1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define	MVNETA_VLAN_PRIO_TO_RXQ			 0x2440
106 #define      MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
107 #define MVNETA_PORT_STATUS                       0x2444
108 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
109 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
110 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
111 /* Only exists on Armada XP and Armada 370 */
112 #define MVNETA_SERDES_CFG			 0x24A0
113 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
114 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
115 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
116 #define MVNETA_TYPE_PRIO                         0x24bc
117 #define      MVNETA_FORCE_UNI                    BIT(21)
118 #define MVNETA_TXQ_CMD_1                         0x24e4
119 #define MVNETA_TXQ_CMD                           0x2448
120 #define      MVNETA_TXQ_DISABLE_SHIFT            8
121 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
122 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
123 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
124 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
125 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
126 #define MVNETA_ACC_MODE                          0x2500
127 #define MVNETA_BM_ADDRESS                        0x2504
128 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
129 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
130 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
131 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
132 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
133 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
134 
135 /* Exception Interrupt Port/Queue Cause register
136  *
137  * Their behavior depend of the mapping done using the PCPX2Q
138  * registers. For a given CPU if the bit associated to a queue is not
139  * set, then for the register a read from this CPU will always return
140  * 0 and a write won't do anything
141  */
142 
143 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
144 #define MVNETA_INTR_NEW_MASK                     0x25a4
145 
146 /* bits  0..7  = TXQ SENT, one bit per queue.
147  * bits  8..15 = RXQ OCCUP, one bit per queue.
148  * bits 16..23 = RXQ FREE, one bit per queue.
149  * bit  29 = OLD_REG_SUM, see old reg ?
150  * bit  30 = TX_ERR_SUM, one bit for 4 ports
151  * bit  31 = MISC_SUM,   one bit for 4 ports
152  */
153 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
154 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
155 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
156 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
157 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
158 
159 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
160 #define MVNETA_INTR_OLD_MASK                     0x25ac
161 
162 /* Data Path Port/Queue Cause Register */
163 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
164 #define MVNETA_INTR_MISC_MASK                    0x25b4
165 
166 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
167 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
168 #define      MVNETA_CAUSE_PTP                    BIT(4)
169 
170 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
171 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
172 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
173 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
174 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
175 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
176 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
177 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
178 
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
180 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
181 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
182 
183 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
184 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
185 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
186 
187 #define MVNETA_INTR_ENABLE                       0x25b8
188 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
189 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
190 
191 #define MVNETA_RXQ_CMD                           0x2680
192 #define      MVNETA_RXQ_DISABLE_SHIFT            8
193 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
194 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
195 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
196 #define MVNETA_GMAC_CTRL_0                       0x2c00
197 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
198 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
199 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
200 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
201 #define MVNETA_GMAC_CTRL_2                       0x2c08
202 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
203 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
204 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
205 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
206 #define MVNETA_GMAC_STATUS                       0x2c10
207 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
208 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
209 #define      MVNETA_GMAC_SPEED_100               BIT(2)
210 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
213 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
214 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
215 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
216 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
217 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
218 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
219 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
220 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
221 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
222 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
223 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
224 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
225 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
226 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
227 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
228 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
229 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
230 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
231 #define MVNETA_GMAC_CTRL_4                       0x2c90
232 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
233 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
234 #define      MVNETA_MIB_LATE_COLLISION           0x7c
235 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
236 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
237 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
238 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
239 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
240 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
241 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
242 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
243 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
244 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
245 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
246 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
247 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
248 #define MVNETA_PORT_TX_RESET                     0x3cf0
249 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
250 #define MVNETA_TX_MTU                            0x3e0c
251 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
252 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
253 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
254 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
255 
256 #define MVNETA_LPI_CTRL_0                        0x2cc0
257 #define MVNETA_LPI_CTRL_1                        0x2cc4
258 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
259 #define MVNETA_LPI_CTRL_2                        0x2cc8
260 #define MVNETA_LPI_STATUS                        0x2ccc
261 
262 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
263 
264 /* Descriptor ring Macros */
265 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
266 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
267 
268 /* Various constants */
269 
270 /* Coalescing */
271 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
272 #define MVNETA_RX_COAL_PKTS		32
273 #define MVNETA_RX_COAL_USEC		100
274 
275 /* The two bytes Marvell header. Either contains a special value used
276  * by Marvell switches when a specific hardware mode is enabled (not
277  * supported by this driver) or is filled automatically by zeroes on
278  * the RX side. Those two bytes being at the front of the Ethernet
279  * header, they allow to have the IP header aligned on a 4 bytes
280  * boundary automatically: the hardware skips those two bytes on its
281  * own.
282  */
283 #define MVNETA_MH_SIZE			2
284 
285 #define MVNETA_VLAN_TAG_LEN             4
286 
287 #define MVNETA_TX_CSUM_DEF_SIZE		1600
288 #define MVNETA_TX_CSUM_MAX_SIZE		9800
289 #define MVNETA_ACC_MODE_EXT1		1
290 #define MVNETA_ACC_MODE_EXT2		2
291 
292 #define MVNETA_MAX_DECODE_WIN		6
293 
294 /* Timeout constants */
295 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
296 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
297 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
298 
299 #define MVNETA_TX_MTU_MAX		0x3ffff
300 
301 /* The RSS lookup table actually has 256 entries but we do not use
302  * them yet
303  */
304 #define MVNETA_RSS_LU_TABLE_SIZE	1
305 
306 /* Max number of Rx descriptors */
307 #define MVNETA_MAX_RXD 512
308 
309 /* Max number of Tx descriptors */
310 #define MVNETA_MAX_TXD 1024
311 
312 /* Max number of allowed TCP segments for software TSO */
313 #define MVNETA_MAX_TSO_SEGS 100
314 
315 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
316 
317 /* descriptor aligned size */
318 #define MVNETA_DESC_ALIGNED_SIZE	32
319 
320 /* Number of bytes to be taken into account by HW when putting incoming data
321  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
322  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
323  */
324 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
325 
326 #define MVNETA_RX_PKT_SIZE(mtu) \
327 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
328 	      ETH_HLEN + ETH_FCS_LEN,			     \
329 	      cache_line_size())
330 
331 /* Driver assumes that the last 3 bits are 0 */
332 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
333 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
334 			 MVNETA_SKB_HEADROOM))
335 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
336 
337 #define IS_TSO_HEADER(txq, addr) \
338 	((addr >= txq->tso_hdrs_phys) && \
339 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
340 
341 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
342 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
343 
344 enum {
345 	ETHTOOL_STAT_EEE_WAKEUP,
346 	ETHTOOL_STAT_SKB_ALLOC_ERR,
347 	ETHTOOL_STAT_REFILL_ERR,
348 	ETHTOOL_XDP_REDIRECT,
349 	ETHTOOL_XDP_PASS,
350 	ETHTOOL_XDP_DROP,
351 	ETHTOOL_XDP_TX,
352 	ETHTOOL_XDP_TX_ERR,
353 	ETHTOOL_XDP_XMIT,
354 	ETHTOOL_XDP_XMIT_ERR,
355 	ETHTOOL_MAX_STATS,
356 };
357 
358 struct mvneta_statistic {
359 	unsigned short offset;
360 	unsigned short type;
361 	const char name[ETH_GSTRING_LEN];
362 };
363 
364 #define T_REG_32	32
365 #define T_REG_64	64
366 #define T_SW		1
367 
368 #define MVNETA_XDP_PASS		0
369 #define MVNETA_XDP_DROPPED	BIT(0)
370 #define MVNETA_XDP_TX		BIT(1)
371 #define MVNETA_XDP_REDIR	BIT(2)
372 
373 static const struct mvneta_statistic mvneta_statistics[] = {
374 	{ 0x3000, T_REG_64, "good_octets_received", },
375 	{ 0x3010, T_REG_32, "good_frames_received", },
376 	{ 0x3008, T_REG_32, "bad_octets_received", },
377 	{ 0x3014, T_REG_32, "bad_frames_received", },
378 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
379 	{ 0x301c, T_REG_32, "multicast_frames_received", },
380 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
381 	{ 0x3058, T_REG_32, "good_fc_received", },
382 	{ 0x305c, T_REG_32, "bad_fc_received", },
383 	{ 0x3060, T_REG_32, "undersize_received", },
384 	{ 0x3064, T_REG_32, "fragments_received", },
385 	{ 0x3068, T_REG_32, "oversize_received", },
386 	{ 0x306c, T_REG_32, "jabber_received", },
387 	{ 0x3070, T_REG_32, "mac_receive_error", },
388 	{ 0x3074, T_REG_32, "bad_crc_event", },
389 	{ 0x3078, T_REG_32, "collision", },
390 	{ 0x307c, T_REG_32, "late_collision", },
391 	{ 0x2484, T_REG_32, "rx_discard", },
392 	{ 0x2488, T_REG_32, "rx_overrun", },
393 	{ 0x3020, T_REG_32, "frames_64_octets", },
394 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
395 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
396 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
397 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
398 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
399 	{ 0x3038, T_REG_64, "good_octets_sent", },
400 	{ 0x3040, T_REG_32, "good_frames_sent", },
401 	{ 0x3044, T_REG_32, "excessive_collision", },
402 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
403 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
404 	{ 0x3054, T_REG_32, "fc_sent", },
405 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
406 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
407 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
408 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
409 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
410 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
411 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
412 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
413 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
414 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
415 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
416 };
417 
418 struct mvneta_stats {
419 	u64	rx_packets;
420 	u64	rx_bytes;
421 	u64	tx_packets;
422 	u64	tx_bytes;
423 	/* xdp */
424 	u64	xdp_redirect;
425 	u64	xdp_pass;
426 	u64	xdp_drop;
427 	u64	xdp_xmit;
428 	u64	xdp_xmit_err;
429 	u64	xdp_tx;
430 	u64	xdp_tx_err;
431 };
432 
433 struct mvneta_ethtool_stats {
434 	struct mvneta_stats ps;
435 	u64	skb_alloc_error;
436 	u64	refill_error;
437 };
438 
439 struct mvneta_pcpu_stats {
440 	struct u64_stats_sync syncp;
441 
442 	struct mvneta_ethtool_stats es;
443 	u64	rx_dropped;
444 	u64	rx_errors;
445 };
446 
447 struct mvneta_pcpu_port {
448 	/* Pointer to the shared port */
449 	struct mvneta_port	*pp;
450 
451 	/* Pointer to the CPU-local NAPI struct */
452 	struct napi_struct	napi;
453 
454 	/* Cause of the previous interrupt */
455 	u32			cause_rx_tx;
456 };
457 
458 enum {
459 	__MVNETA_DOWN,
460 };
461 
462 struct mvneta_port {
463 	u8 id;
464 	struct mvneta_pcpu_port __percpu	*ports;
465 	struct mvneta_pcpu_stats __percpu	*stats;
466 
467 	unsigned long state;
468 
469 	int pkt_size;
470 	void __iomem *base;
471 	struct mvneta_rx_queue *rxqs;
472 	struct mvneta_tx_queue *txqs;
473 	struct net_device *dev;
474 	struct hlist_node node_online;
475 	struct hlist_node node_dead;
476 	int rxq_def;
477 	/* Protect the access to the percpu interrupt registers,
478 	 * ensuring that the configuration remains coherent.
479 	 */
480 	spinlock_t lock;
481 	bool is_stopped;
482 
483 	u32 cause_rx_tx;
484 	struct napi_struct napi;
485 
486 	struct bpf_prog *xdp_prog;
487 
488 	/* Core clock */
489 	struct clk *clk;
490 	/* AXI clock */
491 	struct clk *clk_bus;
492 	u8 mcast_count[256];
493 	u16 tx_ring_size;
494 	u16 rx_ring_size;
495 	u8 prio_tc_map[8];
496 
497 	phy_interface_t phy_interface;
498 	struct device_node *dn;
499 	unsigned int tx_csum_limit;
500 	struct phylink *phylink;
501 	struct phylink_config phylink_config;
502 	struct phy *comphy;
503 
504 	struct mvneta_bm *bm_priv;
505 	struct mvneta_bm_pool *pool_long;
506 	struct mvneta_bm_pool *pool_short;
507 	int bm_win_id;
508 
509 	bool eee_enabled;
510 	bool eee_active;
511 	bool tx_lpi_enabled;
512 
513 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
514 
515 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
516 
517 	/* Flags for special SoC configurations */
518 	bool neta_armada3700;
519 	u16 rx_offset_correction;
520 	const struct mbus_dram_target_info *dram_target_info;
521 };
522 
523 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
524  * layout of the transmit and reception DMA descriptors, and their
525  * layout is therefore defined by the hardware design
526  */
527 
528 #define MVNETA_TX_L3_OFF_SHIFT	0
529 #define MVNETA_TX_IP_HLEN_SHIFT	8
530 #define MVNETA_TX_L4_UDP	BIT(16)
531 #define MVNETA_TX_L3_IP6	BIT(17)
532 #define MVNETA_TXD_IP_CSUM	BIT(18)
533 #define MVNETA_TXD_Z_PAD	BIT(19)
534 #define MVNETA_TXD_L_DESC	BIT(20)
535 #define MVNETA_TXD_F_DESC	BIT(21)
536 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
537 				 MVNETA_TXD_L_DESC | \
538 				 MVNETA_TXD_F_DESC)
539 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
540 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
541 
542 #define MVNETA_RXD_ERR_CRC		0x0
543 #define MVNETA_RXD_BM_POOL_SHIFT	13
544 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
545 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
546 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
547 #define MVNETA_RXD_ERR_LEN		BIT(18)
548 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
549 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
550 #define MVNETA_RXD_L3_IP4		BIT(25)
551 #define MVNETA_RXD_LAST_DESC		BIT(26)
552 #define MVNETA_RXD_FIRST_DESC		BIT(27)
553 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
554 					 MVNETA_RXD_LAST_DESC)
555 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
556 
557 #if defined(__LITTLE_ENDIAN)
558 struct mvneta_tx_desc {
559 	u32  command;		/* Options used by HW for packet transmitting.*/
560 	u16  reserved1;		/* csum_l4 (for future use)		*/
561 	u16  data_size;		/* Data size of transmitted packet in bytes */
562 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
563 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
564 	u32  reserved3[4];	/* Reserved - (for future use)		*/
565 };
566 
567 struct mvneta_rx_desc {
568 	u32  status;		/* Info about received packet		*/
569 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
570 	u16  data_size;		/* Size of received packet in bytes	*/
571 
572 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
573 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
574 
575 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
576 	u16  reserved3;		/* prefetch_cmd, for future use		*/
577 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
578 
579 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
580 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
581 };
582 #else
583 struct mvneta_tx_desc {
584 	u16  data_size;		/* Data size of transmitted packet in bytes */
585 	u16  reserved1;		/* csum_l4 (for future use)		*/
586 	u32  command;		/* Options used by HW for packet transmitting.*/
587 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
588 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
589 	u32  reserved3[4];	/* Reserved - (for future use)		*/
590 };
591 
592 struct mvneta_rx_desc {
593 	u16  data_size;		/* Size of received packet in bytes	*/
594 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
595 	u32  status;		/* Info about received packet		*/
596 
597 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
598 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
599 
600 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
601 	u16  reserved3;		/* prefetch_cmd, for future use		*/
602 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
603 
604 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
605 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
606 };
607 #endif
608 
609 enum mvneta_tx_buf_type {
610 	MVNETA_TYPE_SKB,
611 	MVNETA_TYPE_XDP_TX,
612 	MVNETA_TYPE_XDP_NDO,
613 };
614 
615 struct mvneta_tx_buf {
616 	enum mvneta_tx_buf_type type;
617 	union {
618 		struct xdp_frame *xdpf;
619 		struct sk_buff *skb;
620 	};
621 };
622 
623 struct mvneta_tx_queue {
624 	/* Number of this TX queue, in the range 0-7 */
625 	u8 id;
626 
627 	/* Number of TX DMA descriptors in the descriptor ring */
628 	int size;
629 
630 	/* Number of currently used TX DMA descriptor in the
631 	 * descriptor ring
632 	 */
633 	int count;
634 	int pending;
635 	int tx_stop_threshold;
636 	int tx_wake_threshold;
637 
638 	/* Array of transmitted buffers */
639 	struct mvneta_tx_buf *buf;
640 
641 	/* Index of last TX DMA descriptor that was inserted */
642 	int txq_put_index;
643 
644 	/* Index of the TX DMA descriptor to be cleaned up */
645 	int txq_get_index;
646 
647 	u32 done_pkts_coal;
648 
649 	/* Virtual address of the TX DMA descriptors array */
650 	struct mvneta_tx_desc *descs;
651 
652 	/* DMA address of the TX DMA descriptors array */
653 	dma_addr_t descs_phys;
654 
655 	/* Index of the last TX DMA descriptor */
656 	int last_desc;
657 
658 	/* Index of the next TX DMA descriptor to process */
659 	int next_desc_to_proc;
660 
661 	/* DMA buffers for TSO headers */
662 	char *tso_hdrs;
663 
664 	/* DMA address of TSO headers */
665 	dma_addr_t tso_hdrs_phys;
666 
667 	/* Affinity mask for CPUs*/
668 	cpumask_t affinity_mask;
669 };
670 
671 struct mvneta_rx_queue {
672 	/* rx queue number, in the range 0-7 */
673 	u8 id;
674 
675 	/* num of rx descriptors in the rx descriptor ring */
676 	int size;
677 
678 	u32 pkts_coal;
679 	u32 time_coal;
680 
681 	/* page_pool */
682 	struct page_pool *page_pool;
683 	struct xdp_rxq_info xdp_rxq;
684 
685 	/* Virtual address of the RX buffer */
686 	void  **buf_virt_addr;
687 
688 	/* Virtual address of the RX DMA descriptors array */
689 	struct mvneta_rx_desc *descs;
690 
691 	/* DMA address of the RX DMA descriptors array */
692 	dma_addr_t descs_phys;
693 
694 	/* Index of the last RX DMA descriptor */
695 	int last_desc;
696 
697 	/* Index of the next RX DMA descriptor to process */
698 	int next_desc_to_proc;
699 
700 	/* Index of first RX DMA descriptor to refill */
701 	int first_to_refill;
702 	u32 refill_num;
703 };
704 
705 static enum cpuhp_state online_hpstate;
706 /* The hardware supports eight (8) rx queues, but we are only allowing
707  * the first one to be used. Therefore, let's just allocate one queue.
708  */
709 static int rxq_number = 8;
710 static int txq_number = 8;
711 
712 static int rxq_def;
713 
714 static int rx_copybreak __read_mostly = 256;
715 
716 /* HW BM need that each port be identify by a unique ID */
717 static int global_port_id;
718 
719 #define MVNETA_DRIVER_NAME "mvneta"
720 #define MVNETA_DRIVER_VERSION "1.0"
721 
722 /* Utility/helper methods */
723 
724 /* Write helper method */
725 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
726 {
727 	writel(data, pp->base + offset);
728 }
729 
730 /* Read helper method */
731 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
732 {
733 	return readl(pp->base + offset);
734 }
735 
736 /* Increment txq get counter */
737 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
738 {
739 	txq->txq_get_index++;
740 	if (txq->txq_get_index == txq->size)
741 		txq->txq_get_index = 0;
742 }
743 
744 /* Increment txq put counter */
745 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
746 {
747 	txq->txq_put_index++;
748 	if (txq->txq_put_index == txq->size)
749 		txq->txq_put_index = 0;
750 }
751 
752 
753 /* Clear all MIB counters */
754 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
755 {
756 	int i;
757 
758 	/* Perform dummy reads from MIB counters */
759 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
760 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
761 	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
762 	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
763 }
764 
765 /* Get System Network Statistics */
766 static void
767 mvneta_get_stats64(struct net_device *dev,
768 		   struct rtnl_link_stats64 *stats)
769 {
770 	struct mvneta_port *pp = netdev_priv(dev);
771 	unsigned int start;
772 	int cpu;
773 
774 	for_each_possible_cpu(cpu) {
775 		struct mvneta_pcpu_stats *cpu_stats;
776 		u64 rx_packets;
777 		u64 rx_bytes;
778 		u64 rx_dropped;
779 		u64 rx_errors;
780 		u64 tx_packets;
781 		u64 tx_bytes;
782 
783 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
784 		do {
785 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
786 			rx_packets = cpu_stats->es.ps.rx_packets;
787 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
788 			rx_dropped = cpu_stats->rx_dropped;
789 			rx_errors  = cpu_stats->rx_errors;
790 			tx_packets = cpu_stats->es.ps.tx_packets;
791 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
792 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
793 
794 		stats->rx_packets += rx_packets;
795 		stats->rx_bytes   += rx_bytes;
796 		stats->rx_dropped += rx_dropped;
797 		stats->rx_errors  += rx_errors;
798 		stats->tx_packets += tx_packets;
799 		stats->tx_bytes   += tx_bytes;
800 	}
801 
802 	stats->tx_dropped	= dev->stats.tx_dropped;
803 }
804 
805 /* Rx descriptors helper methods */
806 
807 /* Checks whether the RX descriptor having this status is both the first
808  * and the last descriptor for the RX packet. Each RX packet is currently
809  * received through a single RX descriptor, so not having each RX
810  * descriptor with its first and last bits set is an error
811  */
812 static int mvneta_rxq_desc_is_first_last(u32 status)
813 {
814 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
815 		MVNETA_RXD_FIRST_LAST_DESC;
816 }
817 
818 /* Add number of descriptors ready to receive new packets */
819 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
820 					  struct mvneta_rx_queue *rxq,
821 					  int ndescs)
822 {
823 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
824 	 * be added at once
825 	 */
826 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
827 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
828 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
829 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
830 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
831 	}
832 
833 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
834 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
835 }
836 
837 /* Get number of RX descriptors occupied by received packets */
838 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
839 					struct mvneta_rx_queue *rxq)
840 {
841 	u32 val;
842 
843 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
844 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
845 }
846 
847 /* Update num of rx desc called upon return from rx path or
848  * from mvneta_rxq_drop_pkts().
849  */
850 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
851 				       struct mvneta_rx_queue *rxq,
852 				       int rx_done, int rx_filled)
853 {
854 	u32 val;
855 
856 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
857 		val = rx_done |
858 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
859 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
860 		return;
861 	}
862 
863 	/* Only 255 descriptors can be added at once */
864 	while ((rx_done > 0) || (rx_filled > 0)) {
865 		if (rx_done <= 0xff) {
866 			val = rx_done;
867 			rx_done = 0;
868 		} else {
869 			val = 0xff;
870 			rx_done -= 0xff;
871 		}
872 		if (rx_filled <= 0xff) {
873 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 			rx_filled = 0;
875 		} else {
876 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
877 			rx_filled -= 0xff;
878 		}
879 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
880 	}
881 }
882 
883 /* Get pointer to next RX descriptor to be processed by SW */
884 static struct mvneta_rx_desc *
885 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
886 {
887 	int rx_desc = rxq->next_desc_to_proc;
888 
889 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
890 	prefetch(rxq->descs + rxq->next_desc_to_proc);
891 	return rxq->descs + rx_desc;
892 }
893 
894 /* Change maximum receive size of the port. */
895 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
896 {
897 	u32 val;
898 
899 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
900 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
901 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
902 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
903 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
904 }
905 
906 
907 /* Set rx queue offset */
908 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
909 				  struct mvneta_rx_queue *rxq,
910 				  int offset)
911 {
912 	u32 val;
913 
914 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
915 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
916 
917 	/* Offset is in */
918 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
919 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
920 }
921 
922 
923 /* Tx descriptors helper methods */
924 
925 /* Update HW with number of TX descriptors to be sent */
926 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
927 				     struct mvneta_tx_queue *txq,
928 				     int pend_desc)
929 {
930 	u32 val;
931 
932 	pend_desc += txq->pending;
933 
934 	/* Only 255 Tx descriptors can be added at once */
935 	do {
936 		val = min(pend_desc, 255);
937 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
938 		pend_desc -= val;
939 	} while (pend_desc > 0);
940 	txq->pending = 0;
941 }
942 
943 /* Get pointer to next TX descriptor to be processed (send) by HW */
944 static struct mvneta_tx_desc *
945 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
946 {
947 	int tx_desc = txq->next_desc_to_proc;
948 
949 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
950 	return txq->descs + tx_desc;
951 }
952 
953 /* Release the last allocated TX descriptor. Useful to handle DMA
954  * mapping failures in the TX path.
955  */
956 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
957 {
958 	if (txq->next_desc_to_proc == 0)
959 		txq->next_desc_to_proc = txq->last_desc - 1;
960 	else
961 		txq->next_desc_to_proc--;
962 }
963 
964 /* Set rxq buf size */
965 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
966 				    struct mvneta_rx_queue *rxq,
967 				    int buf_size)
968 {
969 	u32 val;
970 
971 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
972 
973 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
974 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
975 
976 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
977 }
978 
979 /* Disable buffer management (BM) */
980 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
981 				  struct mvneta_rx_queue *rxq)
982 {
983 	u32 val;
984 
985 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
986 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
987 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
988 }
989 
990 /* Enable buffer management (BM) */
991 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
992 				 struct mvneta_rx_queue *rxq)
993 {
994 	u32 val;
995 
996 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
997 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
998 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
999 }
1000 
1001 /* Notify HW about port's assignment of pool for bigger packets */
1002 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1003 				     struct mvneta_rx_queue *rxq)
1004 {
1005 	u32 val;
1006 
1007 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1008 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1009 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1010 
1011 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1012 }
1013 
1014 /* Notify HW about port's assignment of pool for smaller packets */
1015 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1016 				      struct mvneta_rx_queue *rxq)
1017 {
1018 	u32 val;
1019 
1020 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1021 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1022 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1023 
1024 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1025 }
1026 
1027 /* Set port's receive buffer size for assigned BM pool */
1028 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1029 					      int buf_size,
1030 					      u8 pool_id)
1031 {
1032 	u32 val;
1033 
1034 	if (!IS_ALIGNED(buf_size, 8)) {
1035 		dev_warn(pp->dev->dev.parent,
1036 			 "illegal buf_size value %d, round to %d\n",
1037 			 buf_size, ALIGN(buf_size, 8));
1038 		buf_size = ALIGN(buf_size, 8);
1039 	}
1040 
1041 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1042 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1043 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1044 }
1045 
1046 /* Configure MBUS window in order to enable access BM internal SRAM */
1047 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1048 				  u8 target, u8 attr)
1049 {
1050 	u32 win_enable, win_protect;
1051 	int i;
1052 
1053 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1054 
1055 	if (pp->bm_win_id < 0) {
1056 		/* Find first not occupied window */
1057 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1058 			if (win_enable & (1 << i)) {
1059 				pp->bm_win_id = i;
1060 				break;
1061 			}
1062 		}
1063 		if (i == MVNETA_MAX_DECODE_WIN)
1064 			return -ENOMEM;
1065 	} else {
1066 		i = pp->bm_win_id;
1067 	}
1068 
1069 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1070 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1071 
1072 	if (i < 4)
1073 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1074 
1075 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1076 		    (attr << 8) | target);
1077 
1078 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1079 
1080 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1081 	win_protect |= 3 << (2 * i);
1082 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1083 
1084 	win_enable &= ~(1 << i);
1085 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1086 
1087 	return 0;
1088 }
1089 
1090 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1091 {
1092 	u32 wsize;
1093 	u8 target, attr;
1094 	int err;
1095 
1096 	/* Get BM window information */
1097 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1098 					 &target, &attr);
1099 	if (err < 0)
1100 		return err;
1101 
1102 	pp->bm_win_id = -1;
1103 
1104 	/* Open NETA -> BM window */
1105 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1106 				     target, attr);
1107 	if (err < 0) {
1108 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1109 		return err;
1110 	}
1111 	return 0;
1112 }
1113 
1114 /* Assign and initialize pools for port. In case of fail
1115  * buffer manager will remain disabled for current port.
1116  */
1117 static int mvneta_bm_port_init(struct platform_device *pdev,
1118 			       struct mvneta_port *pp)
1119 {
1120 	struct device_node *dn = pdev->dev.of_node;
1121 	u32 long_pool_id, short_pool_id;
1122 
1123 	if (!pp->neta_armada3700) {
1124 		int ret;
1125 
1126 		ret = mvneta_bm_port_mbus_init(pp);
1127 		if (ret)
1128 			return ret;
1129 	}
1130 
1131 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1132 		netdev_info(pp->dev, "missing long pool id\n");
1133 		return -EINVAL;
1134 	}
1135 
1136 	/* Create port's long pool depending on mtu */
1137 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1138 					   MVNETA_BM_LONG, pp->id,
1139 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1140 	if (!pp->pool_long) {
1141 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1142 		return -ENOMEM;
1143 	}
1144 
1145 	pp->pool_long->port_map |= 1 << pp->id;
1146 
1147 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1148 				   pp->pool_long->id);
1149 
1150 	/* If short pool id is not defined, assume using single pool */
1151 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1152 		short_pool_id = long_pool_id;
1153 
1154 	/* Create port's short pool */
1155 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1156 					    MVNETA_BM_SHORT, pp->id,
1157 					    MVNETA_BM_SHORT_PKT_SIZE);
1158 	if (!pp->pool_short) {
1159 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1160 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1161 		return -ENOMEM;
1162 	}
1163 
1164 	if (short_pool_id != long_pool_id) {
1165 		pp->pool_short->port_map |= 1 << pp->id;
1166 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1167 					   pp->pool_short->id);
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 /* Update settings of a pool for bigger packets */
1174 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1175 {
1176 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1177 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1178 	int num;
1179 
1180 	/* Release all buffers from long pool */
1181 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1182 	if (hwbm_pool->buf_num) {
1183 		WARN(1, "cannot free all buffers in pool %d\n",
1184 		     bm_pool->id);
1185 		goto bm_mtu_err;
1186 	}
1187 
1188 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1189 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1190 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1191 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1192 
1193 	/* Fill entire long pool */
1194 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1195 	if (num != hwbm_pool->size) {
1196 		WARN(1, "pool %d: %d of %d allocated\n",
1197 		     bm_pool->id, num, hwbm_pool->size);
1198 		goto bm_mtu_err;
1199 	}
1200 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1201 
1202 	return;
1203 
1204 bm_mtu_err:
1205 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1206 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1207 
1208 	pp->bm_priv = NULL;
1209 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1210 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1211 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1212 }
1213 
1214 /* Start the Ethernet port RX and TX activity */
1215 static void mvneta_port_up(struct mvneta_port *pp)
1216 {
1217 	int queue;
1218 	u32 q_map;
1219 
1220 	/* Enable all initialized TXs. */
1221 	q_map = 0;
1222 	for (queue = 0; queue < txq_number; queue++) {
1223 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1224 		if (txq->descs)
1225 			q_map |= (1 << queue);
1226 	}
1227 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1228 
1229 	q_map = 0;
1230 	/* Enable all initialized RXQs. */
1231 	for (queue = 0; queue < rxq_number; queue++) {
1232 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1233 
1234 		if (rxq->descs)
1235 			q_map |= (1 << queue);
1236 	}
1237 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1238 }
1239 
1240 /* Stop the Ethernet port activity */
1241 static void mvneta_port_down(struct mvneta_port *pp)
1242 {
1243 	u32 val;
1244 	int count;
1245 
1246 	/* Stop Rx port activity. Check port Rx activity. */
1247 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1248 
1249 	/* Issue stop command for active channels only */
1250 	if (val != 0)
1251 		mvreg_write(pp, MVNETA_RXQ_CMD,
1252 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1253 
1254 	/* Wait for all Rx activity to terminate. */
1255 	count = 0;
1256 	do {
1257 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1258 			netdev_warn(pp->dev,
1259 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1260 				    val);
1261 			break;
1262 		}
1263 		mdelay(1);
1264 
1265 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1266 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1267 
1268 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1269 	 * command for active channels only
1270 	 */
1271 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1272 
1273 	if (val != 0)
1274 		mvreg_write(pp, MVNETA_TXQ_CMD,
1275 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1276 
1277 	/* Wait for all Tx activity to terminate. */
1278 	count = 0;
1279 	do {
1280 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1281 			netdev_warn(pp->dev,
1282 				    "TIMEOUT for TX stopped status=0x%08x\n",
1283 				    val);
1284 			break;
1285 		}
1286 		mdelay(1);
1287 
1288 		/* Check TX Command reg that all Txqs are stopped */
1289 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1290 
1291 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1292 
1293 	/* Double check to verify that TX FIFO is empty */
1294 	count = 0;
1295 	do {
1296 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1297 			netdev_warn(pp->dev,
1298 				    "TX FIFO empty timeout status=0x%08x\n",
1299 				    val);
1300 			break;
1301 		}
1302 		mdelay(1);
1303 
1304 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1305 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1306 		 (val & MVNETA_TX_IN_PRGRS));
1307 
1308 	udelay(200);
1309 }
1310 
1311 /* Enable the port by setting the port enable bit of the MAC control register */
1312 static void mvneta_port_enable(struct mvneta_port *pp)
1313 {
1314 	u32 val;
1315 
1316 	/* Enable port */
1317 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1318 	val |= MVNETA_GMAC0_PORT_ENABLE;
1319 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1320 }
1321 
1322 /* Disable the port and wait for about 200 usec before retuning */
1323 static void mvneta_port_disable(struct mvneta_port *pp)
1324 {
1325 	u32 val;
1326 
1327 	/* Reset the Enable bit in the Serial Control Register */
1328 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1329 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1330 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1331 
1332 	udelay(200);
1333 }
1334 
1335 /* Multicast tables methods */
1336 
1337 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1338 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1339 {
1340 	int offset;
1341 	u32 val;
1342 
1343 	if (queue == -1) {
1344 		val = 0;
1345 	} else {
1346 		val = 0x1 | (queue << 1);
1347 		val |= (val << 24) | (val << 16) | (val << 8);
1348 	}
1349 
1350 	for (offset = 0; offset <= 0xc; offset += 4)
1351 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1352 }
1353 
1354 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1355 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1356 {
1357 	int offset;
1358 	u32 val;
1359 
1360 	if (queue == -1) {
1361 		val = 0;
1362 	} else {
1363 		val = 0x1 | (queue << 1);
1364 		val |= (val << 24) | (val << 16) | (val << 8);
1365 	}
1366 
1367 	for (offset = 0; offset <= 0xfc; offset += 4)
1368 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1369 
1370 }
1371 
1372 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1373 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1374 {
1375 	int offset;
1376 	u32 val;
1377 
1378 	if (queue == -1) {
1379 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1380 		val = 0;
1381 	} else {
1382 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1383 		val = 0x1 | (queue << 1);
1384 		val |= (val << 24) | (val << 16) | (val << 8);
1385 	}
1386 
1387 	for (offset = 0; offset <= 0xfc; offset += 4)
1388 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1389 }
1390 
1391 static void mvneta_percpu_unmask_interrupt(void *arg)
1392 {
1393 	struct mvneta_port *pp = arg;
1394 
1395 	/* All the queue are unmasked, but actually only the ones
1396 	 * mapped to this CPU will be unmasked
1397 	 */
1398 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1399 		    MVNETA_RX_INTR_MASK_ALL |
1400 		    MVNETA_TX_INTR_MASK_ALL |
1401 		    MVNETA_MISCINTR_INTR_MASK);
1402 }
1403 
1404 static void mvneta_percpu_mask_interrupt(void *arg)
1405 {
1406 	struct mvneta_port *pp = arg;
1407 
1408 	/* All the queue are masked, but actually only the ones
1409 	 * mapped to this CPU will be masked
1410 	 */
1411 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1412 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1413 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1414 }
1415 
1416 static void mvneta_percpu_clear_intr_cause(void *arg)
1417 {
1418 	struct mvneta_port *pp = arg;
1419 
1420 	/* All the queue are cleared, but actually only the ones
1421 	 * mapped to this CPU will be cleared
1422 	 */
1423 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1424 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1425 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1426 }
1427 
1428 /* This method sets defaults to the NETA port:
1429  *	Clears interrupt Cause and Mask registers.
1430  *	Clears all MAC tables.
1431  *	Sets defaults to all registers.
1432  *	Resets RX and TX descriptor rings.
1433  *	Resets PHY.
1434  * This method can be called after mvneta_port_down() to return the port
1435  *	settings to defaults.
1436  */
1437 static void mvneta_defaults_set(struct mvneta_port *pp)
1438 {
1439 	int cpu;
1440 	int queue;
1441 	u32 val;
1442 	int max_cpu = num_present_cpus();
1443 
1444 	/* Clear all Cause registers */
1445 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1446 
1447 	/* Mask all interrupts */
1448 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1449 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1450 
1451 	/* Enable MBUS Retry bit16 */
1452 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1453 
1454 	/* Set CPU queue access map. CPUs are assigned to the RX and
1455 	 * TX queues modulo their number. If there is only one TX
1456 	 * queue then it is assigned to the CPU associated to the
1457 	 * default RX queue.
1458 	 */
1459 	for_each_present_cpu(cpu) {
1460 		int rxq_map = 0, txq_map = 0;
1461 		int rxq, txq;
1462 		if (!pp->neta_armada3700) {
1463 			for (rxq = 0; rxq < rxq_number; rxq++)
1464 				if ((rxq % max_cpu) == cpu)
1465 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1466 
1467 			for (txq = 0; txq < txq_number; txq++)
1468 				if ((txq % max_cpu) == cpu)
1469 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1470 
1471 			/* With only one TX queue we configure a special case
1472 			 * which will allow to get all the irq on a single
1473 			 * CPU
1474 			 */
1475 			if (txq_number == 1)
1476 				txq_map = (cpu == pp->rxq_def) ?
1477 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1478 
1479 		} else {
1480 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1481 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1482 		}
1483 
1484 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1485 	}
1486 
1487 	/* Reset RX and TX DMAs */
1488 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1489 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1490 
1491 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1492 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1493 	for (queue = 0; queue < txq_number; queue++) {
1494 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1495 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1496 	}
1497 
1498 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1499 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1500 
1501 	/* Set Port Acceleration Mode */
1502 	if (pp->bm_priv)
1503 		/* HW buffer management + legacy parser */
1504 		val = MVNETA_ACC_MODE_EXT2;
1505 	else
1506 		/* SW buffer management + legacy parser */
1507 		val = MVNETA_ACC_MODE_EXT1;
1508 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1509 
1510 	if (pp->bm_priv)
1511 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1512 
1513 	/* Update val of portCfg register accordingly with all RxQueue types */
1514 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1515 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1516 
1517 	val = 0;
1518 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1519 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1520 
1521 	/* Build PORT_SDMA_CONFIG_REG */
1522 	val = 0;
1523 
1524 	/* Default burst size */
1525 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1526 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1527 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1528 
1529 #if defined(__BIG_ENDIAN)
1530 	val |= MVNETA_DESC_SWAP;
1531 #endif
1532 
1533 	/* Assign port SDMA configuration */
1534 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1535 
1536 	/* Disable PHY polling in hardware, since we're using the
1537 	 * kernel phylib to do this.
1538 	 */
1539 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1540 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1541 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1542 
1543 	mvneta_set_ucast_table(pp, -1);
1544 	mvneta_set_special_mcast_table(pp, -1);
1545 	mvneta_set_other_mcast_table(pp, -1);
1546 
1547 	/* Set port interrupt enable register - default enable all */
1548 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1549 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1550 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1551 
1552 	mvneta_mib_counters_clear(pp);
1553 }
1554 
1555 /* Set max sizes for tx queues */
1556 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1557 
1558 {
1559 	u32 val, size, mtu;
1560 	int queue;
1561 
1562 	mtu = max_tx_size * 8;
1563 	if (mtu > MVNETA_TX_MTU_MAX)
1564 		mtu = MVNETA_TX_MTU_MAX;
1565 
1566 	/* Set MTU */
1567 	val = mvreg_read(pp, MVNETA_TX_MTU);
1568 	val &= ~MVNETA_TX_MTU_MAX;
1569 	val |= mtu;
1570 	mvreg_write(pp, MVNETA_TX_MTU, val);
1571 
1572 	/* TX token size and all TXQs token size must be larger that MTU */
1573 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1574 
1575 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1576 	if (size < mtu) {
1577 		size = mtu;
1578 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1579 		val |= size;
1580 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1581 	}
1582 	for (queue = 0; queue < txq_number; queue++) {
1583 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1584 
1585 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 		if (size < mtu) {
1587 			size = mtu;
1588 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1589 			val |= size;
1590 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1591 		}
1592 	}
1593 }
1594 
1595 /* Set unicast address */
1596 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1597 				  int queue)
1598 {
1599 	unsigned int unicast_reg;
1600 	unsigned int tbl_offset;
1601 	unsigned int reg_offset;
1602 
1603 	/* Locate the Unicast table entry */
1604 	last_nibble = (0xf & last_nibble);
1605 
1606 	/* offset from unicast tbl base */
1607 	tbl_offset = (last_nibble / 4) * 4;
1608 
1609 	/* offset within the above reg  */
1610 	reg_offset = last_nibble % 4;
1611 
1612 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1613 
1614 	if (queue == -1) {
1615 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1616 		unicast_reg &= ~(0xff << (8 * reg_offset));
1617 	} else {
1618 		unicast_reg &= ~(0xff << (8 * reg_offset));
1619 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1620 	}
1621 
1622 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1623 }
1624 
1625 /* Set mac address */
1626 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1627 				int queue)
1628 {
1629 	unsigned int mac_h;
1630 	unsigned int mac_l;
1631 
1632 	if (queue != -1) {
1633 		mac_l = (addr[4] << 8) | (addr[5]);
1634 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1635 			(addr[2] << 8) | (addr[3] << 0);
1636 
1637 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1638 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1639 	}
1640 
1641 	/* Accept frames of this address */
1642 	mvneta_set_ucast_addr(pp, addr[5], queue);
1643 }
1644 
1645 /* Set the number of packets that will be received before RX interrupt
1646  * will be generated by HW.
1647  */
1648 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1649 				    struct mvneta_rx_queue *rxq, u32 value)
1650 {
1651 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1652 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1653 }
1654 
1655 /* Set the time delay in usec before RX interrupt will be generated by
1656  * HW.
1657  */
1658 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1659 				    struct mvneta_rx_queue *rxq, u32 value)
1660 {
1661 	u32 val;
1662 	unsigned long clk_rate;
1663 
1664 	clk_rate = clk_get_rate(pp->clk);
1665 	val = (clk_rate / 1000000) * value;
1666 
1667 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1668 }
1669 
1670 /* Set threshold for TX_DONE pkts coalescing */
1671 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1672 					 struct mvneta_tx_queue *txq, u32 value)
1673 {
1674 	u32 val;
1675 
1676 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1677 
1678 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1679 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1680 
1681 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1682 }
1683 
1684 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1685 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1686 				u32 phys_addr, void *virt_addr,
1687 				struct mvneta_rx_queue *rxq)
1688 {
1689 	int i;
1690 
1691 	rx_desc->buf_phys_addr = phys_addr;
1692 	i = rx_desc - rxq->descs;
1693 	rxq->buf_virt_addr[i] = virt_addr;
1694 }
1695 
1696 /* Decrement sent descriptors counter */
1697 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1698 				     struct mvneta_tx_queue *txq,
1699 				     int sent_desc)
1700 {
1701 	u32 val;
1702 
1703 	/* Only 255 TX descriptors can be updated at once */
1704 	while (sent_desc > 0xff) {
1705 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1706 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1707 		sent_desc = sent_desc - 0xff;
1708 	}
1709 
1710 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1711 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1712 }
1713 
1714 /* Get number of TX descriptors already sent by HW */
1715 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1716 					struct mvneta_tx_queue *txq)
1717 {
1718 	u32 val;
1719 	int sent_desc;
1720 
1721 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1722 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1723 		MVNETA_TXQ_SENT_DESC_SHIFT;
1724 
1725 	return sent_desc;
1726 }
1727 
1728 /* Get number of sent descriptors and decrement counter.
1729  *  The number of sent descriptors is returned.
1730  */
1731 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1732 				     struct mvneta_tx_queue *txq)
1733 {
1734 	int sent_desc;
1735 
1736 	/* Get number of sent descriptors */
1737 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1738 
1739 	/* Decrement sent descriptors counter */
1740 	if (sent_desc)
1741 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1742 
1743 	return sent_desc;
1744 }
1745 
1746 /* Set TXQ descriptors fields relevant for CSUM calculation */
1747 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1748 				int ip_hdr_len, int l4_proto)
1749 {
1750 	u32 command;
1751 
1752 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1753 	 * G_L4_chk, L4_type; required only for checksum
1754 	 * calculation
1755 	 */
1756 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1757 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1758 
1759 	if (l3_proto == htons(ETH_P_IP))
1760 		command |= MVNETA_TXD_IP_CSUM;
1761 	else
1762 		command |= MVNETA_TX_L3_IP6;
1763 
1764 	if (l4_proto == IPPROTO_TCP)
1765 		command |=  MVNETA_TX_L4_CSUM_FULL;
1766 	else if (l4_proto == IPPROTO_UDP)
1767 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1768 	else
1769 		command |= MVNETA_TX_L4_CSUM_NOT;
1770 
1771 	return command;
1772 }
1773 
1774 
1775 /* Display more error info */
1776 static void mvneta_rx_error(struct mvneta_port *pp,
1777 			    struct mvneta_rx_desc *rx_desc)
1778 {
1779 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1780 	u32 status = rx_desc->status;
1781 
1782 	/* update per-cpu counter */
1783 	u64_stats_update_begin(&stats->syncp);
1784 	stats->rx_errors++;
1785 	u64_stats_update_end(&stats->syncp);
1786 
1787 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1788 	case MVNETA_RXD_ERR_CRC:
1789 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1790 			   status, rx_desc->data_size);
1791 		break;
1792 	case MVNETA_RXD_ERR_OVERRUN:
1793 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1794 			   status, rx_desc->data_size);
1795 		break;
1796 	case MVNETA_RXD_ERR_LEN:
1797 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1798 			   status, rx_desc->data_size);
1799 		break;
1800 	case MVNETA_RXD_ERR_RESOURCE:
1801 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1802 			   status, rx_desc->data_size);
1803 		break;
1804 	}
1805 }
1806 
1807 /* Handle RX checksum offload based on the descriptor's status */
1808 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1809 			   struct sk_buff *skb)
1810 {
1811 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1812 	    (status & MVNETA_RXD_L3_IP4) &&
1813 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1814 		skb->csum = 0;
1815 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1816 		return;
1817 	}
1818 
1819 	skb->ip_summed = CHECKSUM_NONE;
1820 }
1821 
1822 /* Return tx queue pointer (find last set bit) according to <cause> returned
1823  * form tx_done reg. <cause> must not be null. The return value is always a
1824  * valid queue for matching the first one found in <cause>.
1825  */
1826 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1827 						     u32 cause)
1828 {
1829 	int queue = fls(cause) - 1;
1830 
1831 	return &pp->txqs[queue];
1832 }
1833 
1834 /* Free tx queue skbuffs */
1835 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1836 				 struct mvneta_tx_queue *txq, int num,
1837 				 struct netdev_queue *nq, bool napi)
1838 {
1839 	unsigned int bytes_compl = 0, pkts_compl = 0;
1840 	struct xdp_frame_bulk bq;
1841 	int i;
1842 
1843 	xdp_frame_bulk_init(&bq);
1844 
1845 	rcu_read_lock(); /* need for xdp_return_frame_bulk */
1846 
1847 	for (i = 0; i < num; i++) {
1848 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1849 		struct mvneta_tx_desc *tx_desc = txq->descs +
1850 			txq->txq_get_index;
1851 
1852 		mvneta_txq_inc_get(txq);
1853 
1854 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1855 		    buf->type != MVNETA_TYPE_XDP_TX)
1856 			dma_unmap_single(pp->dev->dev.parent,
1857 					 tx_desc->buf_phys_addr,
1858 					 tx_desc->data_size, DMA_TO_DEVICE);
1859 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1860 			bytes_compl += buf->skb->len;
1861 			pkts_compl++;
1862 			dev_kfree_skb_any(buf->skb);
1863 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1864 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1865 			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1866 				xdp_return_frame_rx_napi(buf->xdpf);
1867 			else
1868 				xdp_return_frame_bulk(buf->xdpf, &bq);
1869 		}
1870 	}
1871 	xdp_flush_frame_bulk(&bq);
1872 
1873 	rcu_read_unlock();
1874 
1875 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1876 }
1877 
1878 /* Handle end of transmission */
1879 static void mvneta_txq_done(struct mvneta_port *pp,
1880 			   struct mvneta_tx_queue *txq)
1881 {
1882 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1883 	int tx_done;
1884 
1885 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1886 	if (!tx_done)
1887 		return;
1888 
1889 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1890 
1891 	txq->count -= tx_done;
1892 
1893 	if (netif_tx_queue_stopped(nq)) {
1894 		if (txq->count <= txq->tx_wake_threshold)
1895 			netif_tx_wake_queue(nq);
1896 	}
1897 }
1898 
1899 /* Refill processing for SW buffer management */
1900 /* Allocate page per descriptor */
1901 static int mvneta_rx_refill(struct mvneta_port *pp,
1902 			    struct mvneta_rx_desc *rx_desc,
1903 			    struct mvneta_rx_queue *rxq,
1904 			    gfp_t gfp_mask)
1905 {
1906 	dma_addr_t phys_addr;
1907 	struct page *page;
1908 
1909 	page = page_pool_alloc_pages(rxq->page_pool,
1910 				     gfp_mask | __GFP_NOWARN);
1911 	if (!page)
1912 		return -ENOMEM;
1913 
1914 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1915 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1916 
1917 	return 0;
1918 }
1919 
1920 /* Handle tx checksum */
1921 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1922 {
1923 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1924 		int ip_hdr_len = 0;
1925 		__be16 l3_proto = vlan_get_protocol(skb);
1926 		u8 l4_proto;
1927 
1928 		if (l3_proto == htons(ETH_P_IP)) {
1929 			struct iphdr *ip4h = ip_hdr(skb);
1930 
1931 			/* Calculate IPv4 checksum and L4 checksum */
1932 			ip_hdr_len = ip4h->ihl;
1933 			l4_proto = ip4h->protocol;
1934 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1935 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1936 
1937 			/* Read l4_protocol from one of IPv6 extra headers */
1938 			if (skb_network_header_len(skb) > 0)
1939 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1940 			l4_proto = ip6h->nexthdr;
1941 		} else
1942 			return MVNETA_TX_L4_CSUM_NOT;
1943 
1944 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1945 					    l3_proto, ip_hdr_len, l4_proto);
1946 	}
1947 
1948 	return MVNETA_TX_L4_CSUM_NOT;
1949 }
1950 
1951 /* Drop packets received by the RXQ and free buffers */
1952 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1953 				 struct mvneta_rx_queue *rxq)
1954 {
1955 	int rx_done, i;
1956 
1957 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1958 	if (rx_done)
1959 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1960 
1961 	if (pp->bm_priv) {
1962 		for (i = 0; i < rx_done; i++) {
1963 			struct mvneta_rx_desc *rx_desc =
1964 						  mvneta_rxq_next_desc_get(rxq);
1965 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1966 			struct mvneta_bm_pool *bm_pool;
1967 
1968 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1969 			/* Return dropped buffer to the pool */
1970 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1971 					      rx_desc->buf_phys_addr);
1972 		}
1973 		return;
1974 	}
1975 
1976 	for (i = 0; i < rxq->size; i++) {
1977 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1978 		void *data = rxq->buf_virt_addr[i];
1979 		if (!data || !(rx_desc->buf_phys_addr))
1980 			continue;
1981 
1982 		page_pool_put_full_page(rxq->page_pool, data, false);
1983 	}
1984 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1985 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1986 	page_pool_destroy(rxq->page_pool);
1987 	rxq->page_pool = NULL;
1988 }
1989 
1990 static void
1991 mvneta_update_stats(struct mvneta_port *pp,
1992 		    struct mvneta_stats *ps)
1993 {
1994 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1995 
1996 	u64_stats_update_begin(&stats->syncp);
1997 	stats->es.ps.rx_packets += ps->rx_packets;
1998 	stats->es.ps.rx_bytes += ps->rx_bytes;
1999 	/* xdp */
2000 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
2001 	stats->es.ps.xdp_pass += ps->xdp_pass;
2002 	stats->es.ps.xdp_drop += ps->xdp_drop;
2003 	u64_stats_update_end(&stats->syncp);
2004 }
2005 
2006 static inline
2007 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2008 {
2009 	struct mvneta_rx_desc *rx_desc;
2010 	int curr_desc = rxq->first_to_refill;
2011 	int i;
2012 
2013 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2014 		rx_desc = rxq->descs + curr_desc;
2015 		if (!(rx_desc->buf_phys_addr)) {
2016 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2017 				struct mvneta_pcpu_stats *stats;
2018 
2019 				pr_err("Can't refill queue %d. Done %d from %d\n",
2020 				       rxq->id, i, rxq->refill_num);
2021 
2022 				stats = this_cpu_ptr(pp->stats);
2023 				u64_stats_update_begin(&stats->syncp);
2024 				stats->es.refill_error++;
2025 				u64_stats_update_end(&stats->syncp);
2026 				break;
2027 			}
2028 		}
2029 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2030 	}
2031 	rxq->refill_num -= i;
2032 	rxq->first_to_refill = curr_desc;
2033 
2034 	return i;
2035 }
2036 
2037 static void
2038 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2039 		    struct xdp_buff *xdp, struct skb_shared_info *sinfo,
2040 		    int sync_len)
2041 {
2042 	int i;
2043 
2044 	for (i = 0; i < sinfo->nr_frags; i++)
2045 		page_pool_put_full_page(rxq->page_pool,
2046 					skb_frag_page(&sinfo->frags[i]), true);
2047 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2048 			   sync_len, true);
2049 }
2050 
2051 static int
2052 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2053 			struct xdp_frame *xdpf, bool dma_map)
2054 {
2055 	struct mvneta_tx_desc *tx_desc;
2056 	struct mvneta_tx_buf *buf;
2057 	dma_addr_t dma_addr;
2058 
2059 	if (txq->count >= txq->tx_stop_threshold)
2060 		return MVNETA_XDP_DROPPED;
2061 
2062 	tx_desc = mvneta_txq_next_desc_get(txq);
2063 
2064 	buf = &txq->buf[txq->txq_put_index];
2065 	if (dma_map) {
2066 		/* ndo_xdp_xmit */
2067 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2068 					  xdpf->len, DMA_TO_DEVICE);
2069 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2070 			mvneta_txq_desc_put(txq);
2071 			return MVNETA_XDP_DROPPED;
2072 		}
2073 		buf->type = MVNETA_TYPE_XDP_NDO;
2074 	} else {
2075 		struct page *page = virt_to_page(xdpf->data);
2076 
2077 		dma_addr = page_pool_get_dma_addr(page) +
2078 			   sizeof(*xdpf) + xdpf->headroom;
2079 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2080 					   xdpf->len, DMA_BIDIRECTIONAL);
2081 		buf->type = MVNETA_TYPE_XDP_TX;
2082 	}
2083 	buf->xdpf = xdpf;
2084 
2085 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2086 	tx_desc->buf_phys_addr = dma_addr;
2087 	tx_desc->data_size = xdpf->len;
2088 
2089 	mvneta_txq_inc_put(txq);
2090 	txq->pending++;
2091 	txq->count++;
2092 
2093 	return MVNETA_XDP_TX;
2094 }
2095 
2096 static int
2097 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2098 {
2099 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2100 	struct mvneta_tx_queue *txq;
2101 	struct netdev_queue *nq;
2102 	struct xdp_frame *xdpf;
2103 	int cpu;
2104 	u32 ret;
2105 
2106 	xdpf = xdp_convert_buff_to_frame(xdp);
2107 	if (unlikely(!xdpf))
2108 		return MVNETA_XDP_DROPPED;
2109 
2110 	cpu = smp_processor_id();
2111 	txq = &pp->txqs[cpu % txq_number];
2112 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2113 
2114 	__netif_tx_lock(nq, cpu);
2115 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2116 	if (ret == MVNETA_XDP_TX) {
2117 		u64_stats_update_begin(&stats->syncp);
2118 		stats->es.ps.tx_bytes += xdpf->len;
2119 		stats->es.ps.tx_packets++;
2120 		stats->es.ps.xdp_tx++;
2121 		u64_stats_update_end(&stats->syncp);
2122 
2123 		mvneta_txq_pend_desc_add(pp, txq, 0);
2124 	} else {
2125 		u64_stats_update_begin(&stats->syncp);
2126 		stats->es.ps.xdp_tx_err++;
2127 		u64_stats_update_end(&stats->syncp);
2128 	}
2129 	__netif_tx_unlock(nq);
2130 
2131 	return ret;
2132 }
2133 
2134 static int
2135 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2136 		struct xdp_frame **frames, u32 flags)
2137 {
2138 	struct mvneta_port *pp = netdev_priv(dev);
2139 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2140 	int i, nxmit_byte = 0, nxmit = num_frame;
2141 	int cpu = smp_processor_id();
2142 	struct mvneta_tx_queue *txq;
2143 	struct netdev_queue *nq;
2144 	u32 ret;
2145 
2146 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2147 		return -ENETDOWN;
2148 
2149 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2150 		return -EINVAL;
2151 
2152 	txq = &pp->txqs[cpu % txq_number];
2153 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2154 
2155 	__netif_tx_lock(nq, cpu);
2156 	for (i = 0; i < num_frame; i++) {
2157 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2158 		if (ret == MVNETA_XDP_TX) {
2159 			nxmit_byte += frames[i]->len;
2160 		} else {
2161 			xdp_return_frame_rx_napi(frames[i]);
2162 			nxmit--;
2163 		}
2164 	}
2165 
2166 	if (unlikely(flags & XDP_XMIT_FLUSH))
2167 		mvneta_txq_pend_desc_add(pp, txq, 0);
2168 	__netif_tx_unlock(nq);
2169 
2170 	u64_stats_update_begin(&stats->syncp);
2171 	stats->es.ps.tx_bytes += nxmit_byte;
2172 	stats->es.ps.tx_packets += nxmit;
2173 	stats->es.ps.xdp_xmit += nxmit;
2174 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2175 	u64_stats_update_end(&stats->syncp);
2176 
2177 	return nxmit;
2178 }
2179 
2180 static int
2181 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2182 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2183 	       u32 frame_sz, struct mvneta_stats *stats)
2184 {
2185 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2186 	unsigned int len, data_len, sync;
2187 	u32 ret, act;
2188 
2189 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2190 	data_len = xdp->data_end - xdp->data;
2191 	act = bpf_prog_run_xdp(prog, xdp);
2192 
2193 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2194 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2195 	sync = max(sync, len);
2196 
2197 	switch (act) {
2198 	case XDP_PASS:
2199 		stats->xdp_pass++;
2200 		return MVNETA_XDP_PASS;
2201 	case XDP_REDIRECT: {
2202 		int err;
2203 
2204 		err = xdp_do_redirect(pp->dev, xdp, prog);
2205 		if (unlikely(err)) {
2206 			mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2207 			ret = MVNETA_XDP_DROPPED;
2208 		} else {
2209 			ret = MVNETA_XDP_REDIR;
2210 			stats->xdp_redirect++;
2211 		}
2212 		break;
2213 	}
2214 	case XDP_TX:
2215 		ret = mvneta_xdp_xmit_back(pp, xdp);
2216 		if (ret != MVNETA_XDP_TX)
2217 			mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2218 		break;
2219 	default:
2220 		bpf_warn_invalid_xdp_action(act);
2221 		fallthrough;
2222 	case XDP_ABORTED:
2223 		trace_xdp_exception(pp->dev, prog, act);
2224 		fallthrough;
2225 	case XDP_DROP:
2226 		mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2227 		ret = MVNETA_XDP_DROPPED;
2228 		stats->xdp_drop++;
2229 		break;
2230 	}
2231 
2232 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2233 	stats->rx_packets++;
2234 
2235 	return ret;
2236 }
2237 
2238 static void
2239 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2240 		     struct mvneta_rx_desc *rx_desc,
2241 		     struct mvneta_rx_queue *rxq,
2242 		     struct xdp_buff *xdp, int *size,
2243 		     struct page *page)
2244 {
2245 	unsigned char *data = page_address(page);
2246 	int data_len = -MVNETA_MH_SIZE, len;
2247 	struct net_device *dev = pp->dev;
2248 	enum dma_data_direction dma_dir;
2249 	struct skb_shared_info *sinfo;
2250 
2251 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2252 		len = MVNETA_MAX_RX_BUF_SIZE;
2253 		data_len += len;
2254 	} else {
2255 		len = *size;
2256 		data_len += len - ETH_FCS_LEN;
2257 	}
2258 	*size = *size - len;
2259 
2260 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2261 	dma_sync_single_for_cpu(dev->dev.parent,
2262 				rx_desc->buf_phys_addr,
2263 				len, dma_dir);
2264 
2265 	rx_desc->buf_phys_addr = 0;
2266 
2267 	/* Prefetch header */
2268 	prefetch(data);
2269 	xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2270 			 data_len, false);
2271 
2272 	sinfo = xdp_get_shared_info_from_buff(xdp);
2273 	sinfo->nr_frags = 0;
2274 }
2275 
2276 static void
2277 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2278 			    struct mvneta_rx_desc *rx_desc,
2279 			    struct mvneta_rx_queue *rxq,
2280 			    struct xdp_buff *xdp, int *size,
2281 			    struct skb_shared_info *xdp_sinfo,
2282 			    struct page *page)
2283 {
2284 	struct net_device *dev = pp->dev;
2285 	enum dma_data_direction dma_dir;
2286 	int data_len, len;
2287 
2288 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2289 		len = MVNETA_MAX_RX_BUF_SIZE;
2290 		data_len = len;
2291 	} else {
2292 		len = *size;
2293 		data_len = len - ETH_FCS_LEN;
2294 	}
2295 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2296 	dma_sync_single_for_cpu(dev->dev.parent,
2297 				rx_desc->buf_phys_addr,
2298 				len, dma_dir);
2299 	rx_desc->buf_phys_addr = 0;
2300 
2301 	if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) {
2302 		skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++];
2303 
2304 		skb_frag_off_set(frag, pp->rx_offset_correction);
2305 		skb_frag_size_set(frag, data_len);
2306 		__skb_frag_set_page(frag, page);
2307 
2308 		/* last fragment */
2309 		if (len == *size) {
2310 			struct skb_shared_info *sinfo;
2311 
2312 			sinfo = xdp_get_shared_info_from_buff(xdp);
2313 			sinfo->nr_frags = xdp_sinfo->nr_frags;
2314 			memcpy(sinfo->frags, xdp_sinfo->frags,
2315 			       sinfo->nr_frags * sizeof(skb_frag_t));
2316 		}
2317 	} else {
2318 		page_pool_put_full_page(rxq->page_pool, page, true);
2319 	}
2320 	*size -= len;
2321 }
2322 
2323 static struct sk_buff *
2324 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2325 		      struct xdp_buff *xdp, u32 desc_status)
2326 {
2327 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2328 	int i, num_frags = sinfo->nr_frags;
2329 	struct sk_buff *skb;
2330 
2331 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2332 	if (!skb)
2333 		return ERR_PTR(-ENOMEM);
2334 
2335 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2336 
2337 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2338 	skb_put(skb, xdp->data_end - xdp->data);
2339 	mvneta_rx_csum(pp, desc_status, skb);
2340 
2341 	for (i = 0; i < num_frags; i++) {
2342 		skb_frag_t *frag = &sinfo->frags[i];
2343 
2344 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2345 				skb_frag_page(frag), skb_frag_off(frag),
2346 				skb_frag_size(frag), PAGE_SIZE);
2347 		page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2348 	}
2349 
2350 	return skb;
2351 }
2352 
2353 /* Main rx processing when using software buffer management */
2354 static int mvneta_rx_swbm(struct napi_struct *napi,
2355 			  struct mvneta_port *pp, int budget,
2356 			  struct mvneta_rx_queue *rxq)
2357 {
2358 	int rx_proc = 0, rx_todo, refill, size = 0;
2359 	struct net_device *dev = pp->dev;
2360 	struct skb_shared_info sinfo;
2361 	struct mvneta_stats ps = {};
2362 	struct bpf_prog *xdp_prog;
2363 	u32 desc_status, frame_sz;
2364 	struct xdp_buff xdp_buf;
2365 
2366 	xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2367 	xdp_buf.data_hard_start = NULL;
2368 
2369 	sinfo.nr_frags = 0;
2370 
2371 	/* Get number of received packets */
2372 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2373 
2374 	rcu_read_lock();
2375 	xdp_prog = READ_ONCE(pp->xdp_prog);
2376 
2377 	/* Fairness NAPI loop */
2378 	while (rx_proc < budget && rx_proc < rx_todo) {
2379 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2380 		u32 rx_status, index;
2381 		struct sk_buff *skb;
2382 		struct page *page;
2383 
2384 		index = rx_desc - rxq->descs;
2385 		page = (struct page *)rxq->buf_virt_addr[index];
2386 
2387 		rx_status = rx_desc->status;
2388 		rx_proc++;
2389 		rxq->refill_num++;
2390 
2391 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2392 			/* Check errors only for FIRST descriptor */
2393 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2394 				mvneta_rx_error(pp, rx_desc);
2395 				goto next;
2396 			}
2397 
2398 			size = rx_desc->data_size;
2399 			frame_sz = size - ETH_FCS_LEN;
2400 			desc_status = rx_status;
2401 
2402 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2403 					     &size, page);
2404 		} else {
2405 			if (unlikely(!xdp_buf.data_hard_start)) {
2406 				rx_desc->buf_phys_addr = 0;
2407 				page_pool_put_full_page(rxq->page_pool, page,
2408 							true);
2409 				goto next;
2410 			}
2411 
2412 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2413 						    &size, &sinfo, page);
2414 		} /* Middle or Last descriptor */
2415 
2416 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2417 			/* no last descriptor this time */
2418 			continue;
2419 
2420 		if (size) {
2421 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2422 			goto next;
2423 		}
2424 
2425 		if (xdp_prog &&
2426 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2427 			goto next;
2428 
2429 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2430 		if (IS_ERR(skb)) {
2431 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2432 
2433 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2434 
2435 			u64_stats_update_begin(&stats->syncp);
2436 			stats->es.skb_alloc_error++;
2437 			stats->rx_dropped++;
2438 			u64_stats_update_end(&stats->syncp);
2439 
2440 			goto next;
2441 		}
2442 
2443 		ps.rx_bytes += skb->len;
2444 		ps.rx_packets++;
2445 
2446 		skb->protocol = eth_type_trans(skb, dev);
2447 		napi_gro_receive(napi, skb);
2448 next:
2449 		xdp_buf.data_hard_start = NULL;
2450 		sinfo.nr_frags = 0;
2451 	}
2452 	rcu_read_unlock();
2453 
2454 	if (xdp_buf.data_hard_start)
2455 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2456 
2457 	if (ps.xdp_redirect)
2458 		xdp_do_flush_map();
2459 
2460 	if (ps.rx_packets)
2461 		mvneta_update_stats(pp, &ps);
2462 
2463 	/* return some buffers to hardware queue, one at a time is too slow */
2464 	refill = mvneta_rx_refill_queue(pp, rxq);
2465 
2466 	/* Update rxq management counters */
2467 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2468 
2469 	return ps.rx_packets;
2470 }
2471 
2472 /* Main rx processing when using hardware buffer management */
2473 static int mvneta_rx_hwbm(struct napi_struct *napi,
2474 			  struct mvneta_port *pp, int rx_todo,
2475 			  struct mvneta_rx_queue *rxq)
2476 {
2477 	struct net_device *dev = pp->dev;
2478 	int rx_done;
2479 	u32 rcvd_pkts = 0;
2480 	u32 rcvd_bytes = 0;
2481 
2482 	/* Get number of received packets */
2483 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2484 
2485 	if (rx_todo > rx_done)
2486 		rx_todo = rx_done;
2487 
2488 	rx_done = 0;
2489 
2490 	/* Fairness NAPI loop */
2491 	while (rx_done < rx_todo) {
2492 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2493 		struct mvneta_bm_pool *bm_pool = NULL;
2494 		struct sk_buff *skb;
2495 		unsigned char *data;
2496 		dma_addr_t phys_addr;
2497 		u32 rx_status, frag_size;
2498 		int rx_bytes, err;
2499 		u8 pool_id;
2500 
2501 		rx_done++;
2502 		rx_status = rx_desc->status;
2503 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2504 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2505 		phys_addr = rx_desc->buf_phys_addr;
2506 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2507 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2508 
2509 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2510 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2511 err_drop_frame_ret_pool:
2512 			/* Return the buffer to the pool */
2513 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2514 					      rx_desc->buf_phys_addr);
2515 err_drop_frame:
2516 			mvneta_rx_error(pp, rx_desc);
2517 			/* leave the descriptor untouched */
2518 			continue;
2519 		}
2520 
2521 		if (rx_bytes <= rx_copybreak) {
2522 			/* better copy a small frame and not unmap the DMA region */
2523 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2524 			if (unlikely(!skb))
2525 				goto err_drop_frame_ret_pool;
2526 
2527 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2528 			                              rx_desc->buf_phys_addr,
2529 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2530 			                              rx_bytes,
2531 			                              DMA_FROM_DEVICE);
2532 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2533 				     rx_bytes);
2534 
2535 			skb->protocol = eth_type_trans(skb, dev);
2536 			mvneta_rx_csum(pp, rx_status, skb);
2537 			napi_gro_receive(napi, skb);
2538 
2539 			rcvd_pkts++;
2540 			rcvd_bytes += rx_bytes;
2541 
2542 			/* Return the buffer to the pool */
2543 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2544 					      rx_desc->buf_phys_addr);
2545 
2546 			/* leave the descriptor and buffer untouched */
2547 			continue;
2548 		}
2549 
2550 		/* Refill processing */
2551 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2552 		if (err) {
2553 			struct mvneta_pcpu_stats *stats;
2554 
2555 			netdev_err(dev, "Linux processing - Can't refill\n");
2556 
2557 			stats = this_cpu_ptr(pp->stats);
2558 			u64_stats_update_begin(&stats->syncp);
2559 			stats->es.refill_error++;
2560 			u64_stats_update_end(&stats->syncp);
2561 
2562 			goto err_drop_frame_ret_pool;
2563 		}
2564 
2565 		frag_size = bm_pool->hwbm_pool.frag_size;
2566 
2567 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2568 
2569 		/* After refill old buffer has to be unmapped regardless
2570 		 * the skb is successfully built or not.
2571 		 */
2572 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2573 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2574 		if (!skb)
2575 			goto err_drop_frame;
2576 
2577 		rcvd_pkts++;
2578 		rcvd_bytes += rx_bytes;
2579 
2580 		/* Linux processing */
2581 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2582 		skb_put(skb, rx_bytes);
2583 
2584 		skb->protocol = eth_type_trans(skb, dev);
2585 
2586 		mvneta_rx_csum(pp, rx_status, skb);
2587 
2588 		napi_gro_receive(napi, skb);
2589 	}
2590 
2591 	if (rcvd_pkts) {
2592 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2593 
2594 		u64_stats_update_begin(&stats->syncp);
2595 		stats->es.ps.rx_packets += rcvd_pkts;
2596 		stats->es.ps.rx_bytes += rcvd_bytes;
2597 		u64_stats_update_end(&stats->syncp);
2598 	}
2599 
2600 	/* Update rxq management counters */
2601 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2602 
2603 	return rx_done;
2604 }
2605 
2606 static inline void
2607 mvneta_tso_put_hdr(struct sk_buff *skb,
2608 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2609 {
2610 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2611 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2612 	struct mvneta_tx_desc *tx_desc;
2613 
2614 	tx_desc = mvneta_txq_next_desc_get(txq);
2615 	tx_desc->data_size = hdr_len;
2616 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2617 	tx_desc->command |= MVNETA_TXD_F_DESC;
2618 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2619 				 txq->txq_put_index * TSO_HEADER_SIZE;
2620 	buf->type = MVNETA_TYPE_SKB;
2621 	buf->skb = NULL;
2622 
2623 	mvneta_txq_inc_put(txq);
2624 }
2625 
2626 static inline int
2627 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2628 		    struct sk_buff *skb, char *data, int size,
2629 		    bool last_tcp, bool is_last)
2630 {
2631 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2632 	struct mvneta_tx_desc *tx_desc;
2633 
2634 	tx_desc = mvneta_txq_next_desc_get(txq);
2635 	tx_desc->data_size = size;
2636 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2637 						size, DMA_TO_DEVICE);
2638 	if (unlikely(dma_mapping_error(dev->dev.parent,
2639 		     tx_desc->buf_phys_addr))) {
2640 		mvneta_txq_desc_put(txq);
2641 		return -ENOMEM;
2642 	}
2643 
2644 	tx_desc->command = 0;
2645 	buf->type = MVNETA_TYPE_SKB;
2646 	buf->skb = NULL;
2647 
2648 	if (last_tcp) {
2649 		/* last descriptor in the TCP packet */
2650 		tx_desc->command = MVNETA_TXD_L_DESC;
2651 
2652 		/* last descriptor in SKB */
2653 		if (is_last)
2654 			buf->skb = skb;
2655 	}
2656 	mvneta_txq_inc_put(txq);
2657 	return 0;
2658 }
2659 
2660 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2661 			 struct mvneta_tx_queue *txq)
2662 {
2663 	int hdr_len, total_len, data_left;
2664 	int desc_count = 0;
2665 	struct mvneta_port *pp = netdev_priv(dev);
2666 	struct tso_t tso;
2667 	int i;
2668 
2669 	/* Count needed descriptors */
2670 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2671 		return 0;
2672 
2673 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2674 		pr_info("*** Is this even  possible???!?!?\n");
2675 		return 0;
2676 	}
2677 
2678 	/* Initialize the TSO handler, and prepare the first payload */
2679 	hdr_len = tso_start(skb, &tso);
2680 
2681 	total_len = skb->len - hdr_len;
2682 	while (total_len > 0) {
2683 		char *hdr;
2684 
2685 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2686 		total_len -= data_left;
2687 		desc_count++;
2688 
2689 		/* prepare packet headers: MAC + IP + TCP */
2690 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2691 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2692 
2693 		mvneta_tso_put_hdr(skb, pp, txq);
2694 
2695 		while (data_left > 0) {
2696 			int size;
2697 			desc_count++;
2698 
2699 			size = min_t(int, tso.size, data_left);
2700 
2701 			if (mvneta_tso_put_data(dev, txq, skb,
2702 						 tso.data, size,
2703 						 size == data_left,
2704 						 total_len == 0))
2705 				goto err_release;
2706 			data_left -= size;
2707 
2708 			tso_build_data(skb, &tso, size);
2709 		}
2710 	}
2711 
2712 	return desc_count;
2713 
2714 err_release:
2715 	/* Release all used data descriptors; header descriptors must not
2716 	 * be DMA-unmapped.
2717 	 */
2718 	for (i = desc_count - 1; i >= 0; i--) {
2719 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2720 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2721 			dma_unmap_single(pp->dev->dev.parent,
2722 					 tx_desc->buf_phys_addr,
2723 					 tx_desc->data_size,
2724 					 DMA_TO_DEVICE);
2725 		mvneta_txq_desc_put(txq);
2726 	}
2727 	return 0;
2728 }
2729 
2730 /* Handle tx fragmentation processing */
2731 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2732 				  struct mvneta_tx_queue *txq)
2733 {
2734 	struct mvneta_tx_desc *tx_desc;
2735 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2736 
2737 	for (i = 0; i < nr_frags; i++) {
2738 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2739 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2740 		void *addr = skb_frag_address(frag);
2741 
2742 		tx_desc = mvneta_txq_next_desc_get(txq);
2743 		tx_desc->data_size = skb_frag_size(frag);
2744 
2745 		tx_desc->buf_phys_addr =
2746 			dma_map_single(pp->dev->dev.parent, addr,
2747 				       tx_desc->data_size, DMA_TO_DEVICE);
2748 
2749 		if (dma_mapping_error(pp->dev->dev.parent,
2750 				      tx_desc->buf_phys_addr)) {
2751 			mvneta_txq_desc_put(txq);
2752 			goto error;
2753 		}
2754 
2755 		if (i == nr_frags - 1) {
2756 			/* Last descriptor */
2757 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2758 			buf->skb = skb;
2759 		} else {
2760 			/* Descriptor in the middle: Not First, Not Last */
2761 			tx_desc->command = 0;
2762 			buf->skb = NULL;
2763 		}
2764 		buf->type = MVNETA_TYPE_SKB;
2765 		mvneta_txq_inc_put(txq);
2766 	}
2767 
2768 	return 0;
2769 
2770 error:
2771 	/* Release all descriptors that were used to map fragments of
2772 	 * this packet, as well as the corresponding DMA mappings
2773 	 */
2774 	for (i = i - 1; i >= 0; i--) {
2775 		tx_desc = txq->descs + i;
2776 		dma_unmap_single(pp->dev->dev.parent,
2777 				 tx_desc->buf_phys_addr,
2778 				 tx_desc->data_size,
2779 				 DMA_TO_DEVICE);
2780 		mvneta_txq_desc_put(txq);
2781 	}
2782 
2783 	return -ENOMEM;
2784 }
2785 
2786 /* Main tx processing */
2787 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2788 {
2789 	struct mvneta_port *pp = netdev_priv(dev);
2790 	u16 txq_id = skb_get_queue_mapping(skb);
2791 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2792 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2793 	struct mvneta_tx_desc *tx_desc;
2794 	int len = skb->len;
2795 	int frags = 0;
2796 	u32 tx_cmd;
2797 
2798 	if (!netif_running(dev))
2799 		goto out;
2800 
2801 	if (skb_is_gso(skb)) {
2802 		frags = mvneta_tx_tso(skb, dev, txq);
2803 		goto out;
2804 	}
2805 
2806 	frags = skb_shinfo(skb)->nr_frags + 1;
2807 
2808 	/* Get a descriptor for the first part of the packet */
2809 	tx_desc = mvneta_txq_next_desc_get(txq);
2810 
2811 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2812 
2813 	tx_desc->data_size = skb_headlen(skb);
2814 
2815 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2816 						tx_desc->data_size,
2817 						DMA_TO_DEVICE);
2818 	if (unlikely(dma_mapping_error(dev->dev.parent,
2819 				       tx_desc->buf_phys_addr))) {
2820 		mvneta_txq_desc_put(txq);
2821 		frags = 0;
2822 		goto out;
2823 	}
2824 
2825 	buf->type = MVNETA_TYPE_SKB;
2826 	if (frags == 1) {
2827 		/* First and Last descriptor */
2828 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2829 		tx_desc->command = tx_cmd;
2830 		buf->skb = skb;
2831 		mvneta_txq_inc_put(txq);
2832 	} else {
2833 		/* First but not Last */
2834 		tx_cmd |= MVNETA_TXD_F_DESC;
2835 		buf->skb = NULL;
2836 		mvneta_txq_inc_put(txq);
2837 		tx_desc->command = tx_cmd;
2838 		/* Continue with other skb fragments */
2839 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2840 			dma_unmap_single(dev->dev.parent,
2841 					 tx_desc->buf_phys_addr,
2842 					 tx_desc->data_size,
2843 					 DMA_TO_DEVICE);
2844 			mvneta_txq_desc_put(txq);
2845 			frags = 0;
2846 			goto out;
2847 		}
2848 	}
2849 
2850 out:
2851 	if (frags > 0) {
2852 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2853 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2854 
2855 		netdev_tx_sent_queue(nq, len);
2856 
2857 		txq->count += frags;
2858 		if (txq->count >= txq->tx_stop_threshold)
2859 			netif_tx_stop_queue(nq);
2860 
2861 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2862 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2863 			mvneta_txq_pend_desc_add(pp, txq, frags);
2864 		else
2865 			txq->pending += frags;
2866 
2867 		u64_stats_update_begin(&stats->syncp);
2868 		stats->es.ps.tx_bytes += len;
2869 		stats->es.ps.tx_packets++;
2870 		u64_stats_update_end(&stats->syncp);
2871 	} else {
2872 		dev->stats.tx_dropped++;
2873 		dev_kfree_skb_any(skb);
2874 	}
2875 
2876 	return NETDEV_TX_OK;
2877 }
2878 
2879 
2880 /* Free tx resources, when resetting a port */
2881 static void mvneta_txq_done_force(struct mvneta_port *pp,
2882 				  struct mvneta_tx_queue *txq)
2883 
2884 {
2885 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2886 	int tx_done = txq->count;
2887 
2888 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2889 
2890 	/* reset txq */
2891 	txq->count = 0;
2892 	txq->txq_put_index = 0;
2893 	txq->txq_get_index = 0;
2894 }
2895 
2896 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2897  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2898  */
2899 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2900 {
2901 	struct mvneta_tx_queue *txq;
2902 	struct netdev_queue *nq;
2903 	int cpu = smp_processor_id();
2904 
2905 	while (cause_tx_done) {
2906 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2907 
2908 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2909 		__netif_tx_lock(nq, cpu);
2910 
2911 		if (txq->count)
2912 			mvneta_txq_done(pp, txq);
2913 
2914 		__netif_tx_unlock(nq);
2915 		cause_tx_done &= ~((1 << txq->id));
2916 	}
2917 }
2918 
2919 /* Compute crc8 of the specified address, using a unique algorithm ,
2920  * according to hw spec, different than generic crc8 algorithm
2921  */
2922 static int mvneta_addr_crc(unsigned char *addr)
2923 {
2924 	int crc = 0;
2925 	int i;
2926 
2927 	for (i = 0; i < ETH_ALEN; i++) {
2928 		int j;
2929 
2930 		crc = (crc ^ addr[i]) << 8;
2931 		for (j = 7; j >= 0; j--) {
2932 			if (crc & (0x100 << j))
2933 				crc ^= 0x107 << j;
2934 		}
2935 	}
2936 
2937 	return crc;
2938 }
2939 
2940 /* This method controls the net device special MAC multicast support.
2941  * The Special Multicast Table for MAC addresses supports MAC of the form
2942  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2943  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2944  * Table entries in the DA-Filter table. This method set the Special
2945  * Multicast Table appropriate entry.
2946  */
2947 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2948 					  unsigned char last_byte,
2949 					  int queue)
2950 {
2951 	unsigned int smc_table_reg;
2952 	unsigned int tbl_offset;
2953 	unsigned int reg_offset;
2954 
2955 	/* Register offset from SMC table base    */
2956 	tbl_offset = (last_byte / 4);
2957 	/* Entry offset within the above reg */
2958 	reg_offset = last_byte % 4;
2959 
2960 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2961 					+ tbl_offset * 4));
2962 
2963 	if (queue == -1)
2964 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2965 	else {
2966 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2967 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2968 	}
2969 
2970 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2971 		    smc_table_reg);
2972 }
2973 
2974 /* This method controls the network device Other MAC multicast support.
2975  * The Other Multicast Table is used for multicast of another type.
2976  * A CRC-8 is used as an index to the Other Multicast Table entries
2977  * in the DA-Filter table.
2978  * The method gets the CRC-8 value from the calling routine and
2979  * sets the Other Multicast Table appropriate entry according to the
2980  * specified CRC-8 .
2981  */
2982 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2983 					unsigned char crc8,
2984 					int queue)
2985 {
2986 	unsigned int omc_table_reg;
2987 	unsigned int tbl_offset;
2988 	unsigned int reg_offset;
2989 
2990 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2991 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2992 
2993 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2994 
2995 	if (queue == -1) {
2996 		/* Clear accepts frame bit at specified Other DA table entry */
2997 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2998 	} else {
2999 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3000 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3001 	}
3002 
3003 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3004 }
3005 
3006 /* The network device supports multicast using two tables:
3007  *    1) Special Multicast Table for MAC addresses of the form
3008  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3009  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3010  *       Table entries in the DA-Filter table.
3011  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3012  *       is used as an index to the Other Multicast Table entries in the
3013  *       DA-Filter table.
3014  */
3015 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3016 				 int queue)
3017 {
3018 	unsigned char crc_result = 0;
3019 
3020 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3021 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3022 		return 0;
3023 	}
3024 
3025 	crc_result = mvneta_addr_crc(p_addr);
3026 	if (queue == -1) {
3027 		if (pp->mcast_count[crc_result] == 0) {
3028 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3029 				    crc_result);
3030 			return -EINVAL;
3031 		}
3032 
3033 		pp->mcast_count[crc_result]--;
3034 		if (pp->mcast_count[crc_result] != 0) {
3035 			netdev_info(pp->dev,
3036 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3037 				    pp->mcast_count[crc_result], crc_result);
3038 			return -EINVAL;
3039 		}
3040 	} else
3041 		pp->mcast_count[crc_result]++;
3042 
3043 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3044 
3045 	return 0;
3046 }
3047 
3048 /* Configure Fitering mode of Ethernet port */
3049 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3050 					  int is_promisc)
3051 {
3052 	u32 port_cfg_reg, val;
3053 
3054 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3055 
3056 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3057 
3058 	/* Set / Clear UPM bit in port configuration register */
3059 	if (is_promisc) {
3060 		/* Accept all Unicast addresses */
3061 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3062 		val |= MVNETA_FORCE_UNI;
3063 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3064 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3065 	} else {
3066 		/* Reject all Unicast addresses */
3067 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3068 		val &= ~MVNETA_FORCE_UNI;
3069 	}
3070 
3071 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3072 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3073 }
3074 
3075 /* register unicast and multicast addresses */
3076 static void mvneta_set_rx_mode(struct net_device *dev)
3077 {
3078 	struct mvneta_port *pp = netdev_priv(dev);
3079 	struct netdev_hw_addr *ha;
3080 
3081 	if (dev->flags & IFF_PROMISC) {
3082 		/* Accept all: Multicast + Unicast */
3083 		mvneta_rx_unicast_promisc_set(pp, 1);
3084 		mvneta_set_ucast_table(pp, pp->rxq_def);
3085 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3086 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3087 	} else {
3088 		/* Accept single Unicast */
3089 		mvneta_rx_unicast_promisc_set(pp, 0);
3090 		mvneta_set_ucast_table(pp, -1);
3091 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3092 
3093 		if (dev->flags & IFF_ALLMULTI) {
3094 			/* Accept all multicast */
3095 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3096 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3097 		} else {
3098 			/* Accept only initialized multicast */
3099 			mvneta_set_special_mcast_table(pp, -1);
3100 			mvneta_set_other_mcast_table(pp, -1);
3101 
3102 			if (!netdev_mc_empty(dev)) {
3103 				netdev_for_each_mc_addr(ha, dev) {
3104 					mvneta_mcast_addr_set(pp, ha->addr,
3105 							      pp->rxq_def);
3106 				}
3107 			}
3108 		}
3109 	}
3110 }
3111 
3112 /* Interrupt handling - the callback for request_irq() */
3113 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3114 {
3115 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3116 
3117 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3118 	napi_schedule(&pp->napi);
3119 
3120 	return IRQ_HANDLED;
3121 }
3122 
3123 /* Interrupt handling - the callback for request_percpu_irq() */
3124 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3125 {
3126 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3127 
3128 	disable_percpu_irq(port->pp->dev->irq);
3129 	napi_schedule(&port->napi);
3130 
3131 	return IRQ_HANDLED;
3132 }
3133 
3134 static void mvneta_link_change(struct mvneta_port *pp)
3135 {
3136 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3137 
3138 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3139 }
3140 
3141 /* NAPI handler
3142  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3143  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3144  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3145  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3146  * Each CPU has its own causeRxTx register
3147  */
3148 static int mvneta_poll(struct napi_struct *napi, int budget)
3149 {
3150 	int rx_done = 0;
3151 	u32 cause_rx_tx;
3152 	int rx_queue;
3153 	struct mvneta_port *pp = netdev_priv(napi->dev);
3154 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3155 
3156 	if (!netif_running(pp->dev)) {
3157 		napi_complete(napi);
3158 		return rx_done;
3159 	}
3160 
3161 	/* Read cause register */
3162 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3163 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3164 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3165 
3166 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3167 
3168 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3169 				  MVNETA_CAUSE_LINK_CHANGE))
3170 			mvneta_link_change(pp);
3171 	}
3172 
3173 	/* Release Tx descriptors */
3174 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3175 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3176 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3177 	}
3178 
3179 	/* For the case where the last mvneta_poll did not process all
3180 	 * RX packets
3181 	 */
3182 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3183 		port->cause_rx_tx;
3184 
3185 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3186 	if (rx_queue) {
3187 		rx_queue = rx_queue - 1;
3188 		if (pp->bm_priv)
3189 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3190 						 &pp->rxqs[rx_queue]);
3191 		else
3192 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3193 						 &pp->rxqs[rx_queue]);
3194 	}
3195 
3196 	if (rx_done < budget) {
3197 		cause_rx_tx = 0;
3198 		napi_complete_done(napi, rx_done);
3199 
3200 		if (pp->neta_armada3700) {
3201 			unsigned long flags;
3202 
3203 			local_irq_save(flags);
3204 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3205 				    MVNETA_RX_INTR_MASK(rxq_number) |
3206 				    MVNETA_TX_INTR_MASK(txq_number) |
3207 				    MVNETA_MISCINTR_INTR_MASK);
3208 			local_irq_restore(flags);
3209 		} else {
3210 			enable_percpu_irq(pp->dev->irq, 0);
3211 		}
3212 	}
3213 
3214 	if (pp->neta_armada3700)
3215 		pp->cause_rx_tx = cause_rx_tx;
3216 	else
3217 		port->cause_rx_tx = cause_rx_tx;
3218 
3219 	return rx_done;
3220 }
3221 
3222 static int mvneta_create_page_pool(struct mvneta_port *pp,
3223 				   struct mvneta_rx_queue *rxq, int size)
3224 {
3225 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3226 	struct page_pool_params pp_params = {
3227 		.order = 0,
3228 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3229 		.pool_size = size,
3230 		.nid = NUMA_NO_NODE,
3231 		.dev = pp->dev->dev.parent,
3232 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3233 		.offset = pp->rx_offset_correction,
3234 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3235 	};
3236 	int err;
3237 
3238 	rxq->page_pool = page_pool_create(&pp_params);
3239 	if (IS_ERR(rxq->page_pool)) {
3240 		err = PTR_ERR(rxq->page_pool);
3241 		rxq->page_pool = NULL;
3242 		return err;
3243 	}
3244 
3245 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0);
3246 	if (err < 0)
3247 		goto err_free_pp;
3248 
3249 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3250 					 rxq->page_pool);
3251 	if (err)
3252 		goto err_unregister_rxq;
3253 
3254 	return 0;
3255 
3256 err_unregister_rxq:
3257 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3258 err_free_pp:
3259 	page_pool_destroy(rxq->page_pool);
3260 	rxq->page_pool = NULL;
3261 	return err;
3262 }
3263 
3264 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3265 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3266 			   int num)
3267 {
3268 	int i, err;
3269 
3270 	err = mvneta_create_page_pool(pp, rxq, num);
3271 	if (err < 0)
3272 		return err;
3273 
3274 	for (i = 0; i < num; i++) {
3275 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3276 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3277 				     GFP_KERNEL) != 0) {
3278 			netdev_err(pp->dev,
3279 				   "%s:rxq %d, %d of %d buffs  filled\n",
3280 				   __func__, rxq->id, i, num);
3281 			break;
3282 		}
3283 	}
3284 
3285 	/* Add this number of RX descriptors as non occupied (ready to
3286 	 * get packets)
3287 	 */
3288 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3289 
3290 	return i;
3291 }
3292 
3293 /* Free all packets pending transmit from all TXQs and reset TX port */
3294 static void mvneta_tx_reset(struct mvneta_port *pp)
3295 {
3296 	int queue;
3297 
3298 	/* free the skb's in the tx ring */
3299 	for (queue = 0; queue < txq_number; queue++)
3300 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3301 
3302 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3303 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3304 }
3305 
3306 static void mvneta_rx_reset(struct mvneta_port *pp)
3307 {
3308 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3309 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3310 }
3311 
3312 /* Rx/Tx queue initialization/cleanup methods */
3313 
3314 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3315 			      struct mvneta_rx_queue *rxq)
3316 {
3317 	rxq->size = pp->rx_ring_size;
3318 
3319 	/* Allocate memory for RX descriptors */
3320 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3321 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3322 					&rxq->descs_phys, GFP_KERNEL);
3323 	if (!rxq->descs)
3324 		return -ENOMEM;
3325 
3326 	rxq->last_desc = rxq->size - 1;
3327 
3328 	return 0;
3329 }
3330 
3331 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3332 			       struct mvneta_rx_queue *rxq)
3333 {
3334 	/* Set Rx descriptors queue starting address */
3335 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3336 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3337 
3338 	/* Set coalescing pkts and time */
3339 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3340 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3341 
3342 	if (!pp->bm_priv) {
3343 		/* Set Offset */
3344 		mvneta_rxq_offset_set(pp, rxq, 0);
3345 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3346 					MVNETA_MAX_RX_BUF_SIZE :
3347 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3348 		mvneta_rxq_bm_disable(pp, rxq);
3349 		mvneta_rxq_fill(pp, rxq, rxq->size);
3350 	} else {
3351 		/* Set Offset */
3352 		mvneta_rxq_offset_set(pp, rxq,
3353 				      NET_SKB_PAD - pp->rx_offset_correction);
3354 
3355 		mvneta_rxq_bm_enable(pp, rxq);
3356 		/* Fill RXQ with buffers from RX pool */
3357 		mvneta_rxq_long_pool_set(pp, rxq);
3358 		mvneta_rxq_short_pool_set(pp, rxq);
3359 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3360 	}
3361 }
3362 
3363 /* Create a specified RX queue */
3364 static int mvneta_rxq_init(struct mvneta_port *pp,
3365 			   struct mvneta_rx_queue *rxq)
3366 
3367 {
3368 	int ret;
3369 
3370 	ret = mvneta_rxq_sw_init(pp, rxq);
3371 	if (ret < 0)
3372 		return ret;
3373 
3374 	mvneta_rxq_hw_init(pp, rxq);
3375 
3376 	return 0;
3377 }
3378 
3379 /* Cleanup Rx queue */
3380 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3381 			      struct mvneta_rx_queue *rxq)
3382 {
3383 	mvneta_rxq_drop_pkts(pp, rxq);
3384 
3385 	if (rxq->descs)
3386 		dma_free_coherent(pp->dev->dev.parent,
3387 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3388 				  rxq->descs,
3389 				  rxq->descs_phys);
3390 
3391 	rxq->descs             = NULL;
3392 	rxq->last_desc         = 0;
3393 	rxq->next_desc_to_proc = 0;
3394 	rxq->descs_phys        = 0;
3395 	rxq->first_to_refill   = 0;
3396 	rxq->refill_num        = 0;
3397 }
3398 
3399 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3400 			      struct mvneta_tx_queue *txq)
3401 {
3402 	int cpu;
3403 
3404 	txq->size = pp->tx_ring_size;
3405 
3406 	/* A queue must always have room for at least one skb.
3407 	 * Therefore, stop the queue when the free entries reaches
3408 	 * the maximum number of descriptors per skb.
3409 	 */
3410 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3411 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3412 
3413 	/* Allocate memory for TX descriptors */
3414 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3415 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3416 					&txq->descs_phys, GFP_KERNEL);
3417 	if (!txq->descs)
3418 		return -ENOMEM;
3419 
3420 	txq->last_desc = txq->size - 1;
3421 
3422 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3423 	if (!txq->buf)
3424 		return -ENOMEM;
3425 
3426 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3427 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3428 					   txq->size * TSO_HEADER_SIZE,
3429 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3430 	if (!txq->tso_hdrs)
3431 		return -ENOMEM;
3432 
3433 	/* Setup XPS mapping */
3434 	if (pp->neta_armada3700)
3435 		cpu = 0;
3436 	else if (txq_number > 1)
3437 		cpu = txq->id % num_present_cpus();
3438 	else
3439 		cpu = pp->rxq_def % num_present_cpus();
3440 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3441 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3442 
3443 	return 0;
3444 }
3445 
3446 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3447 			       struct mvneta_tx_queue *txq)
3448 {
3449 	/* Set maximum bandwidth for enabled TXQs */
3450 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3451 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3452 
3453 	/* Set Tx descriptors queue starting address */
3454 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3455 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3456 
3457 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3458 }
3459 
3460 /* Create and initialize a tx queue */
3461 static int mvneta_txq_init(struct mvneta_port *pp,
3462 			   struct mvneta_tx_queue *txq)
3463 {
3464 	int ret;
3465 
3466 	ret = mvneta_txq_sw_init(pp, txq);
3467 	if (ret < 0)
3468 		return ret;
3469 
3470 	mvneta_txq_hw_init(pp, txq);
3471 
3472 	return 0;
3473 }
3474 
3475 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3476 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3477 				 struct mvneta_tx_queue *txq)
3478 {
3479 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3480 
3481 	kfree(txq->buf);
3482 
3483 	if (txq->tso_hdrs)
3484 		dma_free_coherent(pp->dev->dev.parent,
3485 				  txq->size * TSO_HEADER_SIZE,
3486 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3487 	if (txq->descs)
3488 		dma_free_coherent(pp->dev->dev.parent,
3489 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3490 				  txq->descs, txq->descs_phys);
3491 
3492 	netdev_tx_reset_queue(nq);
3493 
3494 	txq->descs             = NULL;
3495 	txq->last_desc         = 0;
3496 	txq->next_desc_to_proc = 0;
3497 	txq->descs_phys        = 0;
3498 }
3499 
3500 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3501 				 struct mvneta_tx_queue *txq)
3502 {
3503 	/* Set minimum bandwidth for disabled TXQs */
3504 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3505 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3506 
3507 	/* Set Tx descriptors queue starting address and size */
3508 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3509 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3510 }
3511 
3512 static void mvneta_txq_deinit(struct mvneta_port *pp,
3513 			      struct mvneta_tx_queue *txq)
3514 {
3515 	mvneta_txq_sw_deinit(pp, txq);
3516 	mvneta_txq_hw_deinit(pp, txq);
3517 }
3518 
3519 /* Cleanup all Tx queues */
3520 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3521 {
3522 	int queue;
3523 
3524 	for (queue = 0; queue < txq_number; queue++)
3525 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3526 }
3527 
3528 /* Cleanup all Rx queues */
3529 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3530 {
3531 	int queue;
3532 
3533 	for (queue = 0; queue < rxq_number; queue++)
3534 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3535 }
3536 
3537 
3538 /* Init all Rx queues */
3539 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3540 {
3541 	int queue;
3542 
3543 	for (queue = 0; queue < rxq_number; queue++) {
3544 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3545 
3546 		if (err) {
3547 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3548 				   __func__, queue);
3549 			mvneta_cleanup_rxqs(pp);
3550 			return err;
3551 		}
3552 	}
3553 
3554 	return 0;
3555 }
3556 
3557 /* Init all tx queues */
3558 static int mvneta_setup_txqs(struct mvneta_port *pp)
3559 {
3560 	int queue;
3561 
3562 	for (queue = 0; queue < txq_number; queue++) {
3563 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3564 		if (err) {
3565 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3566 				   __func__, queue);
3567 			mvneta_cleanup_txqs(pp);
3568 			return err;
3569 		}
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3576 {
3577 	int ret;
3578 
3579 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3580 	if (ret)
3581 		return ret;
3582 
3583 	return phy_power_on(pp->comphy);
3584 }
3585 
3586 static int mvneta_config_interface(struct mvneta_port *pp,
3587 				   phy_interface_t interface)
3588 {
3589 	int ret = 0;
3590 
3591 	if (pp->comphy) {
3592 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3593 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3594 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3595 			ret = mvneta_comphy_init(pp, interface);
3596 		}
3597 	} else {
3598 		switch (interface) {
3599 		case PHY_INTERFACE_MODE_QSGMII:
3600 			mvreg_write(pp, MVNETA_SERDES_CFG,
3601 				    MVNETA_QSGMII_SERDES_PROTO);
3602 			break;
3603 
3604 		case PHY_INTERFACE_MODE_SGMII:
3605 		case PHY_INTERFACE_MODE_1000BASEX:
3606 			mvreg_write(pp, MVNETA_SERDES_CFG,
3607 				    MVNETA_SGMII_SERDES_PROTO);
3608 			break;
3609 
3610 		case PHY_INTERFACE_MODE_2500BASEX:
3611 			mvreg_write(pp, MVNETA_SERDES_CFG,
3612 				    MVNETA_HSGMII_SERDES_PROTO);
3613 			break;
3614 		default:
3615 			break;
3616 		}
3617 	}
3618 
3619 	pp->phy_interface = interface;
3620 
3621 	return ret;
3622 }
3623 
3624 static void mvneta_start_dev(struct mvneta_port *pp)
3625 {
3626 	int cpu;
3627 
3628 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3629 
3630 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3631 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3632 
3633 	/* start the Rx/Tx activity */
3634 	mvneta_port_enable(pp);
3635 
3636 	if (!pp->neta_armada3700) {
3637 		/* Enable polling on the port */
3638 		for_each_online_cpu(cpu) {
3639 			struct mvneta_pcpu_port *port =
3640 				per_cpu_ptr(pp->ports, cpu);
3641 
3642 			napi_enable(&port->napi);
3643 		}
3644 	} else {
3645 		napi_enable(&pp->napi);
3646 	}
3647 
3648 	/* Unmask interrupts. It has to be done from each CPU */
3649 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3650 
3651 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3652 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3653 		    MVNETA_CAUSE_LINK_CHANGE);
3654 
3655 	phylink_start(pp->phylink);
3656 
3657 	/* We may have called phylink_speed_down before */
3658 	phylink_speed_up(pp->phylink);
3659 
3660 	netif_tx_start_all_queues(pp->dev);
3661 
3662 	clear_bit(__MVNETA_DOWN, &pp->state);
3663 }
3664 
3665 static void mvneta_stop_dev(struct mvneta_port *pp)
3666 {
3667 	unsigned int cpu;
3668 
3669 	set_bit(__MVNETA_DOWN, &pp->state);
3670 
3671 	if (device_may_wakeup(&pp->dev->dev))
3672 		phylink_speed_down(pp->phylink, false);
3673 
3674 	phylink_stop(pp->phylink);
3675 
3676 	if (!pp->neta_armada3700) {
3677 		for_each_online_cpu(cpu) {
3678 			struct mvneta_pcpu_port *port =
3679 				per_cpu_ptr(pp->ports, cpu);
3680 
3681 			napi_disable(&port->napi);
3682 		}
3683 	} else {
3684 		napi_disable(&pp->napi);
3685 	}
3686 
3687 	netif_carrier_off(pp->dev);
3688 
3689 	mvneta_port_down(pp);
3690 	netif_tx_stop_all_queues(pp->dev);
3691 
3692 	/* Stop the port activity */
3693 	mvneta_port_disable(pp);
3694 
3695 	/* Clear all ethernet port interrupts */
3696 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3697 
3698 	/* Mask all ethernet port interrupts */
3699 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3700 
3701 	mvneta_tx_reset(pp);
3702 	mvneta_rx_reset(pp);
3703 
3704 	WARN_ON(phy_power_off(pp->comphy));
3705 }
3706 
3707 static void mvneta_percpu_enable(void *arg)
3708 {
3709 	struct mvneta_port *pp = arg;
3710 
3711 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3712 }
3713 
3714 static void mvneta_percpu_disable(void *arg)
3715 {
3716 	struct mvneta_port *pp = arg;
3717 
3718 	disable_percpu_irq(pp->dev->irq);
3719 }
3720 
3721 /* Change the device mtu */
3722 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3723 {
3724 	struct mvneta_port *pp = netdev_priv(dev);
3725 	int ret;
3726 
3727 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3728 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3729 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3730 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3731 	}
3732 
3733 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3734 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3735 		return -EINVAL;
3736 	}
3737 
3738 	dev->mtu = mtu;
3739 
3740 	if (!netif_running(dev)) {
3741 		if (pp->bm_priv)
3742 			mvneta_bm_update_mtu(pp, mtu);
3743 
3744 		netdev_update_features(dev);
3745 		return 0;
3746 	}
3747 
3748 	/* The interface is running, so we have to force a
3749 	 * reallocation of the queues
3750 	 */
3751 	mvneta_stop_dev(pp);
3752 	on_each_cpu(mvneta_percpu_disable, pp, true);
3753 
3754 	mvneta_cleanup_txqs(pp);
3755 	mvneta_cleanup_rxqs(pp);
3756 
3757 	if (pp->bm_priv)
3758 		mvneta_bm_update_mtu(pp, mtu);
3759 
3760 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3761 
3762 	ret = mvneta_setup_rxqs(pp);
3763 	if (ret) {
3764 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3765 		return ret;
3766 	}
3767 
3768 	ret = mvneta_setup_txqs(pp);
3769 	if (ret) {
3770 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3771 		return ret;
3772 	}
3773 
3774 	on_each_cpu(mvneta_percpu_enable, pp, true);
3775 	mvneta_start_dev(pp);
3776 
3777 	netdev_update_features(dev);
3778 
3779 	return 0;
3780 }
3781 
3782 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3783 					     netdev_features_t features)
3784 {
3785 	struct mvneta_port *pp = netdev_priv(dev);
3786 
3787 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3788 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3789 		netdev_info(dev,
3790 			    "Disable IP checksum for MTU greater than %dB\n",
3791 			    pp->tx_csum_limit);
3792 	}
3793 
3794 	return features;
3795 }
3796 
3797 /* Get mac address */
3798 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3799 {
3800 	u32 mac_addr_l, mac_addr_h;
3801 
3802 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3803 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3804 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3805 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3806 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3807 	addr[3] = mac_addr_h & 0xFF;
3808 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3809 	addr[5] = mac_addr_l & 0xFF;
3810 }
3811 
3812 /* Handle setting mac address */
3813 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3814 {
3815 	struct mvneta_port *pp = netdev_priv(dev);
3816 	struct sockaddr *sockaddr = addr;
3817 	int ret;
3818 
3819 	ret = eth_prepare_mac_addr_change(dev, addr);
3820 	if (ret < 0)
3821 		return ret;
3822 	/* Remove previous address table entry */
3823 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3824 
3825 	/* Set new addr in hw */
3826 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3827 
3828 	eth_commit_mac_addr_change(dev, addr);
3829 	return 0;
3830 }
3831 
3832 static void mvneta_validate(struct phylink_config *config,
3833 			    unsigned long *supported,
3834 			    struct phylink_link_state *state)
3835 {
3836 	struct net_device *ndev = to_net_dev(config->dev);
3837 	struct mvneta_port *pp = netdev_priv(ndev);
3838 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3839 
3840 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3841 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3842 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3843 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3844 	    !phy_interface_mode_is_8023z(state->interface) &&
3845 	    !phy_interface_mode_is_rgmii(state->interface)) {
3846 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3847 		return;
3848 	}
3849 
3850 	/* Allow all the expected bits */
3851 	phylink_set(mask, Autoneg);
3852 	phylink_set_port_modes(mask);
3853 
3854 	/* Asymmetric pause is unsupported */
3855 	phylink_set(mask, Pause);
3856 
3857 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3858 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3859 		phylink_set(mask, 1000baseT_Full);
3860 		phylink_set(mask, 1000baseX_Full);
3861 	}
3862 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3863 		phylink_set(mask, 2500baseT_Full);
3864 		phylink_set(mask, 2500baseX_Full);
3865 	}
3866 
3867 	if (!phy_interface_mode_is_8023z(state->interface)) {
3868 		/* 10M and 100M are only supported in non-802.3z mode */
3869 		phylink_set(mask, 10baseT_Half);
3870 		phylink_set(mask, 10baseT_Full);
3871 		phylink_set(mask, 100baseT_Half);
3872 		phylink_set(mask, 100baseT_Full);
3873 	}
3874 
3875 	bitmap_and(supported, supported, mask,
3876 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3877 	bitmap_and(state->advertising, state->advertising, mask,
3878 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3879 
3880 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3881 	 * to advertise both, only report advertising at 2500BaseX.
3882 	 */
3883 	phylink_helper_basex_speed(state);
3884 }
3885 
3886 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3887 				     struct phylink_link_state *state)
3888 {
3889 	struct net_device *ndev = to_net_dev(config->dev);
3890 	struct mvneta_port *pp = netdev_priv(ndev);
3891 	u32 gmac_stat;
3892 
3893 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3894 
3895 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3896 		state->speed =
3897 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3898 			SPEED_2500 : SPEED_1000;
3899 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3900 		state->speed = SPEED_100;
3901 	else
3902 		state->speed = SPEED_10;
3903 
3904 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3905 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3906 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3907 
3908 	state->pause = 0;
3909 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3910 		state->pause |= MLO_PAUSE_RX;
3911 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3912 		state->pause |= MLO_PAUSE_TX;
3913 }
3914 
3915 static void mvneta_mac_an_restart(struct phylink_config *config)
3916 {
3917 	struct net_device *ndev = to_net_dev(config->dev);
3918 	struct mvneta_port *pp = netdev_priv(ndev);
3919 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3920 
3921 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3922 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3923 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3924 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3925 }
3926 
3927 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3928 			      const struct phylink_link_state *state)
3929 {
3930 	struct net_device *ndev = to_net_dev(config->dev);
3931 	struct mvneta_port *pp = netdev_priv(ndev);
3932 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3933 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3934 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3935 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3936 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3937 
3938 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3939 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3940 				   MVNETA_GMAC2_PORT_RESET);
3941 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3942 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3943 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3944 			     MVNETA_GMAC_INBAND_RESTART_AN |
3945 			     MVNETA_GMAC_AN_SPEED_EN |
3946 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3947 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3948 			     MVNETA_GMAC_AN_DUPLEX_EN);
3949 
3950 	/* Even though it might look weird, when we're configured in
3951 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3952 	 */
3953 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3954 
3955 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3956 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3957 	    phy_interface_mode_is_8023z(state->interface))
3958 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3959 
3960 	if (phylink_test(state->advertising, Pause))
3961 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3962 
3963 	if (!phylink_autoneg_inband(mode)) {
3964 		/* Phy or fixed speed - nothing to do, leave the
3965 		 * configured speed, duplex and flow control as-is.
3966 		 */
3967 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3968 		/* SGMII mode receives the state from the PHY */
3969 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3970 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3971 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3972 				     MVNETA_GMAC_FORCE_LINK_PASS |
3973 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3974 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3975 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3976 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3977 			 MVNETA_GMAC_AN_SPEED_EN |
3978 			 MVNETA_GMAC_AN_DUPLEX_EN;
3979 	} else {
3980 		/* 802.3z negotiation - only 1000base-X */
3981 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3982 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3983 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3984 				     MVNETA_GMAC_FORCE_LINK_PASS |
3985 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3986 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3987 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3988 			 /* The MAC only supports FD mode */
3989 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3990 
3991 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3992 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3993 	}
3994 
3995 	/* Armada 370 documentation says we can only change the port mode
3996 	 * and in-band enable when the link is down, so force it down
3997 	 * while making these changes. We also do this for GMAC_CTRL2 */
3998 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3999 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
4000 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
4001 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4002 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
4003 			    MVNETA_GMAC_FORCE_LINK_DOWN);
4004 	}
4005 
4006 
4007 	/* When at 2.5G, the link partner can send frames with shortened
4008 	 * preambles.
4009 	 */
4010 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4011 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4012 
4013 	if (pp->phy_interface != state->interface) {
4014 		if (pp->comphy)
4015 			WARN_ON(phy_power_off(pp->comphy));
4016 		WARN_ON(mvneta_config_interface(pp, state->interface));
4017 	}
4018 
4019 	if (new_ctrl0 != gmac_ctrl0)
4020 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4021 	if (new_ctrl2 != gmac_ctrl2)
4022 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4023 	if (new_ctrl4 != gmac_ctrl4)
4024 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4025 	if (new_clk != gmac_clk)
4026 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4027 	if (new_an != gmac_an)
4028 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4029 
4030 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4031 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4032 			MVNETA_GMAC2_PORT_RESET) != 0)
4033 			continue;
4034 	}
4035 }
4036 
4037 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4038 {
4039 	u32 lpi_ctl1;
4040 
4041 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4042 	if (enable)
4043 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4044 	else
4045 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4046 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4047 }
4048 
4049 static void mvneta_mac_link_down(struct phylink_config *config,
4050 				 unsigned int mode, phy_interface_t interface)
4051 {
4052 	struct net_device *ndev = to_net_dev(config->dev);
4053 	struct mvneta_port *pp = netdev_priv(ndev);
4054 	u32 val;
4055 
4056 	mvneta_port_down(pp);
4057 
4058 	if (!phylink_autoneg_inband(mode)) {
4059 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4060 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4061 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4062 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4063 	}
4064 
4065 	pp->eee_active = false;
4066 	mvneta_set_eee(pp, false);
4067 }
4068 
4069 static void mvneta_mac_link_up(struct phylink_config *config,
4070 			       struct phy_device *phy,
4071 			       unsigned int mode, phy_interface_t interface,
4072 			       int speed, int duplex,
4073 			       bool tx_pause, bool rx_pause)
4074 {
4075 	struct net_device *ndev = to_net_dev(config->dev);
4076 	struct mvneta_port *pp = netdev_priv(ndev);
4077 	u32 val;
4078 
4079 	if (!phylink_autoneg_inband(mode)) {
4080 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4081 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4082 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4083 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4084 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4085 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4086 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4087 
4088 		if (speed == SPEED_1000 || speed == SPEED_2500)
4089 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4090 		else if (speed == SPEED_100)
4091 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4092 
4093 		if (duplex == DUPLEX_FULL)
4094 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4095 
4096 		if (tx_pause || rx_pause)
4097 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4098 
4099 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4100 	} else {
4101 		/* When inband doesn't cover flow control or flow control is
4102 		 * disabled, we need to manually configure it. This bit will
4103 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4104 		 */
4105 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4106 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4107 
4108 		if (tx_pause || rx_pause)
4109 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4110 
4111 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4112 	}
4113 
4114 	mvneta_port_up(pp);
4115 
4116 	if (phy && pp->eee_enabled) {
4117 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4118 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4119 	}
4120 }
4121 
4122 static const struct phylink_mac_ops mvneta_phylink_ops = {
4123 	.validate = mvneta_validate,
4124 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4125 	.mac_an_restart = mvneta_mac_an_restart,
4126 	.mac_config = mvneta_mac_config,
4127 	.mac_link_down = mvneta_mac_link_down,
4128 	.mac_link_up = mvneta_mac_link_up,
4129 };
4130 
4131 static int mvneta_mdio_probe(struct mvneta_port *pp)
4132 {
4133 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4134 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4135 
4136 	if (err)
4137 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4138 
4139 	phylink_ethtool_get_wol(pp->phylink, &wol);
4140 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4141 
4142 	/* PHY WoL may be enabled but device wakeup disabled */
4143 	if (wol.supported)
4144 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4145 
4146 	return err;
4147 }
4148 
4149 static void mvneta_mdio_remove(struct mvneta_port *pp)
4150 {
4151 	phylink_disconnect_phy(pp->phylink);
4152 }
4153 
4154 /* Electing a CPU must be done in an atomic way: it should be done
4155  * after or before the removal/insertion of a CPU and this function is
4156  * not reentrant.
4157  */
4158 static void mvneta_percpu_elect(struct mvneta_port *pp)
4159 {
4160 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4161 
4162 	/* Use the cpu associated to the rxq when it is online, in all
4163 	 * the other cases, use the cpu 0 which can't be offline.
4164 	 */
4165 	if (cpu_online(pp->rxq_def))
4166 		elected_cpu = pp->rxq_def;
4167 
4168 	max_cpu = num_present_cpus();
4169 
4170 	for_each_online_cpu(cpu) {
4171 		int rxq_map = 0, txq_map = 0;
4172 		int rxq;
4173 
4174 		for (rxq = 0; rxq < rxq_number; rxq++)
4175 			if ((rxq % max_cpu) == cpu)
4176 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4177 
4178 		if (cpu == elected_cpu)
4179 			/* Map the default receive queue queue to the
4180 			 * elected CPU
4181 			 */
4182 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4183 
4184 		/* We update the TX queue map only if we have one
4185 		 * queue. In this case we associate the TX queue to
4186 		 * the CPU bound to the default RX queue
4187 		 */
4188 		if (txq_number == 1)
4189 			txq_map = (cpu == elected_cpu) ?
4190 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4191 		else
4192 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4193 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4194 
4195 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4196 
4197 		/* Update the interrupt mask on each CPU according the
4198 		 * new mapping
4199 		 */
4200 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4201 					 pp, true);
4202 		i++;
4203 
4204 	}
4205 };
4206 
4207 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4208 {
4209 	int other_cpu;
4210 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4211 						  node_online);
4212 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4213 
4214 	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4215 	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4216 	 */
4217 	if (pp->neta_armada3700)
4218 		return 0;
4219 
4220 	spin_lock(&pp->lock);
4221 	/*
4222 	 * Configuring the driver for a new CPU while the driver is
4223 	 * stopping is racy, so just avoid it.
4224 	 */
4225 	if (pp->is_stopped) {
4226 		spin_unlock(&pp->lock);
4227 		return 0;
4228 	}
4229 	netif_tx_stop_all_queues(pp->dev);
4230 
4231 	/*
4232 	 * We have to synchronise on tha napi of each CPU except the one
4233 	 * just being woken up
4234 	 */
4235 	for_each_online_cpu(other_cpu) {
4236 		if (other_cpu != cpu) {
4237 			struct mvneta_pcpu_port *other_port =
4238 				per_cpu_ptr(pp->ports, other_cpu);
4239 
4240 			napi_synchronize(&other_port->napi);
4241 		}
4242 	}
4243 
4244 	/* Mask all ethernet port interrupts */
4245 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4246 	napi_enable(&port->napi);
4247 
4248 	/*
4249 	 * Enable per-CPU interrupts on the CPU that is
4250 	 * brought up.
4251 	 */
4252 	mvneta_percpu_enable(pp);
4253 
4254 	/*
4255 	 * Enable per-CPU interrupt on the one CPU we care
4256 	 * about.
4257 	 */
4258 	mvneta_percpu_elect(pp);
4259 
4260 	/* Unmask all ethernet port interrupts */
4261 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4262 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4263 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4264 		    MVNETA_CAUSE_LINK_CHANGE);
4265 	netif_tx_start_all_queues(pp->dev);
4266 	spin_unlock(&pp->lock);
4267 	return 0;
4268 }
4269 
4270 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4271 {
4272 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4273 						  node_online);
4274 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4275 
4276 	/*
4277 	 * Thanks to this lock we are sure that any pending cpu election is
4278 	 * done.
4279 	 */
4280 	spin_lock(&pp->lock);
4281 	/* Mask all ethernet port interrupts */
4282 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4283 	spin_unlock(&pp->lock);
4284 
4285 	napi_synchronize(&port->napi);
4286 	napi_disable(&port->napi);
4287 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4288 	mvneta_percpu_disable(pp);
4289 	return 0;
4290 }
4291 
4292 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4293 {
4294 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4295 						  node_dead);
4296 
4297 	/* Check if a new CPU must be elected now this on is down */
4298 	spin_lock(&pp->lock);
4299 	mvneta_percpu_elect(pp);
4300 	spin_unlock(&pp->lock);
4301 	/* Unmask all ethernet port interrupts */
4302 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4303 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4304 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4305 		    MVNETA_CAUSE_LINK_CHANGE);
4306 	netif_tx_start_all_queues(pp->dev);
4307 	return 0;
4308 }
4309 
4310 static int mvneta_open(struct net_device *dev)
4311 {
4312 	struct mvneta_port *pp = netdev_priv(dev);
4313 	int ret;
4314 
4315 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4316 
4317 	ret = mvneta_setup_rxqs(pp);
4318 	if (ret)
4319 		return ret;
4320 
4321 	ret = mvneta_setup_txqs(pp);
4322 	if (ret)
4323 		goto err_cleanup_rxqs;
4324 
4325 	/* Connect to port interrupt line */
4326 	if (pp->neta_armada3700)
4327 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4328 				  dev->name, pp);
4329 	else
4330 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4331 					 dev->name, pp->ports);
4332 	if (ret) {
4333 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4334 		goto err_cleanup_txqs;
4335 	}
4336 
4337 	if (!pp->neta_armada3700) {
4338 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4339 		 * queue interrupts
4340 		 */
4341 		on_each_cpu(mvneta_percpu_enable, pp, true);
4342 
4343 		pp->is_stopped = false;
4344 		/* Register a CPU notifier to handle the case where our CPU
4345 		 * might be taken offline.
4346 		 */
4347 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4348 						       &pp->node_online);
4349 		if (ret)
4350 			goto err_free_irq;
4351 
4352 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4353 						       &pp->node_dead);
4354 		if (ret)
4355 			goto err_free_online_hp;
4356 	}
4357 
4358 	ret = mvneta_mdio_probe(pp);
4359 	if (ret < 0) {
4360 		netdev_err(dev, "cannot probe MDIO bus\n");
4361 		goto err_free_dead_hp;
4362 	}
4363 
4364 	mvneta_start_dev(pp);
4365 
4366 	return 0;
4367 
4368 err_free_dead_hp:
4369 	if (!pp->neta_armada3700)
4370 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4371 						    &pp->node_dead);
4372 err_free_online_hp:
4373 	if (!pp->neta_armada3700)
4374 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4375 						    &pp->node_online);
4376 err_free_irq:
4377 	if (pp->neta_armada3700) {
4378 		free_irq(pp->dev->irq, pp);
4379 	} else {
4380 		on_each_cpu(mvneta_percpu_disable, pp, true);
4381 		free_percpu_irq(pp->dev->irq, pp->ports);
4382 	}
4383 err_cleanup_txqs:
4384 	mvneta_cleanup_txqs(pp);
4385 err_cleanup_rxqs:
4386 	mvneta_cleanup_rxqs(pp);
4387 	return ret;
4388 }
4389 
4390 /* Stop the port, free port interrupt line */
4391 static int mvneta_stop(struct net_device *dev)
4392 {
4393 	struct mvneta_port *pp = netdev_priv(dev);
4394 
4395 	if (!pp->neta_armada3700) {
4396 		/* Inform that we are stopping so we don't want to setup the
4397 		 * driver for new CPUs in the notifiers. The code of the
4398 		 * notifier for CPU online is protected by the same spinlock,
4399 		 * so when we get the lock, the notifer work is done.
4400 		 */
4401 		spin_lock(&pp->lock);
4402 		pp->is_stopped = true;
4403 		spin_unlock(&pp->lock);
4404 
4405 		mvneta_stop_dev(pp);
4406 		mvneta_mdio_remove(pp);
4407 
4408 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4409 						    &pp->node_online);
4410 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4411 						    &pp->node_dead);
4412 		on_each_cpu(mvneta_percpu_disable, pp, true);
4413 		free_percpu_irq(dev->irq, pp->ports);
4414 	} else {
4415 		mvneta_stop_dev(pp);
4416 		mvneta_mdio_remove(pp);
4417 		free_irq(dev->irq, pp);
4418 	}
4419 
4420 	mvneta_cleanup_rxqs(pp);
4421 	mvneta_cleanup_txqs(pp);
4422 
4423 	return 0;
4424 }
4425 
4426 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4427 {
4428 	struct mvneta_port *pp = netdev_priv(dev);
4429 
4430 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4431 }
4432 
4433 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4434 			    struct netlink_ext_ack *extack)
4435 {
4436 	bool need_update, running = netif_running(dev);
4437 	struct mvneta_port *pp = netdev_priv(dev);
4438 	struct bpf_prog *old_prog;
4439 
4440 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4441 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP");
4442 		return -EOPNOTSUPP;
4443 	}
4444 
4445 	if (pp->bm_priv) {
4446 		NL_SET_ERR_MSG_MOD(extack,
4447 				   "Hardware Buffer Management not supported on XDP");
4448 		return -EOPNOTSUPP;
4449 	}
4450 
4451 	need_update = !!pp->xdp_prog != !!prog;
4452 	if (running && need_update)
4453 		mvneta_stop(dev);
4454 
4455 	old_prog = xchg(&pp->xdp_prog, prog);
4456 	if (old_prog)
4457 		bpf_prog_put(old_prog);
4458 
4459 	if (running && need_update)
4460 		return mvneta_open(dev);
4461 
4462 	return 0;
4463 }
4464 
4465 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4466 {
4467 	switch (xdp->command) {
4468 	case XDP_SETUP_PROG:
4469 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4470 	default:
4471 		return -EINVAL;
4472 	}
4473 }
4474 
4475 /* Ethtool methods */
4476 
4477 /* Set link ksettings (phy address, speed) for ethtools */
4478 static int
4479 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4480 				  const struct ethtool_link_ksettings *cmd)
4481 {
4482 	struct mvneta_port *pp = netdev_priv(ndev);
4483 
4484 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4485 }
4486 
4487 /* Get link ksettings for ethtools */
4488 static int
4489 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4490 				  struct ethtool_link_ksettings *cmd)
4491 {
4492 	struct mvneta_port *pp = netdev_priv(ndev);
4493 
4494 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4495 }
4496 
4497 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4498 {
4499 	struct mvneta_port *pp = netdev_priv(dev);
4500 
4501 	return phylink_ethtool_nway_reset(pp->phylink);
4502 }
4503 
4504 /* Set interrupt coalescing for ethtools */
4505 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4506 				       struct ethtool_coalesce *c)
4507 {
4508 	struct mvneta_port *pp = netdev_priv(dev);
4509 	int queue;
4510 
4511 	for (queue = 0; queue < rxq_number; queue++) {
4512 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4513 		rxq->time_coal = c->rx_coalesce_usecs;
4514 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4515 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4516 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4517 	}
4518 
4519 	for (queue = 0; queue < txq_number; queue++) {
4520 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4521 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4522 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4523 	}
4524 
4525 	return 0;
4526 }
4527 
4528 /* get coalescing for ethtools */
4529 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4530 				       struct ethtool_coalesce *c)
4531 {
4532 	struct mvneta_port *pp = netdev_priv(dev);
4533 
4534 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4535 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4536 
4537 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4538 	return 0;
4539 }
4540 
4541 
4542 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4543 				    struct ethtool_drvinfo *drvinfo)
4544 {
4545 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4546 		sizeof(drvinfo->driver));
4547 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4548 		sizeof(drvinfo->version));
4549 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4550 		sizeof(drvinfo->bus_info));
4551 }
4552 
4553 
4554 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4555 					 struct ethtool_ringparam *ring)
4556 {
4557 	struct mvneta_port *pp = netdev_priv(netdev);
4558 
4559 	ring->rx_max_pending = MVNETA_MAX_RXD;
4560 	ring->tx_max_pending = MVNETA_MAX_TXD;
4561 	ring->rx_pending = pp->rx_ring_size;
4562 	ring->tx_pending = pp->tx_ring_size;
4563 }
4564 
4565 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4566 					struct ethtool_ringparam *ring)
4567 {
4568 	struct mvneta_port *pp = netdev_priv(dev);
4569 
4570 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4571 		return -EINVAL;
4572 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4573 		ring->rx_pending : MVNETA_MAX_RXD;
4574 
4575 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4576 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4577 	if (pp->tx_ring_size != ring->tx_pending)
4578 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4579 			    pp->tx_ring_size, ring->tx_pending);
4580 
4581 	if (netif_running(dev)) {
4582 		mvneta_stop(dev);
4583 		if (mvneta_open(dev)) {
4584 			netdev_err(dev,
4585 				   "error on opening device after ring param change\n");
4586 			return -ENOMEM;
4587 		}
4588 	}
4589 
4590 	return 0;
4591 }
4592 
4593 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4594 					  struct ethtool_pauseparam *pause)
4595 {
4596 	struct mvneta_port *pp = netdev_priv(dev);
4597 
4598 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4599 }
4600 
4601 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4602 					 struct ethtool_pauseparam *pause)
4603 {
4604 	struct mvneta_port *pp = netdev_priv(dev);
4605 
4606 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4607 }
4608 
4609 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4610 				       u8 *data)
4611 {
4612 	if (sset == ETH_SS_STATS) {
4613 		int i;
4614 
4615 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4616 			memcpy(data + i * ETH_GSTRING_LEN,
4617 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4618 	}
4619 }
4620 
4621 static void
4622 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4623 				 struct mvneta_ethtool_stats *es)
4624 {
4625 	unsigned int start;
4626 	int cpu;
4627 
4628 	for_each_possible_cpu(cpu) {
4629 		struct mvneta_pcpu_stats *stats;
4630 		u64 skb_alloc_error;
4631 		u64 refill_error;
4632 		u64 xdp_redirect;
4633 		u64 xdp_xmit_err;
4634 		u64 xdp_tx_err;
4635 		u64 xdp_pass;
4636 		u64 xdp_drop;
4637 		u64 xdp_xmit;
4638 		u64 xdp_tx;
4639 
4640 		stats = per_cpu_ptr(pp->stats, cpu);
4641 		do {
4642 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4643 			skb_alloc_error = stats->es.skb_alloc_error;
4644 			refill_error = stats->es.refill_error;
4645 			xdp_redirect = stats->es.ps.xdp_redirect;
4646 			xdp_pass = stats->es.ps.xdp_pass;
4647 			xdp_drop = stats->es.ps.xdp_drop;
4648 			xdp_xmit = stats->es.ps.xdp_xmit;
4649 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4650 			xdp_tx = stats->es.ps.xdp_tx;
4651 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4652 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4653 
4654 		es->skb_alloc_error += skb_alloc_error;
4655 		es->refill_error += refill_error;
4656 		es->ps.xdp_redirect += xdp_redirect;
4657 		es->ps.xdp_pass += xdp_pass;
4658 		es->ps.xdp_drop += xdp_drop;
4659 		es->ps.xdp_xmit += xdp_xmit;
4660 		es->ps.xdp_xmit_err += xdp_xmit_err;
4661 		es->ps.xdp_tx += xdp_tx;
4662 		es->ps.xdp_tx_err += xdp_tx_err;
4663 	}
4664 }
4665 
4666 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4667 {
4668 	struct mvneta_ethtool_stats stats = {};
4669 	const struct mvneta_statistic *s;
4670 	void __iomem *base = pp->base;
4671 	u32 high, low;
4672 	u64 val;
4673 	int i;
4674 
4675 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4676 	for (i = 0, s = mvneta_statistics;
4677 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4678 	     s++, i++) {
4679 		switch (s->type) {
4680 		case T_REG_32:
4681 			val = readl_relaxed(base + s->offset);
4682 			pp->ethtool_stats[i] += val;
4683 			break;
4684 		case T_REG_64:
4685 			/* Docs say to read low 32-bit then high */
4686 			low = readl_relaxed(base + s->offset);
4687 			high = readl_relaxed(base + s->offset + 4);
4688 			val = (u64)high << 32 | low;
4689 			pp->ethtool_stats[i] += val;
4690 			break;
4691 		case T_SW:
4692 			switch (s->offset) {
4693 			case ETHTOOL_STAT_EEE_WAKEUP:
4694 				val = phylink_get_eee_err(pp->phylink);
4695 				pp->ethtool_stats[i] += val;
4696 				break;
4697 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4698 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4699 				break;
4700 			case ETHTOOL_STAT_REFILL_ERR:
4701 				pp->ethtool_stats[i] = stats.refill_error;
4702 				break;
4703 			case ETHTOOL_XDP_REDIRECT:
4704 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4705 				break;
4706 			case ETHTOOL_XDP_PASS:
4707 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4708 				break;
4709 			case ETHTOOL_XDP_DROP:
4710 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4711 				break;
4712 			case ETHTOOL_XDP_TX:
4713 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4714 				break;
4715 			case ETHTOOL_XDP_TX_ERR:
4716 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4717 				break;
4718 			case ETHTOOL_XDP_XMIT:
4719 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4720 				break;
4721 			case ETHTOOL_XDP_XMIT_ERR:
4722 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4723 				break;
4724 			}
4725 			break;
4726 		}
4727 	}
4728 }
4729 
4730 static void mvneta_ethtool_get_stats(struct net_device *dev,
4731 				     struct ethtool_stats *stats, u64 *data)
4732 {
4733 	struct mvneta_port *pp = netdev_priv(dev);
4734 	int i;
4735 
4736 	mvneta_ethtool_update_stats(pp);
4737 
4738 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4739 		*data++ = pp->ethtool_stats[i];
4740 }
4741 
4742 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4743 {
4744 	if (sset == ETH_SS_STATS)
4745 		return ARRAY_SIZE(mvneta_statistics);
4746 	return -EOPNOTSUPP;
4747 }
4748 
4749 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4750 {
4751 	return MVNETA_RSS_LU_TABLE_SIZE;
4752 }
4753 
4754 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4755 				    struct ethtool_rxnfc *info,
4756 				    u32 *rules __always_unused)
4757 {
4758 	switch (info->cmd) {
4759 	case ETHTOOL_GRXRINGS:
4760 		info->data =  rxq_number;
4761 		return 0;
4762 	case ETHTOOL_GRXFH:
4763 		return -EOPNOTSUPP;
4764 	default:
4765 		return -EOPNOTSUPP;
4766 	}
4767 }
4768 
4769 static int  mvneta_config_rss(struct mvneta_port *pp)
4770 {
4771 	int cpu;
4772 	u32 val;
4773 
4774 	netif_tx_stop_all_queues(pp->dev);
4775 
4776 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4777 
4778 	if (!pp->neta_armada3700) {
4779 		/* We have to synchronise on the napi of each CPU */
4780 		for_each_online_cpu(cpu) {
4781 			struct mvneta_pcpu_port *pcpu_port =
4782 				per_cpu_ptr(pp->ports, cpu);
4783 
4784 			napi_synchronize(&pcpu_port->napi);
4785 			napi_disable(&pcpu_port->napi);
4786 		}
4787 	} else {
4788 		napi_synchronize(&pp->napi);
4789 		napi_disable(&pp->napi);
4790 	}
4791 
4792 	pp->rxq_def = pp->indir[0];
4793 
4794 	/* Update unicast mapping */
4795 	mvneta_set_rx_mode(pp->dev);
4796 
4797 	/* Update val of portCfg register accordingly with all RxQueue types */
4798 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4799 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4800 
4801 	/* Update the elected CPU matching the new rxq_def */
4802 	spin_lock(&pp->lock);
4803 	mvneta_percpu_elect(pp);
4804 	spin_unlock(&pp->lock);
4805 
4806 	if (!pp->neta_armada3700) {
4807 		/* We have to synchronise on the napi of each CPU */
4808 		for_each_online_cpu(cpu) {
4809 			struct mvneta_pcpu_port *pcpu_port =
4810 				per_cpu_ptr(pp->ports, cpu);
4811 
4812 			napi_enable(&pcpu_port->napi);
4813 		}
4814 	} else {
4815 		napi_enable(&pp->napi);
4816 	}
4817 
4818 	netif_tx_start_all_queues(pp->dev);
4819 
4820 	return 0;
4821 }
4822 
4823 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4824 				   const u8 *key, const u8 hfunc)
4825 {
4826 	struct mvneta_port *pp = netdev_priv(dev);
4827 
4828 	/* Current code for Armada 3700 doesn't support RSS features yet */
4829 	if (pp->neta_armada3700)
4830 		return -EOPNOTSUPP;
4831 
4832 	/* We require at least one supported parameter to be changed
4833 	 * and no change in any of the unsupported parameters
4834 	 */
4835 	if (key ||
4836 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4837 		return -EOPNOTSUPP;
4838 
4839 	if (!indir)
4840 		return 0;
4841 
4842 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4843 
4844 	return mvneta_config_rss(pp);
4845 }
4846 
4847 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4848 				   u8 *hfunc)
4849 {
4850 	struct mvneta_port *pp = netdev_priv(dev);
4851 
4852 	/* Current code for Armada 3700 doesn't support RSS features yet */
4853 	if (pp->neta_armada3700)
4854 		return -EOPNOTSUPP;
4855 
4856 	if (hfunc)
4857 		*hfunc = ETH_RSS_HASH_TOP;
4858 
4859 	if (!indir)
4860 		return 0;
4861 
4862 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4863 
4864 	return 0;
4865 }
4866 
4867 static void mvneta_ethtool_get_wol(struct net_device *dev,
4868 				   struct ethtool_wolinfo *wol)
4869 {
4870 	struct mvneta_port *pp = netdev_priv(dev);
4871 
4872 	phylink_ethtool_get_wol(pp->phylink, wol);
4873 }
4874 
4875 static int mvneta_ethtool_set_wol(struct net_device *dev,
4876 				  struct ethtool_wolinfo *wol)
4877 {
4878 	struct mvneta_port *pp = netdev_priv(dev);
4879 	int ret;
4880 
4881 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4882 	if (!ret)
4883 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4884 
4885 	return ret;
4886 }
4887 
4888 static int mvneta_ethtool_get_eee(struct net_device *dev,
4889 				  struct ethtool_eee *eee)
4890 {
4891 	struct mvneta_port *pp = netdev_priv(dev);
4892 	u32 lpi_ctl0;
4893 
4894 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4895 
4896 	eee->eee_enabled = pp->eee_enabled;
4897 	eee->eee_active = pp->eee_active;
4898 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4899 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4900 
4901 	return phylink_ethtool_get_eee(pp->phylink, eee);
4902 }
4903 
4904 static int mvneta_ethtool_set_eee(struct net_device *dev,
4905 				  struct ethtool_eee *eee)
4906 {
4907 	struct mvneta_port *pp = netdev_priv(dev);
4908 	u32 lpi_ctl0;
4909 
4910 	/* The Armada 37x documents do not give limits for this other than
4911 	 * it being an 8-bit register. */
4912 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4913 		return -EINVAL;
4914 
4915 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4916 	lpi_ctl0 &= ~(0xff << 8);
4917 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4918 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4919 
4920 	pp->eee_enabled = eee->eee_enabled;
4921 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4922 
4923 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4924 
4925 	return phylink_ethtool_set_eee(pp->phylink, eee);
4926 }
4927 
4928 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
4929 {
4930 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
4931 }
4932 
4933 static void mvneta_setup_rx_prio_map(struct mvneta_port *pp)
4934 {
4935 	u32 val = 0;
4936 	int i;
4937 
4938 	for (i = 0; i < rxq_number; i++)
4939 		val |= MVNETA_VLAN_PRIO_RXQ_MAP(i, pp->prio_tc_map[i]);
4940 
4941 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
4942 }
4943 
4944 static int mvneta_setup_mqprio(struct net_device *dev,
4945 			       struct tc_mqprio_qopt *qopt)
4946 {
4947 	struct mvneta_port *pp = netdev_priv(dev);
4948 	u8 num_tc;
4949 	int i;
4950 
4951 	qopt->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4952 	num_tc = qopt->num_tc;
4953 
4954 	if (num_tc > rxq_number)
4955 		return -EINVAL;
4956 
4957 	if (!num_tc) {
4958 		mvneta_clear_rx_prio_map(pp);
4959 		netdev_reset_tc(dev);
4960 		return 0;
4961 	}
4962 
4963 	memcpy(pp->prio_tc_map, qopt->prio_tc_map, sizeof(pp->prio_tc_map));
4964 
4965 	mvneta_setup_rx_prio_map(pp);
4966 
4967 	netdev_set_num_tc(dev, qopt->num_tc);
4968 	for (i = 0; i < qopt->num_tc; i++)
4969 		netdev_set_tc_queue(dev, i, qopt->count[i], qopt->offset[i]);
4970 
4971 	return 0;
4972 }
4973 
4974 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
4975 			   void *type_data)
4976 {
4977 	switch (type) {
4978 	case TC_SETUP_QDISC_MQPRIO:
4979 		return mvneta_setup_mqprio(dev, type_data);
4980 	default:
4981 		return -EOPNOTSUPP;
4982 	}
4983 }
4984 
4985 static const struct net_device_ops mvneta_netdev_ops = {
4986 	.ndo_open            = mvneta_open,
4987 	.ndo_stop            = mvneta_stop,
4988 	.ndo_start_xmit      = mvneta_tx,
4989 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4990 	.ndo_set_mac_address = mvneta_set_mac_addr,
4991 	.ndo_change_mtu      = mvneta_change_mtu,
4992 	.ndo_fix_features    = mvneta_fix_features,
4993 	.ndo_get_stats64     = mvneta_get_stats64,
4994 	.ndo_do_ioctl        = mvneta_ioctl,
4995 	.ndo_bpf	     = mvneta_xdp,
4996 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4997 	.ndo_setup_tc	     = mvneta_setup_tc,
4998 };
4999 
5000 static const struct ethtool_ops mvneta_eth_tool_ops = {
5001 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5002 				     ETHTOOL_COALESCE_MAX_FRAMES,
5003 	.nway_reset	= mvneta_ethtool_nway_reset,
5004 	.get_link       = ethtool_op_get_link,
5005 	.set_coalesce   = mvneta_ethtool_set_coalesce,
5006 	.get_coalesce   = mvneta_ethtool_get_coalesce,
5007 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
5008 	.get_ringparam  = mvneta_ethtool_get_ringparam,
5009 	.set_ringparam	= mvneta_ethtool_set_ringparam,
5010 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
5011 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
5012 	.get_strings	= mvneta_ethtool_get_strings,
5013 	.get_ethtool_stats = mvneta_ethtool_get_stats,
5014 	.get_sset_count	= mvneta_ethtool_get_sset_count,
5015 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5016 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
5017 	.get_rxfh	= mvneta_ethtool_get_rxfh,
5018 	.set_rxfh	= mvneta_ethtool_set_rxfh,
5019 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5020 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5021 	.get_wol        = mvneta_ethtool_get_wol,
5022 	.set_wol        = mvneta_ethtool_set_wol,
5023 	.get_eee	= mvneta_ethtool_get_eee,
5024 	.set_eee	= mvneta_ethtool_set_eee,
5025 };
5026 
5027 /* Initialize hw */
5028 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5029 {
5030 	int queue;
5031 
5032 	/* Disable port */
5033 	mvneta_port_disable(pp);
5034 
5035 	/* Set port default values */
5036 	mvneta_defaults_set(pp);
5037 
5038 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5039 	if (!pp->txqs)
5040 		return -ENOMEM;
5041 
5042 	/* Initialize TX descriptor rings */
5043 	for (queue = 0; queue < txq_number; queue++) {
5044 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5045 		txq->id = queue;
5046 		txq->size = pp->tx_ring_size;
5047 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5048 	}
5049 
5050 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5051 	if (!pp->rxqs)
5052 		return -ENOMEM;
5053 
5054 	/* Create Rx descriptor rings */
5055 	for (queue = 0; queue < rxq_number; queue++) {
5056 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5057 		rxq->id = queue;
5058 		rxq->size = pp->rx_ring_size;
5059 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5060 		rxq->time_coal = MVNETA_RX_COAL_USEC;
5061 		rxq->buf_virt_addr
5062 			= devm_kmalloc_array(pp->dev->dev.parent,
5063 					     rxq->size,
5064 					     sizeof(*rxq->buf_virt_addr),
5065 					     GFP_KERNEL);
5066 		if (!rxq->buf_virt_addr)
5067 			return -ENOMEM;
5068 	}
5069 
5070 	return 0;
5071 }
5072 
5073 /* platform glue : initialize decoding windows */
5074 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5075 				     const struct mbus_dram_target_info *dram)
5076 {
5077 	u32 win_enable;
5078 	u32 win_protect;
5079 	int i;
5080 
5081 	for (i = 0; i < 6; i++) {
5082 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5083 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5084 
5085 		if (i < 4)
5086 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5087 	}
5088 
5089 	win_enable = 0x3f;
5090 	win_protect = 0;
5091 
5092 	if (dram) {
5093 		for (i = 0; i < dram->num_cs; i++) {
5094 			const struct mbus_dram_window *cs = dram->cs + i;
5095 
5096 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5097 				    (cs->base & 0xffff0000) |
5098 				    (cs->mbus_attr << 8) |
5099 				    dram->mbus_dram_target_id);
5100 
5101 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5102 				    (cs->size - 1) & 0xffff0000);
5103 
5104 			win_enable &= ~(1 << i);
5105 			win_protect |= 3 << (2 * i);
5106 		}
5107 	} else {
5108 		/* For Armada3700 open default 4GB Mbus window, leaving
5109 		 * arbitration of target/attribute to a different layer
5110 		 * of configuration.
5111 		 */
5112 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5113 		win_enable &= ~BIT(0);
5114 		win_protect = 3;
5115 	}
5116 
5117 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5118 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5119 }
5120 
5121 /* Power up the port */
5122 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5123 {
5124 	/* MAC Cause register should be cleared */
5125 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5126 
5127 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5128 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5129 	    !phy_interface_mode_is_8023z(phy_mode) &&
5130 	    !phy_interface_mode_is_rgmii(phy_mode))
5131 		return -EINVAL;
5132 
5133 	return 0;
5134 }
5135 
5136 /* Device initialization routine */
5137 static int mvneta_probe(struct platform_device *pdev)
5138 {
5139 	struct device_node *dn = pdev->dev.of_node;
5140 	struct device_node *bm_node;
5141 	struct mvneta_port *pp;
5142 	struct net_device *dev;
5143 	struct phylink *phylink;
5144 	struct phy *comphy;
5145 	const char *dt_mac_addr;
5146 	char hw_mac_addr[ETH_ALEN];
5147 	phy_interface_t phy_mode;
5148 	const char *mac_from;
5149 	int tx_csum_limit;
5150 	int err;
5151 	int cpu;
5152 
5153 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5154 				      txq_number, rxq_number);
5155 	if (!dev)
5156 		return -ENOMEM;
5157 
5158 	dev->irq = irq_of_parse_and_map(dn, 0);
5159 	if (dev->irq == 0)
5160 		return -EINVAL;
5161 
5162 	err = of_get_phy_mode(dn, &phy_mode);
5163 	if (err) {
5164 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5165 		goto err_free_irq;
5166 	}
5167 
5168 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5169 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5170 		err = -EPROBE_DEFER;
5171 		goto err_free_irq;
5172 	} else if (IS_ERR(comphy)) {
5173 		comphy = NULL;
5174 	}
5175 
5176 	pp = netdev_priv(dev);
5177 	spin_lock_init(&pp->lock);
5178 
5179 	pp->phylink_config.dev = &dev->dev;
5180 	pp->phylink_config.type = PHYLINK_NETDEV;
5181 
5182 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5183 				 phy_mode, &mvneta_phylink_ops);
5184 	if (IS_ERR(phylink)) {
5185 		err = PTR_ERR(phylink);
5186 		goto err_free_irq;
5187 	}
5188 
5189 	dev->tx_queue_len = MVNETA_MAX_TXD;
5190 	dev->watchdog_timeo = 5 * HZ;
5191 	dev->netdev_ops = &mvneta_netdev_ops;
5192 
5193 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5194 
5195 	pp->phylink = phylink;
5196 	pp->comphy = comphy;
5197 	pp->phy_interface = phy_mode;
5198 	pp->dn = dn;
5199 
5200 	pp->rxq_def = rxq_def;
5201 	pp->indir[0] = rxq_def;
5202 
5203 	/* Get special SoC configurations */
5204 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5205 		pp->neta_armada3700 = true;
5206 
5207 	pp->clk = devm_clk_get(&pdev->dev, "core");
5208 	if (IS_ERR(pp->clk))
5209 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5210 	if (IS_ERR(pp->clk)) {
5211 		err = PTR_ERR(pp->clk);
5212 		goto err_free_phylink;
5213 	}
5214 
5215 	clk_prepare_enable(pp->clk);
5216 
5217 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5218 	if (!IS_ERR(pp->clk_bus))
5219 		clk_prepare_enable(pp->clk_bus);
5220 
5221 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5222 	if (IS_ERR(pp->base)) {
5223 		err = PTR_ERR(pp->base);
5224 		goto err_clk;
5225 	}
5226 
5227 	/* Alloc per-cpu port structure */
5228 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5229 	if (!pp->ports) {
5230 		err = -ENOMEM;
5231 		goto err_clk;
5232 	}
5233 
5234 	/* Alloc per-cpu stats */
5235 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5236 	if (!pp->stats) {
5237 		err = -ENOMEM;
5238 		goto err_free_ports;
5239 	}
5240 
5241 	dt_mac_addr = of_get_mac_address(dn);
5242 	if (!IS_ERR(dt_mac_addr)) {
5243 		mac_from = "device tree";
5244 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5245 	} else {
5246 		mvneta_get_mac_addr(pp, hw_mac_addr);
5247 		if (is_valid_ether_addr(hw_mac_addr)) {
5248 			mac_from = "hardware";
5249 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5250 		} else {
5251 			mac_from = "random";
5252 			eth_hw_addr_random(dev);
5253 		}
5254 	}
5255 
5256 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5257 		if (tx_csum_limit < 0 ||
5258 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5259 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5260 			dev_info(&pdev->dev,
5261 				 "Wrong TX csum limit in DT, set to %dB\n",
5262 				 MVNETA_TX_CSUM_DEF_SIZE);
5263 		}
5264 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5265 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5266 	} else {
5267 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5268 	}
5269 
5270 	pp->tx_csum_limit = tx_csum_limit;
5271 
5272 	pp->dram_target_info = mv_mbus_dram_info();
5273 	/* Armada3700 requires setting default configuration of Mbus
5274 	 * windows, however without using filled mbus_dram_target_info
5275 	 * structure.
5276 	 */
5277 	if (pp->dram_target_info || pp->neta_armada3700)
5278 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5279 
5280 	pp->tx_ring_size = MVNETA_MAX_TXD;
5281 	pp->rx_ring_size = MVNETA_MAX_RXD;
5282 
5283 	pp->dev = dev;
5284 	SET_NETDEV_DEV(dev, &pdev->dev);
5285 
5286 	pp->id = global_port_id++;
5287 
5288 	/* Obtain access to BM resources if enabled and already initialized */
5289 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5290 	if (bm_node) {
5291 		pp->bm_priv = mvneta_bm_get(bm_node);
5292 		if (pp->bm_priv) {
5293 			err = mvneta_bm_port_init(pdev, pp);
5294 			if (err < 0) {
5295 				dev_info(&pdev->dev,
5296 					 "use SW buffer management\n");
5297 				mvneta_bm_put(pp->bm_priv);
5298 				pp->bm_priv = NULL;
5299 			}
5300 		}
5301 		/* Set RX packet offset correction for platforms, whose
5302 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5303 		 * platforms and 0B for 32-bit ones.
5304 		 */
5305 		pp->rx_offset_correction = max(0,
5306 					       NET_SKB_PAD -
5307 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5308 	}
5309 	of_node_put(bm_node);
5310 
5311 	/* sw buffer management */
5312 	if (!pp->bm_priv)
5313 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5314 
5315 	err = mvneta_init(&pdev->dev, pp);
5316 	if (err < 0)
5317 		goto err_netdev;
5318 
5319 	err = mvneta_port_power_up(pp, pp->phy_interface);
5320 	if (err < 0) {
5321 		dev_err(&pdev->dev, "can't power up port\n");
5322 		goto err_netdev;
5323 	}
5324 
5325 	/* Armada3700 network controller does not support per-cpu
5326 	 * operation, so only single NAPI should be initialized.
5327 	 */
5328 	if (pp->neta_armada3700) {
5329 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5330 	} else {
5331 		for_each_present_cpu(cpu) {
5332 			struct mvneta_pcpu_port *port =
5333 				per_cpu_ptr(pp->ports, cpu);
5334 
5335 			netif_napi_add(dev, &port->napi, mvneta_poll,
5336 				       NAPI_POLL_WEIGHT);
5337 			port->pp = pp;
5338 		}
5339 	}
5340 
5341 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5342 			NETIF_F_TSO | NETIF_F_RXCSUM;
5343 	dev->hw_features |= dev->features;
5344 	dev->vlan_features |= dev->features;
5345 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5346 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5347 
5348 	/* MTU range: 68 - 9676 */
5349 	dev->min_mtu = ETH_MIN_MTU;
5350 	/* 9676 == 9700 - 20 and rounding to 8 */
5351 	dev->max_mtu = 9676;
5352 
5353 	err = register_netdev(dev);
5354 	if (err < 0) {
5355 		dev_err(&pdev->dev, "failed to register\n");
5356 		goto err_netdev;
5357 	}
5358 
5359 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5360 		    dev->dev_addr);
5361 
5362 	platform_set_drvdata(pdev, pp->dev);
5363 
5364 	return 0;
5365 
5366 err_netdev:
5367 	if (pp->bm_priv) {
5368 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5369 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5370 				       1 << pp->id);
5371 		mvneta_bm_put(pp->bm_priv);
5372 	}
5373 	free_percpu(pp->stats);
5374 err_free_ports:
5375 	free_percpu(pp->ports);
5376 err_clk:
5377 	clk_disable_unprepare(pp->clk_bus);
5378 	clk_disable_unprepare(pp->clk);
5379 err_free_phylink:
5380 	if (pp->phylink)
5381 		phylink_destroy(pp->phylink);
5382 err_free_irq:
5383 	irq_dispose_mapping(dev->irq);
5384 	return err;
5385 }
5386 
5387 /* Device removal routine */
5388 static int mvneta_remove(struct platform_device *pdev)
5389 {
5390 	struct net_device  *dev = platform_get_drvdata(pdev);
5391 	struct mvneta_port *pp = netdev_priv(dev);
5392 
5393 	unregister_netdev(dev);
5394 	clk_disable_unprepare(pp->clk_bus);
5395 	clk_disable_unprepare(pp->clk);
5396 	free_percpu(pp->ports);
5397 	free_percpu(pp->stats);
5398 	irq_dispose_mapping(dev->irq);
5399 	phylink_destroy(pp->phylink);
5400 
5401 	if (pp->bm_priv) {
5402 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5403 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5404 				       1 << pp->id);
5405 		mvneta_bm_put(pp->bm_priv);
5406 	}
5407 
5408 	return 0;
5409 }
5410 
5411 #ifdef CONFIG_PM_SLEEP
5412 static int mvneta_suspend(struct device *device)
5413 {
5414 	int queue;
5415 	struct net_device *dev = dev_get_drvdata(device);
5416 	struct mvneta_port *pp = netdev_priv(dev);
5417 
5418 	if (!netif_running(dev))
5419 		goto clean_exit;
5420 
5421 	if (!pp->neta_armada3700) {
5422 		spin_lock(&pp->lock);
5423 		pp->is_stopped = true;
5424 		spin_unlock(&pp->lock);
5425 
5426 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5427 						    &pp->node_online);
5428 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5429 						    &pp->node_dead);
5430 	}
5431 
5432 	rtnl_lock();
5433 	mvneta_stop_dev(pp);
5434 	rtnl_unlock();
5435 
5436 	for (queue = 0; queue < rxq_number; queue++) {
5437 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5438 
5439 		mvneta_rxq_drop_pkts(pp, rxq);
5440 	}
5441 
5442 	for (queue = 0; queue < txq_number; queue++) {
5443 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5444 
5445 		mvneta_txq_hw_deinit(pp, txq);
5446 	}
5447 
5448 clean_exit:
5449 	netif_device_detach(dev);
5450 	clk_disable_unprepare(pp->clk_bus);
5451 	clk_disable_unprepare(pp->clk);
5452 
5453 	return 0;
5454 }
5455 
5456 static int mvneta_resume(struct device *device)
5457 {
5458 	struct platform_device *pdev = to_platform_device(device);
5459 	struct net_device *dev = dev_get_drvdata(device);
5460 	struct mvneta_port *pp = netdev_priv(dev);
5461 	int err, queue;
5462 
5463 	clk_prepare_enable(pp->clk);
5464 	if (!IS_ERR(pp->clk_bus))
5465 		clk_prepare_enable(pp->clk_bus);
5466 	if (pp->dram_target_info || pp->neta_armada3700)
5467 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5468 	if (pp->bm_priv) {
5469 		err = mvneta_bm_port_init(pdev, pp);
5470 		if (err < 0) {
5471 			dev_info(&pdev->dev, "use SW buffer management\n");
5472 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5473 			pp->bm_priv = NULL;
5474 		}
5475 	}
5476 	mvneta_defaults_set(pp);
5477 	err = mvneta_port_power_up(pp, pp->phy_interface);
5478 	if (err < 0) {
5479 		dev_err(device, "can't power up port\n");
5480 		return err;
5481 	}
5482 
5483 	netif_device_attach(dev);
5484 
5485 	if (!netif_running(dev))
5486 		return 0;
5487 
5488 	for (queue = 0; queue < rxq_number; queue++) {
5489 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5490 
5491 		rxq->next_desc_to_proc = 0;
5492 		mvneta_rxq_hw_init(pp, rxq);
5493 	}
5494 
5495 	for (queue = 0; queue < txq_number; queue++) {
5496 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5497 
5498 		txq->next_desc_to_proc = 0;
5499 		mvneta_txq_hw_init(pp, txq);
5500 	}
5501 
5502 	if (!pp->neta_armada3700) {
5503 		spin_lock(&pp->lock);
5504 		pp->is_stopped = false;
5505 		spin_unlock(&pp->lock);
5506 		cpuhp_state_add_instance_nocalls(online_hpstate,
5507 						 &pp->node_online);
5508 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5509 						 &pp->node_dead);
5510 	}
5511 
5512 	rtnl_lock();
5513 	mvneta_start_dev(pp);
5514 	rtnl_unlock();
5515 	mvneta_set_rx_mode(dev);
5516 
5517 	return 0;
5518 }
5519 #endif
5520 
5521 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5522 
5523 static const struct of_device_id mvneta_match[] = {
5524 	{ .compatible = "marvell,armada-370-neta" },
5525 	{ .compatible = "marvell,armada-xp-neta" },
5526 	{ .compatible = "marvell,armada-3700-neta" },
5527 	{ }
5528 };
5529 MODULE_DEVICE_TABLE(of, mvneta_match);
5530 
5531 static struct platform_driver mvneta_driver = {
5532 	.probe = mvneta_probe,
5533 	.remove = mvneta_remove,
5534 	.driver = {
5535 		.name = MVNETA_DRIVER_NAME,
5536 		.of_match_table = mvneta_match,
5537 		.pm = &mvneta_pm_ops,
5538 	},
5539 };
5540 
5541 static int __init mvneta_driver_init(void)
5542 {
5543 	int ret;
5544 
5545 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5546 				      mvneta_cpu_online,
5547 				      mvneta_cpu_down_prepare);
5548 	if (ret < 0)
5549 		goto out;
5550 	online_hpstate = ret;
5551 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5552 				      NULL, mvneta_cpu_dead);
5553 	if (ret)
5554 		goto err_dead;
5555 
5556 	ret = platform_driver_register(&mvneta_driver);
5557 	if (ret)
5558 		goto err;
5559 	return 0;
5560 
5561 err:
5562 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5563 err_dead:
5564 	cpuhp_remove_multi_state(online_hpstate);
5565 out:
5566 	return ret;
5567 }
5568 module_init(mvneta_driver_init);
5569 
5570 static void __exit mvneta_driver_exit(void)
5571 {
5572 	platform_driver_unregister(&mvneta_driver);
5573 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5574 	cpuhp_remove_multi_state(online_hpstate);
5575 }
5576 module_exit(mvneta_driver_exit);
5577 
5578 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5579 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5580 MODULE_LICENSE("GPL");
5581 
5582 module_param(rxq_number, int, 0444);
5583 module_param(txq_number, int, 0444);
5584 
5585 module_param(rxq_def, int, 0444);
5586 module_param(rx_copybreak, int, 0644);
5587