1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 
41 /* Registers */
42 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
43 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
44 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
45 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
46 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
47 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
48 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
49 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
50 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
51 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
52 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
53 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
54 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
55 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
56 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
57 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
58 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
60 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
61 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
63 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
64 #define MVNETA_PORT_RX_RESET                    0x1cc0
65 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
66 #define MVNETA_PHY_ADDR                         0x2000
67 #define      MVNETA_PHY_ADDR_MASK               0x1f
68 #define MVNETA_MBUS_RETRY                       0x2010
69 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
70 #define MVNETA_UNIT_CONTROL                     0x20B0
71 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
72 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
73 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
74 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
75 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
76 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
77 #define MVNETA_PORT_CONFIG                      0x2400
78 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
79 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
80 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
81 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
82 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
83 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
84 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
85 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
86 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
87 						 MVNETA_DEF_RXQ_ARP(q)	 | \
88 						 MVNETA_DEF_RXQ_TCP(q)	 | \
89 						 MVNETA_DEF_RXQ_UDP(q)	 | \
90 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
91 						 MVNETA_TX_UNSET_ERR_SUM | \
92 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
93 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
94 #define MVNETA_MAC_ADDR_LOW                      0x2414
95 #define MVNETA_MAC_ADDR_HIGH                     0x2418
96 #define MVNETA_SDMA_CONFIG                       0x241c
97 #define      MVNETA_SDMA_BRST_SIZE_16            4
98 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
99 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
100 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
101 #define      MVNETA_DESC_SWAP                    BIT(6)
102 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
103 #define MVNETA_PORT_STATUS                       0x2444
104 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
105 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
106 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
107 #define MVNETA_SERDES_CFG			 0x24A0
108 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
109 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
110 #define MVNETA_TYPE_PRIO                         0x24bc
111 #define      MVNETA_FORCE_UNI                    BIT(21)
112 #define MVNETA_TXQ_CMD_1                         0x24e4
113 #define MVNETA_TXQ_CMD                           0x2448
114 #define      MVNETA_TXQ_DISABLE_SHIFT            8
115 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
116 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
117 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
118 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
119 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
120 #define MVNETA_ACC_MODE                          0x2500
121 #define MVNETA_BM_ADDRESS                        0x2504
122 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
123 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
124 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
125 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
126 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
127 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
128 
129 /* Exception Interrupt Port/Queue Cause register
130  *
131  * Their behavior depend of the mapping done using the PCPX2Q
132  * registers. For a given CPU if the bit associated to a queue is not
133  * set, then for the register a read from this CPU will always return
134  * 0 and a write won't do anything
135  */
136 
137 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
138 #define MVNETA_INTR_NEW_MASK                     0x25a4
139 
140 /* bits  0..7  = TXQ SENT, one bit per queue.
141  * bits  8..15 = RXQ OCCUP, one bit per queue.
142  * bits 16..23 = RXQ FREE, one bit per queue.
143  * bit  29 = OLD_REG_SUM, see old reg ?
144  * bit  30 = TX_ERR_SUM, one bit for 4 ports
145  * bit  31 = MISC_SUM,   one bit for 4 ports
146  */
147 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
148 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
149 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
150 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
151 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
152 
153 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
154 #define MVNETA_INTR_OLD_MASK                     0x25ac
155 
156 /* Data Path Port/Queue Cause Register */
157 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
158 #define MVNETA_INTR_MISC_MASK                    0x25b4
159 
160 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
161 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
162 #define      MVNETA_CAUSE_PTP                    BIT(4)
163 
164 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
165 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
166 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
167 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
168 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
169 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
170 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
171 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
172 
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
176 
177 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
178 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
179 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
180 
181 #define MVNETA_INTR_ENABLE                       0x25b8
182 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
183 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
184 
185 #define MVNETA_RXQ_CMD                           0x2680
186 #define      MVNETA_RXQ_DISABLE_SHIFT            8
187 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
188 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
189 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
190 #define MVNETA_GMAC_CTRL_0                       0x2c00
191 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
192 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
193 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
194 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
195 #define MVNETA_GMAC_CTRL_2                       0x2c08
196 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
197 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
198 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
199 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
200 #define MVNETA_GMAC_STATUS                       0x2c10
201 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
202 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
203 #define      MVNETA_GMAC_SPEED_100               BIT(2)
204 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
205 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
206 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
209 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
210 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
211 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
212 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
213 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
214 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
215 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
216 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
217 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
218 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
219 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
220 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
221 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
222 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
223 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
224 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
225 #define MVNETA_GMAC_CTRL_4                       0x2c90
226 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
227 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
228 #define      MVNETA_MIB_LATE_COLLISION           0x7c
229 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
230 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
231 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
232 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
233 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
234 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
235 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
236 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
237 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
238 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
239 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
240 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
241 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
242 #define MVNETA_PORT_TX_RESET                     0x3cf0
243 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
244 #define MVNETA_TX_MTU                            0x3e0c
245 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
246 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
247 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
248 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
249 
250 #define MVNETA_LPI_CTRL_0                        0x2cc0
251 #define MVNETA_LPI_CTRL_1                        0x2cc4
252 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
253 #define MVNETA_LPI_CTRL_2                        0x2cc8
254 #define MVNETA_LPI_STATUS                        0x2ccc
255 
256 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
257 
258 /* Descriptor ring Macros */
259 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
260 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
261 
262 /* Various constants */
263 
264 /* Coalescing */
265 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
266 #define MVNETA_RX_COAL_PKTS		32
267 #define MVNETA_RX_COAL_USEC		100
268 
269 /* The two bytes Marvell header. Either contains a special value used
270  * by Marvell switches when a specific hardware mode is enabled (not
271  * supported by this driver) or is filled automatically by zeroes on
272  * the RX side. Those two bytes being at the front of the Ethernet
273  * header, they allow to have the IP header aligned on a 4 bytes
274  * boundary automatically: the hardware skips those two bytes on its
275  * own.
276  */
277 #define MVNETA_MH_SIZE			2
278 
279 #define MVNETA_VLAN_TAG_LEN             4
280 
281 #define MVNETA_TX_CSUM_DEF_SIZE		1600
282 #define MVNETA_TX_CSUM_MAX_SIZE		9800
283 #define MVNETA_ACC_MODE_EXT1		1
284 #define MVNETA_ACC_MODE_EXT2		2
285 
286 #define MVNETA_MAX_DECODE_WIN		6
287 
288 /* Timeout constants */
289 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
290 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
291 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
292 
293 #define MVNETA_TX_MTU_MAX		0x3ffff
294 
295 /* The RSS lookup table actually has 256 entries but we do not use
296  * them yet
297  */
298 #define MVNETA_RSS_LU_TABLE_SIZE	1
299 
300 /* Max number of Rx descriptors */
301 #define MVNETA_MAX_RXD 512
302 
303 /* Max number of Tx descriptors */
304 #define MVNETA_MAX_TXD 1024
305 
306 /* Max number of allowed TCP segments for software TSO */
307 #define MVNETA_MAX_TSO_SEGS 100
308 
309 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
310 
311 /* descriptor aligned size */
312 #define MVNETA_DESC_ALIGNED_SIZE	32
313 
314 /* Number of bytes to be taken into account by HW when putting incoming data
315  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
316  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
317  */
318 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
319 
320 #define MVNETA_RX_PKT_SIZE(mtu) \
321 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
322 	      ETH_HLEN + ETH_FCS_LEN,			     \
323 	      cache_line_size())
324 
325 #define IS_TSO_HEADER(txq, addr) \
326 	((addr >= txq->tso_hdrs_phys) && \
327 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
328 
329 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
330 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
331 
332 enum {
333 	ETHTOOL_STAT_EEE_WAKEUP,
334 	ETHTOOL_STAT_SKB_ALLOC_ERR,
335 	ETHTOOL_STAT_REFILL_ERR,
336 	ETHTOOL_MAX_STATS,
337 };
338 
339 struct mvneta_statistic {
340 	unsigned short offset;
341 	unsigned short type;
342 	const char name[ETH_GSTRING_LEN];
343 };
344 
345 #define T_REG_32	32
346 #define T_REG_64	64
347 #define T_SW		1
348 
349 static const struct mvneta_statistic mvneta_statistics[] = {
350 	{ 0x3000, T_REG_64, "good_octets_received", },
351 	{ 0x3010, T_REG_32, "good_frames_received", },
352 	{ 0x3008, T_REG_32, "bad_octets_received", },
353 	{ 0x3014, T_REG_32, "bad_frames_received", },
354 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
355 	{ 0x301c, T_REG_32, "multicast_frames_received", },
356 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
357 	{ 0x3058, T_REG_32, "good_fc_received", },
358 	{ 0x305c, T_REG_32, "bad_fc_received", },
359 	{ 0x3060, T_REG_32, "undersize_received", },
360 	{ 0x3064, T_REG_32, "fragments_received", },
361 	{ 0x3068, T_REG_32, "oversize_received", },
362 	{ 0x306c, T_REG_32, "jabber_received", },
363 	{ 0x3070, T_REG_32, "mac_receive_error", },
364 	{ 0x3074, T_REG_32, "bad_crc_event", },
365 	{ 0x3078, T_REG_32, "collision", },
366 	{ 0x307c, T_REG_32, "late_collision", },
367 	{ 0x2484, T_REG_32, "rx_discard", },
368 	{ 0x2488, T_REG_32, "rx_overrun", },
369 	{ 0x3020, T_REG_32, "frames_64_octets", },
370 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
371 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
372 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
373 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
374 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
375 	{ 0x3038, T_REG_64, "good_octets_sent", },
376 	{ 0x3040, T_REG_32, "good_frames_sent", },
377 	{ 0x3044, T_REG_32, "excessive_collision", },
378 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
379 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
380 	{ 0x3054, T_REG_32, "fc_sent", },
381 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
382 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
383 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
384 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
385 };
386 
387 struct mvneta_pcpu_stats {
388 	struct	u64_stats_sync syncp;
389 	u64	rx_packets;
390 	u64	rx_bytes;
391 	u64	tx_packets;
392 	u64	tx_bytes;
393 };
394 
395 struct mvneta_pcpu_port {
396 	/* Pointer to the shared port */
397 	struct mvneta_port	*pp;
398 
399 	/* Pointer to the CPU-local NAPI struct */
400 	struct napi_struct	napi;
401 
402 	/* Cause of the previous interrupt */
403 	u32			cause_rx_tx;
404 };
405 
406 struct mvneta_port {
407 	u8 id;
408 	struct mvneta_pcpu_port __percpu	*ports;
409 	struct mvneta_pcpu_stats __percpu	*stats;
410 
411 	int pkt_size;
412 	void __iomem *base;
413 	struct mvneta_rx_queue *rxqs;
414 	struct mvneta_tx_queue *txqs;
415 	struct net_device *dev;
416 	struct hlist_node node_online;
417 	struct hlist_node node_dead;
418 	int rxq_def;
419 	/* Protect the access to the percpu interrupt registers,
420 	 * ensuring that the configuration remains coherent.
421 	 */
422 	spinlock_t lock;
423 	bool is_stopped;
424 
425 	u32 cause_rx_tx;
426 	struct napi_struct napi;
427 
428 	/* Core clock */
429 	struct clk *clk;
430 	/* AXI clock */
431 	struct clk *clk_bus;
432 	u8 mcast_count[256];
433 	u16 tx_ring_size;
434 	u16 rx_ring_size;
435 
436 	phy_interface_t phy_interface;
437 	struct device_node *dn;
438 	unsigned int tx_csum_limit;
439 	struct phylink *phylink;
440 	struct phylink_config phylink_config;
441 	struct phy *comphy;
442 
443 	struct mvneta_bm *bm_priv;
444 	struct mvneta_bm_pool *pool_long;
445 	struct mvneta_bm_pool *pool_short;
446 	int bm_win_id;
447 
448 	bool eee_enabled;
449 	bool eee_active;
450 	bool tx_lpi_enabled;
451 
452 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
453 
454 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
455 
456 	/* Flags for special SoC configurations */
457 	bool neta_armada3700;
458 	u16 rx_offset_correction;
459 	const struct mbus_dram_target_info *dram_target_info;
460 };
461 
462 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
463  * layout of the transmit and reception DMA descriptors, and their
464  * layout is therefore defined by the hardware design
465  */
466 
467 #define MVNETA_TX_L3_OFF_SHIFT	0
468 #define MVNETA_TX_IP_HLEN_SHIFT	8
469 #define MVNETA_TX_L4_UDP	BIT(16)
470 #define MVNETA_TX_L3_IP6	BIT(17)
471 #define MVNETA_TXD_IP_CSUM	BIT(18)
472 #define MVNETA_TXD_Z_PAD	BIT(19)
473 #define MVNETA_TXD_L_DESC	BIT(20)
474 #define MVNETA_TXD_F_DESC	BIT(21)
475 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
476 				 MVNETA_TXD_L_DESC | \
477 				 MVNETA_TXD_F_DESC)
478 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
479 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
480 
481 #define MVNETA_RXD_ERR_CRC		0x0
482 #define MVNETA_RXD_BM_POOL_SHIFT	13
483 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
484 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
485 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
486 #define MVNETA_RXD_ERR_LEN		BIT(18)
487 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
488 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
489 #define MVNETA_RXD_L3_IP4		BIT(25)
490 #define MVNETA_RXD_LAST_DESC		BIT(26)
491 #define MVNETA_RXD_FIRST_DESC		BIT(27)
492 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
493 					 MVNETA_RXD_LAST_DESC)
494 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
495 
496 #if defined(__LITTLE_ENDIAN)
497 struct mvneta_tx_desc {
498 	u32  command;		/* Options used by HW for packet transmitting.*/
499 	u16  reserved1;		/* csum_l4 (for future use)		*/
500 	u16  data_size;		/* Data size of transmitted packet in bytes */
501 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
502 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
503 	u32  reserved3[4];	/* Reserved - (for future use)		*/
504 };
505 
506 struct mvneta_rx_desc {
507 	u32  status;		/* Info about received packet		*/
508 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
509 	u16  data_size;		/* Size of received packet in bytes	*/
510 
511 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
512 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
513 
514 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
515 	u16  reserved3;		/* prefetch_cmd, for future use		*/
516 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
517 
518 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
519 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
520 };
521 #else
522 struct mvneta_tx_desc {
523 	u16  data_size;		/* Data size of transmitted packet in bytes */
524 	u16  reserved1;		/* csum_l4 (for future use)		*/
525 	u32  command;		/* Options used by HW for packet transmitting.*/
526 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
527 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
528 	u32  reserved3[4];	/* Reserved - (for future use)		*/
529 };
530 
531 struct mvneta_rx_desc {
532 	u16  data_size;		/* Size of received packet in bytes	*/
533 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
534 	u32  status;		/* Info about received packet		*/
535 
536 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
537 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
538 
539 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
540 	u16  reserved3;		/* prefetch_cmd, for future use		*/
541 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
542 
543 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
544 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
545 };
546 #endif
547 
548 struct mvneta_tx_queue {
549 	/* Number of this TX queue, in the range 0-7 */
550 	u8 id;
551 
552 	/* Number of TX DMA descriptors in the descriptor ring */
553 	int size;
554 
555 	/* Number of currently used TX DMA descriptor in the
556 	 * descriptor ring
557 	 */
558 	int count;
559 	int pending;
560 	int tx_stop_threshold;
561 	int tx_wake_threshold;
562 
563 	/* Array of transmitted skb */
564 	struct sk_buff **tx_skb;
565 
566 	/* Index of last TX DMA descriptor that was inserted */
567 	int txq_put_index;
568 
569 	/* Index of the TX DMA descriptor to be cleaned up */
570 	int txq_get_index;
571 
572 	u32 done_pkts_coal;
573 
574 	/* Virtual address of the TX DMA descriptors array */
575 	struct mvneta_tx_desc *descs;
576 
577 	/* DMA address of the TX DMA descriptors array */
578 	dma_addr_t descs_phys;
579 
580 	/* Index of the last TX DMA descriptor */
581 	int last_desc;
582 
583 	/* Index of the next TX DMA descriptor to process */
584 	int next_desc_to_proc;
585 
586 	/* DMA buffers for TSO headers */
587 	char *tso_hdrs;
588 
589 	/* DMA address of TSO headers */
590 	dma_addr_t tso_hdrs_phys;
591 
592 	/* Affinity mask for CPUs*/
593 	cpumask_t affinity_mask;
594 };
595 
596 struct mvneta_rx_queue {
597 	/* rx queue number, in the range 0-7 */
598 	u8 id;
599 
600 	/* num of rx descriptors in the rx descriptor ring */
601 	int size;
602 
603 	u32 pkts_coal;
604 	u32 time_coal;
605 
606 	/* Virtual address of the RX buffer */
607 	void  **buf_virt_addr;
608 
609 	/* Virtual address of the RX DMA descriptors array */
610 	struct mvneta_rx_desc *descs;
611 
612 	/* DMA address of the RX DMA descriptors array */
613 	dma_addr_t descs_phys;
614 
615 	/* Index of the last RX DMA descriptor */
616 	int last_desc;
617 
618 	/* Index of the next RX DMA descriptor to process */
619 	int next_desc_to_proc;
620 
621 	/* Index of first RX DMA descriptor to refill */
622 	int first_to_refill;
623 	u32 refill_num;
624 
625 	/* pointer to uncomplete skb buffer */
626 	struct sk_buff *skb;
627 	int left_size;
628 
629 	/* error counters */
630 	u32 skb_alloc_err;
631 	u32 refill_err;
632 };
633 
634 static enum cpuhp_state online_hpstate;
635 /* The hardware supports eight (8) rx queues, but we are only allowing
636  * the first one to be used. Therefore, let's just allocate one queue.
637  */
638 static int rxq_number = 8;
639 static int txq_number = 8;
640 
641 static int rxq_def;
642 
643 static int rx_copybreak __read_mostly = 256;
644 static int rx_header_size __read_mostly = 128;
645 
646 /* HW BM need that each port be identify by a unique ID */
647 static int global_port_id;
648 
649 #define MVNETA_DRIVER_NAME "mvneta"
650 #define MVNETA_DRIVER_VERSION "1.0"
651 
652 /* Utility/helper methods */
653 
654 /* Write helper method */
655 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
656 {
657 	writel(data, pp->base + offset);
658 }
659 
660 /* Read helper method */
661 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
662 {
663 	return readl(pp->base + offset);
664 }
665 
666 /* Increment txq get counter */
667 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
668 {
669 	txq->txq_get_index++;
670 	if (txq->txq_get_index == txq->size)
671 		txq->txq_get_index = 0;
672 }
673 
674 /* Increment txq put counter */
675 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
676 {
677 	txq->txq_put_index++;
678 	if (txq->txq_put_index == txq->size)
679 		txq->txq_put_index = 0;
680 }
681 
682 
683 /* Clear all MIB counters */
684 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
685 {
686 	int i;
687 	u32 dummy;
688 
689 	/* Perform dummy reads from MIB counters */
690 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
691 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
692 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
693 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
694 }
695 
696 /* Get System Network Statistics */
697 static void
698 mvneta_get_stats64(struct net_device *dev,
699 		   struct rtnl_link_stats64 *stats)
700 {
701 	struct mvneta_port *pp = netdev_priv(dev);
702 	unsigned int start;
703 	int cpu;
704 
705 	for_each_possible_cpu(cpu) {
706 		struct mvneta_pcpu_stats *cpu_stats;
707 		u64 rx_packets;
708 		u64 rx_bytes;
709 		u64 tx_packets;
710 		u64 tx_bytes;
711 
712 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
713 		do {
714 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
715 			rx_packets = cpu_stats->rx_packets;
716 			rx_bytes   = cpu_stats->rx_bytes;
717 			tx_packets = cpu_stats->tx_packets;
718 			tx_bytes   = cpu_stats->tx_bytes;
719 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
720 
721 		stats->rx_packets += rx_packets;
722 		stats->rx_bytes   += rx_bytes;
723 		stats->tx_packets += tx_packets;
724 		stats->tx_bytes   += tx_bytes;
725 	}
726 
727 	stats->rx_errors	= dev->stats.rx_errors;
728 	stats->rx_dropped	= dev->stats.rx_dropped;
729 
730 	stats->tx_dropped	= dev->stats.tx_dropped;
731 }
732 
733 /* Rx descriptors helper methods */
734 
735 /* Checks whether the RX descriptor having this status is both the first
736  * and the last descriptor for the RX packet. Each RX packet is currently
737  * received through a single RX descriptor, so not having each RX
738  * descriptor with its first and last bits set is an error
739  */
740 static int mvneta_rxq_desc_is_first_last(u32 status)
741 {
742 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
743 		MVNETA_RXD_FIRST_LAST_DESC;
744 }
745 
746 /* Add number of descriptors ready to receive new packets */
747 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
748 					  struct mvneta_rx_queue *rxq,
749 					  int ndescs)
750 {
751 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
752 	 * be added at once
753 	 */
754 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
755 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
756 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
757 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
758 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
759 	}
760 
761 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
762 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
763 }
764 
765 /* Get number of RX descriptors occupied by received packets */
766 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
767 					struct mvneta_rx_queue *rxq)
768 {
769 	u32 val;
770 
771 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
772 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
773 }
774 
775 /* Update num of rx desc called upon return from rx path or
776  * from mvneta_rxq_drop_pkts().
777  */
778 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
779 				       struct mvneta_rx_queue *rxq,
780 				       int rx_done, int rx_filled)
781 {
782 	u32 val;
783 
784 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
785 		val = rx_done |
786 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
787 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
788 		return;
789 	}
790 
791 	/* Only 255 descriptors can be added at once */
792 	while ((rx_done > 0) || (rx_filled > 0)) {
793 		if (rx_done <= 0xff) {
794 			val = rx_done;
795 			rx_done = 0;
796 		} else {
797 			val = 0xff;
798 			rx_done -= 0xff;
799 		}
800 		if (rx_filled <= 0xff) {
801 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
802 			rx_filled = 0;
803 		} else {
804 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
805 			rx_filled -= 0xff;
806 		}
807 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
808 	}
809 }
810 
811 /* Get pointer to next RX descriptor to be processed by SW */
812 static struct mvneta_rx_desc *
813 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
814 {
815 	int rx_desc = rxq->next_desc_to_proc;
816 
817 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
818 	prefetch(rxq->descs + rxq->next_desc_to_proc);
819 	return rxq->descs + rx_desc;
820 }
821 
822 /* Change maximum receive size of the port. */
823 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
824 {
825 	u32 val;
826 
827 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
828 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
829 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
830 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
831 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
832 }
833 
834 
835 /* Set rx queue offset */
836 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
837 				  struct mvneta_rx_queue *rxq,
838 				  int offset)
839 {
840 	u32 val;
841 
842 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
843 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
844 
845 	/* Offset is in */
846 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
847 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
848 }
849 
850 
851 /* Tx descriptors helper methods */
852 
853 /* Update HW with number of TX descriptors to be sent */
854 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
855 				     struct mvneta_tx_queue *txq,
856 				     int pend_desc)
857 {
858 	u32 val;
859 
860 	pend_desc += txq->pending;
861 
862 	/* Only 255 Tx descriptors can be added at once */
863 	do {
864 		val = min(pend_desc, 255);
865 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
866 		pend_desc -= val;
867 	} while (pend_desc > 0);
868 	txq->pending = 0;
869 }
870 
871 /* Get pointer to next TX descriptor to be processed (send) by HW */
872 static struct mvneta_tx_desc *
873 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
874 {
875 	int tx_desc = txq->next_desc_to_proc;
876 
877 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
878 	return txq->descs + tx_desc;
879 }
880 
881 /* Release the last allocated TX descriptor. Useful to handle DMA
882  * mapping failures in the TX path.
883  */
884 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
885 {
886 	if (txq->next_desc_to_proc == 0)
887 		txq->next_desc_to_proc = txq->last_desc - 1;
888 	else
889 		txq->next_desc_to_proc--;
890 }
891 
892 /* Set rxq buf size */
893 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
894 				    struct mvneta_rx_queue *rxq,
895 				    int buf_size)
896 {
897 	u32 val;
898 
899 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
900 
901 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
902 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
903 
904 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
905 }
906 
907 /* Disable buffer management (BM) */
908 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
909 				  struct mvneta_rx_queue *rxq)
910 {
911 	u32 val;
912 
913 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
914 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
915 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
916 }
917 
918 /* Enable buffer management (BM) */
919 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
920 				 struct mvneta_rx_queue *rxq)
921 {
922 	u32 val;
923 
924 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
925 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
926 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
927 }
928 
929 /* Notify HW about port's assignment of pool for bigger packets */
930 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
931 				     struct mvneta_rx_queue *rxq)
932 {
933 	u32 val;
934 
935 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
936 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
937 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
938 
939 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
940 }
941 
942 /* Notify HW about port's assignment of pool for smaller packets */
943 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
944 				      struct mvneta_rx_queue *rxq)
945 {
946 	u32 val;
947 
948 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
949 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
950 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
951 
952 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
953 }
954 
955 /* Set port's receive buffer size for assigned BM pool */
956 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
957 					      int buf_size,
958 					      u8 pool_id)
959 {
960 	u32 val;
961 
962 	if (!IS_ALIGNED(buf_size, 8)) {
963 		dev_warn(pp->dev->dev.parent,
964 			 "illegal buf_size value %d, round to %d\n",
965 			 buf_size, ALIGN(buf_size, 8));
966 		buf_size = ALIGN(buf_size, 8);
967 	}
968 
969 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
970 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
971 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
972 }
973 
974 /* Configure MBUS window in order to enable access BM internal SRAM */
975 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
976 				  u8 target, u8 attr)
977 {
978 	u32 win_enable, win_protect;
979 	int i;
980 
981 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
982 
983 	if (pp->bm_win_id < 0) {
984 		/* Find first not occupied window */
985 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
986 			if (win_enable & (1 << i)) {
987 				pp->bm_win_id = i;
988 				break;
989 			}
990 		}
991 		if (i == MVNETA_MAX_DECODE_WIN)
992 			return -ENOMEM;
993 	} else {
994 		i = pp->bm_win_id;
995 	}
996 
997 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
998 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
999 
1000 	if (i < 4)
1001 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1002 
1003 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1004 		    (attr << 8) | target);
1005 
1006 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1007 
1008 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1009 	win_protect |= 3 << (2 * i);
1010 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1011 
1012 	win_enable &= ~(1 << i);
1013 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1014 
1015 	return 0;
1016 }
1017 
1018 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1019 {
1020 	u32 wsize;
1021 	u8 target, attr;
1022 	int err;
1023 
1024 	/* Get BM window information */
1025 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1026 					 &target, &attr);
1027 	if (err < 0)
1028 		return err;
1029 
1030 	pp->bm_win_id = -1;
1031 
1032 	/* Open NETA -> BM window */
1033 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1034 				     target, attr);
1035 	if (err < 0) {
1036 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1037 		return err;
1038 	}
1039 	return 0;
1040 }
1041 
1042 /* Assign and initialize pools for port. In case of fail
1043  * buffer manager will remain disabled for current port.
1044  */
1045 static int mvneta_bm_port_init(struct platform_device *pdev,
1046 			       struct mvneta_port *pp)
1047 {
1048 	struct device_node *dn = pdev->dev.of_node;
1049 	u32 long_pool_id, short_pool_id;
1050 
1051 	if (!pp->neta_armada3700) {
1052 		int ret;
1053 
1054 		ret = mvneta_bm_port_mbus_init(pp);
1055 		if (ret)
1056 			return ret;
1057 	}
1058 
1059 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1060 		netdev_info(pp->dev, "missing long pool id\n");
1061 		return -EINVAL;
1062 	}
1063 
1064 	/* Create port's long pool depending on mtu */
1065 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1066 					   MVNETA_BM_LONG, pp->id,
1067 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1068 	if (!pp->pool_long) {
1069 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1070 		return -ENOMEM;
1071 	}
1072 
1073 	pp->pool_long->port_map |= 1 << pp->id;
1074 
1075 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1076 				   pp->pool_long->id);
1077 
1078 	/* If short pool id is not defined, assume using single pool */
1079 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1080 		short_pool_id = long_pool_id;
1081 
1082 	/* Create port's short pool */
1083 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1084 					    MVNETA_BM_SHORT, pp->id,
1085 					    MVNETA_BM_SHORT_PKT_SIZE);
1086 	if (!pp->pool_short) {
1087 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1088 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1089 		return -ENOMEM;
1090 	}
1091 
1092 	if (short_pool_id != long_pool_id) {
1093 		pp->pool_short->port_map |= 1 << pp->id;
1094 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1095 					   pp->pool_short->id);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /* Update settings of a pool for bigger packets */
1102 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1103 {
1104 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1105 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1106 	int num;
1107 
1108 	/* Release all buffers from long pool */
1109 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1110 	if (hwbm_pool->buf_num) {
1111 		WARN(1, "cannot free all buffers in pool %d\n",
1112 		     bm_pool->id);
1113 		goto bm_mtu_err;
1114 	}
1115 
1116 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1117 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1118 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1119 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1120 
1121 	/* Fill entire long pool */
1122 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1123 	if (num != hwbm_pool->size) {
1124 		WARN(1, "pool %d: %d of %d allocated\n",
1125 		     bm_pool->id, num, hwbm_pool->size);
1126 		goto bm_mtu_err;
1127 	}
1128 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1129 
1130 	return;
1131 
1132 bm_mtu_err:
1133 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1134 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1135 
1136 	pp->bm_priv = NULL;
1137 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1138 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1139 }
1140 
1141 /* Start the Ethernet port RX and TX activity */
1142 static void mvneta_port_up(struct mvneta_port *pp)
1143 {
1144 	int queue;
1145 	u32 q_map;
1146 
1147 	/* Enable all initialized TXs. */
1148 	q_map = 0;
1149 	for (queue = 0; queue < txq_number; queue++) {
1150 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1151 		if (txq->descs)
1152 			q_map |= (1 << queue);
1153 	}
1154 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1155 
1156 	q_map = 0;
1157 	/* Enable all initialized RXQs. */
1158 	for (queue = 0; queue < rxq_number; queue++) {
1159 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1160 
1161 		if (rxq->descs)
1162 			q_map |= (1 << queue);
1163 	}
1164 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1165 }
1166 
1167 /* Stop the Ethernet port activity */
1168 static void mvneta_port_down(struct mvneta_port *pp)
1169 {
1170 	u32 val;
1171 	int count;
1172 
1173 	/* Stop Rx port activity. Check port Rx activity. */
1174 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1175 
1176 	/* Issue stop command for active channels only */
1177 	if (val != 0)
1178 		mvreg_write(pp, MVNETA_RXQ_CMD,
1179 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1180 
1181 	/* Wait for all Rx activity to terminate. */
1182 	count = 0;
1183 	do {
1184 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1185 			netdev_warn(pp->dev,
1186 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1187 				    val);
1188 			break;
1189 		}
1190 		mdelay(1);
1191 
1192 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1193 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1194 
1195 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1196 	 * command for active channels only
1197 	 */
1198 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1199 
1200 	if (val != 0)
1201 		mvreg_write(pp, MVNETA_TXQ_CMD,
1202 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1203 
1204 	/* Wait for all Tx activity to terminate. */
1205 	count = 0;
1206 	do {
1207 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1208 			netdev_warn(pp->dev,
1209 				    "TIMEOUT for TX stopped status=0x%08x\n",
1210 				    val);
1211 			break;
1212 		}
1213 		mdelay(1);
1214 
1215 		/* Check TX Command reg that all Txqs are stopped */
1216 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1217 
1218 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1219 
1220 	/* Double check to verify that TX FIFO is empty */
1221 	count = 0;
1222 	do {
1223 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1224 			netdev_warn(pp->dev,
1225 				    "TX FIFO empty timeout status=0x%08x\n",
1226 				    val);
1227 			break;
1228 		}
1229 		mdelay(1);
1230 
1231 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1232 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1233 		 (val & MVNETA_TX_IN_PRGRS));
1234 
1235 	udelay(200);
1236 }
1237 
1238 /* Enable the port by setting the port enable bit of the MAC control register */
1239 static void mvneta_port_enable(struct mvneta_port *pp)
1240 {
1241 	u32 val;
1242 
1243 	/* Enable port */
1244 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1245 	val |= MVNETA_GMAC0_PORT_ENABLE;
1246 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1247 }
1248 
1249 /* Disable the port and wait for about 200 usec before retuning */
1250 static void mvneta_port_disable(struct mvneta_port *pp)
1251 {
1252 	u32 val;
1253 
1254 	/* Reset the Enable bit in the Serial Control Register */
1255 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1256 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1257 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1258 
1259 	udelay(200);
1260 }
1261 
1262 /* Multicast tables methods */
1263 
1264 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1265 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1266 {
1267 	int offset;
1268 	u32 val;
1269 
1270 	if (queue == -1) {
1271 		val = 0;
1272 	} else {
1273 		val = 0x1 | (queue << 1);
1274 		val |= (val << 24) | (val << 16) | (val << 8);
1275 	}
1276 
1277 	for (offset = 0; offset <= 0xc; offset += 4)
1278 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1279 }
1280 
1281 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1282 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1283 {
1284 	int offset;
1285 	u32 val;
1286 
1287 	if (queue == -1) {
1288 		val = 0;
1289 	} else {
1290 		val = 0x1 | (queue << 1);
1291 		val |= (val << 24) | (val << 16) | (val << 8);
1292 	}
1293 
1294 	for (offset = 0; offset <= 0xfc; offset += 4)
1295 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1296 
1297 }
1298 
1299 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1300 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1301 {
1302 	int offset;
1303 	u32 val;
1304 
1305 	if (queue == -1) {
1306 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1307 		val = 0;
1308 	} else {
1309 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1310 		val = 0x1 | (queue << 1);
1311 		val |= (val << 24) | (val << 16) | (val << 8);
1312 	}
1313 
1314 	for (offset = 0; offset <= 0xfc; offset += 4)
1315 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1316 }
1317 
1318 static void mvneta_percpu_unmask_interrupt(void *arg)
1319 {
1320 	struct mvneta_port *pp = arg;
1321 
1322 	/* All the queue are unmasked, but actually only the ones
1323 	 * mapped to this CPU will be unmasked
1324 	 */
1325 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1326 		    MVNETA_RX_INTR_MASK_ALL |
1327 		    MVNETA_TX_INTR_MASK_ALL |
1328 		    MVNETA_MISCINTR_INTR_MASK);
1329 }
1330 
1331 static void mvneta_percpu_mask_interrupt(void *arg)
1332 {
1333 	struct mvneta_port *pp = arg;
1334 
1335 	/* All the queue are masked, but actually only the ones
1336 	 * mapped to this CPU will be masked
1337 	 */
1338 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1339 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1340 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1341 }
1342 
1343 static void mvneta_percpu_clear_intr_cause(void *arg)
1344 {
1345 	struct mvneta_port *pp = arg;
1346 
1347 	/* All the queue are cleared, but actually only the ones
1348 	 * mapped to this CPU will be cleared
1349 	 */
1350 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1351 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1352 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1353 }
1354 
1355 /* This method sets defaults to the NETA port:
1356  *	Clears interrupt Cause and Mask registers.
1357  *	Clears all MAC tables.
1358  *	Sets defaults to all registers.
1359  *	Resets RX and TX descriptor rings.
1360  *	Resets PHY.
1361  * This method can be called after mvneta_port_down() to return the port
1362  *	settings to defaults.
1363  */
1364 static void mvneta_defaults_set(struct mvneta_port *pp)
1365 {
1366 	int cpu;
1367 	int queue;
1368 	u32 val;
1369 	int max_cpu = num_present_cpus();
1370 
1371 	/* Clear all Cause registers */
1372 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1373 
1374 	/* Mask all interrupts */
1375 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1376 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1377 
1378 	/* Enable MBUS Retry bit16 */
1379 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1380 
1381 	/* Set CPU queue access map. CPUs are assigned to the RX and
1382 	 * TX queues modulo their number. If there is only one TX
1383 	 * queue then it is assigned to the CPU associated to the
1384 	 * default RX queue.
1385 	 */
1386 	for_each_present_cpu(cpu) {
1387 		int rxq_map = 0, txq_map = 0;
1388 		int rxq, txq;
1389 		if (!pp->neta_armada3700) {
1390 			for (rxq = 0; rxq < rxq_number; rxq++)
1391 				if ((rxq % max_cpu) == cpu)
1392 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1393 
1394 			for (txq = 0; txq < txq_number; txq++)
1395 				if ((txq % max_cpu) == cpu)
1396 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1397 
1398 			/* With only one TX queue we configure a special case
1399 			 * which will allow to get all the irq on a single
1400 			 * CPU
1401 			 */
1402 			if (txq_number == 1)
1403 				txq_map = (cpu == pp->rxq_def) ?
1404 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1405 
1406 		} else {
1407 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1408 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1409 		}
1410 
1411 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1412 	}
1413 
1414 	/* Reset RX and TX DMAs */
1415 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1416 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1417 
1418 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1419 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1420 	for (queue = 0; queue < txq_number; queue++) {
1421 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1422 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1423 	}
1424 
1425 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1426 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1427 
1428 	/* Set Port Acceleration Mode */
1429 	if (pp->bm_priv)
1430 		/* HW buffer management + legacy parser */
1431 		val = MVNETA_ACC_MODE_EXT2;
1432 	else
1433 		/* SW buffer management + legacy parser */
1434 		val = MVNETA_ACC_MODE_EXT1;
1435 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1436 
1437 	if (pp->bm_priv)
1438 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1439 
1440 	/* Update val of portCfg register accordingly with all RxQueue types */
1441 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1442 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1443 
1444 	val = 0;
1445 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1446 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1447 
1448 	/* Build PORT_SDMA_CONFIG_REG */
1449 	val = 0;
1450 
1451 	/* Default burst size */
1452 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1453 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1454 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1455 
1456 #if defined(__BIG_ENDIAN)
1457 	val |= MVNETA_DESC_SWAP;
1458 #endif
1459 
1460 	/* Assign port SDMA configuration */
1461 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1462 
1463 	/* Disable PHY polling in hardware, since we're using the
1464 	 * kernel phylib to do this.
1465 	 */
1466 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1467 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1468 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1469 
1470 	mvneta_set_ucast_table(pp, -1);
1471 	mvneta_set_special_mcast_table(pp, -1);
1472 	mvneta_set_other_mcast_table(pp, -1);
1473 
1474 	/* Set port interrupt enable register - default enable all */
1475 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1476 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1477 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1478 
1479 	mvneta_mib_counters_clear(pp);
1480 }
1481 
1482 /* Set max sizes for tx queues */
1483 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1484 
1485 {
1486 	u32 val, size, mtu;
1487 	int queue;
1488 
1489 	mtu = max_tx_size * 8;
1490 	if (mtu > MVNETA_TX_MTU_MAX)
1491 		mtu = MVNETA_TX_MTU_MAX;
1492 
1493 	/* Set MTU */
1494 	val = mvreg_read(pp, MVNETA_TX_MTU);
1495 	val &= ~MVNETA_TX_MTU_MAX;
1496 	val |= mtu;
1497 	mvreg_write(pp, MVNETA_TX_MTU, val);
1498 
1499 	/* TX token size and all TXQs token size must be larger that MTU */
1500 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1501 
1502 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1503 	if (size < mtu) {
1504 		size = mtu;
1505 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1506 		val |= size;
1507 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1508 	}
1509 	for (queue = 0; queue < txq_number; queue++) {
1510 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1511 
1512 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1513 		if (size < mtu) {
1514 			size = mtu;
1515 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1516 			val |= size;
1517 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1518 		}
1519 	}
1520 }
1521 
1522 /* Set unicast address */
1523 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1524 				  int queue)
1525 {
1526 	unsigned int unicast_reg;
1527 	unsigned int tbl_offset;
1528 	unsigned int reg_offset;
1529 
1530 	/* Locate the Unicast table entry */
1531 	last_nibble = (0xf & last_nibble);
1532 
1533 	/* offset from unicast tbl base */
1534 	tbl_offset = (last_nibble / 4) * 4;
1535 
1536 	/* offset within the above reg  */
1537 	reg_offset = last_nibble % 4;
1538 
1539 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1540 
1541 	if (queue == -1) {
1542 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1543 		unicast_reg &= ~(0xff << (8 * reg_offset));
1544 	} else {
1545 		unicast_reg &= ~(0xff << (8 * reg_offset));
1546 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1547 	}
1548 
1549 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1550 }
1551 
1552 /* Set mac address */
1553 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1554 				int queue)
1555 {
1556 	unsigned int mac_h;
1557 	unsigned int mac_l;
1558 
1559 	if (queue != -1) {
1560 		mac_l = (addr[4] << 8) | (addr[5]);
1561 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1562 			(addr[2] << 8) | (addr[3] << 0);
1563 
1564 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1565 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1566 	}
1567 
1568 	/* Accept frames of this address */
1569 	mvneta_set_ucast_addr(pp, addr[5], queue);
1570 }
1571 
1572 /* Set the number of packets that will be received before RX interrupt
1573  * will be generated by HW.
1574  */
1575 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1576 				    struct mvneta_rx_queue *rxq, u32 value)
1577 {
1578 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1579 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1580 }
1581 
1582 /* Set the time delay in usec before RX interrupt will be generated by
1583  * HW.
1584  */
1585 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1586 				    struct mvneta_rx_queue *rxq, u32 value)
1587 {
1588 	u32 val;
1589 	unsigned long clk_rate;
1590 
1591 	clk_rate = clk_get_rate(pp->clk);
1592 	val = (clk_rate / 1000000) * value;
1593 
1594 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1595 }
1596 
1597 /* Set threshold for TX_DONE pkts coalescing */
1598 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1599 					 struct mvneta_tx_queue *txq, u32 value)
1600 {
1601 	u32 val;
1602 
1603 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1604 
1605 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1606 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1607 
1608 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1609 }
1610 
1611 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1612 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1613 				u32 phys_addr, void *virt_addr,
1614 				struct mvneta_rx_queue *rxq)
1615 {
1616 	int i;
1617 
1618 	rx_desc->buf_phys_addr = phys_addr;
1619 	i = rx_desc - rxq->descs;
1620 	rxq->buf_virt_addr[i] = virt_addr;
1621 }
1622 
1623 /* Decrement sent descriptors counter */
1624 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1625 				     struct mvneta_tx_queue *txq,
1626 				     int sent_desc)
1627 {
1628 	u32 val;
1629 
1630 	/* Only 255 TX descriptors can be updated at once */
1631 	while (sent_desc > 0xff) {
1632 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1633 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1634 		sent_desc = sent_desc - 0xff;
1635 	}
1636 
1637 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1638 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1639 }
1640 
1641 /* Get number of TX descriptors already sent by HW */
1642 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1643 					struct mvneta_tx_queue *txq)
1644 {
1645 	u32 val;
1646 	int sent_desc;
1647 
1648 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1649 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1650 		MVNETA_TXQ_SENT_DESC_SHIFT;
1651 
1652 	return sent_desc;
1653 }
1654 
1655 /* Get number of sent descriptors and decrement counter.
1656  *  The number of sent descriptors is returned.
1657  */
1658 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1659 				     struct mvneta_tx_queue *txq)
1660 {
1661 	int sent_desc;
1662 
1663 	/* Get number of sent descriptors */
1664 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1665 
1666 	/* Decrement sent descriptors counter */
1667 	if (sent_desc)
1668 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1669 
1670 	return sent_desc;
1671 }
1672 
1673 /* Set TXQ descriptors fields relevant for CSUM calculation */
1674 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1675 				int ip_hdr_len, int l4_proto)
1676 {
1677 	u32 command;
1678 
1679 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1680 	 * G_L4_chk, L4_type; required only for checksum
1681 	 * calculation
1682 	 */
1683 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1684 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1685 
1686 	if (l3_proto == htons(ETH_P_IP))
1687 		command |= MVNETA_TXD_IP_CSUM;
1688 	else
1689 		command |= MVNETA_TX_L3_IP6;
1690 
1691 	if (l4_proto == IPPROTO_TCP)
1692 		command |=  MVNETA_TX_L4_CSUM_FULL;
1693 	else if (l4_proto == IPPROTO_UDP)
1694 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1695 	else
1696 		command |= MVNETA_TX_L4_CSUM_NOT;
1697 
1698 	return command;
1699 }
1700 
1701 
1702 /* Display more error info */
1703 static void mvneta_rx_error(struct mvneta_port *pp,
1704 			    struct mvneta_rx_desc *rx_desc)
1705 {
1706 	u32 status = rx_desc->status;
1707 
1708 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1709 	case MVNETA_RXD_ERR_CRC:
1710 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1711 			   status, rx_desc->data_size);
1712 		break;
1713 	case MVNETA_RXD_ERR_OVERRUN:
1714 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1715 			   status, rx_desc->data_size);
1716 		break;
1717 	case MVNETA_RXD_ERR_LEN:
1718 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1719 			   status, rx_desc->data_size);
1720 		break;
1721 	case MVNETA_RXD_ERR_RESOURCE:
1722 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1723 			   status, rx_desc->data_size);
1724 		break;
1725 	}
1726 }
1727 
1728 /* Handle RX checksum offload based on the descriptor's status */
1729 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1730 			   struct sk_buff *skb)
1731 {
1732 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1733 	    (status & MVNETA_RXD_L3_IP4) &&
1734 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1735 		skb->csum = 0;
1736 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1737 		return;
1738 	}
1739 
1740 	skb->ip_summed = CHECKSUM_NONE;
1741 }
1742 
1743 /* Return tx queue pointer (find last set bit) according to <cause> returned
1744  * form tx_done reg. <cause> must not be null. The return value is always a
1745  * valid queue for matching the first one found in <cause>.
1746  */
1747 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1748 						     u32 cause)
1749 {
1750 	int queue = fls(cause) - 1;
1751 
1752 	return &pp->txqs[queue];
1753 }
1754 
1755 /* Free tx queue skbuffs */
1756 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1757 				 struct mvneta_tx_queue *txq, int num,
1758 				 struct netdev_queue *nq)
1759 {
1760 	unsigned int bytes_compl = 0, pkts_compl = 0;
1761 	int i;
1762 
1763 	for (i = 0; i < num; i++) {
1764 		struct mvneta_tx_desc *tx_desc = txq->descs +
1765 			txq->txq_get_index;
1766 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1767 
1768 		if (skb) {
1769 			bytes_compl += skb->len;
1770 			pkts_compl++;
1771 		}
1772 
1773 		mvneta_txq_inc_get(txq);
1774 
1775 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1776 			dma_unmap_single(pp->dev->dev.parent,
1777 					 tx_desc->buf_phys_addr,
1778 					 tx_desc->data_size, DMA_TO_DEVICE);
1779 		if (!skb)
1780 			continue;
1781 		dev_kfree_skb_any(skb);
1782 	}
1783 
1784 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1785 }
1786 
1787 /* Handle end of transmission */
1788 static void mvneta_txq_done(struct mvneta_port *pp,
1789 			   struct mvneta_tx_queue *txq)
1790 {
1791 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1792 	int tx_done;
1793 
1794 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1795 	if (!tx_done)
1796 		return;
1797 
1798 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1799 
1800 	txq->count -= tx_done;
1801 
1802 	if (netif_tx_queue_stopped(nq)) {
1803 		if (txq->count <= txq->tx_wake_threshold)
1804 			netif_tx_wake_queue(nq);
1805 	}
1806 }
1807 
1808 /* Refill processing for SW buffer management */
1809 /* Allocate page per descriptor */
1810 static int mvneta_rx_refill(struct mvneta_port *pp,
1811 			    struct mvneta_rx_desc *rx_desc,
1812 			    struct mvneta_rx_queue *rxq,
1813 			    gfp_t gfp_mask)
1814 {
1815 	dma_addr_t phys_addr;
1816 	struct page *page;
1817 
1818 	page = __dev_alloc_page(gfp_mask);
1819 	if (!page)
1820 		return -ENOMEM;
1821 
1822 	/* map page for use */
1823 	phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1824 				 DMA_FROM_DEVICE);
1825 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1826 		__free_page(page);
1827 		return -ENOMEM;
1828 	}
1829 
1830 	phys_addr += pp->rx_offset_correction;
1831 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1832 	return 0;
1833 }
1834 
1835 /* Handle tx checksum */
1836 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1837 {
1838 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1839 		int ip_hdr_len = 0;
1840 		__be16 l3_proto = vlan_get_protocol(skb);
1841 		u8 l4_proto;
1842 
1843 		if (l3_proto == htons(ETH_P_IP)) {
1844 			struct iphdr *ip4h = ip_hdr(skb);
1845 
1846 			/* Calculate IPv4 checksum and L4 checksum */
1847 			ip_hdr_len = ip4h->ihl;
1848 			l4_proto = ip4h->protocol;
1849 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1850 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1851 
1852 			/* Read l4_protocol from one of IPv6 extra headers */
1853 			if (skb_network_header_len(skb) > 0)
1854 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1855 			l4_proto = ip6h->nexthdr;
1856 		} else
1857 			return MVNETA_TX_L4_CSUM_NOT;
1858 
1859 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1860 					    l3_proto, ip_hdr_len, l4_proto);
1861 	}
1862 
1863 	return MVNETA_TX_L4_CSUM_NOT;
1864 }
1865 
1866 /* Drop packets received by the RXQ and free buffers */
1867 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1868 				 struct mvneta_rx_queue *rxq)
1869 {
1870 	int rx_done, i;
1871 
1872 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1873 	if (rx_done)
1874 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1875 
1876 	if (pp->bm_priv) {
1877 		for (i = 0; i < rx_done; i++) {
1878 			struct mvneta_rx_desc *rx_desc =
1879 						  mvneta_rxq_next_desc_get(rxq);
1880 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1881 			struct mvneta_bm_pool *bm_pool;
1882 
1883 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1884 			/* Return dropped buffer to the pool */
1885 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1886 					      rx_desc->buf_phys_addr);
1887 		}
1888 		return;
1889 	}
1890 
1891 	for (i = 0; i < rxq->size; i++) {
1892 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1893 		void *data = rxq->buf_virt_addr[i];
1894 		if (!data || !(rx_desc->buf_phys_addr))
1895 			continue;
1896 
1897 		dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1898 			       PAGE_SIZE, DMA_FROM_DEVICE);
1899 		__free_page(data);
1900 	}
1901 }
1902 
1903 static inline
1904 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1905 {
1906 	struct mvneta_rx_desc *rx_desc;
1907 	int curr_desc = rxq->first_to_refill;
1908 	int i;
1909 
1910 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1911 		rx_desc = rxq->descs + curr_desc;
1912 		if (!(rx_desc->buf_phys_addr)) {
1913 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1914 				pr_err("Can't refill queue %d. Done %d from %d\n",
1915 				       rxq->id, i, rxq->refill_num);
1916 				rxq->refill_err++;
1917 				break;
1918 			}
1919 		}
1920 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1921 	}
1922 	rxq->refill_num -= i;
1923 	rxq->first_to_refill = curr_desc;
1924 
1925 	return i;
1926 }
1927 
1928 /* Main rx processing when using software buffer management */
1929 static int mvneta_rx_swbm(struct napi_struct *napi,
1930 			  struct mvneta_port *pp, int budget,
1931 			  struct mvneta_rx_queue *rxq)
1932 {
1933 	struct net_device *dev = pp->dev;
1934 	int rx_todo, rx_proc;
1935 	int refill = 0;
1936 	u32 rcvd_pkts = 0;
1937 	u32 rcvd_bytes = 0;
1938 
1939 	/* Get number of received packets */
1940 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1941 	rx_proc = 0;
1942 
1943 	/* Fairness NAPI loop */
1944 	while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1945 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1946 		unsigned char *data;
1947 		struct page *page;
1948 		dma_addr_t phys_addr;
1949 		u32 rx_status, index;
1950 		int rx_bytes, skb_size, copy_size;
1951 		int frag_num, frag_size, frag_offset;
1952 
1953 		index = rx_desc - rxq->descs;
1954 		page = (struct page *)rxq->buf_virt_addr[index];
1955 		data = page_address(page);
1956 		/* Prefetch header */
1957 		prefetch(data);
1958 
1959 		phys_addr = rx_desc->buf_phys_addr;
1960 		rx_status = rx_desc->status;
1961 		rx_proc++;
1962 		rxq->refill_num++;
1963 
1964 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
1965 			/* Check errors only for FIRST descriptor */
1966 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1967 				mvneta_rx_error(pp, rx_desc);
1968 				dev->stats.rx_errors++;
1969 				/* leave the descriptor untouched */
1970 				continue;
1971 			}
1972 			rx_bytes = rx_desc->data_size -
1973 				   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1974 
1975 			/* Allocate small skb for each new packet */
1976 			skb_size = max(rx_copybreak, rx_header_size);
1977 			rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1978 			if (unlikely(!rxq->skb)) {
1979 				netdev_err(dev,
1980 					   "Can't allocate skb on queue %d\n",
1981 					   rxq->id);
1982 				dev->stats.rx_dropped++;
1983 				rxq->skb_alloc_err++;
1984 				continue;
1985 			}
1986 			copy_size = min(skb_size, rx_bytes);
1987 
1988 			/* Copy data from buffer to SKB, skip Marvell header */
1989 			memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1990 			       copy_size);
1991 			skb_put(rxq->skb, copy_size);
1992 			rxq->left_size = rx_bytes - copy_size;
1993 
1994 			mvneta_rx_csum(pp, rx_status, rxq->skb);
1995 			if (rxq->left_size == 0) {
1996 				int size = copy_size + MVNETA_MH_SIZE;
1997 
1998 				dma_sync_single_range_for_cpu(dev->dev.parent,
1999 							      phys_addr, 0,
2000 							      size,
2001 							      DMA_FROM_DEVICE);
2002 
2003 				/* leave the descriptor and buffer untouched */
2004 			} else {
2005 				/* refill descriptor with new buffer later */
2006 				rx_desc->buf_phys_addr = 0;
2007 
2008 				frag_num = 0;
2009 				frag_offset = copy_size + MVNETA_MH_SIZE;
2010 				frag_size = min(rxq->left_size,
2011 						(int)(PAGE_SIZE - frag_offset));
2012 				skb_add_rx_frag(rxq->skb, frag_num, page,
2013 						frag_offset, frag_size,
2014 						PAGE_SIZE);
2015 				dma_unmap_page(dev->dev.parent, phys_addr,
2016 					       PAGE_SIZE, DMA_FROM_DEVICE);
2017 				rxq->left_size -= frag_size;
2018 			}
2019 		} else {
2020 			/* Middle or Last descriptor */
2021 			if (unlikely(!rxq->skb)) {
2022 				pr_debug("no skb for rx_status 0x%x\n",
2023 					 rx_status);
2024 				continue;
2025 			}
2026 			if (!rxq->left_size) {
2027 				/* last descriptor has only FCS */
2028 				/* and can be discarded */
2029 				dma_sync_single_range_for_cpu(dev->dev.parent,
2030 							      phys_addr, 0,
2031 							      ETH_FCS_LEN,
2032 							      DMA_FROM_DEVICE);
2033 				/* leave the descriptor and buffer untouched */
2034 			} else {
2035 				/* refill descriptor with new buffer later */
2036 				rx_desc->buf_phys_addr = 0;
2037 
2038 				frag_num = skb_shinfo(rxq->skb)->nr_frags;
2039 				frag_offset = 0;
2040 				frag_size = min(rxq->left_size,
2041 						(int)(PAGE_SIZE - frag_offset));
2042 				skb_add_rx_frag(rxq->skb, frag_num, page,
2043 						frag_offset, frag_size,
2044 						PAGE_SIZE);
2045 
2046 				dma_unmap_page(dev->dev.parent, phys_addr,
2047 					       PAGE_SIZE, DMA_FROM_DEVICE);
2048 
2049 				rxq->left_size -= frag_size;
2050 			}
2051 		} /* Middle or Last descriptor */
2052 
2053 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2054 			/* no last descriptor this time */
2055 			continue;
2056 
2057 		if (rxq->left_size) {
2058 			pr_err("get last desc, but left_size (%d) != 0\n",
2059 			       rxq->left_size);
2060 			dev_kfree_skb_any(rxq->skb);
2061 			rxq->left_size = 0;
2062 			rxq->skb = NULL;
2063 			continue;
2064 		}
2065 		rcvd_pkts++;
2066 		rcvd_bytes += rxq->skb->len;
2067 
2068 		/* Linux processing */
2069 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2070 
2071 		napi_gro_receive(napi, rxq->skb);
2072 
2073 		/* clean uncomplete skb pointer in queue */
2074 		rxq->skb = NULL;
2075 		rxq->left_size = 0;
2076 	}
2077 
2078 	if (rcvd_pkts) {
2079 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2080 
2081 		u64_stats_update_begin(&stats->syncp);
2082 		stats->rx_packets += rcvd_pkts;
2083 		stats->rx_bytes   += rcvd_bytes;
2084 		u64_stats_update_end(&stats->syncp);
2085 	}
2086 
2087 	/* return some buffers to hardware queue, one at a time is too slow */
2088 	refill = mvneta_rx_refill_queue(pp, rxq);
2089 
2090 	/* Update rxq management counters */
2091 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2092 
2093 	return rcvd_pkts;
2094 }
2095 
2096 /* Main rx processing when using hardware buffer management */
2097 static int mvneta_rx_hwbm(struct napi_struct *napi,
2098 			  struct mvneta_port *pp, int rx_todo,
2099 			  struct mvneta_rx_queue *rxq)
2100 {
2101 	struct net_device *dev = pp->dev;
2102 	int rx_done;
2103 	u32 rcvd_pkts = 0;
2104 	u32 rcvd_bytes = 0;
2105 
2106 	/* Get number of received packets */
2107 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2108 
2109 	if (rx_todo > rx_done)
2110 		rx_todo = rx_done;
2111 
2112 	rx_done = 0;
2113 
2114 	/* Fairness NAPI loop */
2115 	while (rx_done < rx_todo) {
2116 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2117 		struct mvneta_bm_pool *bm_pool = NULL;
2118 		struct sk_buff *skb;
2119 		unsigned char *data;
2120 		dma_addr_t phys_addr;
2121 		u32 rx_status, frag_size;
2122 		int rx_bytes, err;
2123 		u8 pool_id;
2124 
2125 		rx_done++;
2126 		rx_status = rx_desc->status;
2127 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2128 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2129 		phys_addr = rx_desc->buf_phys_addr;
2130 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2131 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2132 
2133 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2134 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2135 err_drop_frame_ret_pool:
2136 			/* Return the buffer to the pool */
2137 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2138 					      rx_desc->buf_phys_addr);
2139 err_drop_frame:
2140 			dev->stats.rx_errors++;
2141 			mvneta_rx_error(pp, rx_desc);
2142 			/* leave the descriptor untouched */
2143 			continue;
2144 		}
2145 
2146 		if (rx_bytes <= rx_copybreak) {
2147 			/* better copy a small frame and not unmap the DMA region */
2148 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2149 			if (unlikely(!skb))
2150 				goto err_drop_frame_ret_pool;
2151 
2152 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2153 			                              rx_desc->buf_phys_addr,
2154 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2155 			                              rx_bytes,
2156 			                              DMA_FROM_DEVICE);
2157 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2158 				     rx_bytes);
2159 
2160 			skb->protocol = eth_type_trans(skb, dev);
2161 			mvneta_rx_csum(pp, rx_status, skb);
2162 			napi_gro_receive(napi, skb);
2163 
2164 			rcvd_pkts++;
2165 			rcvd_bytes += rx_bytes;
2166 
2167 			/* Return the buffer to the pool */
2168 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2169 					      rx_desc->buf_phys_addr);
2170 
2171 			/* leave the descriptor and buffer untouched */
2172 			continue;
2173 		}
2174 
2175 		/* Refill processing */
2176 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2177 		if (err) {
2178 			netdev_err(dev, "Linux processing - Can't refill\n");
2179 			rxq->refill_err++;
2180 			goto err_drop_frame_ret_pool;
2181 		}
2182 
2183 		frag_size = bm_pool->hwbm_pool.frag_size;
2184 
2185 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2186 
2187 		/* After refill old buffer has to be unmapped regardless
2188 		 * the skb is successfully built or not.
2189 		 */
2190 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2191 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2192 		if (!skb)
2193 			goto err_drop_frame;
2194 
2195 		rcvd_pkts++;
2196 		rcvd_bytes += rx_bytes;
2197 
2198 		/* Linux processing */
2199 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2200 		skb_put(skb, rx_bytes);
2201 
2202 		skb->protocol = eth_type_trans(skb, dev);
2203 
2204 		mvneta_rx_csum(pp, rx_status, skb);
2205 
2206 		napi_gro_receive(napi, skb);
2207 	}
2208 
2209 	if (rcvd_pkts) {
2210 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2211 
2212 		u64_stats_update_begin(&stats->syncp);
2213 		stats->rx_packets += rcvd_pkts;
2214 		stats->rx_bytes   += rcvd_bytes;
2215 		u64_stats_update_end(&stats->syncp);
2216 	}
2217 
2218 	/* Update rxq management counters */
2219 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2220 
2221 	return rx_done;
2222 }
2223 
2224 static inline void
2225 mvneta_tso_put_hdr(struct sk_buff *skb,
2226 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2227 {
2228 	struct mvneta_tx_desc *tx_desc;
2229 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2230 
2231 	txq->tx_skb[txq->txq_put_index] = NULL;
2232 	tx_desc = mvneta_txq_next_desc_get(txq);
2233 	tx_desc->data_size = hdr_len;
2234 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2235 	tx_desc->command |= MVNETA_TXD_F_DESC;
2236 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2237 				 txq->txq_put_index * TSO_HEADER_SIZE;
2238 	mvneta_txq_inc_put(txq);
2239 }
2240 
2241 static inline int
2242 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2243 		    struct sk_buff *skb, char *data, int size,
2244 		    bool last_tcp, bool is_last)
2245 {
2246 	struct mvneta_tx_desc *tx_desc;
2247 
2248 	tx_desc = mvneta_txq_next_desc_get(txq);
2249 	tx_desc->data_size = size;
2250 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2251 						size, DMA_TO_DEVICE);
2252 	if (unlikely(dma_mapping_error(dev->dev.parent,
2253 		     tx_desc->buf_phys_addr))) {
2254 		mvneta_txq_desc_put(txq);
2255 		return -ENOMEM;
2256 	}
2257 
2258 	tx_desc->command = 0;
2259 	txq->tx_skb[txq->txq_put_index] = NULL;
2260 
2261 	if (last_tcp) {
2262 		/* last descriptor in the TCP packet */
2263 		tx_desc->command = MVNETA_TXD_L_DESC;
2264 
2265 		/* last descriptor in SKB */
2266 		if (is_last)
2267 			txq->tx_skb[txq->txq_put_index] = skb;
2268 	}
2269 	mvneta_txq_inc_put(txq);
2270 	return 0;
2271 }
2272 
2273 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2274 			 struct mvneta_tx_queue *txq)
2275 {
2276 	int total_len, data_left;
2277 	int desc_count = 0;
2278 	struct mvneta_port *pp = netdev_priv(dev);
2279 	struct tso_t tso;
2280 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2281 	int i;
2282 
2283 	/* Count needed descriptors */
2284 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2285 		return 0;
2286 
2287 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2288 		pr_info("*** Is this even  possible???!?!?\n");
2289 		return 0;
2290 	}
2291 
2292 	/* Initialize the TSO handler, and prepare the first payload */
2293 	tso_start(skb, &tso);
2294 
2295 	total_len = skb->len - hdr_len;
2296 	while (total_len > 0) {
2297 		char *hdr;
2298 
2299 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2300 		total_len -= data_left;
2301 		desc_count++;
2302 
2303 		/* prepare packet headers: MAC + IP + TCP */
2304 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2305 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2306 
2307 		mvneta_tso_put_hdr(skb, pp, txq);
2308 
2309 		while (data_left > 0) {
2310 			int size;
2311 			desc_count++;
2312 
2313 			size = min_t(int, tso.size, data_left);
2314 
2315 			if (mvneta_tso_put_data(dev, txq, skb,
2316 						 tso.data, size,
2317 						 size == data_left,
2318 						 total_len == 0))
2319 				goto err_release;
2320 			data_left -= size;
2321 
2322 			tso_build_data(skb, &tso, size);
2323 		}
2324 	}
2325 
2326 	return desc_count;
2327 
2328 err_release:
2329 	/* Release all used data descriptors; header descriptors must not
2330 	 * be DMA-unmapped.
2331 	 */
2332 	for (i = desc_count - 1; i >= 0; i--) {
2333 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2334 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2335 			dma_unmap_single(pp->dev->dev.parent,
2336 					 tx_desc->buf_phys_addr,
2337 					 tx_desc->data_size,
2338 					 DMA_TO_DEVICE);
2339 		mvneta_txq_desc_put(txq);
2340 	}
2341 	return 0;
2342 }
2343 
2344 /* Handle tx fragmentation processing */
2345 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2346 				  struct mvneta_tx_queue *txq)
2347 {
2348 	struct mvneta_tx_desc *tx_desc;
2349 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2350 
2351 	for (i = 0; i < nr_frags; i++) {
2352 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2353 		void *addr = page_address(frag->page.p) + frag->page_offset;
2354 
2355 		tx_desc = mvneta_txq_next_desc_get(txq);
2356 		tx_desc->data_size = frag->size;
2357 
2358 		tx_desc->buf_phys_addr =
2359 			dma_map_single(pp->dev->dev.parent, addr,
2360 				       tx_desc->data_size, DMA_TO_DEVICE);
2361 
2362 		if (dma_mapping_error(pp->dev->dev.parent,
2363 				      tx_desc->buf_phys_addr)) {
2364 			mvneta_txq_desc_put(txq);
2365 			goto error;
2366 		}
2367 
2368 		if (i == nr_frags - 1) {
2369 			/* Last descriptor */
2370 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2371 			txq->tx_skb[txq->txq_put_index] = skb;
2372 		} else {
2373 			/* Descriptor in the middle: Not First, Not Last */
2374 			tx_desc->command = 0;
2375 			txq->tx_skb[txq->txq_put_index] = NULL;
2376 		}
2377 		mvneta_txq_inc_put(txq);
2378 	}
2379 
2380 	return 0;
2381 
2382 error:
2383 	/* Release all descriptors that were used to map fragments of
2384 	 * this packet, as well as the corresponding DMA mappings
2385 	 */
2386 	for (i = i - 1; i >= 0; i--) {
2387 		tx_desc = txq->descs + i;
2388 		dma_unmap_single(pp->dev->dev.parent,
2389 				 tx_desc->buf_phys_addr,
2390 				 tx_desc->data_size,
2391 				 DMA_TO_DEVICE);
2392 		mvneta_txq_desc_put(txq);
2393 	}
2394 
2395 	return -ENOMEM;
2396 }
2397 
2398 /* Main tx processing */
2399 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2400 {
2401 	struct mvneta_port *pp = netdev_priv(dev);
2402 	u16 txq_id = skb_get_queue_mapping(skb);
2403 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2404 	struct mvneta_tx_desc *tx_desc;
2405 	int len = skb->len;
2406 	int frags = 0;
2407 	u32 tx_cmd;
2408 
2409 	if (!netif_running(dev))
2410 		goto out;
2411 
2412 	if (skb_is_gso(skb)) {
2413 		frags = mvneta_tx_tso(skb, dev, txq);
2414 		goto out;
2415 	}
2416 
2417 	frags = skb_shinfo(skb)->nr_frags + 1;
2418 
2419 	/* Get a descriptor for the first part of the packet */
2420 	tx_desc = mvneta_txq_next_desc_get(txq);
2421 
2422 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2423 
2424 	tx_desc->data_size = skb_headlen(skb);
2425 
2426 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2427 						tx_desc->data_size,
2428 						DMA_TO_DEVICE);
2429 	if (unlikely(dma_mapping_error(dev->dev.parent,
2430 				       tx_desc->buf_phys_addr))) {
2431 		mvneta_txq_desc_put(txq);
2432 		frags = 0;
2433 		goto out;
2434 	}
2435 
2436 	if (frags == 1) {
2437 		/* First and Last descriptor */
2438 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2439 		tx_desc->command = tx_cmd;
2440 		txq->tx_skb[txq->txq_put_index] = skb;
2441 		mvneta_txq_inc_put(txq);
2442 	} else {
2443 		/* First but not Last */
2444 		tx_cmd |= MVNETA_TXD_F_DESC;
2445 		txq->tx_skb[txq->txq_put_index] = NULL;
2446 		mvneta_txq_inc_put(txq);
2447 		tx_desc->command = tx_cmd;
2448 		/* Continue with other skb fragments */
2449 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2450 			dma_unmap_single(dev->dev.parent,
2451 					 tx_desc->buf_phys_addr,
2452 					 tx_desc->data_size,
2453 					 DMA_TO_DEVICE);
2454 			mvneta_txq_desc_put(txq);
2455 			frags = 0;
2456 			goto out;
2457 		}
2458 	}
2459 
2460 out:
2461 	if (frags > 0) {
2462 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2463 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2464 
2465 		netdev_tx_sent_queue(nq, len);
2466 
2467 		txq->count += frags;
2468 		if (txq->count >= txq->tx_stop_threshold)
2469 			netif_tx_stop_queue(nq);
2470 
2471 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2472 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2473 			mvneta_txq_pend_desc_add(pp, txq, frags);
2474 		else
2475 			txq->pending += frags;
2476 
2477 		u64_stats_update_begin(&stats->syncp);
2478 		stats->tx_packets++;
2479 		stats->tx_bytes  += len;
2480 		u64_stats_update_end(&stats->syncp);
2481 	} else {
2482 		dev->stats.tx_dropped++;
2483 		dev_kfree_skb_any(skb);
2484 	}
2485 
2486 	return NETDEV_TX_OK;
2487 }
2488 
2489 
2490 /* Free tx resources, when resetting a port */
2491 static void mvneta_txq_done_force(struct mvneta_port *pp,
2492 				  struct mvneta_tx_queue *txq)
2493 
2494 {
2495 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2496 	int tx_done = txq->count;
2497 
2498 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2499 
2500 	/* reset txq */
2501 	txq->count = 0;
2502 	txq->txq_put_index = 0;
2503 	txq->txq_get_index = 0;
2504 }
2505 
2506 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2507  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2508  */
2509 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2510 {
2511 	struct mvneta_tx_queue *txq;
2512 	struct netdev_queue *nq;
2513 	int cpu = smp_processor_id();
2514 
2515 	while (cause_tx_done) {
2516 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2517 
2518 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2519 		__netif_tx_lock(nq, cpu);
2520 
2521 		if (txq->count)
2522 			mvneta_txq_done(pp, txq);
2523 
2524 		__netif_tx_unlock(nq);
2525 		cause_tx_done &= ~((1 << txq->id));
2526 	}
2527 }
2528 
2529 /* Compute crc8 of the specified address, using a unique algorithm ,
2530  * according to hw spec, different than generic crc8 algorithm
2531  */
2532 static int mvneta_addr_crc(unsigned char *addr)
2533 {
2534 	int crc = 0;
2535 	int i;
2536 
2537 	for (i = 0; i < ETH_ALEN; i++) {
2538 		int j;
2539 
2540 		crc = (crc ^ addr[i]) << 8;
2541 		for (j = 7; j >= 0; j--) {
2542 			if (crc & (0x100 << j))
2543 				crc ^= 0x107 << j;
2544 		}
2545 	}
2546 
2547 	return crc;
2548 }
2549 
2550 /* This method controls the net device special MAC multicast support.
2551  * The Special Multicast Table for MAC addresses supports MAC of the form
2552  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2553  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2554  * Table entries in the DA-Filter table. This method set the Special
2555  * Multicast Table appropriate entry.
2556  */
2557 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2558 					  unsigned char last_byte,
2559 					  int queue)
2560 {
2561 	unsigned int smc_table_reg;
2562 	unsigned int tbl_offset;
2563 	unsigned int reg_offset;
2564 
2565 	/* Register offset from SMC table base    */
2566 	tbl_offset = (last_byte / 4);
2567 	/* Entry offset within the above reg */
2568 	reg_offset = last_byte % 4;
2569 
2570 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2571 					+ tbl_offset * 4));
2572 
2573 	if (queue == -1)
2574 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2575 	else {
2576 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2577 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2578 	}
2579 
2580 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2581 		    smc_table_reg);
2582 }
2583 
2584 /* This method controls the network device Other MAC multicast support.
2585  * The Other Multicast Table is used for multicast of another type.
2586  * A CRC-8 is used as an index to the Other Multicast Table entries
2587  * in the DA-Filter table.
2588  * The method gets the CRC-8 value from the calling routine and
2589  * sets the Other Multicast Table appropriate entry according to the
2590  * specified CRC-8 .
2591  */
2592 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2593 					unsigned char crc8,
2594 					int queue)
2595 {
2596 	unsigned int omc_table_reg;
2597 	unsigned int tbl_offset;
2598 	unsigned int reg_offset;
2599 
2600 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2601 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2602 
2603 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2604 
2605 	if (queue == -1) {
2606 		/* Clear accepts frame bit at specified Other DA table entry */
2607 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2608 	} else {
2609 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2610 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2611 	}
2612 
2613 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2614 }
2615 
2616 /* The network device supports multicast using two tables:
2617  *    1) Special Multicast Table for MAC addresses of the form
2618  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2619  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2620  *       Table entries in the DA-Filter table.
2621  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2622  *       is used as an index to the Other Multicast Table entries in the
2623  *       DA-Filter table.
2624  */
2625 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2626 				 int queue)
2627 {
2628 	unsigned char crc_result = 0;
2629 
2630 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2631 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2632 		return 0;
2633 	}
2634 
2635 	crc_result = mvneta_addr_crc(p_addr);
2636 	if (queue == -1) {
2637 		if (pp->mcast_count[crc_result] == 0) {
2638 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2639 				    crc_result);
2640 			return -EINVAL;
2641 		}
2642 
2643 		pp->mcast_count[crc_result]--;
2644 		if (pp->mcast_count[crc_result] != 0) {
2645 			netdev_info(pp->dev,
2646 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2647 				    pp->mcast_count[crc_result], crc_result);
2648 			return -EINVAL;
2649 		}
2650 	} else
2651 		pp->mcast_count[crc_result]++;
2652 
2653 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2654 
2655 	return 0;
2656 }
2657 
2658 /* Configure Fitering mode of Ethernet port */
2659 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2660 					  int is_promisc)
2661 {
2662 	u32 port_cfg_reg, val;
2663 
2664 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2665 
2666 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2667 
2668 	/* Set / Clear UPM bit in port configuration register */
2669 	if (is_promisc) {
2670 		/* Accept all Unicast addresses */
2671 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2672 		val |= MVNETA_FORCE_UNI;
2673 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2674 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2675 	} else {
2676 		/* Reject all Unicast addresses */
2677 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2678 		val &= ~MVNETA_FORCE_UNI;
2679 	}
2680 
2681 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2682 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2683 }
2684 
2685 /* register unicast and multicast addresses */
2686 static void mvneta_set_rx_mode(struct net_device *dev)
2687 {
2688 	struct mvneta_port *pp = netdev_priv(dev);
2689 	struct netdev_hw_addr *ha;
2690 
2691 	if (dev->flags & IFF_PROMISC) {
2692 		/* Accept all: Multicast + Unicast */
2693 		mvneta_rx_unicast_promisc_set(pp, 1);
2694 		mvneta_set_ucast_table(pp, pp->rxq_def);
2695 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2696 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2697 	} else {
2698 		/* Accept single Unicast */
2699 		mvneta_rx_unicast_promisc_set(pp, 0);
2700 		mvneta_set_ucast_table(pp, -1);
2701 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2702 
2703 		if (dev->flags & IFF_ALLMULTI) {
2704 			/* Accept all multicast */
2705 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2706 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2707 		} else {
2708 			/* Accept only initialized multicast */
2709 			mvneta_set_special_mcast_table(pp, -1);
2710 			mvneta_set_other_mcast_table(pp, -1);
2711 
2712 			if (!netdev_mc_empty(dev)) {
2713 				netdev_for_each_mc_addr(ha, dev) {
2714 					mvneta_mcast_addr_set(pp, ha->addr,
2715 							      pp->rxq_def);
2716 				}
2717 			}
2718 		}
2719 	}
2720 }
2721 
2722 /* Interrupt handling - the callback for request_irq() */
2723 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2724 {
2725 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2726 
2727 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2728 	napi_schedule(&pp->napi);
2729 
2730 	return IRQ_HANDLED;
2731 }
2732 
2733 /* Interrupt handling - the callback for request_percpu_irq() */
2734 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2735 {
2736 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2737 
2738 	disable_percpu_irq(port->pp->dev->irq);
2739 	napi_schedule(&port->napi);
2740 
2741 	return IRQ_HANDLED;
2742 }
2743 
2744 static void mvneta_link_change(struct mvneta_port *pp)
2745 {
2746 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2747 
2748 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2749 }
2750 
2751 /* NAPI handler
2752  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2753  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2754  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2755  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2756  * Each CPU has its own causeRxTx register
2757  */
2758 static int mvneta_poll(struct napi_struct *napi, int budget)
2759 {
2760 	int rx_done = 0;
2761 	u32 cause_rx_tx;
2762 	int rx_queue;
2763 	struct mvneta_port *pp = netdev_priv(napi->dev);
2764 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2765 
2766 	if (!netif_running(pp->dev)) {
2767 		napi_complete(napi);
2768 		return rx_done;
2769 	}
2770 
2771 	/* Read cause register */
2772 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2773 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2774 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2775 
2776 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2777 
2778 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2779 				  MVNETA_CAUSE_LINK_CHANGE))
2780 			mvneta_link_change(pp);
2781 	}
2782 
2783 	/* Release Tx descriptors */
2784 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2785 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2786 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2787 	}
2788 
2789 	/* For the case where the last mvneta_poll did not process all
2790 	 * RX packets
2791 	 */
2792 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2793 
2794 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2795 		port->cause_rx_tx;
2796 
2797 	if (rx_queue) {
2798 		rx_queue = rx_queue - 1;
2799 		if (pp->bm_priv)
2800 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
2801 						 &pp->rxqs[rx_queue]);
2802 		else
2803 			rx_done = mvneta_rx_swbm(napi, pp, budget,
2804 						 &pp->rxqs[rx_queue]);
2805 	}
2806 
2807 	if (rx_done < budget) {
2808 		cause_rx_tx = 0;
2809 		napi_complete_done(napi, rx_done);
2810 
2811 		if (pp->neta_armada3700) {
2812 			unsigned long flags;
2813 
2814 			local_irq_save(flags);
2815 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2816 				    MVNETA_RX_INTR_MASK(rxq_number) |
2817 				    MVNETA_TX_INTR_MASK(txq_number) |
2818 				    MVNETA_MISCINTR_INTR_MASK);
2819 			local_irq_restore(flags);
2820 		} else {
2821 			enable_percpu_irq(pp->dev->irq, 0);
2822 		}
2823 	}
2824 
2825 	if (pp->neta_armada3700)
2826 		pp->cause_rx_tx = cause_rx_tx;
2827 	else
2828 		port->cause_rx_tx = cause_rx_tx;
2829 
2830 	return rx_done;
2831 }
2832 
2833 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2834 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2835 			   int num)
2836 {
2837 	int i;
2838 
2839 	for (i = 0; i < num; i++) {
2840 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2841 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2842 				     GFP_KERNEL) != 0) {
2843 			netdev_err(pp->dev,
2844 				   "%s:rxq %d, %d of %d buffs  filled\n",
2845 				   __func__, rxq->id, i, num);
2846 			break;
2847 		}
2848 	}
2849 
2850 	/* Add this number of RX descriptors as non occupied (ready to
2851 	 * get packets)
2852 	 */
2853 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2854 
2855 	return i;
2856 }
2857 
2858 /* Free all packets pending transmit from all TXQs and reset TX port */
2859 static void mvneta_tx_reset(struct mvneta_port *pp)
2860 {
2861 	int queue;
2862 
2863 	/* free the skb's in the tx ring */
2864 	for (queue = 0; queue < txq_number; queue++)
2865 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2866 
2867 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2868 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2869 }
2870 
2871 static void mvneta_rx_reset(struct mvneta_port *pp)
2872 {
2873 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2874 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2875 }
2876 
2877 /* Rx/Tx queue initialization/cleanup methods */
2878 
2879 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2880 			      struct mvneta_rx_queue *rxq)
2881 {
2882 	rxq->size = pp->rx_ring_size;
2883 
2884 	/* Allocate memory for RX descriptors */
2885 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2886 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2887 					&rxq->descs_phys, GFP_KERNEL);
2888 	if (!rxq->descs)
2889 		return -ENOMEM;
2890 
2891 	rxq->last_desc = rxq->size - 1;
2892 
2893 	return 0;
2894 }
2895 
2896 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2897 			       struct mvneta_rx_queue *rxq)
2898 {
2899 	/* Set Rx descriptors queue starting address */
2900 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2901 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2902 
2903 	/* Set coalescing pkts and time */
2904 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2905 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2906 
2907 	if (!pp->bm_priv) {
2908 		/* Set Offset */
2909 		mvneta_rxq_offset_set(pp, rxq, 0);
2910 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
2911 					PAGE_SIZE :
2912 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2913 		mvneta_rxq_bm_disable(pp, rxq);
2914 		mvneta_rxq_fill(pp, rxq, rxq->size);
2915 	} else {
2916 		/* Set Offset */
2917 		mvneta_rxq_offset_set(pp, rxq,
2918 				      NET_SKB_PAD - pp->rx_offset_correction);
2919 
2920 		mvneta_rxq_bm_enable(pp, rxq);
2921 		/* Fill RXQ with buffers from RX pool */
2922 		mvneta_rxq_long_pool_set(pp, rxq);
2923 		mvneta_rxq_short_pool_set(pp, rxq);
2924 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2925 	}
2926 }
2927 
2928 /* Create a specified RX queue */
2929 static int mvneta_rxq_init(struct mvneta_port *pp,
2930 			   struct mvneta_rx_queue *rxq)
2931 
2932 {
2933 	int ret;
2934 
2935 	ret = mvneta_rxq_sw_init(pp, rxq);
2936 	if (ret < 0)
2937 		return ret;
2938 
2939 	mvneta_rxq_hw_init(pp, rxq);
2940 
2941 	return 0;
2942 }
2943 
2944 /* Cleanup Rx queue */
2945 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2946 			      struct mvneta_rx_queue *rxq)
2947 {
2948 	mvneta_rxq_drop_pkts(pp, rxq);
2949 
2950 	if (rxq->skb)
2951 		dev_kfree_skb_any(rxq->skb);
2952 
2953 	if (rxq->descs)
2954 		dma_free_coherent(pp->dev->dev.parent,
2955 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2956 				  rxq->descs,
2957 				  rxq->descs_phys);
2958 
2959 	rxq->descs             = NULL;
2960 	rxq->last_desc         = 0;
2961 	rxq->next_desc_to_proc = 0;
2962 	rxq->descs_phys        = 0;
2963 	rxq->first_to_refill   = 0;
2964 	rxq->refill_num        = 0;
2965 	rxq->skb               = NULL;
2966 	rxq->left_size         = 0;
2967 }
2968 
2969 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2970 			      struct mvneta_tx_queue *txq)
2971 {
2972 	int cpu;
2973 
2974 	txq->size = pp->tx_ring_size;
2975 
2976 	/* A queue must always have room for at least one skb.
2977 	 * Therefore, stop the queue when the free entries reaches
2978 	 * the maximum number of descriptors per skb.
2979 	 */
2980 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2981 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2982 
2983 	/* Allocate memory for TX descriptors */
2984 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2985 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2986 					&txq->descs_phys, GFP_KERNEL);
2987 	if (!txq->descs)
2988 		return -ENOMEM;
2989 
2990 	txq->last_desc = txq->size - 1;
2991 
2992 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2993 				    GFP_KERNEL);
2994 	if (!txq->tx_skb) {
2995 		dma_free_coherent(pp->dev->dev.parent,
2996 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2997 				  txq->descs, txq->descs_phys);
2998 		return -ENOMEM;
2999 	}
3000 
3001 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3002 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3003 					   txq->size * TSO_HEADER_SIZE,
3004 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3005 	if (!txq->tso_hdrs) {
3006 		kfree(txq->tx_skb);
3007 		dma_free_coherent(pp->dev->dev.parent,
3008 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3009 				  txq->descs, txq->descs_phys);
3010 		return -ENOMEM;
3011 	}
3012 
3013 	/* Setup XPS mapping */
3014 	if (txq_number > 1)
3015 		cpu = txq->id % num_present_cpus();
3016 	else
3017 		cpu = pp->rxq_def % num_present_cpus();
3018 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3019 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3020 
3021 	return 0;
3022 }
3023 
3024 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3025 			       struct mvneta_tx_queue *txq)
3026 {
3027 	/* Set maximum bandwidth for enabled TXQs */
3028 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3029 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3030 
3031 	/* Set Tx descriptors queue starting address */
3032 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3033 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3034 
3035 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3036 }
3037 
3038 /* Create and initialize a tx queue */
3039 static int mvneta_txq_init(struct mvneta_port *pp,
3040 			   struct mvneta_tx_queue *txq)
3041 {
3042 	int ret;
3043 
3044 	ret = mvneta_txq_sw_init(pp, txq);
3045 	if (ret < 0)
3046 		return ret;
3047 
3048 	mvneta_txq_hw_init(pp, txq);
3049 
3050 	return 0;
3051 }
3052 
3053 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3054 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3055 				 struct mvneta_tx_queue *txq)
3056 {
3057 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3058 
3059 	kfree(txq->tx_skb);
3060 
3061 	if (txq->tso_hdrs)
3062 		dma_free_coherent(pp->dev->dev.parent,
3063 				  txq->size * TSO_HEADER_SIZE,
3064 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3065 	if (txq->descs)
3066 		dma_free_coherent(pp->dev->dev.parent,
3067 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3068 				  txq->descs, txq->descs_phys);
3069 
3070 	netdev_tx_reset_queue(nq);
3071 
3072 	txq->descs             = NULL;
3073 	txq->last_desc         = 0;
3074 	txq->next_desc_to_proc = 0;
3075 	txq->descs_phys        = 0;
3076 }
3077 
3078 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3079 				 struct mvneta_tx_queue *txq)
3080 {
3081 	/* Set minimum bandwidth for disabled TXQs */
3082 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3083 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3084 
3085 	/* Set Tx descriptors queue starting address and size */
3086 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3087 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3088 }
3089 
3090 static void mvneta_txq_deinit(struct mvneta_port *pp,
3091 			      struct mvneta_tx_queue *txq)
3092 {
3093 	mvneta_txq_sw_deinit(pp, txq);
3094 	mvneta_txq_hw_deinit(pp, txq);
3095 }
3096 
3097 /* Cleanup all Tx queues */
3098 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3099 {
3100 	int queue;
3101 
3102 	for (queue = 0; queue < txq_number; queue++)
3103 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3104 }
3105 
3106 /* Cleanup all Rx queues */
3107 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3108 {
3109 	int queue;
3110 
3111 	for (queue = 0; queue < rxq_number; queue++)
3112 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3113 }
3114 
3115 
3116 /* Init all Rx queues */
3117 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3118 {
3119 	int queue;
3120 
3121 	for (queue = 0; queue < rxq_number; queue++) {
3122 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3123 
3124 		if (err) {
3125 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3126 				   __func__, queue);
3127 			mvneta_cleanup_rxqs(pp);
3128 			return err;
3129 		}
3130 	}
3131 
3132 	return 0;
3133 }
3134 
3135 /* Init all tx queues */
3136 static int mvneta_setup_txqs(struct mvneta_port *pp)
3137 {
3138 	int queue;
3139 
3140 	for (queue = 0; queue < txq_number; queue++) {
3141 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3142 		if (err) {
3143 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3144 				   __func__, queue);
3145 			mvneta_cleanup_txqs(pp);
3146 			return err;
3147 		}
3148 	}
3149 
3150 	return 0;
3151 }
3152 
3153 static int mvneta_comphy_init(struct mvneta_port *pp)
3154 {
3155 	int ret;
3156 
3157 	if (!pp->comphy)
3158 		return 0;
3159 
3160 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3161 			       pp->phy_interface);
3162 	if (ret)
3163 		return ret;
3164 
3165 	return phy_power_on(pp->comphy);
3166 }
3167 
3168 static void mvneta_start_dev(struct mvneta_port *pp)
3169 {
3170 	int cpu;
3171 
3172 	WARN_ON(mvneta_comphy_init(pp));
3173 
3174 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3175 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3176 
3177 	/* start the Rx/Tx activity */
3178 	mvneta_port_enable(pp);
3179 
3180 	if (!pp->neta_armada3700) {
3181 		/* Enable polling on the port */
3182 		for_each_online_cpu(cpu) {
3183 			struct mvneta_pcpu_port *port =
3184 				per_cpu_ptr(pp->ports, cpu);
3185 
3186 			napi_enable(&port->napi);
3187 		}
3188 	} else {
3189 		napi_enable(&pp->napi);
3190 	}
3191 
3192 	/* Unmask interrupts. It has to be done from each CPU */
3193 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3194 
3195 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3196 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3197 		    MVNETA_CAUSE_LINK_CHANGE);
3198 
3199 	phylink_start(pp->phylink);
3200 	netif_tx_start_all_queues(pp->dev);
3201 }
3202 
3203 static void mvneta_stop_dev(struct mvneta_port *pp)
3204 {
3205 	unsigned int cpu;
3206 
3207 	phylink_stop(pp->phylink);
3208 
3209 	if (!pp->neta_armada3700) {
3210 		for_each_online_cpu(cpu) {
3211 			struct mvneta_pcpu_port *port =
3212 				per_cpu_ptr(pp->ports, cpu);
3213 
3214 			napi_disable(&port->napi);
3215 		}
3216 	} else {
3217 		napi_disable(&pp->napi);
3218 	}
3219 
3220 	netif_carrier_off(pp->dev);
3221 
3222 	mvneta_port_down(pp);
3223 	netif_tx_stop_all_queues(pp->dev);
3224 
3225 	/* Stop the port activity */
3226 	mvneta_port_disable(pp);
3227 
3228 	/* Clear all ethernet port interrupts */
3229 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3230 
3231 	/* Mask all ethernet port interrupts */
3232 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3233 
3234 	mvneta_tx_reset(pp);
3235 	mvneta_rx_reset(pp);
3236 
3237 	WARN_ON(phy_power_off(pp->comphy));
3238 }
3239 
3240 static void mvneta_percpu_enable(void *arg)
3241 {
3242 	struct mvneta_port *pp = arg;
3243 
3244 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3245 }
3246 
3247 static void mvneta_percpu_disable(void *arg)
3248 {
3249 	struct mvneta_port *pp = arg;
3250 
3251 	disable_percpu_irq(pp->dev->irq);
3252 }
3253 
3254 /* Change the device mtu */
3255 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3256 {
3257 	struct mvneta_port *pp = netdev_priv(dev);
3258 	int ret;
3259 
3260 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3261 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3262 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3263 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3264 	}
3265 
3266 	dev->mtu = mtu;
3267 
3268 	if (!netif_running(dev)) {
3269 		if (pp->bm_priv)
3270 			mvneta_bm_update_mtu(pp, mtu);
3271 
3272 		netdev_update_features(dev);
3273 		return 0;
3274 	}
3275 
3276 	/* The interface is running, so we have to force a
3277 	 * reallocation of the queues
3278 	 */
3279 	mvneta_stop_dev(pp);
3280 	on_each_cpu(mvneta_percpu_disable, pp, true);
3281 
3282 	mvneta_cleanup_txqs(pp);
3283 	mvneta_cleanup_rxqs(pp);
3284 
3285 	if (pp->bm_priv)
3286 		mvneta_bm_update_mtu(pp, mtu);
3287 
3288 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3289 
3290 	ret = mvneta_setup_rxqs(pp);
3291 	if (ret) {
3292 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3293 		return ret;
3294 	}
3295 
3296 	ret = mvneta_setup_txqs(pp);
3297 	if (ret) {
3298 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3299 		return ret;
3300 	}
3301 
3302 	on_each_cpu(mvneta_percpu_enable, pp, true);
3303 	mvneta_start_dev(pp);
3304 
3305 	netdev_update_features(dev);
3306 
3307 	return 0;
3308 }
3309 
3310 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3311 					     netdev_features_t features)
3312 {
3313 	struct mvneta_port *pp = netdev_priv(dev);
3314 
3315 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3316 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3317 		netdev_info(dev,
3318 			    "Disable IP checksum for MTU greater than %dB\n",
3319 			    pp->tx_csum_limit);
3320 	}
3321 
3322 	return features;
3323 }
3324 
3325 /* Get mac address */
3326 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3327 {
3328 	u32 mac_addr_l, mac_addr_h;
3329 
3330 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3331 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3332 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3333 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3334 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3335 	addr[3] = mac_addr_h & 0xFF;
3336 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3337 	addr[5] = mac_addr_l & 0xFF;
3338 }
3339 
3340 /* Handle setting mac address */
3341 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3342 {
3343 	struct mvneta_port *pp = netdev_priv(dev);
3344 	struct sockaddr *sockaddr = addr;
3345 	int ret;
3346 
3347 	ret = eth_prepare_mac_addr_change(dev, addr);
3348 	if (ret < 0)
3349 		return ret;
3350 	/* Remove previous address table entry */
3351 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3352 
3353 	/* Set new addr in hw */
3354 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3355 
3356 	eth_commit_mac_addr_change(dev, addr);
3357 	return 0;
3358 }
3359 
3360 static void mvneta_validate(struct phylink_config *config,
3361 			    unsigned long *supported,
3362 			    struct phylink_link_state *state)
3363 {
3364 	struct net_device *ndev = to_net_dev(config->dev);
3365 	struct mvneta_port *pp = netdev_priv(ndev);
3366 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3367 
3368 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3369 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3370 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3371 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3372 	    !phy_interface_mode_is_8023z(state->interface) &&
3373 	    !phy_interface_mode_is_rgmii(state->interface)) {
3374 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3375 		return;
3376 	}
3377 
3378 	/* Allow all the expected bits */
3379 	phylink_set(mask, Autoneg);
3380 	phylink_set_port_modes(mask);
3381 
3382 	/* Asymmetric pause is unsupported */
3383 	phylink_set(mask, Pause);
3384 
3385 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3386 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3387 		phylink_set(mask, 1000baseT_Full);
3388 		phylink_set(mask, 1000baseX_Full);
3389 	}
3390 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3391 		phylink_set(mask, 2500baseT_Full);
3392 		phylink_set(mask, 2500baseX_Full);
3393 	}
3394 
3395 	if (!phy_interface_mode_is_8023z(state->interface)) {
3396 		/* 10M and 100M are only supported in non-802.3z mode */
3397 		phylink_set(mask, 10baseT_Half);
3398 		phylink_set(mask, 10baseT_Full);
3399 		phylink_set(mask, 100baseT_Half);
3400 		phylink_set(mask, 100baseT_Full);
3401 	}
3402 
3403 	bitmap_and(supported, supported, mask,
3404 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3405 	bitmap_and(state->advertising, state->advertising, mask,
3406 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3407 
3408 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3409 	 * to advertise both, only report advertising at 2500BaseX.
3410 	 */
3411 	phylink_helper_basex_speed(state);
3412 }
3413 
3414 static int mvneta_mac_link_state(struct phylink_config *config,
3415 				 struct phylink_link_state *state)
3416 {
3417 	struct net_device *ndev = to_net_dev(config->dev);
3418 	struct mvneta_port *pp = netdev_priv(ndev);
3419 	u32 gmac_stat;
3420 
3421 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3422 
3423 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3424 		state->speed =
3425 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3426 			SPEED_2500 : SPEED_1000;
3427 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3428 		state->speed = SPEED_100;
3429 	else
3430 		state->speed = SPEED_10;
3431 
3432 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3433 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3434 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3435 
3436 	state->pause = 0;
3437 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3438 		state->pause |= MLO_PAUSE_RX;
3439 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3440 		state->pause |= MLO_PAUSE_TX;
3441 
3442 	return 1;
3443 }
3444 
3445 static void mvneta_mac_an_restart(struct phylink_config *config)
3446 {
3447 	struct net_device *ndev = to_net_dev(config->dev);
3448 	struct mvneta_port *pp = netdev_priv(ndev);
3449 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3450 
3451 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3452 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3453 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3454 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3455 }
3456 
3457 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3458 			      const struct phylink_link_state *state)
3459 {
3460 	struct net_device *ndev = to_net_dev(config->dev);
3461 	struct mvneta_port *pp = netdev_priv(ndev);
3462 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3463 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3464 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3465 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3466 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3467 
3468 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3469 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3470 				   MVNETA_GMAC2_PORT_RESET);
3471 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3472 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3473 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3474 			     MVNETA_GMAC_INBAND_RESTART_AN |
3475 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3476 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3477 			     MVNETA_GMAC_AN_SPEED_EN |
3478 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3479 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3480 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3481 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3482 			     MVNETA_GMAC_AN_DUPLEX_EN);
3483 
3484 	/* Even though it might look weird, when we're configured in
3485 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3486 	 */
3487 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3488 
3489 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3490 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3491 	    phy_interface_mode_is_8023z(state->interface))
3492 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3493 
3494 	if (phylink_test(state->advertising, Pause))
3495 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3496 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3497 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3498 
3499 	if (!phylink_autoneg_inband(mode)) {
3500 		/* Phy or fixed speed */
3501 		if (state->duplex)
3502 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3503 
3504 		if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3505 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3506 		else if (state->speed == SPEED_100)
3507 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3508 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3509 		/* SGMII mode receives the state from the PHY */
3510 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3511 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3512 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3513 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3514 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3515 			 MVNETA_GMAC_AN_SPEED_EN |
3516 			 MVNETA_GMAC_AN_DUPLEX_EN;
3517 	} else {
3518 		/* 802.3z negotiation - only 1000base-X */
3519 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3520 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3521 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3522 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3523 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3524 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3525 			 /* The MAC only supports FD mode */
3526 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3527 
3528 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3529 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3530 	}
3531 
3532 	/* Armada 370 documentation says we can only change the port mode
3533 	 * and in-band enable when the link is down, so force it down
3534 	 * while making these changes. We also do this for GMAC_CTRL2 */
3535 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3536 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3537 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3538 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3539 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3540 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3541 	}
3542 
3543 
3544 	/* When at 2.5G, the link partner can send frames with shortened
3545 	 * preambles.
3546 	 */
3547 	if (state->speed == SPEED_2500)
3548 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3549 
3550 	if (pp->comphy && pp->phy_interface != state->interface &&
3551 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3552 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3553 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3554 		pp->phy_interface = state->interface;
3555 
3556 		WARN_ON(phy_power_off(pp->comphy));
3557 		WARN_ON(mvneta_comphy_init(pp));
3558 	}
3559 
3560 	if (new_ctrl0 != gmac_ctrl0)
3561 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3562 	if (new_ctrl2 != gmac_ctrl2)
3563 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3564 	if (new_ctrl4 != gmac_ctrl4)
3565 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3566 	if (new_clk != gmac_clk)
3567 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3568 	if (new_an != gmac_an)
3569 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3570 
3571 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3572 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3573 			MVNETA_GMAC2_PORT_RESET) != 0)
3574 			continue;
3575 	}
3576 }
3577 
3578 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3579 {
3580 	u32 lpi_ctl1;
3581 
3582 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3583 	if (enable)
3584 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3585 	else
3586 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3587 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3588 }
3589 
3590 static void mvneta_mac_link_down(struct phylink_config *config,
3591 				 unsigned int mode, phy_interface_t interface)
3592 {
3593 	struct net_device *ndev = to_net_dev(config->dev);
3594 	struct mvneta_port *pp = netdev_priv(ndev);
3595 	u32 val;
3596 
3597 	mvneta_port_down(pp);
3598 
3599 	if (!phylink_autoneg_inband(mode)) {
3600 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3601 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3602 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3603 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3604 	}
3605 
3606 	pp->eee_active = false;
3607 	mvneta_set_eee(pp, false);
3608 }
3609 
3610 static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode,
3611 			       phy_interface_t interface,
3612 			       struct phy_device *phy)
3613 {
3614 	struct net_device *ndev = to_net_dev(config->dev);
3615 	struct mvneta_port *pp = netdev_priv(ndev);
3616 	u32 val;
3617 
3618 	if (!phylink_autoneg_inband(mode)) {
3619 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3620 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3621 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3622 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3623 	}
3624 
3625 	mvneta_port_up(pp);
3626 
3627 	if (phy && pp->eee_enabled) {
3628 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3629 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3630 	}
3631 }
3632 
3633 static const struct phylink_mac_ops mvneta_phylink_ops = {
3634 	.validate = mvneta_validate,
3635 	.mac_link_state = mvneta_mac_link_state,
3636 	.mac_an_restart = mvneta_mac_an_restart,
3637 	.mac_config = mvneta_mac_config,
3638 	.mac_link_down = mvneta_mac_link_down,
3639 	.mac_link_up = mvneta_mac_link_up,
3640 };
3641 
3642 static int mvneta_mdio_probe(struct mvneta_port *pp)
3643 {
3644 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3645 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3646 
3647 	if (err)
3648 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3649 
3650 	phylink_ethtool_get_wol(pp->phylink, &wol);
3651 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3652 
3653 	return err;
3654 }
3655 
3656 static void mvneta_mdio_remove(struct mvneta_port *pp)
3657 {
3658 	phylink_disconnect_phy(pp->phylink);
3659 }
3660 
3661 /* Electing a CPU must be done in an atomic way: it should be done
3662  * after or before the removal/insertion of a CPU and this function is
3663  * not reentrant.
3664  */
3665 static void mvneta_percpu_elect(struct mvneta_port *pp)
3666 {
3667 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3668 
3669 	/* Use the cpu associated to the rxq when it is online, in all
3670 	 * the other cases, use the cpu 0 which can't be offline.
3671 	 */
3672 	if (cpu_online(pp->rxq_def))
3673 		elected_cpu = pp->rxq_def;
3674 
3675 	max_cpu = num_present_cpus();
3676 
3677 	for_each_online_cpu(cpu) {
3678 		int rxq_map = 0, txq_map = 0;
3679 		int rxq;
3680 
3681 		for (rxq = 0; rxq < rxq_number; rxq++)
3682 			if ((rxq % max_cpu) == cpu)
3683 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3684 
3685 		if (cpu == elected_cpu)
3686 			/* Map the default receive queue queue to the
3687 			 * elected CPU
3688 			 */
3689 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3690 
3691 		/* We update the TX queue map only if we have one
3692 		 * queue. In this case we associate the TX queue to
3693 		 * the CPU bound to the default RX queue
3694 		 */
3695 		if (txq_number == 1)
3696 			txq_map = (cpu == elected_cpu) ?
3697 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3698 		else
3699 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3700 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3701 
3702 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3703 
3704 		/* Update the interrupt mask on each CPU according the
3705 		 * new mapping
3706 		 */
3707 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3708 					 pp, true);
3709 		i++;
3710 
3711 	}
3712 };
3713 
3714 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3715 {
3716 	int other_cpu;
3717 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3718 						  node_online);
3719 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3720 
3721 
3722 	spin_lock(&pp->lock);
3723 	/*
3724 	 * Configuring the driver for a new CPU while the driver is
3725 	 * stopping is racy, so just avoid it.
3726 	 */
3727 	if (pp->is_stopped) {
3728 		spin_unlock(&pp->lock);
3729 		return 0;
3730 	}
3731 	netif_tx_stop_all_queues(pp->dev);
3732 
3733 	/*
3734 	 * We have to synchronise on tha napi of each CPU except the one
3735 	 * just being woken up
3736 	 */
3737 	for_each_online_cpu(other_cpu) {
3738 		if (other_cpu != cpu) {
3739 			struct mvneta_pcpu_port *other_port =
3740 				per_cpu_ptr(pp->ports, other_cpu);
3741 
3742 			napi_synchronize(&other_port->napi);
3743 		}
3744 	}
3745 
3746 	/* Mask all ethernet port interrupts */
3747 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3748 	napi_enable(&port->napi);
3749 
3750 	/*
3751 	 * Enable per-CPU interrupts on the CPU that is
3752 	 * brought up.
3753 	 */
3754 	mvneta_percpu_enable(pp);
3755 
3756 	/*
3757 	 * Enable per-CPU interrupt on the one CPU we care
3758 	 * about.
3759 	 */
3760 	mvneta_percpu_elect(pp);
3761 
3762 	/* Unmask all ethernet port interrupts */
3763 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3764 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3765 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3766 		    MVNETA_CAUSE_LINK_CHANGE);
3767 	netif_tx_start_all_queues(pp->dev);
3768 	spin_unlock(&pp->lock);
3769 	return 0;
3770 }
3771 
3772 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3773 {
3774 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3775 						  node_online);
3776 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3777 
3778 	/*
3779 	 * Thanks to this lock we are sure that any pending cpu election is
3780 	 * done.
3781 	 */
3782 	spin_lock(&pp->lock);
3783 	/* Mask all ethernet port interrupts */
3784 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3785 	spin_unlock(&pp->lock);
3786 
3787 	napi_synchronize(&port->napi);
3788 	napi_disable(&port->napi);
3789 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3790 	mvneta_percpu_disable(pp);
3791 	return 0;
3792 }
3793 
3794 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3795 {
3796 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3797 						  node_dead);
3798 
3799 	/* Check if a new CPU must be elected now this on is down */
3800 	spin_lock(&pp->lock);
3801 	mvneta_percpu_elect(pp);
3802 	spin_unlock(&pp->lock);
3803 	/* Unmask all ethernet port interrupts */
3804 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3805 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3806 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3807 		    MVNETA_CAUSE_LINK_CHANGE);
3808 	netif_tx_start_all_queues(pp->dev);
3809 	return 0;
3810 }
3811 
3812 static int mvneta_open(struct net_device *dev)
3813 {
3814 	struct mvneta_port *pp = netdev_priv(dev);
3815 	int ret;
3816 
3817 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3818 
3819 	ret = mvneta_setup_rxqs(pp);
3820 	if (ret)
3821 		return ret;
3822 
3823 	ret = mvneta_setup_txqs(pp);
3824 	if (ret)
3825 		goto err_cleanup_rxqs;
3826 
3827 	/* Connect to port interrupt line */
3828 	if (pp->neta_armada3700)
3829 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3830 				  dev->name, pp);
3831 	else
3832 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3833 					 dev->name, pp->ports);
3834 	if (ret) {
3835 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3836 		goto err_cleanup_txqs;
3837 	}
3838 
3839 	if (!pp->neta_armada3700) {
3840 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3841 		 * queue interrupts
3842 		 */
3843 		on_each_cpu(mvneta_percpu_enable, pp, true);
3844 
3845 		pp->is_stopped = false;
3846 		/* Register a CPU notifier to handle the case where our CPU
3847 		 * might be taken offline.
3848 		 */
3849 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3850 						       &pp->node_online);
3851 		if (ret)
3852 			goto err_free_irq;
3853 
3854 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3855 						       &pp->node_dead);
3856 		if (ret)
3857 			goto err_free_online_hp;
3858 	}
3859 
3860 	ret = mvneta_mdio_probe(pp);
3861 	if (ret < 0) {
3862 		netdev_err(dev, "cannot probe MDIO bus\n");
3863 		goto err_free_dead_hp;
3864 	}
3865 
3866 	mvneta_start_dev(pp);
3867 
3868 	return 0;
3869 
3870 err_free_dead_hp:
3871 	if (!pp->neta_armada3700)
3872 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3873 						    &pp->node_dead);
3874 err_free_online_hp:
3875 	if (!pp->neta_armada3700)
3876 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3877 						    &pp->node_online);
3878 err_free_irq:
3879 	if (pp->neta_armada3700) {
3880 		free_irq(pp->dev->irq, pp);
3881 	} else {
3882 		on_each_cpu(mvneta_percpu_disable, pp, true);
3883 		free_percpu_irq(pp->dev->irq, pp->ports);
3884 	}
3885 err_cleanup_txqs:
3886 	mvneta_cleanup_txqs(pp);
3887 err_cleanup_rxqs:
3888 	mvneta_cleanup_rxqs(pp);
3889 	return ret;
3890 }
3891 
3892 /* Stop the port, free port interrupt line */
3893 static int mvneta_stop(struct net_device *dev)
3894 {
3895 	struct mvneta_port *pp = netdev_priv(dev);
3896 
3897 	if (!pp->neta_armada3700) {
3898 		/* Inform that we are stopping so we don't want to setup the
3899 		 * driver for new CPUs in the notifiers. The code of the
3900 		 * notifier for CPU online is protected by the same spinlock,
3901 		 * so when we get the lock, the notifer work is done.
3902 		 */
3903 		spin_lock(&pp->lock);
3904 		pp->is_stopped = true;
3905 		spin_unlock(&pp->lock);
3906 
3907 		mvneta_stop_dev(pp);
3908 		mvneta_mdio_remove(pp);
3909 
3910 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3911 						    &pp->node_online);
3912 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3913 						    &pp->node_dead);
3914 		on_each_cpu(mvneta_percpu_disable, pp, true);
3915 		free_percpu_irq(dev->irq, pp->ports);
3916 	} else {
3917 		mvneta_stop_dev(pp);
3918 		mvneta_mdio_remove(pp);
3919 		free_irq(dev->irq, pp);
3920 	}
3921 
3922 	mvneta_cleanup_rxqs(pp);
3923 	mvneta_cleanup_txqs(pp);
3924 
3925 	return 0;
3926 }
3927 
3928 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3929 {
3930 	struct mvneta_port *pp = netdev_priv(dev);
3931 
3932 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3933 }
3934 
3935 /* Ethtool methods */
3936 
3937 /* Set link ksettings (phy address, speed) for ethtools */
3938 static int
3939 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3940 				  const struct ethtool_link_ksettings *cmd)
3941 {
3942 	struct mvneta_port *pp = netdev_priv(ndev);
3943 
3944 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3945 }
3946 
3947 /* Get link ksettings for ethtools */
3948 static int
3949 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3950 				  struct ethtool_link_ksettings *cmd)
3951 {
3952 	struct mvneta_port *pp = netdev_priv(ndev);
3953 
3954 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3955 }
3956 
3957 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3958 {
3959 	struct mvneta_port *pp = netdev_priv(dev);
3960 
3961 	return phylink_ethtool_nway_reset(pp->phylink);
3962 }
3963 
3964 /* Set interrupt coalescing for ethtools */
3965 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3966 				       struct ethtool_coalesce *c)
3967 {
3968 	struct mvneta_port *pp = netdev_priv(dev);
3969 	int queue;
3970 
3971 	for (queue = 0; queue < rxq_number; queue++) {
3972 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3973 		rxq->time_coal = c->rx_coalesce_usecs;
3974 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3975 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3976 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3977 	}
3978 
3979 	for (queue = 0; queue < txq_number; queue++) {
3980 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3981 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3982 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3983 	}
3984 
3985 	return 0;
3986 }
3987 
3988 /* get coalescing for ethtools */
3989 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3990 				       struct ethtool_coalesce *c)
3991 {
3992 	struct mvneta_port *pp = netdev_priv(dev);
3993 
3994 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3995 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3996 
3997 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3998 	return 0;
3999 }
4000 
4001 
4002 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4003 				    struct ethtool_drvinfo *drvinfo)
4004 {
4005 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4006 		sizeof(drvinfo->driver));
4007 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4008 		sizeof(drvinfo->version));
4009 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4010 		sizeof(drvinfo->bus_info));
4011 }
4012 
4013 
4014 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4015 					 struct ethtool_ringparam *ring)
4016 {
4017 	struct mvneta_port *pp = netdev_priv(netdev);
4018 
4019 	ring->rx_max_pending = MVNETA_MAX_RXD;
4020 	ring->tx_max_pending = MVNETA_MAX_TXD;
4021 	ring->rx_pending = pp->rx_ring_size;
4022 	ring->tx_pending = pp->tx_ring_size;
4023 }
4024 
4025 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4026 					struct ethtool_ringparam *ring)
4027 {
4028 	struct mvneta_port *pp = netdev_priv(dev);
4029 
4030 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4031 		return -EINVAL;
4032 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4033 		ring->rx_pending : MVNETA_MAX_RXD;
4034 
4035 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4036 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4037 	if (pp->tx_ring_size != ring->tx_pending)
4038 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4039 			    pp->tx_ring_size, ring->tx_pending);
4040 
4041 	if (netif_running(dev)) {
4042 		mvneta_stop(dev);
4043 		if (mvneta_open(dev)) {
4044 			netdev_err(dev,
4045 				   "error on opening device after ring param change\n");
4046 			return -ENOMEM;
4047 		}
4048 	}
4049 
4050 	return 0;
4051 }
4052 
4053 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4054 					  struct ethtool_pauseparam *pause)
4055 {
4056 	struct mvneta_port *pp = netdev_priv(dev);
4057 
4058 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4059 }
4060 
4061 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4062 					 struct ethtool_pauseparam *pause)
4063 {
4064 	struct mvneta_port *pp = netdev_priv(dev);
4065 
4066 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4067 }
4068 
4069 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4070 				       u8 *data)
4071 {
4072 	if (sset == ETH_SS_STATS) {
4073 		int i;
4074 
4075 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4076 			memcpy(data + i * ETH_GSTRING_LEN,
4077 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4078 	}
4079 }
4080 
4081 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4082 {
4083 	const struct mvneta_statistic *s;
4084 	void __iomem *base = pp->base;
4085 	u32 high, low;
4086 	u64 val;
4087 	int i;
4088 
4089 	for (i = 0, s = mvneta_statistics;
4090 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4091 	     s++, i++) {
4092 		val = 0;
4093 
4094 		switch (s->type) {
4095 		case T_REG_32:
4096 			val = readl_relaxed(base + s->offset);
4097 			break;
4098 		case T_REG_64:
4099 			/* Docs say to read low 32-bit then high */
4100 			low = readl_relaxed(base + s->offset);
4101 			high = readl_relaxed(base + s->offset + 4);
4102 			val = (u64)high << 32 | low;
4103 			break;
4104 		case T_SW:
4105 			switch (s->offset) {
4106 			case ETHTOOL_STAT_EEE_WAKEUP:
4107 				val = phylink_get_eee_err(pp->phylink);
4108 				break;
4109 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4110 				val = pp->rxqs[0].skb_alloc_err;
4111 				break;
4112 			case ETHTOOL_STAT_REFILL_ERR:
4113 				val = pp->rxqs[0].refill_err;
4114 				break;
4115 			}
4116 			break;
4117 		}
4118 
4119 		pp->ethtool_stats[i] += val;
4120 	}
4121 }
4122 
4123 static void mvneta_ethtool_get_stats(struct net_device *dev,
4124 				     struct ethtool_stats *stats, u64 *data)
4125 {
4126 	struct mvneta_port *pp = netdev_priv(dev);
4127 	int i;
4128 
4129 	mvneta_ethtool_update_stats(pp);
4130 
4131 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4132 		*data++ = pp->ethtool_stats[i];
4133 }
4134 
4135 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4136 {
4137 	if (sset == ETH_SS_STATS)
4138 		return ARRAY_SIZE(mvneta_statistics);
4139 	return -EOPNOTSUPP;
4140 }
4141 
4142 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4143 {
4144 	return MVNETA_RSS_LU_TABLE_SIZE;
4145 }
4146 
4147 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4148 				    struct ethtool_rxnfc *info,
4149 				    u32 *rules __always_unused)
4150 {
4151 	switch (info->cmd) {
4152 	case ETHTOOL_GRXRINGS:
4153 		info->data =  rxq_number;
4154 		return 0;
4155 	case ETHTOOL_GRXFH:
4156 		return -EOPNOTSUPP;
4157 	default:
4158 		return -EOPNOTSUPP;
4159 	}
4160 }
4161 
4162 static int  mvneta_config_rss(struct mvneta_port *pp)
4163 {
4164 	int cpu;
4165 	u32 val;
4166 
4167 	netif_tx_stop_all_queues(pp->dev);
4168 
4169 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4170 
4171 	if (!pp->neta_armada3700) {
4172 		/* We have to synchronise on the napi of each CPU */
4173 		for_each_online_cpu(cpu) {
4174 			struct mvneta_pcpu_port *pcpu_port =
4175 				per_cpu_ptr(pp->ports, cpu);
4176 
4177 			napi_synchronize(&pcpu_port->napi);
4178 			napi_disable(&pcpu_port->napi);
4179 		}
4180 	} else {
4181 		napi_synchronize(&pp->napi);
4182 		napi_disable(&pp->napi);
4183 	}
4184 
4185 	pp->rxq_def = pp->indir[0];
4186 
4187 	/* Update unicast mapping */
4188 	mvneta_set_rx_mode(pp->dev);
4189 
4190 	/* Update val of portCfg register accordingly with all RxQueue types */
4191 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4192 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4193 
4194 	/* Update the elected CPU matching the new rxq_def */
4195 	spin_lock(&pp->lock);
4196 	mvneta_percpu_elect(pp);
4197 	spin_unlock(&pp->lock);
4198 
4199 	if (!pp->neta_armada3700) {
4200 		/* We have to synchronise on the napi of each CPU */
4201 		for_each_online_cpu(cpu) {
4202 			struct mvneta_pcpu_port *pcpu_port =
4203 				per_cpu_ptr(pp->ports, cpu);
4204 
4205 			napi_enable(&pcpu_port->napi);
4206 		}
4207 	} else {
4208 		napi_enable(&pp->napi);
4209 	}
4210 
4211 	netif_tx_start_all_queues(pp->dev);
4212 
4213 	return 0;
4214 }
4215 
4216 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4217 				   const u8 *key, const u8 hfunc)
4218 {
4219 	struct mvneta_port *pp = netdev_priv(dev);
4220 
4221 	/* Current code for Armada 3700 doesn't support RSS features yet */
4222 	if (pp->neta_armada3700)
4223 		return -EOPNOTSUPP;
4224 
4225 	/* We require at least one supported parameter to be changed
4226 	 * and no change in any of the unsupported parameters
4227 	 */
4228 	if (key ||
4229 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4230 		return -EOPNOTSUPP;
4231 
4232 	if (!indir)
4233 		return 0;
4234 
4235 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4236 
4237 	return mvneta_config_rss(pp);
4238 }
4239 
4240 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4241 				   u8 *hfunc)
4242 {
4243 	struct mvneta_port *pp = netdev_priv(dev);
4244 
4245 	/* Current code for Armada 3700 doesn't support RSS features yet */
4246 	if (pp->neta_armada3700)
4247 		return -EOPNOTSUPP;
4248 
4249 	if (hfunc)
4250 		*hfunc = ETH_RSS_HASH_TOP;
4251 
4252 	if (!indir)
4253 		return 0;
4254 
4255 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4256 
4257 	return 0;
4258 }
4259 
4260 static void mvneta_ethtool_get_wol(struct net_device *dev,
4261 				   struct ethtool_wolinfo *wol)
4262 {
4263 	struct mvneta_port *pp = netdev_priv(dev);
4264 
4265 	phylink_ethtool_get_wol(pp->phylink, wol);
4266 }
4267 
4268 static int mvneta_ethtool_set_wol(struct net_device *dev,
4269 				  struct ethtool_wolinfo *wol)
4270 {
4271 	struct mvneta_port *pp = netdev_priv(dev);
4272 	int ret;
4273 
4274 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4275 	if (!ret)
4276 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4277 
4278 	return ret;
4279 }
4280 
4281 static int mvneta_ethtool_get_eee(struct net_device *dev,
4282 				  struct ethtool_eee *eee)
4283 {
4284 	struct mvneta_port *pp = netdev_priv(dev);
4285 	u32 lpi_ctl0;
4286 
4287 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4288 
4289 	eee->eee_enabled = pp->eee_enabled;
4290 	eee->eee_active = pp->eee_active;
4291 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4292 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4293 
4294 	return phylink_ethtool_get_eee(pp->phylink, eee);
4295 }
4296 
4297 static int mvneta_ethtool_set_eee(struct net_device *dev,
4298 				  struct ethtool_eee *eee)
4299 {
4300 	struct mvneta_port *pp = netdev_priv(dev);
4301 	u32 lpi_ctl0;
4302 
4303 	/* The Armada 37x documents do not give limits for this other than
4304 	 * it being an 8-bit register. */
4305 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4306 		return -EINVAL;
4307 
4308 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4309 	lpi_ctl0 &= ~(0xff << 8);
4310 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4311 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4312 
4313 	pp->eee_enabled = eee->eee_enabled;
4314 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4315 
4316 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4317 
4318 	return phylink_ethtool_set_eee(pp->phylink, eee);
4319 }
4320 
4321 static const struct net_device_ops mvneta_netdev_ops = {
4322 	.ndo_open            = mvneta_open,
4323 	.ndo_stop            = mvneta_stop,
4324 	.ndo_start_xmit      = mvneta_tx,
4325 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4326 	.ndo_set_mac_address = mvneta_set_mac_addr,
4327 	.ndo_change_mtu      = mvneta_change_mtu,
4328 	.ndo_fix_features    = mvneta_fix_features,
4329 	.ndo_get_stats64     = mvneta_get_stats64,
4330 	.ndo_do_ioctl        = mvneta_ioctl,
4331 };
4332 
4333 static const struct ethtool_ops mvneta_eth_tool_ops = {
4334 	.nway_reset	= mvneta_ethtool_nway_reset,
4335 	.get_link       = ethtool_op_get_link,
4336 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4337 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4338 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4339 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4340 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4341 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4342 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4343 	.get_strings	= mvneta_ethtool_get_strings,
4344 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4345 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4346 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4347 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4348 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4349 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4350 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4351 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4352 	.get_wol        = mvneta_ethtool_get_wol,
4353 	.set_wol        = mvneta_ethtool_set_wol,
4354 	.get_eee	= mvneta_ethtool_get_eee,
4355 	.set_eee	= mvneta_ethtool_set_eee,
4356 };
4357 
4358 /* Initialize hw */
4359 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4360 {
4361 	int queue;
4362 
4363 	/* Disable port */
4364 	mvneta_port_disable(pp);
4365 
4366 	/* Set port default values */
4367 	mvneta_defaults_set(pp);
4368 
4369 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4370 	if (!pp->txqs)
4371 		return -ENOMEM;
4372 
4373 	/* Initialize TX descriptor rings */
4374 	for (queue = 0; queue < txq_number; queue++) {
4375 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4376 		txq->id = queue;
4377 		txq->size = pp->tx_ring_size;
4378 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4379 	}
4380 
4381 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4382 	if (!pp->rxqs)
4383 		return -ENOMEM;
4384 
4385 	/* Create Rx descriptor rings */
4386 	for (queue = 0; queue < rxq_number; queue++) {
4387 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4388 		rxq->id = queue;
4389 		rxq->size = pp->rx_ring_size;
4390 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4391 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4392 		rxq->buf_virt_addr
4393 			= devm_kmalloc_array(pp->dev->dev.parent,
4394 					     rxq->size,
4395 					     sizeof(*rxq->buf_virt_addr),
4396 					     GFP_KERNEL);
4397 		if (!rxq->buf_virt_addr)
4398 			return -ENOMEM;
4399 	}
4400 
4401 	return 0;
4402 }
4403 
4404 /* platform glue : initialize decoding windows */
4405 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4406 				     const struct mbus_dram_target_info *dram)
4407 {
4408 	u32 win_enable;
4409 	u32 win_protect;
4410 	int i;
4411 
4412 	for (i = 0; i < 6; i++) {
4413 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4414 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4415 
4416 		if (i < 4)
4417 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4418 	}
4419 
4420 	win_enable = 0x3f;
4421 	win_protect = 0;
4422 
4423 	if (dram) {
4424 		for (i = 0; i < dram->num_cs; i++) {
4425 			const struct mbus_dram_window *cs = dram->cs + i;
4426 
4427 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4428 				    (cs->base & 0xffff0000) |
4429 				    (cs->mbus_attr << 8) |
4430 				    dram->mbus_dram_target_id);
4431 
4432 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4433 				    (cs->size - 1) & 0xffff0000);
4434 
4435 			win_enable &= ~(1 << i);
4436 			win_protect |= 3 << (2 * i);
4437 		}
4438 	} else {
4439 		/* For Armada3700 open default 4GB Mbus window, leaving
4440 		 * arbitration of target/attribute to a different layer
4441 		 * of configuration.
4442 		 */
4443 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4444 		win_enable &= ~BIT(0);
4445 		win_protect = 3;
4446 	}
4447 
4448 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4449 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4450 }
4451 
4452 /* Power up the port */
4453 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4454 {
4455 	/* MAC Cause register should be cleared */
4456 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4457 
4458 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4459 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4460 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4461 		 phy_interface_mode_is_8023z(phy_mode))
4462 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4463 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4464 		return -EINVAL;
4465 
4466 	return 0;
4467 }
4468 
4469 /* Device initialization routine */
4470 static int mvneta_probe(struct platform_device *pdev)
4471 {
4472 	struct resource *res;
4473 	struct device_node *dn = pdev->dev.of_node;
4474 	struct device_node *bm_node;
4475 	struct mvneta_port *pp;
4476 	struct net_device *dev;
4477 	struct phylink *phylink;
4478 	struct phy *comphy;
4479 	const char *dt_mac_addr;
4480 	char hw_mac_addr[ETH_ALEN];
4481 	const char *mac_from;
4482 	int tx_csum_limit;
4483 	int phy_mode;
4484 	int err;
4485 	int cpu;
4486 
4487 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4488 				      txq_number, rxq_number);
4489 	if (!dev)
4490 		return -ENOMEM;
4491 
4492 	dev->irq = irq_of_parse_and_map(dn, 0);
4493 	if (dev->irq == 0)
4494 		return -EINVAL;
4495 
4496 	phy_mode = of_get_phy_mode(dn);
4497 	if (phy_mode < 0) {
4498 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4499 		err = -EINVAL;
4500 		goto err_free_irq;
4501 	}
4502 
4503 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4504 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4505 		err = -EPROBE_DEFER;
4506 		goto err_free_irq;
4507 	} else if (IS_ERR(comphy)) {
4508 		comphy = NULL;
4509 	}
4510 
4511 	pp = netdev_priv(dev);
4512 	spin_lock_init(&pp->lock);
4513 
4514 	pp->phylink_config.dev = &dev->dev;
4515 	pp->phylink_config.type = PHYLINK_NETDEV;
4516 
4517 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
4518 				 phy_mode, &mvneta_phylink_ops);
4519 	if (IS_ERR(phylink)) {
4520 		err = PTR_ERR(phylink);
4521 		goto err_free_irq;
4522 	}
4523 
4524 	dev->tx_queue_len = MVNETA_MAX_TXD;
4525 	dev->watchdog_timeo = 5 * HZ;
4526 	dev->netdev_ops = &mvneta_netdev_ops;
4527 
4528 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4529 
4530 	pp->phylink = phylink;
4531 	pp->comphy = comphy;
4532 	pp->phy_interface = phy_mode;
4533 	pp->dn = dn;
4534 
4535 	pp->rxq_def = rxq_def;
4536 	pp->indir[0] = rxq_def;
4537 
4538 	/* Get special SoC configurations */
4539 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4540 		pp->neta_armada3700 = true;
4541 
4542 	pp->clk = devm_clk_get(&pdev->dev, "core");
4543 	if (IS_ERR(pp->clk))
4544 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4545 	if (IS_ERR(pp->clk)) {
4546 		err = PTR_ERR(pp->clk);
4547 		goto err_free_phylink;
4548 	}
4549 
4550 	clk_prepare_enable(pp->clk);
4551 
4552 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4553 	if (!IS_ERR(pp->clk_bus))
4554 		clk_prepare_enable(pp->clk_bus);
4555 
4556 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4557 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4558 	if (IS_ERR(pp->base)) {
4559 		err = PTR_ERR(pp->base);
4560 		goto err_clk;
4561 	}
4562 
4563 	/* Alloc per-cpu port structure */
4564 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4565 	if (!pp->ports) {
4566 		err = -ENOMEM;
4567 		goto err_clk;
4568 	}
4569 
4570 	/* Alloc per-cpu stats */
4571 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4572 	if (!pp->stats) {
4573 		err = -ENOMEM;
4574 		goto err_free_ports;
4575 	}
4576 
4577 	dt_mac_addr = of_get_mac_address(dn);
4578 	if (!IS_ERR(dt_mac_addr)) {
4579 		mac_from = "device tree";
4580 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
4581 	} else {
4582 		mvneta_get_mac_addr(pp, hw_mac_addr);
4583 		if (is_valid_ether_addr(hw_mac_addr)) {
4584 			mac_from = "hardware";
4585 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4586 		} else {
4587 			mac_from = "random";
4588 			eth_hw_addr_random(dev);
4589 		}
4590 	}
4591 
4592 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4593 		if (tx_csum_limit < 0 ||
4594 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4595 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4596 			dev_info(&pdev->dev,
4597 				 "Wrong TX csum limit in DT, set to %dB\n",
4598 				 MVNETA_TX_CSUM_DEF_SIZE);
4599 		}
4600 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4601 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4602 	} else {
4603 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4604 	}
4605 
4606 	pp->tx_csum_limit = tx_csum_limit;
4607 
4608 	pp->dram_target_info = mv_mbus_dram_info();
4609 	/* Armada3700 requires setting default configuration of Mbus
4610 	 * windows, however without using filled mbus_dram_target_info
4611 	 * structure.
4612 	 */
4613 	if (pp->dram_target_info || pp->neta_armada3700)
4614 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4615 
4616 	pp->tx_ring_size = MVNETA_MAX_TXD;
4617 	pp->rx_ring_size = MVNETA_MAX_RXD;
4618 
4619 	pp->dev = dev;
4620 	SET_NETDEV_DEV(dev, &pdev->dev);
4621 
4622 	pp->id = global_port_id++;
4623 	pp->rx_offset_correction = 0; /* not relevant for SW BM */
4624 
4625 	/* Obtain access to BM resources if enabled and already initialized */
4626 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4627 	if (bm_node) {
4628 		pp->bm_priv = mvneta_bm_get(bm_node);
4629 		if (pp->bm_priv) {
4630 			err = mvneta_bm_port_init(pdev, pp);
4631 			if (err < 0) {
4632 				dev_info(&pdev->dev,
4633 					 "use SW buffer management\n");
4634 				mvneta_bm_put(pp->bm_priv);
4635 				pp->bm_priv = NULL;
4636 			}
4637 		}
4638 		/* Set RX packet offset correction for platforms, whose
4639 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4640 		 * platforms and 0B for 32-bit ones.
4641 		 */
4642 		pp->rx_offset_correction = max(0,
4643 					       NET_SKB_PAD -
4644 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4645 	}
4646 	of_node_put(bm_node);
4647 
4648 	err = mvneta_init(&pdev->dev, pp);
4649 	if (err < 0)
4650 		goto err_netdev;
4651 
4652 	err = mvneta_port_power_up(pp, phy_mode);
4653 	if (err < 0) {
4654 		dev_err(&pdev->dev, "can't power up port\n");
4655 		goto err_netdev;
4656 	}
4657 
4658 	/* Armada3700 network controller does not support per-cpu
4659 	 * operation, so only single NAPI should be initialized.
4660 	 */
4661 	if (pp->neta_armada3700) {
4662 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4663 	} else {
4664 		for_each_present_cpu(cpu) {
4665 			struct mvneta_pcpu_port *port =
4666 				per_cpu_ptr(pp->ports, cpu);
4667 
4668 			netif_napi_add(dev, &port->napi, mvneta_poll,
4669 				       NAPI_POLL_WEIGHT);
4670 			port->pp = pp;
4671 		}
4672 	}
4673 
4674 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4675 			NETIF_F_TSO | NETIF_F_RXCSUM;
4676 	dev->hw_features |= dev->features;
4677 	dev->vlan_features |= dev->features;
4678 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4679 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4680 
4681 	/* MTU range: 68 - 9676 */
4682 	dev->min_mtu = ETH_MIN_MTU;
4683 	/* 9676 == 9700 - 20 and rounding to 8 */
4684 	dev->max_mtu = 9676;
4685 
4686 	err = register_netdev(dev);
4687 	if (err < 0) {
4688 		dev_err(&pdev->dev, "failed to register\n");
4689 		goto err_netdev;
4690 	}
4691 
4692 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4693 		    dev->dev_addr);
4694 
4695 	platform_set_drvdata(pdev, pp->dev);
4696 
4697 	return 0;
4698 
4699 err_netdev:
4700 	if (pp->bm_priv) {
4701 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4702 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4703 				       1 << pp->id);
4704 		mvneta_bm_put(pp->bm_priv);
4705 	}
4706 	free_percpu(pp->stats);
4707 err_free_ports:
4708 	free_percpu(pp->ports);
4709 err_clk:
4710 	clk_disable_unprepare(pp->clk_bus);
4711 	clk_disable_unprepare(pp->clk);
4712 err_free_phylink:
4713 	if (pp->phylink)
4714 		phylink_destroy(pp->phylink);
4715 err_free_irq:
4716 	irq_dispose_mapping(dev->irq);
4717 	return err;
4718 }
4719 
4720 /* Device removal routine */
4721 static int mvneta_remove(struct platform_device *pdev)
4722 {
4723 	struct net_device  *dev = platform_get_drvdata(pdev);
4724 	struct mvneta_port *pp = netdev_priv(dev);
4725 
4726 	unregister_netdev(dev);
4727 	clk_disable_unprepare(pp->clk_bus);
4728 	clk_disable_unprepare(pp->clk);
4729 	free_percpu(pp->ports);
4730 	free_percpu(pp->stats);
4731 	irq_dispose_mapping(dev->irq);
4732 	phylink_destroy(pp->phylink);
4733 
4734 	if (pp->bm_priv) {
4735 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4736 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4737 				       1 << pp->id);
4738 		mvneta_bm_put(pp->bm_priv);
4739 	}
4740 
4741 	return 0;
4742 }
4743 
4744 #ifdef CONFIG_PM_SLEEP
4745 static int mvneta_suspend(struct device *device)
4746 {
4747 	int queue;
4748 	struct net_device *dev = dev_get_drvdata(device);
4749 	struct mvneta_port *pp = netdev_priv(dev);
4750 
4751 	if (!netif_running(dev))
4752 		goto clean_exit;
4753 
4754 	if (!pp->neta_armada3700) {
4755 		spin_lock(&pp->lock);
4756 		pp->is_stopped = true;
4757 		spin_unlock(&pp->lock);
4758 
4759 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4760 						    &pp->node_online);
4761 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4762 						    &pp->node_dead);
4763 	}
4764 
4765 	rtnl_lock();
4766 	mvneta_stop_dev(pp);
4767 	rtnl_unlock();
4768 
4769 	for (queue = 0; queue < rxq_number; queue++) {
4770 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4771 
4772 		mvneta_rxq_drop_pkts(pp, rxq);
4773 	}
4774 
4775 	for (queue = 0; queue < txq_number; queue++) {
4776 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4777 
4778 		mvneta_txq_hw_deinit(pp, txq);
4779 	}
4780 
4781 clean_exit:
4782 	netif_device_detach(dev);
4783 	clk_disable_unprepare(pp->clk_bus);
4784 	clk_disable_unprepare(pp->clk);
4785 
4786 	return 0;
4787 }
4788 
4789 static int mvneta_resume(struct device *device)
4790 {
4791 	struct platform_device *pdev = to_platform_device(device);
4792 	struct net_device *dev = dev_get_drvdata(device);
4793 	struct mvneta_port *pp = netdev_priv(dev);
4794 	int err, queue;
4795 
4796 	clk_prepare_enable(pp->clk);
4797 	if (!IS_ERR(pp->clk_bus))
4798 		clk_prepare_enable(pp->clk_bus);
4799 	if (pp->dram_target_info || pp->neta_armada3700)
4800 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4801 	if (pp->bm_priv) {
4802 		err = mvneta_bm_port_init(pdev, pp);
4803 		if (err < 0) {
4804 			dev_info(&pdev->dev, "use SW buffer management\n");
4805 			pp->bm_priv = NULL;
4806 		}
4807 	}
4808 	mvneta_defaults_set(pp);
4809 	err = mvneta_port_power_up(pp, pp->phy_interface);
4810 	if (err < 0) {
4811 		dev_err(device, "can't power up port\n");
4812 		return err;
4813 	}
4814 
4815 	netif_device_attach(dev);
4816 
4817 	if (!netif_running(dev))
4818 		return 0;
4819 
4820 	for (queue = 0; queue < rxq_number; queue++) {
4821 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4822 
4823 		rxq->next_desc_to_proc = 0;
4824 		mvneta_rxq_hw_init(pp, rxq);
4825 	}
4826 
4827 	for (queue = 0; queue < txq_number; queue++) {
4828 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4829 
4830 		txq->next_desc_to_proc = 0;
4831 		mvneta_txq_hw_init(pp, txq);
4832 	}
4833 
4834 	if (!pp->neta_armada3700) {
4835 		spin_lock(&pp->lock);
4836 		pp->is_stopped = false;
4837 		spin_unlock(&pp->lock);
4838 		cpuhp_state_add_instance_nocalls(online_hpstate,
4839 						 &pp->node_online);
4840 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4841 						 &pp->node_dead);
4842 	}
4843 
4844 	rtnl_lock();
4845 	mvneta_start_dev(pp);
4846 	rtnl_unlock();
4847 	mvneta_set_rx_mode(dev);
4848 
4849 	return 0;
4850 }
4851 #endif
4852 
4853 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4854 
4855 static const struct of_device_id mvneta_match[] = {
4856 	{ .compatible = "marvell,armada-370-neta" },
4857 	{ .compatible = "marvell,armada-xp-neta" },
4858 	{ .compatible = "marvell,armada-3700-neta" },
4859 	{ }
4860 };
4861 MODULE_DEVICE_TABLE(of, mvneta_match);
4862 
4863 static struct platform_driver mvneta_driver = {
4864 	.probe = mvneta_probe,
4865 	.remove = mvneta_remove,
4866 	.driver = {
4867 		.name = MVNETA_DRIVER_NAME,
4868 		.of_match_table = mvneta_match,
4869 		.pm = &mvneta_pm_ops,
4870 	},
4871 };
4872 
4873 static int __init mvneta_driver_init(void)
4874 {
4875 	int ret;
4876 
4877 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4878 				      mvneta_cpu_online,
4879 				      mvneta_cpu_down_prepare);
4880 	if (ret < 0)
4881 		goto out;
4882 	online_hpstate = ret;
4883 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4884 				      NULL, mvneta_cpu_dead);
4885 	if (ret)
4886 		goto err_dead;
4887 
4888 	ret = platform_driver_register(&mvneta_driver);
4889 	if (ret)
4890 		goto err;
4891 	return 0;
4892 
4893 err:
4894 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4895 err_dead:
4896 	cpuhp_remove_multi_state(online_hpstate);
4897 out:
4898 	return ret;
4899 }
4900 module_init(mvneta_driver_init);
4901 
4902 static void __exit mvneta_driver_exit(void)
4903 {
4904 	platform_driver_unregister(&mvneta_driver);
4905 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4906 	cpuhp_remove_multi_state(online_hpstate);
4907 }
4908 module_exit(mvneta_driver_exit);
4909 
4910 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4911 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4912 MODULE_LICENSE("GPL");
4913 
4914 module_param(rxq_number, int, 0444);
4915 module_param(txq_number, int, 0444);
4916 
4917 module_param(rxq_def, int, 0444);
4918 module_param(rx_copybreak, int, 0644);
4919