1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/phy.h>
31 #include <linux/clk.h>
32 
33 /* Registers */
34 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
35 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
36 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
37 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
38 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
39 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
40 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
41 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
42 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
43 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
44 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
45 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
47 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
49 #define MVNETA_PORT_RX_RESET                    0x1cc0
50 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
51 #define MVNETA_PHY_ADDR                         0x2000
52 #define      MVNETA_PHY_ADDR_MASK               0x1f
53 #define MVNETA_MBUS_RETRY                       0x2010
54 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
55 #define MVNETA_UNIT_CONTROL                     0x20B0
56 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
57 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
58 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
59 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
60 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
61 #define MVNETA_PORT_CONFIG                      0x2400
62 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
63 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
64 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
65 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
66 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
67 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
68 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
69 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
70 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
71 						 MVNETA_DEF_RXQ_ARP(q)	 | \
72 						 MVNETA_DEF_RXQ_TCP(q)	 | \
73 						 MVNETA_DEF_RXQ_UDP(q)	 | \
74 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
75 						 MVNETA_TX_UNSET_ERR_SUM | \
76 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
78 #define MVNETA_MAC_ADDR_LOW                      0x2414
79 #define MVNETA_MAC_ADDR_HIGH                     0x2418
80 #define MVNETA_SDMA_CONFIG                       0x241c
81 #define      MVNETA_SDMA_BRST_SIZE_16            4
82 #define      MVNETA_NO_DESC_SWAP                 0x0
83 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
84 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
85 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
86 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
87 #define MVNETA_PORT_STATUS                       0x2444
88 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
89 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
90 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
91 #define MVNETA_TYPE_PRIO                         0x24bc
92 #define      MVNETA_FORCE_UNI                    BIT(21)
93 #define MVNETA_TXQ_CMD_1                         0x24e4
94 #define MVNETA_TXQ_CMD                           0x2448
95 #define      MVNETA_TXQ_DISABLE_SHIFT            8
96 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
97 #define MVNETA_ACC_MODE                          0x2500
98 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
99 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
100 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
101 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
102 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
103 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
104 #define MVNETA_INTR_NEW_MASK                     0x25a4
105 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
106 #define MVNETA_INTR_OLD_MASK                     0x25ac
107 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
108 #define MVNETA_INTR_MISC_MASK                    0x25b4
109 #define MVNETA_INTR_ENABLE                       0x25b8
110 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
111 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000
112 #define MVNETA_RXQ_CMD                           0x2680
113 #define      MVNETA_RXQ_DISABLE_SHIFT            8
114 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
115 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
116 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
117 #define MVNETA_GMAC_CTRL_0                       0x2c00
118 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
119 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
120 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
121 #define MVNETA_GMAC_CTRL_2                       0x2c08
122 #define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
123 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
124 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
125 #define MVNETA_GMAC_STATUS                       0x2c10
126 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
127 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
128 #define      MVNETA_GMAC_SPEED_100               BIT(2)
129 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
130 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
131 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
132 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
133 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
134 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
135 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
136 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
137 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
138 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
139 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
140 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
141 #define      MVNETA_MIB_LATE_COLLISION           0x7c
142 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
143 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
144 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
145 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
146 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
147 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
148 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
149 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
150 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
151 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
152 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
153 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
154 #define MVNETA_PORT_TX_RESET                     0x3cf0
155 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
156 #define MVNETA_TX_MTU                            0x3e0c
157 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
158 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
159 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
160 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
161 
162 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
163 
164 /* Descriptor ring Macros */
165 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
166 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
167 
168 /* Various constants */
169 
170 /* Coalescing */
171 #define MVNETA_TXDONE_COAL_PKTS		16
172 #define MVNETA_RX_COAL_PKTS		32
173 #define MVNETA_RX_COAL_USEC		100
174 
175 /* Timer */
176 #define MVNETA_TX_DONE_TIMER_PERIOD	10
177 
178 /* Napi polling weight */
179 #define MVNETA_RX_POLL_WEIGHT		64
180 
181 /* The two bytes Marvell header. Either contains a special value used
182  * by Marvell switches when a specific hardware mode is enabled (not
183  * supported by this driver) or is filled automatically by zeroes on
184  * the RX side. Those two bytes being at the front of the Ethernet
185  * header, they allow to have the IP header aligned on a 4 bytes
186  * boundary automatically: the hardware skips those two bytes on its
187  * own.
188  */
189 #define MVNETA_MH_SIZE			2
190 
191 #define MVNETA_VLAN_TAG_LEN             4
192 
193 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
194 #define MVNETA_TX_CSUM_MAX_SIZE		9800
195 #define MVNETA_ACC_MODE_EXT		1
196 
197 /* Timeout constants */
198 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
199 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
200 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
201 
202 #define MVNETA_TX_MTU_MAX		0x3ffff
203 
204 /* Max number of Rx descriptors */
205 #define MVNETA_MAX_RXD 128
206 
207 /* Max number of Tx descriptors */
208 #define MVNETA_MAX_TXD 532
209 
210 /* descriptor aligned size */
211 #define MVNETA_DESC_ALIGNED_SIZE	32
212 
213 #define MVNETA_RX_PKT_SIZE(mtu) \
214 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
215 	      ETH_HLEN + ETH_FCS_LEN,			     \
216 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
217 
218 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
219 
220 struct mvneta_stats {
221 	struct	u64_stats_sync syncp;
222 	u64	packets;
223 	u64	bytes;
224 };
225 
226 struct mvneta_port {
227 	int pkt_size;
228 	void __iomem *base;
229 	struct mvneta_rx_queue *rxqs;
230 	struct mvneta_tx_queue *txqs;
231 	struct timer_list tx_done_timer;
232 	struct net_device *dev;
233 
234 	u32 cause_rx_tx;
235 	struct napi_struct napi;
236 
237 	/* Flags */
238 	unsigned long flags;
239 #define MVNETA_F_TX_DONE_TIMER_BIT  0
240 
241 	/* Napi weight */
242 	int weight;
243 
244 	/* Core clock */
245 	struct clk *clk;
246 	u8 mcast_count[256];
247 	u16 tx_ring_size;
248 	u16 rx_ring_size;
249 	struct mvneta_stats tx_stats;
250 	struct mvneta_stats rx_stats;
251 
252 	struct mii_bus *mii_bus;
253 	struct phy_device *phy_dev;
254 	phy_interface_t phy_interface;
255 	struct device_node *phy_node;
256 	unsigned int link;
257 	unsigned int duplex;
258 	unsigned int speed;
259 };
260 
261 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
262  * layout of the transmit and reception DMA descriptors, and their
263  * layout is therefore defined by the hardware design
264  */
265 struct mvneta_tx_desc {
266 	u32  command;		/* Options used by HW for packet transmitting.*/
267 #define MVNETA_TX_L3_OFF_SHIFT	0
268 #define MVNETA_TX_IP_HLEN_SHIFT	8
269 #define MVNETA_TX_L4_UDP	BIT(16)
270 #define MVNETA_TX_L3_IP6	BIT(17)
271 #define MVNETA_TXD_IP_CSUM	BIT(18)
272 #define MVNETA_TXD_Z_PAD	BIT(19)
273 #define MVNETA_TXD_L_DESC	BIT(20)
274 #define MVNETA_TXD_F_DESC	BIT(21)
275 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
276 				 MVNETA_TXD_L_DESC | \
277 				 MVNETA_TXD_F_DESC)
278 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
279 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
280 
281 	u16  reserverd1;	/* csum_l4 (for future use)		*/
282 	u16  data_size;		/* Data size of transmitted packet in bytes */
283 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
284 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
285 	u32  reserved3[4];	/* Reserved - (for future use)		*/
286 };
287 
288 struct mvneta_rx_desc {
289 	u32  status;		/* Info about received packet		*/
290 #define MVNETA_RXD_ERR_CRC		0x0
291 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
292 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
293 #define MVNETA_RXD_ERR_LEN		BIT(18)
294 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
295 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
296 #define MVNETA_RXD_L3_IP4		BIT(25)
297 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
298 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
299 
300 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
301 	u16  data_size;		/* Size of received packet in bytes	*/
302 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
303 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
304 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
305 	u16  reserved3;		/* prefetch_cmd, for future use		*/
306 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
307 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
308 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
309 };
310 
311 struct mvneta_tx_queue {
312 	/* Number of this TX queue, in the range 0-7 */
313 	u8 id;
314 
315 	/* Number of TX DMA descriptors in the descriptor ring */
316 	int size;
317 
318 	/* Number of currently used TX DMA descriptor in the
319 	 * descriptor ring
320 	 */
321 	int count;
322 
323 	/* Array of transmitted skb */
324 	struct sk_buff **tx_skb;
325 
326 	/* Index of last TX DMA descriptor that was inserted */
327 	int txq_put_index;
328 
329 	/* Index of the TX DMA descriptor to be cleaned up */
330 	int txq_get_index;
331 
332 	u32 done_pkts_coal;
333 
334 	/* Virtual address of the TX DMA descriptors array */
335 	struct mvneta_tx_desc *descs;
336 
337 	/* DMA address of the TX DMA descriptors array */
338 	dma_addr_t descs_phys;
339 
340 	/* Index of the last TX DMA descriptor */
341 	int last_desc;
342 
343 	/* Index of the next TX DMA descriptor to process */
344 	int next_desc_to_proc;
345 };
346 
347 struct mvneta_rx_queue {
348 	/* rx queue number, in the range 0-7 */
349 	u8 id;
350 
351 	/* num of rx descriptors in the rx descriptor ring */
352 	int size;
353 
354 	/* counter of times when mvneta_refill() failed */
355 	int missed;
356 
357 	u32 pkts_coal;
358 	u32 time_coal;
359 
360 	/* Virtual address of the RX DMA descriptors array */
361 	struct mvneta_rx_desc *descs;
362 
363 	/* DMA address of the RX DMA descriptors array */
364 	dma_addr_t descs_phys;
365 
366 	/* Index of the last RX DMA descriptor */
367 	int last_desc;
368 
369 	/* Index of the next RX DMA descriptor to process */
370 	int next_desc_to_proc;
371 };
372 
373 static int rxq_number = 8;
374 static int txq_number = 8;
375 
376 static int rxq_def;
377 
378 #define MVNETA_DRIVER_NAME "mvneta"
379 #define MVNETA_DRIVER_VERSION "1.0"
380 
381 /* Utility/helper methods */
382 
383 /* Write helper method */
384 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
385 {
386 	writel(data, pp->base + offset);
387 }
388 
389 /* Read helper method */
390 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
391 {
392 	return readl(pp->base + offset);
393 }
394 
395 /* Increment txq get counter */
396 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
397 {
398 	txq->txq_get_index++;
399 	if (txq->txq_get_index == txq->size)
400 		txq->txq_get_index = 0;
401 }
402 
403 /* Increment txq put counter */
404 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
405 {
406 	txq->txq_put_index++;
407 	if (txq->txq_put_index == txq->size)
408 		txq->txq_put_index = 0;
409 }
410 
411 
412 /* Clear all MIB counters */
413 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
414 {
415 	int i;
416 	u32 dummy;
417 
418 	/* Perform dummy reads from MIB counters */
419 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
420 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
421 }
422 
423 /* Get System Network Statistics */
424 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
425 					     struct rtnl_link_stats64 *stats)
426 {
427 	struct mvneta_port *pp = netdev_priv(dev);
428 	unsigned int start;
429 
430 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
431 
432 	do {
433 		start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
434 		stats->rx_packets = pp->rx_stats.packets;
435 		stats->rx_bytes	= pp->rx_stats.bytes;
436 	} while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
437 
438 
439 	do {
440 		start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
441 		stats->tx_packets = pp->tx_stats.packets;
442 		stats->tx_bytes	= pp->tx_stats.bytes;
443 	} while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
444 
445 	stats->rx_errors	= dev->stats.rx_errors;
446 	stats->rx_dropped	= dev->stats.rx_dropped;
447 
448 	stats->tx_dropped	= dev->stats.tx_dropped;
449 
450 	return stats;
451 }
452 
453 /* Rx descriptors helper methods */
454 
455 /* Checks whether the given RX descriptor is both the first and the
456  * last descriptor for the RX packet. Each RX packet is currently
457  * received through a single RX descriptor, so not having each RX
458  * descriptor with its first and last bits set is an error
459  */
460 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
461 {
462 	return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
463 		MVNETA_RXD_FIRST_LAST_DESC;
464 }
465 
466 /* Add number of descriptors ready to receive new packets */
467 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
468 					  struct mvneta_rx_queue *rxq,
469 					  int ndescs)
470 {
471 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
472 	 * be added at once
473 	 */
474 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
475 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
476 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
477 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
478 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
479 	}
480 
481 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
482 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
483 }
484 
485 /* Get number of RX descriptors occupied by received packets */
486 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
487 					struct mvneta_rx_queue *rxq)
488 {
489 	u32 val;
490 
491 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
492 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
493 }
494 
495 /* Update num of rx desc called upon return from rx path or
496  * from mvneta_rxq_drop_pkts().
497  */
498 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
499 				       struct mvneta_rx_queue *rxq,
500 				       int rx_done, int rx_filled)
501 {
502 	u32 val;
503 
504 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
505 		val = rx_done |
506 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
507 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
508 		return;
509 	}
510 
511 	/* Only 255 descriptors can be added at once */
512 	while ((rx_done > 0) || (rx_filled > 0)) {
513 		if (rx_done <= 0xff) {
514 			val = rx_done;
515 			rx_done = 0;
516 		} else {
517 			val = 0xff;
518 			rx_done -= 0xff;
519 		}
520 		if (rx_filled <= 0xff) {
521 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
522 			rx_filled = 0;
523 		} else {
524 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
525 			rx_filled -= 0xff;
526 		}
527 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
528 	}
529 }
530 
531 /* Get pointer to next RX descriptor to be processed by SW */
532 static struct mvneta_rx_desc *
533 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
534 {
535 	int rx_desc = rxq->next_desc_to_proc;
536 
537 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
538 	return rxq->descs + rx_desc;
539 }
540 
541 /* Change maximum receive size of the port. */
542 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
543 {
544 	u32 val;
545 
546 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
547 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
548 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
549 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
550 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
551 }
552 
553 
554 /* Set rx queue offset */
555 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
556 				  struct mvneta_rx_queue *rxq,
557 				  int offset)
558 {
559 	u32 val;
560 
561 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
562 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
563 
564 	/* Offset is in */
565 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
566 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
567 }
568 
569 
570 /* Tx descriptors helper methods */
571 
572 /* Update HW with number of TX descriptors to be sent */
573 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
574 				     struct mvneta_tx_queue *txq,
575 				     int pend_desc)
576 {
577 	u32 val;
578 
579 	/* Only 255 descriptors can be added at once ; Assume caller
580 	 * process TX desriptors in quanta less than 256
581 	 */
582 	val = pend_desc;
583 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
584 }
585 
586 /* Get pointer to next TX descriptor to be processed (send) by HW */
587 static struct mvneta_tx_desc *
588 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
589 {
590 	int tx_desc = txq->next_desc_to_proc;
591 
592 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
593 	return txq->descs + tx_desc;
594 }
595 
596 /* Release the last allocated TX descriptor. Useful to handle DMA
597  * mapping failures in the TX path.
598  */
599 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
600 {
601 	if (txq->next_desc_to_proc == 0)
602 		txq->next_desc_to_proc = txq->last_desc - 1;
603 	else
604 		txq->next_desc_to_proc--;
605 }
606 
607 /* Set rxq buf size */
608 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
609 				    struct mvneta_rx_queue *rxq,
610 				    int buf_size)
611 {
612 	u32 val;
613 
614 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
615 
616 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
617 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
618 
619 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
620 }
621 
622 /* Disable buffer management (BM) */
623 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
624 				  struct mvneta_rx_queue *rxq)
625 {
626 	u32 val;
627 
628 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
629 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
630 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
631 }
632 
633 
634 
635 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
636 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
637 {
638 	u32  val;
639 
640 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
641 
642 	if (enable)
643 		val |= MVNETA_GMAC2_PORT_RGMII;
644 	else
645 		val &= ~MVNETA_GMAC2_PORT_RGMII;
646 
647 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
648 }
649 
650 /* Config SGMII port */
651 static void mvneta_port_sgmii_config(struct mvneta_port *pp)
652 {
653 	u32 val;
654 
655 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
656 	val |= MVNETA_GMAC2_PSC_ENABLE;
657 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
658 }
659 
660 /* Start the Ethernet port RX and TX activity */
661 static void mvneta_port_up(struct mvneta_port *pp)
662 {
663 	int queue;
664 	u32 q_map;
665 
666 	/* Enable all initialized TXs. */
667 	mvneta_mib_counters_clear(pp);
668 	q_map = 0;
669 	for (queue = 0; queue < txq_number; queue++) {
670 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
671 		if (txq->descs != NULL)
672 			q_map |= (1 << queue);
673 	}
674 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
675 
676 	/* Enable all initialized RXQs. */
677 	q_map = 0;
678 	for (queue = 0; queue < rxq_number; queue++) {
679 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
680 		if (rxq->descs != NULL)
681 			q_map |= (1 << queue);
682 	}
683 
684 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
685 }
686 
687 /* Stop the Ethernet port activity */
688 static void mvneta_port_down(struct mvneta_port *pp)
689 {
690 	u32 val;
691 	int count;
692 
693 	/* Stop Rx port activity. Check port Rx activity. */
694 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
695 
696 	/* Issue stop command for active channels only */
697 	if (val != 0)
698 		mvreg_write(pp, MVNETA_RXQ_CMD,
699 			    val << MVNETA_RXQ_DISABLE_SHIFT);
700 
701 	/* Wait for all Rx activity to terminate. */
702 	count = 0;
703 	do {
704 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
705 			netdev_warn(pp->dev,
706 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
707 				    val);
708 			break;
709 		}
710 		mdelay(1);
711 
712 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
713 	} while (val & 0xff);
714 
715 	/* Stop Tx port activity. Check port Tx activity. Issue stop
716 	 * command for active channels only
717 	 */
718 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
719 
720 	if (val != 0)
721 		mvreg_write(pp, MVNETA_TXQ_CMD,
722 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
723 
724 	/* Wait for all Tx activity to terminate. */
725 	count = 0;
726 	do {
727 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
728 			netdev_warn(pp->dev,
729 				    "TIMEOUT for TX stopped status=0x%08x\n",
730 				    val);
731 			break;
732 		}
733 		mdelay(1);
734 
735 		/* Check TX Command reg that all Txqs are stopped */
736 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
737 
738 	} while (val & 0xff);
739 
740 	/* Double check to verify that TX FIFO is empty */
741 	count = 0;
742 	do {
743 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
744 			netdev_warn(pp->dev,
745 				    "TX FIFO empty timeout status=0x08%x\n",
746 				    val);
747 			break;
748 		}
749 		mdelay(1);
750 
751 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
752 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
753 		 (val & MVNETA_TX_IN_PRGRS));
754 
755 	udelay(200);
756 }
757 
758 /* Enable the port by setting the port enable bit of the MAC control register */
759 static void mvneta_port_enable(struct mvneta_port *pp)
760 {
761 	u32 val;
762 
763 	/* Enable port */
764 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
765 	val |= MVNETA_GMAC0_PORT_ENABLE;
766 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
767 }
768 
769 /* Disable the port and wait for about 200 usec before retuning */
770 static void mvneta_port_disable(struct mvneta_port *pp)
771 {
772 	u32 val;
773 
774 	/* Reset the Enable bit in the Serial Control Register */
775 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
776 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
777 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
778 
779 	udelay(200);
780 }
781 
782 /* Multicast tables methods */
783 
784 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
785 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
786 {
787 	int offset;
788 	u32 val;
789 
790 	if (queue == -1) {
791 		val = 0;
792 	} else {
793 		val = 0x1 | (queue << 1);
794 		val |= (val << 24) | (val << 16) | (val << 8);
795 	}
796 
797 	for (offset = 0; offset <= 0xc; offset += 4)
798 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
799 }
800 
801 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
802 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
803 {
804 	int offset;
805 	u32 val;
806 
807 	if (queue == -1) {
808 		val = 0;
809 	} else {
810 		val = 0x1 | (queue << 1);
811 		val |= (val << 24) | (val << 16) | (val << 8);
812 	}
813 
814 	for (offset = 0; offset <= 0xfc; offset += 4)
815 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
816 
817 }
818 
819 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
820 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
821 {
822 	int offset;
823 	u32 val;
824 
825 	if (queue == -1) {
826 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
827 		val = 0;
828 	} else {
829 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
830 		val = 0x1 | (queue << 1);
831 		val |= (val << 24) | (val << 16) | (val << 8);
832 	}
833 
834 	for (offset = 0; offset <= 0xfc; offset += 4)
835 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
836 }
837 
838 /* This method sets defaults to the NETA port:
839  *	Clears interrupt Cause and Mask registers.
840  *	Clears all MAC tables.
841  *	Sets defaults to all registers.
842  *	Resets RX and TX descriptor rings.
843  *	Resets PHY.
844  * This method can be called after mvneta_port_down() to return the port
845  *	settings to defaults.
846  */
847 static void mvneta_defaults_set(struct mvneta_port *pp)
848 {
849 	int cpu;
850 	int queue;
851 	u32 val;
852 
853 	/* Clear all Cause registers */
854 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
855 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
856 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
857 
858 	/* Mask all interrupts */
859 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
860 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
861 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
862 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
863 
864 	/* Enable MBUS Retry bit16 */
865 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
866 
867 	/* Set CPU queue access map - all CPUs have access to all RX
868 	 * queues and to all TX queues
869 	 */
870 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
871 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
872 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
873 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
874 
875 	/* Reset RX and TX DMAs */
876 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
877 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
878 
879 	/* Disable Legacy WRR, Disable EJP, Release from reset */
880 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
881 	for (queue = 0; queue < txq_number; queue++) {
882 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
883 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
884 	}
885 
886 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
887 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
888 
889 	/* Set Port Acceleration Mode */
890 	val = MVNETA_ACC_MODE_EXT;
891 	mvreg_write(pp, MVNETA_ACC_MODE, val);
892 
893 	/* Update val of portCfg register accordingly with all RxQueue types */
894 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
895 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
896 
897 	val = 0;
898 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
899 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
900 
901 	/* Build PORT_SDMA_CONFIG_REG */
902 	val = 0;
903 
904 	/* Default burst size */
905 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
906 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
907 
908 	val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
909 		MVNETA_NO_DESC_SWAP);
910 
911 	/* Assign port SDMA configuration */
912 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
913 
914 	mvneta_set_ucast_table(pp, -1);
915 	mvneta_set_special_mcast_table(pp, -1);
916 	mvneta_set_other_mcast_table(pp, -1);
917 
918 	/* Set port interrupt enable register - default enable all */
919 	mvreg_write(pp, MVNETA_INTR_ENABLE,
920 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
921 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
922 }
923 
924 /* Set max sizes for tx queues */
925 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
926 
927 {
928 	u32 val, size, mtu;
929 	int queue;
930 
931 	mtu = max_tx_size * 8;
932 	if (mtu > MVNETA_TX_MTU_MAX)
933 		mtu = MVNETA_TX_MTU_MAX;
934 
935 	/* Set MTU */
936 	val = mvreg_read(pp, MVNETA_TX_MTU);
937 	val &= ~MVNETA_TX_MTU_MAX;
938 	val |= mtu;
939 	mvreg_write(pp, MVNETA_TX_MTU, val);
940 
941 	/* TX token size and all TXQs token size must be larger that MTU */
942 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
943 
944 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
945 	if (size < mtu) {
946 		size = mtu;
947 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
948 		val |= size;
949 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
950 	}
951 	for (queue = 0; queue < txq_number; queue++) {
952 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
953 
954 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
955 		if (size < mtu) {
956 			size = mtu;
957 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
958 			val |= size;
959 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
960 		}
961 	}
962 }
963 
964 /* Set unicast address */
965 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
966 				  int queue)
967 {
968 	unsigned int unicast_reg;
969 	unsigned int tbl_offset;
970 	unsigned int reg_offset;
971 
972 	/* Locate the Unicast table entry */
973 	last_nibble = (0xf & last_nibble);
974 
975 	/* offset from unicast tbl base */
976 	tbl_offset = (last_nibble / 4) * 4;
977 
978 	/* offset within the above reg  */
979 	reg_offset = last_nibble % 4;
980 
981 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
982 
983 	if (queue == -1) {
984 		/* Clear accepts frame bit at specified unicast DA tbl entry */
985 		unicast_reg &= ~(0xff << (8 * reg_offset));
986 	} else {
987 		unicast_reg &= ~(0xff << (8 * reg_offset));
988 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
989 	}
990 
991 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
992 }
993 
994 /* Set mac address */
995 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
996 				int queue)
997 {
998 	unsigned int mac_h;
999 	unsigned int mac_l;
1000 
1001 	if (queue != -1) {
1002 		mac_l = (addr[4] << 8) | (addr[5]);
1003 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1004 			(addr[2] << 8) | (addr[3] << 0);
1005 
1006 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1007 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1008 	}
1009 
1010 	/* Accept frames of this address */
1011 	mvneta_set_ucast_addr(pp, addr[5], queue);
1012 }
1013 
1014 /* Set the number of packets that will be received before RX interrupt
1015  * will be generated by HW.
1016  */
1017 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1018 				    struct mvneta_rx_queue *rxq, u32 value)
1019 {
1020 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1021 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1022 	rxq->pkts_coal = value;
1023 }
1024 
1025 /* Set the time delay in usec before RX interrupt will be generated by
1026  * HW.
1027  */
1028 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1029 				    struct mvneta_rx_queue *rxq, u32 value)
1030 {
1031 	u32 val;
1032 	unsigned long clk_rate;
1033 
1034 	clk_rate = clk_get_rate(pp->clk);
1035 	val = (clk_rate / 1000000) * value;
1036 
1037 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1038 	rxq->time_coal = value;
1039 }
1040 
1041 /* Set threshold for TX_DONE pkts coalescing */
1042 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1043 					 struct mvneta_tx_queue *txq, u32 value)
1044 {
1045 	u32 val;
1046 
1047 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1048 
1049 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1050 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1051 
1052 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1053 
1054 	txq->done_pkts_coal = value;
1055 }
1056 
1057 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1058 static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1059 {
1060 	if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1061 		pp->tx_done_timer.expires = jiffies +
1062 			msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1063 		add_timer(&pp->tx_done_timer);
1064 	}
1065 }
1066 
1067 
1068 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1069 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1070 				u32 phys_addr, u32 cookie)
1071 {
1072 	rx_desc->buf_cookie = cookie;
1073 	rx_desc->buf_phys_addr = phys_addr;
1074 }
1075 
1076 /* Decrement sent descriptors counter */
1077 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1078 				     struct mvneta_tx_queue *txq,
1079 				     int sent_desc)
1080 {
1081 	u32 val;
1082 
1083 	/* Only 255 TX descriptors can be updated at once */
1084 	while (sent_desc > 0xff) {
1085 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1086 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1087 		sent_desc = sent_desc - 0xff;
1088 	}
1089 
1090 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1091 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1092 }
1093 
1094 /* Get number of TX descriptors already sent by HW */
1095 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1096 					struct mvneta_tx_queue *txq)
1097 {
1098 	u32 val;
1099 	int sent_desc;
1100 
1101 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1102 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1103 		MVNETA_TXQ_SENT_DESC_SHIFT;
1104 
1105 	return sent_desc;
1106 }
1107 
1108 /* Get number of sent descriptors and decrement counter.
1109  *  The number of sent descriptors is returned.
1110  */
1111 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1112 				     struct mvneta_tx_queue *txq)
1113 {
1114 	int sent_desc;
1115 
1116 	/* Get number of sent descriptors */
1117 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1118 
1119 	/* Decrement sent descriptors counter */
1120 	if (sent_desc)
1121 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1122 
1123 	return sent_desc;
1124 }
1125 
1126 /* Set TXQ descriptors fields relevant for CSUM calculation */
1127 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1128 				int ip_hdr_len, int l4_proto)
1129 {
1130 	u32 command;
1131 
1132 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1133 	 * G_L4_chk, L4_type; required only for checksum
1134 	 * calculation
1135 	 */
1136 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1137 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1138 
1139 	if (l3_proto == swab16(ETH_P_IP))
1140 		command |= MVNETA_TXD_IP_CSUM;
1141 	else
1142 		command |= MVNETA_TX_L3_IP6;
1143 
1144 	if (l4_proto == IPPROTO_TCP)
1145 		command |=  MVNETA_TX_L4_CSUM_FULL;
1146 	else if (l4_proto == IPPROTO_UDP)
1147 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1148 	else
1149 		command |= MVNETA_TX_L4_CSUM_NOT;
1150 
1151 	return command;
1152 }
1153 
1154 
1155 /* Display more error info */
1156 static void mvneta_rx_error(struct mvneta_port *pp,
1157 			    struct mvneta_rx_desc *rx_desc)
1158 {
1159 	u32 status = rx_desc->status;
1160 
1161 	if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1162 		netdev_err(pp->dev,
1163 			   "bad rx status %08x (buffer oversize), size=%d\n",
1164 			   rx_desc->status, rx_desc->data_size);
1165 		return;
1166 	}
1167 
1168 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1169 	case MVNETA_RXD_ERR_CRC:
1170 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1171 			   status, rx_desc->data_size);
1172 		break;
1173 	case MVNETA_RXD_ERR_OVERRUN:
1174 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1175 			   status, rx_desc->data_size);
1176 		break;
1177 	case MVNETA_RXD_ERR_LEN:
1178 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1179 			   status, rx_desc->data_size);
1180 		break;
1181 	case MVNETA_RXD_ERR_RESOURCE:
1182 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1183 			   status, rx_desc->data_size);
1184 		break;
1185 	}
1186 }
1187 
1188 /* Handle RX checksum offload */
1189 static void mvneta_rx_csum(struct mvneta_port *pp,
1190 			   struct mvneta_rx_desc *rx_desc,
1191 			   struct sk_buff *skb)
1192 {
1193 	if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1194 	    (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1195 		skb->csum = 0;
1196 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1197 		return;
1198 	}
1199 
1200 	skb->ip_summed = CHECKSUM_NONE;
1201 }
1202 
1203 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1204 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1205 						     u32 cause)
1206 {
1207 	int queue = fls(cause) - 1;
1208 
1209 	return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1210 }
1211 
1212 /* Free tx queue skbuffs */
1213 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1214 				 struct mvneta_tx_queue *txq, int num)
1215 {
1216 	int i;
1217 
1218 	for (i = 0; i < num; i++) {
1219 		struct mvneta_tx_desc *tx_desc = txq->descs +
1220 			txq->txq_get_index;
1221 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1222 
1223 		mvneta_txq_inc_get(txq);
1224 
1225 		if (!skb)
1226 			continue;
1227 
1228 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1229 				 tx_desc->data_size, DMA_TO_DEVICE);
1230 		dev_kfree_skb_any(skb);
1231 	}
1232 }
1233 
1234 /* Handle end of transmission */
1235 static int mvneta_txq_done(struct mvneta_port *pp,
1236 			   struct mvneta_tx_queue *txq)
1237 {
1238 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1239 	int tx_done;
1240 
1241 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1242 	if (tx_done == 0)
1243 		return tx_done;
1244 	mvneta_txq_bufs_free(pp, txq, tx_done);
1245 
1246 	txq->count -= tx_done;
1247 
1248 	if (netif_tx_queue_stopped(nq)) {
1249 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1250 			netif_tx_wake_queue(nq);
1251 	}
1252 
1253 	return tx_done;
1254 }
1255 
1256 /* Refill processing */
1257 static int mvneta_rx_refill(struct mvneta_port *pp,
1258 			    struct mvneta_rx_desc *rx_desc)
1259 
1260 {
1261 	dma_addr_t phys_addr;
1262 	struct sk_buff *skb;
1263 
1264 	skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1265 	if (!skb)
1266 		return -ENOMEM;
1267 
1268 	phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1269 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1270 				   DMA_FROM_DEVICE);
1271 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1272 		dev_kfree_skb(skb);
1273 		return -ENOMEM;
1274 	}
1275 
1276 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1277 
1278 	return 0;
1279 }
1280 
1281 /* Handle tx checksum */
1282 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1283 {
1284 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1285 		int ip_hdr_len = 0;
1286 		u8 l4_proto;
1287 
1288 		if (skb->protocol == htons(ETH_P_IP)) {
1289 			struct iphdr *ip4h = ip_hdr(skb);
1290 
1291 			/* Calculate IPv4 checksum and L4 checksum */
1292 			ip_hdr_len = ip4h->ihl;
1293 			l4_proto = ip4h->protocol;
1294 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1295 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1296 
1297 			/* Read l4_protocol from one of IPv6 extra headers */
1298 			if (skb_network_header_len(skb) > 0)
1299 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1300 			l4_proto = ip6h->nexthdr;
1301 		} else
1302 			return MVNETA_TX_L4_CSUM_NOT;
1303 
1304 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1305 				skb->protocol, ip_hdr_len, l4_proto);
1306 	}
1307 
1308 	return MVNETA_TX_L4_CSUM_NOT;
1309 }
1310 
1311 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1312  * value
1313  */
1314 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1315 						u32 cause)
1316 {
1317 	int queue = fls(cause >> 8) - 1;
1318 
1319 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1320 }
1321 
1322 /* Drop packets received by the RXQ and free buffers */
1323 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1324 				 struct mvneta_rx_queue *rxq)
1325 {
1326 	int rx_done, i;
1327 
1328 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1329 	for (i = 0; i < rxq->size; i++) {
1330 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1331 		struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1332 
1333 		dev_kfree_skb_any(skb);
1334 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1335 				 rx_desc->data_size, DMA_FROM_DEVICE);
1336 	}
1337 
1338 	if (rx_done)
1339 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1340 }
1341 
1342 /* Main rx processing */
1343 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1344 		     struct mvneta_rx_queue *rxq)
1345 {
1346 	struct net_device *dev = pp->dev;
1347 	int rx_done, rx_filled;
1348 
1349 	/* Get number of received packets */
1350 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1351 
1352 	if (rx_todo > rx_done)
1353 		rx_todo = rx_done;
1354 
1355 	rx_done = 0;
1356 	rx_filled = 0;
1357 
1358 	/* Fairness NAPI loop */
1359 	while (rx_done < rx_todo) {
1360 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1361 		struct sk_buff *skb;
1362 		u32 rx_status;
1363 		int rx_bytes, err;
1364 
1365 		prefetch(rx_desc);
1366 		rx_done++;
1367 		rx_filled++;
1368 		rx_status = rx_desc->status;
1369 		skb = (struct sk_buff *)rx_desc->buf_cookie;
1370 
1371 		if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1372 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1373 			dev->stats.rx_errors++;
1374 			mvneta_rx_error(pp, rx_desc);
1375 			mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1376 					    (u32)skb);
1377 			continue;
1378 		}
1379 
1380 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1381 				 rx_desc->data_size, DMA_FROM_DEVICE);
1382 
1383 		rx_bytes = rx_desc->data_size -
1384 			(ETH_FCS_LEN + MVNETA_MH_SIZE);
1385 		u64_stats_update_begin(&pp->rx_stats.syncp);
1386 		pp->rx_stats.packets++;
1387 		pp->rx_stats.bytes += rx_bytes;
1388 		u64_stats_update_end(&pp->rx_stats.syncp);
1389 
1390 		/* Linux processing */
1391 		skb_reserve(skb, MVNETA_MH_SIZE);
1392 		skb_put(skb, rx_bytes);
1393 
1394 		skb->protocol = eth_type_trans(skb, dev);
1395 
1396 		mvneta_rx_csum(pp, rx_desc, skb);
1397 
1398 		napi_gro_receive(&pp->napi, skb);
1399 
1400 		/* Refill processing */
1401 		err = mvneta_rx_refill(pp, rx_desc);
1402 		if (err) {
1403 			netdev_err(pp->dev, "Linux processing - Can't refill\n");
1404 			rxq->missed++;
1405 			rx_filled--;
1406 		}
1407 	}
1408 
1409 	/* Update rxq management counters */
1410 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1411 
1412 	return rx_done;
1413 }
1414 
1415 /* Handle tx fragmentation processing */
1416 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1417 				  struct mvneta_tx_queue *txq)
1418 {
1419 	struct mvneta_tx_desc *tx_desc;
1420 	int i;
1421 
1422 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1423 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1424 		void *addr = page_address(frag->page.p) + frag->page_offset;
1425 
1426 		tx_desc = mvneta_txq_next_desc_get(txq);
1427 		tx_desc->data_size = frag->size;
1428 
1429 		tx_desc->buf_phys_addr =
1430 			dma_map_single(pp->dev->dev.parent, addr,
1431 				       tx_desc->data_size, DMA_TO_DEVICE);
1432 
1433 		if (dma_mapping_error(pp->dev->dev.parent,
1434 				      tx_desc->buf_phys_addr)) {
1435 			mvneta_txq_desc_put(txq);
1436 			goto error;
1437 		}
1438 
1439 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1440 			/* Last descriptor */
1441 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1442 
1443 			txq->tx_skb[txq->txq_put_index] = skb;
1444 
1445 			mvneta_txq_inc_put(txq);
1446 		} else {
1447 			/* Descriptor in the middle: Not First, Not Last */
1448 			tx_desc->command = 0;
1449 
1450 			txq->tx_skb[txq->txq_put_index] = NULL;
1451 			mvneta_txq_inc_put(txq);
1452 		}
1453 	}
1454 
1455 	return 0;
1456 
1457 error:
1458 	/* Release all descriptors that were used to map fragments of
1459 	 * this packet, as well as the corresponding DMA mappings
1460 	 */
1461 	for (i = i - 1; i >= 0; i--) {
1462 		tx_desc = txq->descs + i;
1463 		dma_unmap_single(pp->dev->dev.parent,
1464 				 tx_desc->buf_phys_addr,
1465 				 tx_desc->data_size,
1466 				 DMA_TO_DEVICE);
1467 		mvneta_txq_desc_put(txq);
1468 	}
1469 
1470 	return -ENOMEM;
1471 }
1472 
1473 /* Main tx processing */
1474 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1475 {
1476 	struct mvneta_port *pp = netdev_priv(dev);
1477 	u16 txq_id = skb_get_queue_mapping(skb);
1478 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1479 	struct mvneta_tx_desc *tx_desc;
1480 	struct netdev_queue *nq;
1481 	int frags = 0;
1482 	u32 tx_cmd;
1483 
1484 	if (!netif_running(dev))
1485 		goto out;
1486 
1487 	frags = skb_shinfo(skb)->nr_frags + 1;
1488 	nq    = netdev_get_tx_queue(dev, txq_id);
1489 
1490 	/* Get a descriptor for the first part of the packet */
1491 	tx_desc = mvneta_txq_next_desc_get(txq);
1492 
1493 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1494 
1495 	tx_desc->data_size = skb_headlen(skb);
1496 
1497 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1498 						tx_desc->data_size,
1499 						DMA_TO_DEVICE);
1500 	if (unlikely(dma_mapping_error(dev->dev.parent,
1501 				       tx_desc->buf_phys_addr))) {
1502 		mvneta_txq_desc_put(txq);
1503 		frags = 0;
1504 		goto out;
1505 	}
1506 
1507 	if (frags == 1) {
1508 		/* First and Last descriptor */
1509 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1510 		tx_desc->command = tx_cmd;
1511 		txq->tx_skb[txq->txq_put_index] = skb;
1512 		mvneta_txq_inc_put(txq);
1513 	} else {
1514 		/* First but not Last */
1515 		tx_cmd |= MVNETA_TXD_F_DESC;
1516 		txq->tx_skb[txq->txq_put_index] = NULL;
1517 		mvneta_txq_inc_put(txq);
1518 		tx_desc->command = tx_cmd;
1519 		/* Continue with other skb fragments */
1520 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1521 			dma_unmap_single(dev->dev.parent,
1522 					 tx_desc->buf_phys_addr,
1523 					 tx_desc->data_size,
1524 					 DMA_TO_DEVICE);
1525 			mvneta_txq_desc_put(txq);
1526 			frags = 0;
1527 			goto out;
1528 		}
1529 	}
1530 
1531 	txq->count += frags;
1532 	mvneta_txq_pend_desc_add(pp, txq, frags);
1533 
1534 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1535 		netif_tx_stop_queue(nq);
1536 
1537 out:
1538 	if (frags > 0) {
1539 		u64_stats_update_begin(&pp->tx_stats.syncp);
1540 		pp->tx_stats.packets++;
1541 		pp->tx_stats.bytes += skb->len;
1542 		u64_stats_update_end(&pp->tx_stats.syncp);
1543 
1544 	} else {
1545 		dev->stats.tx_dropped++;
1546 		dev_kfree_skb_any(skb);
1547 	}
1548 
1549 	if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1550 		mvneta_txq_done(pp, txq);
1551 
1552 	/* If after calling mvneta_txq_done, count equals
1553 	 * frags, we need to set the timer
1554 	 */
1555 	if (txq->count == frags && frags > 0)
1556 		mvneta_add_tx_done_timer(pp);
1557 
1558 	return NETDEV_TX_OK;
1559 }
1560 
1561 
1562 /* Free tx resources, when resetting a port */
1563 static void mvneta_txq_done_force(struct mvneta_port *pp,
1564 				  struct mvneta_tx_queue *txq)
1565 
1566 {
1567 	int tx_done = txq->count;
1568 
1569 	mvneta_txq_bufs_free(pp, txq, tx_done);
1570 
1571 	/* reset txq */
1572 	txq->count = 0;
1573 	txq->txq_put_index = 0;
1574 	txq->txq_get_index = 0;
1575 }
1576 
1577 /* handle tx done - called from tx done timer callback */
1578 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1579 			      int *tx_todo)
1580 {
1581 	struct mvneta_tx_queue *txq;
1582 	u32 tx_done = 0;
1583 	struct netdev_queue *nq;
1584 
1585 	*tx_todo = 0;
1586 	while (cause_tx_done != 0) {
1587 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1588 		if (!txq)
1589 			break;
1590 
1591 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1592 		__netif_tx_lock(nq, smp_processor_id());
1593 
1594 		if (txq->count) {
1595 			tx_done += mvneta_txq_done(pp, txq);
1596 			*tx_todo += txq->count;
1597 		}
1598 
1599 		__netif_tx_unlock(nq);
1600 		cause_tx_done &= ~((1 << txq->id));
1601 	}
1602 
1603 	return tx_done;
1604 }
1605 
1606 /* Compute crc8 of the specified address, using a unique algorithm ,
1607  * according to hw spec, different than generic crc8 algorithm
1608  */
1609 static int mvneta_addr_crc(unsigned char *addr)
1610 {
1611 	int crc = 0;
1612 	int i;
1613 
1614 	for (i = 0; i < ETH_ALEN; i++) {
1615 		int j;
1616 
1617 		crc = (crc ^ addr[i]) << 8;
1618 		for (j = 7; j >= 0; j--) {
1619 			if (crc & (0x100 << j))
1620 				crc ^= 0x107 << j;
1621 		}
1622 	}
1623 
1624 	return crc;
1625 }
1626 
1627 /* This method controls the net device special MAC multicast support.
1628  * The Special Multicast Table for MAC addresses supports MAC of the form
1629  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1630  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1631  * Table entries in the DA-Filter table. This method set the Special
1632  * Multicast Table appropriate entry.
1633  */
1634 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1635 					  unsigned char last_byte,
1636 					  int queue)
1637 {
1638 	unsigned int smc_table_reg;
1639 	unsigned int tbl_offset;
1640 	unsigned int reg_offset;
1641 
1642 	/* Register offset from SMC table base    */
1643 	tbl_offset = (last_byte / 4);
1644 	/* Entry offset within the above reg */
1645 	reg_offset = last_byte % 4;
1646 
1647 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1648 					+ tbl_offset * 4));
1649 
1650 	if (queue == -1)
1651 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1652 	else {
1653 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1654 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1655 	}
1656 
1657 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1658 		    smc_table_reg);
1659 }
1660 
1661 /* This method controls the network device Other MAC multicast support.
1662  * The Other Multicast Table is used for multicast of another type.
1663  * A CRC-8 is used as an index to the Other Multicast Table entries
1664  * in the DA-Filter table.
1665  * The method gets the CRC-8 value from the calling routine and
1666  * sets the Other Multicast Table appropriate entry according to the
1667  * specified CRC-8 .
1668  */
1669 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1670 					unsigned char crc8,
1671 					int queue)
1672 {
1673 	unsigned int omc_table_reg;
1674 	unsigned int tbl_offset;
1675 	unsigned int reg_offset;
1676 
1677 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1678 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1679 
1680 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1681 
1682 	if (queue == -1) {
1683 		/* Clear accepts frame bit at specified Other DA table entry */
1684 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1685 	} else {
1686 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1687 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1688 	}
1689 
1690 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1691 }
1692 
1693 /* The network device supports multicast using two tables:
1694  *    1) Special Multicast Table for MAC addresses of the form
1695  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1696  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1697  *       Table entries in the DA-Filter table.
1698  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1699  *       is used as an index to the Other Multicast Table entries in the
1700  *       DA-Filter table.
1701  */
1702 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1703 				 int queue)
1704 {
1705 	unsigned char crc_result = 0;
1706 
1707 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1708 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1709 		return 0;
1710 	}
1711 
1712 	crc_result = mvneta_addr_crc(p_addr);
1713 	if (queue == -1) {
1714 		if (pp->mcast_count[crc_result] == 0) {
1715 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1716 				    crc_result);
1717 			return -EINVAL;
1718 		}
1719 
1720 		pp->mcast_count[crc_result]--;
1721 		if (pp->mcast_count[crc_result] != 0) {
1722 			netdev_info(pp->dev,
1723 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1724 				    pp->mcast_count[crc_result], crc_result);
1725 			return -EINVAL;
1726 		}
1727 	} else
1728 		pp->mcast_count[crc_result]++;
1729 
1730 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1731 
1732 	return 0;
1733 }
1734 
1735 /* Configure Fitering mode of Ethernet port */
1736 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1737 					  int is_promisc)
1738 {
1739 	u32 port_cfg_reg, val;
1740 
1741 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1742 
1743 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1744 
1745 	/* Set / Clear UPM bit in port configuration register */
1746 	if (is_promisc) {
1747 		/* Accept all Unicast addresses */
1748 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1749 		val |= MVNETA_FORCE_UNI;
1750 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1751 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1752 	} else {
1753 		/* Reject all Unicast addresses */
1754 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1755 		val &= ~MVNETA_FORCE_UNI;
1756 	}
1757 
1758 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1759 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1760 }
1761 
1762 /* register unicast and multicast addresses */
1763 static void mvneta_set_rx_mode(struct net_device *dev)
1764 {
1765 	struct mvneta_port *pp = netdev_priv(dev);
1766 	struct netdev_hw_addr *ha;
1767 
1768 	if (dev->flags & IFF_PROMISC) {
1769 		/* Accept all: Multicast + Unicast */
1770 		mvneta_rx_unicast_promisc_set(pp, 1);
1771 		mvneta_set_ucast_table(pp, rxq_def);
1772 		mvneta_set_special_mcast_table(pp, rxq_def);
1773 		mvneta_set_other_mcast_table(pp, rxq_def);
1774 	} else {
1775 		/* Accept single Unicast */
1776 		mvneta_rx_unicast_promisc_set(pp, 0);
1777 		mvneta_set_ucast_table(pp, -1);
1778 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1779 
1780 		if (dev->flags & IFF_ALLMULTI) {
1781 			/* Accept all multicast */
1782 			mvneta_set_special_mcast_table(pp, rxq_def);
1783 			mvneta_set_other_mcast_table(pp, rxq_def);
1784 		} else {
1785 			/* Accept only initialized multicast */
1786 			mvneta_set_special_mcast_table(pp, -1);
1787 			mvneta_set_other_mcast_table(pp, -1);
1788 
1789 			if (!netdev_mc_empty(dev)) {
1790 				netdev_for_each_mc_addr(ha, dev) {
1791 					mvneta_mcast_addr_set(pp, ha->addr,
1792 							      rxq_def);
1793 				}
1794 			}
1795 		}
1796 	}
1797 }
1798 
1799 /* Interrupt handling - the callback for request_irq() */
1800 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1801 {
1802 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1803 
1804 	/* Mask all interrupts */
1805 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1806 
1807 	napi_schedule(&pp->napi);
1808 
1809 	return IRQ_HANDLED;
1810 }
1811 
1812 /* NAPI handler
1813  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1814  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1815  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1816  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1817  * Each CPU has its own causeRxTx register
1818  */
1819 static int mvneta_poll(struct napi_struct *napi, int budget)
1820 {
1821 	int rx_done = 0;
1822 	u32 cause_rx_tx;
1823 	unsigned long flags;
1824 	struct mvneta_port *pp = netdev_priv(napi->dev);
1825 
1826 	if (!netif_running(pp->dev)) {
1827 		napi_complete(napi);
1828 		return rx_done;
1829 	}
1830 
1831 	/* Read cause register */
1832 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1833 		MVNETA_RX_INTR_MASK(rxq_number);
1834 
1835 	/* For the case where the last mvneta_poll did not process all
1836 	 * RX packets
1837 	 */
1838 	cause_rx_tx |= pp->cause_rx_tx;
1839 	if (rxq_number > 1) {
1840 		while ((cause_rx_tx != 0) && (budget > 0)) {
1841 			int count;
1842 			struct mvneta_rx_queue *rxq;
1843 			/* get rx queue number from cause_rx_tx */
1844 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1845 			if (!rxq)
1846 				break;
1847 
1848 			/* process the packet in that rx queue */
1849 			count = mvneta_rx(pp, budget, rxq);
1850 			rx_done += count;
1851 			budget -= count;
1852 			if (budget > 0) {
1853 				/* set off the rx bit of the
1854 				 * corresponding bit in the cause rx
1855 				 * tx register, so that next iteration
1856 				 * will find the next rx queue where
1857 				 * packets are received on
1858 				 */
1859 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1860 			}
1861 		}
1862 	} else {
1863 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1864 		budget -= rx_done;
1865 	}
1866 
1867 	if (budget > 0) {
1868 		cause_rx_tx = 0;
1869 		napi_complete(napi);
1870 		local_irq_save(flags);
1871 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1872 			    MVNETA_RX_INTR_MASK(rxq_number));
1873 		local_irq_restore(flags);
1874 	}
1875 
1876 	pp->cause_rx_tx = cause_rx_tx;
1877 	return rx_done;
1878 }
1879 
1880 /* tx done timer callback */
1881 static void mvneta_tx_done_timer_callback(unsigned long data)
1882 {
1883 	struct net_device *dev = (struct net_device *)data;
1884 	struct mvneta_port *pp = netdev_priv(dev);
1885 	int tx_done = 0, tx_todo = 0;
1886 
1887 	if (!netif_running(dev))
1888 		return ;
1889 
1890 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1891 
1892 	tx_done = mvneta_tx_done_gbe(pp,
1893 				     (((1 << txq_number) - 1) &
1894 				      MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1895 				     &tx_todo);
1896 	if (tx_todo > 0)
1897 		mvneta_add_tx_done_timer(pp);
1898 }
1899 
1900 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1901 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1902 			   int num)
1903 {
1904 	struct net_device *dev = pp->dev;
1905 	int i;
1906 
1907 	for (i = 0; i < num; i++) {
1908 		struct sk_buff *skb;
1909 		struct mvneta_rx_desc *rx_desc;
1910 		unsigned long phys_addr;
1911 
1912 		skb = dev_alloc_skb(pp->pkt_size);
1913 		if (!skb) {
1914 			netdev_err(dev, "%s:rxq %d, %d of %d buffs  filled\n",
1915 				__func__, rxq->id, i, num);
1916 			break;
1917 		}
1918 
1919 		rx_desc = rxq->descs + i;
1920 		memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1921 		phys_addr = dma_map_single(dev->dev.parent, skb->head,
1922 					   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1923 					   DMA_FROM_DEVICE);
1924 		if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1925 			dev_kfree_skb(skb);
1926 			break;
1927 		}
1928 
1929 		mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1930 	}
1931 
1932 	/* Add this number of RX descriptors as non occupied (ready to
1933 	 * get packets)
1934 	 */
1935 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1936 
1937 	return i;
1938 }
1939 
1940 /* Free all packets pending transmit from all TXQs and reset TX port */
1941 static void mvneta_tx_reset(struct mvneta_port *pp)
1942 {
1943 	int queue;
1944 
1945 	/* free the skb's in the hal tx ring */
1946 	for (queue = 0; queue < txq_number; queue++)
1947 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
1948 
1949 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1950 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1951 }
1952 
1953 static void mvneta_rx_reset(struct mvneta_port *pp)
1954 {
1955 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1956 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1957 }
1958 
1959 /* Rx/Tx queue initialization/cleanup methods */
1960 
1961 /* Create a specified RX queue */
1962 static int mvneta_rxq_init(struct mvneta_port *pp,
1963 			   struct mvneta_rx_queue *rxq)
1964 
1965 {
1966 	rxq->size = pp->rx_ring_size;
1967 
1968 	/* Allocate memory for RX descriptors */
1969 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1970 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1971 					&rxq->descs_phys, GFP_KERNEL);
1972 	if (rxq->descs == NULL)
1973 		return -ENOMEM;
1974 
1975 	BUG_ON(rxq->descs !=
1976 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
1977 
1978 	rxq->last_desc = rxq->size - 1;
1979 
1980 	/* Set Rx descriptors queue starting address */
1981 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1982 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1983 
1984 	/* Set Offset */
1985 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
1986 
1987 	/* Set coalescing pkts and time */
1988 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
1989 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
1990 
1991 	/* Fill RXQ with buffers from RX pool */
1992 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
1993 	mvneta_rxq_bm_disable(pp, rxq);
1994 	mvneta_rxq_fill(pp, rxq, rxq->size);
1995 
1996 	return 0;
1997 }
1998 
1999 /* Cleanup Rx queue */
2000 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2001 			      struct mvneta_rx_queue *rxq)
2002 {
2003 	mvneta_rxq_drop_pkts(pp, rxq);
2004 
2005 	if (rxq->descs)
2006 		dma_free_coherent(pp->dev->dev.parent,
2007 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2008 				  rxq->descs,
2009 				  rxq->descs_phys);
2010 
2011 	rxq->descs             = NULL;
2012 	rxq->last_desc         = 0;
2013 	rxq->next_desc_to_proc = 0;
2014 	rxq->descs_phys        = 0;
2015 }
2016 
2017 /* Create and initialize a tx queue */
2018 static int mvneta_txq_init(struct mvneta_port *pp,
2019 			   struct mvneta_tx_queue *txq)
2020 {
2021 	txq->size = pp->tx_ring_size;
2022 
2023 	/* Allocate memory for TX descriptors */
2024 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2025 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2026 					&txq->descs_phys, GFP_KERNEL);
2027 	if (txq->descs == NULL)
2028 		return -ENOMEM;
2029 
2030 	/* Make sure descriptor address is cache line size aligned  */
2031 	BUG_ON(txq->descs !=
2032 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2033 
2034 	txq->last_desc = txq->size - 1;
2035 
2036 	/* Set maximum bandwidth for enabled TXQs */
2037 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2038 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2039 
2040 	/* Set Tx descriptors queue starting address */
2041 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2042 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2043 
2044 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2045 	if (txq->tx_skb == NULL) {
2046 		dma_free_coherent(pp->dev->dev.parent,
2047 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2048 				  txq->descs, txq->descs_phys);
2049 		return -ENOMEM;
2050 	}
2051 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2052 
2053 	return 0;
2054 }
2055 
2056 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2057 static void mvneta_txq_deinit(struct mvneta_port *pp,
2058 			      struct mvneta_tx_queue *txq)
2059 {
2060 	kfree(txq->tx_skb);
2061 
2062 	if (txq->descs)
2063 		dma_free_coherent(pp->dev->dev.parent,
2064 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2065 				  txq->descs, txq->descs_phys);
2066 
2067 	txq->descs             = NULL;
2068 	txq->last_desc         = 0;
2069 	txq->next_desc_to_proc = 0;
2070 	txq->descs_phys        = 0;
2071 
2072 	/* Set minimum bandwidth for disabled TXQs */
2073 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2074 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2075 
2076 	/* Set Tx descriptors queue starting address and size */
2077 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2078 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2079 }
2080 
2081 /* Cleanup all Tx queues */
2082 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2083 {
2084 	int queue;
2085 
2086 	for (queue = 0; queue < txq_number; queue++)
2087 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2088 }
2089 
2090 /* Cleanup all Rx queues */
2091 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2092 {
2093 	int queue;
2094 
2095 	for (queue = 0; queue < rxq_number; queue++)
2096 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2097 }
2098 
2099 
2100 /* Init all Rx queues */
2101 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2102 {
2103 	int queue;
2104 
2105 	for (queue = 0; queue < rxq_number; queue++) {
2106 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2107 		if (err) {
2108 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2109 				   __func__, queue);
2110 			mvneta_cleanup_rxqs(pp);
2111 			return err;
2112 		}
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 /* Init all tx queues */
2119 static int mvneta_setup_txqs(struct mvneta_port *pp)
2120 {
2121 	int queue;
2122 
2123 	for (queue = 0; queue < txq_number; queue++) {
2124 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2125 		if (err) {
2126 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2127 				   __func__, queue);
2128 			mvneta_cleanup_txqs(pp);
2129 			return err;
2130 		}
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static void mvneta_start_dev(struct mvneta_port *pp)
2137 {
2138 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2139 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2140 
2141 	/* start the Rx/Tx activity */
2142 	mvneta_port_enable(pp);
2143 
2144 	/* Enable polling on the port */
2145 	napi_enable(&pp->napi);
2146 
2147 	/* Unmask interrupts */
2148 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2149 		    MVNETA_RX_INTR_MASK(rxq_number));
2150 
2151 	phy_start(pp->phy_dev);
2152 	netif_tx_start_all_queues(pp->dev);
2153 }
2154 
2155 static void mvneta_stop_dev(struct mvneta_port *pp)
2156 {
2157 	phy_stop(pp->phy_dev);
2158 
2159 	napi_disable(&pp->napi);
2160 
2161 	netif_carrier_off(pp->dev);
2162 
2163 	mvneta_port_down(pp);
2164 	netif_tx_stop_all_queues(pp->dev);
2165 
2166 	/* Stop the port activity */
2167 	mvneta_port_disable(pp);
2168 
2169 	/* Clear all ethernet port interrupts */
2170 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2171 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2172 
2173 	/* Mask all ethernet port interrupts */
2174 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2175 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2176 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2177 
2178 	mvneta_tx_reset(pp);
2179 	mvneta_rx_reset(pp);
2180 }
2181 
2182 /* tx timeout callback - display a message and stop/start the network device */
2183 static void mvneta_tx_timeout(struct net_device *dev)
2184 {
2185 	struct mvneta_port *pp = netdev_priv(dev);
2186 
2187 	netdev_info(dev, "tx timeout\n");
2188 	mvneta_stop_dev(pp);
2189 	mvneta_start_dev(pp);
2190 }
2191 
2192 /* Return positive if MTU is valid */
2193 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2194 {
2195 	if (mtu < 68) {
2196 		netdev_err(dev, "cannot change mtu to less than 68\n");
2197 		return -EINVAL;
2198 	}
2199 
2200 	/* 9676 == 9700 - 20 and rounding to 8 */
2201 	if (mtu > 9676) {
2202 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2203 		mtu = 9676;
2204 	}
2205 
2206 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2207 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2208 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2209 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2210 	}
2211 
2212 	return mtu;
2213 }
2214 
2215 /* Change the device mtu */
2216 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2217 {
2218 	struct mvneta_port *pp = netdev_priv(dev);
2219 	int ret;
2220 
2221 	mtu = mvneta_check_mtu_valid(dev, mtu);
2222 	if (mtu < 0)
2223 		return -EINVAL;
2224 
2225 	dev->mtu = mtu;
2226 
2227 	if (!netif_running(dev))
2228 		return 0;
2229 
2230 	/* The interface is running, so we have to force a
2231 	 * reallocation of the RXQs
2232 	 */
2233 	mvneta_stop_dev(pp);
2234 
2235 	mvneta_cleanup_txqs(pp);
2236 	mvneta_cleanup_rxqs(pp);
2237 
2238 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2239 
2240 	ret = mvneta_setup_rxqs(pp);
2241 	if (ret) {
2242 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2243 		return ret;
2244 	}
2245 
2246 	mvneta_setup_txqs(pp);
2247 
2248 	mvneta_start_dev(pp);
2249 	mvneta_port_up(pp);
2250 
2251 	return 0;
2252 }
2253 
2254 /* Get mac address */
2255 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2256 {
2257 	u32 mac_addr_l, mac_addr_h;
2258 
2259 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2260 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2261 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2262 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2263 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2264 	addr[3] = mac_addr_h & 0xFF;
2265 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2266 	addr[5] = mac_addr_l & 0xFF;
2267 }
2268 
2269 /* Handle setting mac address */
2270 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2271 {
2272 	struct mvneta_port *pp = netdev_priv(dev);
2273 	u8 *mac = addr + 2;
2274 	int i;
2275 
2276 	if (netif_running(dev))
2277 		return -EBUSY;
2278 
2279 	/* Remove previous address table entry */
2280 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2281 
2282 	/* Set new addr in hw */
2283 	mvneta_mac_addr_set(pp, mac, rxq_def);
2284 
2285 	/* Set addr in the device */
2286 	for (i = 0; i < ETH_ALEN; i++)
2287 		dev->dev_addr[i] = mac[i];
2288 
2289 	return 0;
2290 }
2291 
2292 static void mvneta_adjust_link(struct net_device *ndev)
2293 {
2294 	struct mvneta_port *pp = netdev_priv(ndev);
2295 	struct phy_device *phydev = pp->phy_dev;
2296 	int status_change = 0;
2297 
2298 	if (phydev->link) {
2299 		if ((pp->speed != phydev->speed) ||
2300 		    (pp->duplex != phydev->duplex)) {
2301 			u32 val;
2302 
2303 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2304 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2305 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2306 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2307 
2308 			if (phydev->duplex)
2309 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2310 
2311 			if (phydev->speed == SPEED_1000)
2312 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2313 			else
2314 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2315 
2316 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2317 
2318 			pp->duplex = phydev->duplex;
2319 			pp->speed  = phydev->speed;
2320 		}
2321 	}
2322 
2323 	if (phydev->link != pp->link) {
2324 		if (!phydev->link) {
2325 			pp->duplex = -1;
2326 			pp->speed = 0;
2327 		}
2328 
2329 		pp->link = phydev->link;
2330 		status_change = 1;
2331 	}
2332 
2333 	if (status_change) {
2334 		if (phydev->link) {
2335 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2336 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2337 				MVNETA_GMAC_FORCE_LINK_DOWN);
2338 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2339 			mvneta_port_up(pp);
2340 			netdev_info(pp->dev, "link up\n");
2341 		} else {
2342 			mvneta_port_down(pp);
2343 			netdev_info(pp->dev, "link down\n");
2344 		}
2345 	}
2346 }
2347 
2348 static int mvneta_mdio_probe(struct mvneta_port *pp)
2349 {
2350 	struct phy_device *phy_dev;
2351 
2352 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2353 				 pp->phy_interface);
2354 	if (!phy_dev) {
2355 		netdev_err(pp->dev, "could not find the PHY\n");
2356 		return -ENODEV;
2357 	}
2358 
2359 	phy_dev->supported &= PHY_GBIT_FEATURES;
2360 	phy_dev->advertising = phy_dev->supported;
2361 
2362 	pp->phy_dev = phy_dev;
2363 	pp->link    = 0;
2364 	pp->duplex  = 0;
2365 	pp->speed   = 0;
2366 
2367 	return 0;
2368 }
2369 
2370 static void mvneta_mdio_remove(struct mvneta_port *pp)
2371 {
2372 	phy_disconnect(pp->phy_dev);
2373 	pp->phy_dev = NULL;
2374 }
2375 
2376 static int mvneta_open(struct net_device *dev)
2377 {
2378 	struct mvneta_port *pp = netdev_priv(dev);
2379 	int ret;
2380 
2381 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2382 
2383 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2384 
2385 	ret = mvneta_setup_rxqs(pp);
2386 	if (ret)
2387 		return ret;
2388 
2389 	ret = mvneta_setup_txqs(pp);
2390 	if (ret)
2391 		goto err_cleanup_rxqs;
2392 
2393 	/* Connect to port interrupt line */
2394 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2395 			  MVNETA_DRIVER_NAME, pp);
2396 	if (ret) {
2397 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2398 		goto err_cleanup_txqs;
2399 	}
2400 
2401 	/* In default link is down */
2402 	netif_carrier_off(pp->dev);
2403 
2404 	ret = mvneta_mdio_probe(pp);
2405 	if (ret < 0) {
2406 		netdev_err(dev, "cannot probe MDIO bus\n");
2407 		goto err_free_irq;
2408 	}
2409 
2410 	mvneta_start_dev(pp);
2411 
2412 	return 0;
2413 
2414 err_free_irq:
2415 	free_irq(pp->dev->irq, pp);
2416 err_cleanup_txqs:
2417 	mvneta_cleanup_txqs(pp);
2418 err_cleanup_rxqs:
2419 	mvneta_cleanup_rxqs(pp);
2420 	return ret;
2421 }
2422 
2423 /* Stop the port, free port interrupt line */
2424 static int mvneta_stop(struct net_device *dev)
2425 {
2426 	struct mvneta_port *pp = netdev_priv(dev);
2427 
2428 	mvneta_stop_dev(pp);
2429 	mvneta_mdio_remove(pp);
2430 	free_irq(dev->irq, pp);
2431 	mvneta_cleanup_rxqs(pp);
2432 	mvneta_cleanup_txqs(pp);
2433 	del_timer(&pp->tx_done_timer);
2434 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2435 
2436 	return 0;
2437 }
2438 
2439 /* Ethtool methods */
2440 
2441 /* Get settings (phy address, speed) for ethtools */
2442 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2443 {
2444 	struct mvneta_port *pp = netdev_priv(dev);
2445 
2446 	if (!pp->phy_dev)
2447 		return -ENODEV;
2448 
2449 	return phy_ethtool_gset(pp->phy_dev, cmd);
2450 }
2451 
2452 /* Set settings (phy address, speed) for ethtools */
2453 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2454 {
2455 	struct mvneta_port *pp = netdev_priv(dev);
2456 
2457 	if (!pp->phy_dev)
2458 		return -ENODEV;
2459 
2460 	return phy_ethtool_sset(pp->phy_dev, cmd);
2461 }
2462 
2463 /* Set interrupt coalescing for ethtools */
2464 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2465 				       struct ethtool_coalesce *c)
2466 {
2467 	struct mvneta_port *pp = netdev_priv(dev);
2468 	int queue;
2469 
2470 	for (queue = 0; queue < rxq_number; queue++) {
2471 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2472 		rxq->time_coal = c->rx_coalesce_usecs;
2473 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2474 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2475 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2476 	}
2477 
2478 	for (queue = 0; queue < txq_number; queue++) {
2479 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2480 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2481 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 /* get coalescing for ethtools */
2488 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2489 				       struct ethtool_coalesce *c)
2490 {
2491 	struct mvneta_port *pp = netdev_priv(dev);
2492 
2493 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2494 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2495 
2496 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2497 	return 0;
2498 }
2499 
2500 
2501 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2502 				    struct ethtool_drvinfo *drvinfo)
2503 {
2504 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2505 		sizeof(drvinfo->driver));
2506 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2507 		sizeof(drvinfo->version));
2508 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2509 		sizeof(drvinfo->bus_info));
2510 }
2511 
2512 
2513 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2514 					 struct ethtool_ringparam *ring)
2515 {
2516 	struct mvneta_port *pp = netdev_priv(netdev);
2517 
2518 	ring->rx_max_pending = MVNETA_MAX_RXD;
2519 	ring->tx_max_pending = MVNETA_MAX_TXD;
2520 	ring->rx_pending = pp->rx_ring_size;
2521 	ring->tx_pending = pp->tx_ring_size;
2522 }
2523 
2524 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2525 					struct ethtool_ringparam *ring)
2526 {
2527 	struct mvneta_port *pp = netdev_priv(dev);
2528 
2529 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2530 		return -EINVAL;
2531 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2532 		ring->rx_pending : MVNETA_MAX_RXD;
2533 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2534 		ring->tx_pending : MVNETA_MAX_TXD;
2535 
2536 	if (netif_running(dev)) {
2537 		mvneta_stop(dev);
2538 		if (mvneta_open(dev)) {
2539 			netdev_err(dev,
2540 				   "error on opening device after ring param change\n");
2541 			return -ENOMEM;
2542 		}
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static const struct net_device_ops mvneta_netdev_ops = {
2549 	.ndo_open            = mvneta_open,
2550 	.ndo_stop            = mvneta_stop,
2551 	.ndo_start_xmit      = mvneta_tx,
2552 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2553 	.ndo_set_mac_address = mvneta_set_mac_addr,
2554 	.ndo_change_mtu      = mvneta_change_mtu,
2555 	.ndo_tx_timeout      = mvneta_tx_timeout,
2556 	.ndo_get_stats64     = mvneta_get_stats64,
2557 };
2558 
2559 const struct ethtool_ops mvneta_eth_tool_ops = {
2560 	.get_link       = ethtool_op_get_link,
2561 	.get_settings   = mvneta_ethtool_get_settings,
2562 	.set_settings   = mvneta_ethtool_set_settings,
2563 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2564 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2565 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2566 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2567 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2568 };
2569 
2570 /* Initialize hw */
2571 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2572 {
2573 	int queue;
2574 
2575 	/* Disable port */
2576 	mvneta_port_disable(pp);
2577 
2578 	/* Set port default values */
2579 	mvneta_defaults_set(pp);
2580 
2581 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2582 			   GFP_KERNEL);
2583 	if (!pp->txqs)
2584 		return -ENOMEM;
2585 
2586 	/* Initialize TX descriptor rings */
2587 	for (queue = 0; queue < txq_number; queue++) {
2588 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2589 		txq->id = queue;
2590 		txq->size = pp->tx_ring_size;
2591 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2592 	}
2593 
2594 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2595 			   GFP_KERNEL);
2596 	if (!pp->rxqs) {
2597 		kfree(pp->txqs);
2598 		return -ENOMEM;
2599 	}
2600 
2601 	/* Create Rx descriptor rings */
2602 	for (queue = 0; queue < rxq_number; queue++) {
2603 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2604 		rxq->id = queue;
2605 		rxq->size = pp->rx_ring_size;
2606 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2607 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2608 	}
2609 
2610 	return 0;
2611 }
2612 
2613 static void mvneta_deinit(struct mvneta_port *pp)
2614 {
2615 	kfree(pp->txqs);
2616 	kfree(pp->rxqs);
2617 }
2618 
2619 /* platform glue : initialize decoding windows */
2620 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2621 				     const struct mbus_dram_target_info *dram)
2622 {
2623 	u32 win_enable;
2624 	u32 win_protect;
2625 	int i;
2626 
2627 	for (i = 0; i < 6; i++) {
2628 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2629 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2630 
2631 		if (i < 4)
2632 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2633 	}
2634 
2635 	win_enable = 0x3f;
2636 	win_protect = 0;
2637 
2638 	for (i = 0; i < dram->num_cs; i++) {
2639 		const struct mbus_dram_window *cs = dram->cs + i;
2640 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2641 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2642 
2643 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2644 			    (cs->size - 1) & 0xffff0000);
2645 
2646 		win_enable &= ~(1 << i);
2647 		win_protect |= 3 << (2 * i);
2648 	}
2649 
2650 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2651 }
2652 
2653 /* Power up the port */
2654 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2655 {
2656 	u32 val;
2657 
2658 	/* MAC Cause register should be cleared */
2659 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2660 
2661 	if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2662 		mvneta_port_sgmii_config(pp);
2663 
2664 	mvneta_gmac_rgmii_set(pp, 1);
2665 
2666 	/* Cancel Port Reset */
2667 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2668 	val &= ~MVNETA_GMAC2_PORT_RESET;
2669 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2670 
2671 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2672 		MVNETA_GMAC2_PORT_RESET) != 0)
2673 		continue;
2674 }
2675 
2676 /* Device initialization routine */
2677 static int mvneta_probe(struct platform_device *pdev)
2678 {
2679 	const struct mbus_dram_target_info *dram_target_info;
2680 	struct device_node *dn = pdev->dev.of_node;
2681 	struct device_node *phy_node;
2682 	u32 phy_addr;
2683 	struct mvneta_port *pp;
2684 	struct net_device *dev;
2685 	const char *dt_mac_addr;
2686 	char hw_mac_addr[ETH_ALEN];
2687 	const char *mac_from;
2688 	int phy_mode;
2689 	int err;
2690 
2691 	/* Our multiqueue support is not complete, so for now, only
2692 	 * allow the usage of the first RX queue
2693 	 */
2694 	if (rxq_def != 0) {
2695 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2696 		return -EINVAL;
2697 	}
2698 
2699 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2700 	if (!dev)
2701 		return -ENOMEM;
2702 
2703 	dev->irq = irq_of_parse_and_map(dn, 0);
2704 	if (dev->irq == 0) {
2705 		err = -EINVAL;
2706 		goto err_free_netdev;
2707 	}
2708 
2709 	phy_node = of_parse_phandle(dn, "phy", 0);
2710 	if (!phy_node) {
2711 		dev_err(&pdev->dev, "no associated PHY\n");
2712 		err = -ENODEV;
2713 		goto err_free_irq;
2714 	}
2715 
2716 	phy_mode = of_get_phy_mode(dn);
2717 	if (phy_mode < 0) {
2718 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2719 		err = -EINVAL;
2720 		goto err_free_irq;
2721 	}
2722 
2723 	dev->tx_queue_len = MVNETA_MAX_TXD;
2724 	dev->watchdog_timeo = 5 * HZ;
2725 	dev->netdev_ops = &mvneta_netdev_ops;
2726 
2727 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2728 
2729 	pp = netdev_priv(dev);
2730 
2731 	pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2732 	init_timer(&pp->tx_done_timer);
2733 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2734 
2735 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2736 	pp->phy_node = phy_node;
2737 	pp->phy_interface = phy_mode;
2738 
2739 	pp->base = of_iomap(dn, 0);
2740 	if (pp->base == NULL) {
2741 		err = -ENOMEM;
2742 		goto err_free_irq;
2743 	}
2744 
2745 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2746 	if (IS_ERR(pp->clk)) {
2747 		err = PTR_ERR(pp->clk);
2748 		goto err_unmap;
2749 	}
2750 
2751 	clk_prepare_enable(pp->clk);
2752 
2753 	dt_mac_addr = of_get_mac_address(dn);
2754 	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
2755 		mac_from = "device tree";
2756 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2757 	} else {
2758 		mvneta_get_mac_addr(pp, hw_mac_addr);
2759 		if (is_valid_ether_addr(hw_mac_addr)) {
2760 			mac_from = "hardware";
2761 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2762 		} else {
2763 			mac_from = "random";
2764 			eth_hw_addr_random(dev);
2765 		}
2766 	}
2767 
2768 	pp->tx_done_timer.data = (unsigned long)dev;
2769 
2770 	pp->tx_ring_size = MVNETA_MAX_TXD;
2771 	pp->rx_ring_size = MVNETA_MAX_RXD;
2772 
2773 	pp->dev = dev;
2774 	SET_NETDEV_DEV(dev, &pdev->dev);
2775 
2776 	err = mvneta_init(pp, phy_addr);
2777 	if (err < 0) {
2778 		dev_err(&pdev->dev, "can't init eth hal\n");
2779 		goto err_clk;
2780 	}
2781 	mvneta_port_power_up(pp, phy_mode);
2782 
2783 	dram_target_info = mv_mbus_dram_info();
2784 	if (dram_target_info)
2785 		mvneta_conf_mbus_windows(pp, dram_target_info);
2786 
2787 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2788 
2789 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2790 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2791 	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2792 	dev->priv_flags |= IFF_UNICAST_FLT;
2793 
2794 	err = register_netdev(dev);
2795 	if (err < 0) {
2796 		dev_err(&pdev->dev, "failed to register\n");
2797 		goto err_deinit;
2798 	}
2799 
2800 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2801 		    dev->dev_addr);
2802 
2803 	platform_set_drvdata(pdev, pp->dev);
2804 
2805 	return 0;
2806 
2807 err_deinit:
2808 	mvneta_deinit(pp);
2809 err_clk:
2810 	clk_disable_unprepare(pp->clk);
2811 err_unmap:
2812 	iounmap(pp->base);
2813 err_free_irq:
2814 	irq_dispose_mapping(dev->irq);
2815 err_free_netdev:
2816 	free_netdev(dev);
2817 	return err;
2818 }
2819 
2820 /* Device removal routine */
2821 static int mvneta_remove(struct platform_device *pdev)
2822 {
2823 	struct net_device  *dev = platform_get_drvdata(pdev);
2824 	struct mvneta_port *pp = netdev_priv(dev);
2825 
2826 	unregister_netdev(dev);
2827 	mvneta_deinit(pp);
2828 	clk_disable_unprepare(pp->clk);
2829 	iounmap(pp->base);
2830 	irq_dispose_mapping(dev->irq);
2831 	free_netdev(dev);
2832 
2833 	return 0;
2834 }
2835 
2836 static const struct of_device_id mvneta_match[] = {
2837 	{ .compatible = "marvell,armada-370-neta" },
2838 	{ }
2839 };
2840 MODULE_DEVICE_TABLE(of, mvneta_match);
2841 
2842 static struct platform_driver mvneta_driver = {
2843 	.probe = mvneta_probe,
2844 	.remove = mvneta_remove,
2845 	.driver = {
2846 		.name = MVNETA_DRIVER_NAME,
2847 		.of_match_table = mvneta_match,
2848 	},
2849 };
2850 
2851 module_platform_driver(mvneta_driver);
2852 
2853 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2854 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2855 MODULE_LICENSE("GPL");
2856 
2857 module_param(rxq_number, int, S_IRUGO);
2858 module_param(txq_number, int, S_IRUGO);
2859 
2860 module_param(rxq_def, int, S_IRUGO);
2861