1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phylink.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 194 #define MVNETA_GMAC_CTRL_2 0x2c08 195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 197 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 198 #define MVNETA_GMAC2_PORT_RESET BIT(6) 199 #define MVNETA_GMAC_STATUS 0x2c10 200 #define MVNETA_GMAC_LINK_UP BIT(0) 201 #define MVNETA_GMAC_SPEED_1000 BIT(1) 202 #define MVNETA_GMAC_SPEED_100 BIT(2) 203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 208 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 209 #define MVNETA_GMAC_SYNC_OK BIT(14) 210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 224 #define MVNETA_MIB_COUNTERS_BASE 0x3000 225 #define MVNETA_MIB_LATE_COLLISION 0x7c 226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 239 #define MVNETA_PORT_TX_RESET 0x3cf0 240 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 241 #define MVNETA_TX_MTU 0x3e0c 242 #define MVNETA_TX_TOKEN_SIZE 0x3e14 243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 246 247 #define MVNETA_LPI_CTRL_0 0x2cc0 248 #define MVNETA_LPI_CTRL_1 0x2cc4 249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 250 #define MVNETA_LPI_CTRL_2 0x2cc8 251 #define MVNETA_LPI_STATUS 0x2ccc 252 253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 254 255 /* Descriptor ring Macros */ 256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 257 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 258 259 /* Various constants */ 260 261 /* Coalescing */ 262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 263 #define MVNETA_RX_COAL_PKTS 32 264 #define MVNETA_RX_COAL_USEC 100 265 266 /* The two bytes Marvell header. Either contains a special value used 267 * by Marvell switches when a specific hardware mode is enabled (not 268 * supported by this driver) or is filled automatically by zeroes on 269 * the RX side. Those two bytes being at the front of the Ethernet 270 * header, they allow to have the IP header aligned on a 4 bytes 271 * boundary automatically: the hardware skips those two bytes on its 272 * own. 273 */ 274 #define MVNETA_MH_SIZE 2 275 276 #define MVNETA_VLAN_TAG_LEN 4 277 278 #define MVNETA_TX_CSUM_DEF_SIZE 1600 279 #define MVNETA_TX_CSUM_MAX_SIZE 9800 280 #define MVNETA_ACC_MODE_EXT1 1 281 #define MVNETA_ACC_MODE_EXT2 2 282 283 #define MVNETA_MAX_DECODE_WIN 6 284 285 /* Timeout constants */ 286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 289 290 #define MVNETA_TX_MTU_MAX 0x3ffff 291 292 /* The RSS lookup table actually has 256 entries but we do not use 293 * them yet 294 */ 295 #define MVNETA_RSS_LU_TABLE_SIZE 1 296 297 /* Max number of Rx descriptors */ 298 #define MVNETA_MAX_RXD 512 299 300 /* Max number of Tx descriptors */ 301 #define MVNETA_MAX_TXD 1024 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define MVNETA_MAX_TSO_SEGS 100 305 306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 307 308 /* descriptor aligned size */ 309 #define MVNETA_DESC_ALIGNED_SIZE 32 310 311 /* Number of bytes to be taken into account by HW when putting incoming data 312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 314 */ 315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 316 317 #define MVNETA_RX_PKT_SIZE(mtu) \ 318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 319 ETH_HLEN + ETH_FCS_LEN, \ 320 cache_line_size()) 321 322 #define IS_TSO_HEADER(txq, addr) \ 323 ((addr >= txq->tso_hdrs_phys) && \ 324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 325 326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 328 329 enum { 330 ETHTOOL_STAT_EEE_WAKEUP, 331 ETHTOOL_STAT_SKB_ALLOC_ERR, 332 ETHTOOL_STAT_REFILL_ERR, 333 ETHTOOL_MAX_STATS, 334 }; 335 336 struct mvneta_statistic { 337 unsigned short offset; 338 unsigned short type; 339 const char name[ETH_GSTRING_LEN]; 340 }; 341 342 #define T_REG_32 32 343 #define T_REG_64 64 344 #define T_SW 1 345 346 static const struct mvneta_statistic mvneta_statistics[] = { 347 { 0x3000, T_REG_64, "good_octets_received", }, 348 { 0x3010, T_REG_32, "good_frames_received", }, 349 { 0x3008, T_REG_32, "bad_octets_received", }, 350 { 0x3014, T_REG_32, "bad_frames_received", }, 351 { 0x3018, T_REG_32, "broadcast_frames_received", }, 352 { 0x301c, T_REG_32, "multicast_frames_received", }, 353 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 354 { 0x3058, T_REG_32, "good_fc_received", }, 355 { 0x305c, T_REG_32, "bad_fc_received", }, 356 { 0x3060, T_REG_32, "undersize_received", }, 357 { 0x3064, T_REG_32, "fragments_received", }, 358 { 0x3068, T_REG_32, "oversize_received", }, 359 { 0x306c, T_REG_32, "jabber_received", }, 360 { 0x3070, T_REG_32, "mac_receive_error", }, 361 { 0x3074, T_REG_32, "bad_crc_event", }, 362 { 0x3078, T_REG_32, "collision", }, 363 { 0x307c, T_REG_32, "late_collision", }, 364 { 0x2484, T_REG_32, "rx_discard", }, 365 { 0x2488, T_REG_32, "rx_overrun", }, 366 { 0x3020, T_REG_32, "frames_64_octets", }, 367 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 368 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 369 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 370 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 371 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 372 { 0x3038, T_REG_64, "good_octets_sent", }, 373 { 0x3040, T_REG_32, "good_frames_sent", }, 374 { 0x3044, T_REG_32, "excessive_collision", }, 375 { 0x3048, T_REG_32, "multicast_frames_sent", }, 376 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 377 { 0x3054, T_REG_32, "fc_sent", }, 378 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 379 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 380 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 381 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 382 }; 383 384 struct mvneta_pcpu_stats { 385 struct u64_stats_sync syncp; 386 u64 rx_packets; 387 u64 rx_bytes; 388 u64 tx_packets; 389 u64 tx_bytes; 390 }; 391 392 struct mvneta_pcpu_port { 393 /* Pointer to the shared port */ 394 struct mvneta_port *pp; 395 396 /* Pointer to the CPU-local NAPI struct */ 397 struct napi_struct napi; 398 399 /* Cause of the previous interrupt */ 400 u32 cause_rx_tx; 401 }; 402 403 struct mvneta_port { 404 u8 id; 405 struct mvneta_pcpu_port __percpu *ports; 406 struct mvneta_pcpu_stats __percpu *stats; 407 408 int pkt_size; 409 unsigned int frag_size; 410 void __iomem *base; 411 struct mvneta_rx_queue *rxqs; 412 struct mvneta_tx_queue *txqs; 413 struct net_device *dev; 414 struct hlist_node node_online; 415 struct hlist_node node_dead; 416 int rxq_def; 417 /* Protect the access to the percpu interrupt registers, 418 * ensuring that the configuration remains coherent. 419 */ 420 spinlock_t lock; 421 bool is_stopped; 422 423 u32 cause_rx_tx; 424 struct napi_struct napi; 425 426 /* Core clock */ 427 struct clk *clk; 428 /* AXI clock */ 429 struct clk *clk_bus; 430 u8 mcast_count[256]; 431 u16 tx_ring_size; 432 u16 rx_ring_size; 433 434 phy_interface_t phy_interface; 435 struct device_node *dn; 436 unsigned int tx_csum_limit; 437 struct phylink *phylink; 438 439 struct mvneta_bm *bm_priv; 440 struct mvneta_bm_pool *pool_long; 441 struct mvneta_bm_pool *pool_short; 442 int bm_win_id; 443 444 bool eee_enabled; 445 bool eee_active; 446 bool tx_lpi_enabled; 447 448 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 449 450 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 451 452 /* Flags for special SoC configurations */ 453 bool neta_armada3700; 454 u16 rx_offset_correction; 455 const struct mbus_dram_target_info *dram_target_info; 456 }; 457 458 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 459 * layout of the transmit and reception DMA descriptors, and their 460 * layout is therefore defined by the hardware design 461 */ 462 463 #define MVNETA_TX_L3_OFF_SHIFT 0 464 #define MVNETA_TX_IP_HLEN_SHIFT 8 465 #define MVNETA_TX_L4_UDP BIT(16) 466 #define MVNETA_TX_L3_IP6 BIT(17) 467 #define MVNETA_TXD_IP_CSUM BIT(18) 468 #define MVNETA_TXD_Z_PAD BIT(19) 469 #define MVNETA_TXD_L_DESC BIT(20) 470 #define MVNETA_TXD_F_DESC BIT(21) 471 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 472 MVNETA_TXD_L_DESC | \ 473 MVNETA_TXD_F_DESC) 474 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 475 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 476 477 #define MVNETA_RXD_ERR_CRC 0x0 478 #define MVNETA_RXD_BM_POOL_SHIFT 13 479 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 480 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 481 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 482 #define MVNETA_RXD_ERR_LEN BIT(18) 483 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 484 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 485 #define MVNETA_RXD_L3_IP4 BIT(25) 486 #define MVNETA_RXD_LAST_DESC BIT(26) 487 #define MVNETA_RXD_FIRST_DESC BIT(27) 488 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 489 MVNETA_RXD_LAST_DESC) 490 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 491 492 #if defined(__LITTLE_ENDIAN) 493 struct mvneta_tx_desc { 494 u32 command; /* Options used by HW for packet transmitting.*/ 495 u16 reserverd1; /* csum_l4 (for future use) */ 496 u16 data_size; /* Data size of transmitted packet in bytes */ 497 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 498 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 499 u32 reserved3[4]; /* Reserved - (for future use) */ 500 }; 501 502 struct mvneta_rx_desc { 503 u32 status; /* Info about received packet */ 504 u16 reserved1; /* pnc_info - (for future use, PnC) */ 505 u16 data_size; /* Size of received packet in bytes */ 506 507 u32 buf_phys_addr; /* Physical address of the buffer */ 508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 509 510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 511 u16 reserved3; /* prefetch_cmd, for future use */ 512 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 513 514 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 515 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 516 }; 517 #else 518 struct mvneta_tx_desc { 519 u16 data_size; /* Data size of transmitted packet in bytes */ 520 u16 reserverd1; /* csum_l4 (for future use) */ 521 u32 command; /* Options used by HW for packet transmitting.*/ 522 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 523 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 524 u32 reserved3[4]; /* Reserved - (for future use) */ 525 }; 526 527 struct mvneta_rx_desc { 528 u16 data_size; /* Size of received packet in bytes */ 529 u16 reserved1; /* pnc_info - (for future use, PnC) */ 530 u32 status; /* Info about received packet */ 531 532 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 533 u32 buf_phys_addr; /* Physical address of the buffer */ 534 535 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 536 u16 reserved3; /* prefetch_cmd, for future use */ 537 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 538 539 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 540 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 541 }; 542 #endif 543 544 struct mvneta_tx_queue { 545 /* Number of this TX queue, in the range 0-7 */ 546 u8 id; 547 548 /* Number of TX DMA descriptors in the descriptor ring */ 549 int size; 550 551 /* Number of currently used TX DMA descriptor in the 552 * descriptor ring 553 */ 554 int count; 555 int pending; 556 int tx_stop_threshold; 557 int tx_wake_threshold; 558 559 /* Array of transmitted skb */ 560 struct sk_buff **tx_skb; 561 562 /* Index of last TX DMA descriptor that was inserted */ 563 int txq_put_index; 564 565 /* Index of the TX DMA descriptor to be cleaned up */ 566 int txq_get_index; 567 568 u32 done_pkts_coal; 569 570 /* Virtual address of the TX DMA descriptors array */ 571 struct mvneta_tx_desc *descs; 572 573 /* DMA address of the TX DMA descriptors array */ 574 dma_addr_t descs_phys; 575 576 /* Index of the last TX DMA descriptor */ 577 int last_desc; 578 579 /* Index of the next TX DMA descriptor to process */ 580 int next_desc_to_proc; 581 582 /* DMA buffers for TSO headers */ 583 char *tso_hdrs; 584 585 /* DMA address of TSO headers */ 586 dma_addr_t tso_hdrs_phys; 587 588 /* Affinity mask for CPUs*/ 589 cpumask_t affinity_mask; 590 }; 591 592 struct mvneta_rx_queue { 593 /* rx queue number, in the range 0-7 */ 594 u8 id; 595 596 /* num of rx descriptors in the rx descriptor ring */ 597 int size; 598 599 u32 pkts_coal; 600 u32 time_coal; 601 602 /* Virtual address of the RX buffer */ 603 void **buf_virt_addr; 604 605 /* Virtual address of the RX DMA descriptors array */ 606 struct mvneta_rx_desc *descs; 607 608 /* DMA address of the RX DMA descriptors array */ 609 dma_addr_t descs_phys; 610 611 /* Index of the last RX DMA descriptor */ 612 int last_desc; 613 614 /* Index of the next RX DMA descriptor to process */ 615 int next_desc_to_proc; 616 617 /* Index of first RX DMA descriptor to refill */ 618 int first_to_refill; 619 u32 refill_num; 620 621 /* pointer to uncomplete skb buffer */ 622 struct sk_buff *skb; 623 int left_size; 624 625 /* error counters */ 626 u32 skb_alloc_err; 627 u32 refill_err; 628 }; 629 630 static enum cpuhp_state online_hpstate; 631 /* The hardware supports eight (8) rx queues, but we are only allowing 632 * the first one to be used. Therefore, let's just allocate one queue. 633 */ 634 static int rxq_number = 8; 635 static int txq_number = 8; 636 637 static int rxq_def; 638 639 static int rx_copybreak __read_mostly = 256; 640 static int rx_header_size __read_mostly = 128; 641 642 /* HW BM need that each port be identify by a unique ID */ 643 static int global_port_id; 644 645 #define MVNETA_DRIVER_NAME "mvneta" 646 #define MVNETA_DRIVER_VERSION "1.0" 647 648 /* Utility/helper methods */ 649 650 /* Write helper method */ 651 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 652 { 653 writel(data, pp->base + offset); 654 } 655 656 /* Read helper method */ 657 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 658 { 659 return readl(pp->base + offset); 660 } 661 662 /* Increment txq get counter */ 663 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 664 { 665 txq->txq_get_index++; 666 if (txq->txq_get_index == txq->size) 667 txq->txq_get_index = 0; 668 } 669 670 /* Increment txq put counter */ 671 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 672 { 673 txq->txq_put_index++; 674 if (txq->txq_put_index == txq->size) 675 txq->txq_put_index = 0; 676 } 677 678 679 /* Clear all MIB counters */ 680 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 681 { 682 int i; 683 u32 dummy; 684 685 /* Perform dummy reads from MIB counters */ 686 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 687 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 688 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 689 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 690 } 691 692 /* Get System Network Statistics */ 693 static void 694 mvneta_get_stats64(struct net_device *dev, 695 struct rtnl_link_stats64 *stats) 696 { 697 struct mvneta_port *pp = netdev_priv(dev); 698 unsigned int start; 699 int cpu; 700 701 for_each_possible_cpu(cpu) { 702 struct mvneta_pcpu_stats *cpu_stats; 703 u64 rx_packets; 704 u64 rx_bytes; 705 u64 tx_packets; 706 u64 tx_bytes; 707 708 cpu_stats = per_cpu_ptr(pp->stats, cpu); 709 do { 710 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 711 rx_packets = cpu_stats->rx_packets; 712 rx_bytes = cpu_stats->rx_bytes; 713 tx_packets = cpu_stats->tx_packets; 714 tx_bytes = cpu_stats->tx_bytes; 715 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 716 717 stats->rx_packets += rx_packets; 718 stats->rx_bytes += rx_bytes; 719 stats->tx_packets += tx_packets; 720 stats->tx_bytes += tx_bytes; 721 } 722 723 stats->rx_errors = dev->stats.rx_errors; 724 stats->rx_dropped = dev->stats.rx_dropped; 725 726 stats->tx_dropped = dev->stats.tx_dropped; 727 } 728 729 /* Rx descriptors helper methods */ 730 731 /* Checks whether the RX descriptor having this status is both the first 732 * and the last descriptor for the RX packet. Each RX packet is currently 733 * received through a single RX descriptor, so not having each RX 734 * descriptor with its first and last bits set is an error 735 */ 736 static int mvneta_rxq_desc_is_first_last(u32 status) 737 { 738 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 739 MVNETA_RXD_FIRST_LAST_DESC; 740 } 741 742 /* Add number of descriptors ready to receive new packets */ 743 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 744 struct mvneta_rx_queue *rxq, 745 int ndescs) 746 { 747 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 748 * be added at once 749 */ 750 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 752 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 753 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 754 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 755 } 756 757 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 758 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 759 } 760 761 /* Get number of RX descriptors occupied by received packets */ 762 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 763 struct mvneta_rx_queue *rxq) 764 { 765 u32 val; 766 767 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 768 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 769 } 770 771 /* Update num of rx desc called upon return from rx path or 772 * from mvneta_rxq_drop_pkts(). 773 */ 774 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 775 struct mvneta_rx_queue *rxq, 776 int rx_done, int rx_filled) 777 { 778 u32 val; 779 780 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 781 val = rx_done | 782 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 783 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 784 return; 785 } 786 787 /* Only 255 descriptors can be added at once */ 788 while ((rx_done > 0) || (rx_filled > 0)) { 789 if (rx_done <= 0xff) { 790 val = rx_done; 791 rx_done = 0; 792 } else { 793 val = 0xff; 794 rx_done -= 0xff; 795 } 796 if (rx_filled <= 0xff) { 797 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 798 rx_filled = 0; 799 } else { 800 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 801 rx_filled -= 0xff; 802 } 803 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 804 } 805 } 806 807 /* Get pointer to next RX descriptor to be processed by SW */ 808 static struct mvneta_rx_desc * 809 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 810 { 811 int rx_desc = rxq->next_desc_to_proc; 812 813 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 814 prefetch(rxq->descs + rxq->next_desc_to_proc); 815 return rxq->descs + rx_desc; 816 } 817 818 /* Change maximum receive size of the port. */ 819 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 820 { 821 u32 val; 822 823 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 824 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 825 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 826 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 827 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 828 } 829 830 831 /* Set rx queue offset */ 832 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq, 834 int offset) 835 { 836 u32 val; 837 838 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 839 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 840 841 /* Offset is in */ 842 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 843 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 844 } 845 846 847 /* Tx descriptors helper methods */ 848 849 /* Update HW with number of TX descriptors to be sent */ 850 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 851 struct mvneta_tx_queue *txq, 852 int pend_desc) 853 { 854 u32 val; 855 856 pend_desc += txq->pending; 857 858 /* Only 255 Tx descriptors can be added at once */ 859 do { 860 val = min(pend_desc, 255); 861 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 862 pend_desc -= val; 863 } while (pend_desc > 0); 864 txq->pending = 0; 865 } 866 867 /* Get pointer to next TX descriptor to be processed (send) by HW */ 868 static struct mvneta_tx_desc * 869 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 870 { 871 int tx_desc = txq->next_desc_to_proc; 872 873 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 874 return txq->descs + tx_desc; 875 } 876 877 /* Release the last allocated TX descriptor. Useful to handle DMA 878 * mapping failures in the TX path. 879 */ 880 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 881 { 882 if (txq->next_desc_to_proc == 0) 883 txq->next_desc_to_proc = txq->last_desc - 1; 884 else 885 txq->next_desc_to_proc--; 886 } 887 888 /* Set rxq buf size */ 889 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 890 struct mvneta_rx_queue *rxq, 891 int buf_size) 892 { 893 u32 val; 894 895 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 896 897 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 898 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 899 900 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 901 } 902 903 /* Disable buffer management (BM) */ 904 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 905 struct mvneta_rx_queue *rxq) 906 { 907 u32 val; 908 909 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 910 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 912 } 913 914 /* Enable buffer management (BM) */ 915 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 916 struct mvneta_rx_queue *rxq) 917 { 918 u32 val; 919 920 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 921 val |= MVNETA_RXQ_HW_BUF_ALLOC; 922 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 923 } 924 925 /* Notify HW about port's assignment of pool for bigger packets */ 926 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 927 struct mvneta_rx_queue *rxq) 928 { 929 u32 val; 930 931 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 932 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 933 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 934 935 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 936 } 937 938 /* Notify HW about port's assignment of pool for smaller packets */ 939 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 940 struct mvneta_rx_queue *rxq) 941 { 942 u32 val; 943 944 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 945 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 946 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 947 948 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 949 } 950 951 /* Set port's receive buffer size for assigned BM pool */ 952 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 953 int buf_size, 954 u8 pool_id) 955 { 956 u32 val; 957 958 if (!IS_ALIGNED(buf_size, 8)) { 959 dev_warn(pp->dev->dev.parent, 960 "illegal buf_size value %d, round to %d\n", 961 buf_size, ALIGN(buf_size, 8)); 962 buf_size = ALIGN(buf_size, 8); 963 } 964 965 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 966 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 967 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 968 } 969 970 /* Configure MBUS window in order to enable access BM internal SRAM */ 971 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 972 u8 target, u8 attr) 973 { 974 u32 win_enable, win_protect; 975 int i; 976 977 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 978 979 if (pp->bm_win_id < 0) { 980 /* Find first not occupied window */ 981 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 982 if (win_enable & (1 << i)) { 983 pp->bm_win_id = i; 984 break; 985 } 986 } 987 if (i == MVNETA_MAX_DECODE_WIN) 988 return -ENOMEM; 989 } else { 990 i = pp->bm_win_id; 991 } 992 993 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 994 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 995 996 if (i < 4) 997 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 998 999 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1000 (attr << 8) | target); 1001 1002 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1003 1004 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1005 win_protect |= 3 << (2 * i); 1006 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1007 1008 win_enable &= ~(1 << i); 1009 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1010 1011 return 0; 1012 } 1013 1014 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1015 { 1016 u32 wsize; 1017 u8 target, attr; 1018 int err; 1019 1020 /* Get BM window information */ 1021 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1022 &target, &attr); 1023 if (err < 0) 1024 return err; 1025 1026 pp->bm_win_id = -1; 1027 1028 /* Open NETA -> BM window */ 1029 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1030 target, attr); 1031 if (err < 0) { 1032 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1033 return err; 1034 } 1035 return 0; 1036 } 1037 1038 /* Assign and initialize pools for port. In case of fail 1039 * buffer manager will remain disabled for current port. 1040 */ 1041 static int mvneta_bm_port_init(struct platform_device *pdev, 1042 struct mvneta_port *pp) 1043 { 1044 struct device_node *dn = pdev->dev.of_node; 1045 u32 long_pool_id, short_pool_id; 1046 1047 if (!pp->neta_armada3700) { 1048 int ret; 1049 1050 ret = mvneta_bm_port_mbus_init(pp); 1051 if (ret) 1052 return ret; 1053 } 1054 1055 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1056 netdev_info(pp->dev, "missing long pool id\n"); 1057 return -EINVAL; 1058 } 1059 1060 /* Create port's long pool depending on mtu */ 1061 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1062 MVNETA_BM_LONG, pp->id, 1063 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1064 if (!pp->pool_long) { 1065 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1066 return -ENOMEM; 1067 } 1068 1069 pp->pool_long->port_map |= 1 << pp->id; 1070 1071 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1072 pp->pool_long->id); 1073 1074 /* If short pool id is not defined, assume using single pool */ 1075 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1076 short_pool_id = long_pool_id; 1077 1078 /* Create port's short pool */ 1079 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1080 MVNETA_BM_SHORT, pp->id, 1081 MVNETA_BM_SHORT_PKT_SIZE); 1082 if (!pp->pool_short) { 1083 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1084 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1085 return -ENOMEM; 1086 } 1087 1088 if (short_pool_id != long_pool_id) { 1089 pp->pool_short->port_map |= 1 << pp->id; 1090 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1091 pp->pool_short->id); 1092 } 1093 1094 return 0; 1095 } 1096 1097 /* Update settings of a pool for bigger packets */ 1098 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1099 { 1100 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1101 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1102 int num; 1103 1104 /* Release all buffers from long pool */ 1105 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1106 if (hwbm_pool->buf_num) { 1107 WARN(1, "cannot free all buffers in pool %d\n", 1108 bm_pool->id); 1109 goto bm_mtu_err; 1110 } 1111 1112 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1113 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1114 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1115 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1116 1117 /* Fill entire long pool */ 1118 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1119 if (num != hwbm_pool->size) { 1120 WARN(1, "pool %d: %d of %d allocated\n", 1121 bm_pool->id, num, hwbm_pool->size); 1122 goto bm_mtu_err; 1123 } 1124 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1125 1126 return; 1127 1128 bm_mtu_err: 1129 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1130 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1131 1132 pp->bm_priv = NULL; 1133 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1134 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1135 } 1136 1137 /* Start the Ethernet port RX and TX activity */ 1138 static void mvneta_port_up(struct mvneta_port *pp) 1139 { 1140 int queue; 1141 u32 q_map; 1142 1143 /* Enable all initialized TXs. */ 1144 q_map = 0; 1145 for (queue = 0; queue < txq_number; queue++) { 1146 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1147 if (txq->descs) 1148 q_map |= (1 << queue); 1149 } 1150 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1151 1152 q_map = 0; 1153 /* Enable all initialized RXQs. */ 1154 for (queue = 0; queue < rxq_number; queue++) { 1155 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1156 1157 if (rxq->descs) 1158 q_map |= (1 << queue); 1159 } 1160 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1161 } 1162 1163 /* Stop the Ethernet port activity */ 1164 static void mvneta_port_down(struct mvneta_port *pp) 1165 { 1166 u32 val; 1167 int count; 1168 1169 /* Stop Rx port activity. Check port Rx activity. */ 1170 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1171 1172 /* Issue stop command for active channels only */ 1173 if (val != 0) 1174 mvreg_write(pp, MVNETA_RXQ_CMD, 1175 val << MVNETA_RXQ_DISABLE_SHIFT); 1176 1177 /* Wait for all Rx activity to terminate. */ 1178 count = 0; 1179 do { 1180 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1181 netdev_warn(pp->dev, 1182 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1183 val); 1184 break; 1185 } 1186 mdelay(1); 1187 1188 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1189 } while (val & MVNETA_RXQ_ENABLE_MASK); 1190 1191 /* Stop Tx port activity. Check port Tx activity. Issue stop 1192 * command for active channels only 1193 */ 1194 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1195 1196 if (val != 0) 1197 mvreg_write(pp, MVNETA_TXQ_CMD, 1198 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1199 1200 /* Wait for all Tx activity to terminate. */ 1201 count = 0; 1202 do { 1203 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1204 netdev_warn(pp->dev, 1205 "TIMEOUT for TX stopped status=0x%08x\n", 1206 val); 1207 break; 1208 } 1209 mdelay(1); 1210 1211 /* Check TX Command reg that all Txqs are stopped */ 1212 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1213 1214 } while (val & MVNETA_TXQ_ENABLE_MASK); 1215 1216 /* Double check to verify that TX FIFO is empty */ 1217 count = 0; 1218 do { 1219 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1220 netdev_warn(pp->dev, 1221 "TX FIFO empty timeout status=0x%08x\n", 1222 val); 1223 break; 1224 } 1225 mdelay(1); 1226 1227 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1228 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1229 (val & MVNETA_TX_IN_PRGRS)); 1230 1231 udelay(200); 1232 } 1233 1234 /* Enable the port by setting the port enable bit of the MAC control register */ 1235 static void mvneta_port_enable(struct mvneta_port *pp) 1236 { 1237 u32 val; 1238 1239 /* Enable port */ 1240 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1241 val |= MVNETA_GMAC0_PORT_ENABLE; 1242 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1243 } 1244 1245 /* Disable the port and wait for about 200 usec before retuning */ 1246 static void mvneta_port_disable(struct mvneta_port *pp) 1247 { 1248 u32 val; 1249 1250 /* Reset the Enable bit in the Serial Control Register */ 1251 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1252 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1253 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1254 1255 udelay(200); 1256 } 1257 1258 /* Multicast tables methods */ 1259 1260 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1261 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1262 { 1263 int offset; 1264 u32 val; 1265 1266 if (queue == -1) { 1267 val = 0; 1268 } else { 1269 val = 0x1 | (queue << 1); 1270 val |= (val << 24) | (val << 16) | (val << 8); 1271 } 1272 1273 for (offset = 0; offset <= 0xc; offset += 4) 1274 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1275 } 1276 1277 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1278 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1279 { 1280 int offset; 1281 u32 val; 1282 1283 if (queue == -1) { 1284 val = 0; 1285 } else { 1286 val = 0x1 | (queue << 1); 1287 val |= (val << 24) | (val << 16) | (val << 8); 1288 } 1289 1290 for (offset = 0; offset <= 0xfc; offset += 4) 1291 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1292 1293 } 1294 1295 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1296 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1297 { 1298 int offset; 1299 u32 val; 1300 1301 if (queue == -1) { 1302 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1303 val = 0; 1304 } else { 1305 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1306 val = 0x1 | (queue << 1); 1307 val |= (val << 24) | (val << 16) | (val << 8); 1308 } 1309 1310 for (offset = 0; offset <= 0xfc; offset += 4) 1311 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1312 } 1313 1314 static void mvneta_percpu_unmask_interrupt(void *arg) 1315 { 1316 struct mvneta_port *pp = arg; 1317 1318 /* All the queue are unmasked, but actually only the ones 1319 * mapped to this CPU will be unmasked 1320 */ 1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1322 MVNETA_RX_INTR_MASK_ALL | 1323 MVNETA_TX_INTR_MASK_ALL | 1324 MVNETA_MISCINTR_INTR_MASK); 1325 } 1326 1327 static void mvneta_percpu_mask_interrupt(void *arg) 1328 { 1329 struct mvneta_port *pp = arg; 1330 1331 /* All the queue are masked, but actually only the ones 1332 * mapped to this CPU will be masked 1333 */ 1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1337 } 1338 1339 static void mvneta_percpu_clear_intr_cause(void *arg) 1340 { 1341 struct mvneta_port *pp = arg; 1342 1343 /* All the queue are cleared, but actually only the ones 1344 * mapped to this CPU will be cleared 1345 */ 1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1349 } 1350 1351 /* This method sets defaults to the NETA port: 1352 * Clears interrupt Cause and Mask registers. 1353 * Clears all MAC tables. 1354 * Sets defaults to all registers. 1355 * Resets RX and TX descriptor rings. 1356 * Resets PHY. 1357 * This method can be called after mvneta_port_down() to return the port 1358 * settings to defaults. 1359 */ 1360 static void mvneta_defaults_set(struct mvneta_port *pp) 1361 { 1362 int cpu; 1363 int queue; 1364 u32 val; 1365 int max_cpu = num_present_cpus(); 1366 1367 /* Clear all Cause registers */ 1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1369 1370 /* Mask all interrupts */ 1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1373 1374 /* Enable MBUS Retry bit16 */ 1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1376 1377 /* Set CPU queue access map. CPUs are assigned to the RX and 1378 * TX queues modulo their number. If there is only one TX 1379 * queue then it is assigned to the CPU associated to the 1380 * default RX queue. 1381 */ 1382 for_each_present_cpu(cpu) { 1383 int rxq_map = 0, txq_map = 0; 1384 int rxq, txq; 1385 if (!pp->neta_armada3700) { 1386 for (rxq = 0; rxq < rxq_number; rxq++) 1387 if ((rxq % max_cpu) == cpu) 1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1389 1390 for (txq = 0; txq < txq_number; txq++) 1391 if ((txq % max_cpu) == cpu) 1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1393 1394 /* With only one TX queue we configure a special case 1395 * which will allow to get all the irq on a single 1396 * CPU 1397 */ 1398 if (txq_number == 1) 1399 txq_map = (cpu == pp->rxq_def) ? 1400 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1401 1402 } else { 1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1405 } 1406 1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1408 } 1409 1410 /* Reset RX and TX DMAs */ 1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1413 1414 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1416 for (queue = 0; queue < txq_number; queue++) { 1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1419 } 1420 1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1423 1424 /* Set Port Acceleration Mode */ 1425 if (pp->bm_priv) 1426 /* HW buffer management + legacy parser */ 1427 val = MVNETA_ACC_MODE_EXT2; 1428 else 1429 /* SW buffer management + legacy parser */ 1430 val = MVNETA_ACC_MODE_EXT1; 1431 mvreg_write(pp, MVNETA_ACC_MODE, val); 1432 1433 if (pp->bm_priv) 1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1435 1436 /* Update val of portCfg register accordingly with all RxQueue types */ 1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1439 1440 val = 0; 1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1443 1444 /* Build PORT_SDMA_CONFIG_REG */ 1445 val = 0; 1446 1447 /* Default burst size */ 1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1451 1452 #if defined(__BIG_ENDIAN) 1453 val |= MVNETA_DESC_SWAP; 1454 #endif 1455 1456 /* Assign port SDMA configuration */ 1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1458 1459 /* Disable PHY polling in hardware, since we're using the 1460 * kernel phylib to do this. 1461 */ 1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1463 val &= ~MVNETA_PHY_POLLING_ENABLE; 1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1465 1466 mvneta_set_ucast_table(pp, -1); 1467 mvneta_set_special_mcast_table(pp, -1); 1468 mvneta_set_other_mcast_table(pp, -1); 1469 1470 /* Set port interrupt enable register - default enable all */ 1471 mvreg_write(pp, MVNETA_INTR_ENABLE, 1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1474 1475 mvneta_mib_counters_clear(pp); 1476 } 1477 1478 /* Set max sizes for tx queues */ 1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1480 1481 { 1482 u32 val, size, mtu; 1483 int queue; 1484 1485 mtu = max_tx_size * 8; 1486 if (mtu > MVNETA_TX_MTU_MAX) 1487 mtu = MVNETA_TX_MTU_MAX; 1488 1489 /* Set MTU */ 1490 val = mvreg_read(pp, MVNETA_TX_MTU); 1491 val &= ~MVNETA_TX_MTU_MAX; 1492 val |= mtu; 1493 mvreg_write(pp, MVNETA_TX_MTU, val); 1494 1495 /* TX token size and all TXQs token size must be larger that MTU */ 1496 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1497 1498 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1499 if (size < mtu) { 1500 size = mtu; 1501 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1502 val |= size; 1503 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1504 } 1505 for (queue = 0; queue < txq_number; queue++) { 1506 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1507 1508 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1509 if (size < mtu) { 1510 size = mtu; 1511 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1512 val |= size; 1513 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1514 } 1515 } 1516 } 1517 1518 /* Set unicast address */ 1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1520 int queue) 1521 { 1522 unsigned int unicast_reg; 1523 unsigned int tbl_offset; 1524 unsigned int reg_offset; 1525 1526 /* Locate the Unicast table entry */ 1527 last_nibble = (0xf & last_nibble); 1528 1529 /* offset from unicast tbl base */ 1530 tbl_offset = (last_nibble / 4) * 4; 1531 1532 /* offset within the above reg */ 1533 reg_offset = last_nibble % 4; 1534 1535 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1536 1537 if (queue == -1) { 1538 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1539 unicast_reg &= ~(0xff << (8 * reg_offset)); 1540 } else { 1541 unicast_reg &= ~(0xff << (8 * reg_offset)); 1542 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1543 } 1544 1545 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1546 } 1547 1548 /* Set mac address */ 1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1550 int queue) 1551 { 1552 unsigned int mac_h; 1553 unsigned int mac_l; 1554 1555 if (queue != -1) { 1556 mac_l = (addr[4] << 8) | (addr[5]); 1557 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1558 (addr[2] << 8) | (addr[3] << 0); 1559 1560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1562 } 1563 1564 /* Accept frames of this address */ 1565 mvneta_set_ucast_addr(pp, addr[5], queue); 1566 } 1567 1568 /* Set the number of packets that will be received before RX interrupt 1569 * will be generated by HW. 1570 */ 1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1572 struct mvneta_rx_queue *rxq, u32 value) 1573 { 1574 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1575 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1576 } 1577 1578 /* Set the time delay in usec before RX interrupt will be generated by 1579 * HW. 1580 */ 1581 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1582 struct mvneta_rx_queue *rxq, u32 value) 1583 { 1584 u32 val; 1585 unsigned long clk_rate; 1586 1587 clk_rate = clk_get_rate(pp->clk); 1588 val = (clk_rate / 1000000) * value; 1589 1590 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1591 } 1592 1593 /* Set threshold for TX_DONE pkts coalescing */ 1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1595 struct mvneta_tx_queue *txq, u32 value) 1596 { 1597 u32 val; 1598 1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1600 1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1603 1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1605 } 1606 1607 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1608 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1609 u32 phys_addr, void *virt_addr, 1610 struct mvneta_rx_queue *rxq) 1611 { 1612 int i; 1613 1614 rx_desc->buf_phys_addr = phys_addr; 1615 i = rx_desc - rxq->descs; 1616 rxq->buf_virt_addr[i] = virt_addr; 1617 } 1618 1619 /* Decrement sent descriptors counter */ 1620 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1621 struct mvneta_tx_queue *txq, 1622 int sent_desc) 1623 { 1624 u32 val; 1625 1626 /* Only 255 TX descriptors can be updated at once */ 1627 while (sent_desc > 0xff) { 1628 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1629 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1630 sent_desc = sent_desc - 0xff; 1631 } 1632 1633 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1635 } 1636 1637 /* Get number of TX descriptors already sent by HW */ 1638 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1639 struct mvneta_tx_queue *txq) 1640 { 1641 u32 val; 1642 int sent_desc; 1643 1644 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1645 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1646 MVNETA_TXQ_SENT_DESC_SHIFT; 1647 1648 return sent_desc; 1649 } 1650 1651 /* Get number of sent descriptors and decrement counter. 1652 * The number of sent descriptors is returned. 1653 */ 1654 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1655 struct mvneta_tx_queue *txq) 1656 { 1657 int sent_desc; 1658 1659 /* Get number of sent descriptors */ 1660 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1661 1662 /* Decrement sent descriptors counter */ 1663 if (sent_desc) 1664 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1665 1666 return sent_desc; 1667 } 1668 1669 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1670 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1671 int ip_hdr_len, int l4_proto) 1672 { 1673 u32 command; 1674 1675 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1676 * G_L4_chk, L4_type; required only for checksum 1677 * calculation 1678 */ 1679 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1680 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1681 1682 if (l3_proto == htons(ETH_P_IP)) 1683 command |= MVNETA_TXD_IP_CSUM; 1684 else 1685 command |= MVNETA_TX_L3_IP6; 1686 1687 if (l4_proto == IPPROTO_TCP) 1688 command |= MVNETA_TX_L4_CSUM_FULL; 1689 else if (l4_proto == IPPROTO_UDP) 1690 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1691 else 1692 command |= MVNETA_TX_L4_CSUM_NOT; 1693 1694 return command; 1695 } 1696 1697 1698 /* Display more error info */ 1699 static void mvneta_rx_error(struct mvneta_port *pp, 1700 struct mvneta_rx_desc *rx_desc) 1701 { 1702 u32 status = rx_desc->status; 1703 1704 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1705 case MVNETA_RXD_ERR_CRC: 1706 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1707 status, rx_desc->data_size); 1708 break; 1709 case MVNETA_RXD_ERR_OVERRUN: 1710 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1711 status, rx_desc->data_size); 1712 break; 1713 case MVNETA_RXD_ERR_LEN: 1714 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1715 status, rx_desc->data_size); 1716 break; 1717 case MVNETA_RXD_ERR_RESOURCE: 1718 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1719 status, rx_desc->data_size); 1720 break; 1721 } 1722 } 1723 1724 /* Handle RX checksum offload based on the descriptor's status */ 1725 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1726 struct sk_buff *skb) 1727 { 1728 if ((pp->dev->features & NETIF_F_RXCSUM) && 1729 (status & MVNETA_RXD_L3_IP4) && 1730 (status & MVNETA_RXD_L4_CSUM_OK)) { 1731 skb->csum = 0; 1732 skb->ip_summed = CHECKSUM_UNNECESSARY; 1733 return; 1734 } 1735 1736 skb->ip_summed = CHECKSUM_NONE; 1737 } 1738 1739 /* Return tx queue pointer (find last set bit) according to <cause> returned 1740 * form tx_done reg. <cause> must not be null. The return value is always a 1741 * valid queue for matching the first one found in <cause>. 1742 */ 1743 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1744 u32 cause) 1745 { 1746 int queue = fls(cause) - 1; 1747 1748 return &pp->txqs[queue]; 1749 } 1750 1751 /* Free tx queue skbuffs */ 1752 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1753 struct mvneta_tx_queue *txq, int num, 1754 struct netdev_queue *nq) 1755 { 1756 unsigned int bytes_compl = 0, pkts_compl = 0; 1757 int i; 1758 1759 for (i = 0; i < num; i++) { 1760 struct mvneta_tx_desc *tx_desc = txq->descs + 1761 txq->txq_get_index; 1762 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1763 1764 if (skb) { 1765 bytes_compl += skb->len; 1766 pkts_compl++; 1767 } 1768 1769 mvneta_txq_inc_get(txq); 1770 1771 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1772 dma_unmap_single(pp->dev->dev.parent, 1773 tx_desc->buf_phys_addr, 1774 tx_desc->data_size, DMA_TO_DEVICE); 1775 if (!skb) 1776 continue; 1777 dev_kfree_skb_any(skb); 1778 } 1779 1780 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1781 } 1782 1783 /* Handle end of transmission */ 1784 static void mvneta_txq_done(struct mvneta_port *pp, 1785 struct mvneta_tx_queue *txq) 1786 { 1787 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1788 int tx_done; 1789 1790 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1791 if (!tx_done) 1792 return; 1793 1794 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1795 1796 txq->count -= tx_done; 1797 1798 if (netif_tx_queue_stopped(nq)) { 1799 if (txq->count <= txq->tx_wake_threshold) 1800 netif_tx_wake_queue(nq); 1801 } 1802 } 1803 1804 /* Refill processing for SW buffer management */ 1805 /* Allocate page per descriptor */ 1806 static int mvneta_rx_refill(struct mvneta_port *pp, 1807 struct mvneta_rx_desc *rx_desc, 1808 struct mvneta_rx_queue *rxq, 1809 gfp_t gfp_mask) 1810 { 1811 dma_addr_t phys_addr; 1812 struct page *page; 1813 1814 page = __dev_alloc_page(gfp_mask); 1815 if (!page) 1816 return -ENOMEM; 1817 1818 /* map page for use */ 1819 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE, 1820 DMA_FROM_DEVICE); 1821 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1822 __free_page(page); 1823 return -ENOMEM; 1824 } 1825 1826 phys_addr += pp->rx_offset_correction; 1827 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1828 return 0; 1829 } 1830 1831 /* Handle tx checksum */ 1832 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1833 { 1834 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1835 int ip_hdr_len = 0; 1836 __be16 l3_proto = vlan_get_protocol(skb); 1837 u8 l4_proto; 1838 1839 if (l3_proto == htons(ETH_P_IP)) { 1840 struct iphdr *ip4h = ip_hdr(skb); 1841 1842 /* Calculate IPv4 checksum and L4 checksum */ 1843 ip_hdr_len = ip4h->ihl; 1844 l4_proto = ip4h->protocol; 1845 } else if (l3_proto == htons(ETH_P_IPV6)) { 1846 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1847 1848 /* Read l4_protocol from one of IPv6 extra headers */ 1849 if (skb_network_header_len(skb) > 0) 1850 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1851 l4_proto = ip6h->nexthdr; 1852 } else 1853 return MVNETA_TX_L4_CSUM_NOT; 1854 1855 return mvneta_txq_desc_csum(skb_network_offset(skb), 1856 l3_proto, ip_hdr_len, l4_proto); 1857 } 1858 1859 return MVNETA_TX_L4_CSUM_NOT; 1860 } 1861 1862 /* Drop packets received by the RXQ and free buffers */ 1863 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1864 struct mvneta_rx_queue *rxq) 1865 { 1866 int rx_done, i; 1867 1868 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1869 if (rx_done) 1870 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1871 1872 if (pp->bm_priv) { 1873 for (i = 0; i < rx_done; i++) { 1874 struct mvneta_rx_desc *rx_desc = 1875 mvneta_rxq_next_desc_get(rxq); 1876 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1877 struct mvneta_bm_pool *bm_pool; 1878 1879 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1880 /* Return dropped buffer to the pool */ 1881 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1882 rx_desc->buf_phys_addr); 1883 } 1884 return; 1885 } 1886 1887 for (i = 0; i < rxq->size; i++) { 1888 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1889 void *data = rxq->buf_virt_addr[i]; 1890 if (!data || !(rx_desc->buf_phys_addr)) 1891 continue; 1892 1893 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1894 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1895 __free_page(data); 1896 } 1897 } 1898 1899 static inline 1900 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1901 { 1902 struct mvneta_rx_desc *rx_desc; 1903 int curr_desc = rxq->first_to_refill; 1904 int i; 1905 1906 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1907 rx_desc = rxq->descs + curr_desc; 1908 if (!(rx_desc->buf_phys_addr)) { 1909 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 1910 pr_err("Can't refill queue %d. Done %d from %d\n", 1911 rxq->id, i, rxq->refill_num); 1912 rxq->refill_err++; 1913 break; 1914 } 1915 } 1916 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 1917 } 1918 rxq->refill_num -= i; 1919 rxq->first_to_refill = curr_desc; 1920 1921 return i; 1922 } 1923 1924 /* Main rx processing when using software buffer management */ 1925 static int mvneta_rx_swbm(struct napi_struct *napi, 1926 struct mvneta_port *pp, int budget, 1927 struct mvneta_rx_queue *rxq) 1928 { 1929 struct net_device *dev = pp->dev; 1930 int rx_todo, rx_proc; 1931 int refill = 0; 1932 u32 rcvd_pkts = 0; 1933 u32 rcvd_bytes = 0; 1934 1935 /* Get number of received packets */ 1936 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 1937 rx_proc = 0; 1938 1939 /* Fairness NAPI loop */ 1940 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) { 1941 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1942 unsigned char *data; 1943 struct page *page; 1944 dma_addr_t phys_addr; 1945 u32 rx_status, index; 1946 int rx_bytes, skb_size, copy_size; 1947 int frag_num, frag_size, frag_offset; 1948 1949 index = rx_desc - rxq->descs; 1950 page = (struct page *)rxq->buf_virt_addr[index]; 1951 data = page_address(page); 1952 /* Prefetch header */ 1953 prefetch(data); 1954 1955 phys_addr = rx_desc->buf_phys_addr; 1956 rx_status = rx_desc->status; 1957 rx_proc++; 1958 rxq->refill_num++; 1959 1960 if (rx_status & MVNETA_RXD_FIRST_DESC) { 1961 /* Check errors only for FIRST descriptor */ 1962 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 1963 mvneta_rx_error(pp, rx_desc); 1964 dev->stats.rx_errors++; 1965 /* leave the descriptor untouched */ 1966 continue; 1967 } 1968 rx_bytes = rx_desc->data_size - 1969 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1970 1971 /* Allocate small skb for each new packet */ 1972 skb_size = max(rx_copybreak, rx_header_size); 1973 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size); 1974 if (unlikely(!rxq->skb)) { 1975 netdev_err(dev, 1976 "Can't allocate skb on queue %d\n", 1977 rxq->id); 1978 dev->stats.rx_dropped++; 1979 rxq->skb_alloc_err++; 1980 continue; 1981 } 1982 copy_size = min(skb_size, rx_bytes); 1983 1984 /* Copy data from buffer to SKB, skip Marvell header */ 1985 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE, 1986 copy_size); 1987 skb_put(rxq->skb, copy_size); 1988 rxq->left_size = rx_bytes - copy_size; 1989 1990 mvneta_rx_csum(pp, rx_status, rxq->skb); 1991 if (rxq->left_size == 0) { 1992 int size = copy_size + MVNETA_MH_SIZE; 1993 1994 dma_sync_single_range_for_cpu(dev->dev.parent, 1995 phys_addr, 0, 1996 size, 1997 DMA_FROM_DEVICE); 1998 1999 /* leave the descriptor and buffer untouched */ 2000 } else { 2001 /* refill descriptor with new buffer later */ 2002 rx_desc->buf_phys_addr = 0; 2003 2004 frag_num = 0; 2005 frag_offset = copy_size + MVNETA_MH_SIZE; 2006 frag_size = min(rxq->left_size, 2007 (int)(PAGE_SIZE - frag_offset)); 2008 skb_add_rx_frag(rxq->skb, frag_num, page, 2009 frag_offset, frag_size, 2010 PAGE_SIZE); 2011 dma_unmap_single(dev->dev.parent, phys_addr, 2012 PAGE_SIZE, DMA_FROM_DEVICE); 2013 rxq->left_size -= frag_size; 2014 } 2015 } else { 2016 /* Middle or Last descriptor */ 2017 if (unlikely(!rxq->skb)) { 2018 pr_debug("no skb for rx_status 0x%x\n", 2019 rx_status); 2020 continue; 2021 } 2022 if (!rxq->left_size) { 2023 /* last descriptor has only FCS */ 2024 /* and can be discarded */ 2025 dma_sync_single_range_for_cpu(dev->dev.parent, 2026 phys_addr, 0, 2027 ETH_FCS_LEN, 2028 DMA_FROM_DEVICE); 2029 /* leave the descriptor and buffer untouched */ 2030 } else { 2031 /* refill descriptor with new buffer later */ 2032 rx_desc->buf_phys_addr = 0; 2033 2034 frag_num = skb_shinfo(rxq->skb)->nr_frags; 2035 frag_offset = 0; 2036 frag_size = min(rxq->left_size, 2037 (int)(PAGE_SIZE - frag_offset)); 2038 skb_add_rx_frag(rxq->skb, frag_num, page, 2039 frag_offset, frag_size, 2040 PAGE_SIZE); 2041 2042 dma_unmap_single(dev->dev.parent, phys_addr, 2043 PAGE_SIZE, 2044 DMA_FROM_DEVICE); 2045 2046 rxq->left_size -= frag_size; 2047 } 2048 } /* Middle or Last descriptor */ 2049 2050 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2051 /* no last descriptor this time */ 2052 continue; 2053 2054 if (rxq->left_size) { 2055 pr_err("get last desc, but left_size (%d) != 0\n", 2056 rxq->left_size); 2057 dev_kfree_skb_any(rxq->skb); 2058 rxq->left_size = 0; 2059 rxq->skb = NULL; 2060 continue; 2061 } 2062 rcvd_pkts++; 2063 rcvd_bytes += rxq->skb->len; 2064 2065 /* Linux processing */ 2066 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2067 2068 napi_gro_receive(napi, rxq->skb); 2069 2070 /* clean uncomplete skb pointer in queue */ 2071 rxq->skb = NULL; 2072 rxq->left_size = 0; 2073 } 2074 2075 if (rcvd_pkts) { 2076 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2077 2078 u64_stats_update_begin(&stats->syncp); 2079 stats->rx_packets += rcvd_pkts; 2080 stats->rx_bytes += rcvd_bytes; 2081 u64_stats_update_end(&stats->syncp); 2082 } 2083 2084 /* return some buffers to hardware queue, one at a time is too slow */ 2085 refill = mvneta_rx_refill_queue(pp, rxq); 2086 2087 /* Update rxq management counters */ 2088 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2089 2090 return rcvd_pkts; 2091 } 2092 2093 /* Main rx processing when using hardware buffer management */ 2094 static int mvneta_rx_hwbm(struct napi_struct *napi, 2095 struct mvneta_port *pp, int rx_todo, 2096 struct mvneta_rx_queue *rxq) 2097 { 2098 struct net_device *dev = pp->dev; 2099 int rx_done; 2100 u32 rcvd_pkts = 0; 2101 u32 rcvd_bytes = 0; 2102 2103 /* Get number of received packets */ 2104 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2105 2106 if (rx_todo > rx_done) 2107 rx_todo = rx_done; 2108 2109 rx_done = 0; 2110 2111 /* Fairness NAPI loop */ 2112 while (rx_done < rx_todo) { 2113 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2114 struct mvneta_bm_pool *bm_pool = NULL; 2115 struct sk_buff *skb; 2116 unsigned char *data; 2117 dma_addr_t phys_addr; 2118 u32 rx_status, frag_size; 2119 int rx_bytes, err; 2120 u8 pool_id; 2121 2122 rx_done++; 2123 rx_status = rx_desc->status; 2124 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2125 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2126 phys_addr = rx_desc->buf_phys_addr; 2127 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2128 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2129 2130 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2131 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2132 err_drop_frame_ret_pool: 2133 /* Return the buffer to the pool */ 2134 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2135 rx_desc->buf_phys_addr); 2136 err_drop_frame: 2137 dev->stats.rx_errors++; 2138 mvneta_rx_error(pp, rx_desc); 2139 /* leave the descriptor untouched */ 2140 continue; 2141 } 2142 2143 if (rx_bytes <= rx_copybreak) { 2144 /* better copy a small frame and not unmap the DMA region */ 2145 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2146 if (unlikely(!skb)) 2147 goto err_drop_frame_ret_pool; 2148 2149 dma_sync_single_range_for_cpu(dev->dev.parent, 2150 rx_desc->buf_phys_addr, 2151 MVNETA_MH_SIZE + NET_SKB_PAD, 2152 rx_bytes, 2153 DMA_FROM_DEVICE); 2154 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2155 rx_bytes); 2156 2157 skb->protocol = eth_type_trans(skb, dev); 2158 mvneta_rx_csum(pp, rx_status, skb); 2159 napi_gro_receive(napi, skb); 2160 2161 rcvd_pkts++; 2162 rcvd_bytes += rx_bytes; 2163 2164 /* Return the buffer to the pool */ 2165 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2166 rx_desc->buf_phys_addr); 2167 2168 /* leave the descriptor and buffer untouched */ 2169 continue; 2170 } 2171 2172 /* Refill processing */ 2173 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2174 if (err) { 2175 netdev_err(dev, "Linux processing - Can't refill\n"); 2176 rxq->refill_err++; 2177 goto err_drop_frame_ret_pool; 2178 } 2179 2180 frag_size = bm_pool->hwbm_pool.frag_size; 2181 2182 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2183 2184 /* After refill old buffer has to be unmapped regardless 2185 * the skb is successfully built or not. 2186 */ 2187 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2188 bm_pool->buf_size, DMA_FROM_DEVICE); 2189 if (!skb) 2190 goto err_drop_frame; 2191 2192 rcvd_pkts++; 2193 rcvd_bytes += rx_bytes; 2194 2195 /* Linux processing */ 2196 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2197 skb_put(skb, rx_bytes); 2198 2199 skb->protocol = eth_type_trans(skb, dev); 2200 2201 mvneta_rx_csum(pp, rx_status, skb); 2202 2203 napi_gro_receive(napi, skb); 2204 } 2205 2206 if (rcvd_pkts) { 2207 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2208 2209 u64_stats_update_begin(&stats->syncp); 2210 stats->rx_packets += rcvd_pkts; 2211 stats->rx_bytes += rcvd_bytes; 2212 u64_stats_update_end(&stats->syncp); 2213 } 2214 2215 /* Update rxq management counters */ 2216 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2217 2218 return rx_done; 2219 } 2220 2221 static inline void 2222 mvneta_tso_put_hdr(struct sk_buff *skb, 2223 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2224 { 2225 struct mvneta_tx_desc *tx_desc; 2226 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2227 2228 txq->tx_skb[txq->txq_put_index] = NULL; 2229 tx_desc = mvneta_txq_next_desc_get(txq); 2230 tx_desc->data_size = hdr_len; 2231 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2232 tx_desc->command |= MVNETA_TXD_F_DESC; 2233 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2234 txq->txq_put_index * TSO_HEADER_SIZE; 2235 mvneta_txq_inc_put(txq); 2236 } 2237 2238 static inline int 2239 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2240 struct sk_buff *skb, char *data, int size, 2241 bool last_tcp, bool is_last) 2242 { 2243 struct mvneta_tx_desc *tx_desc; 2244 2245 tx_desc = mvneta_txq_next_desc_get(txq); 2246 tx_desc->data_size = size; 2247 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2248 size, DMA_TO_DEVICE); 2249 if (unlikely(dma_mapping_error(dev->dev.parent, 2250 tx_desc->buf_phys_addr))) { 2251 mvneta_txq_desc_put(txq); 2252 return -ENOMEM; 2253 } 2254 2255 tx_desc->command = 0; 2256 txq->tx_skb[txq->txq_put_index] = NULL; 2257 2258 if (last_tcp) { 2259 /* last descriptor in the TCP packet */ 2260 tx_desc->command = MVNETA_TXD_L_DESC; 2261 2262 /* last descriptor in SKB */ 2263 if (is_last) 2264 txq->tx_skb[txq->txq_put_index] = skb; 2265 } 2266 mvneta_txq_inc_put(txq); 2267 return 0; 2268 } 2269 2270 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2271 struct mvneta_tx_queue *txq) 2272 { 2273 int total_len, data_left; 2274 int desc_count = 0; 2275 struct mvneta_port *pp = netdev_priv(dev); 2276 struct tso_t tso; 2277 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2278 int i; 2279 2280 /* Count needed descriptors */ 2281 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2282 return 0; 2283 2284 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2285 pr_info("*** Is this even possible???!?!?\n"); 2286 return 0; 2287 } 2288 2289 /* Initialize the TSO handler, and prepare the first payload */ 2290 tso_start(skb, &tso); 2291 2292 total_len = skb->len - hdr_len; 2293 while (total_len > 0) { 2294 char *hdr; 2295 2296 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2297 total_len -= data_left; 2298 desc_count++; 2299 2300 /* prepare packet headers: MAC + IP + TCP */ 2301 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2302 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2303 2304 mvneta_tso_put_hdr(skb, pp, txq); 2305 2306 while (data_left > 0) { 2307 int size; 2308 desc_count++; 2309 2310 size = min_t(int, tso.size, data_left); 2311 2312 if (mvneta_tso_put_data(dev, txq, skb, 2313 tso.data, size, 2314 size == data_left, 2315 total_len == 0)) 2316 goto err_release; 2317 data_left -= size; 2318 2319 tso_build_data(skb, &tso, size); 2320 } 2321 } 2322 2323 return desc_count; 2324 2325 err_release: 2326 /* Release all used data descriptors; header descriptors must not 2327 * be DMA-unmapped. 2328 */ 2329 for (i = desc_count - 1; i >= 0; i--) { 2330 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2331 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2332 dma_unmap_single(pp->dev->dev.parent, 2333 tx_desc->buf_phys_addr, 2334 tx_desc->data_size, 2335 DMA_TO_DEVICE); 2336 mvneta_txq_desc_put(txq); 2337 } 2338 return 0; 2339 } 2340 2341 /* Handle tx fragmentation processing */ 2342 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2343 struct mvneta_tx_queue *txq) 2344 { 2345 struct mvneta_tx_desc *tx_desc; 2346 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2347 2348 for (i = 0; i < nr_frags; i++) { 2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2350 void *addr = page_address(frag->page.p) + frag->page_offset; 2351 2352 tx_desc = mvneta_txq_next_desc_get(txq); 2353 tx_desc->data_size = frag->size; 2354 2355 tx_desc->buf_phys_addr = 2356 dma_map_single(pp->dev->dev.parent, addr, 2357 tx_desc->data_size, DMA_TO_DEVICE); 2358 2359 if (dma_mapping_error(pp->dev->dev.parent, 2360 tx_desc->buf_phys_addr)) { 2361 mvneta_txq_desc_put(txq); 2362 goto error; 2363 } 2364 2365 if (i == nr_frags - 1) { 2366 /* Last descriptor */ 2367 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2368 txq->tx_skb[txq->txq_put_index] = skb; 2369 } else { 2370 /* Descriptor in the middle: Not First, Not Last */ 2371 tx_desc->command = 0; 2372 txq->tx_skb[txq->txq_put_index] = NULL; 2373 } 2374 mvneta_txq_inc_put(txq); 2375 } 2376 2377 return 0; 2378 2379 error: 2380 /* Release all descriptors that were used to map fragments of 2381 * this packet, as well as the corresponding DMA mappings 2382 */ 2383 for (i = i - 1; i >= 0; i--) { 2384 tx_desc = txq->descs + i; 2385 dma_unmap_single(pp->dev->dev.parent, 2386 tx_desc->buf_phys_addr, 2387 tx_desc->data_size, 2388 DMA_TO_DEVICE); 2389 mvneta_txq_desc_put(txq); 2390 } 2391 2392 return -ENOMEM; 2393 } 2394 2395 /* Main tx processing */ 2396 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2397 { 2398 struct mvneta_port *pp = netdev_priv(dev); 2399 u16 txq_id = skb_get_queue_mapping(skb); 2400 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2401 struct mvneta_tx_desc *tx_desc; 2402 int len = skb->len; 2403 int frags = 0; 2404 u32 tx_cmd; 2405 2406 if (!netif_running(dev)) 2407 goto out; 2408 2409 if (skb_is_gso(skb)) { 2410 frags = mvneta_tx_tso(skb, dev, txq); 2411 goto out; 2412 } 2413 2414 frags = skb_shinfo(skb)->nr_frags + 1; 2415 2416 /* Get a descriptor for the first part of the packet */ 2417 tx_desc = mvneta_txq_next_desc_get(txq); 2418 2419 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2420 2421 tx_desc->data_size = skb_headlen(skb); 2422 2423 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2424 tx_desc->data_size, 2425 DMA_TO_DEVICE); 2426 if (unlikely(dma_mapping_error(dev->dev.parent, 2427 tx_desc->buf_phys_addr))) { 2428 mvneta_txq_desc_put(txq); 2429 frags = 0; 2430 goto out; 2431 } 2432 2433 if (frags == 1) { 2434 /* First and Last descriptor */ 2435 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2436 tx_desc->command = tx_cmd; 2437 txq->tx_skb[txq->txq_put_index] = skb; 2438 mvneta_txq_inc_put(txq); 2439 } else { 2440 /* First but not Last */ 2441 tx_cmd |= MVNETA_TXD_F_DESC; 2442 txq->tx_skb[txq->txq_put_index] = NULL; 2443 mvneta_txq_inc_put(txq); 2444 tx_desc->command = tx_cmd; 2445 /* Continue with other skb fragments */ 2446 if (mvneta_tx_frag_process(pp, skb, txq)) { 2447 dma_unmap_single(dev->dev.parent, 2448 tx_desc->buf_phys_addr, 2449 tx_desc->data_size, 2450 DMA_TO_DEVICE); 2451 mvneta_txq_desc_put(txq); 2452 frags = 0; 2453 goto out; 2454 } 2455 } 2456 2457 out: 2458 if (frags > 0) { 2459 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2460 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2461 2462 netdev_tx_sent_queue(nq, len); 2463 2464 txq->count += frags; 2465 if (txq->count >= txq->tx_stop_threshold) 2466 netif_tx_stop_queue(nq); 2467 2468 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2469 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2470 mvneta_txq_pend_desc_add(pp, txq, frags); 2471 else 2472 txq->pending += frags; 2473 2474 u64_stats_update_begin(&stats->syncp); 2475 stats->tx_packets++; 2476 stats->tx_bytes += len; 2477 u64_stats_update_end(&stats->syncp); 2478 } else { 2479 dev->stats.tx_dropped++; 2480 dev_kfree_skb_any(skb); 2481 } 2482 2483 return NETDEV_TX_OK; 2484 } 2485 2486 2487 /* Free tx resources, when resetting a port */ 2488 static void mvneta_txq_done_force(struct mvneta_port *pp, 2489 struct mvneta_tx_queue *txq) 2490 2491 { 2492 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2493 int tx_done = txq->count; 2494 2495 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2496 2497 /* reset txq */ 2498 txq->count = 0; 2499 txq->txq_put_index = 0; 2500 txq->txq_get_index = 0; 2501 } 2502 2503 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2504 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2505 */ 2506 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2507 { 2508 struct mvneta_tx_queue *txq; 2509 struct netdev_queue *nq; 2510 int cpu = smp_processor_id(); 2511 2512 while (cause_tx_done) { 2513 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2514 2515 nq = netdev_get_tx_queue(pp->dev, txq->id); 2516 __netif_tx_lock(nq, cpu); 2517 2518 if (txq->count) 2519 mvneta_txq_done(pp, txq); 2520 2521 __netif_tx_unlock(nq); 2522 cause_tx_done &= ~((1 << txq->id)); 2523 } 2524 } 2525 2526 /* Compute crc8 of the specified address, using a unique algorithm , 2527 * according to hw spec, different than generic crc8 algorithm 2528 */ 2529 static int mvneta_addr_crc(unsigned char *addr) 2530 { 2531 int crc = 0; 2532 int i; 2533 2534 for (i = 0; i < ETH_ALEN; i++) { 2535 int j; 2536 2537 crc = (crc ^ addr[i]) << 8; 2538 for (j = 7; j >= 0; j--) { 2539 if (crc & (0x100 << j)) 2540 crc ^= 0x107 << j; 2541 } 2542 } 2543 2544 return crc; 2545 } 2546 2547 /* This method controls the net device special MAC multicast support. 2548 * The Special Multicast Table for MAC addresses supports MAC of the form 2549 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2550 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2551 * Table entries in the DA-Filter table. This method set the Special 2552 * Multicast Table appropriate entry. 2553 */ 2554 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2555 unsigned char last_byte, 2556 int queue) 2557 { 2558 unsigned int smc_table_reg; 2559 unsigned int tbl_offset; 2560 unsigned int reg_offset; 2561 2562 /* Register offset from SMC table base */ 2563 tbl_offset = (last_byte / 4); 2564 /* Entry offset within the above reg */ 2565 reg_offset = last_byte % 4; 2566 2567 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2568 + tbl_offset * 4)); 2569 2570 if (queue == -1) 2571 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2572 else { 2573 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2574 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2575 } 2576 2577 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2578 smc_table_reg); 2579 } 2580 2581 /* This method controls the network device Other MAC multicast support. 2582 * The Other Multicast Table is used for multicast of another type. 2583 * A CRC-8 is used as an index to the Other Multicast Table entries 2584 * in the DA-Filter table. 2585 * The method gets the CRC-8 value from the calling routine and 2586 * sets the Other Multicast Table appropriate entry according to the 2587 * specified CRC-8 . 2588 */ 2589 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2590 unsigned char crc8, 2591 int queue) 2592 { 2593 unsigned int omc_table_reg; 2594 unsigned int tbl_offset; 2595 unsigned int reg_offset; 2596 2597 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2598 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2599 2600 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2601 2602 if (queue == -1) { 2603 /* Clear accepts frame bit at specified Other DA table entry */ 2604 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2605 } else { 2606 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2607 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2608 } 2609 2610 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2611 } 2612 2613 /* The network device supports multicast using two tables: 2614 * 1) Special Multicast Table for MAC addresses of the form 2615 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2616 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2617 * Table entries in the DA-Filter table. 2618 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2619 * is used as an index to the Other Multicast Table entries in the 2620 * DA-Filter table. 2621 */ 2622 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2623 int queue) 2624 { 2625 unsigned char crc_result = 0; 2626 2627 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2628 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2629 return 0; 2630 } 2631 2632 crc_result = mvneta_addr_crc(p_addr); 2633 if (queue == -1) { 2634 if (pp->mcast_count[crc_result] == 0) { 2635 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2636 crc_result); 2637 return -EINVAL; 2638 } 2639 2640 pp->mcast_count[crc_result]--; 2641 if (pp->mcast_count[crc_result] != 0) { 2642 netdev_info(pp->dev, 2643 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2644 pp->mcast_count[crc_result], crc_result); 2645 return -EINVAL; 2646 } 2647 } else 2648 pp->mcast_count[crc_result]++; 2649 2650 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2651 2652 return 0; 2653 } 2654 2655 /* Configure Fitering mode of Ethernet port */ 2656 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2657 int is_promisc) 2658 { 2659 u32 port_cfg_reg, val; 2660 2661 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2662 2663 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2664 2665 /* Set / Clear UPM bit in port configuration register */ 2666 if (is_promisc) { 2667 /* Accept all Unicast addresses */ 2668 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2669 val |= MVNETA_FORCE_UNI; 2670 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2671 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2672 } else { 2673 /* Reject all Unicast addresses */ 2674 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2675 val &= ~MVNETA_FORCE_UNI; 2676 } 2677 2678 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2679 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2680 } 2681 2682 /* register unicast and multicast addresses */ 2683 static void mvneta_set_rx_mode(struct net_device *dev) 2684 { 2685 struct mvneta_port *pp = netdev_priv(dev); 2686 struct netdev_hw_addr *ha; 2687 2688 if (dev->flags & IFF_PROMISC) { 2689 /* Accept all: Multicast + Unicast */ 2690 mvneta_rx_unicast_promisc_set(pp, 1); 2691 mvneta_set_ucast_table(pp, pp->rxq_def); 2692 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2693 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2694 } else { 2695 /* Accept single Unicast */ 2696 mvneta_rx_unicast_promisc_set(pp, 0); 2697 mvneta_set_ucast_table(pp, -1); 2698 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2699 2700 if (dev->flags & IFF_ALLMULTI) { 2701 /* Accept all multicast */ 2702 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2703 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2704 } else { 2705 /* Accept only initialized multicast */ 2706 mvneta_set_special_mcast_table(pp, -1); 2707 mvneta_set_other_mcast_table(pp, -1); 2708 2709 if (!netdev_mc_empty(dev)) { 2710 netdev_for_each_mc_addr(ha, dev) { 2711 mvneta_mcast_addr_set(pp, ha->addr, 2712 pp->rxq_def); 2713 } 2714 } 2715 } 2716 } 2717 } 2718 2719 /* Interrupt handling - the callback for request_irq() */ 2720 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2721 { 2722 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2723 2724 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2725 napi_schedule(&pp->napi); 2726 2727 return IRQ_HANDLED; 2728 } 2729 2730 /* Interrupt handling - the callback for request_percpu_irq() */ 2731 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2732 { 2733 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2734 2735 disable_percpu_irq(port->pp->dev->irq); 2736 napi_schedule(&port->napi); 2737 2738 return IRQ_HANDLED; 2739 } 2740 2741 static void mvneta_link_change(struct mvneta_port *pp) 2742 { 2743 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2744 2745 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2746 } 2747 2748 /* NAPI handler 2749 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2750 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2751 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2752 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2753 * Each CPU has its own causeRxTx register 2754 */ 2755 static int mvneta_poll(struct napi_struct *napi, int budget) 2756 { 2757 int rx_done = 0; 2758 u32 cause_rx_tx; 2759 int rx_queue; 2760 struct mvneta_port *pp = netdev_priv(napi->dev); 2761 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2762 2763 if (!netif_running(pp->dev)) { 2764 napi_complete(napi); 2765 return rx_done; 2766 } 2767 2768 /* Read cause register */ 2769 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2770 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2771 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2772 2773 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2774 2775 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2776 MVNETA_CAUSE_LINK_CHANGE)) 2777 mvneta_link_change(pp); 2778 } 2779 2780 /* Release Tx descriptors */ 2781 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2782 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2783 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2784 } 2785 2786 /* For the case where the last mvneta_poll did not process all 2787 * RX packets 2788 */ 2789 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2790 2791 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2792 port->cause_rx_tx; 2793 2794 if (rx_queue) { 2795 rx_queue = rx_queue - 1; 2796 if (pp->bm_priv) 2797 rx_done = mvneta_rx_hwbm(napi, pp, budget, 2798 &pp->rxqs[rx_queue]); 2799 else 2800 rx_done = mvneta_rx_swbm(napi, pp, budget, 2801 &pp->rxqs[rx_queue]); 2802 } 2803 2804 if (rx_done < budget) { 2805 cause_rx_tx = 0; 2806 napi_complete_done(napi, rx_done); 2807 2808 if (pp->neta_armada3700) { 2809 unsigned long flags; 2810 2811 local_irq_save(flags); 2812 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2813 MVNETA_RX_INTR_MASK(rxq_number) | 2814 MVNETA_TX_INTR_MASK(txq_number) | 2815 MVNETA_MISCINTR_INTR_MASK); 2816 local_irq_restore(flags); 2817 } else { 2818 enable_percpu_irq(pp->dev->irq, 0); 2819 } 2820 } 2821 2822 if (pp->neta_armada3700) 2823 pp->cause_rx_tx = cause_rx_tx; 2824 else 2825 port->cause_rx_tx = cause_rx_tx; 2826 2827 return rx_done; 2828 } 2829 2830 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2831 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2832 int num) 2833 { 2834 int i; 2835 2836 for (i = 0; i < num; i++) { 2837 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2838 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 2839 GFP_KERNEL) != 0) { 2840 netdev_err(pp->dev, 2841 "%s:rxq %d, %d of %d buffs filled\n", 2842 __func__, rxq->id, i, num); 2843 break; 2844 } 2845 } 2846 2847 /* Add this number of RX descriptors as non occupied (ready to 2848 * get packets) 2849 */ 2850 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2851 2852 return i; 2853 } 2854 2855 /* Free all packets pending transmit from all TXQs and reset TX port */ 2856 static void mvneta_tx_reset(struct mvneta_port *pp) 2857 { 2858 int queue; 2859 2860 /* free the skb's in the tx ring */ 2861 for (queue = 0; queue < txq_number; queue++) 2862 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2863 2864 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2865 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2866 } 2867 2868 static void mvneta_rx_reset(struct mvneta_port *pp) 2869 { 2870 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2871 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2872 } 2873 2874 /* Rx/Tx queue initialization/cleanup methods */ 2875 2876 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 2877 struct mvneta_rx_queue *rxq) 2878 { 2879 rxq->size = pp->rx_ring_size; 2880 2881 /* Allocate memory for RX descriptors */ 2882 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2883 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2884 &rxq->descs_phys, GFP_KERNEL); 2885 if (!rxq->descs) 2886 return -ENOMEM; 2887 2888 rxq->last_desc = rxq->size - 1; 2889 2890 return 0; 2891 } 2892 2893 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 2894 struct mvneta_rx_queue *rxq) 2895 { 2896 /* Set Rx descriptors queue starting address */ 2897 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2898 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2899 2900 /* Set coalescing pkts and time */ 2901 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2902 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2903 2904 if (!pp->bm_priv) { 2905 /* Set Offset */ 2906 mvneta_rxq_offset_set(pp, rxq, 0); 2907 mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size); 2908 mvneta_rxq_bm_disable(pp, rxq); 2909 mvneta_rxq_fill(pp, rxq, rxq->size); 2910 } else { 2911 /* Set Offset */ 2912 mvneta_rxq_offset_set(pp, rxq, 2913 NET_SKB_PAD - pp->rx_offset_correction); 2914 2915 mvneta_rxq_bm_enable(pp, rxq); 2916 /* Fill RXQ with buffers from RX pool */ 2917 mvneta_rxq_long_pool_set(pp, rxq); 2918 mvneta_rxq_short_pool_set(pp, rxq); 2919 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2920 } 2921 } 2922 2923 /* Create a specified RX queue */ 2924 static int mvneta_rxq_init(struct mvneta_port *pp, 2925 struct mvneta_rx_queue *rxq) 2926 2927 { 2928 int ret; 2929 2930 ret = mvneta_rxq_sw_init(pp, rxq); 2931 if (ret < 0) 2932 return ret; 2933 2934 mvneta_rxq_hw_init(pp, rxq); 2935 2936 return 0; 2937 } 2938 2939 /* Cleanup Rx queue */ 2940 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2941 struct mvneta_rx_queue *rxq) 2942 { 2943 mvneta_rxq_drop_pkts(pp, rxq); 2944 2945 if (rxq->skb) 2946 dev_kfree_skb_any(rxq->skb); 2947 2948 if (rxq->descs) 2949 dma_free_coherent(pp->dev->dev.parent, 2950 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2951 rxq->descs, 2952 rxq->descs_phys); 2953 2954 rxq->descs = NULL; 2955 rxq->last_desc = 0; 2956 rxq->next_desc_to_proc = 0; 2957 rxq->descs_phys = 0; 2958 rxq->first_to_refill = 0; 2959 rxq->refill_num = 0; 2960 rxq->skb = NULL; 2961 rxq->left_size = 0; 2962 } 2963 2964 static int mvneta_txq_sw_init(struct mvneta_port *pp, 2965 struct mvneta_tx_queue *txq) 2966 { 2967 int cpu; 2968 2969 txq->size = pp->tx_ring_size; 2970 2971 /* A queue must always have room for at least one skb. 2972 * Therefore, stop the queue when the free entries reaches 2973 * the maximum number of descriptors per skb. 2974 */ 2975 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2976 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2977 2978 /* Allocate memory for TX descriptors */ 2979 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2980 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2981 &txq->descs_phys, GFP_KERNEL); 2982 if (!txq->descs) 2983 return -ENOMEM; 2984 2985 txq->last_desc = txq->size - 1; 2986 2987 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2988 GFP_KERNEL); 2989 if (!txq->tx_skb) { 2990 dma_free_coherent(pp->dev->dev.parent, 2991 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2992 txq->descs, txq->descs_phys); 2993 return -ENOMEM; 2994 } 2995 2996 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2997 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2998 txq->size * TSO_HEADER_SIZE, 2999 &txq->tso_hdrs_phys, GFP_KERNEL); 3000 if (!txq->tso_hdrs) { 3001 kfree(txq->tx_skb); 3002 dma_free_coherent(pp->dev->dev.parent, 3003 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3004 txq->descs, txq->descs_phys); 3005 return -ENOMEM; 3006 } 3007 3008 /* Setup XPS mapping */ 3009 if (txq_number > 1) 3010 cpu = txq->id % num_present_cpus(); 3011 else 3012 cpu = pp->rxq_def % num_present_cpus(); 3013 cpumask_set_cpu(cpu, &txq->affinity_mask); 3014 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3015 3016 return 0; 3017 } 3018 3019 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3020 struct mvneta_tx_queue *txq) 3021 { 3022 /* Set maximum bandwidth for enabled TXQs */ 3023 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3024 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3025 3026 /* Set Tx descriptors queue starting address */ 3027 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3028 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3029 3030 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3031 } 3032 3033 /* Create and initialize a tx queue */ 3034 static int mvneta_txq_init(struct mvneta_port *pp, 3035 struct mvneta_tx_queue *txq) 3036 { 3037 int ret; 3038 3039 ret = mvneta_txq_sw_init(pp, txq); 3040 if (ret < 0) 3041 return ret; 3042 3043 mvneta_txq_hw_init(pp, txq); 3044 3045 return 0; 3046 } 3047 3048 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3049 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3050 struct mvneta_tx_queue *txq) 3051 { 3052 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3053 3054 kfree(txq->tx_skb); 3055 3056 if (txq->tso_hdrs) 3057 dma_free_coherent(pp->dev->dev.parent, 3058 txq->size * TSO_HEADER_SIZE, 3059 txq->tso_hdrs, txq->tso_hdrs_phys); 3060 if (txq->descs) 3061 dma_free_coherent(pp->dev->dev.parent, 3062 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3063 txq->descs, txq->descs_phys); 3064 3065 netdev_tx_reset_queue(nq); 3066 3067 txq->descs = NULL; 3068 txq->last_desc = 0; 3069 txq->next_desc_to_proc = 0; 3070 txq->descs_phys = 0; 3071 } 3072 3073 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3074 struct mvneta_tx_queue *txq) 3075 { 3076 /* Set minimum bandwidth for disabled TXQs */ 3077 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3078 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3079 3080 /* Set Tx descriptors queue starting address and size */ 3081 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3082 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3083 } 3084 3085 static void mvneta_txq_deinit(struct mvneta_port *pp, 3086 struct mvneta_tx_queue *txq) 3087 { 3088 mvneta_txq_sw_deinit(pp, txq); 3089 mvneta_txq_hw_deinit(pp, txq); 3090 } 3091 3092 /* Cleanup all Tx queues */ 3093 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3094 { 3095 int queue; 3096 3097 for (queue = 0; queue < txq_number; queue++) 3098 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3099 } 3100 3101 /* Cleanup all Rx queues */ 3102 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3103 { 3104 int queue; 3105 3106 for (queue = 0; queue < rxq_number; queue++) 3107 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3108 } 3109 3110 3111 /* Init all Rx queues */ 3112 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3113 { 3114 int queue; 3115 3116 for (queue = 0; queue < rxq_number; queue++) { 3117 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3118 3119 if (err) { 3120 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3121 __func__, queue); 3122 mvneta_cleanup_rxqs(pp); 3123 return err; 3124 } 3125 } 3126 3127 return 0; 3128 } 3129 3130 /* Init all tx queues */ 3131 static int mvneta_setup_txqs(struct mvneta_port *pp) 3132 { 3133 int queue; 3134 3135 for (queue = 0; queue < txq_number; queue++) { 3136 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3137 if (err) { 3138 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3139 __func__, queue); 3140 mvneta_cleanup_txqs(pp); 3141 return err; 3142 } 3143 } 3144 3145 return 0; 3146 } 3147 3148 static void mvneta_start_dev(struct mvneta_port *pp) 3149 { 3150 int cpu; 3151 3152 mvneta_max_rx_size_set(pp, pp->pkt_size); 3153 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3154 3155 /* start the Rx/Tx activity */ 3156 mvneta_port_enable(pp); 3157 3158 if (!pp->neta_armada3700) { 3159 /* Enable polling on the port */ 3160 for_each_online_cpu(cpu) { 3161 struct mvneta_pcpu_port *port = 3162 per_cpu_ptr(pp->ports, cpu); 3163 3164 napi_enable(&port->napi); 3165 } 3166 } else { 3167 napi_enable(&pp->napi); 3168 } 3169 3170 /* Unmask interrupts. It has to be done from each CPU */ 3171 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3172 3173 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3174 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3175 MVNETA_CAUSE_LINK_CHANGE); 3176 3177 phylink_start(pp->phylink); 3178 netif_tx_start_all_queues(pp->dev); 3179 } 3180 3181 static void mvneta_stop_dev(struct mvneta_port *pp) 3182 { 3183 unsigned int cpu; 3184 3185 phylink_stop(pp->phylink); 3186 3187 if (!pp->neta_armada3700) { 3188 for_each_online_cpu(cpu) { 3189 struct mvneta_pcpu_port *port = 3190 per_cpu_ptr(pp->ports, cpu); 3191 3192 napi_disable(&port->napi); 3193 } 3194 } else { 3195 napi_disable(&pp->napi); 3196 } 3197 3198 netif_carrier_off(pp->dev); 3199 3200 mvneta_port_down(pp); 3201 netif_tx_stop_all_queues(pp->dev); 3202 3203 /* Stop the port activity */ 3204 mvneta_port_disable(pp); 3205 3206 /* Clear all ethernet port interrupts */ 3207 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3208 3209 /* Mask all ethernet port interrupts */ 3210 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3211 3212 mvneta_tx_reset(pp); 3213 mvneta_rx_reset(pp); 3214 } 3215 3216 static void mvneta_percpu_enable(void *arg) 3217 { 3218 struct mvneta_port *pp = arg; 3219 3220 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3221 } 3222 3223 static void mvneta_percpu_disable(void *arg) 3224 { 3225 struct mvneta_port *pp = arg; 3226 3227 disable_percpu_irq(pp->dev->irq); 3228 } 3229 3230 /* Change the device mtu */ 3231 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3232 { 3233 struct mvneta_port *pp = netdev_priv(dev); 3234 int ret; 3235 3236 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3237 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3238 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3239 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3240 } 3241 3242 dev->mtu = mtu; 3243 3244 if (!netif_running(dev)) { 3245 if (pp->bm_priv) 3246 mvneta_bm_update_mtu(pp, mtu); 3247 3248 netdev_update_features(dev); 3249 return 0; 3250 } 3251 3252 /* The interface is running, so we have to force a 3253 * reallocation of the queues 3254 */ 3255 mvneta_stop_dev(pp); 3256 on_each_cpu(mvneta_percpu_disable, pp, true); 3257 3258 mvneta_cleanup_txqs(pp); 3259 mvneta_cleanup_rxqs(pp); 3260 3261 if (pp->bm_priv) 3262 mvneta_bm_update_mtu(pp, mtu); 3263 3264 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3265 3266 ret = mvneta_setup_rxqs(pp); 3267 if (ret) { 3268 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3269 return ret; 3270 } 3271 3272 ret = mvneta_setup_txqs(pp); 3273 if (ret) { 3274 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3275 return ret; 3276 } 3277 3278 on_each_cpu(mvneta_percpu_enable, pp, true); 3279 mvneta_start_dev(pp); 3280 3281 netdev_update_features(dev); 3282 3283 return 0; 3284 } 3285 3286 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3287 netdev_features_t features) 3288 { 3289 struct mvneta_port *pp = netdev_priv(dev); 3290 3291 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3292 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3293 netdev_info(dev, 3294 "Disable IP checksum for MTU greater than %dB\n", 3295 pp->tx_csum_limit); 3296 } 3297 3298 return features; 3299 } 3300 3301 /* Get mac address */ 3302 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3303 { 3304 u32 mac_addr_l, mac_addr_h; 3305 3306 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3307 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3308 addr[0] = (mac_addr_h >> 24) & 0xFF; 3309 addr[1] = (mac_addr_h >> 16) & 0xFF; 3310 addr[2] = (mac_addr_h >> 8) & 0xFF; 3311 addr[3] = mac_addr_h & 0xFF; 3312 addr[4] = (mac_addr_l >> 8) & 0xFF; 3313 addr[5] = mac_addr_l & 0xFF; 3314 } 3315 3316 /* Handle setting mac address */ 3317 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3318 { 3319 struct mvneta_port *pp = netdev_priv(dev); 3320 struct sockaddr *sockaddr = addr; 3321 int ret; 3322 3323 ret = eth_prepare_mac_addr_change(dev, addr); 3324 if (ret < 0) 3325 return ret; 3326 /* Remove previous address table entry */ 3327 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3328 3329 /* Set new addr in hw */ 3330 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3331 3332 eth_commit_mac_addr_change(dev, addr); 3333 return 0; 3334 } 3335 3336 static void mvneta_validate(struct net_device *ndev, unsigned long *supported, 3337 struct phylink_link_state *state) 3338 { 3339 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3340 3341 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3342 if (state->interface != PHY_INTERFACE_MODE_NA && 3343 state->interface != PHY_INTERFACE_MODE_QSGMII && 3344 state->interface != PHY_INTERFACE_MODE_SGMII && 3345 !phy_interface_mode_is_8023z(state->interface) && 3346 !phy_interface_mode_is_rgmii(state->interface)) { 3347 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3348 return; 3349 } 3350 3351 /* Allow all the expected bits */ 3352 phylink_set(mask, Autoneg); 3353 phylink_set_port_modes(mask); 3354 3355 /* Asymmetric pause is unsupported */ 3356 phylink_set(mask, Pause); 3357 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3358 phylink_set(mask, 1000baseT_Full); 3359 phylink_set(mask, 1000baseX_Full); 3360 3361 if (!phy_interface_mode_is_8023z(state->interface)) { 3362 /* 10M and 100M are only supported in non-802.3z mode */ 3363 phylink_set(mask, 10baseT_Half); 3364 phylink_set(mask, 10baseT_Full); 3365 phylink_set(mask, 100baseT_Half); 3366 phylink_set(mask, 100baseT_Full); 3367 } 3368 3369 bitmap_and(supported, supported, mask, 3370 __ETHTOOL_LINK_MODE_MASK_NBITS); 3371 bitmap_and(state->advertising, state->advertising, mask, 3372 __ETHTOOL_LINK_MODE_MASK_NBITS); 3373 } 3374 3375 static int mvneta_mac_link_state(struct net_device *ndev, 3376 struct phylink_link_state *state) 3377 { 3378 struct mvneta_port *pp = netdev_priv(ndev); 3379 u32 gmac_stat; 3380 3381 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3382 3383 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3384 state->speed = SPEED_1000; 3385 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3386 state->speed = SPEED_100; 3387 else 3388 state->speed = SPEED_10; 3389 3390 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3391 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3392 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3393 3394 state->pause = 0; 3395 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3396 state->pause |= MLO_PAUSE_RX; 3397 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3398 state->pause |= MLO_PAUSE_TX; 3399 3400 return 1; 3401 } 3402 3403 static void mvneta_mac_an_restart(struct net_device *ndev) 3404 { 3405 struct mvneta_port *pp = netdev_priv(ndev); 3406 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3407 3408 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3409 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3410 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3411 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3412 } 3413 3414 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode, 3415 const struct phylink_link_state *state) 3416 { 3417 struct mvneta_port *pp = netdev_priv(ndev); 3418 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3419 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3420 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3421 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3422 3423 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3424 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3425 MVNETA_GMAC2_PORT_RESET); 3426 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3427 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3428 MVNETA_GMAC_INBAND_RESTART_AN | 3429 MVNETA_GMAC_CONFIG_MII_SPEED | 3430 MVNETA_GMAC_CONFIG_GMII_SPEED | 3431 MVNETA_GMAC_AN_SPEED_EN | 3432 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3433 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3434 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3435 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3436 MVNETA_GMAC_AN_DUPLEX_EN); 3437 3438 /* Even though it might look weird, when we're configured in 3439 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3440 */ 3441 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3442 3443 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3444 state->interface == PHY_INTERFACE_MODE_SGMII || 3445 phy_interface_mode_is_8023z(state->interface)) 3446 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3447 3448 if (phylink_test(state->advertising, Pause)) 3449 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3450 if (state->pause & MLO_PAUSE_TXRX_MASK) 3451 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3452 3453 if (!phylink_autoneg_inband(mode)) { 3454 /* Phy or fixed speed */ 3455 if (state->duplex) 3456 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3457 3458 if (state->speed == SPEED_1000) 3459 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3460 else if (state->speed == SPEED_100) 3461 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3462 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3463 /* SGMII mode receives the state from the PHY */ 3464 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3465 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3466 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3467 MVNETA_GMAC_FORCE_LINK_PASS)) | 3468 MVNETA_GMAC_INBAND_AN_ENABLE | 3469 MVNETA_GMAC_AN_SPEED_EN | 3470 MVNETA_GMAC_AN_DUPLEX_EN; 3471 } else { 3472 /* 802.3z negotiation - only 1000base-X */ 3473 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3474 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3475 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3476 MVNETA_GMAC_FORCE_LINK_PASS)) | 3477 MVNETA_GMAC_INBAND_AN_ENABLE | 3478 MVNETA_GMAC_CONFIG_GMII_SPEED | 3479 /* The MAC only supports FD mode */ 3480 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3481 3482 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3483 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3484 } 3485 3486 /* Armada 370 documentation says we can only change the port mode 3487 * and in-band enable when the link is down, so force it down 3488 * while making these changes. We also do this for GMAC_CTRL2 */ 3489 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3490 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3491 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3492 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3493 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3494 MVNETA_GMAC_FORCE_LINK_DOWN); 3495 } 3496 3497 if (new_ctrl0 != gmac_ctrl0) 3498 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3499 if (new_ctrl2 != gmac_ctrl2) 3500 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3501 if (new_clk != gmac_clk) 3502 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3503 if (new_an != gmac_an) 3504 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3505 3506 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3507 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3508 MVNETA_GMAC2_PORT_RESET) != 0) 3509 continue; 3510 } 3511 } 3512 3513 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3514 { 3515 u32 lpi_ctl1; 3516 3517 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3518 if (enable) 3519 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3520 else 3521 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3522 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3523 } 3524 3525 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode, 3526 phy_interface_t interface) 3527 { 3528 struct mvneta_port *pp = netdev_priv(ndev); 3529 u32 val; 3530 3531 mvneta_port_down(pp); 3532 3533 if (!phylink_autoneg_inband(mode)) { 3534 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3535 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3536 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3537 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3538 } 3539 3540 pp->eee_active = false; 3541 mvneta_set_eee(pp, false); 3542 } 3543 3544 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode, 3545 phy_interface_t interface, 3546 struct phy_device *phy) 3547 { 3548 struct mvneta_port *pp = netdev_priv(ndev); 3549 u32 val; 3550 3551 if (!phylink_autoneg_inband(mode)) { 3552 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3553 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3554 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3555 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3556 } 3557 3558 mvneta_port_up(pp); 3559 3560 if (phy && pp->eee_enabled) { 3561 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3562 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3563 } 3564 } 3565 3566 static const struct phylink_mac_ops mvneta_phylink_ops = { 3567 .validate = mvneta_validate, 3568 .mac_link_state = mvneta_mac_link_state, 3569 .mac_an_restart = mvneta_mac_an_restart, 3570 .mac_config = mvneta_mac_config, 3571 .mac_link_down = mvneta_mac_link_down, 3572 .mac_link_up = mvneta_mac_link_up, 3573 }; 3574 3575 static int mvneta_mdio_probe(struct mvneta_port *pp) 3576 { 3577 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3578 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3579 3580 if (err) 3581 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3582 3583 phylink_ethtool_get_wol(pp->phylink, &wol); 3584 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3585 3586 return err; 3587 } 3588 3589 static void mvneta_mdio_remove(struct mvneta_port *pp) 3590 { 3591 phylink_disconnect_phy(pp->phylink); 3592 } 3593 3594 /* Electing a CPU must be done in an atomic way: it should be done 3595 * after or before the removal/insertion of a CPU and this function is 3596 * not reentrant. 3597 */ 3598 static void mvneta_percpu_elect(struct mvneta_port *pp) 3599 { 3600 int elected_cpu = 0, max_cpu, cpu, i = 0; 3601 3602 /* Use the cpu associated to the rxq when it is online, in all 3603 * the other cases, use the cpu 0 which can't be offline. 3604 */ 3605 if (cpu_online(pp->rxq_def)) 3606 elected_cpu = pp->rxq_def; 3607 3608 max_cpu = num_present_cpus(); 3609 3610 for_each_online_cpu(cpu) { 3611 int rxq_map = 0, txq_map = 0; 3612 int rxq; 3613 3614 for (rxq = 0; rxq < rxq_number; rxq++) 3615 if ((rxq % max_cpu) == cpu) 3616 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3617 3618 if (cpu == elected_cpu) 3619 /* Map the default receive queue queue to the 3620 * elected CPU 3621 */ 3622 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3623 3624 /* We update the TX queue map only if we have one 3625 * queue. In this case we associate the TX queue to 3626 * the CPU bound to the default RX queue 3627 */ 3628 if (txq_number == 1) 3629 txq_map = (cpu == elected_cpu) ? 3630 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3631 else 3632 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3633 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3634 3635 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3636 3637 /* Update the interrupt mask on each CPU according the 3638 * new mapping 3639 */ 3640 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3641 pp, true); 3642 i++; 3643 3644 } 3645 }; 3646 3647 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3648 { 3649 int other_cpu; 3650 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3651 node_online); 3652 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3653 3654 3655 spin_lock(&pp->lock); 3656 /* 3657 * Configuring the driver for a new CPU while the driver is 3658 * stopping is racy, so just avoid it. 3659 */ 3660 if (pp->is_stopped) { 3661 spin_unlock(&pp->lock); 3662 return 0; 3663 } 3664 netif_tx_stop_all_queues(pp->dev); 3665 3666 /* 3667 * We have to synchronise on tha napi of each CPU except the one 3668 * just being woken up 3669 */ 3670 for_each_online_cpu(other_cpu) { 3671 if (other_cpu != cpu) { 3672 struct mvneta_pcpu_port *other_port = 3673 per_cpu_ptr(pp->ports, other_cpu); 3674 3675 napi_synchronize(&other_port->napi); 3676 } 3677 } 3678 3679 /* Mask all ethernet port interrupts */ 3680 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3681 napi_enable(&port->napi); 3682 3683 /* 3684 * Enable per-CPU interrupts on the CPU that is 3685 * brought up. 3686 */ 3687 mvneta_percpu_enable(pp); 3688 3689 /* 3690 * Enable per-CPU interrupt on the one CPU we care 3691 * about. 3692 */ 3693 mvneta_percpu_elect(pp); 3694 3695 /* Unmask all ethernet port interrupts */ 3696 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3697 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3698 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3699 MVNETA_CAUSE_LINK_CHANGE); 3700 netif_tx_start_all_queues(pp->dev); 3701 spin_unlock(&pp->lock); 3702 return 0; 3703 } 3704 3705 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3706 { 3707 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3708 node_online); 3709 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3710 3711 /* 3712 * Thanks to this lock we are sure that any pending cpu election is 3713 * done. 3714 */ 3715 spin_lock(&pp->lock); 3716 /* Mask all ethernet port interrupts */ 3717 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3718 spin_unlock(&pp->lock); 3719 3720 napi_synchronize(&port->napi); 3721 napi_disable(&port->napi); 3722 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3723 mvneta_percpu_disable(pp); 3724 return 0; 3725 } 3726 3727 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3728 { 3729 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3730 node_dead); 3731 3732 /* Check if a new CPU must be elected now this on is down */ 3733 spin_lock(&pp->lock); 3734 mvneta_percpu_elect(pp); 3735 spin_unlock(&pp->lock); 3736 /* Unmask all ethernet port interrupts */ 3737 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3738 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3739 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3740 MVNETA_CAUSE_LINK_CHANGE); 3741 netif_tx_start_all_queues(pp->dev); 3742 return 0; 3743 } 3744 3745 static int mvneta_open(struct net_device *dev) 3746 { 3747 struct mvneta_port *pp = netdev_priv(dev); 3748 int ret; 3749 3750 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3751 pp->frag_size = PAGE_SIZE; 3752 3753 ret = mvneta_setup_rxqs(pp); 3754 if (ret) 3755 return ret; 3756 3757 ret = mvneta_setup_txqs(pp); 3758 if (ret) 3759 goto err_cleanup_rxqs; 3760 3761 /* Connect to port interrupt line */ 3762 if (pp->neta_armada3700) 3763 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3764 dev->name, pp); 3765 else 3766 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3767 dev->name, pp->ports); 3768 if (ret) { 3769 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3770 goto err_cleanup_txqs; 3771 } 3772 3773 if (!pp->neta_armada3700) { 3774 /* Enable per-CPU interrupt on all the CPU to handle our RX 3775 * queue interrupts 3776 */ 3777 on_each_cpu(mvneta_percpu_enable, pp, true); 3778 3779 pp->is_stopped = false; 3780 /* Register a CPU notifier to handle the case where our CPU 3781 * might be taken offline. 3782 */ 3783 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3784 &pp->node_online); 3785 if (ret) 3786 goto err_free_irq; 3787 3788 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3789 &pp->node_dead); 3790 if (ret) 3791 goto err_free_online_hp; 3792 } 3793 3794 /* In default link is down */ 3795 netif_carrier_off(pp->dev); 3796 3797 ret = mvneta_mdio_probe(pp); 3798 if (ret < 0) { 3799 netdev_err(dev, "cannot probe MDIO bus\n"); 3800 goto err_free_dead_hp; 3801 } 3802 3803 mvneta_start_dev(pp); 3804 3805 return 0; 3806 3807 err_free_dead_hp: 3808 if (!pp->neta_armada3700) 3809 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3810 &pp->node_dead); 3811 err_free_online_hp: 3812 if (!pp->neta_armada3700) 3813 cpuhp_state_remove_instance_nocalls(online_hpstate, 3814 &pp->node_online); 3815 err_free_irq: 3816 if (pp->neta_armada3700) { 3817 free_irq(pp->dev->irq, pp); 3818 } else { 3819 on_each_cpu(mvneta_percpu_disable, pp, true); 3820 free_percpu_irq(pp->dev->irq, pp->ports); 3821 } 3822 err_cleanup_txqs: 3823 mvneta_cleanup_txqs(pp); 3824 err_cleanup_rxqs: 3825 mvneta_cleanup_rxqs(pp); 3826 return ret; 3827 } 3828 3829 /* Stop the port, free port interrupt line */ 3830 static int mvneta_stop(struct net_device *dev) 3831 { 3832 struct mvneta_port *pp = netdev_priv(dev); 3833 3834 if (!pp->neta_armada3700) { 3835 /* Inform that we are stopping so we don't want to setup the 3836 * driver for new CPUs in the notifiers. The code of the 3837 * notifier for CPU online is protected by the same spinlock, 3838 * so when we get the lock, the notifer work is done. 3839 */ 3840 spin_lock(&pp->lock); 3841 pp->is_stopped = true; 3842 spin_unlock(&pp->lock); 3843 3844 mvneta_stop_dev(pp); 3845 mvneta_mdio_remove(pp); 3846 3847 cpuhp_state_remove_instance_nocalls(online_hpstate, 3848 &pp->node_online); 3849 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3850 &pp->node_dead); 3851 on_each_cpu(mvneta_percpu_disable, pp, true); 3852 free_percpu_irq(dev->irq, pp->ports); 3853 } else { 3854 mvneta_stop_dev(pp); 3855 mvneta_mdio_remove(pp); 3856 free_irq(dev->irq, pp); 3857 } 3858 3859 mvneta_cleanup_rxqs(pp); 3860 mvneta_cleanup_txqs(pp); 3861 3862 return 0; 3863 } 3864 3865 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3866 { 3867 struct mvneta_port *pp = netdev_priv(dev); 3868 3869 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 3870 } 3871 3872 /* Ethtool methods */ 3873 3874 /* Set link ksettings (phy address, speed) for ethtools */ 3875 static int 3876 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3877 const struct ethtool_link_ksettings *cmd) 3878 { 3879 struct mvneta_port *pp = netdev_priv(ndev); 3880 3881 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 3882 } 3883 3884 /* Get link ksettings for ethtools */ 3885 static int 3886 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 3887 struct ethtool_link_ksettings *cmd) 3888 { 3889 struct mvneta_port *pp = netdev_priv(ndev); 3890 3891 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 3892 } 3893 3894 static int mvneta_ethtool_nway_reset(struct net_device *dev) 3895 { 3896 struct mvneta_port *pp = netdev_priv(dev); 3897 3898 return phylink_ethtool_nway_reset(pp->phylink); 3899 } 3900 3901 /* Set interrupt coalescing for ethtools */ 3902 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3903 struct ethtool_coalesce *c) 3904 { 3905 struct mvneta_port *pp = netdev_priv(dev); 3906 int queue; 3907 3908 for (queue = 0; queue < rxq_number; queue++) { 3909 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3910 rxq->time_coal = c->rx_coalesce_usecs; 3911 rxq->pkts_coal = c->rx_max_coalesced_frames; 3912 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3913 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3914 } 3915 3916 for (queue = 0; queue < txq_number; queue++) { 3917 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3918 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3919 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3920 } 3921 3922 return 0; 3923 } 3924 3925 /* get coalescing for ethtools */ 3926 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3927 struct ethtool_coalesce *c) 3928 { 3929 struct mvneta_port *pp = netdev_priv(dev); 3930 3931 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3932 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3933 3934 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3935 return 0; 3936 } 3937 3938 3939 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3940 struct ethtool_drvinfo *drvinfo) 3941 { 3942 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3943 sizeof(drvinfo->driver)); 3944 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3945 sizeof(drvinfo->version)); 3946 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3947 sizeof(drvinfo->bus_info)); 3948 } 3949 3950 3951 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3952 struct ethtool_ringparam *ring) 3953 { 3954 struct mvneta_port *pp = netdev_priv(netdev); 3955 3956 ring->rx_max_pending = MVNETA_MAX_RXD; 3957 ring->tx_max_pending = MVNETA_MAX_TXD; 3958 ring->rx_pending = pp->rx_ring_size; 3959 ring->tx_pending = pp->tx_ring_size; 3960 } 3961 3962 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3963 struct ethtool_ringparam *ring) 3964 { 3965 struct mvneta_port *pp = netdev_priv(dev); 3966 3967 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3968 return -EINVAL; 3969 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3970 ring->rx_pending : MVNETA_MAX_RXD; 3971 3972 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3973 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3974 if (pp->tx_ring_size != ring->tx_pending) 3975 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3976 pp->tx_ring_size, ring->tx_pending); 3977 3978 if (netif_running(dev)) { 3979 mvneta_stop(dev); 3980 if (mvneta_open(dev)) { 3981 netdev_err(dev, 3982 "error on opening device after ring param change\n"); 3983 return -ENOMEM; 3984 } 3985 } 3986 3987 return 0; 3988 } 3989 3990 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 3991 struct ethtool_pauseparam *pause) 3992 { 3993 struct mvneta_port *pp = netdev_priv(dev); 3994 3995 phylink_ethtool_get_pauseparam(pp->phylink, pause); 3996 } 3997 3998 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 3999 struct ethtool_pauseparam *pause) 4000 { 4001 struct mvneta_port *pp = netdev_priv(dev); 4002 4003 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4004 } 4005 4006 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4007 u8 *data) 4008 { 4009 if (sset == ETH_SS_STATS) { 4010 int i; 4011 4012 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4013 memcpy(data + i * ETH_GSTRING_LEN, 4014 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4015 } 4016 } 4017 4018 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4019 { 4020 const struct mvneta_statistic *s; 4021 void __iomem *base = pp->base; 4022 u32 high, low; 4023 u64 val; 4024 int i; 4025 4026 for (i = 0, s = mvneta_statistics; 4027 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4028 s++, i++) { 4029 val = 0; 4030 4031 switch (s->type) { 4032 case T_REG_32: 4033 val = readl_relaxed(base + s->offset); 4034 break; 4035 case T_REG_64: 4036 /* Docs say to read low 32-bit then high */ 4037 low = readl_relaxed(base + s->offset); 4038 high = readl_relaxed(base + s->offset + 4); 4039 val = (u64)high << 32 | low; 4040 break; 4041 case T_SW: 4042 switch (s->offset) { 4043 case ETHTOOL_STAT_EEE_WAKEUP: 4044 val = phylink_get_eee_err(pp->phylink); 4045 break; 4046 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4047 val = pp->rxqs[0].skb_alloc_err; 4048 break; 4049 case ETHTOOL_STAT_REFILL_ERR: 4050 val = pp->rxqs[0].refill_err; 4051 break; 4052 } 4053 break; 4054 } 4055 4056 pp->ethtool_stats[i] += val; 4057 } 4058 } 4059 4060 static void mvneta_ethtool_get_stats(struct net_device *dev, 4061 struct ethtool_stats *stats, u64 *data) 4062 { 4063 struct mvneta_port *pp = netdev_priv(dev); 4064 int i; 4065 4066 mvneta_ethtool_update_stats(pp); 4067 4068 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4069 *data++ = pp->ethtool_stats[i]; 4070 } 4071 4072 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4073 { 4074 if (sset == ETH_SS_STATS) 4075 return ARRAY_SIZE(mvneta_statistics); 4076 return -EOPNOTSUPP; 4077 } 4078 4079 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4080 { 4081 return MVNETA_RSS_LU_TABLE_SIZE; 4082 } 4083 4084 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4085 struct ethtool_rxnfc *info, 4086 u32 *rules __always_unused) 4087 { 4088 switch (info->cmd) { 4089 case ETHTOOL_GRXRINGS: 4090 info->data = rxq_number; 4091 return 0; 4092 case ETHTOOL_GRXFH: 4093 return -EOPNOTSUPP; 4094 default: 4095 return -EOPNOTSUPP; 4096 } 4097 } 4098 4099 static int mvneta_config_rss(struct mvneta_port *pp) 4100 { 4101 int cpu; 4102 u32 val; 4103 4104 netif_tx_stop_all_queues(pp->dev); 4105 4106 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4107 4108 if (!pp->neta_armada3700) { 4109 /* We have to synchronise on the napi of each CPU */ 4110 for_each_online_cpu(cpu) { 4111 struct mvneta_pcpu_port *pcpu_port = 4112 per_cpu_ptr(pp->ports, cpu); 4113 4114 napi_synchronize(&pcpu_port->napi); 4115 napi_disable(&pcpu_port->napi); 4116 } 4117 } else { 4118 napi_synchronize(&pp->napi); 4119 napi_disable(&pp->napi); 4120 } 4121 4122 pp->rxq_def = pp->indir[0]; 4123 4124 /* Update unicast mapping */ 4125 mvneta_set_rx_mode(pp->dev); 4126 4127 /* Update val of portCfg register accordingly with all RxQueue types */ 4128 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4129 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4130 4131 /* Update the elected CPU matching the new rxq_def */ 4132 spin_lock(&pp->lock); 4133 mvneta_percpu_elect(pp); 4134 spin_unlock(&pp->lock); 4135 4136 if (!pp->neta_armada3700) { 4137 /* We have to synchronise on the napi of each CPU */ 4138 for_each_online_cpu(cpu) { 4139 struct mvneta_pcpu_port *pcpu_port = 4140 per_cpu_ptr(pp->ports, cpu); 4141 4142 napi_enable(&pcpu_port->napi); 4143 } 4144 } else { 4145 napi_enable(&pp->napi); 4146 } 4147 4148 netif_tx_start_all_queues(pp->dev); 4149 4150 return 0; 4151 } 4152 4153 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4154 const u8 *key, const u8 hfunc) 4155 { 4156 struct mvneta_port *pp = netdev_priv(dev); 4157 4158 /* Current code for Armada 3700 doesn't support RSS features yet */ 4159 if (pp->neta_armada3700) 4160 return -EOPNOTSUPP; 4161 4162 /* We require at least one supported parameter to be changed 4163 * and no change in any of the unsupported parameters 4164 */ 4165 if (key || 4166 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4167 return -EOPNOTSUPP; 4168 4169 if (!indir) 4170 return 0; 4171 4172 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4173 4174 return mvneta_config_rss(pp); 4175 } 4176 4177 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4178 u8 *hfunc) 4179 { 4180 struct mvneta_port *pp = netdev_priv(dev); 4181 4182 /* Current code for Armada 3700 doesn't support RSS features yet */ 4183 if (pp->neta_armada3700) 4184 return -EOPNOTSUPP; 4185 4186 if (hfunc) 4187 *hfunc = ETH_RSS_HASH_TOP; 4188 4189 if (!indir) 4190 return 0; 4191 4192 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4193 4194 return 0; 4195 } 4196 4197 static void mvneta_ethtool_get_wol(struct net_device *dev, 4198 struct ethtool_wolinfo *wol) 4199 { 4200 struct mvneta_port *pp = netdev_priv(dev); 4201 4202 phylink_ethtool_get_wol(pp->phylink, wol); 4203 } 4204 4205 static int mvneta_ethtool_set_wol(struct net_device *dev, 4206 struct ethtool_wolinfo *wol) 4207 { 4208 struct mvneta_port *pp = netdev_priv(dev); 4209 int ret; 4210 4211 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4212 if (!ret) 4213 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4214 4215 return ret; 4216 } 4217 4218 static int mvneta_ethtool_get_eee(struct net_device *dev, 4219 struct ethtool_eee *eee) 4220 { 4221 struct mvneta_port *pp = netdev_priv(dev); 4222 u32 lpi_ctl0; 4223 4224 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4225 4226 eee->eee_enabled = pp->eee_enabled; 4227 eee->eee_active = pp->eee_active; 4228 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4229 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4230 4231 return phylink_ethtool_get_eee(pp->phylink, eee); 4232 } 4233 4234 static int mvneta_ethtool_set_eee(struct net_device *dev, 4235 struct ethtool_eee *eee) 4236 { 4237 struct mvneta_port *pp = netdev_priv(dev); 4238 u32 lpi_ctl0; 4239 4240 /* The Armada 37x documents do not give limits for this other than 4241 * it being an 8-bit register. */ 4242 if (eee->tx_lpi_enabled && 4243 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255)) 4244 return -EINVAL; 4245 4246 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4247 lpi_ctl0 &= ~(0xff << 8); 4248 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4249 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4250 4251 pp->eee_enabled = eee->eee_enabled; 4252 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4253 4254 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4255 4256 return phylink_ethtool_set_eee(pp->phylink, eee); 4257 } 4258 4259 static const struct net_device_ops mvneta_netdev_ops = { 4260 .ndo_open = mvneta_open, 4261 .ndo_stop = mvneta_stop, 4262 .ndo_start_xmit = mvneta_tx, 4263 .ndo_set_rx_mode = mvneta_set_rx_mode, 4264 .ndo_set_mac_address = mvneta_set_mac_addr, 4265 .ndo_change_mtu = mvneta_change_mtu, 4266 .ndo_fix_features = mvneta_fix_features, 4267 .ndo_get_stats64 = mvneta_get_stats64, 4268 .ndo_do_ioctl = mvneta_ioctl, 4269 }; 4270 4271 static const struct ethtool_ops mvneta_eth_tool_ops = { 4272 .nway_reset = mvneta_ethtool_nway_reset, 4273 .get_link = ethtool_op_get_link, 4274 .set_coalesce = mvneta_ethtool_set_coalesce, 4275 .get_coalesce = mvneta_ethtool_get_coalesce, 4276 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4277 .get_ringparam = mvneta_ethtool_get_ringparam, 4278 .set_ringparam = mvneta_ethtool_set_ringparam, 4279 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4280 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4281 .get_strings = mvneta_ethtool_get_strings, 4282 .get_ethtool_stats = mvneta_ethtool_get_stats, 4283 .get_sset_count = mvneta_ethtool_get_sset_count, 4284 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4285 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4286 .get_rxfh = mvneta_ethtool_get_rxfh, 4287 .set_rxfh = mvneta_ethtool_set_rxfh, 4288 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4289 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4290 .get_wol = mvneta_ethtool_get_wol, 4291 .set_wol = mvneta_ethtool_set_wol, 4292 .get_eee = mvneta_ethtool_get_eee, 4293 .set_eee = mvneta_ethtool_set_eee, 4294 }; 4295 4296 /* Initialize hw */ 4297 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4298 { 4299 int queue; 4300 4301 /* Disable port */ 4302 mvneta_port_disable(pp); 4303 4304 /* Set port default values */ 4305 mvneta_defaults_set(pp); 4306 4307 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4308 if (!pp->txqs) 4309 return -ENOMEM; 4310 4311 /* Initialize TX descriptor rings */ 4312 for (queue = 0; queue < txq_number; queue++) { 4313 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4314 txq->id = queue; 4315 txq->size = pp->tx_ring_size; 4316 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4317 } 4318 4319 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4320 if (!pp->rxqs) 4321 return -ENOMEM; 4322 4323 /* Create Rx descriptor rings */ 4324 for (queue = 0; queue < rxq_number; queue++) { 4325 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4326 rxq->id = queue; 4327 rxq->size = pp->rx_ring_size; 4328 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4329 rxq->time_coal = MVNETA_RX_COAL_USEC; 4330 rxq->buf_virt_addr 4331 = devm_kmalloc_array(pp->dev->dev.parent, 4332 rxq->size, 4333 sizeof(*rxq->buf_virt_addr), 4334 GFP_KERNEL); 4335 if (!rxq->buf_virt_addr) 4336 return -ENOMEM; 4337 } 4338 4339 return 0; 4340 } 4341 4342 /* platform glue : initialize decoding windows */ 4343 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4344 const struct mbus_dram_target_info *dram) 4345 { 4346 u32 win_enable; 4347 u32 win_protect; 4348 int i; 4349 4350 for (i = 0; i < 6; i++) { 4351 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4352 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4353 4354 if (i < 4) 4355 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4356 } 4357 4358 win_enable = 0x3f; 4359 win_protect = 0; 4360 4361 if (dram) { 4362 for (i = 0; i < dram->num_cs; i++) { 4363 const struct mbus_dram_window *cs = dram->cs + i; 4364 4365 mvreg_write(pp, MVNETA_WIN_BASE(i), 4366 (cs->base & 0xffff0000) | 4367 (cs->mbus_attr << 8) | 4368 dram->mbus_dram_target_id); 4369 4370 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4371 (cs->size - 1) & 0xffff0000); 4372 4373 win_enable &= ~(1 << i); 4374 win_protect |= 3 << (2 * i); 4375 } 4376 } else { 4377 /* For Armada3700 open default 4GB Mbus window, leaving 4378 * arbitration of target/attribute to a different layer 4379 * of configuration. 4380 */ 4381 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4382 win_enable &= ~BIT(0); 4383 win_protect = 3; 4384 } 4385 4386 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4387 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4388 } 4389 4390 /* Power up the port */ 4391 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4392 { 4393 /* MAC Cause register should be cleared */ 4394 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4395 4396 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4397 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4398 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4399 phy_mode == PHY_INTERFACE_MODE_1000BASEX) 4400 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4401 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4402 return -EINVAL; 4403 4404 return 0; 4405 } 4406 4407 /* Device initialization routine */ 4408 static int mvneta_probe(struct platform_device *pdev) 4409 { 4410 struct resource *res; 4411 struct device_node *dn = pdev->dev.of_node; 4412 struct device_node *bm_node; 4413 struct mvneta_port *pp; 4414 struct net_device *dev; 4415 struct phylink *phylink; 4416 const char *dt_mac_addr; 4417 char hw_mac_addr[ETH_ALEN]; 4418 const char *mac_from; 4419 int tx_csum_limit; 4420 int phy_mode; 4421 int err; 4422 int cpu; 4423 4424 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4425 if (!dev) 4426 return -ENOMEM; 4427 4428 dev->irq = irq_of_parse_and_map(dn, 0); 4429 if (dev->irq == 0) { 4430 err = -EINVAL; 4431 goto err_free_netdev; 4432 } 4433 4434 phy_mode = of_get_phy_mode(dn); 4435 if (phy_mode < 0) { 4436 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4437 err = -EINVAL; 4438 goto err_free_irq; 4439 } 4440 4441 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode, 4442 &mvneta_phylink_ops); 4443 if (IS_ERR(phylink)) { 4444 err = PTR_ERR(phylink); 4445 goto err_free_irq; 4446 } 4447 4448 dev->tx_queue_len = MVNETA_MAX_TXD; 4449 dev->watchdog_timeo = 5 * HZ; 4450 dev->netdev_ops = &mvneta_netdev_ops; 4451 4452 dev->ethtool_ops = &mvneta_eth_tool_ops; 4453 4454 pp = netdev_priv(dev); 4455 spin_lock_init(&pp->lock); 4456 pp->phylink = phylink; 4457 pp->phy_interface = phy_mode; 4458 pp->dn = dn; 4459 4460 pp->rxq_def = rxq_def; 4461 pp->indir[0] = rxq_def; 4462 4463 /* Get special SoC configurations */ 4464 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4465 pp->neta_armada3700 = true; 4466 4467 pp->clk = devm_clk_get(&pdev->dev, "core"); 4468 if (IS_ERR(pp->clk)) 4469 pp->clk = devm_clk_get(&pdev->dev, NULL); 4470 if (IS_ERR(pp->clk)) { 4471 err = PTR_ERR(pp->clk); 4472 goto err_free_phylink; 4473 } 4474 4475 clk_prepare_enable(pp->clk); 4476 4477 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4478 if (!IS_ERR(pp->clk_bus)) 4479 clk_prepare_enable(pp->clk_bus); 4480 4481 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4482 pp->base = devm_ioremap_resource(&pdev->dev, res); 4483 if (IS_ERR(pp->base)) { 4484 err = PTR_ERR(pp->base); 4485 goto err_clk; 4486 } 4487 4488 /* Alloc per-cpu port structure */ 4489 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4490 if (!pp->ports) { 4491 err = -ENOMEM; 4492 goto err_clk; 4493 } 4494 4495 /* Alloc per-cpu stats */ 4496 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4497 if (!pp->stats) { 4498 err = -ENOMEM; 4499 goto err_free_ports; 4500 } 4501 4502 dt_mac_addr = of_get_mac_address(dn); 4503 if (dt_mac_addr) { 4504 mac_from = "device tree"; 4505 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4506 } else { 4507 mvneta_get_mac_addr(pp, hw_mac_addr); 4508 if (is_valid_ether_addr(hw_mac_addr)) { 4509 mac_from = "hardware"; 4510 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4511 } else { 4512 mac_from = "random"; 4513 eth_hw_addr_random(dev); 4514 } 4515 } 4516 4517 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4518 if (tx_csum_limit < 0 || 4519 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4520 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4521 dev_info(&pdev->dev, 4522 "Wrong TX csum limit in DT, set to %dB\n", 4523 MVNETA_TX_CSUM_DEF_SIZE); 4524 } 4525 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4526 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4527 } else { 4528 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4529 } 4530 4531 pp->tx_csum_limit = tx_csum_limit; 4532 4533 pp->dram_target_info = mv_mbus_dram_info(); 4534 /* Armada3700 requires setting default configuration of Mbus 4535 * windows, however without using filled mbus_dram_target_info 4536 * structure. 4537 */ 4538 if (pp->dram_target_info || pp->neta_armada3700) 4539 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4540 4541 pp->tx_ring_size = MVNETA_MAX_TXD; 4542 pp->rx_ring_size = MVNETA_MAX_RXD; 4543 4544 pp->dev = dev; 4545 SET_NETDEV_DEV(dev, &pdev->dev); 4546 4547 pp->id = global_port_id++; 4548 pp->rx_offset_correction = 0; /* not relevant for SW BM */ 4549 4550 /* Obtain access to BM resources if enabled and already initialized */ 4551 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4552 if (bm_node) { 4553 pp->bm_priv = mvneta_bm_get(bm_node); 4554 if (pp->bm_priv) { 4555 err = mvneta_bm_port_init(pdev, pp); 4556 if (err < 0) { 4557 dev_info(&pdev->dev, 4558 "use SW buffer management\n"); 4559 mvneta_bm_put(pp->bm_priv); 4560 pp->bm_priv = NULL; 4561 } 4562 } 4563 /* Set RX packet offset correction for platforms, whose 4564 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4565 * platforms and 0B for 32-bit ones. 4566 */ 4567 pp->rx_offset_correction = max(0, 4568 NET_SKB_PAD - 4569 MVNETA_RX_PKT_OFFSET_CORRECTION); 4570 } 4571 of_node_put(bm_node); 4572 4573 err = mvneta_init(&pdev->dev, pp); 4574 if (err < 0) 4575 goto err_netdev; 4576 4577 err = mvneta_port_power_up(pp, phy_mode); 4578 if (err < 0) { 4579 dev_err(&pdev->dev, "can't power up port\n"); 4580 goto err_netdev; 4581 } 4582 4583 /* Armada3700 network controller does not support per-cpu 4584 * operation, so only single NAPI should be initialized. 4585 */ 4586 if (pp->neta_armada3700) { 4587 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4588 } else { 4589 for_each_present_cpu(cpu) { 4590 struct mvneta_pcpu_port *port = 4591 per_cpu_ptr(pp->ports, cpu); 4592 4593 netif_napi_add(dev, &port->napi, mvneta_poll, 4594 NAPI_POLL_WEIGHT); 4595 port->pp = pp; 4596 } 4597 } 4598 4599 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4600 NETIF_F_TSO | NETIF_F_RXCSUM; 4601 dev->hw_features |= dev->features; 4602 dev->vlan_features |= dev->features; 4603 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4604 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4605 4606 /* MTU range: 68 - 9676 */ 4607 dev->min_mtu = ETH_MIN_MTU; 4608 /* 9676 == 9700 - 20 and rounding to 8 */ 4609 dev->max_mtu = 9676; 4610 4611 err = register_netdev(dev); 4612 if (err < 0) { 4613 dev_err(&pdev->dev, "failed to register\n"); 4614 goto err_free_stats; 4615 } 4616 4617 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4618 dev->dev_addr); 4619 4620 platform_set_drvdata(pdev, pp->dev); 4621 4622 return 0; 4623 4624 err_netdev: 4625 unregister_netdev(dev); 4626 if (pp->bm_priv) { 4627 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4628 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4629 1 << pp->id); 4630 mvneta_bm_put(pp->bm_priv); 4631 } 4632 err_free_stats: 4633 free_percpu(pp->stats); 4634 err_free_ports: 4635 free_percpu(pp->ports); 4636 err_clk: 4637 clk_disable_unprepare(pp->clk_bus); 4638 clk_disable_unprepare(pp->clk); 4639 err_free_phylink: 4640 if (pp->phylink) 4641 phylink_destroy(pp->phylink); 4642 err_free_irq: 4643 irq_dispose_mapping(dev->irq); 4644 err_free_netdev: 4645 free_netdev(dev); 4646 return err; 4647 } 4648 4649 /* Device removal routine */ 4650 static int mvneta_remove(struct platform_device *pdev) 4651 { 4652 struct net_device *dev = platform_get_drvdata(pdev); 4653 struct mvneta_port *pp = netdev_priv(dev); 4654 4655 unregister_netdev(dev); 4656 clk_disable_unprepare(pp->clk_bus); 4657 clk_disable_unprepare(pp->clk); 4658 free_percpu(pp->ports); 4659 free_percpu(pp->stats); 4660 irq_dispose_mapping(dev->irq); 4661 phylink_destroy(pp->phylink); 4662 free_netdev(dev); 4663 4664 if (pp->bm_priv) { 4665 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4666 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4667 1 << pp->id); 4668 mvneta_bm_put(pp->bm_priv); 4669 } 4670 4671 return 0; 4672 } 4673 4674 #ifdef CONFIG_PM_SLEEP 4675 static int mvneta_suspend(struct device *device) 4676 { 4677 int queue; 4678 struct net_device *dev = dev_get_drvdata(device); 4679 struct mvneta_port *pp = netdev_priv(dev); 4680 4681 if (!netif_running(dev)) 4682 goto clean_exit; 4683 4684 if (!pp->neta_armada3700) { 4685 spin_lock(&pp->lock); 4686 pp->is_stopped = true; 4687 spin_unlock(&pp->lock); 4688 4689 cpuhp_state_remove_instance_nocalls(online_hpstate, 4690 &pp->node_online); 4691 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4692 &pp->node_dead); 4693 } 4694 4695 rtnl_lock(); 4696 mvneta_stop_dev(pp); 4697 rtnl_unlock(); 4698 4699 for (queue = 0; queue < rxq_number; queue++) { 4700 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4701 4702 mvneta_rxq_drop_pkts(pp, rxq); 4703 } 4704 4705 for (queue = 0; queue < txq_number; queue++) { 4706 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4707 4708 mvneta_txq_hw_deinit(pp, txq); 4709 } 4710 4711 clean_exit: 4712 netif_device_detach(dev); 4713 clk_disable_unprepare(pp->clk_bus); 4714 clk_disable_unprepare(pp->clk); 4715 4716 return 0; 4717 } 4718 4719 static int mvneta_resume(struct device *device) 4720 { 4721 struct platform_device *pdev = to_platform_device(device); 4722 struct net_device *dev = dev_get_drvdata(device); 4723 struct mvneta_port *pp = netdev_priv(dev); 4724 int err, queue; 4725 4726 clk_prepare_enable(pp->clk); 4727 if (!IS_ERR(pp->clk_bus)) 4728 clk_prepare_enable(pp->clk_bus); 4729 if (pp->dram_target_info || pp->neta_armada3700) 4730 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4731 if (pp->bm_priv) { 4732 err = mvneta_bm_port_init(pdev, pp); 4733 if (err < 0) { 4734 dev_info(&pdev->dev, "use SW buffer management\n"); 4735 pp->bm_priv = NULL; 4736 } 4737 } 4738 mvneta_defaults_set(pp); 4739 err = mvneta_port_power_up(pp, pp->phy_interface); 4740 if (err < 0) { 4741 dev_err(device, "can't power up port\n"); 4742 return err; 4743 } 4744 4745 netif_device_attach(dev); 4746 4747 if (!netif_running(dev)) 4748 return 0; 4749 4750 for (queue = 0; queue < rxq_number; queue++) { 4751 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4752 4753 rxq->next_desc_to_proc = 0; 4754 mvneta_rxq_hw_init(pp, rxq); 4755 } 4756 4757 for (queue = 0; queue < txq_number; queue++) { 4758 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4759 4760 txq->next_desc_to_proc = 0; 4761 mvneta_txq_hw_init(pp, txq); 4762 } 4763 4764 if (!pp->neta_armada3700) { 4765 spin_lock(&pp->lock); 4766 pp->is_stopped = false; 4767 spin_unlock(&pp->lock); 4768 cpuhp_state_add_instance_nocalls(online_hpstate, 4769 &pp->node_online); 4770 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4771 &pp->node_dead); 4772 } 4773 4774 rtnl_lock(); 4775 mvneta_start_dev(pp); 4776 rtnl_unlock(); 4777 mvneta_set_rx_mode(dev); 4778 4779 return 0; 4780 } 4781 #endif 4782 4783 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4784 4785 static const struct of_device_id mvneta_match[] = { 4786 { .compatible = "marvell,armada-370-neta" }, 4787 { .compatible = "marvell,armada-xp-neta" }, 4788 { .compatible = "marvell,armada-3700-neta" }, 4789 { } 4790 }; 4791 MODULE_DEVICE_TABLE(of, mvneta_match); 4792 4793 static struct platform_driver mvneta_driver = { 4794 .probe = mvneta_probe, 4795 .remove = mvneta_remove, 4796 .driver = { 4797 .name = MVNETA_DRIVER_NAME, 4798 .of_match_table = mvneta_match, 4799 .pm = &mvneta_pm_ops, 4800 }, 4801 }; 4802 4803 static int __init mvneta_driver_init(void) 4804 { 4805 int ret; 4806 4807 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4808 mvneta_cpu_online, 4809 mvneta_cpu_down_prepare); 4810 if (ret < 0) 4811 goto out; 4812 online_hpstate = ret; 4813 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4814 NULL, mvneta_cpu_dead); 4815 if (ret) 4816 goto err_dead; 4817 4818 ret = platform_driver_register(&mvneta_driver); 4819 if (ret) 4820 goto err; 4821 return 0; 4822 4823 err: 4824 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4825 err_dead: 4826 cpuhp_remove_multi_state(online_hpstate); 4827 out: 4828 return ret; 4829 } 4830 module_init(mvneta_driver_init); 4831 4832 static void __exit mvneta_driver_exit(void) 4833 { 4834 platform_driver_unregister(&mvneta_driver); 4835 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4836 cpuhp_remove_multi_state(online_hpstate); 4837 } 4838 module_exit(mvneta_driver_exit); 4839 4840 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4841 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4842 MODULE_LICENSE("GPL"); 4843 4844 module_param(rxq_number, int, 0444); 4845 module_param(txq_number, int, 0444); 4846 4847 module_param(rxq_def, int, 0444); 4848 module_param(rx_copybreak, int, 0644); 4849