_inband_status); 1429 mvneta_set_ucast_table(pp, -1); 1430 mvneta_set_special_mcast_table(pp, -1); 1431 mvneta_set_other_mcast_table(pp, -1); 1432 1433 /* Set port interrupt enable register - default enable all */ 1434 mvreg_write(pp, MVNETA_INTR_ENABLE, 1435 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1436 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1437 1438 mvneta_mib_counters_clear(pp); 1439 } 1440 1441 /* Set max sizes for tx queues */ 1442 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1443 1444 { 1445 u32 val, size, mtu; 1446 int queue; 1447 1448 mtu = max_tx_size * 8; 1449 if (mtu > MVNETA_TX_MTU_MAX) 1450 mtu = MVNETA_TX_MTU_MAX; 1451 1452 /* Set MTU */ 1453 val = mvreg_read(pp, MVNETA_TX_MTU); 1454 val &= ~MVNETA_TX_MTU_MAX; 1455 val |= mtu; 1456 mvreg_write(pp, MVNETA_TX_MTU, val); 1457 1458 /* TX token size and all TXQs token size must be larger that MTU */ 1459 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1460 1461 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1462 if (size < mtu) { 1463 size = mtu; 1464 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1465 val |= size; 1466 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1467 } 1468 for (queue = 0; queue < txq_number; queue++) { 1469 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1470 1471 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1472 if (size < mtu) { 1473 size = mtu; 1474 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1475 val |= size; 1476 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1477 } 1478 } 1479 } 1480 1481 /* Set unicast address */ 1482 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1483 int queue) 1484 { 1485 unsigned int unicast_reg; 1486 unsigned int tbl_offset; 1487 unsigned int reg_offset; 1488 1489 /* Locate the Unicast table entry */ 1490 last_nibble = (0xf & last_nibble); 1491 1492 /* offset from unicast tbl base */ 1493 tbl_offset = (last_nibble / 4) * 4; 1494 1495 /* offset within the above reg */ 1496 reg_offset = last_nibble % 4; 1497 1498 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1499 1500 if (queue == -1) { 1501 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1502 unicast_reg &= ~(0xff << (8 * reg_offset)); 1503 } else { 1504 unicast_reg &= ~(0xff << (8 * reg_offset)); 1505 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1506 } 1507 1508 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1509 } 1510 1511 /* Set mac address */ 1512 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1513 int queue) 1514 { 1515 unsigned int mac_h; 1516 unsigned int mac_l; 1517 1518 if (queue != -1) { 1519 mac_l = (addr[4] << 8) | (addr[5]); 1520 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1521 (addr[2] << 8) | (addr[3] << 0); 1522 1523 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1524 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1525 } 1526 1527 /* Accept frames of this address */ 1528 mvneta_set_ucast_addr(pp, addr[5], queue); 1529 } 1530 1531 /* Set the number of packets that will be received before RX interrupt 1532 * will be generated by HW. 1533 */ 1534 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1535 struct mvneta_rx_queue *rxq, u32 value) 1536 { 1537 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1538 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1539 rxq->pkts_coal = value; 1540 } 1541 1542 /* Set the time delay in usec before RX interrupt will be generated by 1543 * HW. 1544 */ 1545 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1546 struct mvneta_rx_queue *rxq, u32 value) 1547 { 1548 u32 val; 1549 unsigned long clk_rate; 1550 1551 clk_rate = clk_get_rate(pp->clk); 1552 val = (clk_rate / 1000000) * value; 1553 1554 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1555 rxq->time_coal = value; 1556 } 1557 1558 /* Set threshold for TX_DONE pkts coalescing */ 1559 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1560 struct mvneta_tx_queue *txq, u32 value) 1561 { 1562 u32 val; 1563 1564 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1565 1566 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1567 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1568 1569 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1570 1571 txq->done_pkts_coal = value; 1572 } 1573 1574 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1575 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1576 u32 phys_addr, u32 cookie) 1577 { 1578 rx_desc->buf_cookie = cookie; 1579 rx_desc->buf_phys_addr = phys_addr; 1580 } 1581 1582 /* Decrement sent descriptors counter */ 1583 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1584 struct mvneta_tx_queue *txq, 1585 int sent_desc) 1586 { 1587 u32 val; 1588 1589 /* Only 255 TX descriptors can be updated at once */ 1590 while (sent_desc > 0xff) { 1591 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1592 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1593 sent_desc = sent_desc - 0xff; 1594 } 1595 1596 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1597 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1598 } 1599 1600 /* Get number of TX descriptors already sent by HW */ 1601 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1602 struct mvneta_tx_queue *txq) 1603 { 1604 u32 val; 1605 int sent_desc; 1606 1607 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1608 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1609 MVNETA_TXQ_SENT_DESC_SHIFT; 1610 1611 return sent_desc; 1612 } 1613 1614 /* Get number of sent descriptors and decrement counter. 1615 * The number of sent descriptors is returned. 1616 */ 1617 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1618 struct mvneta_tx_queue *txq) 1619 { 1620 int sent_desc; 1621 1622 /* Get number of sent descriptors */ 1623 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1624 1625 /* Decrement sent descriptors counter */ 1626 if (sent_desc) 1627 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1628 1629 return sent_desc; 1630 } 1631 1632 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1633 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1634 int ip_hdr_len, int l4_proto) 1635 { 1636 u32 command; 1637 1638 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1639 * G_L4_chk, L4_type; required only for checksum 1640 * calculation 1641 */ 1642 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1643 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1644 1645 if (l3_proto == htons(ETH_P_IP)) 1646 command |= MVNETA_TXD_IP_CSUM; 1647 else 1648 command |= MVNETA_TX_L3_IP6; 1649 1650 if (l4_proto == IPPROTO_TCP) 1651 command |= MVNETA_TX_L4_CSUM_FULL; 1652 else if (l4_proto == IPPROTO_UDP) 1653 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1654 else 1655 command |= MVNETA_TX_L4_CSUM_NOT; 1656 1657 return command; 1658 } 1659 1660 1661 /* Display more error info */ 1662 static void mvneta_rx_error(struct mvneta_port *pp, 1663 struct mvneta_rx_desc *rx_desc) 1664 { 1665 u32 status = rx_desc->status; 1666 1667 if (!mvneta_rxq_desc_is_first_last(status)) { 1668 netdev_err(pp->dev, 1669 "bad rx status %08x (buffer oversize), size=%d\n", 1670 status, rx_desc->data_size); 1671 return; 1672 } 1673 1674 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1675 case MVNETA_RXD_ERR_CRC: 1676 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1677 status, rx_desc->data_size); 1678 break; 1679 case MVNETA_RXD_ERR_OVERRUN: 1680 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1681 status, rx_desc->data_size); 1682 break; 1683 case MVNETA_RXD_ERR_LEN: 1684 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1685 status, rx_desc->data_size); 1686 break; 1687 case MVNETA_RXD_ERR_RESOURCE: 1688 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1689 status, rx_desc->data_size); 1690 break; 1691 } 1692 } 1693 1694 /* Handle RX checksum offload based on the descriptor's status */ 1695 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1696 struct sk_buff *skb) 1697 { 1698 if ((status & MVNETA_RXD_L3_IP4) && 1699 (status & MVNETA_RXD_L4_CSUM_OK)) { 1700 skb->csum = 0; 1701 skb->ip_summed = CHECKSUM_UNNECESSARY; 1702 return; 1703 } 1704 1705 skb->ip_summed = CHECKSUM_NONE; 1706 } 1707 1708 /* Return tx queue pointer (find last set bit) according to <cause> returned 1709 * form tx_done reg. <cause> must not be null. The return value is always a 1710 * valid queue for matching the first one found in <cause>. 1711 */ 1712 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1713 u32 cause) 1714 { 1715 int queue = fls(cause) - 1; 1716 1717 return &pp->txqs[queue]; 1718 } 1719 1720 /* Free tx queue skbuffs */ 1721 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1722 struct mvneta_tx_queue *txq, int num) 1723 { 1724 int i; 1725 1726 for (i = 0; i < num; i++) { 1727 struct mvneta_tx_desc *tx_desc = txq->descs + 1728 txq->txq_get_index; 1729 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1730 1731 mvneta_txq_inc_get(txq); 1732 1733 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1734 dma_unmap_single(pp->dev->dev.parent, 1735 tx_desc->buf_phys_addr, 1736 tx_desc->data_size, DMA_TO_DEVICE); 1737 if (!skb) 1738 continue; 1739 dev_kfree_skb_any(skb); 1740 } 1741 } 1742 1743 /* Handle end of transmission */ 1744 static void mvneta_txq_done(struct mvneta_port *pp, 1745 struct mvneta_tx_queue *txq) 1746 { 1747 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1748 int tx_done; 1749 1750 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1751 if (!tx_done) 1752 return; 1753 1754 mvneta_txq_bufs_free(pp, txq, tx_done); 1755 1756 txq->count -= tx_done; 1757 1758 if (netif_tx_queue_stopped(nq)) { 1759 if (txq->count <= txq->tx_wake_threshold) 1760 netif_tx_wake_queue(nq); 1761 } 1762 } 1763 1764 void *mvneta_frag_alloc(unsigned int frag_size) 1765 { 1766 if (likely(frag_size <= PAGE_SIZE)) 1767 return netdev_alloc_frag(frag_size); 1768 else 1769 return kmalloc(frag_size, GFP_ATOMIC); 1770 } 1771 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1772 1773 void mvneta_frag_free(unsigned int frag_size, void *data) 1774 { 1775 if (likely(frag_size <= PAGE_SIZE)) 1776 skb_free_frag(data); 1777 else 1778 kfree(data); 1779 } 1780 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1781 1782 /* Refill processing for SW buffer management */ 1783 static int mvneta_rx_refill(struct mvneta_port *pp, 1784 struct mvneta_rx_desc *rx_desc) 1785 1786 { 1787 dma_addr_t phys_addr; 1788 void *data; 1789 1790 data = mvneta_frag_alloc(pp->frag_size); 1791 if (!data) 1792 return -ENOMEM; 1793 1794 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1795 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1796 DMA_FROM_DEVICE); 1797 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1798 mvneta_frag_free(pp->frag_size, data); 1799 return -ENOMEM; 1800 } 1801 1802 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1803 return 0; 1804 } 1805 1806 /* Handle tx checksum */ 1807 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1808 { 1809 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1810 int ip_hdr_len = 0; 1811 __be16 l3_proto = vlan_get_protocol(skb); 1812 u8 l4_proto; 1813 1814 if (l3_proto == htons(ETH_P_IP)) { 1815 struct iphdr *ip4h = ip_hdr(skb); 1816 1817 /* Calculate IPv4 checksum and L4 checksum */ 1818 ip_hdr_len = ip4h->ihl; 1819 l4_proto = ip4h->protocol; 1820 } else if (l3_proto == htons(ETH_P_IPV6)) { 1821 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1822 1823 /* Read l4_protocol from one of IPv6 extra headers */ 1824 if (skb_network_header_len(skb) > 0) 1825 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1826 l4_proto = ip6h->nexthdr; 1827 } else 1828 return MVNETA_TX_L4_CSUM_NOT; 1829 1830 return mvneta_txq_desc_csum(skb_network_offset(skb), 1831 l3_proto, ip_hdr_len, l4_proto); 1832 } 1833 1834 return MVNETA_TX_L4_CSUM_NOT; 1835 } 1836 1837 /* Drop packets received by the RXQ and free buffers */ 1838 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1839 struct mvneta_rx_queue *rxq) 1840 { 1841 int rx_done, i; 1842 1843 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1844 if (rx_done) 1845 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1846 1847 if (pp->bm_priv) { 1848 for (i = 0; i < rx_done; i++) { 1849 struct mvneta_rx_desc *rx_desc = 1850 mvneta_rxq_next_desc_get(rxq); 1851 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1852 struct mvneta_bm_pool *bm_pool; 1853 1854 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1855 /* Return dropped buffer to the pool */ 1856 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1857 rx_desc->buf_phys_addr); 1858 } 1859 return; 1860 } 1861 1862 for (i = 0; i < rxq->size; i++) { 1863 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1864 void *data = (void *)rx_desc->buf_cookie; 1865 1866 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1867 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1868 mvneta_frag_free(pp->frag_size, data); 1869 } 1870 } 1871 1872 /* Main rx processing when using software buffer management */ 1873 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1874 struct mvneta_rx_queue *rxq) 1875 { 1876 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1877 struct net_device *dev = pp->dev; 1878 int rx_done; 1879 u32 rcvd_pkts = 0; 1880 u32 rcvd_bytes = 0; 1881 1882 /* Get number of received packets */ 1883 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1884 1885 if (rx_todo > rx_done) 1886 rx_todo = rx_done; 1887 1888 rx_done = 0; 1889 1890 /* Fairness NAPI loop */ 1891 while (rx_done < rx_todo) { 1892 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1893 struct sk_buff *skb; 1894 unsigned char *data; 1895 dma_addr_t phys_addr; 1896 u32 rx_status, frag_size; 1897 int rx_bytes, err; 1898 1899 rx_done++; 1900 rx_status = rx_desc->status; 1901 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1902 data = (unsigned char *)rx_desc->buf_cookie; 1903 phys_addr = rx_desc->buf_phys_addr; 1904 1905 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1906 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1907 err_drop_frame: 1908 dev->stats.rx_errors++; 1909 mvneta_rx_error(pp, rx_desc); 1910 /* leave the descriptor untouched */ 1911 continue; 1912 } 1913 1914 if (rx_bytes <= rx_copybreak) { 1915 /* better copy a small frame and not unmap the DMA region */ 1916 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1917 if (unlikely(!skb)) 1918 goto err_drop_frame; 1919 1920 dma_sync_single_range_for_cpu(dev->dev.parent, 1921 rx_desc->buf_phys_addr, 1922 MVNETA_MH_SIZE + NET_SKB_PAD, 1923 rx_bytes, 1924 DMA_FROM_DEVICE); 1925 memcpy(skb_put(skb, rx_bytes), 1926 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1927 rx_bytes); 1928 1929 skb->protocol = eth_type_trans(skb, dev); 1930 mvneta_rx_csum(pp, rx_status, skb); 1931 napi_gro_receive(&port->napi, skb); 1932 1933 rcvd_pkts++; 1934 rcvd_bytes += rx_bytes; 1935 1936 /* leave the descriptor and buffer untouched */ 1937 continue; 1938 } 1939 1940 /* Refill processing */ 1941 err = mvneta_rx_refill(pp, rx_desc); 1942 if (err) { 1943 netdev_err(dev, "Linux processing - Can't refill\n"); 1944 rxq->missed++; 1945 goto err_drop_frame; 1946 } 1947 1948 frag_size = pp->frag_size; 1949 1950 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 1951 1952 /* After refill old buffer has to be unmapped regardless 1953 * the skb is successfully built or not. 1954 */ 1955 dma_unmap_single(dev->dev.parent, phys_addr, 1956 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1957 DMA_FROM_DEVICE); 1958 1959 if (!skb) 1960 goto err_drop_frame; 1961 1962 rcvd_pkts++; 1963 rcvd_bytes += rx_bytes; 1964 1965 /* Linux processing */ 1966 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1967 skb_put(skb, rx_bytes); 1968 1969 skb->protocol = eth_type_trans(skb, dev); 1970 1971 mvneta_rx_csum(pp, rx_status, skb); 1972 1973 napi_gro_receive(&port->napi, skb); 1974 } 1975 1976 if (rcvd_pkts) { 1977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1978 1979 u64_stats_update_begin(&stats->syncp); 1980 stats->rx_packets += rcvd_pkts; 1981 stats->rx_bytes += rcvd_bytes; 1982 u64_stats_update_end(&stats->syncp); 1983 } 1984 1985 /* Update rxq management counters */ 1986 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1987 1988 return rx_done; 1989 } 1990 1991 /* Main rx processing when using hardware buffer management */ 1992 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 1993 struct mvneta_rx_queue *rxq) 1994 { 1995 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1996 struct net_device *dev = pp->dev; 1997 int rx_done; 1998 u32 rcvd_pkts = 0; 1999 u32 rcvd_bytes = 0; 2000 2001 /* Get number of received packets */ 2002 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2003 2004 if (rx_todo > rx_done) 2005 rx_todo = rx_done; 2006 2007 rx_done = 0; 2008 2009 /* Fairness NAPI loop */ 2010 while (rx_done < rx_todo) { 2011 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2012 struct mvneta_bm_pool *bm_pool = NULL; 2013 struct sk_buff *skb; 2014 unsigned char *data; 2015 dma_addr_t phys_addr; 2016 u32 rx_status, frag_size; 2017 int rx_bytes, err; 2018 u8 pool_id; 2019 2020 rx_done++; 2021 rx_status = rx_desc->status; 2022 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2023 data = (unsigned char *)rx_desc->buf_cookie; 2024 phys_addr = rx_desc->buf_phys_addr; 2025 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2026 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2027 2028 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2029 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2030 err_drop_frame_ret_pool: 2031 /* Return the buffer to the pool */ 2032 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2033 rx_desc->buf_phys_addr); 2034 err_drop_frame: 2035 dev->stats.rx_errors++; 2036 mvneta_rx_error(pp, rx_desc); 2037 /* leave the descriptor untouched */ 2038 continue; 2039 } 2040 2041 if (rx_bytes <= rx_copybreak) { 2042 /* better copy a small frame and not unmap the DMA region */ 2043 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2044 if (unlikely(!skb)) 2045 goto err_drop_frame_ret_pool; 2046 2047 dma_sync_single_range_for_cpu(dev->dev.parent, 2048 rx_desc->buf_phys_addr, 2049 MVNETA_MH_SIZE + NET_SKB_PAD, 2050 rx_bytes, 2051 DMA_FROM_DEVICE); 2052 memcpy(skb_put(skb, rx_bytes), 2053 data + MVNETA_MH_SIZE + NET_SKB_PAD, 2054 rx_bytes); 2055 2056 skb->protocol = eth_type_trans(skb, dev); 2057 mvneta_rx_csum(pp, rx_status, skb); 2058 napi_gro_receive(&port->napi, skb); 2059 2060 rcvd_pkts++; 2061 rcvd_bytes += rx_bytes; 2062 2063 /* Return the buffer to the pool */ 2064 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2065 rx_desc->buf_phys_addr); 2066 2067 /* leave the descriptor and buffer untouched */ 2068 continue; 2069 } 2070 2071 /* Refill processing */ 2072 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2073 if (err) { 2074 netdev_err(dev, "Linux processing - Can't refill\n"); 2075 rxq->missed++; 2076 goto err_drop_frame_ret_pool; 2077 } 2078 2079 frag_size = bm_pool->hwbm_pool.frag_size; 2080 2081 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2082 2083 /* After refill old buffer has to be unmapped regardless 2084 * the skb is successfully built or not. 2085 */ 2086 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2087 bm_pool->buf_size, DMA_FROM_DEVICE); 2088 if (!skb) 2089 goto err_drop_frame; 2090 2091 rcvd_pkts++; 2092 rcvd_bytes += rx_bytes; 2093 2094 /* Linux processing */ 2095 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2096 skb_put(skb, rx_bytes); 2097 2098 skb->protocol = eth_type_trans(skb, dev); 2099 2100 mvneta_rx_csum(pp, rx_status, skb); 2101 2102 napi_gro_receive(&port->napi, skb); 2103 } 2104 2105 if (rcvd_pkts) { 2106 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2107 2108 u64_stats_update_begin(&stats->syncp); 2109 stats->rx_packets += rcvd_pkts; 2110 stats->rx_bytes += rcvd_bytes; 2111 u64_stats_update_end(&stats->syncp); 2112 } 2113 2114 /* Update rxq management counters */ 2115 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2116 2117 return rx_done; 2118 } 2119 2120 static inline void 2121 mvneta_tso_put_hdr(struct sk_buff *skb, 2122 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2123 { 2124 struct mvneta_tx_desc *tx_desc; 2125 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2126 2127 txq->tx_skb[txq->txq_put_index] = NULL; 2128 tx_desc = mvneta_txq_next_desc_get(txq); 2129 tx_desc->data_size = hdr_len; 2130 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2131 tx_desc->command |= MVNETA_TXD_F_DESC; 2132 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2133 txq->txq_put_index * TSO_HEADER_SIZE; 2134 mvneta_txq_inc_put(txq); 2135 } 2136 2137 static inline int 2138 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2139 struct sk_buff *skb, char *data, int size, 2140 bool last_tcp, bool is_last) 2141 { 2142 struct mvneta_tx_desc *tx_desc; 2143 2144 tx_desc = mvneta_txq_next_desc_get(txq); 2145 tx_desc->data_size = size; 2146 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2147 size, DMA_TO_DEVICE); 2148 if (unlikely(dma_mapping_error(dev->dev.parent, 2149 tx_desc->buf_phys_addr))) { 2150 mvneta_txq_desc_put(txq); 2151 return -ENOMEM; 2152 } 2153 2154 tx_desc->command = 0; 2155 txq->tx_skb[txq->txq_put_index] = NULL; 2156 2157 if (last_tcp) { 2158 /* last descriptor in the TCP packet */ 2159 tx_desc->command = MVNETA_TXD_L_DESC; 2160 2161 /* last descriptor in SKB */ 2162 if (is_last) 2163 txq->tx_skb[txq->txq_put_index] = skb; 2164 } 2165 mvneta_txq_inc_put(txq); 2166 return 0; 2167 } 2168 2169 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2170 struct mvneta_tx_queue *txq) 2171 { 2172 int total_len, data_left; 2173 int desc_count = 0; 2174 struct mvneta_port *pp = netdev_priv(dev); 2175 struct tso_t tso; 2176 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2177 int i; 2178 2179 /* Count needed descriptors */ 2180 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2181 return 0; 2182 2183 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2184 pr_info("*** Is this even possible???!?!?\n"); 2185 return 0; 2186 } 2187 2188 /* Initialize the TSO handler, and prepare the first payload */ 2189 tso_start(skb, &tso); 2190 2191 total_len = skb->len - hdr_len; 2192 while (total_len > 0) { 2193 char *hdr; 2194 2195 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2196 total_len -= data_left; 2197 desc_count++; 2198 2199 /* prepare packet headers: MAC + IP + TCP */ 2200 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2201 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2202 2203 mvneta_tso_put_hdr(skb, pp, txq); 2204 2205 while (data_left > 0) { 2206 int size; 2207 desc_count++; 2208 2209 size = min_t(int, tso.size, data_left); 2210 2211 if (mvneta_tso_put_data(dev, txq, skb, 2212 tso.data, size, 2213 size == data_left, 2214 total_len == 0)) 2215 goto err_release; 2216 data_left -= size; 2217 2218 tso_build_data(skb, &tso, size); 2219 } 2220 } 2221 2222 return desc_count; 2223 2224 err_release: 2225 /* Release all used data descriptors; header descriptors must not 2226 * be DMA-unmapped. 2227 */ 2228 for (i = desc_count - 1; i >= 0; i--) { 2229 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2230 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2231 dma_unmap_single(pp->dev->dev.parent, 2232 tx_desc->buf_phys_addr, 2233 tx_desc->data_size, 2234 DMA_TO_DEVICE); 2235 mvneta_txq_desc_put(txq); 2236 } 2237 return 0; 2238 } 2239 2240 /* Handle tx fragmentation processing */ 2241 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2242 struct mvneta_tx_queue *txq) 2243 { 2244 struct mvneta_tx_desc *tx_desc; 2245 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2246 2247 for (i = 0; i < nr_frags; i++) { 2248 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2249 void *addr = page_address(frag->page.p) + frag->page_offset; 2250 2251 tx_desc = mvneta_txq_next_desc_get(txq); 2252 tx_desc->data_size = frag->size; 2253 2254 tx_desc->buf_phys_addr = 2255 dma_map_single(pp->dev->dev.parent, addr, 2256 tx_desc->data_size, DMA_TO_DEVICE); 2257 2258 if (dma_mapping_error(pp->dev->dev.parent, 2259 tx_desc->buf_phys_addr)) { 2260 mvneta_txq_desc_put(txq); 2261 goto error; 2262 } 2263 2264 if (i == nr_frags - 1) { 2265 /* Last descriptor */ 2266 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2267 txq->tx_skb[txq->txq_put_index] = skb; 2268 } else { 2269 /* Descriptor in the middle: Not First, Not Last */ 2270 tx_desc->command = 0; 2271 txq->tx_skb[txq->txq_put_index] = NULL; 2272 } 2273 mvneta_txq_inc_put(txq); 2274 } 2275 2276 return 0; 2277 2278 error: 2279 /* Release all descriptors that were used to map fragments of 2280 * this packet, as well as the corresponding DMA mappings 2281 */ 2282 for (i = i - 1; i >= 0; i--) { 2283 tx_desc = txq->descs + i; 2284 dma_unmap_single(pp->dev->dev.parent, 2285 tx_desc->buf_phys_addr, 2286 tx_desc->data_size, 2287 DMA_TO_DEVICE); 2288 mvneta_txq_desc_put(txq); 2289 } 2290 2291 return -ENOMEM; 2292 } 2293 2294 /* Main tx processing */ 2295 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2296 { 2297 struct mvneta_port *pp = netdev_priv(dev); 2298 u16 txq_id = skb_get_queue_mapping(skb); 2299 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2300 struct mvneta_tx_desc *tx_desc; 2301 int len = skb->len; 2302 int frags = 0; 2303 u32 tx_cmd; 2304 2305 if (!netif_running(dev)) 2306 goto out; 2307 2308 if (skb_is_gso(skb)) { 2309 frags = mvneta_tx_tso(skb, dev, txq); 2310 goto out; 2311 } 2312 2313 frags = skb_shinfo(skb)->nr_frags + 1; 2314 2315 /* Get a descriptor for the first part of the packet */ 2316 tx_desc = mvneta_txq_next_desc_get(txq); 2317 2318 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2319 2320 tx_desc->data_size = skb_headlen(skb); 2321 2322 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2323 tx_desc->data_size, 2324 DMA_TO_DEVICE); 2325 if (unlikely(dma_mapping_error(dev->dev.parent, 2326 tx_desc->buf_phys_addr))) { 2327 mvneta_txq_desc_put(txq); 2328 frags = 0; 2329 goto out; 2330 } 2331 2332 if (frags == 1) { 2333 /* First and Last descriptor */ 2334 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2335 tx_desc->command = tx_cmd; 2336 txq->tx_skb[txq->txq_put_index] = skb; 2337 mvneta_txq_inc_put(txq); 2338 } else { 2339 /* First but not Last */ 2340 tx_cmd |= MVNETA_TXD_F_DESC; 2341 txq->tx_skb[txq->txq_put_index] = NULL; 2342 mvneta_txq_inc_put(txq); 2343 tx_desc->command = tx_cmd; 2344 /* Continue with other skb fragments */ 2345 if (mvneta_tx_frag_process(pp, skb, txq)) { 2346 dma_unmap_single(dev->dev.parent, 2347 tx_desc->buf_phys_addr, 2348 tx_desc->data_size, 2349 DMA_TO_DEVICE); 2350 mvneta_txq_desc_put(txq); 2351 frags = 0; 2352 goto out; 2353 } 2354 } 2355 2356 out: 2357 if (frags > 0) { 2358 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2359 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2360 2361 txq->count += frags; 2362 mvneta_txq_pend_desc_add(pp, txq, frags); 2363 2364 if (txq->count >= txq->tx_stop_threshold) 2365 netif_tx_stop_queue(nq); 2366 2367 u64_stats_update_begin(&stats->syncp); 2368 stats->tx_packets++; 2369 stats->tx_bytes += len; 2370 u64_stats_update_end(&stats->syncp); 2371 } else { 2372 dev->stats.tx_dropped++; 2373 dev_kfree_skb_any(skb); 2374 } 2375 2376 return NETDEV_TX_OK; 2377 } 2378 2379 2380 /* Free tx resources, when resetting a port */ 2381 static void mvneta_txq_done_force(struct mvneta_port *pp, 2382 struct mvneta_tx_queue *txq) 2383 2384 { 2385 int tx_done = txq->count; 2386 2387 mvneta_txq_bufs_free(pp, txq, tx_done); 2388 2389 /* reset txq */ 2390 txq->count = 0; 2391 txq->txq_put_index = 0; 2392 txq->txq_get_index = 0; 2393 } 2394 2395 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2396 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2397 */ 2398 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2399 { 2400 struct mvneta_tx_queue *txq; 2401 struct netdev_queue *nq; 2402 2403 while (cause_tx_done) { 2404 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2405 2406 nq = netdev_get_tx_queue(pp->dev, txq->id); 2407 __netif_tx_lock(nq, smp_processor_id()); 2408 2409 if (txq->count) 2410 mvneta_txq_done(pp, txq); 2411 2412 __netif_tx_unlock(nq); 2413 cause_tx_done &= ~((1 << txq->id)); 2414 } 2415 } 2416 2417 /* Compute crc8 of the specified address, using a unique algorithm , 2418 * according to hw spec, different than generic crc8 algorithm 2419 */ 2420 static int mvneta_addr_crc(unsigned char *addr) 2421 { 2422 int crc = 0; 2423 int i; 2424 2425 for (i = 0; i < ETH_ALEN; i++) { 2426 int j; 2427 2428 crc = (crc ^ addr[i]) << 8; 2429 for (j = 7; j >= 0; j--) { 2430 if (crc & (0x100 << j)) 2431 crc ^= 0x107 << j; 2432 } 2433 } 2434 2435 return crc; 2436 } 2437 2438 /* This method controls the net device special MAC multicast support. 2439 * The Special Multicast Table for MAC addresses supports MAC of the form 2440 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2441 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2442 * Table entries in the DA-Filter table. This method set the Special 2443 * Multicast Table appropriate entry. 2444 */ 2445 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2446 unsigned char last_byte, 2447 int queue) 2448 { 2449 unsigned int smc_table_reg; 2450 unsigned int tbl_offset; 2451 unsigned int reg_offset; 2452 2453 /* Register offset from SMC table base */ 2454 tbl_offset = (last_byte / 4); 2455 /* Entry offset within the above reg */ 2456 reg_offset = last_byte % 4; 2457 2458 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2459 + tbl_offset * 4)); 2460 2461 if (queue == -1) 2462 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2463 else { 2464 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2465 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2466 } 2467 2468 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2469 smc_table_reg); 2470 } 2471 2472 /* This method controls the network device Other MAC multicast support. 2473 * The Other Multicast Table is used for multicast of another type. 2474 * A CRC-8 is used as an index to the Other Multicast Table entries 2475 * in the DA-Filter table. 2476 * The method gets the CRC-8 value from the calling routine and 2477 * sets the Other Multicast Table appropriate entry according to the 2478 * specified CRC-8 . 2479 */ 2480 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2481 unsigned char crc8, 2482 int queue) 2483 { 2484 unsigned int omc_table_reg; 2485 unsigned int tbl_offset; 2486 unsigned int reg_offset; 2487 2488 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2489 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2490 2491 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2492 2493 if (queue == -1) { 2494 /* Clear accepts frame bit at specified Other DA table entry */ 2495 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2496 } else { 2497 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2498 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2499 } 2500 2501 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2502 } 2503 2504 /* The network device supports multicast using two tables: 2505 * 1) Special Multicast Table for MAC addresses of the form 2506 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2507 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2508 * Table entries in the DA-Filter table. 2509 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2510 * is used as an index to the Other Multicast Table entries in the 2511 * DA-Filter table. 2512 */ 2513 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2514 int queue) 2515 { 2516 unsigned char crc_result = 0; 2517 2518 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2519 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2520 return 0; 2521 } 2522 2523 crc_result = mvneta_addr_crc(p_addr); 2524 if (queue == -1) { 2525 if (pp->mcast_count[crc_result] == 0) { 2526 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2527 crc_result); 2528 return -EINVAL; 2529 } 2530 2531 pp->mcast_count[crc_result]--; 2532 if (pp->mcast_count[crc_result] != 0) { 2533 netdev_info(pp->dev, 2534 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2535 pp->mcast_count[crc_result], crc_result); 2536 return -EINVAL; 2537 } 2538 } else 2539 pp->mcast_count[crc_result]++; 2540 2541 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2542 2543 return 0; 2544 } 2545 2546 /* Configure Fitering mode of Ethernet port */ 2547 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2548 int is_promisc) 2549 { 2550 u32 port_cfg_reg, val; 2551 2552 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2553 2554 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2555 2556 /* Set / Clear UPM bit in port configuration register */ 2557 if (is_promisc) { 2558 /* Accept all Unicast addresses */ 2559 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2560 val |= MVNETA_FORCE_UNI; 2561 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2562 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2563 } else { 2564 /* Reject all Unicast addresses */ 2565 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2566 val &= ~MVNETA_FORCE_UNI; 2567 } 2568 2569 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2570 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2571 } 2572 2573 /* register unicast and multicast addresses */ 2574 static void mvneta_set_rx_mode(struct net_device *dev) 2575 { 2576 struct mvneta_port *pp = netdev_priv(dev); 2577 struct netdev_hw_addr *ha; 2578 2579 if (dev->flags & IFF_PROMISC) { 2580 /* Accept all: Multicast + Unicast */ 2581 mvneta_rx_unicast_promisc_set(pp, 1); 2582 mvneta_set_ucast_table(pp, pp->rxq_def); 2583 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2584 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2585 } else { 2586 /* Accept single Unicast */ 2587 mvneta_rx_unicast_promisc_set(pp, 0); 2588 mvneta_set_ucast_table(pp, -1); 2589 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2590 2591 if (dev->flags & IFF_ALLMULTI) { 2592 /* Accept all multicast */ 2593 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2594 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2595 } else { 2596 /* Accept only initialized multicast */ 2597 mvneta_set_special_mcast_table(pp, -1); 2598 mvneta_set_other_mcast_table(pp, -1); 2599 2600 if (!netdev_mc_empty(dev)) { 2601 netdev_for_each_mc_addr(ha, dev) { 2602 mvneta_mcast_addr_set(pp, ha->addr, 2603 pp->rxq_def); 2604 } 2605 } 2606 } 2607 } 2608 } 2609 2610 /* Interrupt handling - the callback for request_irq() */ 2611 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2612 { 2613 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2614 2615 disable_percpu_irq(port->pp->dev->irq); 2616 napi_schedule(&port->napi); 2617 2618 return IRQ_HANDLED; 2619 } 2620 2621 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2622 struct phy_device *phy) 2623 { 2624 struct fixed_phy_status status; 2625 struct fixed_phy_status changed = {}; 2626 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2627 2628 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2629 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2630 status.speed = SPEED_1000; 2631 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2632 status.speed = SPEED_100; 2633 else 2634 status.speed = SPEED_10; 2635 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2636 changed.link = 1; 2637 changed.speed = 1; 2638 changed.duplex = 1; 2639 fixed_phy_update_state(phy, &status, &changed); 2640 return 0; 2641 } 2642 2643 /* NAPI handler 2644 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2645 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2646 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2647 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2648 * Each CPU has its own causeRxTx register 2649 */ 2650 static int mvneta_poll(struct napi_struct *napi, int budget) 2651 { 2652 int rx_done = 0; 2653 u32 cause_rx_tx; 2654 int rx_queue; 2655 struct mvneta_port *pp = netdev_priv(napi->dev); 2656 struct net_device *ndev = pp->dev; 2657 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2658 2659 if (!netif_running(pp->dev)) { 2660 napi_complete(&port->napi); 2661 return rx_done; 2662 } 2663 2664 /* Read cause register */ 2665 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2666 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2667 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2668 2669 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2670 if (pp->use_inband_status && (cause_misc & 2671 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2672 MVNETA_CAUSE_LINK_CHANGE | 2673 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2674 mvneta_fixed_link_update(pp, ndev->phydev); 2675 } 2676 } 2677 2678 /* Release Tx descriptors */ 2679 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2680 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2681 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2682 } 2683 2684 /* For the case where the last mvneta_poll did not process all 2685 * RX packets 2686 */ 2687 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2688 2689 cause_rx_tx |= port->cause_rx_tx; 2690 2691 if (rx_queue) { 2692 rx_queue = rx_queue - 1; 2693 if (pp->bm_priv) 2694 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2695 else 2696 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2697 } 2698 2699 budget -= rx_done; 2700 2701 if (budget > 0) { 2702 cause_rx_tx = 0; 2703 napi_complete(&port->napi); 2704 enable_percpu_irq(pp->dev->irq, 0); 2705 } 2706 2707 port->cause_rx_tx = cause_rx_tx; 2708 return rx_done; 2709 } 2710 2711 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2712 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2713 int num) 2714 { 2715 int i; 2716 2717 for (i = 0; i < num; i++) { 2718 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2719 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2720 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2721 __func__, rxq->id, i, num); 2722 break; 2723 } 2724 } 2725 2726 /* Add this number of RX descriptors as non occupied (ready to 2727 * get packets) 2728 */ 2729 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2730 2731 return i; 2732 } 2733 2734 /* Free all packets pending transmit from all TXQs and reset TX port */ 2735 static void mvneta_tx_reset(struct mvneta_port *pp) 2736 { 2737 int queue; 2738 2739 /* free the skb's in the tx ring */ 2740 for (queue = 0; queue < txq_number; queue++) 2741 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2742 2743 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2744 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2745 } 2746 2747 static void mvneta_rx_reset(struct mvneta_port *pp) 2748 { 2749 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2750 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2751 } 2752 2753 /* Rx/Tx queue initialization/cleanup methods */ 2754 2755 /* Create a specified RX queue */ 2756 static int mvneta_rxq_init(struct mvneta_port *pp, 2757 struct mvneta_rx_queue *rxq) 2758 2759 { 2760 rxq->size = pp->rx_ring_size; 2761 2762 /* Allocate memory for RX descriptors */ 2763 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2764 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2765 &rxq->descs_phys, GFP_KERNEL); 2766 if (rxq->descs == NULL) 2767 return -ENOMEM; 2768 2769 rxq->last_desc = rxq->size - 1; 2770 2771 /* Set Rx descriptors queue starting address */ 2772 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2773 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2774 2775 /* Set Offset */ 2776 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2777 2778 /* Set coalescing pkts and time */ 2779 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2780 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2781 2782 if (!pp->bm_priv) { 2783 /* Fill RXQ with buffers from RX pool */ 2784 mvneta_rxq_buf_size_set(pp, rxq, 2785 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2786 mvneta_rxq_bm_disable(pp, rxq); 2787 } else { 2788 mvneta_rxq_bm_enable(pp, rxq); 2789 mvneta_rxq_long_pool_set(pp, rxq); 2790 mvneta_rxq_short_pool_set(pp, rxq); 2791 } 2792 2793 mvneta_rxq_fill(pp, rxq, rxq->size); 2794 2795 return 0; 2796 } 2797 2798 /* Cleanup Rx queue */ 2799 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2800 struct mvneta_rx_queue *rxq) 2801 { 2802 mvneta_rxq_drop_pkts(pp, rxq); 2803 2804 if (rxq->descs) 2805 dma_free_coherent(pp->dev->dev.parent, 2806 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2807 rxq->descs, 2808 rxq->descs_phys); 2809 2810 rxq->descs = NULL; 2811 rxq->last_desc = 0; 2812 rxq->next_desc_to_proc = 0; 2813 rxq->descs_phys = 0; 2814 } 2815 2816 /* Create and initialize a tx queue */ 2817 static int mvneta_txq_init(struct mvneta_port *pp, 2818 struct mvneta_tx_queue *txq) 2819 { 2820 int cpu; 2821 2822 txq->size = pp->tx_ring_size; 2823 2824 /* A queue must always have room for at least one skb. 2825 * Therefore, stop the queue when the free entries reaches 2826 * the maximum number of descriptors per skb. 2827 */ 2828 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2829 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2830 2831 2832 /* Allocate memory for TX descriptors */ 2833 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2834 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2835 &txq->descs_phys, GFP_KERNEL); 2836 if (txq->descs == NULL) 2837 return -ENOMEM; 2838 2839 txq->last_desc = txq->size - 1; 2840 2841 /* Set maximum bandwidth for enabled TXQs */ 2842 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2843 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2844 2845 /* Set Tx descriptors queue starting address */ 2846 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2847 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2848 2849 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2850 if (txq->tx_skb == NULL) { 2851 dma_free_coherent(pp->dev->dev.parent, 2852 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2853 txq->descs, txq->descs_phys); 2854 return -ENOMEM; 2855 } 2856 2857 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2858 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2859 txq->size * TSO_HEADER_SIZE, 2860 &txq->tso_hdrs_phys, GFP_KERNEL); 2861 if (txq->tso_hdrs == NULL) { 2862 kfree(txq->tx_skb); 2863 dma_free_coherent(pp->dev->dev.parent, 2864 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2865 txq->descs, txq->descs_phys); 2866 return -ENOMEM; 2867 } 2868 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2869 2870 /* Setup XPS mapping */ 2871 if (txq_number > 1) 2872 cpu = txq->id % num_present_cpus(); 2873 else 2874 cpu = pp->rxq_def % num_present_cpus(); 2875 cpumask_set_cpu(cpu, &txq->affinity_mask); 2876 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2877 2878 return 0; 2879 } 2880 2881 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2882 static void mvneta_txq_deinit(struct mvneta_port *pp, 2883 struct mvneta_tx_queue *txq) 2884 { 2885 kfree(txq->tx_skb); 2886 2887 if (txq->tso_hdrs) 2888 dma_free_coherent(pp->dev->dev.parent, 2889 txq->size * TSO_HEADER_SIZE, 2890 txq->tso_hdrs, txq->tso_hdrs_phys); 2891 if (txq->descs) 2892 dma_free_coherent(pp->dev->dev.parent, 2893 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2894 txq->descs, txq->descs_phys); 2895 2896 txq->descs = NULL; 2897 txq->last_desc = 0; 2898 txq->next_desc_to_proc = 0; 2899 txq->descs_phys = 0; 2900 2901 /* Set minimum bandwidth for disabled TXQs */ 2902 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2903 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2904 2905 /* Set Tx descriptors queue starting address and size */ 2906 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2907 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2908 } 2909 2910 /* Cleanup all Tx queues */ 2911 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2912 { 2913 int queue; 2914 2915 for (queue = 0; queue < txq_number; queue++) 2916 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2917 } 2918 2919 /* Cleanup all Rx queues */ 2920 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2921 { 2922 int queue; 2923 2924 for (queue = 0; queue < txq_number; queue++) 2925 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2926 } 2927 2928 2929 /* Init all Rx queues */ 2930 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2931 { 2932 int queue; 2933 2934 for (queue = 0; queue < rxq_number; queue++) { 2935 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2936 2937 if (err) { 2938 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2939 __func__, queue); 2940 mvneta_cleanup_rxqs(pp); 2941 return err; 2942 } 2943 } 2944 2945 return 0; 2946 } 2947 2948 /* Init all tx queues */ 2949 static int mvneta_setup_txqs(struct mvneta_port *pp) 2950 { 2951 int queue; 2952 2953 for (queue = 0; queue < txq_number; queue++) { 2954 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2955 if (err) { 2956 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2957 __func__, queue); 2958 mvneta_cleanup_txqs(pp); 2959 return err; 2960 } 2961 } 2962 2963 return 0; 2964 } 2965 2966 static void mvneta_start_dev(struct mvneta_port *pp) 2967 { 2968 int cpu; 2969 struct net_device *ndev = pp->dev; 2970 2971 mvneta_max_rx_size_set(pp, pp->pkt_size); 2972 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2973 2974 /* start the Rx/Tx activity */ 2975 mvneta_port_enable(pp); 2976 2977 /* Enable polling on the port */ 2978 for_each_online_cpu(cpu) { 2979 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2980 2981 napi_enable(&port->napi); 2982 } 2983 2984 /* Unmask interrupts. It has to be done from each CPU */ 2985 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 2986 2987 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2988 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2989 MVNETA_CAUSE_LINK_CHANGE | 2990 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2991 2992 phy_start(ndev->phydev); 2993 netif_tx_start_all_queues(pp->dev); 2994 } 2995 2996 static void mvneta_stop_dev(struct mvneta_port *pp) 2997 { 2998 unsigned int cpu; 2999 struct net_device *ndev = pp->dev; 3000 3001 phy_stop(ndev->phydev); 3002 3003 for_each_online_cpu(cpu) { 3004 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3005 3006 napi_disable(&port->napi); 3007 } 3008 3009 netif_carrier_off(pp->dev); 3010 3011 mvneta_port_down(pp); 3012 netif_tx_stop_all_queues(pp->dev); 3013 3014 /* Stop the port activity */ 3015 mvneta_port_disable(pp); 3016 3017 /* Clear all ethernet port interrupts */ 3018 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3019 3020 /* Mask all ethernet port interrupts */ 3021 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3022 3023 mvneta_tx_reset(pp); 3024 mvneta_rx_reset(pp); 3025 } 3026 3027 /* Return positive if MTU is valid */ 3028 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 3029 { 3030 if (mtu < 68) { 3031 netdev_err(dev, "cannot change mtu to less than 68\n"); 3032 return -EINVAL; 3033 } 3034 3035 /* 9676 == 9700 - 20 and rounding to 8 */ 3036 if (mtu > 9676) { 3037 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 3038 mtu = 9676; 3039 } 3040 3041 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3042 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3043 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3044 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3045 } 3046 3047 return mtu; 3048 } 3049 3050 static void mvneta_percpu_enable(void *arg) 3051 { 3052 struct mvneta_port *pp = arg; 3053 3054 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3055 } 3056 3057 static void mvneta_percpu_disable(void *arg) 3058 { 3059 struct mvneta_port *pp = arg; 3060 3061 disable_percpu_irq(pp->dev->irq); 3062 } 3063 3064 /* Change the device mtu */ 3065 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3066 { 3067 struct mvneta_port *pp = netdev_priv(dev); 3068 int ret; 3069 3070 mtu = mvneta_check_mtu_valid(dev, mtu); 3071 if (mtu < 0) 3072 return -EINVAL; 3073 3074 dev->mtu = mtu; 3075 3076 if (!netif_running(dev)) { 3077 if (pp->bm_priv) 3078 mvneta_bm_update_mtu(pp, mtu); 3079 3080 netdev_update_features(dev); 3081 return 0; 3082 } 3083 3084 /* The interface is running, so we have to force a 3085 * reallocation of the queues 3086 */ 3087 mvneta_stop_dev(pp); 3088 on_each_cpu(mvneta_percpu_disable, pp, true); 3089 3090 mvneta_cleanup_txqs(pp); 3091 mvneta_cleanup_rxqs(pp); 3092 3093 if (pp->bm_priv) 3094 mvneta_bm_update_mtu(pp, mtu); 3095 3096 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3097 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3098 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3099 3100 ret = mvneta_setup_rxqs(pp); 3101 if (ret) { 3102 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3103 return ret; 3104 } 3105 3106 ret = mvneta_setup_txqs(pp); 3107 if (ret) { 3108 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3109 return ret; 3110 } 3111 3112 on_each_cpu(mvneta_percpu_enable, pp, true); 3113 mvneta_start_dev(pp); 3114 mvneta_port_up(pp); 3115 3116 netdev_update_features(dev); 3117 3118 return 0; 3119 } 3120 3121 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3122 netdev_features_t features) 3123 { 3124 struct mvneta_port *pp = netdev_priv(dev); 3125 3126 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3127 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3128 netdev_info(dev, 3129 "Disable IP checksum for MTU greater than %dB\n", 3130 pp->tx_csum_limit); 3131 } 3132 3133 return features; 3134 } 3135 3136 /* Get mac address */ 3137 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3138 { 3139 u32 mac_addr_l, mac_addr_h; 3140 3141 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3142 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3143 addr[0] = (mac_addr_h >> 24) & 0xFF; 3144 addr[1] = (mac_addr_h >> 16) & 0xFF; 3145 addr[2] = (mac_addr_h >> 8) & 0xFF; 3146 addr[3] = mac_addr_h & 0xFF; 3147 addr[4] = (mac_addr_l >> 8) & 0xFF; 3148 addr[5] = mac_addr_l & 0xFF; 3149 } 3150 3151 /* Handle setting mac address */ 3152 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3153 { 3154 struct mvneta_port *pp = netdev_priv(dev); 3155 struct sockaddr *sockaddr = addr; 3156 int ret; 3157 3158 ret = eth_prepare_mac_addr_change(dev, addr); 3159 if (ret < 0) 3160 return ret; 3161 /* Remove previous address table entry */ 3162 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3163 3164 /* Set new addr in hw */ 3165 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3166 3167 eth_commit_mac_addr_change(dev, addr); 3168 return 0; 3169 } 3170 3171 static void mvneta_adjust_link(struct net_device *ndev) 3172 { 3173 struct mvneta_port *pp = netdev_priv(ndev); 3174 struct phy_device *phydev = ndev->phydev; 3175 int status_change = 0; 3176 3177 if (phydev->link) { 3178 if ((pp->speed != phydev->speed) || 3179 (pp->duplex != phydev->duplex)) { 3180 u32 val; 3181 3182 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3183 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3184 MVNETA_GMAC_CONFIG_GMII_SPEED | 3185 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3186 3187 if (phydev->duplex) 3188 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3189 3190 if (phydev->speed == SPEED_1000) 3191 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3192 else if (phydev->speed == SPEED_100) 3193 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3194 3195 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3196 3197 pp->duplex = phydev->duplex; 3198 pp->speed = phydev->speed; 3199 } 3200 } 3201 3202 if (phydev->link != pp->link) { 3203 if (!phydev->link) { 3204 pp->duplex = -1; 3205 pp->speed = 0; 3206 } 3207 3208 pp->link = phydev->link; 3209 status_change = 1; 3210 } 3211 3212 if (status_change) { 3213 if (phydev->link) { 3214 if (!pp->use_inband_status) { 3215 u32 val = mvreg_read(pp, 3216 MVNETA_GMAC_AUTONEG_CONFIG); 3217 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3218 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3219 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3220 val); 3221 } 3222 mvneta_port_up(pp); 3223 } else { 3224 if (!pp->use_inband_status) { 3225 u32 val = mvreg_read(pp, 3226 MVNETA_GMAC_AUTONEG_CONFIG); 3227 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3228 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3229 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3230 val); 3231 } 3232 mvneta_port_down(pp); 3233 } 3234 phy_print_status(phydev); 3235 } 3236 } 3237 3238 static int mvneta_mdio_probe(struct mvneta_port *pp) 3239 { 3240 struct phy_device *phy_dev; 3241 3242 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3243 pp->phy_interface); 3244 if (!phy_dev) { 3245 netdev_err(pp->dev, "could not find the PHY\n"); 3246 return -ENODEV; 3247 } 3248 3249 phy_dev->supported &= PHY_GBIT_FEATURES; 3250 phy_dev->advertising = phy_dev->supported; 3251 3252 pp->link = 0; 3253 pp->duplex = 0; 3254 pp->speed = 0; 3255 3256 return 0; 3257 } 3258 3259 static void mvneta_mdio_remove(struct mvneta_port *pp) 3260 { 3261 struct net_device *ndev = pp->dev; 3262 3263 phy_disconnect(ndev->phydev); 3264 } 3265 3266 /* Electing a CPU must be done in an atomic way: it should be done 3267 * after or before the removal/insertion of a CPU and this function is 3268 * not reentrant. 3269 */ 3270 static void mvneta_percpu_elect(struct mvneta_port *pp) 3271 { 3272 int elected_cpu = 0, max_cpu, cpu, i = 0; 3273 3274 /* Use the cpu associated to the rxq when it is online, in all 3275 * the other cases, use the cpu 0 which can't be offline. 3276 */ 3277 if (cpu_online(pp->rxq_def)) 3278 elected_cpu = pp->rxq_def; 3279 3280 max_cpu = num_present_cpus(); 3281 3282 for_each_online_cpu(cpu) { 3283 int rxq_map = 0, txq_map = 0; 3284 int rxq; 3285 3286 for (rxq = 0; rxq < rxq_number; rxq++) 3287 if ((rxq % max_cpu) == cpu) 3288 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3289 3290 if (cpu == elected_cpu) 3291 /* Map the default receive queue queue to the 3292 * elected CPU 3293 */ 3294 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3295 3296 /* We update the TX queue map only if we have one 3297 * queue. In this case we associate the TX queue to 3298 * the CPU bound to the default RX queue 3299 */ 3300 if (txq_number == 1) 3301 txq_map = (cpu == elected_cpu) ? 3302 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3303 else 3304 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3305 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3306 3307 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3308 3309 /* Update the interrupt mask on each CPU according the 3310 * new mapping 3311 */ 3312 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3313 pp, true); 3314 i++; 3315 3316 } 3317 }; 3318 3319 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3320 { 3321 int other_cpu; 3322 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3323 node_online); 3324 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3325 3326 3327 spin_lock(&pp->lock); 3328 /* 3329 * Configuring the driver for a new CPU while the driver is 3330 * stopping is racy, so just avoid it. 3331 */ 3332 if (pp->is_stopped) { 3333 spin_unlock(&pp->lock); 3334 return 0; 3335 } 3336 netif_tx_stop_all_queues(pp->dev); 3337 3338 /* 3339 * We have to synchronise on tha napi of each CPU except the one 3340 * just being woken up 3341 */ 3342 for_each_online_cpu(other_cpu) { 3343 if (other_cpu != cpu) { 3344 struct mvneta_pcpu_port *other_port = 3345 per_cpu_ptr(pp->ports, other_cpu); 3346 3347 napi_synchronize(&other_port->napi); 3348 } 3349 } 3350 3351 /* Mask all ethernet port interrupts */ 3352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3353 napi_enable(&port->napi); 3354 3355 /* 3356 * Enable per-CPU interrupts on the CPU that is 3357 * brought up. 3358 */ 3359 mvneta_percpu_enable(pp); 3360 3361 /* 3362 * Enable per-CPU interrupt on the one CPU we care 3363 * about. 3364 */ 3365 mvneta_percpu_elect(pp); 3366 3367 /* Unmask all ethernet port interrupts */ 3368 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3369 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3370 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3371 MVNETA_CAUSE_LINK_CHANGE | 3372 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3373 netif_tx_start_all_queues(pp->dev); 3374 spin_unlock(&pp->lock); 3375 return 0; 3376 } 3377 3378 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3379 { 3380 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3381 node_online); 3382 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3383 3384 /* 3385 * Thanks to this lock we are sure that any pending cpu election is 3386 * done. 3387 */ 3388 spin_lock(&pp->lock); 3389 /* Mask all ethernet port interrupts */ 3390 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3391 spin_unlock(&pp->lock); 3392 3393 napi_synchronize(&port->napi); 3394 napi_disable(&port->napi); 3395 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3396 mvneta_percpu_disable(pp); 3397 return 0; 3398 } 3399 3400 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3401 { 3402 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3403 node_dead); 3404 3405 /* Check if a new CPU must be elected now this on is down */ 3406 spin_lock(&pp->lock); 3407 mvneta_percpu_elect(pp); 3408 spin_unlock(&pp->lock); 3409 /* Unmask all ethernet port interrupts */ 3410 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3411 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3412 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3413 MVNETA_CAUSE_LINK_CHANGE | 3414 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3415 netif_tx_start_all_queues(pp->dev); 3416 return 0; 3417 } 3418 3419 static int mvneta_open(struct net_device *dev) 3420 { 3421 struct mvneta_port *pp = netdev_priv(dev); 3422 int ret; 3423 3424 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3425 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3427 3428 ret = mvneta_setup_rxqs(pp); 3429 if (ret) 3430 return ret; 3431 3432 ret = mvneta_setup_txqs(pp); 3433 if (ret) 3434 goto err_cleanup_rxqs; 3435 3436 /* Connect to port interrupt line */ 3437 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 3438 MVNETA_DRIVER_NAME, pp->ports); 3439 if (ret) { 3440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3441 goto err_cleanup_txqs; 3442 } 3443 3444 /* Enable per-CPU interrupt on all the CPU to handle our RX 3445 * queue interrupts 3446 */ 3447 on_each_cpu(mvneta_percpu_enable, pp, true); 3448 3449 pp->is_stopped = false; 3450 /* Register a CPU notifier to handle the case where our CPU 3451 * might be taken offline. 3452 */ 3453 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3454 &pp->node_online); 3455 if (ret) 3456 goto err_free_irq; 3457 3458 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3459 &pp->node_dead); 3460 if (ret) 3461 goto err_free_online_hp; 3462 3463 /* In default link is down */ 3464 netif_carrier_off(pp->dev); 3465 3466 ret = mvneta_mdio_probe(pp); 3467 if (ret < 0) { 3468 netdev_err(dev, "cannot probe MDIO bus\n"); 3469 goto err_free_dead_hp; 3470 } 3471 3472 mvneta_start_dev(pp); 3473 3474 return 0; 3475 3476 err_free_dead_hp: 3477 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3478 &pp->node_dead); 3479 err_free_online_hp: 3480 cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); 3481 err_free_irq: 3482 on_each_cpu(mvneta_percpu_disable, pp, true); 3483 free_percpu_irq(pp->dev->irq, pp->ports); 3484 err_cleanup_txqs: 3485 mvneta_cleanup_txqs(pp); 3486 err_cleanup_rxqs: 3487 mvneta_cleanup_rxqs(pp); 3488 return ret; 3489 } 3490 3491 /* Stop the port, free port interrupt line */ 3492 static int mvneta_stop(struct net_device *dev) 3493 { 3494 struct mvneta_port *pp = netdev_priv(dev); 3495 3496 /* Inform that we are stopping so we don't want to setup the 3497 * driver for new CPUs in the notifiers. The code of the 3498 * notifier for CPU online is protected by the same spinlock, 3499 * so when we get the lock, the notifer work is done. 3500 */ 3501 spin_lock(&pp->lock); 3502 pp->is_stopped = true; 3503 spin_unlock(&pp->lock); 3504 3505 mvneta_stop_dev(pp); 3506 mvneta_mdio_remove(pp); 3507 3508 cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); 3509 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3510 &pp->node_dead); 3511 on_each_cpu(mvneta_percpu_disable, pp, true); 3512 free_percpu_irq(dev->irq, pp->ports); 3513 mvneta_cleanup_rxqs(pp); 3514 mvneta_cleanup_txqs(pp); 3515 3516 return 0; 3517 } 3518 3519 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3520 { 3521 if (!dev->phydev) 3522 return -ENOTSUPP; 3523 3524 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3525 } 3526 3527 /* Ethtool methods */ 3528 3529 /* Set link ksettings (phy address, speed) for ethtools */ 3530 static int 3531 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3532 const struct ethtool_link_ksettings *cmd) 3533 { 3534 struct mvneta_port *pp = netdev_priv(ndev); 3535 struct phy_device *phydev = ndev->phydev; 3536 3537 if (!phydev) 3538 return -ENODEV; 3539 3540 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3541 u32 val; 3542 3543 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3544 3545 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3546 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3547 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3548 MVNETA_GMAC_CONFIG_GMII_SPEED | 3549 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3550 3551 if (phydev->duplex) 3552 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3553 3554 if (phydev->speed == SPEED_1000) 3555 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3556 else if (phydev->speed == SPEED_100) 3557 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3558 3559 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3560 } 3561 3562 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3563 netdev_info(pp->dev, "autoneg status set to %i\n", 3564 pp->use_inband_status); 3565 3566 if (netif_running(ndev)) { 3567 mvneta_port_down(pp); 3568 mvneta_port_up(pp); 3569 } 3570 } 3571 3572 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3573 } 3574 3575 /* Set interrupt coalescing for ethtools */ 3576 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3577 struct ethtool_coalesce *c) 3578 { 3579 struct mvneta_port *pp = netdev_priv(dev); 3580 int queue; 3581 3582 for (queue = 0; queue < rxq_number; queue++) { 3583 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3584 rxq->time_coal = c->rx_coalesce_usecs; 3585 rxq->pkts_coal = c->rx_max_coalesced_frames; 3586 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3587 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3588 } 3589 3590 for (queue = 0; queue < txq_number; queue++) { 3591 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3592 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3593 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3594 } 3595 3596 return 0; 3597 } 3598 3599 /* get coalescing for ethtools */ 3600 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3601 struct ethtool_coalesce *c) 3602 { 3603 struct mvneta_port *pp = netdev_priv(dev); 3604 3605 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3606 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3607 3608 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3609 return 0; 3610 } 3611 3612 3613 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3614 struct ethtool_drvinfo *drvinfo) 3615 { 3616 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3617 sizeof(drvinfo->driver)); 3618 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3619 sizeof(drvinfo->version)); 3620 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3621 sizeof(drvinfo->bus_info)); 3622 } 3623 3624 3625 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3626 struct ethtool_ringparam *ring) 3627 { 3628 struct mvneta_port *pp = netdev_priv(netdev); 3629 3630 ring->rx_max_pending = MVNETA_MAX_RXD; 3631 ring->tx_max_pending = MVNETA_MAX_TXD; 3632 ring->rx_pending = pp->rx_ring_size; 3633 ring->tx_pending = pp->tx_ring_size; 3634 } 3635 3636 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3637 struct ethtool_ringparam *ring) 3638 { 3639 struct mvneta_port *pp = netdev_priv(dev); 3640 3641 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3642 return -EINVAL; 3643 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3644 ring->rx_pending : MVNETA_MAX_RXD; 3645 3646 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3647 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3648 if (pp->tx_ring_size != ring->tx_pending) 3649 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3650 pp->tx_ring_size, ring->tx_pending); 3651 3652 if (netif_running(dev)) { 3653 mvneta_stop(dev); 3654 if (mvneta_open(dev)) { 3655 netdev_err(dev, 3656 "error on opening device after ring param change\n"); 3657 return -ENOMEM; 3658 } 3659 } 3660 3661 return 0; 3662 } 3663 3664 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3665 u8 *data) 3666 { 3667 if (sset == ETH_SS_STATS) { 3668 int i; 3669 3670 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3671 memcpy(data + i * ETH_GSTRING_LEN, 3672 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3673 } 3674 } 3675 3676 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3677 { 3678 const struct mvneta_statistic *s; 3679 void __iomem *base = pp->base; 3680 u32 high, low, val; 3681 u64 val64; 3682 int i; 3683 3684 for (i = 0, s = mvneta_statistics; 3685 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3686 s++, i++) { 3687 switch (s->type) { 3688 case T_REG_32: 3689 val = readl_relaxed(base + s->offset); 3690 pp->ethtool_stats[i] += val; 3691 break; 3692 case T_REG_64: 3693 /* Docs say to read low 32-bit then high */ 3694 low = readl_relaxed(base + s->offset); 3695 high = readl_relaxed(base + s->offset + 4); 3696 val64 = (u64)high << 32 | low; 3697 pp->ethtool_stats[i] += val64; 3698 break; 3699 } 3700 } 3701 } 3702 3703 static void mvneta_ethtool_get_stats(struct net_device *dev, 3704 struct ethtool_stats *stats, u64 *data) 3705 { 3706 struct mvneta_port *pp = netdev_priv(dev); 3707 int i; 3708 3709 mvneta_ethtool_update_stats(pp); 3710 3711 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3712 *data++ = pp->ethtool_stats[i]; 3713 } 3714 3715 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3716 { 3717 if (sset == ETH_SS_STATS) 3718 return ARRAY_SIZE(mvneta_statistics); 3719 return -EOPNOTSUPP; 3720 } 3721 3722 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3723 { 3724 return MVNETA_RSS_LU_TABLE_SIZE; 3725 } 3726 3727 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3728 struct ethtool_rxnfc *info, 3729 u32 *rules __always_unused) 3730 { 3731 switch (info->cmd) { 3732 case ETHTOOL_GRXRINGS: 3733 info->data = rxq_number; 3734 return 0; 3735 case ETHTOOL_GRXFH: 3736 return -EOPNOTSUPP; 3737 default: 3738 return -EOPNOTSUPP; 3739 } 3740 } 3741 3742 static int mvneta_config_rss(struct mvneta_port *pp) 3743 { 3744 int cpu; 3745 u32 val; 3746 3747 netif_tx_stop_all_queues(pp->dev); 3748 3749 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3750 3751 /* We have to synchronise on the napi of each CPU */ 3752 for_each_online_cpu(cpu) { 3753 struct mvneta_pcpu_port *pcpu_port = 3754 per_cpu_ptr(pp->ports, cpu); 3755 3756 napi_synchronize(&pcpu_port->napi); 3757 napi_disable(&pcpu_port->napi); 3758 } 3759 3760 pp->rxq_def = pp->indir[0]; 3761 3762 /* Update unicast mapping */ 3763 mvneta_set_rx_mode(pp->dev); 3764 3765 /* Update val of portCfg register accordingly with all RxQueue types */ 3766 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3767 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3768 3769 /* Update the elected CPU matching the new rxq_def */ 3770 spin_lock(&pp->lock); 3771 mvneta_percpu_elect(pp); 3772 spin_unlock(&pp->lock); 3773 3774 /* We have to synchronise on the napi of each CPU */ 3775 for_each_online_cpu(cpu) { 3776 struct mvneta_pcpu_port *pcpu_port = 3777 per_cpu_ptr(pp->ports, cpu); 3778 3779 napi_enable(&pcpu_port->napi); 3780 } 3781 3782 netif_tx_start_all_queues(pp->dev); 3783 3784 return 0; 3785 } 3786 3787 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3788 const u8 *key, const u8 hfunc) 3789 { 3790 struct mvneta_port *pp = netdev_priv(dev); 3791 /* We require at least one supported parameter to be changed 3792 * and no change in any of the unsupported parameters 3793 */ 3794 if (key || 3795 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3796 return -EOPNOTSUPP; 3797 3798 if (!indir) 3799 return 0; 3800 3801 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3802 3803 return mvneta_config_rss(pp); 3804 } 3805 3806 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3807 u8 *hfunc) 3808 { 3809 struct mvneta_port *pp = netdev_priv(dev); 3810 3811 if (hfunc) 3812 *hfunc = ETH_RSS_HASH_TOP; 3813 3814 if (!indir) 3815 return 0; 3816 3817 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3818 3819 return 0; 3820 } 3821 3822 static const struct net_device_ops mvneta_netdev_ops = { 3823 .ndo_open = mvneta_open, 3824 .ndo_stop = mvneta_stop, 3825 .ndo_start_xmit = mvneta_tx, 3826 .ndo_set_rx_mode = mvneta_set_rx_mode, 3827 .ndo_set_mac_address = mvneta_set_mac_addr, 3828 .ndo_change_mtu = mvneta_change_mtu, 3829 .ndo_fix_features = mvneta_fix_features, 3830 .ndo_get_stats64 = mvneta_get_stats64, 3831 .ndo_do_ioctl = mvneta_ioctl, 3832 }; 3833 3834 const struct ethtool_ops mvneta_eth_tool_ops = { 3835 .get_link = ethtool_op_get_link, 3836 .set_coalesce = mvneta_ethtool_set_coalesce, 3837 .get_coalesce = mvneta_ethtool_get_coalesce, 3838 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3839 .get_ringparam = mvneta_ethtool_get_ringparam, 3840 .set_ringparam = mvneta_ethtool_set_ringparam, 3841 .get_strings = mvneta_ethtool_get_strings, 3842 .get_ethtool_stats = mvneta_ethtool_get_stats, 3843 .get_sset_count = mvneta_ethtool_get_sset_count, 3844 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3845 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3846 .get_rxfh = mvneta_ethtool_get_rxfh, 3847 .set_rxfh = mvneta_ethtool_set_rxfh, 3848 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3849 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3850 }; 3851 3852 /* Initialize hw */ 3853 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3854 { 3855 int queue; 3856 3857 /* Disable port */ 3858 mvneta_port_disable(pp); 3859 3860 /* Set port default values */ 3861 mvneta_defaults_set(pp); 3862 3863 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3864 GFP_KERNEL); 3865 if (!pp->txqs) 3866 return -ENOMEM; 3867 3868 /* Initialize TX descriptor rings */ 3869 for (queue = 0; queue < txq_number; queue++) { 3870 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3871 txq->id = queue; 3872 txq->size = pp->tx_ring_size; 3873 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3874 } 3875 3876 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3877 GFP_KERNEL); 3878 if (!pp->rxqs) 3879 return -ENOMEM; 3880 3881 /* Create Rx descriptor rings */ 3882 for (queue = 0; queue < rxq_number; queue++) { 3883 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3884 rxq->id = queue; 3885 rxq->size = pp->rx_ring_size; 3886 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3887 rxq->time_coal = MVNETA_RX_COAL_USEC; 3888 } 3889 3890 return 0; 3891 } 3892 3893 /* platform glue : initialize decoding windows */ 3894 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3895 const struct mbus_dram_target_info *dram) 3896 { 3897 u32 win_enable; 3898 u32 win_protect; 3899 int i; 3900 3901 for (i = 0; i < 6; i++) { 3902 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3903 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3904 3905 if (i < 4) 3906 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3907 } 3908 3909 win_enable = 0x3f; 3910 win_protect = 0; 3911 3912 for (i = 0; i < dram->num_cs; i++) { 3913 const struct mbus_dram_window *cs = dram->cs + i; 3914 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3915 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3916 3917 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3918 (cs->size - 1) & 0xffff0000); 3919 3920 win_enable &= ~(1 << i); 3921 win_protect |= 3 << (2 * i); 3922 } 3923 3924 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3925 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3926 } 3927 3928 /* Power up the port */ 3929 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3930 { 3931 u32 ctrl; 3932 3933 /* MAC Cause register should be cleared */ 3934 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3935 3936 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3937 3938 /* Even though it might look weird, when we're configured in 3939 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3940 */ 3941 switch(phy_mode) { 3942 case PHY_INTERFACE_MODE_QSGMII: 3943 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3944 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3945 break; 3946 case PHY_INTERFACE_MODE_SGMII: 3947 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3948 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3949 break; 3950 case PHY_INTERFACE_MODE_RGMII: 3951 case PHY_INTERFACE_MODE_RGMII_ID: 3952 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3953 break; 3954 default: 3955 return -EINVAL; 3956 } 3957 3958 /* Cancel Port Reset */ 3959 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3960 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3961 3962 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3963 MVNETA_GMAC2_PORT_RESET) != 0) 3964 continue; 3965 3966 return 0; 3967 } 3968 3969 /* Device initialization routine */ 3970 static int mvneta_probe(struct platform_device *pdev) 3971 { 3972 const struct mbus_dram_target_info *dram_target_info; 3973 struct resource *res; 3974 struct device_node *dn = pdev->dev.of_node; 3975 struct device_node *phy_node; 3976 struct device_node *bm_node; 3977 struct mvneta_port *pp; 3978 struct net_device *dev; 3979 const char *dt_mac_addr; 3980 char hw_mac_addr[ETH_ALEN]; 3981 const char *mac_from; 3982 const char *managed; 3983 int tx_csum_limit; 3984 int phy_mode; 3985 int err; 3986 int cpu; 3987 3988 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3989 if (!dev) 3990 return -ENOMEM; 3991 3992 dev->irq = irq_of_parse_and_map(dn, 0); 3993 if (dev->irq == 0) { 3994 err = -EINVAL; 3995 goto err_free_netdev; 3996 } 3997 3998 phy_node = of_parse_phandle(dn, "phy", 0); 3999 if (!phy_node) { 4000 if (!of_phy_is_fixed_link(dn)) { 4001 dev_err(&pdev->dev, "no PHY specified\n"); 4002 err = -ENODEV; 4003 goto err_free_irq; 4004 } 4005 4006 err = of_phy_register_fixed_link(dn); 4007 if (err < 0) { 4008 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4009 goto err_free_irq; 4010 } 4011 4012 /* In the case of a fixed PHY, the DT node associated 4013 * to the PHY is the Ethernet MAC DT node. 4014 */ 4015 phy_node = of_node_get(dn); 4016 } 4017 4018 phy_mode = of_get_phy_mode(dn); 4019 if (phy_mode < 0) { 4020 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4021 err = -EINVAL; 4022 goto err_put_phy_node; 4023 } 4024 4025 dev->tx_queue_len = MVNETA_MAX_TXD; 4026 dev->watchdog_timeo = 5 * HZ; 4027 dev->netdev_ops = &mvneta_netdev_ops; 4028 4029 dev->ethtool_ops = &mvneta_eth_tool_ops; 4030 4031 pp = netdev_priv(dev); 4032 spin_lock_init(&pp->lock); 4033 pp->phy_node = phy_node; 4034 pp->phy_interface = phy_mode; 4035 4036 err = of_property_read_string(dn, "managed", &managed); 4037 pp->use_inband_status = (err == 0 && 4038 strcmp(managed, "in-band-status") == 0); 4039 4040 pp->rxq_def = rxq_def; 4041 4042 pp->indir[0] = rxq_def; 4043 4044 pp->clk = devm_clk_get(&pdev->dev, "core"); 4045 if (IS_ERR(pp->clk)) 4046 pp->clk = devm_clk_get(&pdev->dev, NULL); 4047 if (IS_ERR(pp->clk)) { 4048 err = PTR_ERR(pp->clk); 4049 goto err_put_phy_node; 4050 } 4051 4052 clk_prepare_enable(pp->clk); 4053 4054 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4055 if (!IS_ERR(pp->clk_bus)) 4056 clk_prepare_enable(pp->clk_bus); 4057 4058 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4059 pp->base = devm_ioremap_resource(&pdev->dev, res); 4060 if (IS_ERR(pp->base)) { 4061 err = PTR_ERR(pp->base); 4062 goto err_clk; 4063 } 4064 4065 /* Alloc per-cpu port structure */ 4066 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4067 if (!pp->ports) { 4068 err = -ENOMEM; 4069 goto err_clk; 4070 } 4071 4072 /* Alloc per-cpu stats */ 4073 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4074 if (!pp->stats) { 4075 err = -ENOMEM; 4076 goto err_free_ports; 4077 } 4078 4079 dt_mac_addr = of_get_mac_address(dn); 4080 if (dt_mac_addr) { 4081 mac_from = "device tree"; 4082 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4083 } else { 4084 mvneta_get_mac_addr(pp, hw_mac_addr); 4085 if (is_valid_ether_addr(hw_mac_addr)) { 4086 mac_from = "hardware"; 4087 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4088 } else { 4089 mac_from = "random"; 4090 eth_hw_addr_random(dev); 4091 } 4092 } 4093 4094 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4095 if (tx_csum_limit < 0 || 4096 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4097 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4098 dev_info(&pdev->dev, 4099 "Wrong TX csum limit in DT, set to %dB\n", 4100 MVNETA_TX_CSUM_DEF_SIZE); 4101 } 4102 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4103 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4104 } else { 4105 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4106 } 4107 4108 pp->tx_csum_limit = tx_csum_limit; 4109 4110 dram_target_info = mv_mbus_dram_info(); 4111 if (dram_target_info) 4112 mvneta_conf_mbus_windows(pp, dram_target_info); 4113 4114 pp->tx_ring_size = MVNETA_MAX_TXD; 4115 pp->rx_ring_size = MVNETA_MAX_RXD; 4116 4117 pp->dev = dev; 4118 SET_NETDEV_DEV(dev, &pdev->dev); 4119 4120 pp->id = global_port_id++; 4121 4122 /* Obtain access to BM resources if enabled and already initialized */ 4123 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4124 if (bm_node && bm_node->data) { 4125 pp->bm_priv = bm_node->data; 4126 err = mvneta_bm_port_init(pdev, pp); 4127 if (err < 0) { 4128 dev_info(&pdev->dev, "use SW buffer management\n"); 4129 pp->bm_priv = NULL; 4130 } 4131 } 4132 of_node_put(bm_node); 4133 4134 err = mvneta_init(&pdev->dev, pp); 4135 if (err < 0) 4136 goto err_netdev; 4137 4138 err = mvneta_port_power_up(pp, phy_mode); 4139 if (err < 0) { 4140 dev_err(&pdev->dev, "can't power up port\n"); 4141 goto err_netdev; 4142 } 4143 4144 for_each_present_cpu(cpu) { 4145 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4146 4147 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4148 port->pp = pp; 4149 } 4150 4151 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4152 dev->hw_features |= dev->features; 4153 dev->vlan_features |= dev->features; 4154 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE; 4155 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4156 4157 err = register_netdev(dev); 4158 if (err < 0) { 4159 dev_err(&pdev->dev, "failed to register\n"); 4160 goto err_free_stats; 4161 } 4162 4163 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4164 dev->dev_addr); 4165 4166 platform_set_drvdata(pdev, pp->dev); 4167 4168 if (pp->use_inband_status) { 4169 struct phy_device *phy = of_phy_find_device(dn); 4170 4171 mvneta_fixed_link_update(pp, phy); 4172 4173 put_device(&phy->mdio.dev); 4174 } 4175 4176 return 0; 4177 4178 err_netdev: 4179 unregister_netdev(dev); 4180 if (pp->bm_priv) { 4181 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4182 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4183 1 << pp->id); 4184 } 4185 err_free_stats: 4186 free_percpu(pp->stats); 4187 err_free_ports: 4188 free_percpu(pp->ports); 4189 err_clk: 4190 clk_disable_unprepare(pp->clk_bus); 4191 clk_disable_unprepare(pp->clk); 4192 err_put_phy_node: 4193 of_node_put(phy_node); 4194 err_free_irq: 4195 irq_dispose_mapping(dev->irq); 4196 err_free_netdev: 4197 free_netdev(dev); 4198 return err; 4199 } 4200 4201 /* Device removal routine */ 4202 static int mvneta_remove(struct platform_device *pdev) 4203 { 4204 struct net_device *dev = platform_get_drvdata(pdev); 4205 struct mvneta_port *pp = netdev_priv(dev); 4206 4207 unregister_netdev(dev); 4208 clk_disable_unprepare(pp->clk_bus); 4209 clk_disable_unprepare(pp->clk); 4210 free_percpu(pp->ports); 4211 free_percpu(pp->stats); 4212 irq_dispose_mapping(dev->irq); 4213 of_node_put(pp->phy_node); 4214 free_netdev(dev); 4215 4216 if (pp->bm_priv) { 4217 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4218 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4219 1 << pp->id); 4220 } 4221 4222 return 0; 4223 } 4224 4225 static const struct of_device_id mvneta_match[] = { 4226 { .compatible = "marvell,armada-370-neta" }, 4227 { .compatible = "marvell,armada-xp-neta" }, 4228 { } 4229 }; 4230 MODULE_DEVICE_TABLE(of, mvneta_match); 4231 4232 static struct platform_driver mvneta_driver = { 4233 .probe = mvneta_probe, 4234 .remove = mvneta_remove, 4235 .driver = { 4236 .name = MVNETA_DRIVER_NAME, 4237 .of_match_table = mvneta_match, 4238 }, 4239 }; 4240 4241 static int __init mvneta_driver_init(void) 4242 { 4243 int ret; 4244 4245 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4246 mvneta_cpu_online, 4247 mvneta_cpu_down_prepare); 4248 if (ret < 0) 4249 goto out; 4250 online_hpstate = ret; 4251 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4252 NULL, mvneta_cpu_dead); 4253 if (ret) 4254 goto err_dead; 4255 4256 ret = platform_driver_register(&mvneta_driver); 4257 if (ret) 4258 goto err; 4259 return 0; 4260 4261 err: 4262 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4263 err_dead: 4264 cpuhp_remove_multi_state(online_hpstate); 4265 out: 4266 return ret; 4267 } 4268 module_init(mvneta_driver_init); 4269 4270 static void __exit mvneta_driver_exit(void) 4271 { 4272 platform_driver_unregister(&mvneta_driver); 4273 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4274 cpuhp_remove_multi_state(online_hpstate); 4275 } 4276 module_exit(mvneta_driver_exit); 4277 4278 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4279 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4280 MODULE_LICENSE("GPL"); 4281 4282 module_param(rxq_number, int, S_IRUGO); 4283 module_param(txq_number, int, S_IRUGO); 4284 4285 module_param(rxq_def, int, S_IRUGO); 4286 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4287