1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 193 #define MVNETA_GMAC_CTRL_2 0x2c08 194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 196 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 197 #define MVNETA_GMAC2_PORT_RESET BIT(6) 198 #define MVNETA_GMAC_STATUS 0x2c10 199 #define MVNETA_GMAC_LINK_UP BIT(0) 200 #define MVNETA_GMAC_SPEED_1000 BIT(1) 201 #define MVNETA_GMAC_SPEED_100 BIT(2) 202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 217 #define MVNETA_MIB_COUNTERS_BASE 0x3000 218 #define MVNETA_MIB_LATE_COLLISION 0x7c 219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 232 #define MVNETA_PORT_TX_RESET 0x3cf0 233 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 234 #define MVNETA_TX_MTU 0x3e0c 235 #define MVNETA_TX_TOKEN_SIZE 0x3e14 236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 239 240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 241 242 /* Descriptor ring Macros */ 243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 244 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 245 246 /* Various constants */ 247 248 /* Coalescing */ 249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 250 #define MVNETA_RX_COAL_PKTS 32 251 #define MVNETA_RX_COAL_USEC 100 252 253 /* The two bytes Marvell header. Either contains a special value used 254 * by Marvell switches when a specific hardware mode is enabled (not 255 * supported by this driver) or is filled automatically by zeroes on 256 * the RX side. Those two bytes being at the front of the Ethernet 257 * header, they allow to have the IP header aligned on a 4 bytes 258 * boundary automatically: the hardware skips those two bytes on its 259 * own. 260 */ 261 #define MVNETA_MH_SIZE 2 262 263 #define MVNETA_VLAN_TAG_LEN 4 264 265 #define MVNETA_TX_CSUM_DEF_SIZE 1600 266 #define MVNETA_TX_CSUM_MAX_SIZE 9800 267 #define MVNETA_ACC_MODE_EXT1 1 268 #define MVNETA_ACC_MODE_EXT2 2 269 270 #define MVNETA_MAX_DECODE_WIN 6 271 272 /* Timeout constants */ 273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 276 277 #define MVNETA_TX_MTU_MAX 0x3ffff 278 279 /* The RSS lookup table actually has 256 entries but we do not use 280 * them yet 281 */ 282 #define MVNETA_RSS_LU_TABLE_SIZE 1 283 284 /* TSO header size */ 285 #define TSO_HEADER_SIZE 128 286 287 /* Max number of Rx descriptors */ 288 #define MVNETA_MAX_RXD 128 289 290 /* Max number of Tx descriptors */ 291 #define MVNETA_MAX_TXD 532 292 293 /* Max number of allowed TCP segments for software TSO */ 294 #define MVNETA_MAX_TSO_SEGS 100 295 296 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 297 298 /* descriptor aligned size */ 299 #define MVNETA_DESC_ALIGNED_SIZE 32 300 301 /* Number of bytes to be taken into account by HW when putting incoming data 302 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 303 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 304 */ 305 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 306 307 #define MVNETA_RX_PKT_SIZE(mtu) \ 308 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 309 ETH_HLEN + ETH_FCS_LEN, \ 310 cache_line_size()) 311 312 #define IS_TSO_HEADER(txq, addr) \ 313 ((addr >= txq->tso_hdrs_phys) && \ 314 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 315 316 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 317 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 318 319 struct mvneta_statistic { 320 unsigned short offset; 321 unsigned short type; 322 const char name[ETH_GSTRING_LEN]; 323 }; 324 325 #define T_REG_32 32 326 #define T_REG_64 64 327 328 static const struct mvneta_statistic mvneta_statistics[] = { 329 { 0x3000, T_REG_64, "good_octets_received", }, 330 { 0x3010, T_REG_32, "good_frames_received", }, 331 { 0x3008, T_REG_32, "bad_octets_received", }, 332 { 0x3014, T_REG_32, "bad_frames_received", }, 333 { 0x3018, T_REG_32, "broadcast_frames_received", }, 334 { 0x301c, T_REG_32, "multicast_frames_received", }, 335 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 336 { 0x3058, T_REG_32, "good_fc_received", }, 337 { 0x305c, T_REG_32, "bad_fc_received", }, 338 { 0x3060, T_REG_32, "undersize_received", }, 339 { 0x3064, T_REG_32, "fragments_received", }, 340 { 0x3068, T_REG_32, "oversize_received", }, 341 { 0x306c, T_REG_32, "jabber_received", }, 342 { 0x3070, T_REG_32, "mac_receive_error", }, 343 { 0x3074, T_REG_32, "bad_crc_event", }, 344 { 0x3078, T_REG_32, "collision", }, 345 { 0x307c, T_REG_32, "late_collision", }, 346 { 0x2484, T_REG_32, "rx_discard", }, 347 { 0x2488, T_REG_32, "rx_overrun", }, 348 { 0x3020, T_REG_32, "frames_64_octets", }, 349 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 350 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 351 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 352 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 353 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 354 { 0x3038, T_REG_64, "good_octets_sent", }, 355 { 0x3040, T_REG_32, "good_frames_sent", }, 356 { 0x3044, T_REG_32, "excessive_collision", }, 357 { 0x3048, T_REG_32, "multicast_frames_sent", }, 358 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 359 { 0x3054, T_REG_32, "fc_sent", }, 360 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 361 }; 362 363 struct mvneta_pcpu_stats { 364 struct u64_stats_sync syncp; 365 u64 rx_packets; 366 u64 rx_bytes; 367 u64 tx_packets; 368 u64 tx_bytes; 369 }; 370 371 struct mvneta_pcpu_port { 372 /* Pointer to the shared port */ 373 struct mvneta_port *pp; 374 375 /* Pointer to the CPU-local NAPI struct */ 376 struct napi_struct napi; 377 378 /* Cause of the previous interrupt */ 379 u32 cause_rx_tx; 380 }; 381 382 struct mvneta_port { 383 u8 id; 384 struct mvneta_pcpu_port __percpu *ports; 385 struct mvneta_pcpu_stats __percpu *stats; 386 387 int pkt_size; 388 unsigned int frag_size; 389 void __iomem *base; 390 struct mvneta_rx_queue *rxqs; 391 struct mvneta_tx_queue *txqs; 392 struct net_device *dev; 393 struct hlist_node node_online; 394 struct hlist_node node_dead; 395 int rxq_def; 396 /* Protect the access to the percpu interrupt registers, 397 * ensuring that the configuration remains coherent. 398 */ 399 spinlock_t lock; 400 bool is_stopped; 401 402 u32 cause_rx_tx; 403 struct napi_struct napi; 404 405 /* Core clock */ 406 struct clk *clk; 407 /* AXI clock */ 408 struct clk *clk_bus; 409 u8 mcast_count[256]; 410 u16 tx_ring_size; 411 u16 rx_ring_size; 412 413 struct mii_bus *mii_bus; 414 phy_interface_t phy_interface; 415 struct device_node *phy_node; 416 unsigned int link; 417 unsigned int duplex; 418 unsigned int speed; 419 unsigned int tx_csum_limit; 420 unsigned int use_inband_status:1; 421 422 struct mvneta_bm *bm_priv; 423 struct mvneta_bm_pool *pool_long; 424 struct mvneta_bm_pool *pool_short; 425 int bm_win_id; 426 427 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 428 429 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 430 431 /* Flags for special SoC configurations */ 432 bool neta_armada3700; 433 u16 rx_offset_correction; 434 const struct mbus_dram_target_info *dram_target_info; 435 }; 436 437 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 438 * layout of the transmit and reception DMA descriptors, and their 439 * layout is therefore defined by the hardware design 440 */ 441 442 #define MVNETA_TX_L3_OFF_SHIFT 0 443 #define MVNETA_TX_IP_HLEN_SHIFT 8 444 #define MVNETA_TX_L4_UDP BIT(16) 445 #define MVNETA_TX_L3_IP6 BIT(17) 446 #define MVNETA_TXD_IP_CSUM BIT(18) 447 #define MVNETA_TXD_Z_PAD BIT(19) 448 #define MVNETA_TXD_L_DESC BIT(20) 449 #define MVNETA_TXD_F_DESC BIT(21) 450 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 451 MVNETA_TXD_L_DESC | \ 452 MVNETA_TXD_F_DESC) 453 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 454 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 455 456 #define MVNETA_RXD_ERR_CRC 0x0 457 #define MVNETA_RXD_BM_POOL_SHIFT 13 458 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 459 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 460 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 461 #define MVNETA_RXD_ERR_LEN BIT(18) 462 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 463 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 464 #define MVNETA_RXD_L3_IP4 BIT(25) 465 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 466 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 467 468 #if defined(__LITTLE_ENDIAN) 469 struct mvneta_tx_desc { 470 u32 command; /* Options used by HW for packet transmitting.*/ 471 u16 reserverd1; /* csum_l4 (for future use) */ 472 u16 data_size; /* Data size of transmitted packet in bytes */ 473 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 474 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 475 u32 reserved3[4]; /* Reserved - (for future use) */ 476 }; 477 478 struct mvneta_rx_desc { 479 u32 status; /* Info about received packet */ 480 u16 reserved1; /* pnc_info - (for future use, PnC) */ 481 u16 data_size; /* Size of received packet in bytes */ 482 483 u32 buf_phys_addr; /* Physical address of the buffer */ 484 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 485 486 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 487 u16 reserved3; /* prefetch_cmd, for future use */ 488 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 489 490 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 491 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 492 }; 493 #else 494 struct mvneta_tx_desc { 495 u16 data_size; /* Data size of transmitted packet in bytes */ 496 u16 reserverd1; /* csum_l4 (for future use) */ 497 u32 command; /* Options used by HW for packet transmitting.*/ 498 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 499 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 500 u32 reserved3[4]; /* Reserved - (for future use) */ 501 }; 502 503 struct mvneta_rx_desc { 504 u16 data_size; /* Size of received packet in bytes */ 505 u16 reserved1; /* pnc_info - (for future use, PnC) */ 506 u32 status; /* Info about received packet */ 507 508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 509 u32 buf_phys_addr; /* Physical address of the buffer */ 510 511 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 512 u16 reserved3; /* prefetch_cmd, for future use */ 513 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 514 515 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 516 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 517 }; 518 #endif 519 520 struct mvneta_tx_queue { 521 /* Number of this TX queue, in the range 0-7 */ 522 u8 id; 523 524 /* Number of TX DMA descriptors in the descriptor ring */ 525 int size; 526 527 /* Number of currently used TX DMA descriptor in the 528 * descriptor ring 529 */ 530 int count; 531 int pending; 532 int tx_stop_threshold; 533 int tx_wake_threshold; 534 535 /* Array of transmitted skb */ 536 struct sk_buff **tx_skb; 537 538 /* Index of last TX DMA descriptor that was inserted */ 539 int txq_put_index; 540 541 /* Index of the TX DMA descriptor to be cleaned up */ 542 int txq_get_index; 543 544 u32 done_pkts_coal; 545 546 /* Virtual address of the TX DMA descriptors array */ 547 struct mvneta_tx_desc *descs; 548 549 /* DMA address of the TX DMA descriptors array */ 550 dma_addr_t descs_phys; 551 552 /* Index of the last TX DMA descriptor */ 553 int last_desc; 554 555 /* Index of the next TX DMA descriptor to process */ 556 int next_desc_to_proc; 557 558 /* DMA buffers for TSO headers */ 559 char *tso_hdrs; 560 561 /* DMA address of TSO headers */ 562 dma_addr_t tso_hdrs_phys; 563 564 /* Affinity mask for CPUs*/ 565 cpumask_t affinity_mask; 566 }; 567 568 struct mvneta_rx_queue { 569 /* rx queue number, in the range 0-7 */ 570 u8 id; 571 572 /* num of rx descriptors in the rx descriptor ring */ 573 int size; 574 575 /* counter of times when mvneta_refill() failed */ 576 int missed; 577 578 u32 pkts_coal; 579 u32 time_coal; 580 581 /* Virtual address of the RX buffer */ 582 void **buf_virt_addr; 583 584 /* Virtual address of the RX DMA descriptors array */ 585 struct mvneta_rx_desc *descs; 586 587 /* DMA address of the RX DMA descriptors array */ 588 dma_addr_t descs_phys; 589 590 /* Index of the last RX DMA descriptor */ 591 int last_desc; 592 593 /* Index of the next RX DMA descriptor to process */ 594 int next_desc_to_proc; 595 }; 596 597 static enum cpuhp_state online_hpstate; 598 /* The hardware supports eight (8) rx queues, but we are only allowing 599 * the first one to be used. Therefore, let's just allocate one queue. 600 */ 601 static int rxq_number = 8; 602 static int txq_number = 8; 603 604 static int rxq_def; 605 606 static int rx_copybreak __read_mostly = 256; 607 608 /* HW BM need that each port be identify by a unique ID */ 609 static int global_port_id; 610 611 #define MVNETA_DRIVER_NAME "mvneta" 612 #define MVNETA_DRIVER_VERSION "1.0" 613 614 /* Utility/helper methods */ 615 616 /* Write helper method */ 617 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 618 { 619 writel(data, pp->base + offset); 620 } 621 622 /* Read helper method */ 623 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 624 { 625 return readl(pp->base + offset); 626 } 627 628 /* Increment txq get counter */ 629 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 630 { 631 txq->txq_get_index++; 632 if (txq->txq_get_index == txq->size) 633 txq->txq_get_index = 0; 634 } 635 636 /* Increment txq put counter */ 637 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 638 { 639 txq->txq_put_index++; 640 if (txq->txq_put_index == txq->size) 641 txq->txq_put_index = 0; 642 } 643 644 645 /* Clear all MIB counters */ 646 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 647 { 648 int i; 649 u32 dummy; 650 651 /* Perform dummy reads from MIB counters */ 652 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 653 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 654 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 655 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 656 } 657 658 /* Get System Network Statistics */ 659 static void 660 mvneta_get_stats64(struct net_device *dev, 661 struct rtnl_link_stats64 *stats) 662 { 663 struct mvneta_port *pp = netdev_priv(dev); 664 unsigned int start; 665 int cpu; 666 667 for_each_possible_cpu(cpu) { 668 struct mvneta_pcpu_stats *cpu_stats; 669 u64 rx_packets; 670 u64 rx_bytes; 671 u64 tx_packets; 672 u64 tx_bytes; 673 674 cpu_stats = per_cpu_ptr(pp->stats, cpu); 675 do { 676 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 677 rx_packets = cpu_stats->rx_packets; 678 rx_bytes = cpu_stats->rx_bytes; 679 tx_packets = cpu_stats->tx_packets; 680 tx_bytes = cpu_stats->tx_bytes; 681 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 682 683 stats->rx_packets += rx_packets; 684 stats->rx_bytes += rx_bytes; 685 stats->tx_packets += tx_packets; 686 stats->tx_bytes += tx_bytes; 687 } 688 689 stats->rx_errors = dev->stats.rx_errors; 690 stats->rx_dropped = dev->stats.rx_dropped; 691 692 stats->tx_dropped = dev->stats.tx_dropped; 693 } 694 695 /* Rx descriptors helper methods */ 696 697 /* Checks whether the RX descriptor having this status is both the first 698 * and the last descriptor for the RX packet. Each RX packet is currently 699 * received through a single RX descriptor, so not having each RX 700 * descriptor with its first and last bits set is an error 701 */ 702 static int mvneta_rxq_desc_is_first_last(u32 status) 703 { 704 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 705 MVNETA_RXD_FIRST_LAST_DESC; 706 } 707 708 /* Add number of descriptors ready to receive new packets */ 709 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 710 struct mvneta_rx_queue *rxq, 711 int ndescs) 712 { 713 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 714 * be added at once 715 */ 716 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 717 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 718 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 719 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 720 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 721 } 722 723 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 724 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 725 } 726 727 /* Get number of RX descriptors occupied by received packets */ 728 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 729 struct mvneta_rx_queue *rxq) 730 { 731 u32 val; 732 733 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 734 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 735 } 736 737 /* Update num of rx desc called upon return from rx path or 738 * from mvneta_rxq_drop_pkts(). 739 */ 740 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 741 struct mvneta_rx_queue *rxq, 742 int rx_done, int rx_filled) 743 { 744 u32 val; 745 746 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 747 val = rx_done | 748 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 749 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 750 return; 751 } 752 753 /* Only 255 descriptors can be added at once */ 754 while ((rx_done > 0) || (rx_filled > 0)) { 755 if (rx_done <= 0xff) { 756 val = rx_done; 757 rx_done = 0; 758 } else { 759 val = 0xff; 760 rx_done -= 0xff; 761 } 762 if (rx_filled <= 0xff) { 763 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 764 rx_filled = 0; 765 } else { 766 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 767 rx_filled -= 0xff; 768 } 769 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 770 } 771 } 772 773 /* Get pointer to next RX descriptor to be processed by SW */ 774 static struct mvneta_rx_desc * 775 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 776 { 777 int rx_desc = rxq->next_desc_to_proc; 778 779 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 780 prefetch(rxq->descs + rxq->next_desc_to_proc); 781 return rxq->descs + rx_desc; 782 } 783 784 /* Change maximum receive size of the port. */ 785 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 786 { 787 u32 val; 788 789 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 790 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 791 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 792 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 793 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 794 } 795 796 797 /* Set rx queue offset */ 798 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 799 struct mvneta_rx_queue *rxq, 800 int offset) 801 { 802 u32 val; 803 804 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 805 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 806 807 /* Offset is in */ 808 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 809 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 810 } 811 812 813 /* Tx descriptors helper methods */ 814 815 /* Update HW with number of TX descriptors to be sent */ 816 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 817 struct mvneta_tx_queue *txq, 818 int pend_desc) 819 { 820 u32 val; 821 822 /* Only 255 descriptors can be added at once ; Assume caller 823 * process TX desriptors in quanta less than 256 824 */ 825 val = pend_desc + txq->pending; 826 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 827 txq->pending = 0; 828 } 829 830 /* Get pointer to next TX descriptor to be processed (send) by HW */ 831 static struct mvneta_tx_desc * 832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 833 { 834 int tx_desc = txq->next_desc_to_proc; 835 836 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 837 return txq->descs + tx_desc; 838 } 839 840 /* Release the last allocated TX descriptor. Useful to handle DMA 841 * mapping failures in the TX path. 842 */ 843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 844 { 845 if (txq->next_desc_to_proc == 0) 846 txq->next_desc_to_proc = txq->last_desc - 1; 847 else 848 txq->next_desc_to_proc--; 849 } 850 851 /* Set rxq buf size */ 852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 853 struct mvneta_rx_queue *rxq, 854 int buf_size) 855 { 856 u32 val; 857 858 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 859 860 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 861 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 862 863 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 864 } 865 866 /* Disable buffer management (BM) */ 867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 868 struct mvneta_rx_queue *rxq) 869 { 870 u32 val; 871 872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 873 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 874 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 875 } 876 877 /* Enable buffer management (BM) */ 878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 879 struct mvneta_rx_queue *rxq) 880 { 881 u32 val; 882 883 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 884 val |= MVNETA_RXQ_HW_BUF_ALLOC; 885 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 886 } 887 888 /* Notify HW about port's assignment of pool for bigger packets */ 889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 890 struct mvneta_rx_queue *rxq) 891 { 892 u32 val; 893 894 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 895 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 896 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 897 898 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 899 } 900 901 /* Notify HW about port's assignment of pool for smaller packets */ 902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq) 904 { 905 u32 val; 906 907 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 908 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 909 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 910 911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 912 } 913 914 /* Set port's receive buffer size for assigned BM pool */ 915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 916 int buf_size, 917 u8 pool_id) 918 { 919 u32 val; 920 921 if (!IS_ALIGNED(buf_size, 8)) { 922 dev_warn(pp->dev->dev.parent, 923 "illegal buf_size value %d, round to %d\n", 924 buf_size, ALIGN(buf_size, 8)); 925 buf_size = ALIGN(buf_size, 8); 926 } 927 928 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 929 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 930 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 931 } 932 933 /* Configure MBUS window in order to enable access BM internal SRAM */ 934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 935 u8 target, u8 attr) 936 { 937 u32 win_enable, win_protect; 938 int i; 939 940 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 941 942 if (pp->bm_win_id < 0) { 943 /* Find first not occupied window */ 944 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 945 if (win_enable & (1 << i)) { 946 pp->bm_win_id = i; 947 break; 948 } 949 } 950 if (i == MVNETA_MAX_DECODE_WIN) 951 return -ENOMEM; 952 } else { 953 i = pp->bm_win_id; 954 } 955 956 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 957 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 958 959 if (i < 4) 960 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 961 962 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 963 (attr << 8) | target); 964 965 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 966 967 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 968 win_protect |= 3 << (2 * i); 969 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 970 971 win_enable &= ~(1 << i); 972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 973 974 return 0; 975 } 976 977 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 978 { 979 u32 wsize; 980 u8 target, attr; 981 int err; 982 983 /* Get BM window information */ 984 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 985 &target, &attr); 986 if (err < 0) 987 return err; 988 989 pp->bm_win_id = -1; 990 991 /* Open NETA -> BM window */ 992 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 993 target, attr); 994 if (err < 0) { 995 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 996 return err; 997 } 998 return 0; 999 } 1000 1001 /* Assign and initialize pools for port. In case of fail 1002 * buffer manager will remain disabled for current port. 1003 */ 1004 static int mvneta_bm_port_init(struct platform_device *pdev, 1005 struct mvneta_port *pp) 1006 { 1007 struct device_node *dn = pdev->dev.of_node; 1008 u32 long_pool_id, short_pool_id; 1009 1010 if (!pp->neta_armada3700) { 1011 int ret; 1012 1013 ret = mvneta_bm_port_mbus_init(pp); 1014 if (ret) 1015 return ret; 1016 } 1017 1018 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1019 netdev_info(pp->dev, "missing long pool id\n"); 1020 return -EINVAL; 1021 } 1022 1023 /* Create port's long pool depending on mtu */ 1024 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1025 MVNETA_BM_LONG, pp->id, 1026 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1027 if (!pp->pool_long) { 1028 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1029 return -ENOMEM; 1030 } 1031 1032 pp->pool_long->port_map |= 1 << pp->id; 1033 1034 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1035 pp->pool_long->id); 1036 1037 /* If short pool id is not defined, assume using single pool */ 1038 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1039 short_pool_id = long_pool_id; 1040 1041 /* Create port's short pool */ 1042 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1043 MVNETA_BM_SHORT, pp->id, 1044 MVNETA_BM_SHORT_PKT_SIZE); 1045 if (!pp->pool_short) { 1046 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1047 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1048 return -ENOMEM; 1049 } 1050 1051 if (short_pool_id != long_pool_id) { 1052 pp->pool_short->port_map |= 1 << pp->id; 1053 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1054 pp->pool_short->id); 1055 } 1056 1057 return 0; 1058 } 1059 1060 /* Update settings of a pool for bigger packets */ 1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1062 { 1063 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1064 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1065 int num; 1066 1067 /* Release all buffers from long pool */ 1068 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1069 if (hwbm_pool->buf_num) { 1070 WARN(1, "cannot free all buffers in pool %d\n", 1071 bm_pool->id); 1072 goto bm_mtu_err; 1073 } 1074 1075 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1076 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1077 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1078 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1079 1080 /* Fill entire long pool */ 1081 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1082 if (num != hwbm_pool->size) { 1083 WARN(1, "pool %d: %d of %d allocated\n", 1084 bm_pool->id, num, hwbm_pool->size); 1085 goto bm_mtu_err; 1086 } 1087 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1088 1089 return; 1090 1091 bm_mtu_err: 1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1093 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1094 1095 pp->bm_priv = NULL; 1096 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1097 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1098 } 1099 1100 /* Start the Ethernet port RX and TX activity */ 1101 static void mvneta_port_up(struct mvneta_port *pp) 1102 { 1103 int queue; 1104 u32 q_map; 1105 1106 /* Enable all initialized TXs. */ 1107 q_map = 0; 1108 for (queue = 0; queue < txq_number; queue++) { 1109 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1110 if (txq->descs) 1111 q_map |= (1 << queue); 1112 } 1113 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1114 1115 /* Enable all initialized RXQs. */ 1116 for (queue = 0; queue < rxq_number; queue++) { 1117 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1118 1119 if (rxq->descs) 1120 q_map |= (1 << queue); 1121 } 1122 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1123 } 1124 1125 /* Stop the Ethernet port activity */ 1126 static void mvneta_port_down(struct mvneta_port *pp) 1127 { 1128 u32 val; 1129 int count; 1130 1131 /* Stop Rx port activity. Check port Rx activity. */ 1132 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1133 1134 /* Issue stop command for active channels only */ 1135 if (val != 0) 1136 mvreg_write(pp, MVNETA_RXQ_CMD, 1137 val << MVNETA_RXQ_DISABLE_SHIFT); 1138 1139 /* Wait for all Rx activity to terminate. */ 1140 count = 0; 1141 do { 1142 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1143 netdev_warn(pp->dev, 1144 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1145 val); 1146 break; 1147 } 1148 mdelay(1); 1149 1150 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1151 } while (val & MVNETA_RXQ_ENABLE_MASK); 1152 1153 /* Stop Tx port activity. Check port Tx activity. Issue stop 1154 * command for active channels only 1155 */ 1156 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1157 1158 if (val != 0) 1159 mvreg_write(pp, MVNETA_TXQ_CMD, 1160 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1161 1162 /* Wait for all Tx activity to terminate. */ 1163 count = 0; 1164 do { 1165 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1166 netdev_warn(pp->dev, 1167 "TIMEOUT for TX stopped status=0x%08x\n", 1168 val); 1169 break; 1170 } 1171 mdelay(1); 1172 1173 /* Check TX Command reg that all Txqs are stopped */ 1174 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1175 1176 } while (val & MVNETA_TXQ_ENABLE_MASK); 1177 1178 /* Double check to verify that TX FIFO is empty */ 1179 count = 0; 1180 do { 1181 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1182 netdev_warn(pp->dev, 1183 "TX FIFO empty timeout status=0x%08x\n", 1184 val); 1185 break; 1186 } 1187 mdelay(1); 1188 1189 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1190 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1191 (val & MVNETA_TX_IN_PRGRS)); 1192 1193 udelay(200); 1194 } 1195 1196 /* Enable the port by setting the port enable bit of the MAC control register */ 1197 static void mvneta_port_enable(struct mvneta_port *pp) 1198 { 1199 u32 val; 1200 1201 /* Enable port */ 1202 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1203 val |= MVNETA_GMAC0_PORT_ENABLE; 1204 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1205 } 1206 1207 /* Disable the port and wait for about 200 usec before retuning */ 1208 static void mvneta_port_disable(struct mvneta_port *pp) 1209 { 1210 u32 val; 1211 1212 /* Reset the Enable bit in the Serial Control Register */ 1213 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1214 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1215 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1216 1217 udelay(200); 1218 } 1219 1220 /* Multicast tables methods */ 1221 1222 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1223 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1224 { 1225 int offset; 1226 u32 val; 1227 1228 if (queue == -1) { 1229 val = 0; 1230 } else { 1231 val = 0x1 | (queue << 1); 1232 val |= (val << 24) | (val << 16) | (val << 8); 1233 } 1234 1235 for (offset = 0; offset <= 0xc; offset += 4) 1236 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1237 } 1238 1239 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1240 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1241 { 1242 int offset; 1243 u32 val; 1244 1245 if (queue == -1) { 1246 val = 0; 1247 } else { 1248 val = 0x1 | (queue << 1); 1249 val |= (val << 24) | (val << 16) | (val << 8); 1250 } 1251 1252 for (offset = 0; offset <= 0xfc; offset += 4) 1253 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1254 1255 } 1256 1257 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1258 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1259 { 1260 int offset; 1261 u32 val; 1262 1263 if (queue == -1) { 1264 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1265 val = 0; 1266 } else { 1267 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1268 val = 0x1 | (queue << 1); 1269 val |= (val << 24) | (val << 16) | (val << 8); 1270 } 1271 1272 for (offset = 0; offset <= 0xfc; offset += 4) 1273 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1274 } 1275 1276 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1277 { 1278 u32 val; 1279 1280 if (enable) { 1281 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1282 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1283 MVNETA_GMAC_FORCE_LINK_DOWN | 1284 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1285 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1286 MVNETA_GMAC_AN_SPEED_EN | 1287 MVNETA_GMAC_AN_DUPLEX_EN; 1288 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1289 1290 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1291 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1292 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1293 1294 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1295 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1296 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1297 } else { 1298 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1299 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1300 MVNETA_GMAC_AN_SPEED_EN | 1301 MVNETA_GMAC_AN_DUPLEX_EN); 1302 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1303 1304 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1305 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1306 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1307 1308 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1309 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1310 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1311 } 1312 } 1313 1314 static void mvneta_percpu_unmask_interrupt(void *arg) 1315 { 1316 struct mvneta_port *pp = arg; 1317 1318 /* All the queue are unmasked, but actually only the ones 1319 * mapped to this CPU will be unmasked 1320 */ 1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1322 MVNETA_RX_INTR_MASK_ALL | 1323 MVNETA_TX_INTR_MASK_ALL | 1324 MVNETA_MISCINTR_INTR_MASK); 1325 } 1326 1327 static void mvneta_percpu_mask_interrupt(void *arg) 1328 { 1329 struct mvneta_port *pp = arg; 1330 1331 /* All the queue are masked, but actually only the ones 1332 * mapped to this CPU will be masked 1333 */ 1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1337 } 1338 1339 static void mvneta_percpu_clear_intr_cause(void *arg) 1340 { 1341 struct mvneta_port *pp = arg; 1342 1343 /* All the queue are cleared, but actually only the ones 1344 * mapped to this CPU will be cleared 1345 */ 1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1349 } 1350 1351 /* This method sets defaults to the NETA port: 1352 * Clears interrupt Cause and Mask registers. 1353 * Clears all MAC tables. 1354 * Sets defaults to all registers. 1355 * Resets RX and TX descriptor rings. 1356 * Resets PHY. 1357 * This method can be called after mvneta_port_down() to return the port 1358 * settings to defaults. 1359 */ 1360 static void mvneta_defaults_set(struct mvneta_port *pp) 1361 { 1362 int cpu; 1363 int queue; 1364 u32 val; 1365 int max_cpu = num_present_cpus(); 1366 1367 /* Clear all Cause registers */ 1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1369 1370 /* Mask all interrupts */ 1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1373 1374 /* Enable MBUS Retry bit16 */ 1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1376 1377 /* Set CPU queue access map. CPUs are assigned to the RX and 1378 * TX queues modulo their number. If there is only one TX 1379 * queue then it is assigned to the CPU associated to the 1380 * default RX queue. 1381 */ 1382 for_each_present_cpu(cpu) { 1383 int rxq_map = 0, txq_map = 0; 1384 int rxq, txq; 1385 if (!pp->neta_armada3700) { 1386 for (rxq = 0; rxq < rxq_number; rxq++) 1387 if ((rxq % max_cpu) == cpu) 1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1389 1390 for (txq = 0; txq < txq_number; txq++) 1391 if ((txq % max_cpu) == cpu) 1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1393 1394 /* With only one TX queue we configure a special case 1395 * which will allow to get all the irq on a single 1396 * CPU 1397 */ 1398 if (txq_number == 1) 1399 txq_map = (cpu == pp->rxq_def) ? 1400 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1401 1402 } else { 1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1405 } 1406 1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1408 } 1409 1410 /* Reset RX and TX DMAs */ 1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1413 1414 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1416 for (queue = 0; queue < txq_number; queue++) { 1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1419 } 1420 1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1423 1424 /* Set Port Acceleration Mode */ 1425 if (pp->bm_priv) 1426 /* HW buffer management + legacy parser */ 1427 val = MVNETA_ACC_MODE_EXT2; 1428 else 1429 /* SW buffer management + legacy parser */ 1430 val = MVNETA_ACC_MODE_EXT1; 1431 mvreg_write(pp, MVNETA_ACC_MODE, val); 1432 1433 if (pp->bm_priv) 1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1435 1436 /* Update val of portCfg register accordingly with all RxQueue types */ 1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1439 1440 val = 0; 1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1443 1444 /* Build PORT_SDMA_CONFIG_REG */ 1445 val = 0; 1446 1447 /* Default burst size */ 1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1451 1452 #if defined(__BIG_ENDIAN) 1453 val |= MVNETA_DESC_SWAP; 1454 #endif 1455 1456 /* Assign port SDMA configuration */ 1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1458 1459 /* Disable PHY polling in hardware, since we're using the 1460 * kernel phylib to do this. 1461 */ 1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1463 val &= ~MVNETA_PHY_POLLING_ENABLE; 1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1465 1466 mvneta_set_autoneg(pp, pp->use_inband_status); 1467 mvneta_set_ucast_table(pp, -1); 1468 mvneta_set_special_mcast_table(pp, -1); 1469 mvneta_set_other_mcast_table(pp, -1); 1470 1471 /* Set port interrupt enable register - default enable all */ 1472 mvreg_write(pp, MVNETA_INTR_ENABLE, 1473 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1474 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1475 1476 mvneta_mib_counters_clear(pp); 1477 } 1478 1479 /* Set max sizes for tx queues */ 1480 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1481 1482 { 1483 u32 val, size, mtu; 1484 int queue; 1485 1486 mtu = max_tx_size * 8; 1487 if (mtu > MVNETA_TX_MTU_MAX) 1488 mtu = MVNETA_TX_MTU_MAX; 1489 1490 /* Set MTU */ 1491 val = mvreg_read(pp, MVNETA_TX_MTU); 1492 val &= ~MVNETA_TX_MTU_MAX; 1493 val |= mtu; 1494 mvreg_write(pp, MVNETA_TX_MTU, val); 1495 1496 /* TX token size and all TXQs token size must be larger that MTU */ 1497 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1498 1499 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1500 if (size < mtu) { 1501 size = mtu; 1502 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1503 val |= size; 1504 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1505 } 1506 for (queue = 0; queue < txq_number; queue++) { 1507 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1508 1509 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1510 if (size < mtu) { 1511 size = mtu; 1512 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1513 val |= size; 1514 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1515 } 1516 } 1517 } 1518 1519 /* Set unicast address */ 1520 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1521 int queue) 1522 { 1523 unsigned int unicast_reg; 1524 unsigned int tbl_offset; 1525 unsigned int reg_offset; 1526 1527 /* Locate the Unicast table entry */ 1528 last_nibble = (0xf & last_nibble); 1529 1530 /* offset from unicast tbl base */ 1531 tbl_offset = (last_nibble / 4) * 4; 1532 1533 /* offset within the above reg */ 1534 reg_offset = last_nibble % 4; 1535 1536 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1537 1538 if (queue == -1) { 1539 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1540 unicast_reg &= ~(0xff << (8 * reg_offset)); 1541 } else { 1542 unicast_reg &= ~(0xff << (8 * reg_offset)); 1543 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1544 } 1545 1546 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1547 } 1548 1549 /* Set mac address */ 1550 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1551 int queue) 1552 { 1553 unsigned int mac_h; 1554 unsigned int mac_l; 1555 1556 if (queue != -1) { 1557 mac_l = (addr[4] << 8) | (addr[5]); 1558 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1559 (addr[2] << 8) | (addr[3] << 0); 1560 1561 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1562 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1563 } 1564 1565 /* Accept frames of this address */ 1566 mvneta_set_ucast_addr(pp, addr[5], queue); 1567 } 1568 1569 /* Set the number of packets that will be received before RX interrupt 1570 * will be generated by HW. 1571 */ 1572 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1573 struct mvneta_rx_queue *rxq, u32 value) 1574 { 1575 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1576 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1577 rxq->pkts_coal = value; 1578 } 1579 1580 /* Set the time delay in usec before RX interrupt will be generated by 1581 * HW. 1582 */ 1583 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1584 struct mvneta_rx_queue *rxq, u32 value) 1585 { 1586 u32 val; 1587 unsigned long clk_rate; 1588 1589 clk_rate = clk_get_rate(pp->clk); 1590 val = (clk_rate / 1000000) * value; 1591 1592 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1593 rxq->time_coal = value; 1594 } 1595 1596 /* Set threshold for TX_DONE pkts coalescing */ 1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1598 struct mvneta_tx_queue *txq, u32 value) 1599 { 1600 u32 val; 1601 1602 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1603 1604 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1605 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1606 1607 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1608 1609 txq->done_pkts_coal = value; 1610 } 1611 1612 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1613 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1614 u32 phys_addr, void *virt_addr, 1615 struct mvneta_rx_queue *rxq) 1616 { 1617 int i; 1618 1619 rx_desc->buf_phys_addr = phys_addr; 1620 i = rx_desc - rxq->descs; 1621 rxq->buf_virt_addr[i] = virt_addr; 1622 } 1623 1624 /* Decrement sent descriptors counter */ 1625 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1626 struct mvneta_tx_queue *txq, 1627 int sent_desc) 1628 { 1629 u32 val; 1630 1631 /* Only 255 TX descriptors can be updated at once */ 1632 while (sent_desc > 0xff) { 1633 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1635 sent_desc = sent_desc - 0xff; 1636 } 1637 1638 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1639 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1640 } 1641 1642 /* Get number of TX descriptors already sent by HW */ 1643 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1644 struct mvneta_tx_queue *txq) 1645 { 1646 u32 val; 1647 int sent_desc; 1648 1649 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1650 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1651 MVNETA_TXQ_SENT_DESC_SHIFT; 1652 1653 return sent_desc; 1654 } 1655 1656 /* Get number of sent descriptors and decrement counter. 1657 * The number of sent descriptors is returned. 1658 */ 1659 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1660 struct mvneta_tx_queue *txq) 1661 { 1662 int sent_desc; 1663 1664 /* Get number of sent descriptors */ 1665 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1666 1667 /* Decrement sent descriptors counter */ 1668 if (sent_desc) 1669 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1670 1671 return sent_desc; 1672 } 1673 1674 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1675 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1676 int ip_hdr_len, int l4_proto) 1677 { 1678 u32 command; 1679 1680 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1681 * G_L4_chk, L4_type; required only for checksum 1682 * calculation 1683 */ 1684 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1685 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1686 1687 if (l3_proto == htons(ETH_P_IP)) 1688 command |= MVNETA_TXD_IP_CSUM; 1689 else 1690 command |= MVNETA_TX_L3_IP6; 1691 1692 if (l4_proto == IPPROTO_TCP) 1693 command |= MVNETA_TX_L4_CSUM_FULL; 1694 else if (l4_proto == IPPROTO_UDP) 1695 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1696 else 1697 command |= MVNETA_TX_L4_CSUM_NOT; 1698 1699 return command; 1700 } 1701 1702 1703 /* Display more error info */ 1704 static void mvneta_rx_error(struct mvneta_port *pp, 1705 struct mvneta_rx_desc *rx_desc) 1706 { 1707 u32 status = rx_desc->status; 1708 1709 if (!mvneta_rxq_desc_is_first_last(status)) { 1710 netdev_err(pp->dev, 1711 "bad rx status %08x (buffer oversize), size=%d\n", 1712 status, rx_desc->data_size); 1713 return; 1714 } 1715 1716 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1717 case MVNETA_RXD_ERR_CRC: 1718 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1719 status, rx_desc->data_size); 1720 break; 1721 case MVNETA_RXD_ERR_OVERRUN: 1722 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1723 status, rx_desc->data_size); 1724 break; 1725 case MVNETA_RXD_ERR_LEN: 1726 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1727 status, rx_desc->data_size); 1728 break; 1729 case MVNETA_RXD_ERR_RESOURCE: 1730 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1731 status, rx_desc->data_size); 1732 break; 1733 } 1734 } 1735 1736 /* Handle RX checksum offload based on the descriptor's status */ 1737 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1738 struct sk_buff *skb) 1739 { 1740 if ((status & MVNETA_RXD_L3_IP4) && 1741 (status & MVNETA_RXD_L4_CSUM_OK)) { 1742 skb->csum = 0; 1743 skb->ip_summed = CHECKSUM_UNNECESSARY; 1744 return; 1745 } 1746 1747 skb->ip_summed = CHECKSUM_NONE; 1748 } 1749 1750 /* Return tx queue pointer (find last set bit) according to <cause> returned 1751 * form tx_done reg. <cause> must not be null. The return value is always a 1752 * valid queue for matching the first one found in <cause>. 1753 */ 1754 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1755 u32 cause) 1756 { 1757 int queue = fls(cause) - 1; 1758 1759 return &pp->txqs[queue]; 1760 } 1761 1762 /* Free tx queue skbuffs */ 1763 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1764 struct mvneta_tx_queue *txq, int num, 1765 struct netdev_queue *nq) 1766 { 1767 unsigned int bytes_compl = 0, pkts_compl = 0; 1768 int i; 1769 1770 for (i = 0; i < num; i++) { 1771 struct mvneta_tx_desc *tx_desc = txq->descs + 1772 txq->txq_get_index; 1773 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1774 1775 if (skb) { 1776 bytes_compl += skb->len; 1777 pkts_compl++; 1778 } 1779 1780 mvneta_txq_inc_get(txq); 1781 1782 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1783 dma_unmap_single(pp->dev->dev.parent, 1784 tx_desc->buf_phys_addr, 1785 tx_desc->data_size, DMA_TO_DEVICE); 1786 if (!skb) 1787 continue; 1788 dev_kfree_skb_any(skb); 1789 } 1790 1791 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1792 } 1793 1794 /* Handle end of transmission */ 1795 static void mvneta_txq_done(struct mvneta_port *pp, 1796 struct mvneta_tx_queue *txq) 1797 { 1798 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1799 int tx_done; 1800 1801 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1802 if (!tx_done) 1803 return; 1804 1805 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1806 1807 txq->count -= tx_done; 1808 1809 if (netif_tx_queue_stopped(nq)) { 1810 if (txq->count <= txq->tx_wake_threshold) 1811 netif_tx_wake_queue(nq); 1812 } 1813 } 1814 1815 void *mvneta_frag_alloc(unsigned int frag_size) 1816 { 1817 if (likely(frag_size <= PAGE_SIZE)) 1818 return netdev_alloc_frag(frag_size); 1819 else 1820 return kmalloc(frag_size, GFP_ATOMIC); 1821 } 1822 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1823 1824 void mvneta_frag_free(unsigned int frag_size, void *data) 1825 { 1826 if (likely(frag_size <= PAGE_SIZE)) 1827 skb_free_frag(data); 1828 else 1829 kfree(data); 1830 } 1831 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1832 1833 /* Refill processing for SW buffer management */ 1834 static int mvneta_rx_refill(struct mvneta_port *pp, 1835 struct mvneta_rx_desc *rx_desc, 1836 struct mvneta_rx_queue *rxq) 1837 1838 { 1839 dma_addr_t phys_addr; 1840 void *data; 1841 1842 data = mvneta_frag_alloc(pp->frag_size); 1843 if (!data) 1844 return -ENOMEM; 1845 1846 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1847 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1848 DMA_FROM_DEVICE); 1849 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1850 mvneta_frag_free(pp->frag_size, data); 1851 return -ENOMEM; 1852 } 1853 1854 phys_addr += pp->rx_offset_correction; 1855 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1856 return 0; 1857 } 1858 1859 /* Handle tx checksum */ 1860 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1861 { 1862 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1863 int ip_hdr_len = 0; 1864 __be16 l3_proto = vlan_get_protocol(skb); 1865 u8 l4_proto; 1866 1867 if (l3_proto == htons(ETH_P_IP)) { 1868 struct iphdr *ip4h = ip_hdr(skb); 1869 1870 /* Calculate IPv4 checksum and L4 checksum */ 1871 ip_hdr_len = ip4h->ihl; 1872 l4_proto = ip4h->protocol; 1873 } else if (l3_proto == htons(ETH_P_IPV6)) { 1874 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1875 1876 /* Read l4_protocol from one of IPv6 extra headers */ 1877 if (skb_network_header_len(skb) > 0) 1878 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1879 l4_proto = ip6h->nexthdr; 1880 } else 1881 return MVNETA_TX_L4_CSUM_NOT; 1882 1883 return mvneta_txq_desc_csum(skb_network_offset(skb), 1884 l3_proto, ip_hdr_len, l4_proto); 1885 } 1886 1887 return MVNETA_TX_L4_CSUM_NOT; 1888 } 1889 1890 /* Drop packets received by the RXQ and free buffers */ 1891 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1892 struct mvneta_rx_queue *rxq) 1893 { 1894 int rx_done, i; 1895 1896 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1897 if (rx_done) 1898 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1899 1900 if (pp->bm_priv) { 1901 for (i = 0; i < rx_done; i++) { 1902 struct mvneta_rx_desc *rx_desc = 1903 mvneta_rxq_next_desc_get(rxq); 1904 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1905 struct mvneta_bm_pool *bm_pool; 1906 1907 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1908 /* Return dropped buffer to the pool */ 1909 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1910 rx_desc->buf_phys_addr); 1911 } 1912 return; 1913 } 1914 1915 for (i = 0; i < rxq->size; i++) { 1916 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1917 void *data = rxq->buf_virt_addr[i]; 1918 1919 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1920 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1921 mvneta_frag_free(pp->frag_size, data); 1922 } 1923 } 1924 1925 /* Main rx processing when using software buffer management */ 1926 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1927 struct mvneta_rx_queue *rxq) 1928 { 1929 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1930 struct net_device *dev = pp->dev; 1931 int rx_done; 1932 u32 rcvd_pkts = 0; 1933 u32 rcvd_bytes = 0; 1934 1935 /* Get number of received packets */ 1936 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1937 1938 if (rx_todo > rx_done) 1939 rx_todo = rx_done; 1940 1941 rx_done = 0; 1942 1943 /* Fairness NAPI loop */ 1944 while (rx_done < rx_todo) { 1945 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1946 struct sk_buff *skb; 1947 unsigned char *data; 1948 dma_addr_t phys_addr; 1949 u32 rx_status, frag_size; 1950 int rx_bytes, err, index; 1951 1952 rx_done++; 1953 rx_status = rx_desc->status; 1954 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1955 index = rx_desc - rxq->descs; 1956 data = rxq->buf_virt_addr[index]; 1957 phys_addr = rx_desc->buf_phys_addr; 1958 1959 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1960 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1961 err_drop_frame: 1962 dev->stats.rx_errors++; 1963 mvneta_rx_error(pp, rx_desc); 1964 /* leave the descriptor untouched */ 1965 continue; 1966 } 1967 1968 if (rx_bytes <= rx_copybreak) { 1969 /* better copy a small frame and not unmap the DMA region */ 1970 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1971 if (unlikely(!skb)) 1972 goto err_drop_frame; 1973 1974 dma_sync_single_range_for_cpu(dev->dev.parent, 1975 phys_addr, 1976 MVNETA_MH_SIZE + NET_SKB_PAD, 1977 rx_bytes, 1978 DMA_FROM_DEVICE); 1979 memcpy(skb_put(skb, rx_bytes), 1980 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1981 rx_bytes); 1982 1983 skb->protocol = eth_type_trans(skb, dev); 1984 mvneta_rx_csum(pp, rx_status, skb); 1985 napi_gro_receive(&port->napi, skb); 1986 1987 rcvd_pkts++; 1988 rcvd_bytes += rx_bytes; 1989 1990 /* leave the descriptor and buffer untouched */ 1991 continue; 1992 } 1993 1994 /* Refill processing */ 1995 err = mvneta_rx_refill(pp, rx_desc, rxq); 1996 if (err) { 1997 netdev_err(dev, "Linux processing - Can't refill\n"); 1998 rxq->missed++; 1999 goto err_drop_frame; 2000 } 2001 2002 frag_size = pp->frag_size; 2003 2004 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2005 2006 /* After refill old buffer has to be unmapped regardless 2007 * the skb is successfully built or not. 2008 */ 2009 dma_unmap_single(dev->dev.parent, phys_addr, 2010 MVNETA_RX_BUF_SIZE(pp->pkt_size), 2011 DMA_FROM_DEVICE); 2012 2013 if (!skb) 2014 goto err_drop_frame; 2015 2016 rcvd_pkts++; 2017 rcvd_bytes += rx_bytes; 2018 2019 /* Linux processing */ 2020 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2021 skb_put(skb, rx_bytes); 2022 2023 skb->protocol = eth_type_trans(skb, dev); 2024 2025 mvneta_rx_csum(pp, rx_status, skb); 2026 2027 napi_gro_receive(&port->napi, skb); 2028 } 2029 2030 if (rcvd_pkts) { 2031 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2032 2033 u64_stats_update_begin(&stats->syncp); 2034 stats->rx_packets += rcvd_pkts; 2035 stats->rx_bytes += rcvd_bytes; 2036 u64_stats_update_end(&stats->syncp); 2037 } 2038 2039 /* Update rxq management counters */ 2040 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2041 2042 return rx_done; 2043 } 2044 2045 /* Main rx processing when using hardware buffer management */ 2046 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2047 struct mvneta_rx_queue *rxq) 2048 { 2049 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2050 struct net_device *dev = pp->dev; 2051 int rx_done; 2052 u32 rcvd_pkts = 0; 2053 u32 rcvd_bytes = 0; 2054 2055 /* Get number of received packets */ 2056 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2057 2058 if (rx_todo > rx_done) 2059 rx_todo = rx_done; 2060 2061 rx_done = 0; 2062 2063 /* Fairness NAPI loop */ 2064 while (rx_done < rx_todo) { 2065 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2066 struct mvneta_bm_pool *bm_pool = NULL; 2067 struct sk_buff *skb; 2068 unsigned char *data; 2069 dma_addr_t phys_addr; 2070 u32 rx_status, frag_size; 2071 int rx_bytes, err; 2072 u8 pool_id; 2073 2074 rx_done++; 2075 rx_status = rx_desc->status; 2076 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2077 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2078 phys_addr = rx_desc->buf_phys_addr; 2079 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2080 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2081 2082 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2083 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2084 err_drop_frame_ret_pool: 2085 /* Return the buffer to the pool */ 2086 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2087 rx_desc->buf_phys_addr); 2088 err_drop_frame: 2089 dev->stats.rx_errors++; 2090 mvneta_rx_error(pp, rx_desc); 2091 /* leave the descriptor untouched */ 2092 continue; 2093 } 2094 2095 if (rx_bytes <= rx_copybreak) { 2096 /* better copy a small frame and not unmap the DMA region */ 2097 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2098 if (unlikely(!skb)) 2099 goto err_drop_frame_ret_pool; 2100 2101 dma_sync_single_range_for_cpu(dev->dev.parent, 2102 rx_desc->buf_phys_addr, 2103 MVNETA_MH_SIZE + NET_SKB_PAD, 2104 rx_bytes, 2105 DMA_FROM_DEVICE); 2106 memcpy(skb_put(skb, rx_bytes), 2107 data + MVNETA_MH_SIZE + NET_SKB_PAD, 2108 rx_bytes); 2109 2110 skb->protocol = eth_type_trans(skb, dev); 2111 mvneta_rx_csum(pp, rx_status, skb); 2112 napi_gro_receive(&port->napi, skb); 2113 2114 rcvd_pkts++; 2115 rcvd_bytes += rx_bytes; 2116 2117 /* Return the buffer to the pool */ 2118 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2119 rx_desc->buf_phys_addr); 2120 2121 /* leave the descriptor and buffer untouched */ 2122 continue; 2123 } 2124 2125 /* Refill processing */ 2126 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2127 if (err) { 2128 netdev_err(dev, "Linux processing - Can't refill\n"); 2129 rxq->missed++; 2130 goto err_drop_frame_ret_pool; 2131 } 2132 2133 frag_size = bm_pool->hwbm_pool.frag_size; 2134 2135 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2136 2137 /* After refill old buffer has to be unmapped regardless 2138 * the skb is successfully built or not. 2139 */ 2140 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2141 bm_pool->buf_size, DMA_FROM_DEVICE); 2142 if (!skb) 2143 goto err_drop_frame; 2144 2145 rcvd_pkts++; 2146 rcvd_bytes += rx_bytes; 2147 2148 /* Linux processing */ 2149 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2150 skb_put(skb, rx_bytes); 2151 2152 skb->protocol = eth_type_trans(skb, dev); 2153 2154 mvneta_rx_csum(pp, rx_status, skb); 2155 2156 napi_gro_receive(&port->napi, skb); 2157 } 2158 2159 if (rcvd_pkts) { 2160 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2161 2162 u64_stats_update_begin(&stats->syncp); 2163 stats->rx_packets += rcvd_pkts; 2164 stats->rx_bytes += rcvd_bytes; 2165 u64_stats_update_end(&stats->syncp); 2166 } 2167 2168 /* Update rxq management counters */ 2169 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2170 2171 return rx_done; 2172 } 2173 2174 static inline void 2175 mvneta_tso_put_hdr(struct sk_buff *skb, 2176 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2177 { 2178 struct mvneta_tx_desc *tx_desc; 2179 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2180 2181 txq->tx_skb[txq->txq_put_index] = NULL; 2182 tx_desc = mvneta_txq_next_desc_get(txq); 2183 tx_desc->data_size = hdr_len; 2184 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2185 tx_desc->command |= MVNETA_TXD_F_DESC; 2186 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2187 txq->txq_put_index * TSO_HEADER_SIZE; 2188 mvneta_txq_inc_put(txq); 2189 } 2190 2191 static inline int 2192 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2193 struct sk_buff *skb, char *data, int size, 2194 bool last_tcp, bool is_last) 2195 { 2196 struct mvneta_tx_desc *tx_desc; 2197 2198 tx_desc = mvneta_txq_next_desc_get(txq); 2199 tx_desc->data_size = size; 2200 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2201 size, DMA_TO_DEVICE); 2202 if (unlikely(dma_mapping_error(dev->dev.parent, 2203 tx_desc->buf_phys_addr))) { 2204 mvneta_txq_desc_put(txq); 2205 return -ENOMEM; 2206 } 2207 2208 tx_desc->command = 0; 2209 txq->tx_skb[txq->txq_put_index] = NULL; 2210 2211 if (last_tcp) { 2212 /* last descriptor in the TCP packet */ 2213 tx_desc->command = MVNETA_TXD_L_DESC; 2214 2215 /* last descriptor in SKB */ 2216 if (is_last) 2217 txq->tx_skb[txq->txq_put_index] = skb; 2218 } 2219 mvneta_txq_inc_put(txq); 2220 return 0; 2221 } 2222 2223 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2224 struct mvneta_tx_queue *txq) 2225 { 2226 int total_len, data_left; 2227 int desc_count = 0; 2228 struct mvneta_port *pp = netdev_priv(dev); 2229 struct tso_t tso; 2230 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2231 int i; 2232 2233 /* Count needed descriptors */ 2234 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2235 return 0; 2236 2237 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2238 pr_info("*** Is this even possible???!?!?\n"); 2239 return 0; 2240 } 2241 2242 /* Initialize the TSO handler, and prepare the first payload */ 2243 tso_start(skb, &tso); 2244 2245 total_len = skb->len - hdr_len; 2246 while (total_len > 0) { 2247 char *hdr; 2248 2249 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2250 total_len -= data_left; 2251 desc_count++; 2252 2253 /* prepare packet headers: MAC + IP + TCP */ 2254 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2255 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2256 2257 mvneta_tso_put_hdr(skb, pp, txq); 2258 2259 while (data_left > 0) { 2260 int size; 2261 desc_count++; 2262 2263 size = min_t(int, tso.size, data_left); 2264 2265 if (mvneta_tso_put_data(dev, txq, skb, 2266 tso.data, size, 2267 size == data_left, 2268 total_len == 0)) 2269 goto err_release; 2270 data_left -= size; 2271 2272 tso_build_data(skb, &tso, size); 2273 } 2274 } 2275 2276 return desc_count; 2277 2278 err_release: 2279 /* Release all used data descriptors; header descriptors must not 2280 * be DMA-unmapped. 2281 */ 2282 for (i = desc_count - 1; i >= 0; i--) { 2283 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2284 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2285 dma_unmap_single(pp->dev->dev.parent, 2286 tx_desc->buf_phys_addr, 2287 tx_desc->data_size, 2288 DMA_TO_DEVICE); 2289 mvneta_txq_desc_put(txq); 2290 } 2291 return 0; 2292 } 2293 2294 /* Handle tx fragmentation processing */ 2295 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2296 struct mvneta_tx_queue *txq) 2297 { 2298 struct mvneta_tx_desc *tx_desc; 2299 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2300 2301 for (i = 0; i < nr_frags; i++) { 2302 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2303 void *addr = page_address(frag->page.p) + frag->page_offset; 2304 2305 tx_desc = mvneta_txq_next_desc_get(txq); 2306 tx_desc->data_size = frag->size; 2307 2308 tx_desc->buf_phys_addr = 2309 dma_map_single(pp->dev->dev.parent, addr, 2310 tx_desc->data_size, DMA_TO_DEVICE); 2311 2312 if (dma_mapping_error(pp->dev->dev.parent, 2313 tx_desc->buf_phys_addr)) { 2314 mvneta_txq_desc_put(txq); 2315 goto error; 2316 } 2317 2318 if (i == nr_frags - 1) { 2319 /* Last descriptor */ 2320 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2321 txq->tx_skb[txq->txq_put_index] = skb; 2322 } else { 2323 /* Descriptor in the middle: Not First, Not Last */ 2324 tx_desc->command = 0; 2325 txq->tx_skb[txq->txq_put_index] = NULL; 2326 } 2327 mvneta_txq_inc_put(txq); 2328 } 2329 2330 return 0; 2331 2332 error: 2333 /* Release all descriptors that were used to map fragments of 2334 * this packet, as well as the corresponding DMA mappings 2335 */ 2336 for (i = i - 1; i >= 0; i--) { 2337 tx_desc = txq->descs + i; 2338 dma_unmap_single(pp->dev->dev.parent, 2339 tx_desc->buf_phys_addr, 2340 tx_desc->data_size, 2341 DMA_TO_DEVICE); 2342 mvneta_txq_desc_put(txq); 2343 } 2344 2345 return -ENOMEM; 2346 } 2347 2348 /* Main tx processing */ 2349 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2350 { 2351 struct mvneta_port *pp = netdev_priv(dev); 2352 u16 txq_id = skb_get_queue_mapping(skb); 2353 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2354 struct mvneta_tx_desc *tx_desc; 2355 int len = skb->len; 2356 int frags = 0; 2357 u32 tx_cmd; 2358 2359 if (!netif_running(dev)) 2360 goto out; 2361 2362 if (skb_is_gso(skb)) { 2363 frags = mvneta_tx_tso(skb, dev, txq); 2364 goto out; 2365 } 2366 2367 frags = skb_shinfo(skb)->nr_frags + 1; 2368 2369 /* Get a descriptor for the first part of the packet */ 2370 tx_desc = mvneta_txq_next_desc_get(txq); 2371 2372 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2373 2374 tx_desc->data_size = skb_headlen(skb); 2375 2376 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2377 tx_desc->data_size, 2378 DMA_TO_DEVICE); 2379 if (unlikely(dma_mapping_error(dev->dev.parent, 2380 tx_desc->buf_phys_addr))) { 2381 mvneta_txq_desc_put(txq); 2382 frags = 0; 2383 goto out; 2384 } 2385 2386 if (frags == 1) { 2387 /* First and Last descriptor */ 2388 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2389 tx_desc->command = tx_cmd; 2390 txq->tx_skb[txq->txq_put_index] = skb; 2391 mvneta_txq_inc_put(txq); 2392 } else { 2393 /* First but not Last */ 2394 tx_cmd |= MVNETA_TXD_F_DESC; 2395 txq->tx_skb[txq->txq_put_index] = NULL; 2396 mvneta_txq_inc_put(txq); 2397 tx_desc->command = tx_cmd; 2398 /* Continue with other skb fragments */ 2399 if (mvneta_tx_frag_process(pp, skb, txq)) { 2400 dma_unmap_single(dev->dev.parent, 2401 tx_desc->buf_phys_addr, 2402 tx_desc->data_size, 2403 DMA_TO_DEVICE); 2404 mvneta_txq_desc_put(txq); 2405 frags = 0; 2406 goto out; 2407 } 2408 } 2409 2410 out: 2411 if (frags > 0) { 2412 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2413 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2414 2415 netdev_tx_sent_queue(nq, len); 2416 2417 txq->count += frags; 2418 if (txq->count >= txq->tx_stop_threshold) 2419 netif_tx_stop_queue(nq); 2420 2421 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2422 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2423 mvneta_txq_pend_desc_add(pp, txq, frags); 2424 else 2425 txq->pending += frags; 2426 2427 u64_stats_update_begin(&stats->syncp); 2428 stats->tx_packets++; 2429 stats->tx_bytes += len; 2430 u64_stats_update_end(&stats->syncp); 2431 } else { 2432 dev->stats.tx_dropped++; 2433 dev_kfree_skb_any(skb); 2434 } 2435 2436 return NETDEV_TX_OK; 2437 } 2438 2439 2440 /* Free tx resources, when resetting a port */ 2441 static void mvneta_txq_done_force(struct mvneta_port *pp, 2442 struct mvneta_tx_queue *txq) 2443 2444 { 2445 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2446 int tx_done = txq->count; 2447 2448 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2449 2450 /* reset txq */ 2451 txq->count = 0; 2452 txq->txq_put_index = 0; 2453 txq->txq_get_index = 0; 2454 } 2455 2456 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2457 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2458 */ 2459 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2460 { 2461 struct mvneta_tx_queue *txq; 2462 struct netdev_queue *nq; 2463 2464 while (cause_tx_done) { 2465 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2466 2467 nq = netdev_get_tx_queue(pp->dev, txq->id); 2468 __netif_tx_lock(nq, smp_processor_id()); 2469 2470 if (txq->count) 2471 mvneta_txq_done(pp, txq); 2472 2473 __netif_tx_unlock(nq); 2474 cause_tx_done &= ~((1 << txq->id)); 2475 } 2476 } 2477 2478 /* Compute crc8 of the specified address, using a unique algorithm , 2479 * according to hw spec, different than generic crc8 algorithm 2480 */ 2481 static int mvneta_addr_crc(unsigned char *addr) 2482 { 2483 int crc = 0; 2484 int i; 2485 2486 for (i = 0; i < ETH_ALEN; i++) { 2487 int j; 2488 2489 crc = (crc ^ addr[i]) << 8; 2490 for (j = 7; j >= 0; j--) { 2491 if (crc & (0x100 << j)) 2492 crc ^= 0x107 << j; 2493 } 2494 } 2495 2496 return crc; 2497 } 2498 2499 /* This method controls the net device special MAC multicast support. 2500 * The Special Multicast Table for MAC addresses supports MAC of the form 2501 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2502 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2503 * Table entries in the DA-Filter table. This method set the Special 2504 * Multicast Table appropriate entry. 2505 */ 2506 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2507 unsigned char last_byte, 2508 int queue) 2509 { 2510 unsigned int smc_table_reg; 2511 unsigned int tbl_offset; 2512 unsigned int reg_offset; 2513 2514 /* Register offset from SMC table base */ 2515 tbl_offset = (last_byte / 4); 2516 /* Entry offset within the above reg */ 2517 reg_offset = last_byte % 4; 2518 2519 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2520 + tbl_offset * 4)); 2521 2522 if (queue == -1) 2523 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2524 else { 2525 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2526 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2527 } 2528 2529 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2530 smc_table_reg); 2531 } 2532 2533 /* This method controls the network device Other MAC multicast support. 2534 * The Other Multicast Table is used for multicast of another type. 2535 * A CRC-8 is used as an index to the Other Multicast Table entries 2536 * in the DA-Filter table. 2537 * The method gets the CRC-8 value from the calling routine and 2538 * sets the Other Multicast Table appropriate entry according to the 2539 * specified CRC-8 . 2540 */ 2541 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2542 unsigned char crc8, 2543 int queue) 2544 { 2545 unsigned int omc_table_reg; 2546 unsigned int tbl_offset; 2547 unsigned int reg_offset; 2548 2549 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2550 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2551 2552 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2553 2554 if (queue == -1) { 2555 /* Clear accepts frame bit at specified Other DA table entry */ 2556 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2557 } else { 2558 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2559 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2560 } 2561 2562 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2563 } 2564 2565 /* The network device supports multicast using two tables: 2566 * 1) Special Multicast Table for MAC addresses of the form 2567 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2568 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2569 * Table entries in the DA-Filter table. 2570 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2571 * is used as an index to the Other Multicast Table entries in the 2572 * DA-Filter table. 2573 */ 2574 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2575 int queue) 2576 { 2577 unsigned char crc_result = 0; 2578 2579 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2580 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2581 return 0; 2582 } 2583 2584 crc_result = mvneta_addr_crc(p_addr); 2585 if (queue == -1) { 2586 if (pp->mcast_count[crc_result] == 0) { 2587 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2588 crc_result); 2589 return -EINVAL; 2590 } 2591 2592 pp->mcast_count[crc_result]--; 2593 if (pp->mcast_count[crc_result] != 0) { 2594 netdev_info(pp->dev, 2595 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2596 pp->mcast_count[crc_result], crc_result); 2597 return -EINVAL; 2598 } 2599 } else 2600 pp->mcast_count[crc_result]++; 2601 2602 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2603 2604 return 0; 2605 } 2606 2607 /* Configure Fitering mode of Ethernet port */ 2608 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2609 int is_promisc) 2610 { 2611 u32 port_cfg_reg, val; 2612 2613 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2614 2615 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2616 2617 /* Set / Clear UPM bit in port configuration register */ 2618 if (is_promisc) { 2619 /* Accept all Unicast addresses */ 2620 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2621 val |= MVNETA_FORCE_UNI; 2622 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2623 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2624 } else { 2625 /* Reject all Unicast addresses */ 2626 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2627 val &= ~MVNETA_FORCE_UNI; 2628 } 2629 2630 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2631 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2632 } 2633 2634 /* register unicast and multicast addresses */ 2635 static void mvneta_set_rx_mode(struct net_device *dev) 2636 { 2637 struct mvneta_port *pp = netdev_priv(dev); 2638 struct netdev_hw_addr *ha; 2639 2640 if (dev->flags & IFF_PROMISC) { 2641 /* Accept all: Multicast + Unicast */ 2642 mvneta_rx_unicast_promisc_set(pp, 1); 2643 mvneta_set_ucast_table(pp, pp->rxq_def); 2644 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2645 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2646 } else { 2647 /* Accept single Unicast */ 2648 mvneta_rx_unicast_promisc_set(pp, 0); 2649 mvneta_set_ucast_table(pp, -1); 2650 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2651 2652 if (dev->flags & IFF_ALLMULTI) { 2653 /* Accept all multicast */ 2654 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2655 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2656 } else { 2657 /* Accept only initialized multicast */ 2658 mvneta_set_special_mcast_table(pp, -1); 2659 mvneta_set_other_mcast_table(pp, -1); 2660 2661 if (!netdev_mc_empty(dev)) { 2662 netdev_for_each_mc_addr(ha, dev) { 2663 mvneta_mcast_addr_set(pp, ha->addr, 2664 pp->rxq_def); 2665 } 2666 } 2667 } 2668 } 2669 } 2670 2671 /* Interrupt handling - the callback for request_irq() */ 2672 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2673 { 2674 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2675 2676 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2677 napi_schedule(&pp->napi); 2678 2679 return IRQ_HANDLED; 2680 } 2681 2682 /* Interrupt handling - the callback for request_percpu_irq() */ 2683 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2684 { 2685 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2686 2687 disable_percpu_irq(port->pp->dev->irq); 2688 napi_schedule(&port->napi); 2689 2690 return IRQ_HANDLED; 2691 } 2692 2693 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2694 struct phy_device *phy) 2695 { 2696 struct fixed_phy_status status; 2697 struct fixed_phy_status changed = {}; 2698 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2699 2700 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2701 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2702 status.speed = SPEED_1000; 2703 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2704 status.speed = SPEED_100; 2705 else 2706 status.speed = SPEED_10; 2707 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2708 changed.link = 1; 2709 changed.speed = 1; 2710 changed.duplex = 1; 2711 fixed_phy_update_state(phy, &status, &changed); 2712 return 0; 2713 } 2714 2715 /* NAPI handler 2716 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2717 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2718 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2719 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2720 * Each CPU has its own causeRxTx register 2721 */ 2722 static int mvneta_poll(struct napi_struct *napi, int budget) 2723 { 2724 int rx_done = 0; 2725 u32 cause_rx_tx; 2726 int rx_queue; 2727 struct mvneta_port *pp = netdev_priv(napi->dev); 2728 struct net_device *ndev = pp->dev; 2729 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2730 2731 if (!netif_running(pp->dev)) { 2732 napi_complete(napi); 2733 return rx_done; 2734 } 2735 2736 /* Read cause register */ 2737 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2738 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2739 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2740 2741 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2742 if (pp->use_inband_status && (cause_misc & 2743 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2744 MVNETA_CAUSE_LINK_CHANGE | 2745 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2746 mvneta_fixed_link_update(pp, ndev->phydev); 2747 } 2748 } 2749 2750 /* Release Tx descriptors */ 2751 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2752 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2753 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2754 } 2755 2756 /* For the case where the last mvneta_poll did not process all 2757 * RX packets 2758 */ 2759 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2760 2761 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2762 port->cause_rx_tx; 2763 2764 if (rx_queue) { 2765 rx_queue = rx_queue - 1; 2766 if (pp->bm_priv) 2767 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2768 else 2769 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2770 } 2771 2772 if (rx_done < budget) { 2773 cause_rx_tx = 0; 2774 napi_complete_done(napi, rx_done); 2775 2776 if (pp->neta_armada3700) { 2777 unsigned long flags; 2778 2779 local_irq_save(flags); 2780 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2781 MVNETA_RX_INTR_MASK(rxq_number) | 2782 MVNETA_TX_INTR_MASK(txq_number) | 2783 MVNETA_MISCINTR_INTR_MASK); 2784 local_irq_restore(flags); 2785 } else { 2786 enable_percpu_irq(pp->dev->irq, 0); 2787 } 2788 } 2789 2790 if (pp->neta_armada3700) 2791 pp->cause_rx_tx = cause_rx_tx; 2792 else 2793 port->cause_rx_tx = cause_rx_tx; 2794 2795 return rx_done; 2796 } 2797 2798 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2799 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2800 int num) 2801 { 2802 int i; 2803 2804 for (i = 0; i < num; i++) { 2805 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2806 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2807 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2808 __func__, rxq->id, i, num); 2809 break; 2810 } 2811 } 2812 2813 /* Add this number of RX descriptors as non occupied (ready to 2814 * get packets) 2815 */ 2816 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2817 2818 return i; 2819 } 2820 2821 /* Free all packets pending transmit from all TXQs and reset TX port */ 2822 static void mvneta_tx_reset(struct mvneta_port *pp) 2823 { 2824 int queue; 2825 2826 /* free the skb's in the tx ring */ 2827 for (queue = 0; queue < txq_number; queue++) 2828 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2829 2830 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2831 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2832 } 2833 2834 static void mvneta_rx_reset(struct mvneta_port *pp) 2835 { 2836 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2837 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2838 } 2839 2840 /* Rx/Tx queue initialization/cleanup methods */ 2841 2842 /* Create a specified RX queue */ 2843 static int mvneta_rxq_init(struct mvneta_port *pp, 2844 struct mvneta_rx_queue *rxq) 2845 2846 { 2847 rxq->size = pp->rx_ring_size; 2848 2849 /* Allocate memory for RX descriptors */ 2850 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2851 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2852 &rxq->descs_phys, GFP_KERNEL); 2853 if (!rxq->descs) 2854 return -ENOMEM; 2855 2856 rxq->last_desc = rxq->size - 1; 2857 2858 /* Set Rx descriptors queue starting address */ 2859 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2860 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2861 2862 /* Set Offset */ 2863 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2864 2865 /* Set coalescing pkts and time */ 2866 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2867 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2868 2869 if (!pp->bm_priv) { 2870 /* Fill RXQ with buffers from RX pool */ 2871 mvneta_rxq_buf_size_set(pp, rxq, 2872 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2873 mvneta_rxq_bm_disable(pp, rxq); 2874 mvneta_rxq_fill(pp, rxq, rxq->size); 2875 } else { 2876 mvneta_rxq_bm_enable(pp, rxq); 2877 mvneta_rxq_long_pool_set(pp, rxq); 2878 mvneta_rxq_short_pool_set(pp, rxq); 2879 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2880 } 2881 2882 return 0; 2883 } 2884 2885 /* Cleanup Rx queue */ 2886 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2887 struct mvneta_rx_queue *rxq) 2888 { 2889 mvneta_rxq_drop_pkts(pp, rxq); 2890 2891 if (rxq->descs) 2892 dma_free_coherent(pp->dev->dev.parent, 2893 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2894 rxq->descs, 2895 rxq->descs_phys); 2896 2897 rxq->descs = NULL; 2898 rxq->last_desc = 0; 2899 rxq->next_desc_to_proc = 0; 2900 rxq->descs_phys = 0; 2901 } 2902 2903 /* Create and initialize a tx queue */ 2904 static int mvneta_txq_init(struct mvneta_port *pp, 2905 struct mvneta_tx_queue *txq) 2906 { 2907 int cpu; 2908 2909 txq->size = pp->tx_ring_size; 2910 2911 /* A queue must always have room for at least one skb. 2912 * Therefore, stop the queue when the free entries reaches 2913 * the maximum number of descriptors per skb. 2914 */ 2915 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2916 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2917 2918 2919 /* Allocate memory for TX descriptors */ 2920 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2921 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2922 &txq->descs_phys, GFP_KERNEL); 2923 if (!txq->descs) 2924 return -ENOMEM; 2925 2926 txq->last_desc = txq->size - 1; 2927 2928 /* Set maximum bandwidth for enabled TXQs */ 2929 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2930 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2931 2932 /* Set Tx descriptors queue starting address */ 2933 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2934 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2935 2936 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2937 GFP_KERNEL); 2938 if (!txq->tx_skb) { 2939 dma_free_coherent(pp->dev->dev.parent, 2940 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2941 txq->descs, txq->descs_phys); 2942 return -ENOMEM; 2943 } 2944 2945 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2946 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2947 txq->size * TSO_HEADER_SIZE, 2948 &txq->tso_hdrs_phys, GFP_KERNEL); 2949 if (!txq->tso_hdrs) { 2950 kfree(txq->tx_skb); 2951 dma_free_coherent(pp->dev->dev.parent, 2952 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2953 txq->descs, txq->descs_phys); 2954 return -ENOMEM; 2955 } 2956 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2957 2958 /* Setup XPS mapping */ 2959 if (txq_number > 1) 2960 cpu = txq->id % num_present_cpus(); 2961 else 2962 cpu = pp->rxq_def % num_present_cpus(); 2963 cpumask_set_cpu(cpu, &txq->affinity_mask); 2964 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2965 2966 return 0; 2967 } 2968 2969 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2970 static void mvneta_txq_deinit(struct mvneta_port *pp, 2971 struct mvneta_tx_queue *txq) 2972 { 2973 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2974 2975 kfree(txq->tx_skb); 2976 2977 if (txq->tso_hdrs) 2978 dma_free_coherent(pp->dev->dev.parent, 2979 txq->size * TSO_HEADER_SIZE, 2980 txq->tso_hdrs, txq->tso_hdrs_phys); 2981 if (txq->descs) 2982 dma_free_coherent(pp->dev->dev.parent, 2983 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2984 txq->descs, txq->descs_phys); 2985 2986 netdev_tx_reset_queue(nq); 2987 2988 txq->descs = NULL; 2989 txq->last_desc = 0; 2990 txq->next_desc_to_proc = 0; 2991 txq->descs_phys = 0; 2992 2993 /* Set minimum bandwidth for disabled TXQs */ 2994 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2995 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2996 2997 /* Set Tx descriptors queue starting address and size */ 2998 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2999 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3000 } 3001 3002 /* Cleanup all Tx queues */ 3003 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3004 { 3005 int queue; 3006 3007 for (queue = 0; queue < txq_number; queue++) 3008 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3009 } 3010 3011 /* Cleanup all Rx queues */ 3012 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3013 { 3014 int queue; 3015 3016 for (queue = 0; queue < txq_number; queue++) 3017 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3018 } 3019 3020 3021 /* Init all Rx queues */ 3022 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3023 { 3024 int queue; 3025 3026 for (queue = 0; queue < rxq_number; queue++) { 3027 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3028 3029 if (err) { 3030 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3031 __func__, queue); 3032 mvneta_cleanup_rxqs(pp); 3033 return err; 3034 } 3035 } 3036 3037 return 0; 3038 } 3039 3040 /* Init all tx queues */ 3041 static int mvneta_setup_txqs(struct mvneta_port *pp) 3042 { 3043 int queue; 3044 3045 for (queue = 0; queue < txq_number; queue++) { 3046 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3047 if (err) { 3048 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3049 __func__, queue); 3050 mvneta_cleanup_txqs(pp); 3051 return err; 3052 } 3053 } 3054 3055 return 0; 3056 } 3057 3058 static void mvneta_start_dev(struct mvneta_port *pp) 3059 { 3060 int cpu; 3061 struct net_device *ndev = pp->dev; 3062 3063 mvneta_max_rx_size_set(pp, pp->pkt_size); 3064 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3065 3066 /* start the Rx/Tx activity */ 3067 mvneta_port_enable(pp); 3068 3069 if (!pp->neta_armada3700) { 3070 /* Enable polling on the port */ 3071 for_each_online_cpu(cpu) { 3072 struct mvneta_pcpu_port *port = 3073 per_cpu_ptr(pp->ports, cpu); 3074 3075 napi_enable(&port->napi); 3076 } 3077 } else { 3078 napi_enable(&pp->napi); 3079 } 3080 3081 /* Unmask interrupts. It has to be done from each CPU */ 3082 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3083 3084 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3085 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3086 MVNETA_CAUSE_LINK_CHANGE | 3087 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3088 3089 phy_start(ndev->phydev); 3090 netif_tx_start_all_queues(pp->dev); 3091 } 3092 3093 static void mvneta_stop_dev(struct mvneta_port *pp) 3094 { 3095 unsigned int cpu; 3096 struct net_device *ndev = pp->dev; 3097 3098 phy_stop(ndev->phydev); 3099 3100 if (!pp->neta_armada3700) { 3101 for_each_online_cpu(cpu) { 3102 struct mvneta_pcpu_port *port = 3103 per_cpu_ptr(pp->ports, cpu); 3104 3105 napi_disable(&port->napi); 3106 } 3107 } else { 3108 napi_disable(&pp->napi); 3109 } 3110 3111 netif_carrier_off(pp->dev); 3112 3113 mvneta_port_down(pp); 3114 netif_tx_stop_all_queues(pp->dev); 3115 3116 /* Stop the port activity */ 3117 mvneta_port_disable(pp); 3118 3119 /* Clear all ethernet port interrupts */ 3120 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3121 3122 /* Mask all ethernet port interrupts */ 3123 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3124 3125 mvneta_tx_reset(pp); 3126 mvneta_rx_reset(pp); 3127 } 3128 3129 static void mvneta_percpu_enable(void *arg) 3130 { 3131 struct mvneta_port *pp = arg; 3132 3133 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3134 } 3135 3136 static void mvneta_percpu_disable(void *arg) 3137 { 3138 struct mvneta_port *pp = arg; 3139 3140 disable_percpu_irq(pp->dev->irq); 3141 } 3142 3143 /* Change the device mtu */ 3144 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3145 { 3146 struct mvneta_port *pp = netdev_priv(dev); 3147 int ret; 3148 3149 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3150 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3151 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3152 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3153 } 3154 3155 dev->mtu = mtu; 3156 3157 if (!netif_running(dev)) { 3158 if (pp->bm_priv) 3159 mvneta_bm_update_mtu(pp, mtu); 3160 3161 netdev_update_features(dev); 3162 return 0; 3163 } 3164 3165 /* The interface is running, so we have to force a 3166 * reallocation of the queues 3167 */ 3168 mvneta_stop_dev(pp); 3169 on_each_cpu(mvneta_percpu_disable, pp, true); 3170 3171 mvneta_cleanup_txqs(pp); 3172 mvneta_cleanup_rxqs(pp); 3173 3174 if (pp->bm_priv) 3175 mvneta_bm_update_mtu(pp, mtu); 3176 3177 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3178 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3179 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3180 3181 ret = mvneta_setup_rxqs(pp); 3182 if (ret) { 3183 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3184 return ret; 3185 } 3186 3187 ret = mvneta_setup_txqs(pp); 3188 if (ret) { 3189 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3190 return ret; 3191 } 3192 3193 on_each_cpu(mvneta_percpu_enable, pp, true); 3194 mvneta_start_dev(pp); 3195 mvneta_port_up(pp); 3196 3197 netdev_update_features(dev); 3198 3199 return 0; 3200 } 3201 3202 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3203 netdev_features_t features) 3204 { 3205 struct mvneta_port *pp = netdev_priv(dev); 3206 3207 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3208 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3209 netdev_info(dev, 3210 "Disable IP checksum for MTU greater than %dB\n", 3211 pp->tx_csum_limit); 3212 } 3213 3214 return features; 3215 } 3216 3217 /* Get mac address */ 3218 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3219 { 3220 u32 mac_addr_l, mac_addr_h; 3221 3222 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3223 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3224 addr[0] = (mac_addr_h >> 24) & 0xFF; 3225 addr[1] = (mac_addr_h >> 16) & 0xFF; 3226 addr[2] = (mac_addr_h >> 8) & 0xFF; 3227 addr[3] = mac_addr_h & 0xFF; 3228 addr[4] = (mac_addr_l >> 8) & 0xFF; 3229 addr[5] = mac_addr_l & 0xFF; 3230 } 3231 3232 /* Handle setting mac address */ 3233 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3234 { 3235 struct mvneta_port *pp = netdev_priv(dev); 3236 struct sockaddr *sockaddr = addr; 3237 int ret; 3238 3239 ret = eth_prepare_mac_addr_change(dev, addr); 3240 if (ret < 0) 3241 return ret; 3242 /* Remove previous address table entry */ 3243 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3244 3245 /* Set new addr in hw */ 3246 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3247 3248 eth_commit_mac_addr_change(dev, addr); 3249 return 0; 3250 } 3251 3252 static void mvneta_adjust_link(struct net_device *ndev) 3253 { 3254 struct mvneta_port *pp = netdev_priv(ndev); 3255 struct phy_device *phydev = ndev->phydev; 3256 int status_change = 0; 3257 3258 if (phydev->link) { 3259 if ((pp->speed != phydev->speed) || 3260 (pp->duplex != phydev->duplex)) { 3261 u32 val; 3262 3263 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3264 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3265 MVNETA_GMAC_CONFIG_GMII_SPEED | 3266 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3267 3268 if (phydev->duplex) 3269 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3270 3271 if (phydev->speed == SPEED_1000) 3272 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3273 else if (phydev->speed == SPEED_100) 3274 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3275 3276 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3277 3278 pp->duplex = phydev->duplex; 3279 pp->speed = phydev->speed; 3280 } 3281 } 3282 3283 if (phydev->link != pp->link) { 3284 if (!phydev->link) { 3285 pp->duplex = -1; 3286 pp->speed = 0; 3287 } 3288 3289 pp->link = phydev->link; 3290 status_change = 1; 3291 } 3292 3293 if (status_change) { 3294 if (phydev->link) { 3295 if (!pp->use_inband_status) { 3296 u32 val = mvreg_read(pp, 3297 MVNETA_GMAC_AUTONEG_CONFIG); 3298 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3299 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3300 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3301 val); 3302 } 3303 mvneta_port_up(pp); 3304 } else { 3305 if (!pp->use_inband_status) { 3306 u32 val = mvreg_read(pp, 3307 MVNETA_GMAC_AUTONEG_CONFIG); 3308 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3309 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3310 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3311 val); 3312 } 3313 mvneta_port_down(pp); 3314 } 3315 phy_print_status(phydev); 3316 } 3317 } 3318 3319 static int mvneta_mdio_probe(struct mvneta_port *pp) 3320 { 3321 struct phy_device *phy_dev; 3322 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3323 3324 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3325 pp->phy_interface); 3326 if (!phy_dev) { 3327 netdev_err(pp->dev, "could not find the PHY\n"); 3328 return -ENODEV; 3329 } 3330 3331 phy_ethtool_get_wol(phy_dev, &wol); 3332 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3333 3334 phy_dev->supported &= PHY_GBIT_FEATURES; 3335 phy_dev->advertising = phy_dev->supported; 3336 3337 pp->link = 0; 3338 pp->duplex = 0; 3339 pp->speed = 0; 3340 3341 return 0; 3342 } 3343 3344 static void mvneta_mdio_remove(struct mvneta_port *pp) 3345 { 3346 struct net_device *ndev = pp->dev; 3347 3348 phy_disconnect(ndev->phydev); 3349 } 3350 3351 /* Electing a CPU must be done in an atomic way: it should be done 3352 * after or before the removal/insertion of a CPU and this function is 3353 * not reentrant. 3354 */ 3355 static void mvneta_percpu_elect(struct mvneta_port *pp) 3356 { 3357 int elected_cpu = 0, max_cpu, cpu, i = 0; 3358 3359 /* Use the cpu associated to the rxq when it is online, in all 3360 * the other cases, use the cpu 0 which can't be offline. 3361 */ 3362 if (cpu_online(pp->rxq_def)) 3363 elected_cpu = pp->rxq_def; 3364 3365 max_cpu = num_present_cpus(); 3366 3367 for_each_online_cpu(cpu) { 3368 int rxq_map = 0, txq_map = 0; 3369 int rxq; 3370 3371 for (rxq = 0; rxq < rxq_number; rxq++) 3372 if ((rxq % max_cpu) == cpu) 3373 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3374 3375 if (cpu == elected_cpu) 3376 /* Map the default receive queue queue to the 3377 * elected CPU 3378 */ 3379 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3380 3381 /* We update the TX queue map only if we have one 3382 * queue. In this case we associate the TX queue to 3383 * the CPU bound to the default RX queue 3384 */ 3385 if (txq_number == 1) 3386 txq_map = (cpu == elected_cpu) ? 3387 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3388 else 3389 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3390 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3391 3392 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3393 3394 /* Update the interrupt mask on each CPU according the 3395 * new mapping 3396 */ 3397 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3398 pp, true); 3399 i++; 3400 3401 } 3402 }; 3403 3404 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3405 { 3406 int other_cpu; 3407 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3408 node_online); 3409 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3410 3411 3412 spin_lock(&pp->lock); 3413 /* 3414 * Configuring the driver for a new CPU while the driver is 3415 * stopping is racy, so just avoid it. 3416 */ 3417 if (pp->is_stopped) { 3418 spin_unlock(&pp->lock); 3419 return 0; 3420 } 3421 netif_tx_stop_all_queues(pp->dev); 3422 3423 /* 3424 * We have to synchronise on tha napi of each CPU except the one 3425 * just being woken up 3426 */ 3427 for_each_online_cpu(other_cpu) { 3428 if (other_cpu != cpu) { 3429 struct mvneta_pcpu_port *other_port = 3430 per_cpu_ptr(pp->ports, other_cpu); 3431 3432 napi_synchronize(&other_port->napi); 3433 } 3434 } 3435 3436 /* Mask all ethernet port interrupts */ 3437 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3438 napi_enable(&port->napi); 3439 3440 /* 3441 * Enable per-CPU interrupts on the CPU that is 3442 * brought up. 3443 */ 3444 mvneta_percpu_enable(pp); 3445 3446 /* 3447 * Enable per-CPU interrupt on the one CPU we care 3448 * about. 3449 */ 3450 mvneta_percpu_elect(pp); 3451 3452 /* Unmask all ethernet port interrupts */ 3453 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3454 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3455 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3456 MVNETA_CAUSE_LINK_CHANGE | 3457 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3458 netif_tx_start_all_queues(pp->dev); 3459 spin_unlock(&pp->lock); 3460 return 0; 3461 } 3462 3463 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3464 { 3465 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3466 node_online); 3467 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3468 3469 /* 3470 * Thanks to this lock we are sure that any pending cpu election is 3471 * done. 3472 */ 3473 spin_lock(&pp->lock); 3474 /* Mask all ethernet port interrupts */ 3475 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3476 spin_unlock(&pp->lock); 3477 3478 napi_synchronize(&port->napi); 3479 napi_disable(&port->napi); 3480 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3481 mvneta_percpu_disable(pp); 3482 return 0; 3483 } 3484 3485 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3486 { 3487 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3488 node_dead); 3489 3490 /* Check if a new CPU must be elected now this on is down */ 3491 spin_lock(&pp->lock); 3492 mvneta_percpu_elect(pp); 3493 spin_unlock(&pp->lock); 3494 /* Unmask all ethernet port interrupts */ 3495 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3496 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3497 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3498 MVNETA_CAUSE_LINK_CHANGE | 3499 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3500 netif_tx_start_all_queues(pp->dev); 3501 return 0; 3502 } 3503 3504 static int mvneta_open(struct net_device *dev) 3505 { 3506 struct mvneta_port *pp = netdev_priv(dev); 3507 int ret; 3508 3509 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3510 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3511 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3512 3513 ret = mvneta_setup_rxqs(pp); 3514 if (ret) 3515 return ret; 3516 3517 ret = mvneta_setup_txqs(pp); 3518 if (ret) 3519 goto err_cleanup_rxqs; 3520 3521 /* Connect to port interrupt line */ 3522 if (pp->neta_armada3700) 3523 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3524 dev->name, pp); 3525 else 3526 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3527 dev->name, pp->ports); 3528 if (ret) { 3529 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3530 goto err_cleanup_txqs; 3531 } 3532 3533 if (!pp->neta_armada3700) { 3534 /* Enable per-CPU interrupt on all the CPU to handle our RX 3535 * queue interrupts 3536 */ 3537 on_each_cpu(mvneta_percpu_enable, pp, true); 3538 3539 pp->is_stopped = false; 3540 /* Register a CPU notifier to handle the case where our CPU 3541 * might be taken offline. 3542 */ 3543 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3544 &pp->node_online); 3545 if (ret) 3546 goto err_free_irq; 3547 3548 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3549 &pp->node_dead); 3550 if (ret) 3551 goto err_free_online_hp; 3552 } 3553 3554 /* In default link is down */ 3555 netif_carrier_off(pp->dev); 3556 3557 ret = mvneta_mdio_probe(pp); 3558 if (ret < 0) { 3559 netdev_err(dev, "cannot probe MDIO bus\n"); 3560 goto err_free_dead_hp; 3561 } 3562 3563 mvneta_start_dev(pp); 3564 3565 return 0; 3566 3567 err_free_dead_hp: 3568 if (!pp->neta_armada3700) 3569 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3570 &pp->node_dead); 3571 err_free_online_hp: 3572 if (!pp->neta_armada3700) 3573 cpuhp_state_remove_instance_nocalls(online_hpstate, 3574 &pp->node_online); 3575 err_free_irq: 3576 if (pp->neta_armada3700) { 3577 free_irq(pp->dev->irq, pp); 3578 } else { 3579 on_each_cpu(mvneta_percpu_disable, pp, true); 3580 free_percpu_irq(pp->dev->irq, pp->ports); 3581 } 3582 err_cleanup_txqs: 3583 mvneta_cleanup_txqs(pp); 3584 err_cleanup_rxqs: 3585 mvneta_cleanup_rxqs(pp); 3586 return ret; 3587 } 3588 3589 /* Stop the port, free port interrupt line */ 3590 static int mvneta_stop(struct net_device *dev) 3591 { 3592 struct mvneta_port *pp = netdev_priv(dev); 3593 3594 if (!pp->neta_armada3700) { 3595 /* Inform that we are stopping so we don't want to setup the 3596 * driver for new CPUs in the notifiers. The code of the 3597 * notifier for CPU online is protected by the same spinlock, 3598 * so when we get the lock, the notifer work is done. 3599 */ 3600 spin_lock(&pp->lock); 3601 pp->is_stopped = true; 3602 spin_unlock(&pp->lock); 3603 3604 mvneta_stop_dev(pp); 3605 mvneta_mdio_remove(pp); 3606 3607 cpuhp_state_remove_instance_nocalls(online_hpstate, 3608 &pp->node_online); 3609 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3610 &pp->node_dead); 3611 on_each_cpu(mvneta_percpu_disable, pp, true); 3612 free_percpu_irq(dev->irq, pp->ports); 3613 } else { 3614 mvneta_stop_dev(pp); 3615 mvneta_mdio_remove(pp); 3616 free_irq(dev->irq, pp); 3617 } 3618 3619 mvneta_cleanup_rxqs(pp); 3620 mvneta_cleanup_txqs(pp); 3621 3622 return 0; 3623 } 3624 3625 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3626 { 3627 if (!dev->phydev) 3628 return -ENOTSUPP; 3629 3630 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3631 } 3632 3633 /* Ethtool methods */ 3634 3635 /* Set link ksettings (phy address, speed) for ethtools */ 3636 static int 3637 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3638 const struct ethtool_link_ksettings *cmd) 3639 { 3640 struct mvneta_port *pp = netdev_priv(ndev); 3641 struct phy_device *phydev = ndev->phydev; 3642 3643 if (!phydev) 3644 return -ENODEV; 3645 3646 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3647 u32 val; 3648 3649 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3650 3651 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3652 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3653 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3654 MVNETA_GMAC_CONFIG_GMII_SPEED | 3655 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3656 3657 if (phydev->duplex) 3658 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3659 3660 if (phydev->speed == SPEED_1000) 3661 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3662 else if (phydev->speed == SPEED_100) 3663 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3664 3665 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3666 } 3667 3668 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3669 netdev_info(pp->dev, "autoneg status set to %i\n", 3670 pp->use_inband_status); 3671 3672 if (netif_running(ndev)) { 3673 mvneta_port_down(pp); 3674 mvneta_port_up(pp); 3675 } 3676 } 3677 3678 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3679 } 3680 3681 /* Set interrupt coalescing for ethtools */ 3682 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3683 struct ethtool_coalesce *c) 3684 { 3685 struct mvneta_port *pp = netdev_priv(dev); 3686 int queue; 3687 3688 for (queue = 0; queue < rxq_number; queue++) { 3689 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3690 rxq->time_coal = c->rx_coalesce_usecs; 3691 rxq->pkts_coal = c->rx_max_coalesced_frames; 3692 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3693 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3694 } 3695 3696 for (queue = 0; queue < txq_number; queue++) { 3697 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3698 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3699 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3700 } 3701 3702 return 0; 3703 } 3704 3705 /* get coalescing for ethtools */ 3706 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3707 struct ethtool_coalesce *c) 3708 { 3709 struct mvneta_port *pp = netdev_priv(dev); 3710 3711 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3712 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3713 3714 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3715 return 0; 3716 } 3717 3718 3719 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3720 struct ethtool_drvinfo *drvinfo) 3721 { 3722 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3723 sizeof(drvinfo->driver)); 3724 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3725 sizeof(drvinfo->version)); 3726 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3727 sizeof(drvinfo->bus_info)); 3728 } 3729 3730 3731 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3732 struct ethtool_ringparam *ring) 3733 { 3734 struct mvneta_port *pp = netdev_priv(netdev); 3735 3736 ring->rx_max_pending = MVNETA_MAX_RXD; 3737 ring->tx_max_pending = MVNETA_MAX_TXD; 3738 ring->rx_pending = pp->rx_ring_size; 3739 ring->tx_pending = pp->tx_ring_size; 3740 } 3741 3742 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3743 struct ethtool_ringparam *ring) 3744 { 3745 struct mvneta_port *pp = netdev_priv(dev); 3746 3747 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3748 return -EINVAL; 3749 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3750 ring->rx_pending : MVNETA_MAX_RXD; 3751 3752 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3753 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3754 if (pp->tx_ring_size != ring->tx_pending) 3755 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3756 pp->tx_ring_size, ring->tx_pending); 3757 3758 if (netif_running(dev)) { 3759 mvneta_stop(dev); 3760 if (mvneta_open(dev)) { 3761 netdev_err(dev, 3762 "error on opening device after ring param change\n"); 3763 return -ENOMEM; 3764 } 3765 } 3766 3767 return 0; 3768 } 3769 3770 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3771 u8 *data) 3772 { 3773 if (sset == ETH_SS_STATS) { 3774 int i; 3775 3776 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3777 memcpy(data + i * ETH_GSTRING_LEN, 3778 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3779 } 3780 } 3781 3782 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3783 { 3784 const struct mvneta_statistic *s; 3785 void __iomem *base = pp->base; 3786 u32 high, low, val; 3787 u64 val64; 3788 int i; 3789 3790 for (i = 0, s = mvneta_statistics; 3791 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3792 s++, i++) { 3793 switch (s->type) { 3794 case T_REG_32: 3795 val = readl_relaxed(base + s->offset); 3796 pp->ethtool_stats[i] += val; 3797 break; 3798 case T_REG_64: 3799 /* Docs say to read low 32-bit then high */ 3800 low = readl_relaxed(base + s->offset); 3801 high = readl_relaxed(base + s->offset + 4); 3802 val64 = (u64)high << 32 | low; 3803 pp->ethtool_stats[i] += val64; 3804 break; 3805 } 3806 } 3807 } 3808 3809 static void mvneta_ethtool_get_stats(struct net_device *dev, 3810 struct ethtool_stats *stats, u64 *data) 3811 { 3812 struct mvneta_port *pp = netdev_priv(dev); 3813 int i; 3814 3815 mvneta_ethtool_update_stats(pp); 3816 3817 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3818 *data++ = pp->ethtool_stats[i]; 3819 } 3820 3821 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3822 { 3823 if (sset == ETH_SS_STATS) 3824 return ARRAY_SIZE(mvneta_statistics); 3825 return -EOPNOTSUPP; 3826 } 3827 3828 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3829 { 3830 return MVNETA_RSS_LU_TABLE_SIZE; 3831 } 3832 3833 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3834 struct ethtool_rxnfc *info, 3835 u32 *rules __always_unused) 3836 { 3837 switch (info->cmd) { 3838 case ETHTOOL_GRXRINGS: 3839 info->data = rxq_number; 3840 return 0; 3841 case ETHTOOL_GRXFH: 3842 return -EOPNOTSUPP; 3843 default: 3844 return -EOPNOTSUPP; 3845 } 3846 } 3847 3848 static int mvneta_config_rss(struct mvneta_port *pp) 3849 { 3850 int cpu; 3851 u32 val; 3852 3853 netif_tx_stop_all_queues(pp->dev); 3854 3855 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3856 3857 /* We have to synchronise on the napi of each CPU */ 3858 for_each_online_cpu(cpu) { 3859 struct mvneta_pcpu_port *pcpu_port = 3860 per_cpu_ptr(pp->ports, cpu); 3861 3862 napi_synchronize(&pcpu_port->napi); 3863 napi_disable(&pcpu_port->napi); 3864 } 3865 3866 pp->rxq_def = pp->indir[0]; 3867 3868 /* Update unicast mapping */ 3869 mvneta_set_rx_mode(pp->dev); 3870 3871 /* Update val of portCfg register accordingly with all RxQueue types */ 3872 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3873 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3874 3875 /* Update the elected CPU matching the new rxq_def */ 3876 spin_lock(&pp->lock); 3877 mvneta_percpu_elect(pp); 3878 spin_unlock(&pp->lock); 3879 3880 /* We have to synchronise on the napi of each CPU */ 3881 for_each_online_cpu(cpu) { 3882 struct mvneta_pcpu_port *pcpu_port = 3883 per_cpu_ptr(pp->ports, cpu); 3884 3885 napi_enable(&pcpu_port->napi); 3886 } 3887 3888 netif_tx_start_all_queues(pp->dev); 3889 3890 return 0; 3891 } 3892 3893 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3894 const u8 *key, const u8 hfunc) 3895 { 3896 struct mvneta_port *pp = netdev_priv(dev); 3897 3898 /* Current code for Armada 3700 doesn't support RSS features yet */ 3899 if (pp->neta_armada3700) 3900 return -EOPNOTSUPP; 3901 3902 /* We require at least one supported parameter to be changed 3903 * and no change in any of the unsupported parameters 3904 */ 3905 if (key || 3906 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3907 return -EOPNOTSUPP; 3908 3909 if (!indir) 3910 return 0; 3911 3912 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3913 3914 return mvneta_config_rss(pp); 3915 } 3916 3917 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3918 u8 *hfunc) 3919 { 3920 struct mvneta_port *pp = netdev_priv(dev); 3921 3922 /* Current code for Armada 3700 doesn't support RSS features yet */ 3923 if (pp->neta_armada3700) 3924 return -EOPNOTSUPP; 3925 3926 if (hfunc) 3927 *hfunc = ETH_RSS_HASH_TOP; 3928 3929 if (!indir) 3930 return 0; 3931 3932 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3933 3934 return 0; 3935 } 3936 3937 static void mvneta_ethtool_get_wol(struct net_device *dev, 3938 struct ethtool_wolinfo *wol) 3939 { 3940 wol->supported = 0; 3941 wol->wolopts = 0; 3942 3943 if (dev->phydev) 3944 phy_ethtool_get_wol(dev->phydev, wol); 3945 } 3946 3947 static int mvneta_ethtool_set_wol(struct net_device *dev, 3948 struct ethtool_wolinfo *wol) 3949 { 3950 int ret; 3951 3952 if (!dev->phydev) 3953 return -EOPNOTSUPP; 3954 3955 ret = phy_ethtool_set_wol(dev->phydev, wol); 3956 if (!ret) 3957 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 3958 3959 return ret; 3960 } 3961 3962 static const struct net_device_ops mvneta_netdev_ops = { 3963 .ndo_open = mvneta_open, 3964 .ndo_stop = mvneta_stop, 3965 .ndo_start_xmit = mvneta_tx, 3966 .ndo_set_rx_mode = mvneta_set_rx_mode, 3967 .ndo_set_mac_address = mvneta_set_mac_addr, 3968 .ndo_change_mtu = mvneta_change_mtu, 3969 .ndo_fix_features = mvneta_fix_features, 3970 .ndo_get_stats64 = mvneta_get_stats64, 3971 .ndo_do_ioctl = mvneta_ioctl, 3972 }; 3973 3974 static const struct ethtool_ops mvneta_eth_tool_ops = { 3975 .nway_reset = phy_ethtool_nway_reset, 3976 .get_link = ethtool_op_get_link, 3977 .set_coalesce = mvneta_ethtool_set_coalesce, 3978 .get_coalesce = mvneta_ethtool_get_coalesce, 3979 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3980 .get_ringparam = mvneta_ethtool_get_ringparam, 3981 .set_ringparam = mvneta_ethtool_set_ringparam, 3982 .get_strings = mvneta_ethtool_get_strings, 3983 .get_ethtool_stats = mvneta_ethtool_get_stats, 3984 .get_sset_count = mvneta_ethtool_get_sset_count, 3985 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3986 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3987 .get_rxfh = mvneta_ethtool_get_rxfh, 3988 .set_rxfh = mvneta_ethtool_set_rxfh, 3989 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3990 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3991 .get_wol = mvneta_ethtool_get_wol, 3992 .set_wol = mvneta_ethtool_set_wol, 3993 }; 3994 3995 /* Initialize hw */ 3996 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3997 { 3998 int queue; 3999 4000 /* Disable port */ 4001 mvneta_port_disable(pp); 4002 4003 /* Set port default values */ 4004 mvneta_defaults_set(pp); 4005 4006 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4007 if (!pp->txqs) 4008 return -ENOMEM; 4009 4010 /* Initialize TX descriptor rings */ 4011 for (queue = 0; queue < txq_number; queue++) { 4012 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4013 txq->id = queue; 4014 txq->size = pp->tx_ring_size; 4015 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4016 } 4017 4018 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4019 if (!pp->rxqs) 4020 return -ENOMEM; 4021 4022 /* Create Rx descriptor rings */ 4023 for (queue = 0; queue < rxq_number; queue++) { 4024 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4025 rxq->id = queue; 4026 rxq->size = pp->rx_ring_size; 4027 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4028 rxq->time_coal = MVNETA_RX_COAL_USEC; 4029 rxq->buf_virt_addr 4030 = devm_kmalloc_array(pp->dev->dev.parent, 4031 rxq->size, 4032 sizeof(*rxq->buf_virt_addr), 4033 GFP_KERNEL); 4034 if (!rxq->buf_virt_addr) 4035 return -ENOMEM; 4036 } 4037 4038 return 0; 4039 } 4040 4041 /* platform glue : initialize decoding windows */ 4042 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4043 const struct mbus_dram_target_info *dram) 4044 { 4045 u32 win_enable; 4046 u32 win_protect; 4047 int i; 4048 4049 for (i = 0; i < 6; i++) { 4050 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4051 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4052 4053 if (i < 4) 4054 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4055 } 4056 4057 win_enable = 0x3f; 4058 win_protect = 0; 4059 4060 if (dram) { 4061 for (i = 0; i < dram->num_cs; i++) { 4062 const struct mbus_dram_window *cs = dram->cs + i; 4063 4064 mvreg_write(pp, MVNETA_WIN_BASE(i), 4065 (cs->base & 0xffff0000) | 4066 (cs->mbus_attr << 8) | 4067 dram->mbus_dram_target_id); 4068 4069 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4070 (cs->size - 1) & 0xffff0000); 4071 4072 win_enable &= ~(1 << i); 4073 win_protect |= 3 << (2 * i); 4074 } 4075 } else { 4076 /* For Armada3700 open default 4GB Mbus window, leaving 4077 * arbitration of target/attribute to a different layer 4078 * of configuration. 4079 */ 4080 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4081 win_enable &= ~BIT(0); 4082 win_protect = 3; 4083 } 4084 4085 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4086 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4087 } 4088 4089 /* Power up the port */ 4090 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4091 { 4092 u32 ctrl; 4093 4094 /* MAC Cause register should be cleared */ 4095 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4096 4097 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4098 4099 /* Even though it might look weird, when we're configured in 4100 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4101 */ 4102 switch(phy_mode) { 4103 case PHY_INTERFACE_MODE_QSGMII: 4104 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4105 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4106 break; 4107 case PHY_INTERFACE_MODE_SGMII: 4108 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4109 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4110 break; 4111 case PHY_INTERFACE_MODE_RGMII: 4112 case PHY_INTERFACE_MODE_RGMII_ID: 4113 case PHY_INTERFACE_MODE_RGMII_RXID: 4114 case PHY_INTERFACE_MODE_RGMII_TXID: 4115 ctrl |= MVNETA_GMAC2_PORT_RGMII; 4116 break; 4117 default: 4118 return -EINVAL; 4119 } 4120 4121 /* Cancel Port Reset */ 4122 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 4123 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 4124 4125 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4126 MVNETA_GMAC2_PORT_RESET) != 0) 4127 continue; 4128 4129 return 0; 4130 } 4131 4132 /* Device initialization routine */ 4133 static int mvneta_probe(struct platform_device *pdev) 4134 { 4135 struct resource *res; 4136 struct device_node *dn = pdev->dev.of_node; 4137 struct device_node *phy_node; 4138 struct device_node *bm_node; 4139 struct mvneta_port *pp; 4140 struct net_device *dev; 4141 const char *dt_mac_addr; 4142 char hw_mac_addr[ETH_ALEN]; 4143 const char *mac_from; 4144 const char *managed; 4145 int tx_csum_limit; 4146 int phy_mode; 4147 int err; 4148 int cpu; 4149 4150 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4151 if (!dev) 4152 return -ENOMEM; 4153 4154 dev->irq = irq_of_parse_and_map(dn, 0); 4155 if (dev->irq == 0) { 4156 err = -EINVAL; 4157 goto err_free_netdev; 4158 } 4159 4160 phy_node = of_parse_phandle(dn, "phy", 0); 4161 if (!phy_node) { 4162 if (!of_phy_is_fixed_link(dn)) { 4163 dev_err(&pdev->dev, "no PHY specified\n"); 4164 err = -ENODEV; 4165 goto err_free_irq; 4166 } 4167 4168 err = of_phy_register_fixed_link(dn); 4169 if (err < 0) { 4170 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4171 goto err_free_irq; 4172 } 4173 4174 /* In the case of a fixed PHY, the DT node associated 4175 * to the PHY is the Ethernet MAC DT node. 4176 */ 4177 phy_node = of_node_get(dn); 4178 } 4179 4180 phy_mode = of_get_phy_mode(dn); 4181 if (phy_mode < 0) { 4182 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4183 err = -EINVAL; 4184 goto err_put_phy_node; 4185 } 4186 4187 dev->tx_queue_len = MVNETA_MAX_TXD; 4188 dev->watchdog_timeo = 5 * HZ; 4189 dev->netdev_ops = &mvneta_netdev_ops; 4190 4191 dev->ethtool_ops = &mvneta_eth_tool_ops; 4192 4193 pp = netdev_priv(dev); 4194 spin_lock_init(&pp->lock); 4195 pp->phy_node = phy_node; 4196 pp->phy_interface = phy_mode; 4197 4198 err = of_property_read_string(dn, "managed", &managed); 4199 pp->use_inband_status = (err == 0 && 4200 strcmp(managed, "in-band-status") == 0); 4201 4202 pp->rxq_def = rxq_def; 4203 4204 /* Set RX packet offset correction for platforms, whose 4205 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4206 * platforms and 0B for 32-bit ones. 4207 */ 4208 pp->rx_offset_correction = 4209 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4210 4211 pp->indir[0] = rxq_def; 4212 4213 /* Get special SoC configurations */ 4214 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4215 pp->neta_armada3700 = true; 4216 4217 pp->clk = devm_clk_get(&pdev->dev, "core"); 4218 if (IS_ERR(pp->clk)) 4219 pp->clk = devm_clk_get(&pdev->dev, NULL); 4220 if (IS_ERR(pp->clk)) { 4221 err = PTR_ERR(pp->clk); 4222 goto err_put_phy_node; 4223 } 4224 4225 clk_prepare_enable(pp->clk); 4226 4227 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4228 if (!IS_ERR(pp->clk_bus)) 4229 clk_prepare_enable(pp->clk_bus); 4230 4231 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4232 pp->base = devm_ioremap_resource(&pdev->dev, res); 4233 if (IS_ERR(pp->base)) { 4234 err = PTR_ERR(pp->base); 4235 goto err_clk; 4236 } 4237 4238 /* Alloc per-cpu port structure */ 4239 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4240 if (!pp->ports) { 4241 err = -ENOMEM; 4242 goto err_clk; 4243 } 4244 4245 /* Alloc per-cpu stats */ 4246 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4247 if (!pp->stats) { 4248 err = -ENOMEM; 4249 goto err_free_ports; 4250 } 4251 4252 dt_mac_addr = of_get_mac_address(dn); 4253 if (dt_mac_addr) { 4254 mac_from = "device tree"; 4255 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4256 } else { 4257 mvneta_get_mac_addr(pp, hw_mac_addr); 4258 if (is_valid_ether_addr(hw_mac_addr)) { 4259 mac_from = "hardware"; 4260 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4261 } else { 4262 mac_from = "random"; 4263 eth_hw_addr_random(dev); 4264 } 4265 } 4266 4267 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4268 if (tx_csum_limit < 0 || 4269 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4270 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4271 dev_info(&pdev->dev, 4272 "Wrong TX csum limit in DT, set to %dB\n", 4273 MVNETA_TX_CSUM_DEF_SIZE); 4274 } 4275 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4276 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4277 } else { 4278 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4279 } 4280 4281 pp->tx_csum_limit = tx_csum_limit; 4282 4283 pp->dram_target_info = mv_mbus_dram_info(); 4284 /* Armada3700 requires setting default configuration of Mbus 4285 * windows, however without using filled mbus_dram_target_info 4286 * structure. 4287 */ 4288 if (pp->dram_target_info || pp->neta_armada3700) 4289 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4290 4291 pp->tx_ring_size = MVNETA_MAX_TXD; 4292 pp->rx_ring_size = MVNETA_MAX_RXD; 4293 4294 pp->dev = dev; 4295 SET_NETDEV_DEV(dev, &pdev->dev); 4296 4297 pp->id = global_port_id++; 4298 4299 /* Obtain access to BM resources if enabled and already initialized */ 4300 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4301 if (bm_node && bm_node->data) { 4302 pp->bm_priv = bm_node->data; 4303 err = mvneta_bm_port_init(pdev, pp); 4304 if (err < 0) { 4305 dev_info(&pdev->dev, "use SW buffer management\n"); 4306 pp->bm_priv = NULL; 4307 } 4308 } 4309 of_node_put(bm_node); 4310 4311 err = mvneta_init(&pdev->dev, pp); 4312 if (err < 0) 4313 goto err_netdev; 4314 4315 err = mvneta_port_power_up(pp, phy_mode); 4316 if (err < 0) { 4317 dev_err(&pdev->dev, "can't power up port\n"); 4318 goto err_netdev; 4319 } 4320 4321 /* Armada3700 network controller does not support per-cpu 4322 * operation, so only single NAPI should be initialized. 4323 */ 4324 if (pp->neta_armada3700) { 4325 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4326 } else { 4327 for_each_present_cpu(cpu) { 4328 struct mvneta_pcpu_port *port = 4329 per_cpu_ptr(pp->ports, cpu); 4330 4331 netif_napi_add(dev, &port->napi, mvneta_poll, 4332 NAPI_POLL_WEIGHT); 4333 port->pp = pp; 4334 } 4335 } 4336 4337 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4338 dev->hw_features |= dev->features; 4339 dev->vlan_features |= dev->features; 4340 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4341 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4342 4343 /* MTU range: 68 - 9676 */ 4344 dev->min_mtu = ETH_MIN_MTU; 4345 /* 9676 == 9700 - 20 and rounding to 8 */ 4346 dev->max_mtu = 9676; 4347 4348 err = register_netdev(dev); 4349 if (err < 0) { 4350 dev_err(&pdev->dev, "failed to register\n"); 4351 goto err_free_stats; 4352 } 4353 4354 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4355 dev->dev_addr); 4356 4357 platform_set_drvdata(pdev, pp->dev); 4358 4359 if (pp->use_inband_status) { 4360 struct phy_device *phy = of_phy_find_device(dn); 4361 4362 mvneta_fixed_link_update(pp, phy); 4363 4364 put_device(&phy->mdio.dev); 4365 } 4366 4367 return 0; 4368 4369 err_netdev: 4370 unregister_netdev(dev); 4371 if (pp->bm_priv) { 4372 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4373 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4374 1 << pp->id); 4375 } 4376 err_free_stats: 4377 free_percpu(pp->stats); 4378 err_free_ports: 4379 free_percpu(pp->ports); 4380 err_clk: 4381 clk_disable_unprepare(pp->clk_bus); 4382 clk_disable_unprepare(pp->clk); 4383 err_put_phy_node: 4384 of_node_put(phy_node); 4385 if (of_phy_is_fixed_link(dn)) 4386 of_phy_deregister_fixed_link(dn); 4387 err_free_irq: 4388 irq_dispose_mapping(dev->irq); 4389 err_free_netdev: 4390 free_netdev(dev); 4391 return err; 4392 } 4393 4394 /* Device removal routine */ 4395 static int mvneta_remove(struct platform_device *pdev) 4396 { 4397 struct net_device *dev = platform_get_drvdata(pdev); 4398 struct device_node *dn = pdev->dev.of_node; 4399 struct mvneta_port *pp = netdev_priv(dev); 4400 4401 unregister_netdev(dev); 4402 clk_disable_unprepare(pp->clk_bus); 4403 clk_disable_unprepare(pp->clk); 4404 free_percpu(pp->ports); 4405 free_percpu(pp->stats); 4406 if (of_phy_is_fixed_link(dn)) 4407 of_phy_deregister_fixed_link(dn); 4408 irq_dispose_mapping(dev->irq); 4409 of_node_put(pp->phy_node); 4410 free_netdev(dev); 4411 4412 if (pp->bm_priv) { 4413 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4414 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4415 1 << pp->id); 4416 } 4417 4418 return 0; 4419 } 4420 4421 #ifdef CONFIG_PM_SLEEP 4422 static int mvneta_suspend(struct device *device) 4423 { 4424 struct net_device *dev = dev_get_drvdata(device); 4425 struct mvneta_port *pp = netdev_priv(dev); 4426 4427 if (netif_running(dev)) 4428 mvneta_stop(dev); 4429 netif_device_detach(dev); 4430 clk_disable_unprepare(pp->clk_bus); 4431 clk_disable_unprepare(pp->clk); 4432 return 0; 4433 } 4434 4435 static int mvneta_resume(struct device *device) 4436 { 4437 struct platform_device *pdev = to_platform_device(device); 4438 struct net_device *dev = dev_get_drvdata(device); 4439 struct mvneta_port *pp = netdev_priv(dev); 4440 int err; 4441 4442 clk_prepare_enable(pp->clk); 4443 if (!IS_ERR(pp->clk_bus)) 4444 clk_prepare_enable(pp->clk_bus); 4445 if (pp->dram_target_info || pp->neta_armada3700) 4446 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4447 if (pp->bm_priv) { 4448 err = mvneta_bm_port_init(pdev, pp); 4449 if (err < 0) { 4450 dev_info(&pdev->dev, "use SW buffer management\n"); 4451 pp->bm_priv = NULL; 4452 } 4453 } 4454 mvneta_defaults_set(pp); 4455 err = mvneta_port_power_up(pp, pp->phy_interface); 4456 if (err < 0) { 4457 dev_err(device, "can't power up port\n"); 4458 return err; 4459 } 4460 4461 if (pp->use_inband_status) 4462 mvneta_fixed_link_update(pp, dev->phydev); 4463 4464 netif_device_attach(dev); 4465 if (netif_running(dev)) { 4466 mvneta_open(dev); 4467 mvneta_set_rx_mode(dev); 4468 } 4469 4470 return 0; 4471 } 4472 #endif 4473 4474 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4475 4476 static const struct of_device_id mvneta_match[] = { 4477 { .compatible = "marvell,armada-370-neta" }, 4478 { .compatible = "marvell,armada-xp-neta" }, 4479 { .compatible = "marvell,armada-3700-neta" }, 4480 { } 4481 }; 4482 MODULE_DEVICE_TABLE(of, mvneta_match); 4483 4484 static struct platform_driver mvneta_driver = { 4485 .probe = mvneta_probe, 4486 .remove = mvneta_remove, 4487 .driver = { 4488 .name = MVNETA_DRIVER_NAME, 4489 .of_match_table = mvneta_match, 4490 .pm = &mvneta_pm_ops, 4491 }, 4492 }; 4493 4494 static int __init mvneta_driver_init(void) 4495 { 4496 int ret; 4497 4498 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4499 mvneta_cpu_online, 4500 mvneta_cpu_down_prepare); 4501 if (ret < 0) 4502 goto out; 4503 online_hpstate = ret; 4504 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4505 NULL, mvneta_cpu_dead); 4506 if (ret) 4507 goto err_dead; 4508 4509 ret = platform_driver_register(&mvneta_driver); 4510 if (ret) 4511 goto err; 4512 return 0; 4513 4514 err: 4515 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4516 err_dead: 4517 cpuhp_remove_multi_state(online_hpstate); 4518 out: 4519 return ret; 4520 } 4521 module_init(mvneta_driver_init); 4522 4523 static void __exit mvneta_driver_exit(void) 4524 { 4525 platform_driver_unregister(&mvneta_driver); 4526 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4527 cpuhp_remove_multi_state(online_hpstate); 4528 } 4529 module_exit(mvneta_driver_exit); 4530 4531 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4532 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4533 MODULE_LICENSE("GPL"); 4534 4535 module_param(rxq_number, int, S_IRUGO); 4536 module_param(txq_number, int, S_IRUGO); 4537 4538 module_param(rxq_def, int, S_IRUGO); 4539 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4540