1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/platform_device.h> 32 #include <linux/skbuff.h> 33 #include <net/hwbm.h> 34 #include "mvneta_bm.h" 35 #include <net/ip.h> 36 #include <net/ipv6.h> 37 #include <net/tso.h> 38 39 /* Registers */ 40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 62 #define MVNETA_PORT_RX_RESET 0x1cc0 63 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 64 #define MVNETA_PHY_ADDR 0x2000 65 #define MVNETA_PHY_ADDR_MASK 0x1f 66 #define MVNETA_MBUS_RETRY 0x2010 67 #define MVNETA_UNIT_INTR_CAUSE 0x2080 68 #define MVNETA_UNIT_CONTROL 0x20B0 69 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 73 #define MVNETA_BASE_ADDR_ENABLE 0x2290 74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 75 #define MVNETA_PORT_CONFIG 0x2400 76 #define MVNETA_UNI_PROMISC_MODE BIT(0) 77 #define MVNETA_DEF_RXQ(q) ((q) << 1) 78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 85 MVNETA_DEF_RXQ_ARP(q) | \ 86 MVNETA_DEF_RXQ_TCP(q) | \ 87 MVNETA_DEF_RXQ_UDP(q) | \ 88 MVNETA_DEF_RXQ_BPDU(q) | \ 89 MVNETA_TX_UNSET_ERR_SUM | \ 90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 92 #define MVNETA_MAC_ADDR_LOW 0x2414 93 #define MVNETA_MAC_ADDR_HIGH 0x2418 94 #define MVNETA_SDMA_CONFIG 0x241c 95 #define MVNETA_SDMA_BRST_SIZE_16 4 96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 97 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 98 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 99 #define MVNETA_DESC_SWAP BIT(6) 100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 101 #define MVNETA_PORT_STATUS 0x2444 102 #define MVNETA_TX_IN_PRGRS BIT(1) 103 #define MVNETA_TX_FIFO_EMPTY BIT(8) 104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 105 #define MVNETA_SERDES_CFG 0x24A0 106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 108 #define MVNETA_TYPE_PRIO 0x24bc 109 #define MVNETA_FORCE_UNI BIT(21) 110 #define MVNETA_TXQ_CMD_1 0x24e4 111 #define MVNETA_TXQ_CMD 0x2448 112 #define MVNETA_TXQ_DISABLE_SHIFT 8 113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 118 #define MVNETA_ACC_MODE 0x2500 119 #define MVNETA_BM_ADDRESS 0x2504 120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 126 127 /* Exception Interrupt Port/Queue Cause register 128 * 129 * Their behavior depend of the mapping done using the PCPX2Q 130 * registers. For a given CPU if the bit associated to a queue is not 131 * set, then for the register a read from this CPU will always return 132 * 0 and a write won't do anything 133 */ 134 135 #define MVNETA_INTR_NEW_CAUSE 0x25a0 136 #define MVNETA_INTR_NEW_MASK 0x25a4 137 138 /* bits 0..7 = TXQ SENT, one bit per queue. 139 * bits 8..15 = RXQ OCCUP, one bit per queue. 140 * bits 16..23 = RXQ FREE, one bit per queue. 141 * bit 29 = OLD_REG_SUM, see old reg ? 142 * bit 30 = TX_ERR_SUM, one bit for 4 ports 143 * bit 31 = MISC_SUM, one bit for 4 ports 144 */ 145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 149 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 150 151 #define MVNETA_INTR_OLD_CAUSE 0x25a8 152 #define MVNETA_INTR_OLD_MASK 0x25ac 153 154 /* Data Path Port/Queue Cause Register */ 155 #define MVNETA_INTR_MISC_CAUSE 0x25b0 156 #define MVNETA_INTR_MISC_MASK 0x25b4 157 158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 160 #define MVNETA_CAUSE_PTP BIT(4) 161 162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 167 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 170 171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 174 175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 178 179 #define MVNETA_INTR_ENABLE 0x25b8 180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 182 183 #define MVNETA_RXQ_CMD 0x2680 184 #define MVNETA_RXQ_DISABLE_SHIFT 8 185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 188 #define MVNETA_GMAC_CTRL_0 0x2c00 189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 192 #define MVNETA_GMAC_CTRL_2 0x2c08 193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 195 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 196 #define MVNETA_GMAC2_PORT_RESET BIT(6) 197 #define MVNETA_GMAC_STATUS 0x2c10 198 #define MVNETA_GMAC_LINK_UP BIT(0) 199 #define MVNETA_GMAC_SPEED_1000 BIT(1) 200 #define MVNETA_GMAC_SPEED_100 BIT(2) 201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 216 #define MVNETA_MIB_COUNTERS_BASE 0x3000 217 #define MVNETA_MIB_LATE_COLLISION 0x7c 218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 230 #define MVNETA_PORT_TX_RESET 0x3cf0 231 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 232 #define MVNETA_TX_MTU 0x3e0c 233 #define MVNETA_TX_TOKEN_SIZE 0x3e14 234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 237 238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 239 240 /* Descriptor ring Macros */ 241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 242 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 243 244 /* Various constants */ 245 246 /* Coalescing */ 247 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 248 #define MVNETA_RX_COAL_PKTS 32 249 #define MVNETA_RX_COAL_USEC 100 250 251 /* The two bytes Marvell header. Either contains a special value used 252 * by Marvell switches when a specific hardware mode is enabled (not 253 * supported by this driver) or is filled automatically by zeroes on 254 * the RX side. Those two bytes being at the front of the Ethernet 255 * header, they allow to have the IP header aligned on a 4 bytes 256 * boundary automatically: the hardware skips those two bytes on its 257 * own. 258 */ 259 #define MVNETA_MH_SIZE 2 260 261 #define MVNETA_VLAN_TAG_LEN 4 262 263 #define MVNETA_TX_CSUM_DEF_SIZE 1600 264 #define MVNETA_TX_CSUM_MAX_SIZE 9800 265 #define MVNETA_ACC_MODE_EXT1 1 266 #define MVNETA_ACC_MODE_EXT2 2 267 268 #define MVNETA_MAX_DECODE_WIN 6 269 270 /* Timeout constants */ 271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 274 275 #define MVNETA_TX_MTU_MAX 0x3ffff 276 277 /* The RSS lookup table actually has 256 entries but we do not use 278 * them yet 279 */ 280 #define MVNETA_RSS_LU_TABLE_SIZE 1 281 282 /* TSO header size */ 283 #define TSO_HEADER_SIZE 128 284 285 /* Max number of Rx descriptors */ 286 #define MVNETA_MAX_RXD 128 287 288 /* Max number of Tx descriptors */ 289 #define MVNETA_MAX_TXD 532 290 291 /* Max number of allowed TCP segments for software TSO */ 292 #define MVNETA_MAX_TSO_SEGS 100 293 294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 295 296 /* descriptor aligned size */ 297 #define MVNETA_DESC_ALIGNED_SIZE 32 298 299 /* Number of bytes to be taken into account by HW when putting incoming data 300 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 301 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 302 */ 303 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 304 305 #define MVNETA_RX_PKT_SIZE(mtu) \ 306 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 307 ETH_HLEN + ETH_FCS_LEN, \ 308 cache_line_size()) 309 310 #define IS_TSO_HEADER(txq, addr) \ 311 ((addr >= txq->tso_hdrs_phys) && \ 312 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 313 314 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 315 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 316 317 struct mvneta_statistic { 318 unsigned short offset; 319 unsigned short type; 320 const char name[ETH_GSTRING_LEN]; 321 }; 322 323 #define T_REG_32 32 324 #define T_REG_64 64 325 326 static const struct mvneta_statistic mvneta_statistics[] = { 327 { 0x3000, T_REG_64, "good_octets_received", }, 328 { 0x3010, T_REG_32, "good_frames_received", }, 329 { 0x3008, T_REG_32, "bad_octets_received", }, 330 { 0x3014, T_REG_32, "bad_frames_received", }, 331 { 0x3018, T_REG_32, "broadcast_frames_received", }, 332 { 0x301c, T_REG_32, "multicast_frames_received", }, 333 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 334 { 0x3058, T_REG_32, "good_fc_received", }, 335 { 0x305c, T_REG_32, "bad_fc_received", }, 336 { 0x3060, T_REG_32, "undersize_received", }, 337 { 0x3064, T_REG_32, "fragments_received", }, 338 { 0x3068, T_REG_32, "oversize_received", }, 339 { 0x306c, T_REG_32, "jabber_received", }, 340 { 0x3070, T_REG_32, "mac_receive_error", }, 341 { 0x3074, T_REG_32, "bad_crc_event", }, 342 { 0x3078, T_REG_32, "collision", }, 343 { 0x307c, T_REG_32, "late_collision", }, 344 { 0x2484, T_REG_32, "rx_discard", }, 345 { 0x2488, T_REG_32, "rx_overrun", }, 346 { 0x3020, T_REG_32, "frames_64_octets", }, 347 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 348 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 349 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 350 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 351 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 352 { 0x3038, T_REG_64, "good_octets_sent", }, 353 { 0x3040, T_REG_32, "good_frames_sent", }, 354 { 0x3044, T_REG_32, "excessive_collision", }, 355 { 0x3048, T_REG_32, "multicast_frames_sent", }, 356 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 357 { 0x3054, T_REG_32, "fc_sent", }, 358 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 359 }; 360 361 struct mvneta_pcpu_stats { 362 struct u64_stats_sync syncp; 363 u64 rx_packets; 364 u64 rx_bytes; 365 u64 tx_packets; 366 u64 tx_bytes; 367 }; 368 369 struct mvneta_pcpu_port { 370 /* Pointer to the shared port */ 371 struct mvneta_port *pp; 372 373 /* Pointer to the CPU-local NAPI struct */ 374 struct napi_struct napi; 375 376 /* Cause of the previous interrupt */ 377 u32 cause_rx_tx; 378 }; 379 380 struct mvneta_port { 381 u8 id; 382 struct mvneta_pcpu_port __percpu *ports; 383 struct mvneta_pcpu_stats __percpu *stats; 384 385 int pkt_size; 386 unsigned int frag_size; 387 void __iomem *base; 388 struct mvneta_rx_queue *rxqs; 389 struct mvneta_tx_queue *txqs; 390 struct net_device *dev; 391 struct hlist_node node_online; 392 struct hlist_node node_dead; 393 int rxq_def; 394 /* Protect the access to the percpu interrupt registers, 395 * ensuring that the configuration remains coherent. 396 */ 397 spinlock_t lock; 398 bool is_stopped; 399 400 u32 cause_rx_tx; 401 struct napi_struct napi; 402 403 /* Core clock */ 404 struct clk *clk; 405 /* AXI clock */ 406 struct clk *clk_bus; 407 u8 mcast_count[256]; 408 u16 tx_ring_size; 409 u16 rx_ring_size; 410 411 struct mii_bus *mii_bus; 412 phy_interface_t phy_interface; 413 struct device_node *phy_node; 414 unsigned int link; 415 unsigned int duplex; 416 unsigned int speed; 417 unsigned int tx_csum_limit; 418 unsigned int use_inband_status:1; 419 420 struct mvneta_bm *bm_priv; 421 struct mvneta_bm_pool *pool_long; 422 struct mvneta_bm_pool *pool_short; 423 int bm_win_id; 424 425 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 426 427 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 428 429 /* Flags for special SoC configurations */ 430 bool neta_armada3700; 431 u16 rx_offset_correction; 432 }; 433 434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 435 * layout of the transmit and reception DMA descriptors, and their 436 * layout is therefore defined by the hardware design 437 */ 438 439 #define MVNETA_TX_L3_OFF_SHIFT 0 440 #define MVNETA_TX_IP_HLEN_SHIFT 8 441 #define MVNETA_TX_L4_UDP BIT(16) 442 #define MVNETA_TX_L3_IP6 BIT(17) 443 #define MVNETA_TXD_IP_CSUM BIT(18) 444 #define MVNETA_TXD_Z_PAD BIT(19) 445 #define MVNETA_TXD_L_DESC BIT(20) 446 #define MVNETA_TXD_F_DESC BIT(21) 447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 448 MVNETA_TXD_L_DESC | \ 449 MVNETA_TXD_F_DESC) 450 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 451 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 452 453 #define MVNETA_RXD_ERR_CRC 0x0 454 #define MVNETA_RXD_BM_POOL_SHIFT 13 455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 456 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 457 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 458 #define MVNETA_RXD_ERR_LEN BIT(18) 459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 461 #define MVNETA_RXD_L3_IP4 BIT(25) 462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 463 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 464 465 #if defined(__LITTLE_ENDIAN) 466 struct mvneta_tx_desc { 467 u32 command; /* Options used by HW for packet transmitting.*/ 468 u16 reserverd1; /* csum_l4 (for future use) */ 469 u16 data_size; /* Data size of transmitted packet in bytes */ 470 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 471 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 472 u32 reserved3[4]; /* Reserved - (for future use) */ 473 }; 474 475 struct mvneta_rx_desc { 476 u32 status; /* Info about received packet */ 477 u16 reserved1; /* pnc_info - (for future use, PnC) */ 478 u16 data_size; /* Size of received packet in bytes */ 479 480 u32 buf_phys_addr; /* Physical address of the buffer */ 481 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 482 483 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 484 u16 reserved3; /* prefetch_cmd, for future use */ 485 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 486 487 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 488 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 489 }; 490 #else 491 struct mvneta_tx_desc { 492 u16 data_size; /* Data size of transmitted packet in bytes */ 493 u16 reserverd1; /* csum_l4 (for future use) */ 494 u32 command; /* Options used by HW for packet transmitting.*/ 495 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 496 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 497 u32 reserved3[4]; /* Reserved - (for future use) */ 498 }; 499 500 struct mvneta_rx_desc { 501 u16 data_size; /* Size of received packet in bytes */ 502 u16 reserved1; /* pnc_info - (for future use, PnC) */ 503 u32 status; /* Info about received packet */ 504 505 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 506 u32 buf_phys_addr; /* Physical address of the buffer */ 507 508 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 509 u16 reserved3; /* prefetch_cmd, for future use */ 510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 511 512 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 513 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 514 }; 515 #endif 516 517 struct mvneta_tx_queue { 518 /* Number of this TX queue, in the range 0-7 */ 519 u8 id; 520 521 /* Number of TX DMA descriptors in the descriptor ring */ 522 int size; 523 524 /* Number of currently used TX DMA descriptor in the 525 * descriptor ring 526 */ 527 int count; 528 int tx_stop_threshold; 529 int tx_wake_threshold; 530 531 /* Array of transmitted skb */ 532 struct sk_buff **tx_skb; 533 534 /* Index of last TX DMA descriptor that was inserted */ 535 int txq_put_index; 536 537 /* Index of the TX DMA descriptor to be cleaned up */ 538 int txq_get_index; 539 540 u32 done_pkts_coal; 541 542 /* Virtual address of the TX DMA descriptors array */ 543 struct mvneta_tx_desc *descs; 544 545 /* DMA address of the TX DMA descriptors array */ 546 dma_addr_t descs_phys; 547 548 /* Index of the last TX DMA descriptor */ 549 int last_desc; 550 551 /* Index of the next TX DMA descriptor to process */ 552 int next_desc_to_proc; 553 554 /* DMA buffers for TSO headers */ 555 char *tso_hdrs; 556 557 /* DMA address of TSO headers */ 558 dma_addr_t tso_hdrs_phys; 559 560 /* Affinity mask for CPUs*/ 561 cpumask_t affinity_mask; 562 }; 563 564 struct mvneta_rx_queue { 565 /* rx queue number, in the range 0-7 */ 566 u8 id; 567 568 /* num of rx descriptors in the rx descriptor ring */ 569 int size; 570 571 /* counter of times when mvneta_refill() failed */ 572 int missed; 573 574 u32 pkts_coal; 575 u32 time_coal; 576 577 /* Virtual address of the RX buffer */ 578 void **buf_virt_addr; 579 580 /* Virtual address of the RX DMA descriptors array */ 581 struct mvneta_rx_desc *descs; 582 583 /* DMA address of the RX DMA descriptors array */ 584 dma_addr_t descs_phys; 585 586 /* Index of the last RX DMA descriptor */ 587 int last_desc; 588 589 /* Index of the next RX DMA descriptor to process */ 590 int next_desc_to_proc; 591 }; 592 593 static enum cpuhp_state online_hpstate; 594 /* The hardware supports eight (8) rx queues, but we are only allowing 595 * the first one to be used. Therefore, let's just allocate one queue. 596 */ 597 static int rxq_number = 8; 598 static int txq_number = 8; 599 600 static int rxq_def; 601 602 static int rx_copybreak __read_mostly = 256; 603 604 /* HW BM need that each port be identify by a unique ID */ 605 static int global_port_id; 606 607 #define MVNETA_DRIVER_NAME "mvneta" 608 #define MVNETA_DRIVER_VERSION "1.0" 609 610 /* Utility/helper methods */ 611 612 /* Write helper method */ 613 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 614 { 615 writel(data, pp->base + offset); 616 } 617 618 /* Read helper method */ 619 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 620 { 621 return readl(pp->base + offset); 622 } 623 624 /* Increment txq get counter */ 625 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 626 { 627 txq->txq_get_index++; 628 if (txq->txq_get_index == txq->size) 629 txq->txq_get_index = 0; 630 } 631 632 /* Increment txq put counter */ 633 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 634 { 635 txq->txq_put_index++; 636 if (txq->txq_put_index == txq->size) 637 txq->txq_put_index = 0; 638 } 639 640 641 /* Clear all MIB counters */ 642 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 643 { 644 int i; 645 u32 dummy; 646 647 /* Perform dummy reads from MIB counters */ 648 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 649 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 650 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 651 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 652 } 653 654 /* Get System Network Statistics */ 655 static struct rtnl_link_stats64 * 656 mvneta_get_stats64(struct net_device *dev, 657 struct rtnl_link_stats64 *stats) 658 { 659 struct mvneta_port *pp = netdev_priv(dev); 660 unsigned int start; 661 int cpu; 662 663 for_each_possible_cpu(cpu) { 664 struct mvneta_pcpu_stats *cpu_stats; 665 u64 rx_packets; 666 u64 rx_bytes; 667 u64 tx_packets; 668 u64 tx_bytes; 669 670 cpu_stats = per_cpu_ptr(pp->stats, cpu); 671 do { 672 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 673 rx_packets = cpu_stats->rx_packets; 674 rx_bytes = cpu_stats->rx_bytes; 675 tx_packets = cpu_stats->tx_packets; 676 tx_bytes = cpu_stats->tx_bytes; 677 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 678 679 stats->rx_packets += rx_packets; 680 stats->rx_bytes += rx_bytes; 681 stats->tx_packets += tx_packets; 682 stats->tx_bytes += tx_bytes; 683 } 684 685 stats->rx_errors = dev->stats.rx_errors; 686 stats->rx_dropped = dev->stats.rx_dropped; 687 688 stats->tx_dropped = dev->stats.tx_dropped; 689 690 return stats; 691 } 692 693 /* Rx descriptors helper methods */ 694 695 /* Checks whether the RX descriptor having this status is both the first 696 * and the last descriptor for the RX packet. Each RX packet is currently 697 * received through a single RX descriptor, so not having each RX 698 * descriptor with its first and last bits set is an error 699 */ 700 static int mvneta_rxq_desc_is_first_last(u32 status) 701 { 702 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 703 MVNETA_RXD_FIRST_LAST_DESC; 704 } 705 706 /* Add number of descriptors ready to receive new packets */ 707 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 708 struct mvneta_rx_queue *rxq, 709 int ndescs) 710 { 711 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 712 * be added at once 713 */ 714 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 715 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 716 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 717 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 718 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 719 } 720 721 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 722 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 723 } 724 725 /* Get number of RX descriptors occupied by received packets */ 726 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 727 struct mvneta_rx_queue *rxq) 728 { 729 u32 val; 730 731 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 732 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 733 } 734 735 /* Update num of rx desc called upon return from rx path or 736 * from mvneta_rxq_drop_pkts(). 737 */ 738 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 739 struct mvneta_rx_queue *rxq, 740 int rx_done, int rx_filled) 741 { 742 u32 val; 743 744 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 745 val = rx_done | 746 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 747 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 748 return; 749 } 750 751 /* Only 255 descriptors can be added at once */ 752 while ((rx_done > 0) || (rx_filled > 0)) { 753 if (rx_done <= 0xff) { 754 val = rx_done; 755 rx_done = 0; 756 } else { 757 val = 0xff; 758 rx_done -= 0xff; 759 } 760 if (rx_filled <= 0xff) { 761 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 762 rx_filled = 0; 763 } else { 764 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 765 rx_filled -= 0xff; 766 } 767 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 768 } 769 } 770 771 /* Get pointer to next RX descriptor to be processed by SW */ 772 static struct mvneta_rx_desc * 773 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 774 { 775 int rx_desc = rxq->next_desc_to_proc; 776 777 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 778 prefetch(rxq->descs + rxq->next_desc_to_proc); 779 return rxq->descs + rx_desc; 780 } 781 782 /* Change maximum receive size of the port. */ 783 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 784 { 785 u32 val; 786 787 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 788 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 789 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 790 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 791 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 792 } 793 794 795 /* Set rx queue offset */ 796 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 797 struct mvneta_rx_queue *rxq, 798 int offset) 799 { 800 u32 val; 801 802 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 803 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 804 805 /* Offset is in */ 806 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 807 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 808 } 809 810 811 /* Tx descriptors helper methods */ 812 813 /* Update HW with number of TX descriptors to be sent */ 814 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 815 struct mvneta_tx_queue *txq, 816 int pend_desc) 817 { 818 u32 val; 819 820 /* Only 255 descriptors can be added at once ; Assume caller 821 * process TX desriptors in quanta less than 256 822 */ 823 val = pend_desc; 824 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 825 } 826 827 /* Get pointer to next TX descriptor to be processed (send) by HW */ 828 static struct mvneta_tx_desc * 829 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 830 { 831 int tx_desc = txq->next_desc_to_proc; 832 833 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 834 return txq->descs + tx_desc; 835 } 836 837 /* Release the last allocated TX descriptor. Useful to handle DMA 838 * mapping failures in the TX path. 839 */ 840 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 841 { 842 if (txq->next_desc_to_proc == 0) 843 txq->next_desc_to_proc = txq->last_desc - 1; 844 else 845 txq->next_desc_to_proc--; 846 } 847 848 /* Set rxq buf size */ 849 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 850 struct mvneta_rx_queue *rxq, 851 int buf_size) 852 { 853 u32 val; 854 855 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 856 857 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 858 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 859 860 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 861 } 862 863 /* Disable buffer management (BM) */ 864 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 865 struct mvneta_rx_queue *rxq) 866 { 867 u32 val; 868 869 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 870 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 871 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 872 } 873 874 /* Enable buffer management (BM) */ 875 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 876 struct mvneta_rx_queue *rxq) 877 { 878 u32 val; 879 880 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 881 val |= MVNETA_RXQ_HW_BUF_ALLOC; 882 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 883 } 884 885 /* Notify HW about port's assignment of pool for bigger packets */ 886 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 887 struct mvneta_rx_queue *rxq) 888 { 889 u32 val; 890 891 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 892 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 893 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 894 895 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 896 } 897 898 /* Notify HW about port's assignment of pool for smaller packets */ 899 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 900 struct mvneta_rx_queue *rxq) 901 { 902 u32 val; 903 904 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 905 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 906 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 907 908 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 909 } 910 911 /* Set port's receive buffer size for assigned BM pool */ 912 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 913 int buf_size, 914 u8 pool_id) 915 { 916 u32 val; 917 918 if (!IS_ALIGNED(buf_size, 8)) { 919 dev_warn(pp->dev->dev.parent, 920 "illegal buf_size value %d, round to %d\n", 921 buf_size, ALIGN(buf_size, 8)); 922 buf_size = ALIGN(buf_size, 8); 923 } 924 925 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 926 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 927 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 928 } 929 930 /* Configure MBUS window in order to enable access BM internal SRAM */ 931 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 932 u8 target, u8 attr) 933 { 934 u32 win_enable, win_protect; 935 int i; 936 937 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 938 939 if (pp->bm_win_id < 0) { 940 /* Find first not occupied window */ 941 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 942 if (win_enable & (1 << i)) { 943 pp->bm_win_id = i; 944 break; 945 } 946 } 947 if (i == MVNETA_MAX_DECODE_WIN) 948 return -ENOMEM; 949 } else { 950 i = pp->bm_win_id; 951 } 952 953 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 954 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 955 956 if (i < 4) 957 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 958 959 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 960 (attr << 8) | target); 961 962 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 963 964 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 965 win_protect |= 3 << (2 * i); 966 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 967 968 win_enable &= ~(1 << i); 969 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 970 971 return 0; 972 } 973 974 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 975 { 976 u32 wsize; 977 u8 target, attr; 978 int err; 979 980 /* Get BM window information */ 981 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 982 &target, &attr); 983 if (err < 0) 984 return err; 985 986 pp->bm_win_id = -1; 987 988 /* Open NETA -> BM window */ 989 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 990 target, attr); 991 if (err < 0) { 992 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 993 return err; 994 } 995 return 0; 996 } 997 998 /* Assign and initialize pools for port. In case of fail 999 * buffer manager will remain disabled for current port. 1000 */ 1001 static int mvneta_bm_port_init(struct platform_device *pdev, 1002 struct mvneta_port *pp) 1003 { 1004 struct device_node *dn = pdev->dev.of_node; 1005 u32 long_pool_id, short_pool_id; 1006 1007 if (!pp->neta_armada3700) { 1008 int ret; 1009 1010 ret = mvneta_bm_port_mbus_init(pp); 1011 if (ret) 1012 return ret; 1013 } 1014 1015 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1016 netdev_info(pp->dev, "missing long pool id\n"); 1017 return -EINVAL; 1018 } 1019 1020 /* Create port's long pool depending on mtu */ 1021 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1022 MVNETA_BM_LONG, pp->id, 1023 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1024 if (!pp->pool_long) { 1025 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1026 return -ENOMEM; 1027 } 1028 1029 pp->pool_long->port_map |= 1 << pp->id; 1030 1031 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1032 pp->pool_long->id); 1033 1034 /* If short pool id is not defined, assume using single pool */ 1035 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1036 short_pool_id = long_pool_id; 1037 1038 /* Create port's short pool */ 1039 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1040 MVNETA_BM_SHORT, pp->id, 1041 MVNETA_BM_SHORT_PKT_SIZE); 1042 if (!pp->pool_short) { 1043 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1044 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1045 return -ENOMEM; 1046 } 1047 1048 if (short_pool_id != long_pool_id) { 1049 pp->pool_short->port_map |= 1 << pp->id; 1050 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1051 pp->pool_short->id); 1052 } 1053 1054 return 0; 1055 } 1056 1057 /* Update settings of a pool for bigger packets */ 1058 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1059 { 1060 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1061 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1062 int num; 1063 1064 /* Release all buffers from long pool */ 1065 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1066 if (hwbm_pool->buf_num) { 1067 WARN(1, "cannot free all buffers in pool %d\n", 1068 bm_pool->id); 1069 goto bm_mtu_err; 1070 } 1071 1072 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1073 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1074 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1075 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1076 1077 /* Fill entire long pool */ 1078 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1079 if (num != hwbm_pool->size) { 1080 WARN(1, "pool %d: %d of %d allocated\n", 1081 bm_pool->id, num, hwbm_pool->size); 1082 goto bm_mtu_err; 1083 } 1084 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1085 1086 return; 1087 1088 bm_mtu_err: 1089 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1090 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1091 1092 pp->bm_priv = NULL; 1093 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1094 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1095 } 1096 1097 /* Start the Ethernet port RX and TX activity */ 1098 static void mvneta_port_up(struct mvneta_port *pp) 1099 { 1100 int queue; 1101 u32 q_map; 1102 1103 /* Enable all initialized TXs. */ 1104 q_map = 0; 1105 for (queue = 0; queue < txq_number; queue++) { 1106 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1107 if (txq->descs != NULL) 1108 q_map |= (1 << queue); 1109 } 1110 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1111 1112 /* Enable all initialized RXQs. */ 1113 for (queue = 0; queue < rxq_number; queue++) { 1114 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1115 1116 if (rxq->descs != NULL) 1117 q_map |= (1 << queue); 1118 } 1119 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1120 } 1121 1122 /* Stop the Ethernet port activity */ 1123 static void mvneta_port_down(struct mvneta_port *pp) 1124 { 1125 u32 val; 1126 int count; 1127 1128 /* Stop Rx port activity. Check port Rx activity. */ 1129 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1130 1131 /* Issue stop command for active channels only */ 1132 if (val != 0) 1133 mvreg_write(pp, MVNETA_RXQ_CMD, 1134 val << MVNETA_RXQ_DISABLE_SHIFT); 1135 1136 /* Wait for all Rx activity to terminate. */ 1137 count = 0; 1138 do { 1139 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1140 netdev_warn(pp->dev, 1141 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1142 val); 1143 break; 1144 } 1145 mdelay(1); 1146 1147 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1148 } while (val & MVNETA_RXQ_ENABLE_MASK); 1149 1150 /* Stop Tx port activity. Check port Tx activity. Issue stop 1151 * command for active channels only 1152 */ 1153 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1154 1155 if (val != 0) 1156 mvreg_write(pp, MVNETA_TXQ_CMD, 1157 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1158 1159 /* Wait for all Tx activity to terminate. */ 1160 count = 0; 1161 do { 1162 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1163 netdev_warn(pp->dev, 1164 "TIMEOUT for TX stopped status=0x%08x\n", 1165 val); 1166 break; 1167 } 1168 mdelay(1); 1169 1170 /* Check TX Command reg that all Txqs are stopped */ 1171 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1172 1173 } while (val & MVNETA_TXQ_ENABLE_MASK); 1174 1175 /* Double check to verify that TX FIFO is empty */ 1176 count = 0; 1177 do { 1178 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1179 netdev_warn(pp->dev, 1180 "TX FIFO empty timeout status=0x%08x\n", 1181 val); 1182 break; 1183 } 1184 mdelay(1); 1185 1186 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1187 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1188 (val & MVNETA_TX_IN_PRGRS)); 1189 1190 udelay(200); 1191 } 1192 1193 /* Enable the port by setting the port enable bit of the MAC control register */ 1194 static void mvneta_port_enable(struct mvneta_port *pp) 1195 { 1196 u32 val; 1197 1198 /* Enable port */ 1199 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1200 val |= MVNETA_GMAC0_PORT_ENABLE; 1201 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1202 } 1203 1204 /* Disable the port and wait for about 200 usec before retuning */ 1205 static void mvneta_port_disable(struct mvneta_port *pp) 1206 { 1207 u32 val; 1208 1209 /* Reset the Enable bit in the Serial Control Register */ 1210 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1211 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1212 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1213 1214 udelay(200); 1215 } 1216 1217 /* Multicast tables methods */ 1218 1219 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1220 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1221 { 1222 int offset; 1223 u32 val; 1224 1225 if (queue == -1) { 1226 val = 0; 1227 } else { 1228 val = 0x1 | (queue << 1); 1229 val |= (val << 24) | (val << 16) | (val << 8); 1230 } 1231 1232 for (offset = 0; offset <= 0xc; offset += 4) 1233 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1234 } 1235 1236 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1237 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1238 { 1239 int offset; 1240 u32 val; 1241 1242 if (queue == -1) { 1243 val = 0; 1244 } else { 1245 val = 0x1 | (queue << 1); 1246 val |= (val << 24) | (val << 16) | (val << 8); 1247 } 1248 1249 for (offset = 0; offset <= 0xfc; offset += 4) 1250 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1251 1252 } 1253 1254 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1255 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1256 { 1257 int offset; 1258 u32 val; 1259 1260 if (queue == -1) { 1261 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1262 val = 0; 1263 } else { 1264 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1265 val = 0x1 | (queue << 1); 1266 val |= (val << 24) | (val << 16) | (val << 8); 1267 } 1268 1269 for (offset = 0; offset <= 0xfc; offset += 4) 1270 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1271 } 1272 1273 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1274 { 1275 u32 val; 1276 1277 if (enable) { 1278 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1279 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1280 MVNETA_GMAC_FORCE_LINK_DOWN | 1281 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1282 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1283 MVNETA_GMAC_AN_SPEED_EN | 1284 MVNETA_GMAC_AN_DUPLEX_EN; 1285 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1286 1287 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1288 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1289 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1290 1291 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1292 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1293 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1294 } else { 1295 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1296 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1297 MVNETA_GMAC_AN_SPEED_EN | 1298 MVNETA_GMAC_AN_DUPLEX_EN); 1299 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1300 1301 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1302 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1303 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1304 1305 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1306 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1307 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1308 } 1309 } 1310 1311 static void mvneta_percpu_unmask_interrupt(void *arg) 1312 { 1313 struct mvneta_port *pp = arg; 1314 1315 /* All the queue are unmasked, but actually only the ones 1316 * mapped to this CPU will be unmasked 1317 */ 1318 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1319 MVNETA_RX_INTR_MASK_ALL | 1320 MVNETA_TX_INTR_MASK_ALL | 1321 MVNETA_MISCINTR_INTR_MASK); 1322 } 1323 1324 static void mvneta_percpu_mask_interrupt(void *arg) 1325 { 1326 struct mvneta_port *pp = arg; 1327 1328 /* All the queue are masked, but actually only the ones 1329 * mapped to this CPU will be masked 1330 */ 1331 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1332 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1333 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1334 } 1335 1336 static void mvneta_percpu_clear_intr_cause(void *arg) 1337 { 1338 struct mvneta_port *pp = arg; 1339 1340 /* All the queue are cleared, but actually only the ones 1341 * mapped to this CPU will be cleared 1342 */ 1343 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1344 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1345 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1346 } 1347 1348 /* This method sets defaults to the NETA port: 1349 * Clears interrupt Cause and Mask registers. 1350 * Clears all MAC tables. 1351 * Sets defaults to all registers. 1352 * Resets RX and TX descriptor rings. 1353 * Resets PHY. 1354 * This method can be called after mvneta_port_down() to return the port 1355 * settings to defaults. 1356 */ 1357 static void mvneta_defaults_set(struct mvneta_port *pp) 1358 { 1359 int cpu; 1360 int queue; 1361 u32 val; 1362 int max_cpu = num_present_cpus(); 1363 1364 /* Clear all Cause registers */ 1365 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1366 1367 /* Mask all interrupts */ 1368 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1369 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1370 1371 /* Enable MBUS Retry bit16 */ 1372 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1373 1374 /* Set CPU queue access map. CPUs are assigned to the RX and 1375 * TX queues modulo their number. If there is only one TX 1376 * queue then it is assigned to the CPU associated to the 1377 * default RX queue. 1378 */ 1379 for_each_present_cpu(cpu) { 1380 int rxq_map = 0, txq_map = 0; 1381 int rxq, txq; 1382 if (!pp->neta_armada3700) { 1383 for (rxq = 0; rxq < rxq_number; rxq++) 1384 if ((rxq % max_cpu) == cpu) 1385 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1386 1387 for (txq = 0; txq < txq_number; txq++) 1388 if ((txq % max_cpu) == cpu) 1389 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1390 1391 /* With only one TX queue we configure a special case 1392 * which will allow to get all the irq on a single 1393 * CPU 1394 */ 1395 if (txq_number == 1) 1396 txq_map = (cpu == pp->rxq_def) ? 1397 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1398 1399 } else { 1400 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1401 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1402 } 1403 1404 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1405 } 1406 1407 /* Reset RX and TX DMAs */ 1408 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1409 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1410 1411 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1412 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1413 for (queue = 0; queue < txq_number; queue++) { 1414 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1415 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1416 } 1417 1418 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1419 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1420 1421 /* Set Port Acceleration Mode */ 1422 if (pp->bm_priv) 1423 /* HW buffer management + legacy parser */ 1424 val = MVNETA_ACC_MODE_EXT2; 1425 else 1426 /* SW buffer management + legacy parser */ 1427 val = MVNETA_ACC_MODE_EXT1; 1428 mvreg_write(pp, MVNETA_ACC_MODE, val); 1429 1430 if (pp->bm_priv) 1431 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1432 1433 /* Update val of portCfg register accordingly with all RxQueue types */ 1434 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1435 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1436 1437 val = 0; 1438 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1439 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1440 1441 /* Build PORT_SDMA_CONFIG_REG */ 1442 val = 0; 1443 1444 /* Default burst size */ 1445 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1446 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1447 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1448 1449 #if defined(__BIG_ENDIAN) 1450 val |= MVNETA_DESC_SWAP; 1451 #endif 1452 1453 /* Assign port SDMA configuration */ 1454 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1455 1456 /* Disable PHY polling in hardware, since we're using the 1457 * kernel phylib to do this. 1458 */ 1459 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1460 val &= ~MVNETA_PHY_POLLING_ENABLE; 1461 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1462 1463 mvneta_set_autoneg(pp, pp->use_inband_status); 1464 mvneta_set_ucast_table(pp, -1); 1465 mvneta_set_special_mcast_table(pp, -1); 1466 mvneta_set_other_mcast_table(pp, -1); 1467 1468 /* Set port interrupt enable register - default enable all */ 1469 mvreg_write(pp, MVNETA_INTR_ENABLE, 1470 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1471 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1472 1473 mvneta_mib_counters_clear(pp); 1474 } 1475 1476 /* Set max sizes for tx queues */ 1477 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1478 1479 { 1480 u32 val, size, mtu; 1481 int queue; 1482 1483 mtu = max_tx_size * 8; 1484 if (mtu > MVNETA_TX_MTU_MAX) 1485 mtu = MVNETA_TX_MTU_MAX; 1486 1487 /* Set MTU */ 1488 val = mvreg_read(pp, MVNETA_TX_MTU); 1489 val &= ~MVNETA_TX_MTU_MAX; 1490 val |= mtu; 1491 mvreg_write(pp, MVNETA_TX_MTU, val); 1492 1493 /* TX token size and all TXQs token size must be larger that MTU */ 1494 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1495 1496 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1497 if (size < mtu) { 1498 size = mtu; 1499 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1500 val |= size; 1501 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1502 } 1503 for (queue = 0; queue < txq_number; queue++) { 1504 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1505 1506 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1507 if (size < mtu) { 1508 size = mtu; 1509 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1510 val |= size; 1511 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1512 } 1513 } 1514 } 1515 1516 /* Set unicast address */ 1517 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1518 int queue) 1519 { 1520 unsigned int unicast_reg; 1521 unsigned int tbl_offset; 1522 unsigned int reg_offset; 1523 1524 /* Locate the Unicast table entry */ 1525 last_nibble = (0xf & last_nibble); 1526 1527 /* offset from unicast tbl base */ 1528 tbl_offset = (last_nibble / 4) * 4; 1529 1530 /* offset within the above reg */ 1531 reg_offset = last_nibble % 4; 1532 1533 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1534 1535 if (queue == -1) { 1536 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1537 unicast_reg &= ~(0xff << (8 * reg_offset)); 1538 } else { 1539 unicast_reg &= ~(0xff << (8 * reg_offset)); 1540 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1541 } 1542 1543 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1544 } 1545 1546 /* Set mac address */ 1547 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1548 int queue) 1549 { 1550 unsigned int mac_h; 1551 unsigned int mac_l; 1552 1553 if (queue != -1) { 1554 mac_l = (addr[4] << 8) | (addr[5]); 1555 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1556 (addr[2] << 8) | (addr[3] << 0); 1557 1558 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1559 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1560 } 1561 1562 /* Accept frames of this address */ 1563 mvneta_set_ucast_addr(pp, addr[5], queue); 1564 } 1565 1566 /* Set the number of packets that will be received before RX interrupt 1567 * will be generated by HW. 1568 */ 1569 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1570 struct mvneta_rx_queue *rxq, u32 value) 1571 { 1572 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1573 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1574 rxq->pkts_coal = value; 1575 } 1576 1577 /* Set the time delay in usec before RX interrupt will be generated by 1578 * HW. 1579 */ 1580 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1581 struct mvneta_rx_queue *rxq, u32 value) 1582 { 1583 u32 val; 1584 unsigned long clk_rate; 1585 1586 clk_rate = clk_get_rate(pp->clk); 1587 val = (clk_rate / 1000000) * value; 1588 1589 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1590 rxq->time_coal = value; 1591 } 1592 1593 /* Set threshold for TX_DONE pkts coalescing */ 1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1595 struct mvneta_tx_queue *txq, u32 value) 1596 { 1597 u32 val; 1598 1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1600 1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1603 1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1605 1606 txq->done_pkts_coal = value; 1607 } 1608 1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1611 u32 phys_addr, void *virt_addr, 1612 struct mvneta_rx_queue *rxq) 1613 { 1614 int i; 1615 1616 rx_desc->buf_phys_addr = phys_addr; 1617 i = rx_desc - rxq->descs; 1618 rxq->buf_virt_addr[i] = virt_addr; 1619 } 1620 1621 /* Decrement sent descriptors counter */ 1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1623 struct mvneta_tx_queue *txq, 1624 int sent_desc) 1625 { 1626 u32 val; 1627 1628 /* Only 255 TX descriptors can be updated at once */ 1629 while (sent_desc > 0xff) { 1630 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1631 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1632 sent_desc = sent_desc - 0xff; 1633 } 1634 1635 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1636 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1637 } 1638 1639 /* Get number of TX descriptors already sent by HW */ 1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1641 struct mvneta_tx_queue *txq) 1642 { 1643 u32 val; 1644 int sent_desc; 1645 1646 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1647 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1648 MVNETA_TXQ_SENT_DESC_SHIFT; 1649 1650 return sent_desc; 1651 } 1652 1653 /* Get number of sent descriptors and decrement counter. 1654 * The number of sent descriptors is returned. 1655 */ 1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1657 struct mvneta_tx_queue *txq) 1658 { 1659 int sent_desc; 1660 1661 /* Get number of sent descriptors */ 1662 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1663 1664 /* Decrement sent descriptors counter */ 1665 if (sent_desc) 1666 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1667 1668 return sent_desc; 1669 } 1670 1671 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1672 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1673 int ip_hdr_len, int l4_proto) 1674 { 1675 u32 command; 1676 1677 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1678 * G_L4_chk, L4_type; required only for checksum 1679 * calculation 1680 */ 1681 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1682 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1683 1684 if (l3_proto == htons(ETH_P_IP)) 1685 command |= MVNETA_TXD_IP_CSUM; 1686 else 1687 command |= MVNETA_TX_L3_IP6; 1688 1689 if (l4_proto == IPPROTO_TCP) 1690 command |= MVNETA_TX_L4_CSUM_FULL; 1691 else if (l4_proto == IPPROTO_UDP) 1692 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1693 else 1694 command |= MVNETA_TX_L4_CSUM_NOT; 1695 1696 return command; 1697 } 1698 1699 1700 /* Display more error info */ 1701 static void mvneta_rx_error(struct mvneta_port *pp, 1702 struct mvneta_rx_desc *rx_desc) 1703 { 1704 u32 status = rx_desc->status; 1705 1706 if (!mvneta_rxq_desc_is_first_last(status)) { 1707 netdev_err(pp->dev, 1708 "bad rx status %08x (buffer oversize), size=%d\n", 1709 status, rx_desc->data_size); 1710 return; 1711 } 1712 1713 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1714 case MVNETA_RXD_ERR_CRC: 1715 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1716 status, rx_desc->data_size); 1717 break; 1718 case MVNETA_RXD_ERR_OVERRUN: 1719 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1720 status, rx_desc->data_size); 1721 break; 1722 case MVNETA_RXD_ERR_LEN: 1723 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1724 status, rx_desc->data_size); 1725 break; 1726 case MVNETA_RXD_ERR_RESOURCE: 1727 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1728 status, rx_desc->data_size); 1729 break; 1730 } 1731 } 1732 1733 /* Handle RX checksum offload based on the descriptor's status */ 1734 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1735 struct sk_buff *skb) 1736 { 1737 if ((status & MVNETA_RXD_L3_IP4) && 1738 (status & MVNETA_RXD_L4_CSUM_OK)) { 1739 skb->csum = 0; 1740 skb->ip_summed = CHECKSUM_UNNECESSARY; 1741 return; 1742 } 1743 1744 skb->ip_summed = CHECKSUM_NONE; 1745 } 1746 1747 /* Return tx queue pointer (find last set bit) according to <cause> returned 1748 * form tx_done reg. <cause> must not be null. The return value is always a 1749 * valid queue for matching the first one found in <cause>. 1750 */ 1751 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1752 u32 cause) 1753 { 1754 int queue = fls(cause) - 1; 1755 1756 return &pp->txqs[queue]; 1757 } 1758 1759 /* Free tx queue skbuffs */ 1760 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1761 struct mvneta_tx_queue *txq, int num) 1762 { 1763 int i; 1764 1765 for (i = 0; i < num; i++) { 1766 struct mvneta_tx_desc *tx_desc = txq->descs + 1767 txq->txq_get_index; 1768 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1769 1770 mvneta_txq_inc_get(txq); 1771 1772 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1773 dma_unmap_single(pp->dev->dev.parent, 1774 tx_desc->buf_phys_addr, 1775 tx_desc->data_size, DMA_TO_DEVICE); 1776 if (!skb) 1777 continue; 1778 dev_kfree_skb_any(skb); 1779 } 1780 } 1781 1782 /* Handle end of transmission */ 1783 static void mvneta_txq_done(struct mvneta_port *pp, 1784 struct mvneta_tx_queue *txq) 1785 { 1786 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1787 int tx_done; 1788 1789 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1790 if (!tx_done) 1791 return; 1792 1793 mvneta_txq_bufs_free(pp, txq, tx_done); 1794 1795 txq->count -= tx_done; 1796 1797 if (netif_tx_queue_stopped(nq)) { 1798 if (txq->count <= txq->tx_wake_threshold) 1799 netif_tx_wake_queue(nq); 1800 } 1801 } 1802 1803 void *mvneta_frag_alloc(unsigned int frag_size) 1804 { 1805 if (likely(frag_size <= PAGE_SIZE)) 1806 return netdev_alloc_frag(frag_size); 1807 else 1808 return kmalloc(frag_size, GFP_ATOMIC); 1809 } 1810 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1811 1812 void mvneta_frag_free(unsigned int frag_size, void *data) 1813 { 1814 if (likely(frag_size <= PAGE_SIZE)) 1815 skb_free_frag(data); 1816 else 1817 kfree(data); 1818 } 1819 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1820 1821 /* Refill processing for SW buffer management */ 1822 static int mvneta_rx_refill(struct mvneta_port *pp, 1823 struct mvneta_rx_desc *rx_desc, 1824 struct mvneta_rx_queue *rxq) 1825 1826 { 1827 dma_addr_t phys_addr; 1828 void *data; 1829 1830 data = mvneta_frag_alloc(pp->frag_size); 1831 if (!data) 1832 return -ENOMEM; 1833 1834 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1835 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1836 DMA_FROM_DEVICE); 1837 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1838 mvneta_frag_free(pp->frag_size, data); 1839 return -ENOMEM; 1840 } 1841 1842 phys_addr += pp->rx_offset_correction; 1843 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1844 return 0; 1845 } 1846 1847 /* Handle tx checksum */ 1848 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1849 { 1850 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1851 int ip_hdr_len = 0; 1852 __be16 l3_proto = vlan_get_protocol(skb); 1853 u8 l4_proto; 1854 1855 if (l3_proto == htons(ETH_P_IP)) { 1856 struct iphdr *ip4h = ip_hdr(skb); 1857 1858 /* Calculate IPv4 checksum and L4 checksum */ 1859 ip_hdr_len = ip4h->ihl; 1860 l4_proto = ip4h->protocol; 1861 } else if (l3_proto == htons(ETH_P_IPV6)) { 1862 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1863 1864 /* Read l4_protocol from one of IPv6 extra headers */ 1865 if (skb_network_header_len(skb) > 0) 1866 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1867 l4_proto = ip6h->nexthdr; 1868 } else 1869 return MVNETA_TX_L4_CSUM_NOT; 1870 1871 return mvneta_txq_desc_csum(skb_network_offset(skb), 1872 l3_proto, ip_hdr_len, l4_proto); 1873 } 1874 1875 return MVNETA_TX_L4_CSUM_NOT; 1876 } 1877 1878 /* Drop packets received by the RXQ and free buffers */ 1879 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1880 struct mvneta_rx_queue *rxq) 1881 { 1882 int rx_done, i; 1883 1884 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1885 if (rx_done) 1886 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1887 1888 if (pp->bm_priv) { 1889 for (i = 0; i < rx_done; i++) { 1890 struct mvneta_rx_desc *rx_desc = 1891 mvneta_rxq_next_desc_get(rxq); 1892 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1893 struct mvneta_bm_pool *bm_pool; 1894 1895 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1896 /* Return dropped buffer to the pool */ 1897 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1898 rx_desc->buf_phys_addr); 1899 } 1900 return; 1901 } 1902 1903 for (i = 0; i < rxq->size; i++) { 1904 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1905 void *data = rxq->buf_virt_addr[i]; 1906 1907 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1908 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1909 mvneta_frag_free(pp->frag_size, data); 1910 } 1911 } 1912 1913 /* Main rx processing when using software buffer management */ 1914 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1915 struct mvneta_rx_queue *rxq) 1916 { 1917 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1918 struct net_device *dev = pp->dev; 1919 int rx_done; 1920 u32 rcvd_pkts = 0; 1921 u32 rcvd_bytes = 0; 1922 1923 /* Get number of received packets */ 1924 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1925 1926 if (rx_todo > rx_done) 1927 rx_todo = rx_done; 1928 1929 rx_done = 0; 1930 1931 /* Fairness NAPI loop */ 1932 while (rx_done < rx_todo) { 1933 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1934 struct sk_buff *skb; 1935 unsigned char *data; 1936 dma_addr_t phys_addr; 1937 u32 rx_status, frag_size; 1938 int rx_bytes, err, index; 1939 1940 rx_done++; 1941 rx_status = rx_desc->status; 1942 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1943 index = rx_desc - rxq->descs; 1944 data = rxq->buf_virt_addr[index]; 1945 phys_addr = rx_desc->buf_phys_addr; 1946 1947 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1948 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1949 err_drop_frame: 1950 dev->stats.rx_errors++; 1951 mvneta_rx_error(pp, rx_desc); 1952 /* leave the descriptor untouched */ 1953 continue; 1954 } 1955 1956 if (rx_bytes <= rx_copybreak) { 1957 /* better copy a small frame and not unmap the DMA region */ 1958 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1959 if (unlikely(!skb)) 1960 goto err_drop_frame; 1961 1962 dma_sync_single_range_for_cpu(dev->dev.parent, 1963 phys_addr, 1964 MVNETA_MH_SIZE + NET_SKB_PAD, 1965 rx_bytes, 1966 DMA_FROM_DEVICE); 1967 memcpy(skb_put(skb, rx_bytes), 1968 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1969 rx_bytes); 1970 1971 skb->protocol = eth_type_trans(skb, dev); 1972 mvneta_rx_csum(pp, rx_status, skb); 1973 napi_gro_receive(&port->napi, skb); 1974 1975 rcvd_pkts++; 1976 rcvd_bytes += rx_bytes; 1977 1978 /* leave the descriptor and buffer untouched */ 1979 continue; 1980 } 1981 1982 /* Refill processing */ 1983 err = mvneta_rx_refill(pp, rx_desc, rxq); 1984 if (err) { 1985 netdev_err(dev, "Linux processing - Can't refill\n"); 1986 rxq->missed++; 1987 goto err_drop_frame; 1988 } 1989 1990 frag_size = pp->frag_size; 1991 1992 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 1993 1994 /* After refill old buffer has to be unmapped regardless 1995 * the skb is successfully built or not. 1996 */ 1997 dma_unmap_single(dev->dev.parent, phys_addr, 1998 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1999 DMA_FROM_DEVICE); 2000 2001 if (!skb) 2002 goto err_drop_frame; 2003 2004 rcvd_pkts++; 2005 rcvd_bytes += rx_bytes; 2006 2007 /* Linux processing */ 2008 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2009 skb_put(skb, rx_bytes); 2010 2011 skb->protocol = eth_type_trans(skb, dev); 2012 2013 mvneta_rx_csum(pp, rx_status, skb); 2014 2015 napi_gro_receive(&port->napi, skb); 2016 } 2017 2018 if (rcvd_pkts) { 2019 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2020 2021 u64_stats_update_begin(&stats->syncp); 2022 stats->rx_packets += rcvd_pkts; 2023 stats->rx_bytes += rcvd_bytes; 2024 u64_stats_update_end(&stats->syncp); 2025 } 2026 2027 /* Update rxq management counters */ 2028 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2029 2030 return rx_done; 2031 } 2032 2033 /* Main rx processing when using hardware buffer management */ 2034 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2035 struct mvneta_rx_queue *rxq) 2036 { 2037 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2038 struct net_device *dev = pp->dev; 2039 int rx_done; 2040 u32 rcvd_pkts = 0; 2041 u32 rcvd_bytes = 0; 2042 2043 /* Get number of received packets */ 2044 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2045 2046 if (rx_todo > rx_done) 2047 rx_todo = rx_done; 2048 2049 rx_done = 0; 2050 2051 /* Fairness NAPI loop */ 2052 while (rx_done < rx_todo) { 2053 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2054 struct mvneta_bm_pool *bm_pool = NULL; 2055 struct sk_buff *skb; 2056 unsigned char *data; 2057 dma_addr_t phys_addr; 2058 u32 rx_status, frag_size; 2059 int rx_bytes, err; 2060 u8 pool_id; 2061 2062 rx_done++; 2063 rx_status = rx_desc->status; 2064 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2065 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2066 phys_addr = rx_desc->buf_phys_addr; 2067 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2068 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2069 2070 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2071 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2072 err_drop_frame_ret_pool: 2073 /* Return the buffer to the pool */ 2074 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2075 rx_desc->buf_phys_addr); 2076 err_drop_frame: 2077 dev->stats.rx_errors++; 2078 mvneta_rx_error(pp, rx_desc); 2079 /* leave the descriptor untouched */ 2080 continue; 2081 } 2082 2083 if (rx_bytes <= rx_copybreak) { 2084 /* better copy a small frame and not unmap the DMA region */ 2085 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2086 if (unlikely(!skb)) 2087 goto err_drop_frame_ret_pool; 2088 2089 dma_sync_single_range_for_cpu(dev->dev.parent, 2090 rx_desc->buf_phys_addr, 2091 MVNETA_MH_SIZE + NET_SKB_PAD, 2092 rx_bytes, 2093 DMA_FROM_DEVICE); 2094 memcpy(skb_put(skb, rx_bytes), 2095 data + MVNETA_MH_SIZE + NET_SKB_PAD, 2096 rx_bytes); 2097 2098 skb->protocol = eth_type_trans(skb, dev); 2099 mvneta_rx_csum(pp, rx_status, skb); 2100 napi_gro_receive(&port->napi, skb); 2101 2102 rcvd_pkts++; 2103 rcvd_bytes += rx_bytes; 2104 2105 /* Return the buffer to the pool */ 2106 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2107 rx_desc->buf_phys_addr); 2108 2109 /* leave the descriptor and buffer untouched */ 2110 continue; 2111 } 2112 2113 /* Refill processing */ 2114 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2115 if (err) { 2116 netdev_err(dev, "Linux processing - Can't refill\n"); 2117 rxq->missed++; 2118 goto err_drop_frame_ret_pool; 2119 } 2120 2121 frag_size = bm_pool->hwbm_pool.frag_size; 2122 2123 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2124 2125 /* After refill old buffer has to be unmapped regardless 2126 * the skb is successfully built or not. 2127 */ 2128 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2129 bm_pool->buf_size, DMA_FROM_DEVICE); 2130 if (!skb) 2131 goto err_drop_frame; 2132 2133 rcvd_pkts++; 2134 rcvd_bytes += rx_bytes; 2135 2136 /* Linux processing */ 2137 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2138 skb_put(skb, rx_bytes); 2139 2140 skb->protocol = eth_type_trans(skb, dev); 2141 2142 mvneta_rx_csum(pp, rx_status, skb); 2143 2144 napi_gro_receive(&port->napi, skb); 2145 } 2146 2147 if (rcvd_pkts) { 2148 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2149 2150 u64_stats_update_begin(&stats->syncp); 2151 stats->rx_packets += rcvd_pkts; 2152 stats->rx_bytes += rcvd_bytes; 2153 u64_stats_update_end(&stats->syncp); 2154 } 2155 2156 /* Update rxq management counters */ 2157 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2158 2159 return rx_done; 2160 } 2161 2162 static inline void 2163 mvneta_tso_put_hdr(struct sk_buff *skb, 2164 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2165 { 2166 struct mvneta_tx_desc *tx_desc; 2167 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2168 2169 txq->tx_skb[txq->txq_put_index] = NULL; 2170 tx_desc = mvneta_txq_next_desc_get(txq); 2171 tx_desc->data_size = hdr_len; 2172 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2173 tx_desc->command |= MVNETA_TXD_F_DESC; 2174 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2175 txq->txq_put_index * TSO_HEADER_SIZE; 2176 mvneta_txq_inc_put(txq); 2177 } 2178 2179 static inline int 2180 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2181 struct sk_buff *skb, char *data, int size, 2182 bool last_tcp, bool is_last) 2183 { 2184 struct mvneta_tx_desc *tx_desc; 2185 2186 tx_desc = mvneta_txq_next_desc_get(txq); 2187 tx_desc->data_size = size; 2188 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2189 size, DMA_TO_DEVICE); 2190 if (unlikely(dma_mapping_error(dev->dev.parent, 2191 tx_desc->buf_phys_addr))) { 2192 mvneta_txq_desc_put(txq); 2193 return -ENOMEM; 2194 } 2195 2196 tx_desc->command = 0; 2197 txq->tx_skb[txq->txq_put_index] = NULL; 2198 2199 if (last_tcp) { 2200 /* last descriptor in the TCP packet */ 2201 tx_desc->command = MVNETA_TXD_L_DESC; 2202 2203 /* last descriptor in SKB */ 2204 if (is_last) 2205 txq->tx_skb[txq->txq_put_index] = skb; 2206 } 2207 mvneta_txq_inc_put(txq); 2208 return 0; 2209 } 2210 2211 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2212 struct mvneta_tx_queue *txq) 2213 { 2214 int total_len, data_left; 2215 int desc_count = 0; 2216 struct mvneta_port *pp = netdev_priv(dev); 2217 struct tso_t tso; 2218 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2219 int i; 2220 2221 /* Count needed descriptors */ 2222 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2223 return 0; 2224 2225 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2226 pr_info("*** Is this even possible???!?!?\n"); 2227 return 0; 2228 } 2229 2230 /* Initialize the TSO handler, and prepare the first payload */ 2231 tso_start(skb, &tso); 2232 2233 total_len = skb->len - hdr_len; 2234 while (total_len > 0) { 2235 char *hdr; 2236 2237 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2238 total_len -= data_left; 2239 desc_count++; 2240 2241 /* prepare packet headers: MAC + IP + TCP */ 2242 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2243 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2244 2245 mvneta_tso_put_hdr(skb, pp, txq); 2246 2247 while (data_left > 0) { 2248 int size; 2249 desc_count++; 2250 2251 size = min_t(int, tso.size, data_left); 2252 2253 if (mvneta_tso_put_data(dev, txq, skb, 2254 tso.data, size, 2255 size == data_left, 2256 total_len == 0)) 2257 goto err_release; 2258 data_left -= size; 2259 2260 tso_build_data(skb, &tso, size); 2261 } 2262 } 2263 2264 return desc_count; 2265 2266 err_release: 2267 /* Release all used data descriptors; header descriptors must not 2268 * be DMA-unmapped. 2269 */ 2270 for (i = desc_count - 1; i >= 0; i--) { 2271 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2272 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2273 dma_unmap_single(pp->dev->dev.parent, 2274 tx_desc->buf_phys_addr, 2275 tx_desc->data_size, 2276 DMA_TO_DEVICE); 2277 mvneta_txq_desc_put(txq); 2278 } 2279 return 0; 2280 } 2281 2282 /* Handle tx fragmentation processing */ 2283 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2284 struct mvneta_tx_queue *txq) 2285 { 2286 struct mvneta_tx_desc *tx_desc; 2287 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2288 2289 for (i = 0; i < nr_frags; i++) { 2290 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2291 void *addr = page_address(frag->page.p) + frag->page_offset; 2292 2293 tx_desc = mvneta_txq_next_desc_get(txq); 2294 tx_desc->data_size = frag->size; 2295 2296 tx_desc->buf_phys_addr = 2297 dma_map_single(pp->dev->dev.parent, addr, 2298 tx_desc->data_size, DMA_TO_DEVICE); 2299 2300 if (dma_mapping_error(pp->dev->dev.parent, 2301 tx_desc->buf_phys_addr)) { 2302 mvneta_txq_desc_put(txq); 2303 goto error; 2304 } 2305 2306 if (i == nr_frags - 1) { 2307 /* Last descriptor */ 2308 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2309 txq->tx_skb[txq->txq_put_index] = skb; 2310 } else { 2311 /* Descriptor in the middle: Not First, Not Last */ 2312 tx_desc->command = 0; 2313 txq->tx_skb[txq->txq_put_index] = NULL; 2314 } 2315 mvneta_txq_inc_put(txq); 2316 } 2317 2318 return 0; 2319 2320 error: 2321 /* Release all descriptors that were used to map fragments of 2322 * this packet, as well as the corresponding DMA mappings 2323 */ 2324 for (i = i - 1; i >= 0; i--) { 2325 tx_desc = txq->descs + i; 2326 dma_unmap_single(pp->dev->dev.parent, 2327 tx_desc->buf_phys_addr, 2328 tx_desc->data_size, 2329 DMA_TO_DEVICE); 2330 mvneta_txq_desc_put(txq); 2331 } 2332 2333 return -ENOMEM; 2334 } 2335 2336 /* Main tx processing */ 2337 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2338 { 2339 struct mvneta_port *pp = netdev_priv(dev); 2340 u16 txq_id = skb_get_queue_mapping(skb); 2341 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2342 struct mvneta_tx_desc *tx_desc; 2343 int len = skb->len; 2344 int frags = 0; 2345 u32 tx_cmd; 2346 2347 if (!netif_running(dev)) 2348 goto out; 2349 2350 if (skb_is_gso(skb)) { 2351 frags = mvneta_tx_tso(skb, dev, txq); 2352 goto out; 2353 } 2354 2355 frags = skb_shinfo(skb)->nr_frags + 1; 2356 2357 /* Get a descriptor for the first part of the packet */ 2358 tx_desc = mvneta_txq_next_desc_get(txq); 2359 2360 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2361 2362 tx_desc->data_size = skb_headlen(skb); 2363 2364 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2365 tx_desc->data_size, 2366 DMA_TO_DEVICE); 2367 if (unlikely(dma_mapping_error(dev->dev.parent, 2368 tx_desc->buf_phys_addr))) { 2369 mvneta_txq_desc_put(txq); 2370 frags = 0; 2371 goto out; 2372 } 2373 2374 if (frags == 1) { 2375 /* First and Last descriptor */ 2376 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2377 tx_desc->command = tx_cmd; 2378 txq->tx_skb[txq->txq_put_index] = skb; 2379 mvneta_txq_inc_put(txq); 2380 } else { 2381 /* First but not Last */ 2382 tx_cmd |= MVNETA_TXD_F_DESC; 2383 txq->tx_skb[txq->txq_put_index] = NULL; 2384 mvneta_txq_inc_put(txq); 2385 tx_desc->command = tx_cmd; 2386 /* Continue with other skb fragments */ 2387 if (mvneta_tx_frag_process(pp, skb, txq)) { 2388 dma_unmap_single(dev->dev.parent, 2389 tx_desc->buf_phys_addr, 2390 tx_desc->data_size, 2391 DMA_TO_DEVICE); 2392 mvneta_txq_desc_put(txq); 2393 frags = 0; 2394 goto out; 2395 } 2396 } 2397 2398 out: 2399 if (frags > 0) { 2400 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2401 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2402 2403 txq->count += frags; 2404 mvneta_txq_pend_desc_add(pp, txq, frags); 2405 2406 if (txq->count >= txq->tx_stop_threshold) 2407 netif_tx_stop_queue(nq); 2408 2409 u64_stats_update_begin(&stats->syncp); 2410 stats->tx_packets++; 2411 stats->tx_bytes += len; 2412 u64_stats_update_end(&stats->syncp); 2413 } else { 2414 dev->stats.tx_dropped++; 2415 dev_kfree_skb_any(skb); 2416 } 2417 2418 return NETDEV_TX_OK; 2419 } 2420 2421 2422 /* Free tx resources, when resetting a port */ 2423 static void mvneta_txq_done_force(struct mvneta_port *pp, 2424 struct mvneta_tx_queue *txq) 2425 2426 { 2427 int tx_done = txq->count; 2428 2429 mvneta_txq_bufs_free(pp, txq, tx_done); 2430 2431 /* reset txq */ 2432 txq->count = 0; 2433 txq->txq_put_index = 0; 2434 txq->txq_get_index = 0; 2435 } 2436 2437 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2438 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2439 */ 2440 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2441 { 2442 struct mvneta_tx_queue *txq; 2443 struct netdev_queue *nq; 2444 2445 while (cause_tx_done) { 2446 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2447 2448 nq = netdev_get_tx_queue(pp->dev, txq->id); 2449 __netif_tx_lock(nq, smp_processor_id()); 2450 2451 if (txq->count) 2452 mvneta_txq_done(pp, txq); 2453 2454 __netif_tx_unlock(nq); 2455 cause_tx_done &= ~((1 << txq->id)); 2456 } 2457 } 2458 2459 /* Compute crc8 of the specified address, using a unique algorithm , 2460 * according to hw spec, different than generic crc8 algorithm 2461 */ 2462 static int mvneta_addr_crc(unsigned char *addr) 2463 { 2464 int crc = 0; 2465 int i; 2466 2467 for (i = 0; i < ETH_ALEN; i++) { 2468 int j; 2469 2470 crc = (crc ^ addr[i]) << 8; 2471 for (j = 7; j >= 0; j--) { 2472 if (crc & (0x100 << j)) 2473 crc ^= 0x107 << j; 2474 } 2475 } 2476 2477 return crc; 2478 } 2479 2480 /* This method controls the net device special MAC multicast support. 2481 * The Special Multicast Table for MAC addresses supports MAC of the form 2482 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2483 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2484 * Table entries in the DA-Filter table. This method set the Special 2485 * Multicast Table appropriate entry. 2486 */ 2487 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2488 unsigned char last_byte, 2489 int queue) 2490 { 2491 unsigned int smc_table_reg; 2492 unsigned int tbl_offset; 2493 unsigned int reg_offset; 2494 2495 /* Register offset from SMC table base */ 2496 tbl_offset = (last_byte / 4); 2497 /* Entry offset within the above reg */ 2498 reg_offset = last_byte % 4; 2499 2500 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2501 + tbl_offset * 4)); 2502 2503 if (queue == -1) 2504 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2505 else { 2506 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2507 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2508 } 2509 2510 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2511 smc_table_reg); 2512 } 2513 2514 /* This method controls the network device Other MAC multicast support. 2515 * The Other Multicast Table is used for multicast of another type. 2516 * A CRC-8 is used as an index to the Other Multicast Table entries 2517 * in the DA-Filter table. 2518 * The method gets the CRC-8 value from the calling routine and 2519 * sets the Other Multicast Table appropriate entry according to the 2520 * specified CRC-8 . 2521 */ 2522 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2523 unsigned char crc8, 2524 int queue) 2525 { 2526 unsigned int omc_table_reg; 2527 unsigned int tbl_offset; 2528 unsigned int reg_offset; 2529 2530 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2531 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2532 2533 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2534 2535 if (queue == -1) { 2536 /* Clear accepts frame bit at specified Other DA table entry */ 2537 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2538 } else { 2539 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2540 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2541 } 2542 2543 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2544 } 2545 2546 /* The network device supports multicast using two tables: 2547 * 1) Special Multicast Table for MAC addresses of the form 2548 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2549 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2550 * Table entries in the DA-Filter table. 2551 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2552 * is used as an index to the Other Multicast Table entries in the 2553 * DA-Filter table. 2554 */ 2555 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2556 int queue) 2557 { 2558 unsigned char crc_result = 0; 2559 2560 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2561 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2562 return 0; 2563 } 2564 2565 crc_result = mvneta_addr_crc(p_addr); 2566 if (queue == -1) { 2567 if (pp->mcast_count[crc_result] == 0) { 2568 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2569 crc_result); 2570 return -EINVAL; 2571 } 2572 2573 pp->mcast_count[crc_result]--; 2574 if (pp->mcast_count[crc_result] != 0) { 2575 netdev_info(pp->dev, 2576 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2577 pp->mcast_count[crc_result], crc_result); 2578 return -EINVAL; 2579 } 2580 } else 2581 pp->mcast_count[crc_result]++; 2582 2583 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2584 2585 return 0; 2586 } 2587 2588 /* Configure Fitering mode of Ethernet port */ 2589 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2590 int is_promisc) 2591 { 2592 u32 port_cfg_reg, val; 2593 2594 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2595 2596 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2597 2598 /* Set / Clear UPM bit in port configuration register */ 2599 if (is_promisc) { 2600 /* Accept all Unicast addresses */ 2601 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2602 val |= MVNETA_FORCE_UNI; 2603 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2604 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2605 } else { 2606 /* Reject all Unicast addresses */ 2607 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2608 val &= ~MVNETA_FORCE_UNI; 2609 } 2610 2611 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2612 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2613 } 2614 2615 /* register unicast and multicast addresses */ 2616 static void mvneta_set_rx_mode(struct net_device *dev) 2617 { 2618 struct mvneta_port *pp = netdev_priv(dev); 2619 struct netdev_hw_addr *ha; 2620 2621 if (dev->flags & IFF_PROMISC) { 2622 /* Accept all: Multicast + Unicast */ 2623 mvneta_rx_unicast_promisc_set(pp, 1); 2624 mvneta_set_ucast_table(pp, pp->rxq_def); 2625 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2626 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2627 } else { 2628 /* Accept single Unicast */ 2629 mvneta_rx_unicast_promisc_set(pp, 0); 2630 mvneta_set_ucast_table(pp, -1); 2631 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2632 2633 if (dev->flags & IFF_ALLMULTI) { 2634 /* Accept all multicast */ 2635 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2636 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2637 } else { 2638 /* Accept only initialized multicast */ 2639 mvneta_set_special_mcast_table(pp, -1); 2640 mvneta_set_other_mcast_table(pp, -1); 2641 2642 if (!netdev_mc_empty(dev)) { 2643 netdev_for_each_mc_addr(ha, dev) { 2644 mvneta_mcast_addr_set(pp, ha->addr, 2645 pp->rxq_def); 2646 } 2647 } 2648 } 2649 } 2650 } 2651 2652 /* Interrupt handling - the callback for request_irq() */ 2653 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2654 { 2655 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2656 2657 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2658 napi_schedule(&pp->napi); 2659 2660 return IRQ_HANDLED; 2661 } 2662 2663 /* Interrupt handling - the callback for request_percpu_irq() */ 2664 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2665 { 2666 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2667 2668 disable_percpu_irq(port->pp->dev->irq); 2669 napi_schedule(&port->napi); 2670 2671 return IRQ_HANDLED; 2672 } 2673 2674 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2675 struct phy_device *phy) 2676 { 2677 struct fixed_phy_status status; 2678 struct fixed_phy_status changed = {}; 2679 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2680 2681 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2682 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2683 status.speed = SPEED_1000; 2684 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2685 status.speed = SPEED_100; 2686 else 2687 status.speed = SPEED_10; 2688 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2689 changed.link = 1; 2690 changed.speed = 1; 2691 changed.duplex = 1; 2692 fixed_phy_update_state(phy, &status, &changed); 2693 return 0; 2694 } 2695 2696 /* NAPI handler 2697 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2698 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2699 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2700 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2701 * Each CPU has its own causeRxTx register 2702 */ 2703 static int mvneta_poll(struct napi_struct *napi, int budget) 2704 { 2705 int rx_done = 0; 2706 u32 cause_rx_tx; 2707 int rx_queue; 2708 struct mvneta_port *pp = netdev_priv(napi->dev); 2709 struct net_device *ndev = pp->dev; 2710 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2711 2712 if (!netif_running(pp->dev)) { 2713 napi_complete(napi); 2714 return rx_done; 2715 } 2716 2717 /* Read cause register */ 2718 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2719 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2720 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2721 2722 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2723 if (pp->use_inband_status && (cause_misc & 2724 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2725 MVNETA_CAUSE_LINK_CHANGE | 2726 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2727 mvneta_fixed_link_update(pp, ndev->phydev); 2728 } 2729 } 2730 2731 /* Release Tx descriptors */ 2732 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2733 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2734 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2735 } 2736 2737 /* For the case where the last mvneta_poll did not process all 2738 * RX packets 2739 */ 2740 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2741 2742 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2743 port->cause_rx_tx; 2744 2745 if (rx_queue) { 2746 rx_queue = rx_queue - 1; 2747 if (pp->bm_priv) 2748 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2749 else 2750 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2751 } 2752 2753 budget -= rx_done; 2754 2755 if (budget > 0) { 2756 cause_rx_tx = 0; 2757 napi_complete(napi); 2758 2759 if (pp->neta_armada3700) { 2760 unsigned long flags; 2761 2762 local_irq_save(flags); 2763 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2764 MVNETA_RX_INTR_MASK(rxq_number) | 2765 MVNETA_TX_INTR_MASK(txq_number) | 2766 MVNETA_MISCINTR_INTR_MASK); 2767 local_irq_restore(flags); 2768 } else { 2769 enable_percpu_irq(pp->dev->irq, 0); 2770 } 2771 } 2772 2773 if (pp->neta_armada3700) 2774 pp->cause_rx_tx = cause_rx_tx; 2775 else 2776 port->cause_rx_tx = cause_rx_tx; 2777 2778 return rx_done; 2779 } 2780 2781 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2782 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2783 int num) 2784 { 2785 int i; 2786 2787 for (i = 0; i < num; i++) { 2788 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2789 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2790 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2791 __func__, rxq->id, i, num); 2792 break; 2793 } 2794 } 2795 2796 /* Add this number of RX descriptors as non occupied (ready to 2797 * get packets) 2798 */ 2799 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2800 2801 return i; 2802 } 2803 2804 /* Free all packets pending transmit from all TXQs and reset TX port */ 2805 static void mvneta_tx_reset(struct mvneta_port *pp) 2806 { 2807 int queue; 2808 2809 /* free the skb's in the tx ring */ 2810 for (queue = 0; queue < txq_number; queue++) 2811 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2812 2813 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2814 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2815 } 2816 2817 static void mvneta_rx_reset(struct mvneta_port *pp) 2818 { 2819 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2820 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2821 } 2822 2823 /* Rx/Tx queue initialization/cleanup methods */ 2824 2825 /* Create a specified RX queue */ 2826 static int mvneta_rxq_init(struct mvneta_port *pp, 2827 struct mvneta_rx_queue *rxq) 2828 2829 { 2830 rxq->size = pp->rx_ring_size; 2831 2832 /* Allocate memory for RX descriptors */ 2833 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2834 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2835 &rxq->descs_phys, GFP_KERNEL); 2836 if (rxq->descs == NULL) 2837 return -ENOMEM; 2838 2839 rxq->last_desc = rxq->size - 1; 2840 2841 /* Set Rx descriptors queue starting address */ 2842 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2843 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2844 2845 /* Set Offset */ 2846 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2847 2848 /* Set coalescing pkts and time */ 2849 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2850 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2851 2852 if (!pp->bm_priv) { 2853 /* Fill RXQ with buffers from RX pool */ 2854 mvneta_rxq_buf_size_set(pp, rxq, 2855 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2856 mvneta_rxq_bm_disable(pp, rxq); 2857 mvneta_rxq_fill(pp, rxq, rxq->size); 2858 } else { 2859 mvneta_rxq_bm_enable(pp, rxq); 2860 mvneta_rxq_long_pool_set(pp, rxq); 2861 mvneta_rxq_short_pool_set(pp, rxq); 2862 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2863 } 2864 2865 return 0; 2866 } 2867 2868 /* Cleanup Rx queue */ 2869 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2870 struct mvneta_rx_queue *rxq) 2871 { 2872 mvneta_rxq_drop_pkts(pp, rxq); 2873 2874 if (rxq->descs) 2875 dma_free_coherent(pp->dev->dev.parent, 2876 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2877 rxq->descs, 2878 rxq->descs_phys); 2879 2880 rxq->descs = NULL; 2881 rxq->last_desc = 0; 2882 rxq->next_desc_to_proc = 0; 2883 rxq->descs_phys = 0; 2884 } 2885 2886 /* Create and initialize a tx queue */ 2887 static int mvneta_txq_init(struct mvneta_port *pp, 2888 struct mvneta_tx_queue *txq) 2889 { 2890 int cpu; 2891 2892 txq->size = pp->tx_ring_size; 2893 2894 /* A queue must always have room for at least one skb. 2895 * Therefore, stop the queue when the free entries reaches 2896 * the maximum number of descriptors per skb. 2897 */ 2898 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2899 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2900 2901 2902 /* Allocate memory for TX descriptors */ 2903 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2904 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2905 &txq->descs_phys, GFP_KERNEL); 2906 if (txq->descs == NULL) 2907 return -ENOMEM; 2908 2909 txq->last_desc = txq->size - 1; 2910 2911 /* Set maximum bandwidth for enabled TXQs */ 2912 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2913 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2914 2915 /* Set Tx descriptors queue starting address */ 2916 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2917 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2918 2919 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2920 if (txq->tx_skb == NULL) { 2921 dma_free_coherent(pp->dev->dev.parent, 2922 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2923 txq->descs, txq->descs_phys); 2924 return -ENOMEM; 2925 } 2926 2927 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2928 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2929 txq->size * TSO_HEADER_SIZE, 2930 &txq->tso_hdrs_phys, GFP_KERNEL); 2931 if (txq->tso_hdrs == NULL) { 2932 kfree(txq->tx_skb); 2933 dma_free_coherent(pp->dev->dev.parent, 2934 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2935 txq->descs, txq->descs_phys); 2936 return -ENOMEM; 2937 } 2938 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2939 2940 /* Setup XPS mapping */ 2941 if (txq_number > 1) 2942 cpu = txq->id % num_present_cpus(); 2943 else 2944 cpu = pp->rxq_def % num_present_cpus(); 2945 cpumask_set_cpu(cpu, &txq->affinity_mask); 2946 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2947 2948 return 0; 2949 } 2950 2951 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2952 static void mvneta_txq_deinit(struct mvneta_port *pp, 2953 struct mvneta_tx_queue *txq) 2954 { 2955 kfree(txq->tx_skb); 2956 2957 if (txq->tso_hdrs) 2958 dma_free_coherent(pp->dev->dev.parent, 2959 txq->size * TSO_HEADER_SIZE, 2960 txq->tso_hdrs, txq->tso_hdrs_phys); 2961 if (txq->descs) 2962 dma_free_coherent(pp->dev->dev.parent, 2963 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2964 txq->descs, txq->descs_phys); 2965 2966 txq->descs = NULL; 2967 txq->last_desc = 0; 2968 txq->next_desc_to_proc = 0; 2969 txq->descs_phys = 0; 2970 2971 /* Set minimum bandwidth for disabled TXQs */ 2972 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2973 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2974 2975 /* Set Tx descriptors queue starting address and size */ 2976 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2977 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2978 } 2979 2980 /* Cleanup all Tx queues */ 2981 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2982 { 2983 int queue; 2984 2985 for (queue = 0; queue < txq_number; queue++) 2986 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2987 } 2988 2989 /* Cleanup all Rx queues */ 2990 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2991 { 2992 int queue; 2993 2994 for (queue = 0; queue < txq_number; queue++) 2995 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2996 } 2997 2998 2999 /* Init all Rx queues */ 3000 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3001 { 3002 int queue; 3003 3004 for (queue = 0; queue < rxq_number; queue++) { 3005 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3006 3007 if (err) { 3008 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3009 __func__, queue); 3010 mvneta_cleanup_rxqs(pp); 3011 return err; 3012 } 3013 } 3014 3015 return 0; 3016 } 3017 3018 /* Init all tx queues */ 3019 static int mvneta_setup_txqs(struct mvneta_port *pp) 3020 { 3021 int queue; 3022 3023 for (queue = 0; queue < txq_number; queue++) { 3024 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3025 if (err) { 3026 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3027 __func__, queue); 3028 mvneta_cleanup_txqs(pp); 3029 return err; 3030 } 3031 } 3032 3033 return 0; 3034 } 3035 3036 static void mvneta_start_dev(struct mvneta_port *pp) 3037 { 3038 int cpu; 3039 struct net_device *ndev = pp->dev; 3040 3041 mvneta_max_rx_size_set(pp, pp->pkt_size); 3042 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3043 3044 /* start the Rx/Tx activity */ 3045 mvneta_port_enable(pp); 3046 3047 if (!pp->neta_armada3700) { 3048 /* Enable polling on the port */ 3049 for_each_online_cpu(cpu) { 3050 struct mvneta_pcpu_port *port = 3051 per_cpu_ptr(pp->ports, cpu); 3052 3053 napi_enable(&port->napi); 3054 } 3055 } else { 3056 napi_enable(&pp->napi); 3057 } 3058 3059 /* Unmask interrupts. It has to be done from each CPU */ 3060 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3061 3062 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3063 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3064 MVNETA_CAUSE_LINK_CHANGE | 3065 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3066 3067 phy_start(ndev->phydev); 3068 netif_tx_start_all_queues(pp->dev); 3069 } 3070 3071 static void mvneta_stop_dev(struct mvneta_port *pp) 3072 { 3073 unsigned int cpu; 3074 struct net_device *ndev = pp->dev; 3075 3076 phy_stop(ndev->phydev); 3077 3078 if (!pp->neta_armada3700) { 3079 for_each_online_cpu(cpu) { 3080 struct mvneta_pcpu_port *port = 3081 per_cpu_ptr(pp->ports, cpu); 3082 3083 napi_disable(&port->napi); 3084 } 3085 } else { 3086 napi_disable(&pp->napi); 3087 } 3088 3089 netif_carrier_off(pp->dev); 3090 3091 mvneta_port_down(pp); 3092 netif_tx_stop_all_queues(pp->dev); 3093 3094 /* Stop the port activity */ 3095 mvneta_port_disable(pp); 3096 3097 /* Clear all ethernet port interrupts */ 3098 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3099 3100 /* Mask all ethernet port interrupts */ 3101 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3102 3103 mvneta_tx_reset(pp); 3104 mvneta_rx_reset(pp); 3105 } 3106 3107 static void mvneta_percpu_enable(void *arg) 3108 { 3109 struct mvneta_port *pp = arg; 3110 3111 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3112 } 3113 3114 static void mvneta_percpu_disable(void *arg) 3115 { 3116 struct mvneta_port *pp = arg; 3117 3118 disable_percpu_irq(pp->dev->irq); 3119 } 3120 3121 /* Change the device mtu */ 3122 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3123 { 3124 struct mvneta_port *pp = netdev_priv(dev); 3125 int ret; 3126 3127 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3128 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3129 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3130 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3131 } 3132 3133 dev->mtu = mtu; 3134 3135 if (!netif_running(dev)) { 3136 if (pp->bm_priv) 3137 mvneta_bm_update_mtu(pp, mtu); 3138 3139 netdev_update_features(dev); 3140 return 0; 3141 } 3142 3143 /* The interface is running, so we have to force a 3144 * reallocation of the queues 3145 */ 3146 mvneta_stop_dev(pp); 3147 on_each_cpu(mvneta_percpu_disable, pp, true); 3148 3149 mvneta_cleanup_txqs(pp); 3150 mvneta_cleanup_rxqs(pp); 3151 3152 if (pp->bm_priv) 3153 mvneta_bm_update_mtu(pp, mtu); 3154 3155 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3156 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3157 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3158 3159 ret = mvneta_setup_rxqs(pp); 3160 if (ret) { 3161 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3162 return ret; 3163 } 3164 3165 ret = mvneta_setup_txqs(pp); 3166 if (ret) { 3167 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3168 return ret; 3169 } 3170 3171 on_each_cpu(mvneta_percpu_enable, pp, true); 3172 mvneta_start_dev(pp); 3173 mvneta_port_up(pp); 3174 3175 netdev_update_features(dev); 3176 3177 return 0; 3178 } 3179 3180 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3181 netdev_features_t features) 3182 { 3183 struct mvneta_port *pp = netdev_priv(dev); 3184 3185 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3186 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3187 netdev_info(dev, 3188 "Disable IP checksum for MTU greater than %dB\n", 3189 pp->tx_csum_limit); 3190 } 3191 3192 return features; 3193 } 3194 3195 /* Get mac address */ 3196 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3197 { 3198 u32 mac_addr_l, mac_addr_h; 3199 3200 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3201 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3202 addr[0] = (mac_addr_h >> 24) & 0xFF; 3203 addr[1] = (mac_addr_h >> 16) & 0xFF; 3204 addr[2] = (mac_addr_h >> 8) & 0xFF; 3205 addr[3] = mac_addr_h & 0xFF; 3206 addr[4] = (mac_addr_l >> 8) & 0xFF; 3207 addr[5] = mac_addr_l & 0xFF; 3208 } 3209 3210 /* Handle setting mac address */ 3211 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3212 { 3213 struct mvneta_port *pp = netdev_priv(dev); 3214 struct sockaddr *sockaddr = addr; 3215 int ret; 3216 3217 ret = eth_prepare_mac_addr_change(dev, addr); 3218 if (ret < 0) 3219 return ret; 3220 /* Remove previous address table entry */ 3221 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3222 3223 /* Set new addr in hw */ 3224 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3225 3226 eth_commit_mac_addr_change(dev, addr); 3227 return 0; 3228 } 3229 3230 static void mvneta_adjust_link(struct net_device *ndev) 3231 { 3232 struct mvneta_port *pp = netdev_priv(ndev); 3233 struct phy_device *phydev = ndev->phydev; 3234 int status_change = 0; 3235 3236 if (phydev->link) { 3237 if ((pp->speed != phydev->speed) || 3238 (pp->duplex != phydev->duplex)) { 3239 u32 val; 3240 3241 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3242 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3243 MVNETA_GMAC_CONFIG_GMII_SPEED | 3244 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3245 3246 if (phydev->duplex) 3247 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3248 3249 if (phydev->speed == SPEED_1000) 3250 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3251 else if (phydev->speed == SPEED_100) 3252 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3253 3254 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3255 3256 pp->duplex = phydev->duplex; 3257 pp->speed = phydev->speed; 3258 } 3259 } 3260 3261 if (phydev->link != pp->link) { 3262 if (!phydev->link) { 3263 pp->duplex = -1; 3264 pp->speed = 0; 3265 } 3266 3267 pp->link = phydev->link; 3268 status_change = 1; 3269 } 3270 3271 if (status_change) { 3272 if (phydev->link) { 3273 if (!pp->use_inband_status) { 3274 u32 val = mvreg_read(pp, 3275 MVNETA_GMAC_AUTONEG_CONFIG); 3276 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3277 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3278 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3279 val); 3280 } 3281 mvneta_port_up(pp); 3282 } else { 3283 if (!pp->use_inband_status) { 3284 u32 val = mvreg_read(pp, 3285 MVNETA_GMAC_AUTONEG_CONFIG); 3286 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3287 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3288 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3289 val); 3290 } 3291 mvneta_port_down(pp); 3292 } 3293 phy_print_status(phydev); 3294 } 3295 } 3296 3297 static int mvneta_mdio_probe(struct mvneta_port *pp) 3298 { 3299 struct phy_device *phy_dev; 3300 3301 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3302 pp->phy_interface); 3303 if (!phy_dev) { 3304 netdev_err(pp->dev, "could not find the PHY\n"); 3305 return -ENODEV; 3306 } 3307 3308 phy_dev->supported &= PHY_GBIT_FEATURES; 3309 phy_dev->advertising = phy_dev->supported; 3310 3311 pp->link = 0; 3312 pp->duplex = 0; 3313 pp->speed = 0; 3314 3315 return 0; 3316 } 3317 3318 static void mvneta_mdio_remove(struct mvneta_port *pp) 3319 { 3320 struct net_device *ndev = pp->dev; 3321 3322 phy_disconnect(ndev->phydev); 3323 } 3324 3325 /* Electing a CPU must be done in an atomic way: it should be done 3326 * after or before the removal/insertion of a CPU and this function is 3327 * not reentrant. 3328 */ 3329 static void mvneta_percpu_elect(struct mvneta_port *pp) 3330 { 3331 int elected_cpu = 0, max_cpu, cpu, i = 0; 3332 3333 /* Use the cpu associated to the rxq when it is online, in all 3334 * the other cases, use the cpu 0 which can't be offline. 3335 */ 3336 if (cpu_online(pp->rxq_def)) 3337 elected_cpu = pp->rxq_def; 3338 3339 max_cpu = num_present_cpus(); 3340 3341 for_each_online_cpu(cpu) { 3342 int rxq_map = 0, txq_map = 0; 3343 int rxq; 3344 3345 for (rxq = 0; rxq < rxq_number; rxq++) 3346 if ((rxq % max_cpu) == cpu) 3347 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3348 3349 if (cpu == elected_cpu) 3350 /* Map the default receive queue queue to the 3351 * elected CPU 3352 */ 3353 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3354 3355 /* We update the TX queue map only if we have one 3356 * queue. In this case we associate the TX queue to 3357 * the CPU bound to the default RX queue 3358 */ 3359 if (txq_number == 1) 3360 txq_map = (cpu == elected_cpu) ? 3361 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3362 else 3363 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3364 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3365 3366 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3367 3368 /* Update the interrupt mask on each CPU according the 3369 * new mapping 3370 */ 3371 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3372 pp, true); 3373 i++; 3374 3375 } 3376 }; 3377 3378 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3379 { 3380 int other_cpu; 3381 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3382 node_online); 3383 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3384 3385 3386 spin_lock(&pp->lock); 3387 /* 3388 * Configuring the driver for a new CPU while the driver is 3389 * stopping is racy, so just avoid it. 3390 */ 3391 if (pp->is_stopped) { 3392 spin_unlock(&pp->lock); 3393 return 0; 3394 } 3395 netif_tx_stop_all_queues(pp->dev); 3396 3397 /* 3398 * We have to synchronise on tha napi of each CPU except the one 3399 * just being woken up 3400 */ 3401 for_each_online_cpu(other_cpu) { 3402 if (other_cpu != cpu) { 3403 struct mvneta_pcpu_port *other_port = 3404 per_cpu_ptr(pp->ports, other_cpu); 3405 3406 napi_synchronize(&other_port->napi); 3407 } 3408 } 3409 3410 /* Mask all ethernet port interrupts */ 3411 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3412 napi_enable(&port->napi); 3413 3414 /* 3415 * Enable per-CPU interrupts on the CPU that is 3416 * brought up. 3417 */ 3418 mvneta_percpu_enable(pp); 3419 3420 /* 3421 * Enable per-CPU interrupt on the one CPU we care 3422 * about. 3423 */ 3424 mvneta_percpu_elect(pp); 3425 3426 /* Unmask all ethernet port interrupts */ 3427 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3428 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3429 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3430 MVNETA_CAUSE_LINK_CHANGE | 3431 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3432 netif_tx_start_all_queues(pp->dev); 3433 spin_unlock(&pp->lock); 3434 return 0; 3435 } 3436 3437 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3438 { 3439 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3440 node_online); 3441 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3442 3443 /* 3444 * Thanks to this lock we are sure that any pending cpu election is 3445 * done. 3446 */ 3447 spin_lock(&pp->lock); 3448 /* Mask all ethernet port interrupts */ 3449 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3450 spin_unlock(&pp->lock); 3451 3452 napi_synchronize(&port->napi); 3453 napi_disable(&port->napi); 3454 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3455 mvneta_percpu_disable(pp); 3456 return 0; 3457 } 3458 3459 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3460 { 3461 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3462 node_dead); 3463 3464 /* Check if a new CPU must be elected now this on is down */ 3465 spin_lock(&pp->lock); 3466 mvneta_percpu_elect(pp); 3467 spin_unlock(&pp->lock); 3468 /* Unmask all ethernet port interrupts */ 3469 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3470 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3471 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3472 MVNETA_CAUSE_LINK_CHANGE | 3473 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3474 netif_tx_start_all_queues(pp->dev); 3475 return 0; 3476 } 3477 3478 static int mvneta_open(struct net_device *dev) 3479 { 3480 struct mvneta_port *pp = netdev_priv(dev); 3481 int ret; 3482 3483 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3484 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3485 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3486 3487 ret = mvneta_setup_rxqs(pp); 3488 if (ret) 3489 return ret; 3490 3491 ret = mvneta_setup_txqs(pp); 3492 if (ret) 3493 goto err_cleanup_rxqs; 3494 3495 /* Connect to port interrupt line */ 3496 if (pp->neta_armada3700) 3497 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3498 dev->name, pp); 3499 else 3500 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3501 dev->name, pp->ports); 3502 if (ret) { 3503 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3504 goto err_cleanup_txqs; 3505 } 3506 3507 if (!pp->neta_armada3700) { 3508 /* Enable per-CPU interrupt on all the CPU to handle our RX 3509 * queue interrupts 3510 */ 3511 on_each_cpu(mvneta_percpu_enable, pp, true); 3512 3513 pp->is_stopped = false; 3514 /* Register a CPU notifier to handle the case where our CPU 3515 * might be taken offline. 3516 */ 3517 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3518 &pp->node_online); 3519 if (ret) 3520 goto err_free_irq; 3521 3522 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3523 &pp->node_dead); 3524 if (ret) 3525 goto err_free_online_hp; 3526 } 3527 3528 /* In default link is down */ 3529 netif_carrier_off(pp->dev); 3530 3531 ret = mvneta_mdio_probe(pp); 3532 if (ret < 0) { 3533 netdev_err(dev, "cannot probe MDIO bus\n"); 3534 goto err_free_dead_hp; 3535 } 3536 3537 mvneta_start_dev(pp); 3538 3539 return 0; 3540 3541 err_free_dead_hp: 3542 if (!pp->neta_armada3700) 3543 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3544 &pp->node_dead); 3545 err_free_online_hp: 3546 if (!pp->neta_armada3700) 3547 cpuhp_state_remove_instance_nocalls(online_hpstate, 3548 &pp->node_online); 3549 err_free_irq: 3550 if (pp->neta_armada3700) { 3551 free_irq(pp->dev->irq, pp); 3552 } else { 3553 on_each_cpu(mvneta_percpu_disable, pp, true); 3554 free_percpu_irq(pp->dev->irq, pp->ports); 3555 } 3556 err_cleanup_txqs: 3557 mvneta_cleanup_txqs(pp); 3558 err_cleanup_rxqs: 3559 mvneta_cleanup_rxqs(pp); 3560 return ret; 3561 } 3562 3563 /* Stop the port, free port interrupt line */ 3564 static int mvneta_stop(struct net_device *dev) 3565 { 3566 struct mvneta_port *pp = netdev_priv(dev); 3567 3568 if (!pp->neta_armada3700) { 3569 /* Inform that we are stopping so we don't want to setup the 3570 * driver for new CPUs in the notifiers. The code of the 3571 * notifier for CPU online is protected by the same spinlock, 3572 * so when we get the lock, the notifer work is done. 3573 */ 3574 spin_lock(&pp->lock); 3575 pp->is_stopped = true; 3576 spin_unlock(&pp->lock); 3577 3578 mvneta_stop_dev(pp); 3579 mvneta_mdio_remove(pp); 3580 3581 cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); 3582 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3583 &pp->node_dead); 3584 on_each_cpu(mvneta_percpu_disable, pp, true); 3585 free_percpu_irq(dev->irq, pp->ports); 3586 } else { 3587 mvneta_stop_dev(pp); 3588 mvneta_mdio_remove(pp); 3589 free_irq(dev->irq, pp); 3590 } 3591 3592 mvneta_cleanup_rxqs(pp); 3593 mvneta_cleanup_txqs(pp); 3594 3595 return 0; 3596 } 3597 3598 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3599 { 3600 if (!dev->phydev) 3601 return -ENOTSUPP; 3602 3603 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3604 } 3605 3606 /* Ethtool methods */ 3607 3608 /* Set link ksettings (phy address, speed) for ethtools */ 3609 static int 3610 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3611 const struct ethtool_link_ksettings *cmd) 3612 { 3613 struct mvneta_port *pp = netdev_priv(ndev); 3614 struct phy_device *phydev = ndev->phydev; 3615 3616 if (!phydev) 3617 return -ENODEV; 3618 3619 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3620 u32 val; 3621 3622 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3623 3624 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3625 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3626 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3627 MVNETA_GMAC_CONFIG_GMII_SPEED | 3628 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3629 3630 if (phydev->duplex) 3631 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3632 3633 if (phydev->speed == SPEED_1000) 3634 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3635 else if (phydev->speed == SPEED_100) 3636 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3637 3638 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3639 } 3640 3641 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3642 netdev_info(pp->dev, "autoneg status set to %i\n", 3643 pp->use_inband_status); 3644 3645 if (netif_running(ndev)) { 3646 mvneta_port_down(pp); 3647 mvneta_port_up(pp); 3648 } 3649 } 3650 3651 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3652 } 3653 3654 /* Set interrupt coalescing for ethtools */ 3655 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3656 struct ethtool_coalesce *c) 3657 { 3658 struct mvneta_port *pp = netdev_priv(dev); 3659 int queue; 3660 3661 for (queue = 0; queue < rxq_number; queue++) { 3662 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3663 rxq->time_coal = c->rx_coalesce_usecs; 3664 rxq->pkts_coal = c->rx_max_coalesced_frames; 3665 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3666 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3667 } 3668 3669 for (queue = 0; queue < txq_number; queue++) { 3670 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3671 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3672 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3673 } 3674 3675 return 0; 3676 } 3677 3678 /* get coalescing for ethtools */ 3679 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3680 struct ethtool_coalesce *c) 3681 { 3682 struct mvneta_port *pp = netdev_priv(dev); 3683 3684 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3685 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3686 3687 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3688 return 0; 3689 } 3690 3691 3692 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3693 struct ethtool_drvinfo *drvinfo) 3694 { 3695 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3696 sizeof(drvinfo->driver)); 3697 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3698 sizeof(drvinfo->version)); 3699 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3700 sizeof(drvinfo->bus_info)); 3701 } 3702 3703 3704 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3705 struct ethtool_ringparam *ring) 3706 { 3707 struct mvneta_port *pp = netdev_priv(netdev); 3708 3709 ring->rx_max_pending = MVNETA_MAX_RXD; 3710 ring->tx_max_pending = MVNETA_MAX_TXD; 3711 ring->rx_pending = pp->rx_ring_size; 3712 ring->tx_pending = pp->tx_ring_size; 3713 } 3714 3715 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3716 struct ethtool_ringparam *ring) 3717 { 3718 struct mvneta_port *pp = netdev_priv(dev); 3719 3720 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3721 return -EINVAL; 3722 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3723 ring->rx_pending : MVNETA_MAX_RXD; 3724 3725 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3726 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3727 if (pp->tx_ring_size != ring->tx_pending) 3728 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3729 pp->tx_ring_size, ring->tx_pending); 3730 3731 if (netif_running(dev)) { 3732 mvneta_stop(dev); 3733 if (mvneta_open(dev)) { 3734 netdev_err(dev, 3735 "error on opening device after ring param change\n"); 3736 return -ENOMEM; 3737 } 3738 } 3739 3740 return 0; 3741 } 3742 3743 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3744 u8 *data) 3745 { 3746 if (sset == ETH_SS_STATS) { 3747 int i; 3748 3749 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3750 memcpy(data + i * ETH_GSTRING_LEN, 3751 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3752 } 3753 } 3754 3755 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3756 { 3757 const struct mvneta_statistic *s; 3758 void __iomem *base = pp->base; 3759 u32 high, low, val; 3760 u64 val64; 3761 int i; 3762 3763 for (i = 0, s = mvneta_statistics; 3764 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3765 s++, i++) { 3766 switch (s->type) { 3767 case T_REG_32: 3768 val = readl_relaxed(base + s->offset); 3769 pp->ethtool_stats[i] += val; 3770 break; 3771 case T_REG_64: 3772 /* Docs say to read low 32-bit then high */ 3773 low = readl_relaxed(base + s->offset); 3774 high = readl_relaxed(base + s->offset + 4); 3775 val64 = (u64)high << 32 | low; 3776 pp->ethtool_stats[i] += val64; 3777 break; 3778 } 3779 } 3780 } 3781 3782 static void mvneta_ethtool_get_stats(struct net_device *dev, 3783 struct ethtool_stats *stats, u64 *data) 3784 { 3785 struct mvneta_port *pp = netdev_priv(dev); 3786 int i; 3787 3788 mvneta_ethtool_update_stats(pp); 3789 3790 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3791 *data++ = pp->ethtool_stats[i]; 3792 } 3793 3794 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3795 { 3796 if (sset == ETH_SS_STATS) 3797 return ARRAY_SIZE(mvneta_statistics); 3798 return -EOPNOTSUPP; 3799 } 3800 3801 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3802 { 3803 return MVNETA_RSS_LU_TABLE_SIZE; 3804 } 3805 3806 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3807 struct ethtool_rxnfc *info, 3808 u32 *rules __always_unused) 3809 { 3810 switch (info->cmd) { 3811 case ETHTOOL_GRXRINGS: 3812 info->data = rxq_number; 3813 return 0; 3814 case ETHTOOL_GRXFH: 3815 return -EOPNOTSUPP; 3816 default: 3817 return -EOPNOTSUPP; 3818 } 3819 } 3820 3821 static int mvneta_config_rss(struct mvneta_port *pp) 3822 { 3823 int cpu; 3824 u32 val; 3825 3826 netif_tx_stop_all_queues(pp->dev); 3827 3828 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3829 3830 /* We have to synchronise on the napi of each CPU */ 3831 for_each_online_cpu(cpu) { 3832 struct mvneta_pcpu_port *pcpu_port = 3833 per_cpu_ptr(pp->ports, cpu); 3834 3835 napi_synchronize(&pcpu_port->napi); 3836 napi_disable(&pcpu_port->napi); 3837 } 3838 3839 pp->rxq_def = pp->indir[0]; 3840 3841 /* Update unicast mapping */ 3842 mvneta_set_rx_mode(pp->dev); 3843 3844 /* Update val of portCfg register accordingly with all RxQueue types */ 3845 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3846 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3847 3848 /* Update the elected CPU matching the new rxq_def */ 3849 spin_lock(&pp->lock); 3850 mvneta_percpu_elect(pp); 3851 spin_unlock(&pp->lock); 3852 3853 /* We have to synchronise on the napi of each CPU */ 3854 for_each_online_cpu(cpu) { 3855 struct mvneta_pcpu_port *pcpu_port = 3856 per_cpu_ptr(pp->ports, cpu); 3857 3858 napi_enable(&pcpu_port->napi); 3859 } 3860 3861 netif_tx_start_all_queues(pp->dev); 3862 3863 return 0; 3864 } 3865 3866 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3867 const u8 *key, const u8 hfunc) 3868 { 3869 struct mvneta_port *pp = netdev_priv(dev); 3870 3871 /* Current code for Armada 3700 doesn't support RSS features yet */ 3872 if (pp->neta_armada3700) 3873 return -EOPNOTSUPP; 3874 3875 /* We require at least one supported parameter to be changed 3876 * and no change in any of the unsupported parameters 3877 */ 3878 if (key || 3879 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3880 return -EOPNOTSUPP; 3881 3882 if (!indir) 3883 return 0; 3884 3885 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3886 3887 return mvneta_config_rss(pp); 3888 } 3889 3890 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3891 u8 *hfunc) 3892 { 3893 struct mvneta_port *pp = netdev_priv(dev); 3894 3895 /* Current code for Armada 3700 doesn't support RSS features yet */ 3896 if (pp->neta_armada3700) 3897 return -EOPNOTSUPP; 3898 3899 if (hfunc) 3900 *hfunc = ETH_RSS_HASH_TOP; 3901 3902 if (!indir) 3903 return 0; 3904 3905 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3906 3907 return 0; 3908 } 3909 3910 static const struct net_device_ops mvneta_netdev_ops = { 3911 .ndo_open = mvneta_open, 3912 .ndo_stop = mvneta_stop, 3913 .ndo_start_xmit = mvneta_tx, 3914 .ndo_set_rx_mode = mvneta_set_rx_mode, 3915 .ndo_set_mac_address = mvneta_set_mac_addr, 3916 .ndo_change_mtu = mvneta_change_mtu, 3917 .ndo_fix_features = mvneta_fix_features, 3918 .ndo_get_stats64 = mvneta_get_stats64, 3919 .ndo_do_ioctl = mvneta_ioctl, 3920 }; 3921 3922 const struct ethtool_ops mvneta_eth_tool_ops = { 3923 .nway_reset = phy_ethtool_nway_reset, 3924 .get_link = ethtool_op_get_link, 3925 .set_coalesce = mvneta_ethtool_set_coalesce, 3926 .get_coalesce = mvneta_ethtool_get_coalesce, 3927 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3928 .get_ringparam = mvneta_ethtool_get_ringparam, 3929 .set_ringparam = mvneta_ethtool_set_ringparam, 3930 .get_strings = mvneta_ethtool_get_strings, 3931 .get_ethtool_stats = mvneta_ethtool_get_stats, 3932 .get_sset_count = mvneta_ethtool_get_sset_count, 3933 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3934 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3935 .get_rxfh = mvneta_ethtool_get_rxfh, 3936 .set_rxfh = mvneta_ethtool_set_rxfh, 3937 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3938 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3939 }; 3940 3941 /* Initialize hw */ 3942 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3943 { 3944 int queue; 3945 3946 /* Disable port */ 3947 mvneta_port_disable(pp); 3948 3949 /* Set port default values */ 3950 mvneta_defaults_set(pp); 3951 3952 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3953 GFP_KERNEL); 3954 if (!pp->txqs) 3955 return -ENOMEM; 3956 3957 /* Initialize TX descriptor rings */ 3958 for (queue = 0; queue < txq_number; queue++) { 3959 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3960 txq->id = queue; 3961 txq->size = pp->tx_ring_size; 3962 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3963 } 3964 3965 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3966 GFP_KERNEL); 3967 if (!pp->rxqs) 3968 return -ENOMEM; 3969 3970 /* Create Rx descriptor rings */ 3971 for (queue = 0; queue < rxq_number; queue++) { 3972 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3973 rxq->id = queue; 3974 rxq->size = pp->rx_ring_size; 3975 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3976 rxq->time_coal = MVNETA_RX_COAL_USEC; 3977 rxq->buf_virt_addr = devm_kmalloc(pp->dev->dev.parent, 3978 rxq->size * sizeof(void *), 3979 GFP_KERNEL); 3980 if (!rxq->buf_virt_addr) 3981 return -ENOMEM; 3982 } 3983 3984 return 0; 3985 } 3986 3987 /* platform glue : initialize decoding windows */ 3988 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3989 const struct mbus_dram_target_info *dram) 3990 { 3991 u32 win_enable; 3992 u32 win_protect; 3993 int i; 3994 3995 for (i = 0; i < 6; i++) { 3996 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3997 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3998 3999 if (i < 4) 4000 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4001 } 4002 4003 win_enable = 0x3f; 4004 win_protect = 0; 4005 4006 if (dram) { 4007 for (i = 0; i < dram->num_cs; i++) { 4008 const struct mbus_dram_window *cs = dram->cs + i; 4009 4010 mvreg_write(pp, MVNETA_WIN_BASE(i), 4011 (cs->base & 0xffff0000) | 4012 (cs->mbus_attr << 8) | 4013 dram->mbus_dram_target_id); 4014 4015 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4016 (cs->size - 1) & 0xffff0000); 4017 4018 win_enable &= ~(1 << i); 4019 win_protect |= 3 << (2 * i); 4020 } 4021 } else { 4022 /* For Armada3700 open default 4GB Mbus window, leaving 4023 * arbitration of target/attribute to a different layer 4024 * of configuration. 4025 */ 4026 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4027 win_enable &= ~BIT(0); 4028 win_protect = 3; 4029 } 4030 4031 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4032 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4033 } 4034 4035 /* Power up the port */ 4036 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4037 { 4038 u32 ctrl; 4039 4040 /* MAC Cause register should be cleared */ 4041 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4042 4043 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4044 4045 /* Even though it might look weird, when we're configured in 4046 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4047 */ 4048 switch(phy_mode) { 4049 case PHY_INTERFACE_MODE_QSGMII: 4050 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4051 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4052 break; 4053 case PHY_INTERFACE_MODE_SGMII: 4054 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4055 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4056 break; 4057 case PHY_INTERFACE_MODE_RGMII: 4058 case PHY_INTERFACE_MODE_RGMII_ID: 4059 ctrl |= MVNETA_GMAC2_PORT_RGMII; 4060 break; 4061 default: 4062 return -EINVAL; 4063 } 4064 4065 /* Cancel Port Reset */ 4066 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 4067 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 4068 4069 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4070 MVNETA_GMAC2_PORT_RESET) != 0) 4071 continue; 4072 4073 return 0; 4074 } 4075 4076 /* Device initialization routine */ 4077 static int mvneta_probe(struct platform_device *pdev) 4078 { 4079 const struct mbus_dram_target_info *dram_target_info; 4080 struct resource *res; 4081 struct device_node *dn = pdev->dev.of_node; 4082 struct device_node *phy_node; 4083 struct device_node *bm_node; 4084 struct mvneta_port *pp; 4085 struct net_device *dev; 4086 const char *dt_mac_addr; 4087 char hw_mac_addr[ETH_ALEN]; 4088 const char *mac_from; 4089 const char *managed; 4090 int tx_csum_limit; 4091 int phy_mode; 4092 int err; 4093 int cpu; 4094 4095 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4096 if (!dev) 4097 return -ENOMEM; 4098 4099 dev->irq = irq_of_parse_and_map(dn, 0); 4100 if (dev->irq == 0) { 4101 err = -EINVAL; 4102 goto err_free_netdev; 4103 } 4104 4105 phy_node = of_parse_phandle(dn, "phy", 0); 4106 if (!phy_node) { 4107 if (!of_phy_is_fixed_link(dn)) { 4108 dev_err(&pdev->dev, "no PHY specified\n"); 4109 err = -ENODEV; 4110 goto err_free_irq; 4111 } 4112 4113 err = of_phy_register_fixed_link(dn); 4114 if (err < 0) { 4115 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4116 goto err_free_irq; 4117 } 4118 4119 /* In the case of a fixed PHY, the DT node associated 4120 * to the PHY is the Ethernet MAC DT node. 4121 */ 4122 phy_node = of_node_get(dn); 4123 } 4124 4125 phy_mode = of_get_phy_mode(dn); 4126 if (phy_mode < 0) { 4127 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4128 err = -EINVAL; 4129 goto err_put_phy_node; 4130 } 4131 4132 dev->tx_queue_len = MVNETA_MAX_TXD; 4133 dev->watchdog_timeo = 5 * HZ; 4134 dev->netdev_ops = &mvneta_netdev_ops; 4135 4136 dev->ethtool_ops = &mvneta_eth_tool_ops; 4137 4138 pp = netdev_priv(dev); 4139 spin_lock_init(&pp->lock); 4140 pp->phy_node = phy_node; 4141 pp->phy_interface = phy_mode; 4142 4143 err = of_property_read_string(dn, "managed", &managed); 4144 pp->use_inband_status = (err == 0 && 4145 strcmp(managed, "in-band-status") == 0); 4146 4147 pp->rxq_def = rxq_def; 4148 4149 /* Set RX packet offset correction for platforms, whose 4150 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4151 * platforms and 0B for 32-bit ones. 4152 */ 4153 pp->rx_offset_correction = 4154 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4155 4156 pp->indir[0] = rxq_def; 4157 4158 /* Get special SoC configurations */ 4159 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4160 pp->neta_armada3700 = true; 4161 4162 pp->clk = devm_clk_get(&pdev->dev, "core"); 4163 if (IS_ERR(pp->clk)) 4164 pp->clk = devm_clk_get(&pdev->dev, NULL); 4165 if (IS_ERR(pp->clk)) { 4166 err = PTR_ERR(pp->clk); 4167 goto err_put_phy_node; 4168 } 4169 4170 clk_prepare_enable(pp->clk); 4171 4172 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4173 if (!IS_ERR(pp->clk_bus)) 4174 clk_prepare_enable(pp->clk_bus); 4175 4176 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4177 pp->base = devm_ioremap_resource(&pdev->dev, res); 4178 if (IS_ERR(pp->base)) { 4179 err = PTR_ERR(pp->base); 4180 goto err_clk; 4181 } 4182 4183 /* Alloc per-cpu port structure */ 4184 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4185 if (!pp->ports) { 4186 err = -ENOMEM; 4187 goto err_clk; 4188 } 4189 4190 /* Alloc per-cpu stats */ 4191 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4192 if (!pp->stats) { 4193 err = -ENOMEM; 4194 goto err_free_ports; 4195 } 4196 4197 dt_mac_addr = of_get_mac_address(dn); 4198 if (dt_mac_addr) { 4199 mac_from = "device tree"; 4200 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4201 } else { 4202 mvneta_get_mac_addr(pp, hw_mac_addr); 4203 if (is_valid_ether_addr(hw_mac_addr)) { 4204 mac_from = "hardware"; 4205 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4206 } else { 4207 mac_from = "random"; 4208 eth_hw_addr_random(dev); 4209 } 4210 } 4211 4212 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4213 if (tx_csum_limit < 0 || 4214 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4215 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4216 dev_info(&pdev->dev, 4217 "Wrong TX csum limit in DT, set to %dB\n", 4218 MVNETA_TX_CSUM_DEF_SIZE); 4219 } 4220 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4221 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4222 } else { 4223 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4224 } 4225 4226 pp->tx_csum_limit = tx_csum_limit; 4227 4228 dram_target_info = mv_mbus_dram_info(); 4229 /* Armada3700 requires setting default configuration of Mbus 4230 * windows, however without using filled mbus_dram_target_info 4231 * structure. 4232 */ 4233 if (dram_target_info || pp->neta_armada3700) 4234 mvneta_conf_mbus_windows(pp, dram_target_info); 4235 4236 pp->tx_ring_size = MVNETA_MAX_TXD; 4237 pp->rx_ring_size = MVNETA_MAX_RXD; 4238 4239 pp->dev = dev; 4240 SET_NETDEV_DEV(dev, &pdev->dev); 4241 4242 pp->id = global_port_id++; 4243 4244 /* Obtain access to BM resources if enabled and already initialized */ 4245 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4246 if (bm_node && bm_node->data) { 4247 pp->bm_priv = bm_node->data; 4248 err = mvneta_bm_port_init(pdev, pp); 4249 if (err < 0) { 4250 dev_info(&pdev->dev, "use SW buffer management\n"); 4251 pp->bm_priv = NULL; 4252 } 4253 } 4254 of_node_put(bm_node); 4255 4256 err = mvneta_init(&pdev->dev, pp); 4257 if (err < 0) 4258 goto err_netdev; 4259 4260 err = mvneta_port_power_up(pp, phy_mode); 4261 if (err < 0) { 4262 dev_err(&pdev->dev, "can't power up port\n"); 4263 goto err_netdev; 4264 } 4265 4266 /* Armada3700 network controller does not support per-cpu 4267 * operation, so only single NAPI should be initialized. 4268 */ 4269 if (pp->neta_armada3700) { 4270 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4271 } else { 4272 for_each_present_cpu(cpu) { 4273 struct mvneta_pcpu_port *port = 4274 per_cpu_ptr(pp->ports, cpu); 4275 4276 netif_napi_add(dev, &port->napi, mvneta_poll, 4277 NAPI_POLL_WEIGHT); 4278 port->pp = pp; 4279 } 4280 } 4281 4282 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4283 dev->hw_features |= dev->features; 4284 dev->vlan_features |= dev->features; 4285 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4286 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4287 4288 /* MTU range: 68 - 9676 */ 4289 dev->min_mtu = ETH_MIN_MTU; 4290 /* 9676 == 9700 - 20 and rounding to 8 */ 4291 dev->max_mtu = 9676; 4292 4293 err = register_netdev(dev); 4294 if (err < 0) { 4295 dev_err(&pdev->dev, "failed to register\n"); 4296 goto err_free_stats; 4297 } 4298 4299 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4300 dev->dev_addr); 4301 4302 platform_set_drvdata(pdev, pp->dev); 4303 4304 if (pp->use_inband_status) { 4305 struct phy_device *phy = of_phy_find_device(dn); 4306 4307 mvneta_fixed_link_update(pp, phy); 4308 4309 put_device(&phy->mdio.dev); 4310 } 4311 4312 return 0; 4313 4314 err_netdev: 4315 unregister_netdev(dev); 4316 if (pp->bm_priv) { 4317 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4318 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4319 1 << pp->id); 4320 } 4321 err_free_stats: 4322 free_percpu(pp->stats); 4323 err_free_ports: 4324 free_percpu(pp->ports); 4325 err_clk: 4326 clk_disable_unprepare(pp->clk_bus); 4327 clk_disable_unprepare(pp->clk); 4328 err_put_phy_node: 4329 of_node_put(phy_node); 4330 if (of_phy_is_fixed_link(dn)) 4331 of_phy_deregister_fixed_link(dn); 4332 err_free_irq: 4333 irq_dispose_mapping(dev->irq); 4334 err_free_netdev: 4335 free_netdev(dev); 4336 return err; 4337 } 4338 4339 /* Device removal routine */ 4340 static int mvneta_remove(struct platform_device *pdev) 4341 { 4342 struct net_device *dev = platform_get_drvdata(pdev); 4343 struct device_node *dn = pdev->dev.of_node; 4344 struct mvneta_port *pp = netdev_priv(dev); 4345 4346 unregister_netdev(dev); 4347 clk_disable_unprepare(pp->clk_bus); 4348 clk_disable_unprepare(pp->clk); 4349 free_percpu(pp->ports); 4350 free_percpu(pp->stats); 4351 if (of_phy_is_fixed_link(dn)) 4352 of_phy_deregister_fixed_link(dn); 4353 irq_dispose_mapping(dev->irq); 4354 of_node_put(pp->phy_node); 4355 free_netdev(dev); 4356 4357 if (pp->bm_priv) { 4358 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4359 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4360 1 << pp->id); 4361 } 4362 4363 return 0; 4364 } 4365 4366 static const struct of_device_id mvneta_match[] = { 4367 { .compatible = "marvell,armada-370-neta" }, 4368 { .compatible = "marvell,armada-xp-neta" }, 4369 { .compatible = "marvell,armada-3700-neta" }, 4370 { } 4371 }; 4372 MODULE_DEVICE_TABLE(of, mvneta_match); 4373 4374 static struct platform_driver mvneta_driver = { 4375 .probe = mvneta_probe, 4376 .remove = mvneta_remove, 4377 .driver = { 4378 .name = MVNETA_DRIVER_NAME, 4379 .of_match_table = mvneta_match, 4380 }, 4381 }; 4382 4383 static int __init mvneta_driver_init(void) 4384 { 4385 int ret; 4386 4387 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4388 mvneta_cpu_online, 4389 mvneta_cpu_down_prepare); 4390 if (ret < 0) 4391 goto out; 4392 online_hpstate = ret; 4393 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4394 NULL, mvneta_cpu_dead); 4395 if (ret) 4396 goto err_dead; 4397 4398 ret = platform_driver_register(&mvneta_driver); 4399 if (ret) 4400 goto err; 4401 return 0; 4402 4403 err: 4404 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4405 err_dead: 4406 cpuhp_remove_multi_state(online_hpstate); 4407 out: 4408 return ret; 4409 } 4410 module_init(mvneta_driver_init); 4411 4412 static void __exit mvneta_driver_exit(void) 4413 { 4414 platform_driver_unregister(&mvneta_driver); 4415 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4416 cpuhp_remove_multi_state(online_hpstate); 4417 } 4418 module_exit(mvneta_driver_exit); 4419 4420 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4421 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4422 MODULE_LICENSE("GPL"); 4423 4424 module_param(rxq_number, int, S_IRUGO); 4425 module_param(txq_number, int, S_IRUGO); 4426 4427 module_param(rxq_def, int, S_IRUGO); 4428 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4429