1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440 106 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3)) 107 #define MVNETA_PORT_STATUS 0x2444 108 #define MVNETA_TX_IN_PRGRS BIT(1) 109 #define MVNETA_TX_FIFO_EMPTY BIT(8) 110 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 111 /* Only exists on Armada XP and Armada 370 */ 112 #define MVNETA_SERDES_CFG 0x24A0 113 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 114 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 115 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 116 #define MVNETA_TYPE_PRIO 0x24bc 117 #define MVNETA_FORCE_UNI BIT(21) 118 #define MVNETA_TXQ_CMD_1 0x24e4 119 #define MVNETA_TXQ_CMD 0x2448 120 #define MVNETA_TXQ_DISABLE_SHIFT 8 121 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 122 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 123 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 124 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 125 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 126 #define MVNETA_ACC_MODE 0x2500 127 #define MVNETA_BM_ADDRESS 0x2504 128 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 129 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 130 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 131 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 132 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 133 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 134 135 /* Exception Interrupt Port/Queue Cause register 136 * 137 * Their behavior depend of the mapping done using the PCPX2Q 138 * registers. For a given CPU if the bit associated to a queue is not 139 * set, then for the register a read from this CPU will always return 140 * 0 and a write won't do anything 141 */ 142 143 #define MVNETA_INTR_NEW_CAUSE 0x25a0 144 #define MVNETA_INTR_NEW_MASK 0x25a4 145 146 /* bits 0..7 = TXQ SENT, one bit per queue. 147 * bits 8..15 = RXQ OCCUP, one bit per queue. 148 * bits 16..23 = RXQ FREE, one bit per queue. 149 * bit 29 = OLD_REG_SUM, see old reg ? 150 * bit 30 = TX_ERR_SUM, one bit for 4 ports 151 * bit 31 = MISC_SUM, one bit for 4 ports 152 */ 153 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 154 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 155 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 156 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 157 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 158 159 #define MVNETA_INTR_OLD_CAUSE 0x25a8 160 #define MVNETA_INTR_OLD_MASK 0x25ac 161 162 /* Data Path Port/Queue Cause Register */ 163 #define MVNETA_INTR_MISC_CAUSE 0x25b0 164 #define MVNETA_INTR_MISC_MASK 0x25b4 165 166 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 167 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 168 #define MVNETA_CAUSE_PTP BIT(4) 169 170 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 171 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 172 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 173 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 174 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 175 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 176 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 177 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 178 179 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 180 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 181 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 182 183 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 184 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 185 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 186 187 #define MVNETA_INTR_ENABLE 0x25b8 188 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 189 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 190 191 #define MVNETA_RXQ_CMD 0x2680 192 #define MVNETA_RXQ_DISABLE_SHIFT 8 193 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 194 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 195 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 196 #define MVNETA_GMAC_CTRL_0 0x2c00 197 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 198 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 199 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 200 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 201 #define MVNETA_GMAC_CTRL_2 0x2c08 202 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 203 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 204 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 205 #define MVNETA_GMAC2_PORT_RESET BIT(6) 206 #define MVNETA_GMAC_STATUS 0x2c10 207 #define MVNETA_GMAC_LINK_UP BIT(0) 208 #define MVNETA_GMAC_SPEED_1000 BIT(1) 209 #define MVNETA_GMAC_SPEED_100 BIT(2) 210 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 211 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 212 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 213 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 214 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 215 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 216 #define MVNETA_GMAC_SYNC_OK BIT(14) 217 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 218 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 219 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 220 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 221 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 222 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 223 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 224 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 225 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 226 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 227 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 228 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 229 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 230 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 231 #define MVNETA_GMAC_CTRL_4 0x2c90 232 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 233 #define MVNETA_MIB_COUNTERS_BASE 0x3000 234 #define MVNETA_MIB_LATE_COLLISION 0x7c 235 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 236 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 237 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 238 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 239 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 240 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 241 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 242 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 243 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 244 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 245 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 246 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 247 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 248 #define MVNETA_PORT_TX_RESET 0x3cf0 249 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 250 #define MVNETA_TX_MTU 0x3e0c 251 #define MVNETA_TX_TOKEN_SIZE 0x3e14 252 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 253 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 254 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 255 256 #define MVNETA_LPI_CTRL_0 0x2cc0 257 #define MVNETA_LPI_CTRL_1 0x2cc4 258 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 259 #define MVNETA_LPI_CTRL_2 0x2cc8 260 #define MVNETA_LPI_STATUS 0x2ccc 261 262 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 263 264 /* Descriptor ring Macros */ 265 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 266 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 267 268 /* Various constants */ 269 270 /* Coalescing */ 271 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 272 #define MVNETA_RX_COAL_PKTS 32 273 #define MVNETA_RX_COAL_USEC 100 274 275 /* The two bytes Marvell header. Either contains a special value used 276 * by Marvell switches when a specific hardware mode is enabled (not 277 * supported by this driver) or is filled automatically by zeroes on 278 * the RX side. Those two bytes being at the front of the Ethernet 279 * header, they allow to have the IP header aligned on a 4 bytes 280 * boundary automatically: the hardware skips those two bytes on its 281 * own. 282 */ 283 #define MVNETA_MH_SIZE 2 284 285 #define MVNETA_VLAN_TAG_LEN 4 286 287 #define MVNETA_TX_CSUM_DEF_SIZE 1600 288 #define MVNETA_TX_CSUM_MAX_SIZE 9800 289 #define MVNETA_ACC_MODE_EXT1 1 290 #define MVNETA_ACC_MODE_EXT2 2 291 292 #define MVNETA_MAX_DECODE_WIN 6 293 294 /* Timeout constants */ 295 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 296 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 297 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 298 299 #define MVNETA_TX_MTU_MAX 0x3ffff 300 301 /* The RSS lookup table actually has 256 entries but we do not use 302 * them yet 303 */ 304 #define MVNETA_RSS_LU_TABLE_SIZE 1 305 306 /* Max number of Rx descriptors */ 307 #define MVNETA_MAX_RXD 512 308 309 /* Max number of Tx descriptors */ 310 #define MVNETA_MAX_TXD 1024 311 312 /* Max number of allowed TCP segments for software TSO */ 313 #define MVNETA_MAX_TSO_SEGS 100 314 315 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 316 317 /* descriptor aligned size */ 318 #define MVNETA_DESC_ALIGNED_SIZE 32 319 320 /* Number of bytes to be taken into account by HW when putting incoming data 321 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 322 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 323 */ 324 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 325 326 #define MVNETA_RX_PKT_SIZE(mtu) \ 327 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 328 ETH_HLEN + ETH_FCS_LEN, \ 329 cache_line_size()) 330 331 /* Driver assumes that the last 3 bits are 0 */ 332 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 333 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 334 MVNETA_SKB_HEADROOM)) 335 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 336 337 #define IS_TSO_HEADER(txq, addr) \ 338 ((addr >= txq->tso_hdrs_phys) && \ 339 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 340 341 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 342 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 343 344 enum { 345 ETHTOOL_STAT_EEE_WAKEUP, 346 ETHTOOL_STAT_SKB_ALLOC_ERR, 347 ETHTOOL_STAT_REFILL_ERR, 348 ETHTOOL_XDP_REDIRECT, 349 ETHTOOL_XDP_PASS, 350 ETHTOOL_XDP_DROP, 351 ETHTOOL_XDP_TX, 352 ETHTOOL_XDP_TX_ERR, 353 ETHTOOL_XDP_XMIT, 354 ETHTOOL_XDP_XMIT_ERR, 355 ETHTOOL_MAX_STATS, 356 }; 357 358 struct mvneta_statistic { 359 unsigned short offset; 360 unsigned short type; 361 const char name[ETH_GSTRING_LEN]; 362 }; 363 364 #define T_REG_32 32 365 #define T_REG_64 64 366 #define T_SW 1 367 368 #define MVNETA_XDP_PASS 0 369 #define MVNETA_XDP_DROPPED BIT(0) 370 #define MVNETA_XDP_TX BIT(1) 371 #define MVNETA_XDP_REDIR BIT(2) 372 373 static const struct mvneta_statistic mvneta_statistics[] = { 374 { 0x3000, T_REG_64, "good_octets_received", }, 375 { 0x3010, T_REG_32, "good_frames_received", }, 376 { 0x3008, T_REG_32, "bad_octets_received", }, 377 { 0x3014, T_REG_32, "bad_frames_received", }, 378 { 0x3018, T_REG_32, "broadcast_frames_received", }, 379 { 0x301c, T_REG_32, "multicast_frames_received", }, 380 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 381 { 0x3058, T_REG_32, "good_fc_received", }, 382 { 0x305c, T_REG_32, "bad_fc_received", }, 383 { 0x3060, T_REG_32, "undersize_received", }, 384 { 0x3064, T_REG_32, "fragments_received", }, 385 { 0x3068, T_REG_32, "oversize_received", }, 386 { 0x306c, T_REG_32, "jabber_received", }, 387 { 0x3070, T_REG_32, "mac_receive_error", }, 388 { 0x3074, T_REG_32, "bad_crc_event", }, 389 { 0x3078, T_REG_32, "collision", }, 390 { 0x307c, T_REG_32, "late_collision", }, 391 { 0x2484, T_REG_32, "rx_discard", }, 392 { 0x2488, T_REG_32, "rx_overrun", }, 393 { 0x3020, T_REG_32, "frames_64_octets", }, 394 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 395 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 396 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 397 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 398 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 399 { 0x3038, T_REG_64, "good_octets_sent", }, 400 { 0x3040, T_REG_32, "good_frames_sent", }, 401 { 0x3044, T_REG_32, "excessive_collision", }, 402 { 0x3048, T_REG_32, "multicast_frames_sent", }, 403 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 404 { 0x3054, T_REG_32, "fc_sent", }, 405 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 406 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 407 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 408 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 409 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 410 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 411 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 412 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 413 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 414 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 415 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 416 }; 417 418 struct mvneta_stats { 419 u64 rx_packets; 420 u64 rx_bytes; 421 u64 tx_packets; 422 u64 tx_bytes; 423 /* xdp */ 424 u64 xdp_redirect; 425 u64 xdp_pass; 426 u64 xdp_drop; 427 u64 xdp_xmit; 428 u64 xdp_xmit_err; 429 u64 xdp_tx; 430 u64 xdp_tx_err; 431 }; 432 433 struct mvneta_ethtool_stats { 434 struct mvneta_stats ps; 435 u64 skb_alloc_error; 436 u64 refill_error; 437 }; 438 439 struct mvneta_pcpu_stats { 440 struct u64_stats_sync syncp; 441 442 struct mvneta_ethtool_stats es; 443 u64 rx_dropped; 444 u64 rx_errors; 445 }; 446 447 struct mvneta_pcpu_port { 448 /* Pointer to the shared port */ 449 struct mvneta_port *pp; 450 451 /* Pointer to the CPU-local NAPI struct */ 452 struct napi_struct napi; 453 454 /* Cause of the previous interrupt */ 455 u32 cause_rx_tx; 456 }; 457 458 enum { 459 __MVNETA_DOWN, 460 }; 461 462 struct mvneta_port { 463 u8 id; 464 struct mvneta_pcpu_port __percpu *ports; 465 struct mvneta_pcpu_stats __percpu *stats; 466 467 unsigned long state; 468 469 int pkt_size; 470 void __iomem *base; 471 struct mvneta_rx_queue *rxqs; 472 struct mvneta_tx_queue *txqs; 473 struct net_device *dev; 474 struct hlist_node node_online; 475 struct hlist_node node_dead; 476 int rxq_def; 477 /* Protect the access to the percpu interrupt registers, 478 * ensuring that the configuration remains coherent. 479 */ 480 spinlock_t lock; 481 bool is_stopped; 482 483 u32 cause_rx_tx; 484 struct napi_struct napi; 485 486 struct bpf_prog *xdp_prog; 487 488 /* Core clock */ 489 struct clk *clk; 490 /* AXI clock */ 491 struct clk *clk_bus; 492 u8 mcast_count[256]; 493 u16 tx_ring_size; 494 u16 rx_ring_size; 495 u8 prio_tc_map[8]; 496 497 phy_interface_t phy_interface; 498 struct device_node *dn; 499 unsigned int tx_csum_limit; 500 struct phylink *phylink; 501 struct phylink_config phylink_config; 502 struct phy *comphy; 503 504 struct mvneta_bm *bm_priv; 505 struct mvneta_bm_pool *pool_long; 506 struct mvneta_bm_pool *pool_short; 507 int bm_win_id; 508 509 bool eee_enabled; 510 bool eee_active; 511 bool tx_lpi_enabled; 512 513 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 514 515 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 516 517 /* Flags for special SoC configurations */ 518 bool neta_armada3700; 519 u16 rx_offset_correction; 520 const struct mbus_dram_target_info *dram_target_info; 521 }; 522 523 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 524 * layout of the transmit and reception DMA descriptors, and their 525 * layout is therefore defined by the hardware design 526 */ 527 528 #define MVNETA_TX_L3_OFF_SHIFT 0 529 #define MVNETA_TX_IP_HLEN_SHIFT 8 530 #define MVNETA_TX_L4_UDP BIT(16) 531 #define MVNETA_TX_L3_IP6 BIT(17) 532 #define MVNETA_TXD_IP_CSUM BIT(18) 533 #define MVNETA_TXD_Z_PAD BIT(19) 534 #define MVNETA_TXD_L_DESC BIT(20) 535 #define MVNETA_TXD_F_DESC BIT(21) 536 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 537 MVNETA_TXD_L_DESC | \ 538 MVNETA_TXD_F_DESC) 539 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 540 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 541 542 #define MVNETA_RXD_ERR_CRC 0x0 543 #define MVNETA_RXD_BM_POOL_SHIFT 13 544 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 545 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 546 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 547 #define MVNETA_RXD_ERR_LEN BIT(18) 548 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 549 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 550 #define MVNETA_RXD_L3_IP4 BIT(25) 551 #define MVNETA_RXD_LAST_DESC BIT(26) 552 #define MVNETA_RXD_FIRST_DESC BIT(27) 553 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 554 MVNETA_RXD_LAST_DESC) 555 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 556 557 #if defined(__LITTLE_ENDIAN) 558 struct mvneta_tx_desc { 559 u32 command; /* Options used by HW for packet transmitting.*/ 560 u16 reserved1; /* csum_l4 (for future use) */ 561 u16 data_size; /* Data size of transmitted packet in bytes */ 562 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 563 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 564 u32 reserved3[4]; /* Reserved - (for future use) */ 565 }; 566 567 struct mvneta_rx_desc { 568 u32 status; /* Info about received packet */ 569 u16 reserved1; /* pnc_info - (for future use, PnC) */ 570 u16 data_size; /* Size of received packet in bytes */ 571 572 u32 buf_phys_addr; /* Physical address of the buffer */ 573 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 574 575 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 576 u16 reserved3; /* prefetch_cmd, for future use */ 577 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 578 579 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 580 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 581 }; 582 #else 583 struct mvneta_tx_desc { 584 u16 data_size; /* Data size of transmitted packet in bytes */ 585 u16 reserved1; /* csum_l4 (for future use) */ 586 u32 command; /* Options used by HW for packet transmitting.*/ 587 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 588 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 589 u32 reserved3[4]; /* Reserved - (for future use) */ 590 }; 591 592 struct mvneta_rx_desc { 593 u16 data_size; /* Size of received packet in bytes */ 594 u16 reserved1; /* pnc_info - (for future use, PnC) */ 595 u32 status; /* Info about received packet */ 596 597 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 598 u32 buf_phys_addr; /* Physical address of the buffer */ 599 600 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 601 u16 reserved3; /* prefetch_cmd, for future use */ 602 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 603 604 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 605 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 606 }; 607 #endif 608 609 enum mvneta_tx_buf_type { 610 MVNETA_TYPE_SKB, 611 MVNETA_TYPE_XDP_TX, 612 MVNETA_TYPE_XDP_NDO, 613 }; 614 615 struct mvneta_tx_buf { 616 enum mvneta_tx_buf_type type; 617 union { 618 struct xdp_frame *xdpf; 619 struct sk_buff *skb; 620 }; 621 }; 622 623 struct mvneta_tx_queue { 624 /* Number of this TX queue, in the range 0-7 */ 625 u8 id; 626 627 /* Number of TX DMA descriptors in the descriptor ring */ 628 int size; 629 630 /* Number of currently used TX DMA descriptor in the 631 * descriptor ring 632 */ 633 int count; 634 int pending; 635 int tx_stop_threshold; 636 int tx_wake_threshold; 637 638 /* Array of transmitted buffers */ 639 struct mvneta_tx_buf *buf; 640 641 /* Index of last TX DMA descriptor that was inserted */ 642 int txq_put_index; 643 644 /* Index of the TX DMA descriptor to be cleaned up */ 645 int txq_get_index; 646 647 u32 done_pkts_coal; 648 649 /* Virtual address of the TX DMA descriptors array */ 650 struct mvneta_tx_desc *descs; 651 652 /* DMA address of the TX DMA descriptors array */ 653 dma_addr_t descs_phys; 654 655 /* Index of the last TX DMA descriptor */ 656 int last_desc; 657 658 /* Index of the next TX DMA descriptor to process */ 659 int next_desc_to_proc; 660 661 /* DMA buffers for TSO headers */ 662 char *tso_hdrs; 663 664 /* DMA address of TSO headers */ 665 dma_addr_t tso_hdrs_phys; 666 667 /* Affinity mask for CPUs*/ 668 cpumask_t affinity_mask; 669 }; 670 671 struct mvneta_rx_queue { 672 /* rx queue number, in the range 0-7 */ 673 u8 id; 674 675 /* num of rx descriptors in the rx descriptor ring */ 676 int size; 677 678 u32 pkts_coal; 679 u32 time_coal; 680 681 /* page_pool */ 682 struct page_pool *page_pool; 683 struct xdp_rxq_info xdp_rxq; 684 685 /* Virtual address of the RX buffer */ 686 void **buf_virt_addr; 687 688 /* Virtual address of the RX DMA descriptors array */ 689 struct mvneta_rx_desc *descs; 690 691 /* DMA address of the RX DMA descriptors array */ 692 dma_addr_t descs_phys; 693 694 /* Index of the last RX DMA descriptor */ 695 int last_desc; 696 697 /* Index of the next RX DMA descriptor to process */ 698 int next_desc_to_proc; 699 700 /* Index of first RX DMA descriptor to refill */ 701 int first_to_refill; 702 u32 refill_num; 703 }; 704 705 static enum cpuhp_state online_hpstate; 706 /* The hardware supports eight (8) rx queues, but we are only allowing 707 * the first one to be used. Therefore, let's just allocate one queue. 708 */ 709 static int rxq_number = 8; 710 static int txq_number = 8; 711 712 static int rxq_def; 713 714 static int rx_copybreak __read_mostly = 256; 715 716 /* HW BM need that each port be identify by a unique ID */ 717 static int global_port_id; 718 719 #define MVNETA_DRIVER_NAME "mvneta" 720 #define MVNETA_DRIVER_VERSION "1.0" 721 722 /* Utility/helper methods */ 723 724 /* Write helper method */ 725 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 726 { 727 writel(data, pp->base + offset); 728 } 729 730 /* Read helper method */ 731 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 732 { 733 return readl(pp->base + offset); 734 } 735 736 /* Increment txq get counter */ 737 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 738 { 739 txq->txq_get_index++; 740 if (txq->txq_get_index == txq->size) 741 txq->txq_get_index = 0; 742 } 743 744 /* Increment txq put counter */ 745 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 746 { 747 txq->txq_put_index++; 748 if (txq->txq_put_index == txq->size) 749 txq->txq_put_index = 0; 750 } 751 752 753 /* Clear all MIB counters */ 754 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 755 { 756 int i; 757 758 /* Perform dummy reads from MIB counters */ 759 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 760 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 761 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 762 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 763 } 764 765 /* Get System Network Statistics */ 766 static void 767 mvneta_get_stats64(struct net_device *dev, 768 struct rtnl_link_stats64 *stats) 769 { 770 struct mvneta_port *pp = netdev_priv(dev); 771 unsigned int start; 772 int cpu; 773 774 for_each_possible_cpu(cpu) { 775 struct mvneta_pcpu_stats *cpu_stats; 776 u64 rx_packets; 777 u64 rx_bytes; 778 u64 rx_dropped; 779 u64 rx_errors; 780 u64 tx_packets; 781 u64 tx_bytes; 782 783 cpu_stats = per_cpu_ptr(pp->stats, cpu); 784 do { 785 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 786 rx_packets = cpu_stats->es.ps.rx_packets; 787 rx_bytes = cpu_stats->es.ps.rx_bytes; 788 rx_dropped = cpu_stats->rx_dropped; 789 rx_errors = cpu_stats->rx_errors; 790 tx_packets = cpu_stats->es.ps.tx_packets; 791 tx_bytes = cpu_stats->es.ps.tx_bytes; 792 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 793 794 stats->rx_packets += rx_packets; 795 stats->rx_bytes += rx_bytes; 796 stats->rx_dropped += rx_dropped; 797 stats->rx_errors += rx_errors; 798 stats->tx_packets += tx_packets; 799 stats->tx_bytes += tx_bytes; 800 } 801 802 stats->tx_dropped = dev->stats.tx_dropped; 803 } 804 805 /* Rx descriptors helper methods */ 806 807 /* Checks whether the RX descriptor having this status is both the first 808 * and the last descriptor for the RX packet. Each RX packet is currently 809 * received through a single RX descriptor, so not having each RX 810 * descriptor with its first and last bits set is an error 811 */ 812 static int mvneta_rxq_desc_is_first_last(u32 status) 813 { 814 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 815 MVNETA_RXD_FIRST_LAST_DESC; 816 } 817 818 /* Add number of descriptors ready to receive new packets */ 819 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 820 struct mvneta_rx_queue *rxq, 821 int ndescs) 822 { 823 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 824 * be added at once 825 */ 826 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 827 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 828 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 829 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 830 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 831 } 832 833 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 834 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 835 } 836 837 /* Get number of RX descriptors occupied by received packets */ 838 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 839 struct mvneta_rx_queue *rxq) 840 { 841 u32 val; 842 843 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 844 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 845 } 846 847 /* Update num of rx desc called upon return from rx path or 848 * from mvneta_rxq_drop_pkts(). 849 */ 850 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 851 struct mvneta_rx_queue *rxq, 852 int rx_done, int rx_filled) 853 { 854 u32 val; 855 856 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 857 val = rx_done | 858 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 859 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 860 return; 861 } 862 863 /* Only 255 descriptors can be added at once */ 864 while ((rx_done > 0) || (rx_filled > 0)) { 865 if (rx_done <= 0xff) { 866 val = rx_done; 867 rx_done = 0; 868 } else { 869 val = 0xff; 870 rx_done -= 0xff; 871 } 872 if (rx_filled <= 0xff) { 873 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 874 rx_filled = 0; 875 } else { 876 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 877 rx_filled -= 0xff; 878 } 879 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 880 } 881 } 882 883 /* Get pointer to next RX descriptor to be processed by SW */ 884 static struct mvneta_rx_desc * 885 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 886 { 887 int rx_desc = rxq->next_desc_to_proc; 888 889 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 890 prefetch(rxq->descs + rxq->next_desc_to_proc); 891 return rxq->descs + rx_desc; 892 } 893 894 /* Change maximum receive size of the port. */ 895 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 896 { 897 u32 val; 898 899 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 900 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 901 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 902 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 903 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 904 } 905 906 907 /* Set rx queue offset */ 908 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 909 struct mvneta_rx_queue *rxq, 910 int offset) 911 { 912 u32 val; 913 914 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 915 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 916 917 /* Offset is in */ 918 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 919 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 920 } 921 922 923 /* Tx descriptors helper methods */ 924 925 /* Update HW with number of TX descriptors to be sent */ 926 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 927 struct mvneta_tx_queue *txq, 928 int pend_desc) 929 { 930 u32 val; 931 932 pend_desc += txq->pending; 933 934 /* Only 255 Tx descriptors can be added at once */ 935 do { 936 val = min(pend_desc, 255); 937 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 938 pend_desc -= val; 939 } while (pend_desc > 0); 940 txq->pending = 0; 941 } 942 943 /* Get pointer to next TX descriptor to be processed (send) by HW */ 944 static struct mvneta_tx_desc * 945 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 946 { 947 int tx_desc = txq->next_desc_to_proc; 948 949 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 950 return txq->descs + tx_desc; 951 } 952 953 /* Release the last allocated TX descriptor. Useful to handle DMA 954 * mapping failures in the TX path. 955 */ 956 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 957 { 958 if (txq->next_desc_to_proc == 0) 959 txq->next_desc_to_proc = txq->last_desc - 1; 960 else 961 txq->next_desc_to_proc--; 962 } 963 964 /* Set rxq buf size */ 965 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 966 struct mvneta_rx_queue *rxq, 967 int buf_size) 968 { 969 u32 val; 970 971 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 972 973 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 974 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 975 976 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 977 } 978 979 /* Disable buffer management (BM) */ 980 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 981 struct mvneta_rx_queue *rxq) 982 { 983 u32 val; 984 985 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 986 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 987 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 988 } 989 990 /* Enable buffer management (BM) */ 991 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 992 struct mvneta_rx_queue *rxq) 993 { 994 u32 val; 995 996 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 997 val |= MVNETA_RXQ_HW_BUF_ALLOC; 998 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 999 } 1000 1001 /* Notify HW about port's assignment of pool for bigger packets */ 1002 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1003 struct mvneta_rx_queue *rxq) 1004 { 1005 u32 val; 1006 1007 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1008 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1009 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1010 1011 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1012 } 1013 1014 /* Notify HW about port's assignment of pool for smaller packets */ 1015 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1016 struct mvneta_rx_queue *rxq) 1017 { 1018 u32 val; 1019 1020 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1021 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1022 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1023 1024 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1025 } 1026 1027 /* Set port's receive buffer size for assigned BM pool */ 1028 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1029 int buf_size, 1030 u8 pool_id) 1031 { 1032 u32 val; 1033 1034 if (!IS_ALIGNED(buf_size, 8)) { 1035 dev_warn(pp->dev->dev.parent, 1036 "illegal buf_size value %d, round to %d\n", 1037 buf_size, ALIGN(buf_size, 8)); 1038 buf_size = ALIGN(buf_size, 8); 1039 } 1040 1041 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1042 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1043 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1044 } 1045 1046 /* Configure MBUS window in order to enable access BM internal SRAM */ 1047 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1048 u8 target, u8 attr) 1049 { 1050 u32 win_enable, win_protect; 1051 int i; 1052 1053 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1054 1055 if (pp->bm_win_id < 0) { 1056 /* Find first not occupied window */ 1057 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1058 if (win_enable & (1 << i)) { 1059 pp->bm_win_id = i; 1060 break; 1061 } 1062 } 1063 if (i == MVNETA_MAX_DECODE_WIN) 1064 return -ENOMEM; 1065 } else { 1066 i = pp->bm_win_id; 1067 } 1068 1069 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1070 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1071 1072 if (i < 4) 1073 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1074 1075 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1076 (attr << 8) | target); 1077 1078 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1079 1080 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1081 win_protect |= 3 << (2 * i); 1082 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1083 1084 win_enable &= ~(1 << i); 1085 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1086 1087 return 0; 1088 } 1089 1090 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1091 { 1092 u32 wsize; 1093 u8 target, attr; 1094 int err; 1095 1096 /* Get BM window information */ 1097 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1098 &target, &attr); 1099 if (err < 0) 1100 return err; 1101 1102 pp->bm_win_id = -1; 1103 1104 /* Open NETA -> BM window */ 1105 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1106 target, attr); 1107 if (err < 0) { 1108 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1109 return err; 1110 } 1111 return 0; 1112 } 1113 1114 /* Assign and initialize pools for port. In case of fail 1115 * buffer manager will remain disabled for current port. 1116 */ 1117 static int mvneta_bm_port_init(struct platform_device *pdev, 1118 struct mvneta_port *pp) 1119 { 1120 struct device_node *dn = pdev->dev.of_node; 1121 u32 long_pool_id, short_pool_id; 1122 1123 if (!pp->neta_armada3700) { 1124 int ret; 1125 1126 ret = mvneta_bm_port_mbus_init(pp); 1127 if (ret) 1128 return ret; 1129 } 1130 1131 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1132 netdev_info(pp->dev, "missing long pool id\n"); 1133 return -EINVAL; 1134 } 1135 1136 /* Create port's long pool depending on mtu */ 1137 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1138 MVNETA_BM_LONG, pp->id, 1139 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1140 if (!pp->pool_long) { 1141 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1142 return -ENOMEM; 1143 } 1144 1145 pp->pool_long->port_map |= 1 << pp->id; 1146 1147 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1148 pp->pool_long->id); 1149 1150 /* If short pool id is not defined, assume using single pool */ 1151 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1152 short_pool_id = long_pool_id; 1153 1154 /* Create port's short pool */ 1155 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1156 MVNETA_BM_SHORT, pp->id, 1157 MVNETA_BM_SHORT_PKT_SIZE); 1158 if (!pp->pool_short) { 1159 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1160 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1161 return -ENOMEM; 1162 } 1163 1164 if (short_pool_id != long_pool_id) { 1165 pp->pool_short->port_map |= 1 << pp->id; 1166 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1167 pp->pool_short->id); 1168 } 1169 1170 return 0; 1171 } 1172 1173 /* Update settings of a pool for bigger packets */ 1174 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1175 { 1176 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1177 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1178 int num; 1179 1180 /* Release all buffers from long pool */ 1181 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1182 if (hwbm_pool->buf_num) { 1183 WARN(1, "cannot free all buffers in pool %d\n", 1184 bm_pool->id); 1185 goto bm_mtu_err; 1186 } 1187 1188 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1189 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1190 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1191 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1192 1193 /* Fill entire long pool */ 1194 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1195 if (num != hwbm_pool->size) { 1196 WARN(1, "pool %d: %d of %d allocated\n", 1197 bm_pool->id, num, hwbm_pool->size); 1198 goto bm_mtu_err; 1199 } 1200 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1201 1202 return; 1203 1204 bm_mtu_err: 1205 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1206 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1207 1208 pp->bm_priv = NULL; 1209 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1210 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1211 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1212 } 1213 1214 /* Start the Ethernet port RX and TX activity */ 1215 static void mvneta_port_up(struct mvneta_port *pp) 1216 { 1217 int queue; 1218 u32 q_map; 1219 1220 /* Enable all initialized TXs. */ 1221 q_map = 0; 1222 for (queue = 0; queue < txq_number; queue++) { 1223 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1224 if (txq->descs) 1225 q_map |= (1 << queue); 1226 } 1227 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1228 1229 q_map = 0; 1230 /* Enable all initialized RXQs. */ 1231 for (queue = 0; queue < rxq_number; queue++) { 1232 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1233 1234 if (rxq->descs) 1235 q_map |= (1 << queue); 1236 } 1237 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1238 } 1239 1240 /* Stop the Ethernet port activity */ 1241 static void mvneta_port_down(struct mvneta_port *pp) 1242 { 1243 u32 val; 1244 int count; 1245 1246 /* Stop Rx port activity. Check port Rx activity. */ 1247 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1248 1249 /* Issue stop command for active channels only */ 1250 if (val != 0) 1251 mvreg_write(pp, MVNETA_RXQ_CMD, 1252 val << MVNETA_RXQ_DISABLE_SHIFT); 1253 1254 /* Wait for all Rx activity to terminate. */ 1255 count = 0; 1256 do { 1257 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1258 netdev_warn(pp->dev, 1259 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1260 val); 1261 break; 1262 } 1263 mdelay(1); 1264 1265 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1266 } while (val & MVNETA_RXQ_ENABLE_MASK); 1267 1268 /* Stop Tx port activity. Check port Tx activity. Issue stop 1269 * command for active channels only 1270 */ 1271 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1272 1273 if (val != 0) 1274 mvreg_write(pp, MVNETA_TXQ_CMD, 1275 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1276 1277 /* Wait for all Tx activity to terminate. */ 1278 count = 0; 1279 do { 1280 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1281 netdev_warn(pp->dev, 1282 "TIMEOUT for TX stopped status=0x%08x\n", 1283 val); 1284 break; 1285 } 1286 mdelay(1); 1287 1288 /* Check TX Command reg that all Txqs are stopped */ 1289 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1290 1291 } while (val & MVNETA_TXQ_ENABLE_MASK); 1292 1293 /* Double check to verify that TX FIFO is empty */ 1294 count = 0; 1295 do { 1296 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1297 netdev_warn(pp->dev, 1298 "TX FIFO empty timeout status=0x%08x\n", 1299 val); 1300 break; 1301 } 1302 mdelay(1); 1303 1304 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1305 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1306 (val & MVNETA_TX_IN_PRGRS)); 1307 1308 udelay(200); 1309 } 1310 1311 /* Enable the port by setting the port enable bit of the MAC control register */ 1312 static void mvneta_port_enable(struct mvneta_port *pp) 1313 { 1314 u32 val; 1315 1316 /* Enable port */ 1317 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1318 val |= MVNETA_GMAC0_PORT_ENABLE; 1319 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1320 } 1321 1322 /* Disable the port and wait for about 200 usec before retuning */ 1323 static void mvneta_port_disable(struct mvneta_port *pp) 1324 { 1325 u32 val; 1326 1327 /* Reset the Enable bit in the Serial Control Register */ 1328 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1329 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1330 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1331 1332 udelay(200); 1333 } 1334 1335 /* Multicast tables methods */ 1336 1337 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1338 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1339 { 1340 int offset; 1341 u32 val; 1342 1343 if (queue == -1) { 1344 val = 0; 1345 } else { 1346 val = 0x1 | (queue << 1); 1347 val |= (val << 24) | (val << 16) | (val << 8); 1348 } 1349 1350 for (offset = 0; offset <= 0xc; offset += 4) 1351 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1352 } 1353 1354 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1355 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1356 { 1357 int offset; 1358 u32 val; 1359 1360 if (queue == -1) { 1361 val = 0; 1362 } else { 1363 val = 0x1 | (queue << 1); 1364 val |= (val << 24) | (val << 16) | (val << 8); 1365 } 1366 1367 for (offset = 0; offset <= 0xfc; offset += 4) 1368 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1369 1370 } 1371 1372 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1373 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1374 { 1375 int offset; 1376 u32 val; 1377 1378 if (queue == -1) { 1379 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1380 val = 0; 1381 } else { 1382 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1383 val = 0x1 | (queue << 1); 1384 val |= (val << 24) | (val << 16) | (val << 8); 1385 } 1386 1387 for (offset = 0; offset <= 0xfc; offset += 4) 1388 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1389 } 1390 1391 static void mvneta_percpu_unmask_interrupt(void *arg) 1392 { 1393 struct mvneta_port *pp = arg; 1394 1395 /* All the queue are unmasked, but actually only the ones 1396 * mapped to this CPU will be unmasked 1397 */ 1398 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1399 MVNETA_RX_INTR_MASK_ALL | 1400 MVNETA_TX_INTR_MASK_ALL | 1401 MVNETA_MISCINTR_INTR_MASK); 1402 } 1403 1404 static void mvneta_percpu_mask_interrupt(void *arg) 1405 { 1406 struct mvneta_port *pp = arg; 1407 1408 /* All the queue are masked, but actually only the ones 1409 * mapped to this CPU will be masked 1410 */ 1411 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1412 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1413 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1414 } 1415 1416 static void mvneta_percpu_clear_intr_cause(void *arg) 1417 { 1418 struct mvneta_port *pp = arg; 1419 1420 /* All the queue are cleared, but actually only the ones 1421 * mapped to this CPU will be cleared 1422 */ 1423 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1424 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1425 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1426 } 1427 1428 /* This method sets defaults to the NETA port: 1429 * Clears interrupt Cause and Mask registers. 1430 * Clears all MAC tables. 1431 * Sets defaults to all registers. 1432 * Resets RX and TX descriptor rings. 1433 * Resets PHY. 1434 * This method can be called after mvneta_port_down() to return the port 1435 * settings to defaults. 1436 */ 1437 static void mvneta_defaults_set(struct mvneta_port *pp) 1438 { 1439 int cpu; 1440 int queue; 1441 u32 val; 1442 int max_cpu = num_present_cpus(); 1443 1444 /* Clear all Cause registers */ 1445 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1446 1447 /* Mask all interrupts */ 1448 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1449 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1450 1451 /* Enable MBUS Retry bit16 */ 1452 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1453 1454 /* Set CPU queue access map. CPUs are assigned to the RX and 1455 * TX queues modulo their number. If there is only one TX 1456 * queue then it is assigned to the CPU associated to the 1457 * default RX queue. 1458 */ 1459 for_each_present_cpu(cpu) { 1460 int rxq_map = 0, txq_map = 0; 1461 int rxq, txq; 1462 if (!pp->neta_armada3700) { 1463 for (rxq = 0; rxq < rxq_number; rxq++) 1464 if ((rxq % max_cpu) == cpu) 1465 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1466 1467 for (txq = 0; txq < txq_number; txq++) 1468 if ((txq % max_cpu) == cpu) 1469 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1470 1471 /* With only one TX queue we configure a special case 1472 * which will allow to get all the irq on a single 1473 * CPU 1474 */ 1475 if (txq_number == 1) 1476 txq_map = (cpu == pp->rxq_def) ? 1477 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1478 1479 } else { 1480 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1481 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1482 } 1483 1484 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1485 } 1486 1487 /* Reset RX and TX DMAs */ 1488 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1489 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1490 1491 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1492 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1493 for (queue = 0; queue < txq_number; queue++) { 1494 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1495 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1496 } 1497 1498 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1499 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1500 1501 /* Set Port Acceleration Mode */ 1502 if (pp->bm_priv) 1503 /* HW buffer management + legacy parser */ 1504 val = MVNETA_ACC_MODE_EXT2; 1505 else 1506 /* SW buffer management + legacy parser */ 1507 val = MVNETA_ACC_MODE_EXT1; 1508 mvreg_write(pp, MVNETA_ACC_MODE, val); 1509 1510 if (pp->bm_priv) 1511 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1512 1513 /* Update val of portCfg register accordingly with all RxQueue types */ 1514 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1515 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1516 1517 val = 0; 1518 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1519 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1520 1521 /* Build PORT_SDMA_CONFIG_REG */ 1522 val = 0; 1523 1524 /* Default burst size */ 1525 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1526 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1527 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1528 1529 #if defined(__BIG_ENDIAN) 1530 val |= MVNETA_DESC_SWAP; 1531 #endif 1532 1533 /* Assign port SDMA configuration */ 1534 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1535 1536 /* Disable PHY polling in hardware, since we're using the 1537 * kernel phylib to do this. 1538 */ 1539 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1540 val &= ~MVNETA_PHY_POLLING_ENABLE; 1541 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1542 1543 mvneta_set_ucast_table(pp, -1); 1544 mvneta_set_special_mcast_table(pp, -1); 1545 mvneta_set_other_mcast_table(pp, -1); 1546 1547 /* Set port interrupt enable register - default enable all */ 1548 mvreg_write(pp, MVNETA_INTR_ENABLE, 1549 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1550 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1551 1552 mvneta_mib_counters_clear(pp); 1553 } 1554 1555 /* Set max sizes for tx queues */ 1556 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1557 1558 { 1559 u32 val, size, mtu; 1560 int queue; 1561 1562 mtu = max_tx_size * 8; 1563 if (mtu > MVNETA_TX_MTU_MAX) 1564 mtu = MVNETA_TX_MTU_MAX; 1565 1566 /* Set MTU */ 1567 val = mvreg_read(pp, MVNETA_TX_MTU); 1568 val &= ~MVNETA_TX_MTU_MAX; 1569 val |= mtu; 1570 mvreg_write(pp, MVNETA_TX_MTU, val); 1571 1572 /* TX token size and all TXQs token size must be larger that MTU */ 1573 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1574 1575 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1576 if (size < mtu) { 1577 size = mtu; 1578 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1579 val |= size; 1580 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1581 } 1582 for (queue = 0; queue < txq_number; queue++) { 1583 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1584 1585 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1586 if (size < mtu) { 1587 size = mtu; 1588 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1589 val |= size; 1590 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1591 } 1592 } 1593 } 1594 1595 /* Set unicast address */ 1596 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1597 int queue) 1598 { 1599 unsigned int unicast_reg; 1600 unsigned int tbl_offset; 1601 unsigned int reg_offset; 1602 1603 /* Locate the Unicast table entry */ 1604 last_nibble = (0xf & last_nibble); 1605 1606 /* offset from unicast tbl base */ 1607 tbl_offset = (last_nibble / 4) * 4; 1608 1609 /* offset within the above reg */ 1610 reg_offset = last_nibble % 4; 1611 1612 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1613 1614 if (queue == -1) { 1615 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1616 unicast_reg &= ~(0xff << (8 * reg_offset)); 1617 } else { 1618 unicast_reg &= ~(0xff << (8 * reg_offset)); 1619 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1620 } 1621 1622 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1623 } 1624 1625 /* Set mac address */ 1626 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1627 int queue) 1628 { 1629 unsigned int mac_h; 1630 unsigned int mac_l; 1631 1632 if (queue != -1) { 1633 mac_l = (addr[4] << 8) | (addr[5]); 1634 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1635 (addr[2] << 8) | (addr[3] << 0); 1636 1637 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1638 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1639 } 1640 1641 /* Accept frames of this address */ 1642 mvneta_set_ucast_addr(pp, addr[5], queue); 1643 } 1644 1645 /* Set the number of packets that will be received before RX interrupt 1646 * will be generated by HW. 1647 */ 1648 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1649 struct mvneta_rx_queue *rxq, u32 value) 1650 { 1651 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1652 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1653 } 1654 1655 /* Set the time delay in usec before RX interrupt will be generated by 1656 * HW. 1657 */ 1658 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1659 struct mvneta_rx_queue *rxq, u32 value) 1660 { 1661 u32 val; 1662 unsigned long clk_rate; 1663 1664 clk_rate = clk_get_rate(pp->clk); 1665 val = (clk_rate / 1000000) * value; 1666 1667 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1668 } 1669 1670 /* Set threshold for TX_DONE pkts coalescing */ 1671 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1672 struct mvneta_tx_queue *txq, u32 value) 1673 { 1674 u32 val; 1675 1676 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1677 1678 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1679 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1680 1681 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1682 } 1683 1684 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1685 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1686 u32 phys_addr, void *virt_addr, 1687 struct mvneta_rx_queue *rxq) 1688 { 1689 int i; 1690 1691 rx_desc->buf_phys_addr = phys_addr; 1692 i = rx_desc - rxq->descs; 1693 rxq->buf_virt_addr[i] = virt_addr; 1694 } 1695 1696 /* Decrement sent descriptors counter */ 1697 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1698 struct mvneta_tx_queue *txq, 1699 int sent_desc) 1700 { 1701 u32 val; 1702 1703 /* Only 255 TX descriptors can be updated at once */ 1704 while (sent_desc > 0xff) { 1705 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1706 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1707 sent_desc = sent_desc - 0xff; 1708 } 1709 1710 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1711 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1712 } 1713 1714 /* Get number of TX descriptors already sent by HW */ 1715 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1716 struct mvneta_tx_queue *txq) 1717 { 1718 u32 val; 1719 int sent_desc; 1720 1721 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1722 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1723 MVNETA_TXQ_SENT_DESC_SHIFT; 1724 1725 return sent_desc; 1726 } 1727 1728 /* Get number of sent descriptors and decrement counter. 1729 * The number of sent descriptors is returned. 1730 */ 1731 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1732 struct mvneta_tx_queue *txq) 1733 { 1734 int sent_desc; 1735 1736 /* Get number of sent descriptors */ 1737 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1738 1739 /* Decrement sent descriptors counter */ 1740 if (sent_desc) 1741 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1742 1743 return sent_desc; 1744 } 1745 1746 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1747 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1748 int ip_hdr_len, int l4_proto) 1749 { 1750 u32 command; 1751 1752 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1753 * G_L4_chk, L4_type; required only for checksum 1754 * calculation 1755 */ 1756 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1757 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1758 1759 if (l3_proto == htons(ETH_P_IP)) 1760 command |= MVNETA_TXD_IP_CSUM; 1761 else 1762 command |= MVNETA_TX_L3_IP6; 1763 1764 if (l4_proto == IPPROTO_TCP) 1765 command |= MVNETA_TX_L4_CSUM_FULL; 1766 else if (l4_proto == IPPROTO_UDP) 1767 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1768 else 1769 command |= MVNETA_TX_L4_CSUM_NOT; 1770 1771 return command; 1772 } 1773 1774 1775 /* Display more error info */ 1776 static void mvneta_rx_error(struct mvneta_port *pp, 1777 struct mvneta_rx_desc *rx_desc) 1778 { 1779 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1780 u32 status = rx_desc->status; 1781 1782 /* update per-cpu counter */ 1783 u64_stats_update_begin(&stats->syncp); 1784 stats->rx_errors++; 1785 u64_stats_update_end(&stats->syncp); 1786 1787 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1788 case MVNETA_RXD_ERR_CRC: 1789 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1790 status, rx_desc->data_size); 1791 break; 1792 case MVNETA_RXD_ERR_OVERRUN: 1793 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1794 status, rx_desc->data_size); 1795 break; 1796 case MVNETA_RXD_ERR_LEN: 1797 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1798 status, rx_desc->data_size); 1799 break; 1800 case MVNETA_RXD_ERR_RESOURCE: 1801 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1802 status, rx_desc->data_size); 1803 break; 1804 } 1805 } 1806 1807 /* Handle RX checksum offload based on the descriptor's status */ 1808 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1809 struct sk_buff *skb) 1810 { 1811 if ((pp->dev->features & NETIF_F_RXCSUM) && 1812 (status & MVNETA_RXD_L3_IP4) && 1813 (status & MVNETA_RXD_L4_CSUM_OK)) { 1814 skb->csum = 0; 1815 skb->ip_summed = CHECKSUM_UNNECESSARY; 1816 return; 1817 } 1818 1819 skb->ip_summed = CHECKSUM_NONE; 1820 } 1821 1822 /* Return tx queue pointer (find last set bit) according to <cause> returned 1823 * form tx_done reg. <cause> must not be null. The return value is always a 1824 * valid queue for matching the first one found in <cause>. 1825 */ 1826 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1827 u32 cause) 1828 { 1829 int queue = fls(cause) - 1; 1830 1831 return &pp->txqs[queue]; 1832 } 1833 1834 /* Free tx queue skbuffs */ 1835 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1836 struct mvneta_tx_queue *txq, int num, 1837 struct netdev_queue *nq, bool napi) 1838 { 1839 unsigned int bytes_compl = 0, pkts_compl = 0; 1840 struct xdp_frame_bulk bq; 1841 int i; 1842 1843 xdp_frame_bulk_init(&bq); 1844 1845 rcu_read_lock(); /* need for xdp_return_frame_bulk */ 1846 1847 for (i = 0; i < num; i++) { 1848 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1849 struct mvneta_tx_desc *tx_desc = txq->descs + 1850 txq->txq_get_index; 1851 1852 mvneta_txq_inc_get(txq); 1853 1854 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1855 buf->type != MVNETA_TYPE_XDP_TX) 1856 dma_unmap_single(pp->dev->dev.parent, 1857 tx_desc->buf_phys_addr, 1858 tx_desc->data_size, DMA_TO_DEVICE); 1859 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1860 bytes_compl += buf->skb->len; 1861 pkts_compl++; 1862 dev_kfree_skb_any(buf->skb); 1863 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1864 buf->type == MVNETA_TYPE_XDP_NDO) { 1865 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1866 xdp_return_frame_rx_napi(buf->xdpf); 1867 else 1868 xdp_return_frame_bulk(buf->xdpf, &bq); 1869 } 1870 } 1871 xdp_flush_frame_bulk(&bq); 1872 1873 rcu_read_unlock(); 1874 1875 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1876 } 1877 1878 /* Handle end of transmission */ 1879 static void mvneta_txq_done(struct mvneta_port *pp, 1880 struct mvneta_tx_queue *txq) 1881 { 1882 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1883 int tx_done; 1884 1885 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1886 if (!tx_done) 1887 return; 1888 1889 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1890 1891 txq->count -= tx_done; 1892 1893 if (netif_tx_queue_stopped(nq)) { 1894 if (txq->count <= txq->tx_wake_threshold) 1895 netif_tx_wake_queue(nq); 1896 } 1897 } 1898 1899 /* Refill processing for SW buffer management */ 1900 /* Allocate page per descriptor */ 1901 static int mvneta_rx_refill(struct mvneta_port *pp, 1902 struct mvneta_rx_desc *rx_desc, 1903 struct mvneta_rx_queue *rxq, 1904 gfp_t gfp_mask) 1905 { 1906 dma_addr_t phys_addr; 1907 struct page *page; 1908 1909 page = page_pool_alloc_pages(rxq->page_pool, 1910 gfp_mask | __GFP_NOWARN); 1911 if (!page) 1912 return -ENOMEM; 1913 1914 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1915 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1916 1917 return 0; 1918 } 1919 1920 /* Handle tx checksum */ 1921 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1922 { 1923 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1924 int ip_hdr_len = 0; 1925 __be16 l3_proto = vlan_get_protocol(skb); 1926 u8 l4_proto; 1927 1928 if (l3_proto == htons(ETH_P_IP)) { 1929 struct iphdr *ip4h = ip_hdr(skb); 1930 1931 /* Calculate IPv4 checksum and L4 checksum */ 1932 ip_hdr_len = ip4h->ihl; 1933 l4_proto = ip4h->protocol; 1934 } else if (l3_proto == htons(ETH_P_IPV6)) { 1935 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1936 1937 /* Read l4_protocol from one of IPv6 extra headers */ 1938 if (skb_network_header_len(skb) > 0) 1939 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1940 l4_proto = ip6h->nexthdr; 1941 } else 1942 return MVNETA_TX_L4_CSUM_NOT; 1943 1944 return mvneta_txq_desc_csum(skb_network_offset(skb), 1945 l3_proto, ip_hdr_len, l4_proto); 1946 } 1947 1948 return MVNETA_TX_L4_CSUM_NOT; 1949 } 1950 1951 /* Drop packets received by the RXQ and free buffers */ 1952 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1953 struct mvneta_rx_queue *rxq) 1954 { 1955 int rx_done, i; 1956 1957 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1958 if (rx_done) 1959 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1960 1961 if (pp->bm_priv) { 1962 for (i = 0; i < rx_done; i++) { 1963 struct mvneta_rx_desc *rx_desc = 1964 mvneta_rxq_next_desc_get(rxq); 1965 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1966 struct mvneta_bm_pool *bm_pool; 1967 1968 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1969 /* Return dropped buffer to the pool */ 1970 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1971 rx_desc->buf_phys_addr); 1972 } 1973 return; 1974 } 1975 1976 for (i = 0; i < rxq->size; i++) { 1977 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1978 void *data = rxq->buf_virt_addr[i]; 1979 if (!data || !(rx_desc->buf_phys_addr)) 1980 continue; 1981 1982 page_pool_put_full_page(rxq->page_pool, data, false); 1983 } 1984 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1985 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1986 page_pool_destroy(rxq->page_pool); 1987 rxq->page_pool = NULL; 1988 } 1989 1990 static void 1991 mvneta_update_stats(struct mvneta_port *pp, 1992 struct mvneta_stats *ps) 1993 { 1994 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1995 1996 u64_stats_update_begin(&stats->syncp); 1997 stats->es.ps.rx_packets += ps->rx_packets; 1998 stats->es.ps.rx_bytes += ps->rx_bytes; 1999 /* xdp */ 2000 stats->es.ps.xdp_redirect += ps->xdp_redirect; 2001 stats->es.ps.xdp_pass += ps->xdp_pass; 2002 stats->es.ps.xdp_drop += ps->xdp_drop; 2003 u64_stats_update_end(&stats->syncp); 2004 } 2005 2006 static inline 2007 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 2008 { 2009 struct mvneta_rx_desc *rx_desc; 2010 int curr_desc = rxq->first_to_refill; 2011 int i; 2012 2013 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2014 rx_desc = rxq->descs + curr_desc; 2015 if (!(rx_desc->buf_phys_addr)) { 2016 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2017 struct mvneta_pcpu_stats *stats; 2018 2019 pr_err("Can't refill queue %d. Done %d from %d\n", 2020 rxq->id, i, rxq->refill_num); 2021 2022 stats = this_cpu_ptr(pp->stats); 2023 u64_stats_update_begin(&stats->syncp); 2024 stats->es.refill_error++; 2025 u64_stats_update_end(&stats->syncp); 2026 break; 2027 } 2028 } 2029 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2030 } 2031 rxq->refill_num -= i; 2032 rxq->first_to_refill = curr_desc; 2033 2034 return i; 2035 } 2036 2037 static void 2038 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2039 struct xdp_buff *xdp, struct skb_shared_info *sinfo, 2040 int sync_len) 2041 { 2042 int i; 2043 2044 for (i = 0; i < sinfo->nr_frags; i++) 2045 page_pool_put_full_page(rxq->page_pool, 2046 skb_frag_page(&sinfo->frags[i]), true); 2047 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2048 sync_len, true); 2049 } 2050 2051 static int 2052 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2053 struct xdp_frame *xdpf, bool dma_map) 2054 { 2055 struct mvneta_tx_desc *tx_desc; 2056 struct mvneta_tx_buf *buf; 2057 dma_addr_t dma_addr; 2058 2059 if (txq->count >= txq->tx_stop_threshold) 2060 return MVNETA_XDP_DROPPED; 2061 2062 tx_desc = mvneta_txq_next_desc_get(txq); 2063 2064 buf = &txq->buf[txq->txq_put_index]; 2065 if (dma_map) { 2066 /* ndo_xdp_xmit */ 2067 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2068 xdpf->len, DMA_TO_DEVICE); 2069 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2070 mvneta_txq_desc_put(txq); 2071 return MVNETA_XDP_DROPPED; 2072 } 2073 buf->type = MVNETA_TYPE_XDP_NDO; 2074 } else { 2075 struct page *page = virt_to_page(xdpf->data); 2076 2077 dma_addr = page_pool_get_dma_addr(page) + 2078 sizeof(*xdpf) + xdpf->headroom; 2079 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2080 xdpf->len, DMA_BIDIRECTIONAL); 2081 buf->type = MVNETA_TYPE_XDP_TX; 2082 } 2083 buf->xdpf = xdpf; 2084 2085 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2086 tx_desc->buf_phys_addr = dma_addr; 2087 tx_desc->data_size = xdpf->len; 2088 2089 mvneta_txq_inc_put(txq); 2090 txq->pending++; 2091 txq->count++; 2092 2093 return MVNETA_XDP_TX; 2094 } 2095 2096 static int 2097 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2098 { 2099 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2100 struct mvneta_tx_queue *txq; 2101 struct netdev_queue *nq; 2102 struct xdp_frame *xdpf; 2103 int cpu; 2104 u32 ret; 2105 2106 xdpf = xdp_convert_buff_to_frame(xdp); 2107 if (unlikely(!xdpf)) 2108 return MVNETA_XDP_DROPPED; 2109 2110 cpu = smp_processor_id(); 2111 txq = &pp->txqs[cpu % txq_number]; 2112 nq = netdev_get_tx_queue(pp->dev, txq->id); 2113 2114 __netif_tx_lock(nq, cpu); 2115 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2116 if (ret == MVNETA_XDP_TX) { 2117 u64_stats_update_begin(&stats->syncp); 2118 stats->es.ps.tx_bytes += xdpf->len; 2119 stats->es.ps.tx_packets++; 2120 stats->es.ps.xdp_tx++; 2121 u64_stats_update_end(&stats->syncp); 2122 2123 mvneta_txq_pend_desc_add(pp, txq, 0); 2124 } else { 2125 u64_stats_update_begin(&stats->syncp); 2126 stats->es.ps.xdp_tx_err++; 2127 u64_stats_update_end(&stats->syncp); 2128 } 2129 __netif_tx_unlock(nq); 2130 2131 return ret; 2132 } 2133 2134 static int 2135 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2136 struct xdp_frame **frames, u32 flags) 2137 { 2138 struct mvneta_port *pp = netdev_priv(dev); 2139 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2140 int i, nxmit_byte = 0, nxmit = num_frame; 2141 int cpu = smp_processor_id(); 2142 struct mvneta_tx_queue *txq; 2143 struct netdev_queue *nq; 2144 u32 ret; 2145 2146 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2147 return -ENETDOWN; 2148 2149 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2150 return -EINVAL; 2151 2152 txq = &pp->txqs[cpu % txq_number]; 2153 nq = netdev_get_tx_queue(pp->dev, txq->id); 2154 2155 __netif_tx_lock(nq, cpu); 2156 for (i = 0; i < num_frame; i++) { 2157 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2158 if (ret == MVNETA_XDP_TX) { 2159 nxmit_byte += frames[i]->len; 2160 } else { 2161 xdp_return_frame_rx_napi(frames[i]); 2162 nxmit--; 2163 } 2164 } 2165 2166 if (unlikely(flags & XDP_XMIT_FLUSH)) 2167 mvneta_txq_pend_desc_add(pp, txq, 0); 2168 __netif_tx_unlock(nq); 2169 2170 u64_stats_update_begin(&stats->syncp); 2171 stats->es.ps.tx_bytes += nxmit_byte; 2172 stats->es.ps.tx_packets += nxmit; 2173 stats->es.ps.xdp_xmit += nxmit; 2174 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2175 u64_stats_update_end(&stats->syncp); 2176 2177 return nxmit; 2178 } 2179 2180 static int 2181 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2182 struct bpf_prog *prog, struct xdp_buff *xdp, 2183 u32 frame_sz, struct mvneta_stats *stats) 2184 { 2185 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2186 unsigned int len, data_len, sync; 2187 u32 ret, act; 2188 2189 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2190 data_len = xdp->data_end - xdp->data; 2191 act = bpf_prog_run_xdp(prog, xdp); 2192 2193 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2194 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2195 sync = max(sync, len); 2196 2197 switch (act) { 2198 case XDP_PASS: 2199 stats->xdp_pass++; 2200 return MVNETA_XDP_PASS; 2201 case XDP_REDIRECT: { 2202 int err; 2203 2204 err = xdp_do_redirect(pp->dev, xdp, prog); 2205 if (unlikely(err)) { 2206 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2207 ret = MVNETA_XDP_DROPPED; 2208 } else { 2209 ret = MVNETA_XDP_REDIR; 2210 stats->xdp_redirect++; 2211 } 2212 break; 2213 } 2214 case XDP_TX: 2215 ret = mvneta_xdp_xmit_back(pp, xdp); 2216 if (ret != MVNETA_XDP_TX) 2217 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2218 break; 2219 default: 2220 bpf_warn_invalid_xdp_action(act); 2221 fallthrough; 2222 case XDP_ABORTED: 2223 trace_xdp_exception(pp->dev, prog, act); 2224 fallthrough; 2225 case XDP_DROP: 2226 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2227 ret = MVNETA_XDP_DROPPED; 2228 stats->xdp_drop++; 2229 break; 2230 } 2231 2232 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2233 stats->rx_packets++; 2234 2235 return ret; 2236 } 2237 2238 static void 2239 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2240 struct mvneta_rx_desc *rx_desc, 2241 struct mvneta_rx_queue *rxq, 2242 struct xdp_buff *xdp, int *size, 2243 struct page *page) 2244 { 2245 unsigned char *data = page_address(page); 2246 int data_len = -MVNETA_MH_SIZE, len; 2247 struct net_device *dev = pp->dev; 2248 enum dma_data_direction dma_dir; 2249 struct skb_shared_info *sinfo; 2250 2251 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2252 len = MVNETA_MAX_RX_BUF_SIZE; 2253 data_len += len; 2254 } else { 2255 len = *size; 2256 data_len += len - ETH_FCS_LEN; 2257 } 2258 *size = *size - len; 2259 2260 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2261 dma_sync_single_for_cpu(dev->dev.parent, 2262 rx_desc->buf_phys_addr, 2263 len, dma_dir); 2264 2265 rx_desc->buf_phys_addr = 0; 2266 2267 /* Prefetch header */ 2268 prefetch(data); 2269 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE, 2270 data_len, false); 2271 2272 sinfo = xdp_get_shared_info_from_buff(xdp); 2273 sinfo->nr_frags = 0; 2274 } 2275 2276 static void 2277 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2278 struct mvneta_rx_desc *rx_desc, 2279 struct mvneta_rx_queue *rxq, 2280 struct xdp_buff *xdp, int *size, 2281 struct skb_shared_info *xdp_sinfo, 2282 struct page *page) 2283 { 2284 struct net_device *dev = pp->dev; 2285 enum dma_data_direction dma_dir; 2286 int data_len, len; 2287 2288 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2289 len = MVNETA_MAX_RX_BUF_SIZE; 2290 data_len = len; 2291 } else { 2292 len = *size; 2293 data_len = len - ETH_FCS_LEN; 2294 } 2295 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2296 dma_sync_single_for_cpu(dev->dev.parent, 2297 rx_desc->buf_phys_addr, 2298 len, dma_dir); 2299 rx_desc->buf_phys_addr = 0; 2300 2301 if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) { 2302 skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++]; 2303 2304 skb_frag_off_set(frag, pp->rx_offset_correction); 2305 skb_frag_size_set(frag, data_len); 2306 __skb_frag_set_page(frag, page); 2307 2308 /* last fragment */ 2309 if (len == *size) { 2310 struct skb_shared_info *sinfo; 2311 2312 sinfo = xdp_get_shared_info_from_buff(xdp); 2313 sinfo->nr_frags = xdp_sinfo->nr_frags; 2314 memcpy(sinfo->frags, xdp_sinfo->frags, 2315 sinfo->nr_frags * sizeof(skb_frag_t)); 2316 } 2317 } else { 2318 page_pool_put_full_page(rxq->page_pool, page, true); 2319 } 2320 *size -= len; 2321 } 2322 2323 static struct sk_buff * 2324 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2325 struct xdp_buff *xdp, u32 desc_status) 2326 { 2327 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2328 int i, num_frags = sinfo->nr_frags; 2329 struct sk_buff *skb; 2330 2331 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2332 if (!skb) 2333 return ERR_PTR(-ENOMEM); 2334 2335 page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data)); 2336 2337 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2338 skb_put(skb, xdp->data_end - xdp->data); 2339 mvneta_rx_csum(pp, desc_status, skb); 2340 2341 for (i = 0; i < num_frags; i++) { 2342 skb_frag_t *frag = &sinfo->frags[i]; 2343 2344 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2345 skb_frag_page(frag), skb_frag_off(frag), 2346 skb_frag_size(frag), PAGE_SIZE); 2347 page_pool_release_page(rxq->page_pool, skb_frag_page(frag)); 2348 } 2349 2350 return skb; 2351 } 2352 2353 /* Main rx processing when using software buffer management */ 2354 static int mvneta_rx_swbm(struct napi_struct *napi, 2355 struct mvneta_port *pp, int budget, 2356 struct mvneta_rx_queue *rxq) 2357 { 2358 int rx_proc = 0, rx_todo, refill, size = 0; 2359 struct net_device *dev = pp->dev; 2360 struct skb_shared_info sinfo; 2361 struct mvneta_stats ps = {}; 2362 struct bpf_prog *xdp_prog; 2363 u32 desc_status, frame_sz; 2364 struct xdp_buff xdp_buf; 2365 2366 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq); 2367 xdp_buf.data_hard_start = NULL; 2368 2369 sinfo.nr_frags = 0; 2370 2371 /* Get number of received packets */ 2372 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2373 2374 rcu_read_lock(); 2375 xdp_prog = READ_ONCE(pp->xdp_prog); 2376 2377 /* Fairness NAPI loop */ 2378 while (rx_proc < budget && rx_proc < rx_todo) { 2379 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2380 u32 rx_status, index; 2381 struct sk_buff *skb; 2382 struct page *page; 2383 2384 index = rx_desc - rxq->descs; 2385 page = (struct page *)rxq->buf_virt_addr[index]; 2386 2387 rx_status = rx_desc->status; 2388 rx_proc++; 2389 rxq->refill_num++; 2390 2391 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2392 /* Check errors only for FIRST descriptor */ 2393 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2394 mvneta_rx_error(pp, rx_desc); 2395 goto next; 2396 } 2397 2398 size = rx_desc->data_size; 2399 frame_sz = size - ETH_FCS_LEN; 2400 desc_status = rx_status; 2401 2402 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2403 &size, page); 2404 } else { 2405 if (unlikely(!xdp_buf.data_hard_start)) { 2406 rx_desc->buf_phys_addr = 0; 2407 page_pool_put_full_page(rxq->page_pool, page, 2408 true); 2409 goto next; 2410 } 2411 2412 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2413 &size, &sinfo, page); 2414 } /* Middle or Last descriptor */ 2415 2416 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2417 /* no last descriptor this time */ 2418 continue; 2419 2420 if (size) { 2421 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2422 goto next; 2423 } 2424 2425 if (xdp_prog && 2426 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2427 goto next; 2428 2429 skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status); 2430 if (IS_ERR(skb)) { 2431 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2432 2433 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2434 2435 u64_stats_update_begin(&stats->syncp); 2436 stats->es.skb_alloc_error++; 2437 stats->rx_dropped++; 2438 u64_stats_update_end(&stats->syncp); 2439 2440 goto next; 2441 } 2442 2443 ps.rx_bytes += skb->len; 2444 ps.rx_packets++; 2445 2446 skb->protocol = eth_type_trans(skb, dev); 2447 napi_gro_receive(napi, skb); 2448 next: 2449 xdp_buf.data_hard_start = NULL; 2450 sinfo.nr_frags = 0; 2451 } 2452 rcu_read_unlock(); 2453 2454 if (xdp_buf.data_hard_start) 2455 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2456 2457 if (ps.xdp_redirect) 2458 xdp_do_flush_map(); 2459 2460 if (ps.rx_packets) 2461 mvneta_update_stats(pp, &ps); 2462 2463 /* return some buffers to hardware queue, one at a time is too slow */ 2464 refill = mvneta_rx_refill_queue(pp, rxq); 2465 2466 /* Update rxq management counters */ 2467 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2468 2469 return ps.rx_packets; 2470 } 2471 2472 /* Main rx processing when using hardware buffer management */ 2473 static int mvneta_rx_hwbm(struct napi_struct *napi, 2474 struct mvneta_port *pp, int rx_todo, 2475 struct mvneta_rx_queue *rxq) 2476 { 2477 struct net_device *dev = pp->dev; 2478 int rx_done; 2479 u32 rcvd_pkts = 0; 2480 u32 rcvd_bytes = 0; 2481 2482 /* Get number of received packets */ 2483 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2484 2485 if (rx_todo > rx_done) 2486 rx_todo = rx_done; 2487 2488 rx_done = 0; 2489 2490 /* Fairness NAPI loop */ 2491 while (rx_done < rx_todo) { 2492 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2493 struct mvneta_bm_pool *bm_pool = NULL; 2494 struct sk_buff *skb; 2495 unsigned char *data; 2496 dma_addr_t phys_addr; 2497 u32 rx_status, frag_size; 2498 int rx_bytes, err; 2499 u8 pool_id; 2500 2501 rx_done++; 2502 rx_status = rx_desc->status; 2503 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2504 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2505 phys_addr = rx_desc->buf_phys_addr; 2506 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2507 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2508 2509 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2510 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2511 err_drop_frame_ret_pool: 2512 /* Return the buffer to the pool */ 2513 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2514 rx_desc->buf_phys_addr); 2515 err_drop_frame: 2516 mvneta_rx_error(pp, rx_desc); 2517 /* leave the descriptor untouched */ 2518 continue; 2519 } 2520 2521 if (rx_bytes <= rx_copybreak) { 2522 /* better copy a small frame and not unmap the DMA region */ 2523 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2524 if (unlikely(!skb)) 2525 goto err_drop_frame_ret_pool; 2526 2527 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2528 rx_desc->buf_phys_addr, 2529 MVNETA_MH_SIZE + NET_SKB_PAD, 2530 rx_bytes, 2531 DMA_FROM_DEVICE); 2532 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2533 rx_bytes); 2534 2535 skb->protocol = eth_type_trans(skb, dev); 2536 mvneta_rx_csum(pp, rx_status, skb); 2537 napi_gro_receive(napi, skb); 2538 2539 rcvd_pkts++; 2540 rcvd_bytes += rx_bytes; 2541 2542 /* Return the buffer to the pool */ 2543 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2544 rx_desc->buf_phys_addr); 2545 2546 /* leave the descriptor and buffer untouched */ 2547 continue; 2548 } 2549 2550 /* Refill processing */ 2551 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2552 if (err) { 2553 struct mvneta_pcpu_stats *stats; 2554 2555 netdev_err(dev, "Linux processing - Can't refill\n"); 2556 2557 stats = this_cpu_ptr(pp->stats); 2558 u64_stats_update_begin(&stats->syncp); 2559 stats->es.refill_error++; 2560 u64_stats_update_end(&stats->syncp); 2561 2562 goto err_drop_frame_ret_pool; 2563 } 2564 2565 frag_size = bm_pool->hwbm_pool.frag_size; 2566 2567 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2568 2569 /* After refill old buffer has to be unmapped regardless 2570 * the skb is successfully built or not. 2571 */ 2572 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2573 bm_pool->buf_size, DMA_FROM_DEVICE); 2574 if (!skb) 2575 goto err_drop_frame; 2576 2577 rcvd_pkts++; 2578 rcvd_bytes += rx_bytes; 2579 2580 /* Linux processing */ 2581 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2582 skb_put(skb, rx_bytes); 2583 2584 skb->protocol = eth_type_trans(skb, dev); 2585 2586 mvneta_rx_csum(pp, rx_status, skb); 2587 2588 napi_gro_receive(napi, skb); 2589 } 2590 2591 if (rcvd_pkts) { 2592 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2593 2594 u64_stats_update_begin(&stats->syncp); 2595 stats->es.ps.rx_packets += rcvd_pkts; 2596 stats->es.ps.rx_bytes += rcvd_bytes; 2597 u64_stats_update_end(&stats->syncp); 2598 } 2599 2600 /* Update rxq management counters */ 2601 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2602 2603 return rx_done; 2604 } 2605 2606 static inline void 2607 mvneta_tso_put_hdr(struct sk_buff *skb, 2608 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2609 { 2610 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2611 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2612 struct mvneta_tx_desc *tx_desc; 2613 2614 tx_desc = mvneta_txq_next_desc_get(txq); 2615 tx_desc->data_size = hdr_len; 2616 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2617 tx_desc->command |= MVNETA_TXD_F_DESC; 2618 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2619 txq->txq_put_index * TSO_HEADER_SIZE; 2620 buf->type = MVNETA_TYPE_SKB; 2621 buf->skb = NULL; 2622 2623 mvneta_txq_inc_put(txq); 2624 } 2625 2626 static inline int 2627 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2628 struct sk_buff *skb, char *data, int size, 2629 bool last_tcp, bool is_last) 2630 { 2631 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2632 struct mvneta_tx_desc *tx_desc; 2633 2634 tx_desc = mvneta_txq_next_desc_get(txq); 2635 tx_desc->data_size = size; 2636 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2637 size, DMA_TO_DEVICE); 2638 if (unlikely(dma_mapping_error(dev->dev.parent, 2639 tx_desc->buf_phys_addr))) { 2640 mvneta_txq_desc_put(txq); 2641 return -ENOMEM; 2642 } 2643 2644 tx_desc->command = 0; 2645 buf->type = MVNETA_TYPE_SKB; 2646 buf->skb = NULL; 2647 2648 if (last_tcp) { 2649 /* last descriptor in the TCP packet */ 2650 tx_desc->command = MVNETA_TXD_L_DESC; 2651 2652 /* last descriptor in SKB */ 2653 if (is_last) 2654 buf->skb = skb; 2655 } 2656 mvneta_txq_inc_put(txq); 2657 return 0; 2658 } 2659 2660 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2661 struct mvneta_tx_queue *txq) 2662 { 2663 int hdr_len, total_len, data_left; 2664 int desc_count = 0; 2665 struct mvneta_port *pp = netdev_priv(dev); 2666 struct tso_t tso; 2667 int i; 2668 2669 /* Count needed descriptors */ 2670 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2671 return 0; 2672 2673 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2674 pr_info("*** Is this even possible???!?!?\n"); 2675 return 0; 2676 } 2677 2678 /* Initialize the TSO handler, and prepare the first payload */ 2679 hdr_len = tso_start(skb, &tso); 2680 2681 total_len = skb->len - hdr_len; 2682 while (total_len > 0) { 2683 char *hdr; 2684 2685 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2686 total_len -= data_left; 2687 desc_count++; 2688 2689 /* prepare packet headers: MAC + IP + TCP */ 2690 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2691 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2692 2693 mvneta_tso_put_hdr(skb, pp, txq); 2694 2695 while (data_left > 0) { 2696 int size; 2697 desc_count++; 2698 2699 size = min_t(int, tso.size, data_left); 2700 2701 if (mvneta_tso_put_data(dev, txq, skb, 2702 tso.data, size, 2703 size == data_left, 2704 total_len == 0)) 2705 goto err_release; 2706 data_left -= size; 2707 2708 tso_build_data(skb, &tso, size); 2709 } 2710 } 2711 2712 return desc_count; 2713 2714 err_release: 2715 /* Release all used data descriptors; header descriptors must not 2716 * be DMA-unmapped. 2717 */ 2718 for (i = desc_count - 1; i >= 0; i--) { 2719 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2720 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2721 dma_unmap_single(pp->dev->dev.parent, 2722 tx_desc->buf_phys_addr, 2723 tx_desc->data_size, 2724 DMA_TO_DEVICE); 2725 mvneta_txq_desc_put(txq); 2726 } 2727 return 0; 2728 } 2729 2730 /* Handle tx fragmentation processing */ 2731 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2732 struct mvneta_tx_queue *txq) 2733 { 2734 struct mvneta_tx_desc *tx_desc; 2735 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2736 2737 for (i = 0; i < nr_frags; i++) { 2738 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2739 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2740 void *addr = skb_frag_address(frag); 2741 2742 tx_desc = mvneta_txq_next_desc_get(txq); 2743 tx_desc->data_size = skb_frag_size(frag); 2744 2745 tx_desc->buf_phys_addr = 2746 dma_map_single(pp->dev->dev.parent, addr, 2747 tx_desc->data_size, DMA_TO_DEVICE); 2748 2749 if (dma_mapping_error(pp->dev->dev.parent, 2750 tx_desc->buf_phys_addr)) { 2751 mvneta_txq_desc_put(txq); 2752 goto error; 2753 } 2754 2755 if (i == nr_frags - 1) { 2756 /* Last descriptor */ 2757 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2758 buf->skb = skb; 2759 } else { 2760 /* Descriptor in the middle: Not First, Not Last */ 2761 tx_desc->command = 0; 2762 buf->skb = NULL; 2763 } 2764 buf->type = MVNETA_TYPE_SKB; 2765 mvneta_txq_inc_put(txq); 2766 } 2767 2768 return 0; 2769 2770 error: 2771 /* Release all descriptors that were used to map fragments of 2772 * this packet, as well as the corresponding DMA mappings 2773 */ 2774 for (i = i - 1; i >= 0; i--) { 2775 tx_desc = txq->descs + i; 2776 dma_unmap_single(pp->dev->dev.parent, 2777 tx_desc->buf_phys_addr, 2778 tx_desc->data_size, 2779 DMA_TO_DEVICE); 2780 mvneta_txq_desc_put(txq); 2781 } 2782 2783 return -ENOMEM; 2784 } 2785 2786 /* Main tx processing */ 2787 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2788 { 2789 struct mvneta_port *pp = netdev_priv(dev); 2790 u16 txq_id = skb_get_queue_mapping(skb); 2791 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2792 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2793 struct mvneta_tx_desc *tx_desc; 2794 int len = skb->len; 2795 int frags = 0; 2796 u32 tx_cmd; 2797 2798 if (!netif_running(dev)) 2799 goto out; 2800 2801 if (skb_is_gso(skb)) { 2802 frags = mvneta_tx_tso(skb, dev, txq); 2803 goto out; 2804 } 2805 2806 frags = skb_shinfo(skb)->nr_frags + 1; 2807 2808 /* Get a descriptor for the first part of the packet */ 2809 tx_desc = mvneta_txq_next_desc_get(txq); 2810 2811 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2812 2813 tx_desc->data_size = skb_headlen(skb); 2814 2815 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2816 tx_desc->data_size, 2817 DMA_TO_DEVICE); 2818 if (unlikely(dma_mapping_error(dev->dev.parent, 2819 tx_desc->buf_phys_addr))) { 2820 mvneta_txq_desc_put(txq); 2821 frags = 0; 2822 goto out; 2823 } 2824 2825 buf->type = MVNETA_TYPE_SKB; 2826 if (frags == 1) { 2827 /* First and Last descriptor */ 2828 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2829 tx_desc->command = tx_cmd; 2830 buf->skb = skb; 2831 mvneta_txq_inc_put(txq); 2832 } else { 2833 /* First but not Last */ 2834 tx_cmd |= MVNETA_TXD_F_DESC; 2835 buf->skb = NULL; 2836 mvneta_txq_inc_put(txq); 2837 tx_desc->command = tx_cmd; 2838 /* Continue with other skb fragments */ 2839 if (mvneta_tx_frag_process(pp, skb, txq)) { 2840 dma_unmap_single(dev->dev.parent, 2841 tx_desc->buf_phys_addr, 2842 tx_desc->data_size, 2843 DMA_TO_DEVICE); 2844 mvneta_txq_desc_put(txq); 2845 frags = 0; 2846 goto out; 2847 } 2848 } 2849 2850 out: 2851 if (frags > 0) { 2852 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2853 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2854 2855 netdev_tx_sent_queue(nq, len); 2856 2857 txq->count += frags; 2858 if (txq->count >= txq->tx_stop_threshold) 2859 netif_tx_stop_queue(nq); 2860 2861 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2862 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2863 mvneta_txq_pend_desc_add(pp, txq, frags); 2864 else 2865 txq->pending += frags; 2866 2867 u64_stats_update_begin(&stats->syncp); 2868 stats->es.ps.tx_bytes += len; 2869 stats->es.ps.tx_packets++; 2870 u64_stats_update_end(&stats->syncp); 2871 } else { 2872 dev->stats.tx_dropped++; 2873 dev_kfree_skb_any(skb); 2874 } 2875 2876 return NETDEV_TX_OK; 2877 } 2878 2879 2880 /* Free tx resources, when resetting a port */ 2881 static void mvneta_txq_done_force(struct mvneta_port *pp, 2882 struct mvneta_tx_queue *txq) 2883 2884 { 2885 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2886 int tx_done = txq->count; 2887 2888 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 2889 2890 /* reset txq */ 2891 txq->count = 0; 2892 txq->txq_put_index = 0; 2893 txq->txq_get_index = 0; 2894 } 2895 2896 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2897 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2898 */ 2899 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2900 { 2901 struct mvneta_tx_queue *txq; 2902 struct netdev_queue *nq; 2903 int cpu = smp_processor_id(); 2904 2905 while (cause_tx_done) { 2906 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2907 2908 nq = netdev_get_tx_queue(pp->dev, txq->id); 2909 __netif_tx_lock(nq, cpu); 2910 2911 if (txq->count) 2912 mvneta_txq_done(pp, txq); 2913 2914 __netif_tx_unlock(nq); 2915 cause_tx_done &= ~((1 << txq->id)); 2916 } 2917 } 2918 2919 /* Compute crc8 of the specified address, using a unique algorithm , 2920 * according to hw spec, different than generic crc8 algorithm 2921 */ 2922 static int mvneta_addr_crc(unsigned char *addr) 2923 { 2924 int crc = 0; 2925 int i; 2926 2927 for (i = 0; i < ETH_ALEN; i++) { 2928 int j; 2929 2930 crc = (crc ^ addr[i]) << 8; 2931 for (j = 7; j >= 0; j--) { 2932 if (crc & (0x100 << j)) 2933 crc ^= 0x107 << j; 2934 } 2935 } 2936 2937 return crc; 2938 } 2939 2940 /* This method controls the net device special MAC multicast support. 2941 * The Special Multicast Table for MAC addresses supports MAC of the form 2942 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2943 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2944 * Table entries in the DA-Filter table. This method set the Special 2945 * Multicast Table appropriate entry. 2946 */ 2947 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2948 unsigned char last_byte, 2949 int queue) 2950 { 2951 unsigned int smc_table_reg; 2952 unsigned int tbl_offset; 2953 unsigned int reg_offset; 2954 2955 /* Register offset from SMC table base */ 2956 tbl_offset = (last_byte / 4); 2957 /* Entry offset within the above reg */ 2958 reg_offset = last_byte % 4; 2959 2960 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2961 + tbl_offset * 4)); 2962 2963 if (queue == -1) 2964 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2965 else { 2966 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2967 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2968 } 2969 2970 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2971 smc_table_reg); 2972 } 2973 2974 /* This method controls the network device Other MAC multicast support. 2975 * The Other Multicast Table is used for multicast of another type. 2976 * A CRC-8 is used as an index to the Other Multicast Table entries 2977 * in the DA-Filter table. 2978 * The method gets the CRC-8 value from the calling routine and 2979 * sets the Other Multicast Table appropriate entry according to the 2980 * specified CRC-8 . 2981 */ 2982 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2983 unsigned char crc8, 2984 int queue) 2985 { 2986 unsigned int omc_table_reg; 2987 unsigned int tbl_offset; 2988 unsigned int reg_offset; 2989 2990 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2991 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2992 2993 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2994 2995 if (queue == -1) { 2996 /* Clear accepts frame bit at specified Other DA table entry */ 2997 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2998 } else { 2999 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3000 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3001 } 3002 3003 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 3004 } 3005 3006 /* The network device supports multicast using two tables: 3007 * 1) Special Multicast Table for MAC addresses of the form 3008 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3009 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3010 * Table entries in the DA-Filter table. 3011 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 3012 * is used as an index to the Other Multicast Table entries in the 3013 * DA-Filter table. 3014 */ 3015 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 3016 int queue) 3017 { 3018 unsigned char crc_result = 0; 3019 3020 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 3021 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3022 return 0; 3023 } 3024 3025 crc_result = mvneta_addr_crc(p_addr); 3026 if (queue == -1) { 3027 if (pp->mcast_count[crc_result] == 0) { 3028 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3029 crc_result); 3030 return -EINVAL; 3031 } 3032 3033 pp->mcast_count[crc_result]--; 3034 if (pp->mcast_count[crc_result] != 0) { 3035 netdev_info(pp->dev, 3036 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3037 pp->mcast_count[crc_result], crc_result); 3038 return -EINVAL; 3039 } 3040 } else 3041 pp->mcast_count[crc_result]++; 3042 3043 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3044 3045 return 0; 3046 } 3047 3048 /* Configure Fitering mode of Ethernet port */ 3049 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3050 int is_promisc) 3051 { 3052 u32 port_cfg_reg, val; 3053 3054 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3055 3056 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3057 3058 /* Set / Clear UPM bit in port configuration register */ 3059 if (is_promisc) { 3060 /* Accept all Unicast addresses */ 3061 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3062 val |= MVNETA_FORCE_UNI; 3063 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3064 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3065 } else { 3066 /* Reject all Unicast addresses */ 3067 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3068 val &= ~MVNETA_FORCE_UNI; 3069 } 3070 3071 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3072 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3073 } 3074 3075 /* register unicast and multicast addresses */ 3076 static void mvneta_set_rx_mode(struct net_device *dev) 3077 { 3078 struct mvneta_port *pp = netdev_priv(dev); 3079 struct netdev_hw_addr *ha; 3080 3081 if (dev->flags & IFF_PROMISC) { 3082 /* Accept all: Multicast + Unicast */ 3083 mvneta_rx_unicast_promisc_set(pp, 1); 3084 mvneta_set_ucast_table(pp, pp->rxq_def); 3085 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3086 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3087 } else { 3088 /* Accept single Unicast */ 3089 mvneta_rx_unicast_promisc_set(pp, 0); 3090 mvneta_set_ucast_table(pp, -1); 3091 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3092 3093 if (dev->flags & IFF_ALLMULTI) { 3094 /* Accept all multicast */ 3095 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3096 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3097 } else { 3098 /* Accept only initialized multicast */ 3099 mvneta_set_special_mcast_table(pp, -1); 3100 mvneta_set_other_mcast_table(pp, -1); 3101 3102 if (!netdev_mc_empty(dev)) { 3103 netdev_for_each_mc_addr(ha, dev) { 3104 mvneta_mcast_addr_set(pp, ha->addr, 3105 pp->rxq_def); 3106 } 3107 } 3108 } 3109 } 3110 } 3111 3112 /* Interrupt handling - the callback for request_irq() */ 3113 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3114 { 3115 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3116 3117 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3118 napi_schedule(&pp->napi); 3119 3120 return IRQ_HANDLED; 3121 } 3122 3123 /* Interrupt handling - the callback for request_percpu_irq() */ 3124 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3125 { 3126 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3127 3128 disable_percpu_irq(port->pp->dev->irq); 3129 napi_schedule(&port->napi); 3130 3131 return IRQ_HANDLED; 3132 } 3133 3134 static void mvneta_link_change(struct mvneta_port *pp) 3135 { 3136 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3137 3138 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3139 } 3140 3141 /* NAPI handler 3142 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3143 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3144 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3145 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3146 * Each CPU has its own causeRxTx register 3147 */ 3148 static int mvneta_poll(struct napi_struct *napi, int budget) 3149 { 3150 int rx_done = 0; 3151 u32 cause_rx_tx; 3152 int rx_queue; 3153 struct mvneta_port *pp = netdev_priv(napi->dev); 3154 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3155 3156 if (!netif_running(pp->dev)) { 3157 napi_complete(napi); 3158 return rx_done; 3159 } 3160 3161 /* Read cause register */ 3162 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3163 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3164 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3165 3166 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3167 3168 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3169 MVNETA_CAUSE_LINK_CHANGE)) 3170 mvneta_link_change(pp); 3171 } 3172 3173 /* Release Tx descriptors */ 3174 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3175 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3176 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3177 } 3178 3179 /* For the case where the last mvneta_poll did not process all 3180 * RX packets 3181 */ 3182 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3183 port->cause_rx_tx; 3184 3185 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3186 if (rx_queue) { 3187 rx_queue = rx_queue - 1; 3188 if (pp->bm_priv) 3189 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3190 &pp->rxqs[rx_queue]); 3191 else 3192 rx_done = mvneta_rx_swbm(napi, pp, budget, 3193 &pp->rxqs[rx_queue]); 3194 } 3195 3196 if (rx_done < budget) { 3197 cause_rx_tx = 0; 3198 napi_complete_done(napi, rx_done); 3199 3200 if (pp->neta_armada3700) { 3201 unsigned long flags; 3202 3203 local_irq_save(flags); 3204 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3205 MVNETA_RX_INTR_MASK(rxq_number) | 3206 MVNETA_TX_INTR_MASK(txq_number) | 3207 MVNETA_MISCINTR_INTR_MASK); 3208 local_irq_restore(flags); 3209 } else { 3210 enable_percpu_irq(pp->dev->irq, 0); 3211 } 3212 } 3213 3214 if (pp->neta_armada3700) 3215 pp->cause_rx_tx = cause_rx_tx; 3216 else 3217 port->cause_rx_tx = cause_rx_tx; 3218 3219 return rx_done; 3220 } 3221 3222 static int mvneta_create_page_pool(struct mvneta_port *pp, 3223 struct mvneta_rx_queue *rxq, int size) 3224 { 3225 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3226 struct page_pool_params pp_params = { 3227 .order = 0, 3228 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3229 .pool_size = size, 3230 .nid = NUMA_NO_NODE, 3231 .dev = pp->dev->dev.parent, 3232 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3233 .offset = pp->rx_offset_correction, 3234 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3235 }; 3236 int err; 3237 3238 rxq->page_pool = page_pool_create(&pp_params); 3239 if (IS_ERR(rxq->page_pool)) { 3240 err = PTR_ERR(rxq->page_pool); 3241 rxq->page_pool = NULL; 3242 return err; 3243 } 3244 3245 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0); 3246 if (err < 0) 3247 goto err_free_pp; 3248 3249 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3250 rxq->page_pool); 3251 if (err) 3252 goto err_unregister_rxq; 3253 3254 return 0; 3255 3256 err_unregister_rxq: 3257 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3258 err_free_pp: 3259 page_pool_destroy(rxq->page_pool); 3260 rxq->page_pool = NULL; 3261 return err; 3262 } 3263 3264 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3265 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3266 int num) 3267 { 3268 int i, err; 3269 3270 err = mvneta_create_page_pool(pp, rxq, num); 3271 if (err < 0) 3272 return err; 3273 3274 for (i = 0; i < num; i++) { 3275 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3276 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3277 GFP_KERNEL) != 0) { 3278 netdev_err(pp->dev, 3279 "%s:rxq %d, %d of %d buffs filled\n", 3280 __func__, rxq->id, i, num); 3281 break; 3282 } 3283 } 3284 3285 /* Add this number of RX descriptors as non occupied (ready to 3286 * get packets) 3287 */ 3288 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3289 3290 return i; 3291 } 3292 3293 /* Free all packets pending transmit from all TXQs and reset TX port */ 3294 static void mvneta_tx_reset(struct mvneta_port *pp) 3295 { 3296 int queue; 3297 3298 /* free the skb's in the tx ring */ 3299 for (queue = 0; queue < txq_number; queue++) 3300 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3301 3302 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3303 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3304 } 3305 3306 static void mvneta_rx_reset(struct mvneta_port *pp) 3307 { 3308 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3309 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3310 } 3311 3312 /* Rx/Tx queue initialization/cleanup methods */ 3313 3314 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3315 struct mvneta_rx_queue *rxq) 3316 { 3317 rxq->size = pp->rx_ring_size; 3318 3319 /* Allocate memory for RX descriptors */ 3320 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3321 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3322 &rxq->descs_phys, GFP_KERNEL); 3323 if (!rxq->descs) 3324 return -ENOMEM; 3325 3326 rxq->last_desc = rxq->size - 1; 3327 3328 return 0; 3329 } 3330 3331 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3332 struct mvneta_rx_queue *rxq) 3333 { 3334 /* Set Rx descriptors queue starting address */ 3335 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3336 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3337 3338 /* Set coalescing pkts and time */ 3339 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3340 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3341 3342 if (!pp->bm_priv) { 3343 /* Set Offset */ 3344 mvneta_rxq_offset_set(pp, rxq, 0); 3345 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3346 MVNETA_MAX_RX_BUF_SIZE : 3347 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3348 mvneta_rxq_bm_disable(pp, rxq); 3349 mvneta_rxq_fill(pp, rxq, rxq->size); 3350 } else { 3351 /* Set Offset */ 3352 mvneta_rxq_offset_set(pp, rxq, 3353 NET_SKB_PAD - pp->rx_offset_correction); 3354 3355 mvneta_rxq_bm_enable(pp, rxq); 3356 /* Fill RXQ with buffers from RX pool */ 3357 mvneta_rxq_long_pool_set(pp, rxq); 3358 mvneta_rxq_short_pool_set(pp, rxq); 3359 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3360 } 3361 } 3362 3363 /* Create a specified RX queue */ 3364 static int mvneta_rxq_init(struct mvneta_port *pp, 3365 struct mvneta_rx_queue *rxq) 3366 3367 { 3368 int ret; 3369 3370 ret = mvneta_rxq_sw_init(pp, rxq); 3371 if (ret < 0) 3372 return ret; 3373 3374 mvneta_rxq_hw_init(pp, rxq); 3375 3376 return 0; 3377 } 3378 3379 /* Cleanup Rx queue */ 3380 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3381 struct mvneta_rx_queue *rxq) 3382 { 3383 mvneta_rxq_drop_pkts(pp, rxq); 3384 3385 if (rxq->descs) 3386 dma_free_coherent(pp->dev->dev.parent, 3387 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3388 rxq->descs, 3389 rxq->descs_phys); 3390 3391 rxq->descs = NULL; 3392 rxq->last_desc = 0; 3393 rxq->next_desc_to_proc = 0; 3394 rxq->descs_phys = 0; 3395 rxq->first_to_refill = 0; 3396 rxq->refill_num = 0; 3397 } 3398 3399 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3400 struct mvneta_tx_queue *txq) 3401 { 3402 int cpu; 3403 3404 txq->size = pp->tx_ring_size; 3405 3406 /* A queue must always have room for at least one skb. 3407 * Therefore, stop the queue when the free entries reaches 3408 * the maximum number of descriptors per skb. 3409 */ 3410 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3411 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3412 3413 /* Allocate memory for TX descriptors */ 3414 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3415 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3416 &txq->descs_phys, GFP_KERNEL); 3417 if (!txq->descs) 3418 return -ENOMEM; 3419 3420 txq->last_desc = txq->size - 1; 3421 3422 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3423 if (!txq->buf) 3424 return -ENOMEM; 3425 3426 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3427 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3428 txq->size * TSO_HEADER_SIZE, 3429 &txq->tso_hdrs_phys, GFP_KERNEL); 3430 if (!txq->tso_hdrs) 3431 return -ENOMEM; 3432 3433 /* Setup XPS mapping */ 3434 if (pp->neta_armada3700) 3435 cpu = 0; 3436 else if (txq_number > 1) 3437 cpu = txq->id % num_present_cpus(); 3438 else 3439 cpu = pp->rxq_def % num_present_cpus(); 3440 cpumask_set_cpu(cpu, &txq->affinity_mask); 3441 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3442 3443 return 0; 3444 } 3445 3446 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3447 struct mvneta_tx_queue *txq) 3448 { 3449 /* Set maximum bandwidth for enabled TXQs */ 3450 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3451 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3452 3453 /* Set Tx descriptors queue starting address */ 3454 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3455 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3456 3457 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3458 } 3459 3460 /* Create and initialize a tx queue */ 3461 static int mvneta_txq_init(struct mvneta_port *pp, 3462 struct mvneta_tx_queue *txq) 3463 { 3464 int ret; 3465 3466 ret = mvneta_txq_sw_init(pp, txq); 3467 if (ret < 0) 3468 return ret; 3469 3470 mvneta_txq_hw_init(pp, txq); 3471 3472 return 0; 3473 } 3474 3475 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3476 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3477 struct mvneta_tx_queue *txq) 3478 { 3479 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3480 3481 kfree(txq->buf); 3482 3483 if (txq->tso_hdrs) 3484 dma_free_coherent(pp->dev->dev.parent, 3485 txq->size * TSO_HEADER_SIZE, 3486 txq->tso_hdrs, txq->tso_hdrs_phys); 3487 if (txq->descs) 3488 dma_free_coherent(pp->dev->dev.parent, 3489 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3490 txq->descs, txq->descs_phys); 3491 3492 netdev_tx_reset_queue(nq); 3493 3494 txq->descs = NULL; 3495 txq->last_desc = 0; 3496 txq->next_desc_to_proc = 0; 3497 txq->descs_phys = 0; 3498 } 3499 3500 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3501 struct mvneta_tx_queue *txq) 3502 { 3503 /* Set minimum bandwidth for disabled TXQs */ 3504 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3505 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3506 3507 /* Set Tx descriptors queue starting address and size */ 3508 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3509 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3510 } 3511 3512 static void mvneta_txq_deinit(struct mvneta_port *pp, 3513 struct mvneta_tx_queue *txq) 3514 { 3515 mvneta_txq_sw_deinit(pp, txq); 3516 mvneta_txq_hw_deinit(pp, txq); 3517 } 3518 3519 /* Cleanup all Tx queues */ 3520 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3521 { 3522 int queue; 3523 3524 for (queue = 0; queue < txq_number; queue++) 3525 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3526 } 3527 3528 /* Cleanup all Rx queues */ 3529 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3530 { 3531 int queue; 3532 3533 for (queue = 0; queue < rxq_number; queue++) 3534 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3535 } 3536 3537 3538 /* Init all Rx queues */ 3539 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3540 { 3541 int queue; 3542 3543 for (queue = 0; queue < rxq_number; queue++) { 3544 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3545 3546 if (err) { 3547 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3548 __func__, queue); 3549 mvneta_cleanup_rxqs(pp); 3550 return err; 3551 } 3552 } 3553 3554 return 0; 3555 } 3556 3557 /* Init all tx queues */ 3558 static int mvneta_setup_txqs(struct mvneta_port *pp) 3559 { 3560 int queue; 3561 3562 for (queue = 0; queue < txq_number; queue++) { 3563 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3564 if (err) { 3565 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3566 __func__, queue); 3567 mvneta_cleanup_txqs(pp); 3568 return err; 3569 } 3570 } 3571 3572 return 0; 3573 } 3574 3575 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3576 { 3577 int ret; 3578 3579 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3580 if (ret) 3581 return ret; 3582 3583 return phy_power_on(pp->comphy); 3584 } 3585 3586 static int mvneta_config_interface(struct mvneta_port *pp, 3587 phy_interface_t interface) 3588 { 3589 int ret = 0; 3590 3591 if (pp->comphy) { 3592 if (interface == PHY_INTERFACE_MODE_SGMII || 3593 interface == PHY_INTERFACE_MODE_1000BASEX || 3594 interface == PHY_INTERFACE_MODE_2500BASEX) { 3595 ret = mvneta_comphy_init(pp, interface); 3596 } 3597 } else { 3598 switch (interface) { 3599 case PHY_INTERFACE_MODE_QSGMII: 3600 mvreg_write(pp, MVNETA_SERDES_CFG, 3601 MVNETA_QSGMII_SERDES_PROTO); 3602 break; 3603 3604 case PHY_INTERFACE_MODE_SGMII: 3605 case PHY_INTERFACE_MODE_1000BASEX: 3606 mvreg_write(pp, MVNETA_SERDES_CFG, 3607 MVNETA_SGMII_SERDES_PROTO); 3608 break; 3609 3610 case PHY_INTERFACE_MODE_2500BASEX: 3611 mvreg_write(pp, MVNETA_SERDES_CFG, 3612 MVNETA_HSGMII_SERDES_PROTO); 3613 break; 3614 default: 3615 break; 3616 } 3617 } 3618 3619 pp->phy_interface = interface; 3620 3621 return ret; 3622 } 3623 3624 static void mvneta_start_dev(struct mvneta_port *pp) 3625 { 3626 int cpu; 3627 3628 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3629 3630 mvneta_max_rx_size_set(pp, pp->pkt_size); 3631 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3632 3633 /* start the Rx/Tx activity */ 3634 mvneta_port_enable(pp); 3635 3636 if (!pp->neta_armada3700) { 3637 /* Enable polling on the port */ 3638 for_each_online_cpu(cpu) { 3639 struct mvneta_pcpu_port *port = 3640 per_cpu_ptr(pp->ports, cpu); 3641 3642 napi_enable(&port->napi); 3643 } 3644 } else { 3645 napi_enable(&pp->napi); 3646 } 3647 3648 /* Unmask interrupts. It has to be done from each CPU */ 3649 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3650 3651 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3652 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3653 MVNETA_CAUSE_LINK_CHANGE); 3654 3655 phylink_start(pp->phylink); 3656 3657 /* We may have called phylink_speed_down before */ 3658 phylink_speed_up(pp->phylink); 3659 3660 netif_tx_start_all_queues(pp->dev); 3661 3662 clear_bit(__MVNETA_DOWN, &pp->state); 3663 } 3664 3665 static void mvneta_stop_dev(struct mvneta_port *pp) 3666 { 3667 unsigned int cpu; 3668 3669 set_bit(__MVNETA_DOWN, &pp->state); 3670 3671 if (device_may_wakeup(&pp->dev->dev)) 3672 phylink_speed_down(pp->phylink, false); 3673 3674 phylink_stop(pp->phylink); 3675 3676 if (!pp->neta_armada3700) { 3677 for_each_online_cpu(cpu) { 3678 struct mvneta_pcpu_port *port = 3679 per_cpu_ptr(pp->ports, cpu); 3680 3681 napi_disable(&port->napi); 3682 } 3683 } else { 3684 napi_disable(&pp->napi); 3685 } 3686 3687 netif_carrier_off(pp->dev); 3688 3689 mvneta_port_down(pp); 3690 netif_tx_stop_all_queues(pp->dev); 3691 3692 /* Stop the port activity */ 3693 mvneta_port_disable(pp); 3694 3695 /* Clear all ethernet port interrupts */ 3696 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3697 3698 /* Mask all ethernet port interrupts */ 3699 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3700 3701 mvneta_tx_reset(pp); 3702 mvneta_rx_reset(pp); 3703 3704 WARN_ON(phy_power_off(pp->comphy)); 3705 } 3706 3707 static void mvneta_percpu_enable(void *arg) 3708 { 3709 struct mvneta_port *pp = arg; 3710 3711 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3712 } 3713 3714 static void mvneta_percpu_disable(void *arg) 3715 { 3716 struct mvneta_port *pp = arg; 3717 3718 disable_percpu_irq(pp->dev->irq); 3719 } 3720 3721 /* Change the device mtu */ 3722 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3723 { 3724 struct mvneta_port *pp = netdev_priv(dev); 3725 int ret; 3726 3727 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3728 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3729 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3730 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3731 } 3732 3733 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3734 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3735 return -EINVAL; 3736 } 3737 3738 dev->mtu = mtu; 3739 3740 if (!netif_running(dev)) { 3741 if (pp->bm_priv) 3742 mvneta_bm_update_mtu(pp, mtu); 3743 3744 netdev_update_features(dev); 3745 return 0; 3746 } 3747 3748 /* The interface is running, so we have to force a 3749 * reallocation of the queues 3750 */ 3751 mvneta_stop_dev(pp); 3752 on_each_cpu(mvneta_percpu_disable, pp, true); 3753 3754 mvneta_cleanup_txqs(pp); 3755 mvneta_cleanup_rxqs(pp); 3756 3757 if (pp->bm_priv) 3758 mvneta_bm_update_mtu(pp, mtu); 3759 3760 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3761 3762 ret = mvneta_setup_rxqs(pp); 3763 if (ret) { 3764 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3765 return ret; 3766 } 3767 3768 ret = mvneta_setup_txqs(pp); 3769 if (ret) { 3770 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3771 return ret; 3772 } 3773 3774 on_each_cpu(mvneta_percpu_enable, pp, true); 3775 mvneta_start_dev(pp); 3776 3777 netdev_update_features(dev); 3778 3779 return 0; 3780 } 3781 3782 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3783 netdev_features_t features) 3784 { 3785 struct mvneta_port *pp = netdev_priv(dev); 3786 3787 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3788 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3789 netdev_info(dev, 3790 "Disable IP checksum for MTU greater than %dB\n", 3791 pp->tx_csum_limit); 3792 } 3793 3794 return features; 3795 } 3796 3797 /* Get mac address */ 3798 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3799 { 3800 u32 mac_addr_l, mac_addr_h; 3801 3802 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3803 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3804 addr[0] = (mac_addr_h >> 24) & 0xFF; 3805 addr[1] = (mac_addr_h >> 16) & 0xFF; 3806 addr[2] = (mac_addr_h >> 8) & 0xFF; 3807 addr[3] = mac_addr_h & 0xFF; 3808 addr[4] = (mac_addr_l >> 8) & 0xFF; 3809 addr[5] = mac_addr_l & 0xFF; 3810 } 3811 3812 /* Handle setting mac address */ 3813 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3814 { 3815 struct mvneta_port *pp = netdev_priv(dev); 3816 struct sockaddr *sockaddr = addr; 3817 int ret; 3818 3819 ret = eth_prepare_mac_addr_change(dev, addr); 3820 if (ret < 0) 3821 return ret; 3822 /* Remove previous address table entry */ 3823 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3824 3825 /* Set new addr in hw */ 3826 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3827 3828 eth_commit_mac_addr_change(dev, addr); 3829 return 0; 3830 } 3831 3832 static void mvneta_validate(struct phylink_config *config, 3833 unsigned long *supported, 3834 struct phylink_link_state *state) 3835 { 3836 struct net_device *ndev = to_net_dev(config->dev); 3837 struct mvneta_port *pp = netdev_priv(ndev); 3838 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3839 3840 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3841 if (state->interface != PHY_INTERFACE_MODE_NA && 3842 state->interface != PHY_INTERFACE_MODE_QSGMII && 3843 state->interface != PHY_INTERFACE_MODE_SGMII && 3844 !phy_interface_mode_is_8023z(state->interface) && 3845 !phy_interface_mode_is_rgmii(state->interface)) { 3846 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3847 return; 3848 } 3849 3850 /* Allow all the expected bits */ 3851 phylink_set(mask, Autoneg); 3852 phylink_set_port_modes(mask); 3853 3854 /* Asymmetric pause is unsupported */ 3855 phylink_set(mask, Pause); 3856 3857 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3858 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3859 phylink_set(mask, 1000baseT_Full); 3860 phylink_set(mask, 1000baseX_Full); 3861 } 3862 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3863 phylink_set(mask, 2500baseT_Full); 3864 phylink_set(mask, 2500baseX_Full); 3865 } 3866 3867 if (!phy_interface_mode_is_8023z(state->interface)) { 3868 /* 10M and 100M are only supported in non-802.3z mode */ 3869 phylink_set(mask, 10baseT_Half); 3870 phylink_set(mask, 10baseT_Full); 3871 phylink_set(mask, 100baseT_Half); 3872 phylink_set(mask, 100baseT_Full); 3873 } 3874 3875 bitmap_and(supported, supported, mask, 3876 __ETHTOOL_LINK_MODE_MASK_NBITS); 3877 bitmap_and(state->advertising, state->advertising, mask, 3878 __ETHTOOL_LINK_MODE_MASK_NBITS); 3879 3880 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3881 * to advertise both, only report advertising at 2500BaseX. 3882 */ 3883 phylink_helper_basex_speed(state); 3884 } 3885 3886 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3887 struct phylink_link_state *state) 3888 { 3889 struct net_device *ndev = to_net_dev(config->dev); 3890 struct mvneta_port *pp = netdev_priv(ndev); 3891 u32 gmac_stat; 3892 3893 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3894 3895 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3896 state->speed = 3897 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3898 SPEED_2500 : SPEED_1000; 3899 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3900 state->speed = SPEED_100; 3901 else 3902 state->speed = SPEED_10; 3903 3904 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3905 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3906 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3907 3908 state->pause = 0; 3909 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3910 state->pause |= MLO_PAUSE_RX; 3911 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3912 state->pause |= MLO_PAUSE_TX; 3913 } 3914 3915 static void mvneta_mac_an_restart(struct phylink_config *config) 3916 { 3917 struct net_device *ndev = to_net_dev(config->dev); 3918 struct mvneta_port *pp = netdev_priv(ndev); 3919 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3920 3921 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3922 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3923 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3924 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3925 } 3926 3927 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3928 const struct phylink_link_state *state) 3929 { 3930 struct net_device *ndev = to_net_dev(config->dev); 3931 struct mvneta_port *pp = netdev_priv(ndev); 3932 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3933 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3934 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3935 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3936 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3937 3938 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3939 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3940 MVNETA_GMAC2_PORT_RESET); 3941 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3942 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3943 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3944 MVNETA_GMAC_INBAND_RESTART_AN | 3945 MVNETA_GMAC_AN_SPEED_EN | 3946 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3947 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3948 MVNETA_GMAC_AN_DUPLEX_EN); 3949 3950 /* Even though it might look weird, when we're configured in 3951 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3952 */ 3953 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3954 3955 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3956 state->interface == PHY_INTERFACE_MODE_SGMII || 3957 phy_interface_mode_is_8023z(state->interface)) 3958 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3959 3960 if (phylink_test(state->advertising, Pause)) 3961 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3962 3963 if (!phylink_autoneg_inband(mode)) { 3964 /* Phy or fixed speed - nothing to do, leave the 3965 * configured speed, duplex and flow control as-is. 3966 */ 3967 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3968 /* SGMII mode receives the state from the PHY */ 3969 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3970 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3971 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3972 MVNETA_GMAC_FORCE_LINK_PASS | 3973 MVNETA_GMAC_CONFIG_MII_SPEED | 3974 MVNETA_GMAC_CONFIG_GMII_SPEED | 3975 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3976 MVNETA_GMAC_INBAND_AN_ENABLE | 3977 MVNETA_GMAC_AN_SPEED_EN | 3978 MVNETA_GMAC_AN_DUPLEX_EN; 3979 } else { 3980 /* 802.3z negotiation - only 1000base-X */ 3981 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3982 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3983 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3984 MVNETA_GMAC_FORCE_LINK_PASS | 3985 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3986 MVNETA_GMAC_INBAND_AN_ENABLE | 3987 MVNETA_GMAC_CONFIG_GMII_SPEED | 3988 /* The MAC only supports FD mode */ 3989 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3990 3991 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3992 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3993 } 3994 3995 /* Armada 370 documentation says we can only change the port mode 3996 * and in-band enable when the link is down, so force it down 3997 * while making these changes. We also do this for GMAC_CTRL2 */ 3998 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3999 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 4000 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 4001 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4002 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 4003 MVNETA_GMAC_FORCE_LINK_DOWN); 4004 } 4005 4006 4007 /* When at 2.5G, the link partner can send frames with shortened 4008 * preambles. 4009 */ 4010 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 4011 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 4012 4013 if (pp->phy_interface != state->interface) { 4014 if (pp->comphy) 4015 WARN_ON(phy_power_off(pp->comphy)); 4016 WARN_ON(mvneta_config_interface(pp, state->interface)); 4017 } 4018 4019 if (new_ctrl0 != gmac_ctrl0) 4020 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 4021 if (new_ctrl2 != gmac_ctrl2) 4022 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 4023 if (new_ctrl4 != gmac_ctrl4) 4024 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4025 if (new_clk != gmac_clk) 4026 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 4027 if (new_an != gmac_an) 4028 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 4029 4030 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4031 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4032 MVNETA_GMAC2_PORT_RESET) != 0) 4033 continue; 4034 } 4035 } 4036 4037 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4038 { 4039 u32 lpi_ctl1; 4040 4041 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4042 if (enable) 4043 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4044 else 4045 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4046 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4047 } 4048 4049 static void mvneta_mac_link_down(struct phylink_config *config, 4050 unsigned int mode, phy_interface_t interface) 4051 { 4052 struct net_device *ndev = to_net_dev(config->dev); 4053 struct mvneta_port *pp = netdev_priv(ndev); 4054 u32 val; 4055 4056 mvneta_port_down(pp); 4057 4058 if (!phylink_autoneg_inband(mode)) { 4059 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4060 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4061 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4062 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4063 } 4064 4065 pp->eee_active = false; 4066 mvneta_set_eee(pp, false); 4067 } 4068 4069 static void mvneta_mac_link_up(struct phylink_config *config, 4070 struct phy_device *phy, 4071 unsigned int mode, phy_interface_t interface, 4072 int speed, int duplex, 4073 bool tx_pause, bool rx_pause) 4074 { 4075 struct net_device *ndev = to_net_dev(config->dev); 4076 struct mvneta_port *pp = netdev_priv(ndev); 4077 u32 val; 4078 4079 if (!phylink_autoneg_inband(mode)) { 4080 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4081 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4082 MVNETA_GMAC_CONFIG_MII_SPEED | 4083 MVNETA_GMAC_CONFIG_GMII_SPEED | 4084 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4085 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4086 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4087 4088 if (speed == SPEED_1000 || speed == SPEED_2500) 4089 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4090 else if (speed == SPEED_100) 4091 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4092 4093 if (duplex == DUPLEX_FULL) 4094 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4095 4096 if (tx_pause || rx_pause) 4097 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4098 4099 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4100 } else { 4101 /* When inband doesn't cover flow control or flow control is 4102 * disabled, we need to manually configure it. This bit will 4103 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4104 */ 4105 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4106 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4107 4108 if (tx_pause || rx_pause) 4109 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4110 4111 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4112 } 4113 4114 mvneta_port_up(pp); 4115 4116 if (phy && pp->eee_enabled) { 4117 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4118 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4119 } 4120 } 4121 4122 static const struct phylink_mac_ops mvneta_phylink_ops = { 4123 .validate = mvneta_validate, 4124 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4125 .mac_an_restart = mvneta_mac_an_restart, 4126 .mac_config = mvneta_mac_config, 4127 .mac_link_down = mvneta_mac_link_down, 4128 .mac_link_up = mvneta_mac_link_up, 4129 }; 4130 4131 static int mvneta_mdio_probe(struct mvneta_port *pp) 4132 { 4133 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4134 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4135 4136 if (err) 4137 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4138 4139 phylink_ethtool_get_wol(pp->phylink, &wol); 4140 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4141 4142 /* PHY WoL may be enabled but device wakeup disabled */ 4143 if (wol.supported) 4144 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4145 4146 return err; 4147 } 4148 4149 static void mvneta_mdio_remove(struct mvneta_port *pp) 4150 { 4151 phylink_disconnect_phy(pp->phylink); 4152 } 4153 4154 /* Electing a CPU must be done in an atomic way: it should be done 4155 * after or before the removal/insertion of a CPU and this function is 4156 * not reentrant. 4157 */ 4158 static void mvneta_percpu_elect(struct mvneta_port *pp) 4159 { 4160 int elected_cpu = 0, max_cpu, cpu, i = 0; 4161 4162 /* Use the cpu associated to the rxq when it is online, in all 4163 * the other cases, use the cpu 0 which can't be offline. 4164 */ 4165 if (cpu_online(pp->rxq_def)) 4166 elected_cpu = pp->rxq_def; 4167 4168 max_cpu = num_present_cpus(); 4169 4170 for_each_online_cpu(cpu) { 4171 int rxq_map = 0, txq_map = 0; 4172 int rxq; 4173 4174 for (rxq = 0; rxq < rxq_number; rxq++) 4175 if ((rxq % max_cpu) == cpu) 4176 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4177 4178 if (cpu == elected_cpu) 4179 /* Map the default receive queue queue to the 4180 * elected CPU 4181 */ 4182 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4183 4184 /* We update the TX queue map only if we have one 4185 * queue. In this case we associate the TX queue to 4186 * the CPU bound to the default RX queue 4187 */ 4188 if (txq_number == 1) 4189 txq_map = (cpu == elected_cpu) ? 4190 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4191 else 4192 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4193 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4194 4195 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4196 4197 /* Update the interrupt mask on each CPU according the 4198 * new mapping 4199 */ 4200 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4201 pp, true); 4202 i++; 4203 4204 } 4205 }; 4206 4207 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4208 { 4209 int other_cpu; 4210 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4211 node_online); 4212 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4213 4214 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts 4215 * are routed to CPU 0, so we don't need all the cpu-hotplug support 4216 */ 4217 if (pp->neta_armada3700) 4218 return 0; 4219 4220 spin_lock(&pp->lock); 4221 /* 4222 * Configuring the driver for a new CPU while the driver is 4223 * stopping is racy, so just avoid it. 4224 */ 4225 if (pp->is_stopped) { 4226 spin_unlock(&pp->lock); 4227 return 0; 4228 } 4229 netif_tx_stop_all_queues(pp->dev); 4230 4231 /* 4232 * We have to synchronise on tha napi of each CPU except the one 4233 * just being woken up 4234 */ 4235 for_each_online_cpu(other_cpu) { 4236 if (other_cpu != cpu) { 4237 struct mvneta_pcpu_port *other_port = 4238 per_cpu_ptr(pp->ports, other_cpu); 4239 4240 napi_synchronize(&other_port->napi); 4241 } 4242 } 4243 4244 /* Mask all ethernet port interrupts */ 4245 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4246 napi_enable(&port->napi); 4247 4248 /* 4249 * Enable per-CPU interrupts on the CPU that is 4250 * brought up. 4251 */ 4252 mvneta_percpu_enable(pp); 4253 4254 /* 4255 * Enable per-CPU interrupt on the one CPU we care 4256 * about. 4257 */ 4258 mvneta_percpu_elect(pp); 4259 4260 /* Unmask all ethernet port interrupts */ 4261 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4262 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4263 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4264 MVNETA_CAUSE_LINK_CHANGE); 4265 netif_tx_start_all_queues(pp->dev); 4266 spin_unlock(&pp->lock); 4267 return 0; 4268 } 4269 4270 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4271 { 4272 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4273 node_online); 4274 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4275 4276 /* 4277 * Thanks to this lock we are sure that any pending cpu election is 4278 * done. 4279 */ 4280 spin_lock(&pp->lock); 4281 /* Mask all ethernet port interrupts */ 4282 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4283 spin_unlock(&pp->lock); 4284 4285 napi_synchronize(&port->napi); 4286 napi_disable(&port->napi); 4287 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4288 mvneta_percpu_disable(pp); 4289 return 0; 4290 } 4291 4292 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4293 { 4294 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4295 node_dead); 4296 4297 /* Check if a new CPU must be elected now this on is down */ 4298 spin_lock(&pp->lock); 4299 mvneta_percpu_elect(pp); 4300 spin_unlock(&pp->lock); 4301 /* Unmask all ethernet port interrupts */ 4302 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4303 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4304 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4305 MVNETA_CAUSE_LINK_CHANGE); 4306 netif_tx_start_all_queues(pp->dev); 4307 return 0; 4308 } 4309 4310 static int mvneta_open(struct net_device *dev) 4311 { 4312 struct mvneta_port *pp = netdev_priv(dev); 4313 int ret; 4314 4315 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4316 4317 ret = mvneta_setup_rxqs(pp); 4318 if (ret) 4319 return ret; 4320 4321 ret = mvneta_setup_txqs(pp); 4322 if (ret) 4323 goto err_cleanup_rxqs; 4324 4325 /* Connect to port interrupt line */ 4326 if (pp->neta_armada3700) 4327 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4328 dev->name, pp); 4329 else 4330 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4331 dev->name, pp->ports); 4332 if (ret) { 4333 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4334 goto err_cleanup_txqs; 4335 } 4336 4337 if (!pp->neta_armada3700) { 4338 /* Enable per-CPU interrupt on all the CPU to handle our RX 4339 * queue interrupts 4340 */ 4341 on_each_cpu(mvneta_percpu_enable, pp, true); 4342 4343 pp->is_stopped = false; 4344 /* Register a CPU notifier to handle the case where our CPU 4345 * might be taken offline. 4346 */ 4347 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4348 &pp->node_online); 4349 if (ret) 4350 goto err_free_irq; 4351 4352 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4353 &pp->node_dead); 4354 if (ret) 4355 goto err_free_online_hp; 4356 } 4357 4358 ret = mvneta_mdio_probe(pp); 4359 if (ret < 0) { 4360 netdev_err(dev, "cannot probe MDIO bus\n"); 4361 goto err_free_dead_hp; 4362 } 4363 4364 mvneta_start_dev(pp); 4365 4366 return 0; 4367 4368 err_free_dead_hp: 4369 if (!pp->neta_armada3700) 4370 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4371 &pp->node_dead); 4372 err_free_online_hp: 4373 if (!pp->neta_armada3700) 4374 cpuhp_state_remove_instance_nocalls(online_hpstate, 4375 &pp->node_online); 4376 err_free_irq: 4377 if (pp->neta_armada3700) { 4378 free_irq(pp->dev->irq, pp); 4379 } else { 4380 on_each_cpu(mvneta_percpu_disable, pp, true); 4381 free_percpu_irq(pp->dev->irq, pp->ports); 4382 } 4383 err_cleanup_txqs: 4384 mvneta_cleanup_txqs(pp); 4385 err_cleanup_rxqs: 4386 mvneta_cleanup_rxqs(pp); 4387 return ret; 4388 } 4389 4390 /* Stop the port, free port interrupt line */ 4391 static int mvneta_stop(struct net_device *dev) 4392 { 4393 struct mvneta_port *pp = netdev_priv(dev); 4394 4395 if (!pp->neta_armada3700) { 4396 /* Inform that we are stopping so we don't want to setup the 4397 * driver for new CPUs in the notifiers. The code of the 4398 * notifier for CPU online is protected by the same spinlock, 4399 * so when we get the lock, the notifer work is done. 4400 */ 4401 spin_lock(&pp->lock); 4402 pp->is_stopped = true; 4403 spin_unlock(&pp->lock); 4404 4405 mvneta_stop_dev(pp); 4406 mvneta_mdio_remove(pp); 4407 4408 cpuhp_state_remove_instance_nocalls(online_hpstate, 4409 &pp->node_online); 4410 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4411 &pp->node_dead); 4412 on_each_cpu(mvneta_percpu_disable, pp, true); 4413 free_percpu_irq(dev->irq, pp->ports); 4414 } else { 4415 mvneta_stop_dev(pp); 4416 mvneta_mdio_remove(pp); 4417 free_irq(dev->irq, pp); 4418 } 4419 4420 mvneta_cleanup_rxqs(pp); 4421 mvneta_cleanup_txqs(pp); 4422 4423 return 0; 4424 } 4425 4426 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4427 { 4428 struct mvneta_port *pp = netdev_priv(dev); 4429 4430 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4431 } 4432 4433 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4434 struct netlink_ext_ack *extack) 4435 { 4436 bool need_update, running = netif_running(dev); 4437 struct mvneta_port *pp = netdev_priv(dev); 4438 struct bpf_prog *old_prog; 4439 4440 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4441 NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP"); 4442 return -EOPNOTSUPP; 4443 } 4444 4445 if (pp->bm_priv) { 4446 NL_SET_ERR_MSG_MOD(extack, 4447 "Hardware Buffer Management not supported on XDP"); 4448 return -EOPNOTSUPP; 4449 } 4450 4451 need_update = !!pp->xdp_prog != !!prog; 4452 if (running && need_update) 4453 mvneta_stop(dev); 4454 4455 old_prog = xchg(&pp->xdp_prog, prog); 4456 if (old_prog) 4457 bpf_prog_put(old_prog); 4458 4459 if (running && need_update) 4460 return mvneta_open(dev); 4461 4462 return 0; 4463 } 4464 4465 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4466 { 4467 switch (xdp->command) { 4468 case XDP_SETUP_PROG: 4469 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4470 default: 4471 return -EINVAL; 4472 } 4473 } 4474 4475 /* Ethtool methods */ 4476 4477 /* Set link ksettings (phy address, speed) for ethtools */ 4478 static int 4479 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4480 const struct ethtool_link_ksettings *cmd) 4481 { 4482 struct mvneta_port *pp = netdev_priv(ndev); 4483 4484 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4485 } 4486 4487 /* Get link ksettings for ethtools */ 4488 static int 4489 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4490 struct ethtool_link_ksettings *cmd) 4491 { 4492 struct mvneta_port *pp = netdev_priv(ndev); 4493 4494 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4495 } 4496 4497 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4498 { 4499 struct mvneta_port *pp = netdev_priv(dev); 4500 4501 return phylink_ethtool_nway_reset(pp->phylink); 4502 } 4503 4504 /* Set interrupt coalescing for ethtools */ 4505 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4506 struct ethtool_coalesce *c) 4507 { 4508 struct mvneta_port *pp = netdev_priv(dev); 4509 int queue; 4510 4511 for (queue = 0; queue < rxq_number; queue++) { 4512 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4513 rxq->time_coal = c->rx_coalesce_usecs; 4514 rxq->pkts_coal = c->rx_max_coalesced_frames; 4515 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4516 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4517 } 4518 4519 for (queue = 0; queue < txq_number; queue++) { 4520 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4521 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4522 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4523 } 4524 4525 return 0; 4526 } 4527 4528 /* get coalescing for ethtools */ 4529 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4530 struct ethtool_coalesce *c) 4531 { 4532 struct mvneta_port *pp = netdev_priv(dev); 4533 4534 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4535 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4536 4537 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4538 return 0; 4539 } 4540 4541 4542 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4543 struct ethtool_drvinfo *drvinfo) 4544 { 4545 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4546 sizeof(drvinfo->driver)); 4547 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4548 sizeof(drvinfo->version)); 4549 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4550 sizeof(drvinfo->bus_info)); 4551 } 4552 4553 4554 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4555 struct ethtool_ringparam *ring) 4556 { 4557 struct mvneta_port *pp = netdev_priv(netdev); 4558 4559 ring->rx_max_pending = MVNETA_MAX_RXD; 4560 ring->tx_max_pending = MVNETA_MAX_TXD; 4561 ring->rx_pending = pp->rx_ring_size; 4562 ring->tx_pending = pp->tx_ring_size; 4563 } 4564 4565 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4566 struct ethtool_ringparam *ring) 4567 { 4568 struct mvneta_port *pp = netdev_priv(dev); 4569 4570 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4571 return -EINVAL; 4572 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4573 ring->rx_pending : MVNETA_MAX_RXD; 4574 4575 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4576 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4577 if (pp->tx_ring_size != ring->tx_pending) 4578 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4579 pp->tx_ring_size, ring->tx_pending); 4580 4581 if (netif_running(dev)) { 4582 mvneta_stop(dev); 4583 if (mvneta_open(dev)) { 4584 netdev_err(dev, 4585 "error on opening device after ring param change\n"); 4586 return -ENOMEM; 4587 } 4588 } 4589 4590 return 0; 4591 } 4592 4593 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4594 struct ethtool_pauseparam *pause) 4595 { 4596 struct mvneta_port *pp = netdev_priv(dev); 4597 4598 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4599 } 4600 4601 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4602 struct ethtool_pauseparam *pause) 4603 { 4604 struct mvneta_port *pp = netdev_priv(dev); 4605 4606 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4607 } 4608 4609 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4610 u8 *data) 4611 { 4612 if (sset == ETH_SS_STATS) { 4613 int i; 4614 4615 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4616 memcpy(data + i * ETH_GSTRING_LEN, 4617 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4618 } 4619 } 4620 4621 static void 4622 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4623 struct mvneta_ethtool_stats *es) 4624 { 4625 unsigned int start; 4626 int cpu; 4627 4628 for_each_possible_cpu(cpu) { 4629 struct mvneta_pcpu_stats *stats; 4630 u64 skb_alloc_error; 4631 u64 refill_error; 4632 u64 xdp_redirect; 4633 u64 xdp_xmit_err; 4634 u64 xdp_tx_err; 4635 u64 xdp_pass; 4636 u64 xdp_drop; 4637 u64 xdp_xmit; 4638 u64 xdp_tx; 4639 4640 stats = per_cpu_ptr(pp->stats, cpu); 4641 do { 4642 start = u64_stats_fetch_begin_irq(&stats->syncp); 4643 skb_alloc_error = stats->es.skb_alloc_error; 4644 refill_error = stats->es.refill_error; 4645 xdp_redirect = stats->es.ps.xdp_redirect; 4646 xdp_pass = stats->es.ps.xdp_pass; 4647 xdp_drop = stats->es.ps.xdp_drop; 4648 xdp_xmit = stats->es.ps.xdp_xmit; 4649 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4650 xdp_tx = stats->es.ps.xdp_tx; 4651 xdp_tx_err = stats->es.ps.xdp_tx_err; 4652 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4653 4654 es->skb_alloc_error += skb_alloc_error; 4655 es->refill_error += refill_error; 4656 es->ps.xdp_redirect += xdp_redirect; 4657 es->ps.xdp_pass += xdp_pass; 4658 es->ps.xdp_drop += xdp_drop; 4659 es->ps.xdp_xmit += xdp_xmit; 4660 es->ps.xdp_xmit_err += xdp_xmit_err; 4661 es->ps.xdp_tx += xdp_tx; 4662 es->ps.xdp_tx_err += xdp_tx_err; 4663 } 4664 } 4665 4666 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4667 { 4668 struct mvneta_ethtool_stats stats = {}; 4669 const struct mvneta_statistic *s; 4670 void __iomem *base = pp->base; 4671 u32 high, low; 4672 u64 val; 4673 int i; 4674 4675 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4676 for (i = 0, s = mvneta_statistics; 4677 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4678 s++, i++) { 4679 switch (s->type) { 4680 case T_REG_32: 4681 val = readl_relaxed(base + s->offset); 4682 pp->ethtool_stats[i] += val; 4683 break; 4684 case T_REG_64: 4685 /* Docs say to read low 32-bit then high */ 4686 low = readl_relaxed(base + s->offset); 4687 high = readl_relaxed(base + s->offset + 4); 4688 val = (u64)high << 32 | low; 4689 pp->ethtool_stats[i] += val; 4690 break; 4691 case T_SW: 4692 switch (s->offset) { 4693 case ETHTOOL_STAT_EEE_WAKEUP: 4694 val = phylink_get_eee_err(pp->phylink); 4695 pp->ethtool_stats[i] += val; 4696 break; 4697 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4698 pp->ethtool_stats[i] = stats.skb_alloc_error; 4699 break; 4700 case ETHTOOL_STAT_REFILL_ERR: 4701 pp->ethtool_stats[i] = stats.refill_error; 4702 break; 4703 case ETHTOOL_XDP_REDIRECT: 4704 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4705 break; 4706 case ETHTOOL_XDP_PASS: 4707 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4708 break; 4709 case ETHTOOL_XDP_DROP: 4710 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4711 break; 4712 case ETHTOOL_XDP_TX: 4713 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4714 break; 4715 case ETHTOOL_XDP_TX_ERR: 4716 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4717 break; 4718 case ETHTOOL_XDP_XMIT: 4719 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4720 break; 4721 case ETHTOOL_XDP_XMIT_ERR: 4722 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4723 break; 4724 } 4725 break; 4726 } 4727 } 4728 } 4729 4730 static void mvneta_ethtool_get_stats(struct net_device *dev, 4731 struct ethtool_stats *stats, u64 *data) 4732 { 4733 struct mvneta_port *pp = netdev_priv(dev); 4734 int i; 4735 4736 mvneta_ethtool_update_stats(pp); 4737 4738 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4739 *data++ = pp->ethtool_stats[i]; 4740 } 4741 4742 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4743 { 4744 if (sset == ETH_SS_STATS) 4745 return ARRAY_SIZE(mvneta_statistics); 4746 return -EOPNOTSUPP; 4747 } 4748 4749 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4750 { 4751 return MVNETA_RSS_LU_TABLE_SIZE; 4752 } 4753 4754 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4755 struct ethtool_rxnfc *info, 4756 u32 *rules __always_unused) 4757 { 4758 switch (info->cmd) { 4759 case ETHTOOL_GRXRINGS: 4760 info->data = rxq_number; 4761 return 0; 4762 case ETHTOOL_GRXFH: 4763 return -EOPNOTSUPP; 4764 default: 4765 return -EOPNOTSUPP; 4766 } 4767 } 4768 4769 static int mvneta_config_rss(struct mvneta_port *pp) 4770 { 4771 int cpu; 4772 u32 val; 4773 4774 netif_tx_stop_all_queues(pp->dev); 4775 4776 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4777 4778 if (!pp->neta_armada3700) { 4779 /* We have to synchronise on the napi of each CPU */ 4780 for_each_online_cpu(cpu) { 4781 struct mvneta_pcpu_port *pcpu_port = 4782 per_cpu_ptr(pp->ports, cpu); 4783 4784 napi_synchronize(&pcpu_port->napi); 4785 napi_disable(&pcpu_port->napi); 4786 } 4787 } else { 4788 napi_synchronize(&pp->napi); 4789 napi_disable(&pp->napi); 4790 } 4791 4792 pp->rxq_def = pp->indir[0]; 4793 4794 /* Update unicast mapping */ 4795 mvneta_set_rx_mode(pp->dev); 4796 4797 /* Update val of portCfg register accordingly with all RxQueue types */ 4798 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4799 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4800 4801 /* Update the elected CPU matching the new rxq_def */ 4802 spin_lock(&pp->lock); 4803 mvneta_percpu_elect(pp); 4804 spin_unlock(&pp->lock); 4805 4806 if (!pp->neta_armada3700) { 4807 /* We have to synchronise on the napi of each CPU */ 4808 for_each_online_cpu(cpu) { 4809 struct mvneta_pcpu_port *pcpu_port = 4810 per_cpu_ptr(pp->ports, cpu); 4811 4812 napi_enable(&pcpu_port->napi); 4813 } 4814 } else { 4815 napi_enable(&pp->napi); 4816 } 4817 4818 netif_tx_start_all_queues(pp->dev); 4819 4820 return 0; 4821 } 4822 4823 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4824 const u8 *key, const u8 hfunc) 4825 { 4826 struct mvneta_port *pp = netdev_priv(dev); 4827 4828 /* Current code for Armada 3700 doesn't support RSS features yet */ 4829 if (pp->neta_armada3700) 4830 return -EOPNOTSUPP; 4831 4832 /* We require at least one supported parameter to be changed 4833 * and no change in any of the unsupported parameters 4834 */ 4835 if (key || 4836 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4837 return -EOPNOTSUPP; 4838 4839 if (!indir) 4840 return 0; 4841 4842 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4843 4844 return mvneta_config_rss(pp); 4845 } 4846 4847 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4848 u8 *hfunc) 4849 { 4850 struct mvneta_port *pp = netdev_priv(dev); 4851 4852 /* Current code for Armada 3700 doesn't support RSS features yet */ 4853 if (pp->neta_armada3700) 4854 return -EOPNOTSUPP; 4855 4856 if (hfunc) 4857 *hfunc = ETH_RSS_HASH_TOP; 4858 4859 if (!indir) 4860 return 0; 4861 4862 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4863 4864 return 0; 4865 } 4866 4867 static void mvneta_ethtool_get_wol(struct net_device *dev, 4868 struct ethtool_wolinfo *wol) 4869 { 4870 struct mvneta_port *pp = netdev_priv(dev); 4871 4872 phylink_ethtool_get_wol(pp->phylink, wol); 4873 } 4874 4875 static int mvneta_ethtool_set_wol(struct net_device *dev, 4876 struct ethtool_wolinfo *wol) 4877 { 4878 struct mvneta_port *pp = netdev_priv(dev); 4879 int ret; 4880 4881 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4882 if (!ret) 4883 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4884 4885 return ret; 4886 } 4887 4888 static int mvneta_ethtool_get_eee(struct net_device *dev, 4889 struct ethtool_eee *eee) 4890 { 4891 struct mvneta_port *pp = netdev_priv(dev); 4892 u32 lpi_ctl0; 4893 4894 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4895 4896 eee->eee_enabled = pp->eee_enabled; 4897 eee->eee_active = pp->eee_active; 4898 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4899 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4900 4901 return phylink_ethtool_get_eee(pp->phylink, eee); 4902 } 4903 4904 static int mvneta_ethtool_set_eee(struct net_device *dev, 4905 struct ethtool_eee *eee) 4906 { 4907 struct mvneta_port *pp = netdev_priv(dev); 4908 u32 lpi_ctl0; 4909 4910 /* The Armada 37x documents do not give limits for this other than 4911 * it being an 8-bit register. */ 4912 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4913 return -EINVAL; 4914 4915 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4916 lpi_ctl0 &= ~(0xff << 8); 4917 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4918 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4919 4920 pp->eee_enabled = eee->eee_enabled; 4921 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4922 4923 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4924 4925 return phylink_ethtool_set_eee(pp->phylink, eee); 4926 } 4927 4928 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp) 4929 { 4930 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0); 4931 } 4932 4933 static void mvneta_setup_rx_prio_map(struct mvneta_port *pp) 4934 { 4935 u32 val = 0; 4936 int i; 4937 4938 for (i = 0; i < rxq_number; i++) 4939 val |= MVNETA_VLAN_PRIO_RXQ_MAP(i, pp->prio_tc_map[i]); 4940 4941 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val); 4942 } 4943 4944 static int mvneta_setup_mqprio(struct net_device *dev, 4945 struct tc_mqprio_qopt *qopt) 4946 { 4947 struct mvneta_port *pp = netdev_priv(dev); 4948 u8 num_tc; 4949 int i; 4950 4951 qopt->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 4952 num_tc = qopt->num_tc; 4953 4954 if (num_tc > rxq_number) 4955 return -EINVAL; 4956 4957 if (!num_tc) { 4958 mvneta_clear_rx_prio_map(pp); 4959 netdev_reset_tc(dev); 4960 return 0; 4961 } 4962 4963 memcpy(pp->prio_tc_map, qopt->prio_tc_map, sizeof(pp->prio_tc_map)); 4964 4965 mvneta_setup_rx_prio_map(pp); 4966 4967 netdev_set_num_tc(dev, qopt->num_tc); 4968 for (i = 0; i < qopt->num_tc; i++) 4969 netdev_set_tc_queue(dev, i, qopt->count[i], qopt->offset[i]); 4970 4971 return 0; 4972 } 4973 4974 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type, 4975 void *type_data) 4976 { 4977 switch (type) { 4978 case TC_SETUP_QDISC_MQPRIO: 4979 return mvneta_setup_mqprio(dev, type_data); 4980 default: 4981 return -EOPNOTSUPP; 4982 } 4983 } 4984 4985 static const struct net_device_ops mvneta_netdev_ops = { 4986 .ndo_open = mvneta_open, 4987 .ndo_stop = mvneta_stop, 4988 .ndo_start_xmit = mvneta_tx, 4989 .ndo_set_rx_mode = mvneta_set_rx_mode, 4990 .ndo_set_mac_address = mvneta_set_mac_addr, 4991 .ndo_change_mtu = mvneta_change_mtu, 4992 .ndo_fix_features = mvneta_fix_features, 4993 .ndo_get_stats64 = mvneta_get_stats64, 4994 .ndo_do_ioctl = mvneta_ioctl, 4995 .ndo_bpf = mvneta_xdp, 4996 .ndo_xdp_xmit = mvneta_xdp_xmit, 4997 .ndo_setup_tc = mvneta_setup_tc, 4998 }; 4999 5000 static const struct ethtool_ops mvneta_eth_tool_ops = { 5001 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 5002 ETHTOOL_COALESCE_MAX_FRAMES, 5003 .nway_reset = mvneta_ethtool_nway_reset, 5004 .get_link = ethtool_op_get_link, 5005 .set_coalesce = mvneta_ethtool_set_coalesce, 5006 .get_coalesce = mvneta_ethtool_get_coalesce, 5007 .get_drvinfo = mvneta_ethtool_get_drvinfo, 5008 .get_ringparam = mvneta_ethtool_get_ringparam, 5009 .set_ringparam = mvneta_ethtool_set_ringparam, 5010 .get_pauseparam = mvneta_ethtool_get_pauseparam, 5011 .set_pauseparam = mvneta_ethtool_set_pauseparam, 5012 .get_strings = mvneta_ethtool_get_strings, 5013 .get_ethtool_stats = mvneta_ethtool_get_stats, 5014 .get_sset_count = mvneta_ethtool_get_sset_count, 5015 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 5016 .get_rxnfc = mvneta_ethtool_get_rxnfc, 5017 .get_rxfh = mvneta_ethtool_get_rxfh, 5018 .set_rxfh = mvneta_ethtool_set_rxfh, 5019 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 5020 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 5021 .get_wol = mvneta_ethtool_get_wol, 5022 .set_wol = mvneta_ethtool_set_wol, 5023 .get_eee = mvneta_ethtool_get_eee, 5024 .set_eee = mvneta_ethtool_set_eee, 5025 }; 5026 5027 /* Initialize hw */ 5028 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 5029 { 5030 int queue; 5031 5032 /* Disable port */ 5033 mvneta_port_disable(pp); 5034 5035 /* Set port default values */ 5036 mvneta_defaults_set(pp); 5037 5038 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 5039 if (!pp->txqs) 5040 return -ENOMEM; 5041 5042 /* Initialize TX descriptor rings */ 5043 for (queue = 0; queue < txq_number; queue++) { 5044 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5045 txq->id = queue; 5046 txq->size = pp->tx_ring_size; 5047 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 5048 } 5049 5050 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 5051 if (!pp->rxqs) 5052 return -ENOMEM; 5053 5054 /* Create Rx descriptor rings */ 5055 for (queue = 0; queue < rxq_number; queue++) { 5056 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5057 rxq->id = queue; 5058 rxq->size = pp->rx_ring_size; 5059 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 5060 rxq->time_coal = MVNETA_RX_COAL_USEC; 5061 rxq->buf_virt_addr 5062 = devm_kmalloc_array(pp->dev->dev.parent, 5063 rxq->size, 5064 sizeof(*rxq->buf_virt_addr), 5065 GFP_KERNEL); 5066 if (!rxq->buf_virt_addr) 5067 return -ENOMEM; 5068 } 5069 5070 return 0; 5071 } 5072 5073 /* platform glue : initialize decoding windows */ 5074 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 5075 const struct mbus_dram_target_info *dram) 5076 { 5077 u32 win_enable; 5078 u32 win_protect; 5079 int i; 5080 5081 for (i = 0; i < 6; i++) { 5082 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 5083 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 5084 5085 if (i < 4) 5086 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5087 } 5088 5089 win_enable = 0x3f; 5090 win_protect = 0; 5091 5092 if (dram) { 5093 for (i = 0; i < dram->num_cs; i++) { 5094 const struct mbus_dram_window *cs = dram->cs + i; 5095 5096 mvreg_write(pp, MVNETA_WIN_BASE(i), 5097 (cs->base & 0xffff0000) | 5098 (cs->mbus_attr << 8) | 5099 dram->mbus_dram_target_id); 5100 5101 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5102 (cs->size - 1) & 0xffff0000); 5103 5104 win_enable &= ~(1 << i); 5105 win_protect |= 3 << (2 * i); 5106 } 5107 } else { 5108 /* For Armada3700 open default 4GB Mbus window, leaving 5109 * arbitration of target/attribute to a different layer 5110 * of configuration. 5111 */ 5112 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5113 win_enable &= ~BIT(0); 5114 win_protect = 3; 5115 } 5116 5117 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5118 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5119 } 5120 5121 /* Power up the port */ 5122 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5123 { 5124 /* MAC Cause register should be cleared */ 5125 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5126 5127 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5128 phy_mode != PHY_INTERFACE_MODE_SGMII && 5129 !phy_interface_mode_is_8023z(phy_mode) && 5130 !phy_interface_mode_is_rgmii(phy_mode)) 5131 return -EINVAL; 5132 5133 return 0; 5134 } 5135 5136 /* Device initialization routine */ 5137 static int mvneta_probe(struct platform_device *pdev) 5138 { 5139 struct device_node *dn = pdev->dev.of_node; 5140 struct device_node *bm_node; 5141 struct mvneta_port *pp; 5142 struct net_device *dev; 5143 struct phylink *phylink; 5144 struct phy *comphy; 5145 const char *dt_mac_addr; 5146 char hw_mac_addr[ETH_ALEN]; 5147 phy_interface_t phy_mode; 5148 const char *mac_from; 5149 int tx_csum_limit; 5150 int err; 5151 int cpu; 5152 5153 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5154 txq_number, rxq_number); 5155 if (!dev) 5156 return -ENOMEM; 5157 5158 dev->irq = irq_of_parse_and_map(dn, 0); 5159 if (dev->irq == 0) 5160 return -EINVAL; 5161 5162 err = of_get_phy_mode(dn, &phy_mode); 5163 if (err) { 5164 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5165 goto err_free_irq; 5166 } 5167 5168 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5169 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5170 err = -EPROBE_DEFER; 5171 goto err_free_irq; 5172 } else if (IS_ERR(comphy)) { 5173 comphy = NULL; 5174 } 5175 5176 pp = netdev_priv(dev); 5177 spin_lock_init(&pp->lock); 5178 5179 pp->phylink_config.dev = &dev->dev; 5180 pp->phylink_config.type = PHYLINK_NETDEV; 5181 5182 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5183 phy_mode, &mvneta_phylink_ops); 5184 if (IS_ERR(phylink)) { 5185 err = PTR_ERR(phylink); 5186 goto err_free_irq; 5187 } 5188 5189 dev->tx_queue_len = MVNETA_MAX_TXD; 5190 dev->watchdog_timeo = 5 * HZ; 5191 dev->netdev_ops = &mvneta_netdev_ops; 5192 5193 dev->ethtool_ops = &mvneta_eth_tool_ops; 5194 5195 pp->phylink = phylink; 5196 pp->comphy = comphy; 5197 pp->phy_interface = phy_mode; 5198 pp->dn = dn; 5199 5200 pp->rxq_def = rxq_def; 5201 pp->indir[0] = rxq_def; 5202 5203 /* Get special SoC configurations */ 5204 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5205 pp->neta_armada3700 = true; 5206 5207 pp->clk = devm_clk_get(&pdev->dev, "core"); 5208 if (IS_ERR(pp->clk)) 5209 pp->clk = devm_clk_get(&pdev->dev, NULL); 5210 if (IS_ERR(pp->clk)) { 5211 err = PTR_ERR(pp->clk); 5212 goto err_free_phylink; 5213 } 5214 5215 clk_prepare_enable(pp->clk); 5216 5217 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5218 if (!IS_ERR(pp->clk_bus)) 5219 clk_prepare_enable(pp->clk_bus); 5220 5221 pp->base = devm_platform_ioremap_resource(pdev, 0); 5222 if (IS_ERR(pp->base)) { 5223 err = PTR_ERR(pp->base); 5224 goto err_clk; 5225 } 5226 5227 /* Alloc per-cpu port structure */ 5228 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5229 if (!pp->ports) { 5230 err = -ENOMEM; 5231 goto err_clk; 5232 } 5233 5234 /* Alloc per-cpu stats */ 5235 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5236 if (!pp->stats) { 5237 err = -ENOMEM; 5238 goto err_free_ports; 5239 } 5240 5241 dt_mac_addr = of_get_mac_address(dn); 5242 if (!IS_ERR(dt_mac_addr)) { 5243 mac_from = "device tree"; 5244 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5245 } else { 5246 mvneta_get_mac_addr(pp, hw_mac_addr); 5247 if (is_valid_ether_addr(hw_mac_addr)) { 5248 mac_from = "hardware"; 5249 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5250 } else { 5251 mac_from = "random"; 5252 eth_hw_addr_random(dev); 5253 } 5254 } 5255 5256 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5257 if (tx_csum_limit < 0 || 5258 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5259 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5260 dev_info(&pdev->dev, 5261 "Wrong TX csum limit in DT, set to %dB\n", 5262 MVNETA_TX_CSUM_DEF_SIZE); 5263 } 5264 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5265 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5266 } else { 5267 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5268 } 5269 5270 pp->tx_csum_limit = tx_csum_limit; 5271 5272 pp->dram_target_info = mv_mbus_dram_info(); 5273 /* Armada3700 requires setting default configuration of Mbus 5274 * windows, however without using filled mbus_dram_target_info 5275 * structure. 5276 */ 5277 if (pp->dram_target_info || pp->neta_armada3700) 5278 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5279 5280 pp->tx_ring_size = MVNETA_MAX_TXD; 5281 pp->rx_ring_size = MVNETA_MAX_RXD; 5282 5283 pp->dev = dev; 5284 SET_NETDEV_DEV(dev, &pdev->dev); 5285 5286 pp->id = global_port_id++; 5287 5288 /* Obtain access to BM resources if enabled and already initialized */ 5289 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5290 if (bm_node) { 5291 pp->bm_priv = mvneta_bm_get(bm_node); 5292 if (pp->bm_priv) { 5293 err = mvneta_bm_port_init(pdev, pp); 5294 if (err < 0) { 5295 dev_info(&pdev->dev, 5296 "use SW buffer management\n"); 5297 mvneta_bm_put(pp->bm_priv); 5298 pp->bm_priv = NULL; 5299 } 5300 } 5301 /* Set RX packet offset correction for platforms, whose 5302 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5303 * platforms and 0B for 32-bit ones. 5304 */ 5305 pp->rx_offset_correction = max(0, 5306 NET_SKB_PAD - 5307 MVNETA_RX_PKT_OFFSET_CORRECTION); 5308 } 5309 of_node_put(bm_node); 5310 5311 /* sw buffer management */ 5312 if (!pp->bm_priv) 5313 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5314 5315 err = mvneta_init(&pdev->dev, pp); 5316 if (err < 0) 5317 goto err_netdev; 5318 5319 err = mvneta_port_power_up(pp, pp->phy_interface); 5320 if (err < 0) { 5321 dev_err(&pdev->dev, "can't power up port\n"); 5322 goto err_netdev; 5323 } 5324 5325 /* Armada3700 network controller does not support per-cpu 5326 * operation, so only single NAPI should be initialized. 5327 */ 5328 if (pp->neta_armada3700) { 5329 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5330 } else { 5331 for_each_present_cpu(cpu) { 5332 struct mvneta_pcpu_port *port = 5333 per_cpu_ptr(pp->ports, cpu); 5334 5335 netif_napi_add(dev, &port->napi, mvneta_poll, 5336 NAPI_POLL_WEIGHT); 5337 port->pp = pp; 5338 } 5339 } 5340 5341 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5342 NETIF_F_TSO | NETIF_F_RXCSUM; 5343 dev->hw_features |= dev->features; 5344 dev->vlan_features |= dev->features; 5345 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5346 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5347 5348 /* MTU range: 68 - 9676 */ 5349 dev->min_mtu = ETH_MIN_MTU; 5350 /* 9676 == 9700 - 20 and rounding to 8 */ 5351 dev->max_mtu = 9676; 5352 5353 err = register_netdev(dev); 5354 if (err < 0) { 5355 dev_err(&pdev->dev, "failed to register\n"); 5356 goto err_netdev; 5357 } 5358 5359 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5360 dev->dev_addr); 5361 5362 platform_set_drvdata(pdev, pp->dev); 5363 5364 return 0; 5365 5366 err_netdev: 5367 if (pp->bm_priv) { 5368 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5369 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5370 1 << pp->id); 5371 mvneta_bm_put(pp->bm_priv); 5372 } 5373 free_percpu(pp->stats); 5374 err_free_ports: 5375 free_percpu(pp->ports); 5376 err_clk: 5377 clk_disable_unprepare(pp->clk_bus); 5378 clk_disable_unprepare(pp->clk); 5379 err_free_phylink: 5380 if (pp->phylink) 5381 phylink_destroy(pp->phylink); 5382 err_free_irq: 5383 irq_dispose_mapping(dev->irq); 5384 return err; 5385 } 5386 5387 /* Device removal routine */ 5388 static int mvneta_remove(struct platform_device *pdev) 5389 { 5390 struct net_device *dev = platform_get_drvdata(pdev); 5391 struct mvneta_port *pp = netdev_priv(dev); 5392 5393 unregister_netdev(dev); 5394 clk_disable_unprepare(pp->clk_bus); 5395 clk_disable_unprepare(pp->clk); 5396 free_percpu(pp->ports); 5397 free_percpu(pp->stats); 5398 irq_dispose_mapping(dev->irq); 5399 phylink_destroy(pp->phylink); 5400 5401 if (pp->bm_priv) { 5402 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5403 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5404 1 << pp->id); 5405 mvneta_bm_put(pp->bm_priv); 5406 } 5407 5408 return 0; 5409 } 5410 5411 #ifdef CONFIG_PM_SLEEP 5412 static int mvneta_suspend(struct device *device) 5413 { 5414 int queue; 5415 struct net_device *dev = dev_get_drvdata(device); 5416 struct mvneta_port *pp = netdev_priv(dev); 5417 5418 if (!netif_running(dev)) 5419 goto clean_exit; 5420 5421 if (!pp->neta_armada3700) { 5422 spin_lock(&pp->lock); 5423 pp->is_stopped = true; 5424 spin_unlock(&pp->lock); 5425 5426 cpuhp_state_remove_instance_nocalls(online_hpstate, 5427 &pp->node_online); 5428 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5429 &pp->node_dead); 5430 } 5431 5432 rtnl_lock(); 5433 mvneta_stop_dev(pp); 5434 rtnl_unlock(); 5435 5436 for (queue = 0; queue < rxq_number; queue++) { 5437 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5438 5439 mvneta_rxq_drop_pkts(pp, rxq); 5440 } 5441 5442 for (queue = 0; queue < txq_number; queue++) { 5443 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5444 5445 mvneta_txq_hw_deinit(pp, txq); 5446 } 5447 5448 clean_exit: 5449 netif_device_detach(dev); 5450 clk_disable_unprepare(pp->clk_bus); 5451 clk_disable_unprepare(pp->clk); 5452 5453 return 0; 5454 } 5455 5456 static int mvneta_resume(struct device *device) 5457 { 5458 struct platform_device *pdev = to_platform_device(device); 5459 struct net_device *dev = dev_get_drvdata(device); 5460 struct mvneta_port *pp = netdev_priv(dev); 5461 int err, queue; 5462 5463 clk_prepare_enable(pp->clk); 5464 if (!IS_ERR(pp->clk_bus)) 5465 clk_prepare_enable(pp->clk_bus); 5466 if (pp->dram_target_info || pp->neta_armada3700) 5467 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5468 if (pp->bm_priv) { 5469 err = mvneta_bm_port_init(pdev, pp); 5470 if (err < 0) { 5471 dev_info(&pdev->dev, "use SW buffer management\n"); 5472 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5473 pp->bm_priv = NULL; 5474 } 5475 } 5476 mvneta_defaults_set(pp); 5477 err = mvneta_port_power_up(pp, pp->phy_interface); 5478 if (err < 0) { 5479 dev_err(device, "can't power up port\n"); 5480 return err; 5481 } 5482 5483 netif_device_attach(dev); 5484 5485 if (!netif_running(dev)) 5486 return 0; 5487 5488 for (queue = 0; queue < rxq_number; queue++) { 5489 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5490 5491 rxq->next_desc_to_proc = 0; 5492 mvneta_rxq_hw_init(pp, rxq); 5493 } 5494 5495 for (queue = 0; queue < txq_number; queue++) { 5496 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5497 5498 txq->next_desc_to_proc = 0; 5499 mvneta_txq_hw_init(pp, txq); 5500 } 5501 5502 if (!pp->neta_armada3700) { 5503 spin_lock(&pp->lock); 5504 pp->is_stopped = false; 5505 spin_unlock(&pp->lock); 5506 cpuhp_state_add_instance_nocalls(online_hpstate, 5507 &pp->node_online); 5508 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5509 &pp->node_dead); 5510 } 5511 5512 rtnl_lock(); 5513 mvneta_start_dev(pp); 5514 rtnl_unlock(); 5515 mvneta_set_rx_mode(dev); 5516 5517 return 0; 5518 } 5519 #endif 5520 5521 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5522 5523 static const struct of_device_id mvneta_match[] = { 5524 { .compatible = "marvell,armada-370-neta" }, 5525 { .compatible = "marvell,armada-xp-neta" }, 5526 { .compatible = "marvell,armada-3700-neta" }, 5527 { } 5528 }; 5529 MODULE_DEVICE_TABLE(of, mvneta_match); 5530 5531 static struct platform_driver mvneta_driver = { 5532 .probe = mvneta_probe, 5533 .remove = mvneta_remove, 5534 .driver = { 5535 .name = MVNETA_DRIVER_NAME, 5536 .of_match_table = mvneta_match, 5537 .pm = &mvneta_pm_ops, 5538 }, 5539 }; 5540 5541 static int __init mvneta_driver_init(void) 5542 { 5543 int ret; 5544 5545 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5546 mvneta_cpu_online, 5547 mvneta_cpu_down_prepare); 5548 if (ret < 0) 5549 goto out; 5550 online_hpstate = ret; 5551 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5552 NULL, mvneta_cpu_dead); 5553 if (ret) 5554 goto err_dead; 5555 5556 ret = platform_driver_register(&mvneta_driver); 5557 if (ret) 5558 goto err; 5559 return 0; 5560 5561 err: 5562 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5563 err_dead: 5564 cpuhp_remove_multi_state(online_hpstate); 5565 out: 5566 return ret; 5567 } 5568 module_init(mvneta_driver_init); 5569 5570 static void __exit mvneta_driver_exit(void) 5571 { 5572 platform_driver_unregister(&mvneta_driver); 5573 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5574 cpuhp_remove_multi_state(online_hpstate); 5575 } 5576 module_exit(mvneta_driver_exit); 5577 5578 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5579 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5580 MODULE_LICENSE("GPL"); 5581 5582 module_param(rxq_number, int, 0444); 5583 module_param(txq_number, int, 0444); 5584 5585 module_param(rxq_def, int, 0444); 5586 module_param(rx_copybreak, int, 0644); 5587