1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 193 #define MVNETA_GMAC_CTRL_2 0x2c08 194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 196 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 197 #define MVNETA_GMAC2_PORT_RESET BIT(6) 198 #define MVNETA_GMAC_STATUS 0x2c10 199 #define MVNETA_GMAC_LINK_UP BIT(0) 200 #define MVNETA_GMAC_SPEED_1000 BIT(1) 201 #define MVNETA_GMAC_SPEED_100 BIT(2) 202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 217 #define MVNETA_MIB_COUNTERS_BASE 0x3000 218 #define MVNETA_MIB_LATE_COLLISION 0x7c 219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 232 #define MVNETA_PORT_TX_RESET 0x3cf0 233 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 234 #define MVNETA_TX_MTU 0x3e0c 235 #define MVNETA_TX_TOKEN_SIZE 0x3e14 236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 239 240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 241 242 /* Descriptor ring Macros */ 243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 244 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 245 246 /* Various constants */ 247 248 /* Coalescing */ 249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 250 #define MVNETA_RX_COAL_PKTS 32 251 #define MVNETA_RX_COAL_USEC 100 252 253 /* The two bytes Marvell header. Either contains a special value used 254 * by Marvell switches when a specific hardware mode is enabled (not 255 * supported by this driver) or is filled automatically by zeroes on 256 * the RX side. Those two bytes being at the front of the Ethernet 257 * header, they allow to have the IP header aligned on a 4 bytes 258 * boundary automatically: the hardware skips those two bytes on its 259 * own. 260 */ 261 #define MVNETA_MH_SIZE 2 262 263 #define MVNETA_VLAN_TAG_LEN 4 264 265 #define MVNETA_TX_CSUM_DEF_SIZE 1600 266 #define MVNETA_TX_CSUM_MAX_SIZE 9800 267 #define MVNETA_ACC_MODE_EXT1 1 268 #define MVNETA_ACC_MODE_EXT2 2 269 270 #define MVNETA_MAX_DECODE_WIN 6 271 272 /* Timeout constants */ 273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 276 277 #define MVNETA_TX_MTU_MAX 0x3ffff 278 279 /* The RSS lookup table actually has 256 entries but we do not use 280 * them yet 281 */ 282 #define MVNETA_RSS_LU_TABLE_SIZE 1 283 284 /* Max number of Rx descriptors */ 285 #define MVNETA_MAX_RXD 128 286 287 /* Max number of Tx descriptors */ 288 #define MVNETA_MAX_TXD 532 289 290 /* Max number of allowed TCP segments for software TSO */ 291 #define MVNETA_MAX_TSO_SEGS 100 292 293 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 294 295 /* descriptor aligned size */ 296 #define MVNETA_DESC_ALIGNED_SIZE 32 297 298 /* Number of bytes to be taken into account by HW when putting incoming data 299 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 300 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 301 */ 302 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 303 304 #define MVNETA_RX_PKT_SIZE(mtu) \ 305 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 306 ETH_HLEN + ETH_FCS_LEN, \ 307 cache_line_size()) 308 309 #define IS_TSO_HEADER(txq, addr) \ 310 ((addr >= txq->tso_hdrs_phys) && \ 311 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 312 313 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 314 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 315 316 struct mvneta_statistic { 317 unsigned short offset; 318 unsigned short type; 319 const char name[ETH_GSTRING_LEN]; 320 }; 321 322 #define T_REG_32 32 323 #define T_REG_64 64 324 325 static const struct mvneta_statistic mvneta_statistics[] = { 326 { 0x3000, T_REG_64, "good_octets_received", }, 327 { 0x3010, T_REG_32, "good_frames_received", }, 328 { 0x3008, T_REG_32, "bad_octets_received", }, 329 { 0x3014, T_REG_32, "bad_frames_received", }, 330 { 0x3018, T_REG_32, "broadcast_frames_received", }, 331 { 0x301c, T_REG_32, "multicast_frames_received", }, 332 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 333 { 0x3058, T_REG_32, "good_fc_received", }, 334 { 0x305c, T_REG_32, "bad_fc_received", }, 335 { 0x3060, T_REG_32, "undersize_received", }, 336 { 0x3064, T_REG_32, "fragments_received", }, 337 { 0x3068, T_REG_32, "oversize_received", }, 338 { 0x306c, T_REG_32, "jabber_received", }, 339 { 0x3070, T_REG_32, "mac_receive_error", }, 340 { 0x3074, T_REG_32, "bad_crc_event", }, 341 { 0x3078, T_REG_32, "collision", }, 342 { 0x307c, T_REG_32, "late_collision", }, 343 { 0x2484, T_REG_32, "rx_discard", }, 344 { 0x2488, T_REG_32, "rx_overrun", }, 345 { 0x3020, T_REG_32, "frames_64_octets", }, 346 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 347 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 348 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 349 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 350 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 351 { 0x3038, T_REG_64, "good_octets_sent", }, 352 { 0x3040, T_REG_32, "good_frames_sent", }, 353 { 0x3044, T_REG_32, "excessive_collision", }, 354 { 0x3048, T_REG_32, "multicast_frames_sent", }, 355 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 356 { 0x3054, T_REG_32, "fc_sent", }, 357 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 358 }; 359 360 struct mvneta_pcpu_stats { 361 struct u64_stats_sync syncp; 362 u64 rx_packets; 363 u64 rx_bytes; 364 u64 tx_packets; 365 u64 tx_bytes; 366 }; 367 368 struct mvneta_pcpu_port { 369 /* Pointer to the shared port */ 370 struct mvneta_port *pp; 371 372 /* Pointer to the CPU-local NAPI struct */ 373 struct napi_struct napi; 374 375 /* Cause of the previous interrupt */ 376 u32 cause_rx_tx; 377 }; 378 379 struct mvneta_port { 380 u8 id; 381 struct mvneta_pcpu_port __percpu *ports; 382 struct mvneta_pcpu_stats __percpu *stats; 383 384 int pkt_size; 385 unsigned int frag_size; 386 void __iomem *base; 387 struct mvneta_rx_queue *rxqs; 388 struct mvneta_tx_queue *txqs; 389 struct net_device *dev; 390 struct hlist_node node_online; 391 struct hlist_node node_dead; 392 int rxq_def; 393 /* Protect the access to the percpu interrupt registers, 394 * ensuring that the configuration remains coherent. 395 */ 396 spinlock_t lock; 397 bool is_stopped; 398 399 u32 cause_rx_tx; 400 struct napi_struct napi; 401 402 /* Core clock */ 403 struct clk *clk; 404 /* AXI clock */ 405 struct clk *clk_bus; 406 u8 mcast_count[256]; 407 u16 tx_ring_size; 408 u16 rx_ring_size; 409 410 struct mii_bus *mii_bus; 411 phy_interface_t phy_interface; 412 struct device_node *phy_node; 413 unsigned int link; 414 unsigned int duplex; 415 unsigned int speed; 416 unsigned int tx_csum_limit; 417 unsigned int use_inband_status:1; 418 419 struct mvneta_bm *bm_priv; 420 struct mvneta_bm_pool *pool_long; 421 struct mvneta_bm_pool *pool_short; 422 int bm_win_id; 423 424 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 425 426 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 427 428 /* Flags for special SoC configurations */ 429 bool neta_armada3700; 430 u16 rx_offset_correction; 431 const struct mbus_dram_target_info *dram_target_info; 432 }; 433 434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 435 * layout of the transmit and reception DMA descriptors, and their 436 * layout is therefore defined by the hardware design 437 */ 438 439 #define MVNETA_TX_L3_OFF_SHIFT 0 440 #define MVNETA_TX_IP_HLEN_SHIFT 8 441 #define MVNETA_TX_L4_UDP BIT(16) 442 #define MVNETA_TX_L3_IP6 BIT(17) 443 #define MVNETA_TXD_IP_CSUM BIT(18) 444 #define MVNETA_TXD_Z_PAD BIT(19) 445 #define MVNETA_TXD_L_DESC BIT(20) 446 #define MVNETA_TXD_F_DESC BIT(21) 447 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 448 MVNETA_TXD_L_DESC | \ 449 MVNETA_TXD_F_DESC) 450 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 451 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 452 453 #define MVNETA_RXD_ERR_CRC 0x0 454 #define MVNETA_RXD_BM_POOL_SHIFT 13 455 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 456 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 457 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 458 #define MVNETA_RXD_ERR_LEN BIT(18) 459 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 460 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 461 #define MVNETA_RXD_L3_IP4 BIT(25) 462 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 463 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 464 465 #if defined(__LITTLE_ENDIAN) 466 struct mvneta_tx_desc { 467 u32 command; /* Options used by HW for packet transmitting.*/ 468 u16 reserverd1; /* csum_l4 (for future use) */ 469 u16 data_size; /* Data size of transmitted packet in bytes */ 470 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 471 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 472 u32 reserved3[4]; /* Reserved - (for future use) */ 473 }; 474 475 struct mvneta_rx_desc { 476 u32 status; /* Info about received packet */ 477 u16 reserved1; /* pnc_info - (for future use, PnC) */ 478 u16 data_size; /* Size of received packet in bytes */ 479 480 u32 buf_phys_addr; /* Physical address of the buffer */ 481 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 482 483 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 484 u16 reserved3; /* prefetch_cmd, for future use */ 485 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 486 487 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 488 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 489 }; 490 #else 491 struct mvneta_tx_desc { 492 u16 data_size; /* Data size of transmitted packet in bytes */ 493 u16 reserverd1; /* csum_l4 (for future use) */ 494 u32 command; /* Options used by HW for packet transmitting.*/ 495 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 496 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 497 u32 reserved3[4]; /* Reserved - (for future use) */ 498 }; 499 500 struct mvneta_rx_desc { 501 u16 data_size; /* Size of received packet in bytes */ 502 u16 reserved1; /* pnc_info - (for future use, PnC) */ 503 u32 status; /* Info about received packet */ 504 505 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 506 u32 buf_phys_addr; /* Physical address of the buffer */ 507 508 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 509 u16 reserved3; /* prefetch_cmd, for future use */ 510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 511 512 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 513 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 514 }; 515 #endif 516 517 struct mvneta_tx_queue { 518 /* Number of this TX queue, in the range 0-7 */ 519 u8 id; 520 521 /* Number of TX DMA descriptors in the descriptor ring */ 522 int size; 523 524 /* Number of currently used TX DMA descriptor in the 525 * descriptor ring 526 */ 527 int count; 528 int pending; 529 int tx_stop_threshold; 530 int tx_wake_threshold; 531 532 /* Array of transmitted skb */ 533 struct sk_buff **tx_skb; 534 535 /* Index of last TX DMA descriptor that was inserted */ 536 int txq_put_index; 537 538 /* Index of the TX DMA descriptor to be cleaned up */ 539 int txq_get_index; 540 541 u32 done_pkts_coal; 542 543 /* Virtual address of the TX DMA descriptors array */ 544 struct mvneta_tx_desc *descs; 545 546 /* DMA address of the TX DMA descriptors array */ 547 dma_addr_t descs_phys; 548 549 /* Index of the last TX DMA descriptor */ 550 int last_desc; 551 552 /* Index of the next TX DMA descriptor to process */ 553 int next_desc_to_proc; 554 555 /* DMA buffers for TSO headers */ 556 char *tso_hdrs; 557 558 /* DMA address of TSO headers */ 559 dma_addr_t tso_hdrs_phys; 560 561 /* Affinity mask for CPUs*/ 562 cpumask_t affinity_mask; 563 }; 564 565 struct mvneta_rx_queue { 566 /* rx queue number, in the range 0-7 */ 567 u8 id; 568 569 /* num of rx descriptors in the rx descriptor ring */ 570 int size; 571 572 /* counter of times when mvneta_refill() failed */ 573 int missed; 574 575 u32 pkts_coal; 576 u32 time_coal; 577 578 /* Virtual address of the RX buffer */ 579 void **buf_virt_addr; 580 581 /* Virtual address of the RX DMA descriptors array */ 582 struct mvneta_rx_desc *descs; 583 584 /* DMA address of the RX DMA descriptors array */ 585 dma_addr_t descs_phys; 586 587 /* Index of the last RX DMA descriptor */ 588 int last_desc; 589 590 /* Index of the next RX DMA descriptor to process */ 591 int next_desc_to_proc; 592 }; 593 594 static enum cpuhp_state online_hpstate; 595 /* The hardware supports eight (8) rx queues, but we are only allowing 596 * the first one to be used. Therefore, let's just allocate one queue. 597 */ 598 static int rxq_number = 8; 599 static int txq_number = 8; 600 601 static int rxq_def; 602 603 static int rx_copybreak __read_mostly = 256; 604 605 /* HW BM need that each port be identify by a unique ID */ 606 static int global_port_id; 607 608 #define MVNETA_DRIVER_NAME "mvneta" 609 #define MVNETA_DRIVER_VERSION "1.0" 610 611 /* Utility/helper methods */ 612 613 /* Write helper method */ 614 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 615 { 616 writel(data, pp->base + offset); 617 } 618 619 /* Read helper method */ 620 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 621 { 622 return readl(pp->base + offset); 623 } 624 625 /* Increment txq get counter */ 626 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 627 { 628 txq->txq_get_index++; 629 if (txq->txq_get_index == txq->size) 630 txq->txq_get_index = 0; 631 } 632 633 /* Increment txq put counter */ 634 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 635 { 636 txq->txq_put_index++; 637 if (txq->txq_put_index == txq->size) 638 txq->txq_put_index = 0; 639 } 640 641 642 /* Clear all MIB counters */ 643 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 644 { 645 int i; 646 u32 dummy; 647 648 /* Perform dummy reads from MIB counters */ 649 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 650 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 651 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 652 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 653 } 654 655 /* Get System Network Statistics */ 656 static void 657 mvneta_get_stats64(struct net_device *dev, 658 struct rtnl_link_stats64 *stats) 659 { 660 struct mvneta_port *pp = netdev_priv(dev); 661 unsigned int start; 662 int cpu; 663 664 for_each_possible_cpu(cpu) { 665 struct mvneta_pcpu_stats *cpu_stats; 666 u64 rx_packets; 667 u64 rx_bytes; 668 u64 tx_packets; 669 u64 tx_bytes; 670 671 cpu_stats = per_cpu_ptr(pp->stats, cpu); 672 do { 673 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 674 rx_packets = cpu_stats->rx_packets; 675 rx_bytes = cpu_stats->rx_bytes; 676 tx_packets = cpu_stats->tx_packets; 677 tx_bytes = cpu_stats->tx_bytes; 678 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 679 680 stats->rx_packets += rx_packets; 681 stats->rx_bytes += rx_bytes; 682 stats->tx_packets += tx_packets; 683 stats->tx_bytes += tx_bytes; 684 } 685 686 stats->rx_errors = dev->stats.rx_errors; 687 stats->rx_dropped = dev->stats.rx_dropped; 688 689 stats->tx_dropped = dev->stats.tx_dropped; 690 } 691 692 /* Rx descriptors helper methods */ 693 694 /* Checks whether the RX descriptor having this status is both the first 695 * and the last descriptor for the RX packet. Each RX packet is currently 696 * received through a single RX descriptor, so not having each RX 697 * descriptor with its first and last bits set is an error 698 */ 699 static int mvneta_rxq_desc_is_first_last(u32 status) 700 { 701 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 702 MVNETA_RXD_FIRST_LAST_DESC; 703 } 704 705 /* Add number of descriptors ready to receive new packets */ 706 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 707 struct mvneta_rx_queue *rxq, 708 int ndescs) 709 { 710 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 711 * be added at once 712 */ 713 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 714 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 715 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 716 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 717 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 718 } 719 720 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 721 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 722 } 723 724 /* Get number of RX descriptors occupied by received packets */ 725 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 726 struct mvneta_rx_queue *rxq) 727 { 728 u32 val; 729 730 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 731 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 732 } 733 734 /* Update num of rx desc called upon return from rx path or 735 * from mvneta_rxq_drop_pkts(). 736 */ 737 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 738 struct mvneta_rx_queue *rxq, 739 int rx_done, int rx_filled) 740 { 741 u32 val; 742 743 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 744 val = rx_done | 745 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 746 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 747 return; 748 } 749 750 /* Only 255 descriptors can be added at once */ 751 while ((rx_done > 0) || (rx_filled > 0)) { 752 if (rx_done <= 0xff) { 753 val = rx_done; 754 rx_done = 0; 755 } else { 756 val = 0xff; 757 rx_done -= 0xff; 758 } 759 if (rx_filled <= 0xff) { 760 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 761 rx_filled = 0; 762 } else { 763 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 764 rx_filled -= 0xff; 765 } 766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 767 } 768 } 769 770 /* Get pointer to next RX descriptor to be processed by SW */ 771 static struct mvneta_rx_desc * 772 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 773 { 774 int rx_desc = rxq->next_desc_to_proc; 775 776 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 777 prefetch(rxq->descs + rxq->next_desc_to_proc); 778 return rxq->descs + rx_desc; 779 } 780 781 /* Change maximum receive size of the port. */ 782 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 783 { 784 u32 val; 785 786 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 787 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 788 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 789 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 790 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 791 } 792 793 794 /* Set rx queue offset */ 795 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 796 struct mvneta_rx_queue *rxq, 797 int offset) 798 { 799 u32 val; 800 801 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 802 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 803 804 /* Offset is in */ 805 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 806 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 807 } 808 809 810 /* Tx descriptors helper methods */ 811 812 /* Update HW with number of TX descriptors to be sent */ 813 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 814 struct mvneta_tx_queue *txq, 815 int pend_desc) 816 { 817 u32 val; 818 819 pend_desc += txq->pending; 820 821 /* Only 255 Tx descriptors can be added at once */ 822 do { 823 val = min(pend_desc, 255); 824 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 825 pend_desc -= val; 826 } while (pend_desc > 0); 827 txq->pending = 0; 828 } 829 830 /* Get pointer to next TX descriptor to be processed (send) by HW */ 831 static struct mvneta_tx_desc * 832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 833 { 834 int tx_desc = txq->next_desc_to_proc; 835 836 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 837 return txq->descs + tx_desc; 838 } 839 840 /* Release the last allocated TX descriptor. Useful to handle DMA 841 * mapping failures in the TX path. 842 */ 843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 844 { 845 if (txq->next_desc_to_proc == 0) 846 txq->next_desc_to_proc = txq->last_desc - 1; 847 else 848 txq->next_desc_to_proc--; 849 } 850 851 /* Set rxq buf size */ 852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 853 struct mvneta_rx_queue *rxq, 854 int buf_size) 855 { 856 u32 val; 857 858 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 859 860 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 861 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 862 863 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 864 } 865 866 /* Disable buffer management (BM) */ 867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 868 struct mvneta_rx_queue *rxq) 869 { 870 u32 val; 871 872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 873 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 874 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 875 } 876 877 /* Enable buffer management (BM) */ 878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 879 struct mvneta_rx_queue *rxq) 880 { 881 u32 val; 882 883 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 884 val |= MVNETA_RXQ_HW_BUF_ALLOC; 885 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 886 } 887 888 /* Notify HW about port's assignment of pool for bigger packets */ 889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 890 struct mvneta_rx_queue *rxq) 891 { 892 u32 val; 893 894 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 895 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 896 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 897 898 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 899 } 900 901 /* Notify HW about port's assignment of pool for smaller packets */ 902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq) 904 { 905 u32 val; 906 907 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 908 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 909 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 910 911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 912 } 913 914 /* Set port's receive buffer size for assigned BM pool */ 915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 916 int buf_size, 917 u8 pool_id) 918 { 919 u32 val; 920 921 if (!IS_ALIGNED(buf_size, 8)) { 922 dev_warn(pp->dev->dev.parent, 923 "illegal buf_size value %d, round to %d\n", 924 buf_size, ALIGN(buf_size, 8)); 925 buf_size = ALIGN(buf_size, 8); 926 } 927 928 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 929 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 930 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 931 } 932 933 /* Configure MBUS window in order to enable access BM internal SRAM */ 934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 935 u8 target, u8 attr) 936 { 937 u32 win_enable, win_protect; 938 int i; 939 940 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 941 942 if (pp->bm_win_id < 0) { 943 /* Find first not occupied window */ 944 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 945 if (win_enable & (1 << i)) { 946 pp->bm_win_id = i; 947 break; 948 } 949 } 950 if (i == MVNETA_MAX_DECODE_WIN) 951 return -ENOMEM; 952 } else { 953 i = pp->bm_win_id; 954 } 955 956 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 957 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 958 959 if (i < 4) 960 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 961 962 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 963 (attr << 8) | target); 964 965 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 966 967 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 968 win_protect |= 3 << (2 * i); 969 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 970 971 win_enable &= ~(1 << i); 972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 973 974 return 0; 975 } 976 977 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 978 { 979 u32 wsize; 980 u8 target, attr; 981 int err; 982 983 /* Get BM window information */ 984 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 985 &target, &attr); 986 if (err < 0) 987 return err; 988 989 pp->bm_win_id = -1; 990 991 /* Open NETA -> BM window */ 992 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 993 target, attr); 994 if (err < 0) { 995 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 996 return err; 997 } 998 return 0; 999 } 1000 1001 /* Assign and initialize pools for port. In case of fail 1002 * buffer manager will remain disabled for current port. 1003 */ 1004 static int mvneta_bm_port_init(struct platform_device *pdev, 1005 struct mvneta_port *pp) 1006 { 1007 struct device_node *dn = pdev->dev.of_node; 1008 u32 long_pool_id, short_pool_id; 1009 1010 if (!pp->neta_armada3700) { 1011 int ret; 1012 1013 ret = mvneta_bm_port_mbus_init(pp); 1014 if (ret) 1015 return ret; 1016 } 1017 1018 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1019 netdev_info(pp->dev, "missing long pool id\n"); 1020 return -EINVAL; 1021 } 1022 1023 /* Create port's long pool depending on mtu */ 1024 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1025 MVNETA_BM_LONG, pp->id, 1026 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1027 if (!pp->pool_long) { 1028 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1029 return -ENOMEM; 1030 } 1031 1032 pp->pool_long->port_map |= 1 << pp->id; 1033 1034 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1035 pp->pool_long->id); 1036 1037 /* If short pool id is not defined, assume using single pool */ 1038 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1039 short_pool_id = long_pool_id; 1040 1041 /* Create port's short pool */ 1042 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1043 MVNETA_BM_SHORT, pp->id, 1044 MVNETA_BM_SHORT_PKT_SIZE); 1045 if (!pp->pool_short) { 1046 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1047 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1048 return -ENOMEM; 1049 } 1050 1051 if (short_pool_id != long_pool_id) { 1052 pp->pool_short->port_map |= 1 << pp->id; 1053 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1054 pp->pool_short->id); 1055 } 1056 1057 return 0; 1058 } 1059 1060 /* Update settings of a pool for bigger packets */ 1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1062 { 1063 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1064 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1065 int num; 1066 1067 /* Release all buffers from long pool */ 1068 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1069 if (hwbm_pool->buf_num) { 1070 WARN(1, "cannot free all buffers in pool %d\n", 1071 bm_pool->id); 1072 goto bm_mtu_err; 1073 } 1074 1075 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1076 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1077 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1078 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1079 1080 /* Fill entire long pool */ 1081 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1082 if (num != hwbm_pool->size) { 1083 WARN(1, "pool %d: %d of %d allocated\n", 1084 bm_pool->id, num, hwbm_pool->size); 1085 goto bm_mtu_err; 1086 } 1087 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1088 1089 return; 1090 1091 bm_mtu_err: 1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1093 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1094 1095 pp->bm_priv = NULL; 1096 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1097 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1098 } 1099 1100 /* Start the Ethernet port RX and TX activity */ 1101 static void mvneta_port_up(struct mvneta_port *pp) 1102 { 1103 int queue; 1104 u32 q_map; 1105 1106 /* Enable all initialized TXs. */ 1107 q_map = 0; 1108 for (queue = 0; queue < txq_number; queue++) { 1109 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1110 if (txq->descs) 1111 q_map |= (1 << queue); 1112 } 1113 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1114 1115 /* Enable all initialized RXQs. */ 1116 for (queue = 0; queue < rxq_number; queue++) { 1117 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1118 1119 if (rxq->descs) 1120 q_map |= (1 << queue); 1121 } 1122 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1123 } 1124 1125 /* Stop the Ethernet port activity */ 1126 static void mvneta_port_down(struct mvneta_port *pp) 1127 { 1128 u32 val; 1129 int count; 1130 1131 /* Stop Rx port activity. Check port Rx activity. */ 1132 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1133 1134 /* Issue stop command for active channels only */ 1135 if (val != 0) 1136 mvreg_write(pp, MVNETA_RXQ_CMD, 1137 val << MVNETA_RXQ_DISABLE_SHIFT); 1138 1139 /* Wait for all Rx activity to terminate. */ 1140 count = 0; 1141 do { 1142 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1143 netdev_warn(pp->dev, 1144 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1145 val); 1146 break; 1147 } 1148 mdelay(1); 1149 1150 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1151 } while (val & MVNETA_RXQ_ENABLE_MASK); 1152 1153 /* Stop Tx port activity. Check port Tx activity. Issue stop 1154 * command for active channels only 1155 */ 1156 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1157 1158 if (val != 0) 1159 mvreg_write(pp, MVNETA_TXQ_CMD, 1160 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1161 1162 /* Wait for all Tx activity to terminate. */ 1163 count = 0; 1164 do { 1165 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1166 netdev_warn(pp->dev, 1167 "TIMEOUT for TX stopped status=0x%08x\n", 1168 val); 1169 break; 1170 } 1171 mdelay(1); 1172 1173 /* Check TX Command reg that all Txqs are stopped */ 1174 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1175 1176 } while (val & MVNETA_TXQ_ENABLE_MASK); 1177 1178 /* Double check to verify that TX FIFO is empty */ 1179 count = 0; 1180 do { 1181 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1182 netdev_warn(pp->dev, 1183 "TX FIFO empty timeout status=0x%08x\n", 1184 val); 1185 break; 1186 } 1187 mdelay(1); 1188 1189 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1190 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1191 (val & MVNETA_TX_IN_PRGRS)); 1192 1193 udelay(200); 1194 } 1195 1196 /* Enable the port by setting the port enable bit of the MAC control register */ 1197 static void mvneta_port_enable(struct mvneta_port *pp) 1198 { 1199 u32 val; 1200 1201 /* Enable port */ 1202 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1203 val |= MVNETA_GMAC0_PORT_ENABLE; 1204 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1205 } 1206 1207 /* Disable the port and wait for about 200 usec before retuning */ 1208 static void mvneta_port_disable(struct mvneta_port *pp) 1209 { 1210 u32 val; 1211 1212 /* Reset the Enable bit in the Serial Control Register */ 1213 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1214 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1215 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1216 1217 pp->link = 0; 1218 pp->duplex = -1; 1219 pp->speed = 0; 1220 1221 udelay(200); 1222 } 1223 1224 /* Multicast tables methods */ 1225 1226 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1227 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1228 { 1229 int offset; 1230 u32 val; 1231 1232 if (queue == -1) { 1233 val = 0; 1234 } else { 1235 val = 0x1 | (queue << 1); 1236 val |= (val << 24) | (val << 16) | (val << 8); 1237 } 1238 1239 for (offset = 0; offset <= 0xc; offset += 4) 1240 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1241 } 1242 1243 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1244 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1245 { 1246 int offset; 1247 u32 val; 1248 1249 if (queue == -1) { 1250 val = 0; 1251 } else { 1252 val = 0x1 | (queue << 1); 1253 val |= (val << 24) | (val << 16) | (val << 8); 1254 } 1255 1256 for (offset = 0; offset <= 0xfc; offset += 4) 1257 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1258 1259 } 1260 1261 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1262 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1263 { 1264 int offset; 1265 u32 val; 1266 1267 if (queue == -1) { 1268 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1269 val = 0; 1270 } else { 1271 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1272 val = 0x1 | (queue << 1); 1273 val |= (val << 24) | (val << 16) | (val << 8); 1274 } 1275 1276 for (offset = 0; offset <= 0xfc; offset += 4) 1277 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1278 } 1279 1280 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1281 { 1282 u32 val; 1283 1284 if (enable) { 1285 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1286 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1287 MVNETA_GMAC_FORCE_LINK_DOWN | 1288 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1289 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1290 MVNETA_GMAC_AN_SPEED_EN | 1291 MVNETA_GMAC_AN_DUPLEX_EN; 1292 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1293 1294 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1295 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1296 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1297 1298 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1299 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1300 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1301 } else { 1302 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1303 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1304 MVNETA_GMAC_AN_SPEED_EN | 1305 MVNETA_GMAC_AN_DUPLEX_EN); 1306 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1307 1308 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1309 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1310 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1311 1312 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1313 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1314 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1315 } 1316 } 1317 1318 static void mvneta_percpu_unmask_interrupt(void *arg) 1319 { 1320 struct mvneta_port *pp = arg; 1321 1322 /* All the queue are unmasked, but actually only the ones 1323 * mapped to this CPU will be unmasked 1324 */ 1325 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1326 MVNETA_RX_INTR_MASK_ALL | 1327 MVNETA_TX_INTR_MASK_ALL | 1328 MVNETA_MISCINTR_INTR_MASK); 1329 } 1330 1331 static void mvneta_percpu_mask_interrupt(void *arg) 1332 { 1333 struct mvneta_port *pp = arg; 1334 1335 /* All the queue are masked, but actually only the ones 1336 * mapped to this CPU will be masked 1337 */ 1338 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1339 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1340 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1341 } 1342 1343 static void mvneta_percpu_clear_intr_cause(void *arg) 1344 { 1345 struct mvneta_port *pp = arg; 1346 1347 /* All the queue are cleared, but actually only the ones 1348 * mapped to this CPU will be cleared 1349 */ 1350 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1351 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1352 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1353 } 1354 1355 /* This method sets defaults to the NETA port: 1356 * Clears interrupt Cause and Mask registers. 1357 * Clears all MAC tables. 1358 * Sets defaults to all registers. 1359 * Resets RX and TX descriptor rings. 1360 * Resets PHY. 1361 * This method can be called after mvneta_port_down() to return the port 1362 * settings to defaults. 1363 */ 1364 static void mvneta_defaults_set(struct mvneta_port *pp) 1365 { 1366 int cpu; 1367 int queue; 1368 u32 val; 1369 int max_cpu = num_present_cpus(); 1370 1371 /* Clear all Cause registers */ 1372 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1373 1374 /* Mask all interrupts */ 1375 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1376 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1377 1378 /* Enable MBUS Retry bit16 */ 1379 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1380 1381 /* Set CPU queue access map. CPUs are assigned to the RX and 1382 * TX queues modulo their number. If there is only one TX 1383 * queue then it is assigned to the CPU associated to the 1384 * default RX queue. 1385 */ 1386 for_each_present_cpu(cpu) { 1387 int rxq_map = 0, txq_map = 0; 1388 int rxq, txq; 1389 if (!pp->neta_armada3700) { 1390 for (rxq = 0; rxq < rxq_number; rxq++) 1391 if ((rxq % max_cpu) == cpu) 1392 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1393 1394 for (txq = 0; txq < txq_number; txq++) 1395 if ((txq % max_cpu) == cpu) 1396 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1397 1398 /* With only one TX queue we configure a special case 1399 * which will allow to get all the irq on a single 1400 * CPU 1401 */ 1402 if (txq_number == 1) 1403 txq_map = (cpu == pp->rxq_def) ? 1404 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1405 1406 } else { 1407 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1408 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1409 } 1410 1411 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1412 } 1413 1414 /* Reset RX and TX DMAs */ 1415 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1416 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1417 1418 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1419 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1420 for (queue = 0; queue < txq_number; queue++) { 1421 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1422 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1423 } 1424 1425 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1426 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1427 1428 /* Set Port Acceleration Mode */ 1429 if (pp->bm_priv) 1430 /* HW buffer management + legacy parser */ 1431 val = MVNETA_ACC_MODE_EXT2; 1432 else 1433 /* SW buffer management + legacy parser */ 1434 val = MVNETA_ACC_MODE_EXT1; 1435 mvreg_write(pp, MVNETA_ACC_MODE, val); 1436 1437 if (pp->bm_priv) 1438 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1439 1440 /* Update val of portCfg register accordingly with all RxQueue types */ 1441 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1442 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1443 1444 val = 0; 1445 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1446 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1447 1448 /* Build PORT_SDMA_CONFIG_REG */ 1449 val = 0; 1450 1451 /* Default burst size */ 1452 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1453 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1454 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1455 1456 #if defined(__BIG_ENDIAN) 1457 val |= MVNETA_DESC_SWAP; 1458 #endif 1459 1460 /* Assign port SDMA configuration */ 1461 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1462 1463 /* Disable PHY polling in hardware, since we're using the 1464 * kernel phylib to do this. 1465 */ 1466 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1467 val &= ~MVNETA_PHY_POLLING_ENABLE; 1468 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1469 1470 mvneta_set_autoneg(pp, pp->use_inband_status); 1471 mvneta_set_ucast_table(pp, -1); 1472 mvneta_set_special_mcast_table(pp, -1); 1473 mvneta_set_other_mcast_table(pp, -1); 1474 1475 /* Set port interrupt enable register - default enable all */ 1476 mvreg_write(pp, MVNETA_INTR_ENABLE, 1477 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1478 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1479 1480 mvneta_mib_counters_clear(pp); 1481 } 1482 1483 /* Set max sizes for tx queues */ 1484 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1485 1486 { 1487 u32 val, size, mtu; 1488 int queue; 1489 1490 mtu = max_tx_size * 8; 1491 if (mtu > MVNETA_TX_MTU_MAX) 1492 mtu = MVNETA_TX_MTU_MAX; 1493 1494 /* Set MTU */ 1495 val = mvreg_read(pp, MVNETA_TX_MTU); 1496 val &= ~MVNETA_TX_MTU_MAX; 1497 val |= mtu; 1498 mvreg_write(pp, MVNETA_TX_MTU, val); 1499 1500 /* TX token size and all TXQs token size must be larger that MTU */ 1501 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1502 1503 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1504 if (size < mtu) { 1505 size = mtu; 1506 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1507 val |= size; 1508 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1509 } 1510 for (queue = 0; queue < txq_number; queue++) { 1511 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1512 1513 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1514 if (size < mtu) { 1515 size = mtu; 1516 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1517 val |= size; 1518 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1519 } 1520 } 1521 } 1522 1523 /* Set unicast address */ 1524 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1525 int queue) 1526 { 1527 unsigned int unicast_reg; 1528 unsigned int tbl_offset; 1529 unsigned int reg_offset; 1530 1531 /* Locate the Unicast table entry */ 1532 last_nibble = (0xf & last_nibble); 1533 1534 /* offset from unicast tbl base */ 1535 tbl_offset = (last_nibble / 4) * 4; 1536 1537 /* offset within the above reg */ 1538 reg_offset = last_nibble % 4; 1539 1540 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1541 1542 if (queue == -1) { 1543 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1544 unicast_reg &= ~(0xff << (8 * reg_offset)); 1545 } else { 1546 unicast_reg &= ~(0xff << (8 * reg_offset)); 1547 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1548 } 1549 1550 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1551 } 1552 1553 /* Set mac address */ 1554 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1555 int queue) 1556 { 1557 unsigned int mac_h; 1558 unsigned int mac_l; 1559 1560 if (queue != -1) { 1561 mac_l = (addr[4] << 8) | (addr[5]); 1562 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1563 (addr[2] << 8) | (addr[3] << 0); 1564 1565 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1566 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1567 } 1568 1569 /* Accept frames of this address */ 1570 mvneta_set_ucast_addr(pp, addr[5], queue); 1571 } 1572 1573 /* Set the number of packets that will be received before RX interrupt 1574 * will be generated by HW. 1575 */ 1576 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1577 struct mvneta_rx_queue *rxq, u32 value) 1578 { 1579 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1580 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1581 rxq->pkts_coal = value; 1582 } 1583 1584 /* Set the time delay in usec before RX interrupt will be generated by 1585 * HW. 1586 */ 1587 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1588 struct mvneta_rx_queue *rxq, u32 value) 1589 { 1590 u32 val; 1591 unsigned long clk_rate; 1592 1593 clk_rate = clk_get_rate(pp->clk); 1594 val = (clk_rate / 1000000) * value; 1595 1596 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1597 rxq->time_coal = value; 1598 } 1599 1600 /* Set threshold for TX_DONE pkts coalescing */ 1601 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1602 struct mvneta_tx_queue *txq, u32 value) 1603 { 1604 u32 val; 1605 1606 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1607 1608 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1609 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1610 1611 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1612 1613 txq->done_pkts_coal = value; 1614 } 1615 1616 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1617 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1618 u32 phys_addr, void *virt_addr, 1619 struct mvneta_rx_queue *rxq) 1620 { 1621 int i; 1622 1623 rx_desc->buf_phys_addr = phys_addr; 1624 i = rx_desc - rxq->descs; 1625 rxq->buf_virt_addr[i] = virt_addr; 1626 } 1627 1628 /* Decrement sent descriptors counter */ 1629 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1630 struct mvneta_tx_queue *txq, 1631 int sent_desc) 1632 { 1633 u32 val; 1634 1635 /* Only 255 TX descriptors can be updated at once */ 1636 while (sent_desc > 0xff) { 1637 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1638 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1639 sent_desc = sent_desc - 0xff; 1640 } 1641 1642 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1643 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1644 } 1645 1646 /* Get number of TX descriptors already sent by HW */ 1647 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1648 struct mvneta_tx_queue *txq) 1649 { 1650 u32 val; 1651 int sent_desc; 1652 1653 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1654 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1655 MVNETA_TXQ_SENT_DESC_SHIFT; 1656 1657 return sent_desc; 1658 } 1659 1660 /* Get number of sent descriptors and decrement counter. 1661 * The number of sent descriptors is returned. 1662 */ 1663 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1664 struct mvneta_tx_queue *txq) 1665 { 1666 int sent_desc; 1667 1668 /* Get number of sent descriptors */ 1669 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1670 1671 /* Decrement sent descriptors counter */ 1672 if (sent_desc) 1673 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1674 1675 return sent_desc; 1676 } 1677 1678 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1679 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1680 int ip_hdr_len, int l4_proto) 1681 { 1682 u32 command; 1683 1684 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1685 * G_L4_chk, L4_type; required only for checksum 1686 * calculation 1687 */ 1688 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1689 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1690 1691 if (l3_proto == htons(ETH_P_IP)) 1692 command |= MVNETA_TXD_IP_CSUM; 1693 else 1694 command |= MVNETA_TX_L3_IP6; 1695 1696 if (l4_proto == IPPROTO_TCP) 1697 command |= MVNETA_TX_L4_CSUM_FULL; 1698 else if (l4_proto == IPPROTO_UDP) 1699 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1700 else 1701 command |= MVNETA_TX_L4_CSUM_NOT; 1702 1703 return command; 1704 } 1705 1706 1707 /* Display more error info */ 1708 static void mvneta_rx_error(struct mvneta_port *pp, 1709 struct mvneta_rx_desc *rx_desc) 1710 { 1711 u32 status = rx_desc->status; 1712 1713 if (!mvneta_rxq_desc_is_first_last(status)) { 1714 netdev_err(pp->dev, 1715 "bad rx status %08x (buffer oversize), size=%d\n", 1716 status, rx_desc->data_size); 1717 return; 1718 } 1719 1720 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1721 case MVNETA_RXD_ERR_CRC: 1722 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1723 status, rx_desc->data_size); 1724 break; 1725 case MVNETA_RXD_ERR_OVERRUN: 1726 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1727 status, rx_desc->data_size); 1728 break; 1729 case MVNETA_RXD_ERR_LEN: 1730 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1731 status, rx_desc->data_size); 1732 break; 1733 case MVNETA_RXD_ERR_RESOURCE: 1734 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1735 status, rx_desc->data_size); 1736 break; 1737 } 1738 } 1739 1740 /* Handle RX checksum offload based on the descriptor's status */ 1741 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1742 struct sk_buff *skb) 1743 { 1744 if ((status & MVNETA_RXD_L3_IP4) && 1745 (status & MVNETA_RXD_L4_CSUM_OK)) { 1746 skb->csum = 0; 1747 skb->ip_summed = CHECKSUM_UNNECESSARY; 1748 return; 1749 } 1750 1751 skb->ip_summed = CHECKSUM_NONE; 1752 } 1753 1754 /* Return tx queue pointer (find last set bit) according to <cause> returned 1755 * form tx_done reg. <cause> must not be null. The return value is always a 1756 * valid queue for matching the first one found in <cause>. 1757 */ 1758 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1759 u32 cause) 1760 { 1761 int queue = fls(cause) - 1; 1762 1763 return &pp->txqs[queue]; 1764 } 1765 1766 /* Free tx queue skbuffs */ 1767 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1768 struct mvneta_tx_queue *txq, int num, 1769 struct netdev_queue *nq) 1770 { 1771 unsigned int bytes_compl = 0, pkts_compl = 0; 1772 int i; 1773 1774 for (i = 0; i < num; i++) { 1775 struct mvneta_tx_desc *tx_desc = txq->descs + 1776 txq->txq_get_index; 1777 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1778 1779 if (skb) { 1780 bytes_compl += skb->len; 1781 pkts_compl++; 1782 } 1783 1784 mvneta_txq_inc_get(txq); 1785 1786 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1787 dma_unmap_single(pp->dev->dev.parent, 1788 tx_desc->buf_phys_addr, 1789 tx_desc->data_size, DMA_TO_DEVICE); 1790 if (!skb) 1791 continue; 1792 dev_kfree_skb_any(skb); 1793 } 1794 1795 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1796 } 1797 1798 /* Handle end of transmission */ 1799 static void mvneta_txq_done(struct mvneta_port *pp, 1800 struct mvneta_tx_queue *txq) 1801 { 1802 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1803 int tx_done; 1804 1805 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1806 if (!tx_done) 1807 return; 1808 1809 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1810 1811 txq->count -= tx_done; 1812 1813 if (netif_tx_queue_stopped(nq)) { 1814 if (txq->count <= txq->tx_wake_threshold) 1815 netif_tx_wake_queue(nq); 1816 } 1817 } 1818 1819 void *mvneta_frag_alloc(unsigned int frag_size) 1820 { 1821 if (likely(frag_size <= PAGE_SIZE)) 1822 return netdev_alloc_frag(frag_size); 1823 else 1824 return kmalloc(frag_size, GFP_ATOMIC); 1825 } 1826 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1827 1828 void mvneta_frag_free(unsigned int frag_size, void *data) 1829 { 1830 if (likely(frag_size <= PAGE_SIZE)) 1831 skb_free_frag(data); 1832 else 1833 kfree(data); 1834 } 1835 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1836 1837 /* Refill processing for SW buffer management */ 1838 static int mvneta_rx_refill(struct mvneta_port *pp, 1839 struct mvneta_rx_desc *rx_desc, 1840 struct mvneta_rx_queue *rxq) 1841 1842 { 1843 dma_addr_t phys_addr; 1844 void *data; 1845 1846 data = mvneta_frag_alloc(pp->frag_size); 1847 if (!data) 1848 return -ENOMEM; 1849 1850 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1851 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1852 DMA_FROM_DEVICE); 1853 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1854 mvneta_frag_free(pp->frag_size, data); 1855 return -ENOMEM; 1856 } 1857 1858 phys_addr += pp->rx_offset_correction; 1859 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1860 return 0; 1861 } 1862 1863 /* Handle tx checksum */ 1864 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1865 { 1866 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1867 int ip_hdr_len = 0; 1868 __be16 l3_proto = vlan_get_protocol(skb); 1869 u8 l4_proto; 1870 1871 if (l3_proto == htons(ETH_P_IP)) { 1872 struct iphdr *ip4h = ip_hdr(skb); 1873 1874 /* Calculate IPv4 checksum and L4 checksum */ 1875 ip_hdr_len = ip4h->ihl; 1876 l4_proto = ip4h->protocol; 1877 } else if (l3_proto == htons(ETH_P_IPV6)) { 1878 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1879 1880 /* Read l4_protocol from one of IPv6 extra headers */ 1881 if (skb_network_header_len(skb) > 0) 1882 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1883 l4_proto = ip6h->nexthdr; 1884 } else 1885 return MVNETA_TX_L4_CSUM_NOT; 1886 1887 return mvneta_txq_desc_csum(skb_network_offset(skb), 1888 l3_proto, ip_hdr_len, l4_proto); 1889 } 1890 1891 return MVNETA_TX_L4_CSUM_NOT; 1892 } 1893 1894 /* Drop packets received by the RXQ and free buffers */ 1895 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1896 struct mvneta_rx_queue *rxq) 1897 { 1898 int rx_done, i; 1899 1900 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1901 if (rx_done) 1902 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1903 1904 if (pp->bm_priv) { 1905 for (i = 0; i < rx_done; i++) { 1906 struct mvneta_rx_desc *rx_desc = 1907 mvneta_rxq_next_desc_get(rxq); 1908 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1909 struct mvneta_bm_pool *bm_pool; 1910 1911 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1912 /* Return dropped buffer to the pool */ 1913 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1914 rx_desc->buf_phys_addr); 1915 } 1916 return; 1917 } 1918 1919 for (i = 0; i < rxq->size; i++) { 1920 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1921 void *data = rxq->buf_virt_addr[i]; 1922 1923 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1924 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1925 mvneta_frag_free(pp->frag_size, data); 1926 } 1927 } 1928 1929 /* Main rx processing when using software buffer management */ 1930 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1931 struct mvneta_rx_queue *rxq) 1932 { 1933 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1934 struct net_device *dev = pp->dev; 1935 int rx_done; 1936 u32 rcvd_pkts = 0; 1937 u32 rcvd_bytes = 0; 1938 1939 /* Get number of received packets */ 1940 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1941 1942 if (rx_todo > rx_done) 1943 rx_todo = rx_done; 1944 1945 rx_done = 0; 1946 1947 /* Fairness NAPI loop */ 1948 while (rx_done < rx_todo) { 1949 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1950 struct sk_buff *skb; 1951 unsigned char *data; 1952 dma_addr_t phys_addr; 1953 u32 rx_status, frag_size; 1954 int rx_bytes, err, index; 1955 1956 rx_done++; 1957 rx_status = rx_desc->status; 1958 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1959 index = rx_desc - rxq->descs; 1960 data = rxq->buf_virt_addr[index]; 1961 phys_addr = rx_desc->buf_phys_addr; 1962 1963 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1964 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1965 mvneta_rx_error(pp, rx_desc); 1966 err_drop_frame: 1967 dev->stats.rx_errors++; 1968 /* leave the descriptor untouched */ 1969 continue; 1970 } 1971 1972 if (rx_bytes <= rx_copybreak) { 1973 /* better copy a small frame and not unmap the DMA region */ 1974 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1975 if (unlikely(!skb)) 1976 goto err_drop_frame; 1977 1978 dma_sync_single_range_for_cpu(dev->dev.parent, 1979 phys_addr, 1980 MVNETA_MH_SIZE + NET_SKB_PAD, 1981 rx_bytes, 1982 DMA_FROM_DEVICE); 1983 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 1984 rx_bytes); 1985 1986 skb->protocol = eth_type_trans(skb, dev); 1987 mvneta_rx_csum(pp, rx_status, skb); 1988 napi_gro_receive(&port->napi, skb); 1989 1990 rcvd_pkts++; 1991 rcvd_bytes += rx_bytes; 1992 1993 /* leave the descriptor and buffer untouched */ 1994 continue; 1995 } 1996 1997 /* Refill processing */ 1998 err = mvneta_rx_refill(pp, rx_desc, rxq); 1999 if (err) { 2000 netdev_err(dev, "Linux processing - Can't refill\n"); 2001 rxq->missed++; 2002 goto err_drop_frame; 2003 } 2004 2005 frag_size = pp->frag_size; 2006 2007 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2008 2009 /* After refill old buffer has to be unmapped regardless 2010 * the skb is successfully built or not. 2011 */ 2012 dma_unmap_single(dev->dev.parent, phys_addr, 2013 MVNETA_RX_BUF_SIZE(pp->pkt_size), 2014 DMA_FROM_DEVICE); 2015 2016 if (!skb) 2017 goto err_drop_frame; 2018 2019 rcvd_pkts++; 2020 rcvd_bytes += rx_bytes; 2021 2022 /* Linux processing */ 2023 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2024 skb_put(skb, rx_bytes); 2025 2026 skb->protocol = eth_type_trans(skb, dev); 2027 2028 mvneta_rx_csum(pp, rx_status, skb); 2029 2030 napi_gro_receive(&port->napi, skb); 2031 } 2032 2033 if (rcvd_pkts) { 2034 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2035 2036 u64_stats_update_begin(&stats->syncp); 2037 stats->rx_packets += rcvd_pkts; 2038 stats->rx_bytes += rcvd_bytes; 2039 u64_stats_update_end(&stats->syncp); 2040 } 2041 2042 /* Update rxq management counters */ 2043 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2044 2045 return rx_done; 2046 } 2047 2048 /* Main rx processing when using hardware buffer management */ 2049 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2050 struct mvneta_rx_queue *rxq) 2051 { 2052 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2053 struct net_device *dev = pp->dev; 2054 int rx_done; 2055 u32 rcvd_pkts = 0; 2056 u32 rcvd_bytes = 0; 2057 2058 /* Get number of received packets */ 2059 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2060 2061 if (rx_todo > rx_done) 2062 rx_todo = rx_done; 2063 2064 rx_done = 0; 2065 2066 /* Fairness NAPI loop */ 2067 while (rx_done < rx_todo) { 2068 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2069 struct mvneta_bm_pool *bm_pool = NULL; 2070 struct sk_buff *skb; 2071 unsigned char *data; 2072 dma_addr_t phys_addr; 2073 u32 rx_status, frag_size; 2074 int rx_bytes, err; 2075 u8 pool_id; 2076 2077 rx_done++; 2078 rx_status = rx_desc->status; 2079 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2080 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2081 phys_addr = rx_desc->buf_phys_addr; 2082 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2083 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2084 2085 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2086 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2087 err_drop_frame_ret_pool: 2088 /* Return the buffer to the pool */ 2089 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2090 rx_desc->buf_phys_addr); 2091 err_drop_frame: 2092 dev->stats.rx_errors++; 2093 mvneta_rx_error(pp, rx_desc); 2094 /* leave the descriptor untouched */ 2095 continue; 2096 } 2097 2098 if (rx_bytes <= rx_copybreak) { 2099 /* better copy a small frame and not unmap the DMA region */ 2100 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2101 if (unlikely(!skb)) 2102 goto err_drop_frame_ret_pool; 2103 2104 dma_sync_single_range_for_cpu(dev->dev.parent, 2105 rx_desc->buf_phys_addr, 2106 MVNETA_MH_SIZE + NET_SKB_PAD, 2107 rx_bytes, 2108 DMA_FROM_DEVICE); 2109 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2110 rx_bytes); 2111 2112 skb->protocol = eth_type_trans(skb, dev); 2113 mvneta_rx_csum(pp, rx_status, skb); 2114 napi_gro_receive(&port->napi, skb); 2115 2116 rcvd_pkts++; 2117 rcvd_bytes += rx_bytes; 2118 2119 /* Return the buffer to the pool */ 2120 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2121 rx_desc->buf_phys_addr); 2122 2123 /* leave the descriptor and buffer untouched */ 2124 continue; 2125 } 2126 2127 /* Refill processing */ 2128 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2129 if (err) { 2130 netdev_err(dev, "Linux processing - Can't refill\n"); 2131 rxq->missed++; 2132 goto err_drop_frame_ret_pool; 2133 } 2134 2135 frag_size = bm_pool->hwbm_pool.frag_size; 2136 2137 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2138 2139 /* After refill old buffer has to be unmapped regardless 2140 * the skb is successfully built or not. 2141 */ 2142 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2143 bm_pool->buf_size, DMA_FROM_DEVICE); 2144 if (!skb) 2145 goto err_drop_frame; 2146 2147 rcvd_pkts++; 2148 rcvd_bytes += rx_bytes; 2149 2150 /* Linux processing */ 2151 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2152 skb_put(skb, rx_bytes); 2153 2154 skb->protocol = eth_type_trans(skb, dev); 2155 2156 mvneta_rx_csum(pp, rx_status, skb); 2157 2158 napi_gro_receive(&port->napi, skb); 2159 } 2160 2161 if (rcvd_pkts) { 2162 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2163 2164 u64_stats_update_begin(&stats->syncp); 2165 stats->rx_packets += rcvd_pkts; 2166 stats->rx_bytes += rcvd_bytes; 2167 u64_stats_update_end(&stats->syncp); 2168 } 2169 2170 /* Update rxq management counters */ 2171 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2172 2173 return rx_done; 2174 } 2175 2176 static inline void 2177 mvneta_tso_put_hdr(struct sk_buff *skb, 2178 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2179 { 2180 struct mvneta_tx_desc *tx_desc; 2181 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2182 2183 txq->tx_skb[txq->txq_put_index] = NULL; 2184 tx_desc = mvneta_txq_next_desc_get(txq); 2185 tx_desc->data_size = hdr_len; 2186 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2187 tx_desc->command |= MVNETA_TXD_F_DESC; 2188 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2189 txq->txq_put_index * TSO_HEADER_SIZE; 2190 mvneta_txq_inc_put(txq); 2191 } 2192 2193 static inline int 2194 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2195 struct sk_buff *skb, char *data, int size, 2196 bool last_tcp, bool is_last) 2197 { 2198 struct mvneta_tx_desc *tx_desc; 2199 2200 tx_desc = mvneta_txq_next_desc_get(txq); 2201 tx_desc->data_size = size; 2202 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2203 size, DMA_TO_DEVICE); 2204 if (unlikely(dma_mapping_error(dev->dev.parent, 2205 tx_desc->buf_phys_addr))) { 2206 mvneta_txq_desc_put(txq); 2207 return -ENOMEM; 2208 } 2209 2210 tx_desc->command = 0; 2211 txq->tx_skb[txq->txq_put_index] = NULL; 2212 2213 if (last_tcp) { 2214 /* last descriptor in the TCP packet */ 2215 tx_desc->command = MVNETA_TXD_L_DESC; 2216 2217 /* last descriptor in SKB */ 2218 if (is_last) 2219 txq->tx_skb[txq->txq_put_index] = skb; 2220 } 2221 mvneta_txq_inc_put(txq); 2222 return 0; 2223 } 2224 2225 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2226 struct mvneta_tx_queue *txq) 2227 { 2228 int total_len, data_left; 2229 int desc_count = 0; 2230 struct mvneta_port *pp = netdev_priv(dev); 2231 struct tso_t tso; 2232 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2233 int i; 2234 2235 /* Count needed descriptors */ 2236 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2237 return 0; 2238 2239 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2240 pr_info("*** Is this even possible???!?!?\n"); 2241 return 0; 2242 } 2243 2244 /* Initialize the TSO handler, and prepare the first payload */ 2245 tso_start(skb, &tso); 2246 2247 total_len = skb->len - hdr_len; 2248 while (total_len > 0) { 2249 char *hdr; 2250 2251 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2252 total_len -= data_left; 2253 desc_count++; 2254 2255 /* prepare packet headers: MAC + IP + TCP */ 2256 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2257 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2258 2259 mvneta_tso_put_hdr(skb, pp, txq); 2260 2261 while (data_left > 0) { 2262 int size; 2263 desc_count++; 2264 2265 size = min_t(int, tso.size, data_left); 2266 2267 if (mvneta_tso_put_data(dev, txq, skb, 2268 tso.data, size, 2269 size == data_left, 2270 total_len == 0)) 2271 goto err_release; 2272 data_left -= size; 2273 2274 tso_build_data(skb, &tso, size); 2275 } 2276 } 2277 2278 return desc_count; 2279 2280 err_release: 2281 /* Release all used data descriptors; header descriptors must not 2282 * be DMA-unmapped. 2283 */ 2284 for (i = desc_count - 1; i >= 0; i--) { 2285 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2286 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2287 dma_unmap_single(pp->dev->dev.parent, 2288 tx_desc->buf_phys_addr, 2289 tx_desc->data_size, 2290 DMA_TO_DEVICE); 2291 mvneta_txq_desc_put(txq); 2292 } 2293 return 0; 2294 } 2295 2296 /* Handle tx fragmentation processing */ 2297 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2298 struct mvneta_tx_queue *txq) 2299 { 2300 struct mvneta_tx_desc *tx_desc; 2301 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2302 2303 for (i = 0; i < nr_frags; i++) { 2304 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2305 void *addr = page_address(frag->page.p) + frag->page_offset; 2306 2307 tx_desc = mvneta_txq_next_desc_get(txq); 2308 tx_desc->data_size = frag->size; 2309 2310 tx_desc->buf_phys_addr = 2311 dma_map_single(pp->dev->dev.parent, addr, 2312 tx_desc->data_size, DMA_TO_DEVICE); 2313 2314 if (dma_mapping_error(pp->dev->dev.parent, 2315 tx_desc->buf_phys_addr)) { 2316 mvneta_txq_desc_put(txq); 2317 goto error; 2318 } 2319 2320 if (i == nr_frags - 1) { 2321 /* Last descriptor */ 2322 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2323 txq->tx_skb[txq->txq_put_index] = skb; 2324 } else { 2325 /* Descriptor in the middle: Not First, Not Last */ 2326 tx_desc->command = 0; 2327 txq->tx_skb[txq->txq_put_index] = NULL; 2328 } 2329 mvneta_txq_inc_put(txq); 2330 } 2331 2332 return 0; 2333 2334 error: 2335 /* Release all descriptors that were used to map fragments of 2336 * this packet, as well as the corresponding DMA mappings 2337 */ 2338 for (i = i - 1; i >= 0; i--) { 2339 tx_desc = txq->descs + i; 2340 dma_unmap_single(pp->dev->dev.parent, 2341 tx_desc->buf_phys_addr, 2342 tx_desc->data_size, 2343 DMA_TO_DEVICE); 2344 mvneta_txq_desc_put(txq); 2345 } 2346 2347 return -ENOMEM; 2348 } 2349 2350 /* Main tx processing */ 2351 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2352 { 2353 struct mvneta_port *pp = netdev_priv(dev); 2354 u16 txq_id = skb_get_queue_mapping(skb); 2355 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2356 struct mvneta_tx_desc *tx_desc; 2357 int len = skb->len; 2358 int frags = 0; 2359 u32 tx_cmd; 2360 2361 if (!netif_running(dev)) 2362 goto out; 2363 2364 if (skb_is_gso(skb)) { 2365 frags = mvneta_tx_tso(skb, dev, txq); 2366 goto out; 2367 } 2368 2369 frags = skb_shinfo(skb)->nr_frags + 1; 2370 2371 /* Get a descriptor for the first part of the packet */ 2372 tx_desc = mvneta_txq_next_desc_get(txq); 2373 2374 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2375 2376 tx_desc->data_size = skb_headlen(skb); 2377 2378 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2379 tx_desc->data_size, 2380 DMA_TO_DEVICE); 2381 if (unlikely(dma_mapping_error(dev->dev.parent, 2382 tx_desc->buf_phys_addr))) { 2383 mvneta_txq_desc_put(txq); 2384 frags = 0; 2385 goto out; 2386 } 2387 2388 if (frags == 1) { 2389 /* First and Last descriptor */ 2390 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2391 tx_desc->command = tx_cmd; 2392 txq->tx_skb[txq->txq_put_index] = skb; 2393 mvneta_txq_inc_put(txq); 2394 } else { 2395 /* First but not Last */ 2396 tx_cmd |= MVNETA_TXD_F_DESC; 2397 txq->tx_skb[txq->txq_put_index] = NULL; 2398 mvneta_txq_inc_put(txq); 2399 tx_desc->command = tx_cmd; 2400 /* Continue with other skb fragments */ 2401 if (mvneta_tx_frag_process(pp, skb, txq)) { 2402 dma_unmap_single(dev->dev.parent, 2403 tx_desc->buf_phys_addr, 2404 tx_desc->data_size, 2405 DMA_TO_DEVICE); 2406 mvneta_txq_desc_put(txq); 2407 frags = 0; 2408 goto out; 2409 } 2410 } 2411 2412 out: 2413 if (frags > 0) { 2414 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2415 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2416 2417 netdev_tx_sent_queue(nq, len); 2418 2419 txq->count += frags; 2420 if (txq->count >= txq->tx_stop_threshold) 2421 netif_tx_stop_queue(nq); 2422 2423 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2424 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2425 mvneta_txq_pend_desc_add(pp, txq, frags); 2426 else 2427 txq->pending += frags; 2428 2429 u64_stats_update_begin(&stats->syncp); 2430 stats->tx_packets++; 2431 stats->tx_bytes += len; 2432 u64_stats_update_end(&stats->syncp); 2433 } else { 2434 dev->stats.tx_dropped++; 2435 dev_kfree_skb_any(skb); 2436 } 2437 2438 return NETDEV_TX_OK; 2439 } 2440 2441 2442 /* Free tx resources, when resetting a port */ 2443 static void mvneta_txq_done_force(struct mvneta_port *pp, 2444 struct mvneta_tx_queue *txq) 2445 2446 { 2447 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2448 int tx_done = txq->count; 2449 2450 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2451 2452 /* reset txq */ 2453 txq->count = 0; 2454 txq->txq_put_index = 0; 2455 txq->txq_get_index = 0; 2456 } 2457 2458 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2459 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2460 */ 2461 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2462 { 2463 struct mvneta_tx_queue *txq; 2464 struct netdev_queue *nq; 2465 2466 while (cause_tx_done) { 2467 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2468 2469 nq = netdev_get_tx_queue(pp->dev, txq->id); 2470 __netif_tx_lock(nq, smp_processor_id()); 2471 2472 if (txq->count) 2473 mvneta_txq_done(pp, txq); 2474 2475 __netif_tx_unlock(nq); 2476 cause_tx_done &= ~((1 << txq->id)); 2477 } 2478 } 2479 2480 /* Compute crc8 of the specified address, using a unique algorithm , 2481 * according to hw spec, different than generic crc8 algorithm 2482 */ 2483 static int mvneta_addr_crc(unsigned char *addr) 2484 { 2485 int crc = 0; 2486 int i; 2487 2488 for (i = 0; i < ETH_ALEN; i++) { 2489 int j; 2490 2491 crc = (crc ^ addr[i]) << 8; 2492 for (j = 7; j >= 0; j--) { 2493 if (crc & (0x100 << j)) 2494 crc ^= 0x107 << j; 2495 } 2496 } 2497 2498 return crc; 2499 } 2500 2501 /* This method controls the net device special MAC multicast support. 2502 * The Special Multicast Table for MAC addresses supports MAC of the form 2503 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2504 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2505 * Table entries in the DA-Filter table. This method set the Special 2506 * Multicast Table appropriate entry. 2507 */ 2508 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2509 unsigned char last_byte, 2510 int queue) 2511 { 2512 unsigned int smc_table_reg; 2513 unsigned int tbl_offset; 2514 unsigned int reg_offset; 2515 2516 /* Register offset from SMC table base */ 2517 tbl_offset = (last_byte / 4); 2518 /* Entry offset within the above reg */ 2519 reg_offset = last_byte % 4; 2520 2521 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2522 + tbl_offset * 4)); 2523 2524 if (queue == -1) 2525 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2526 else { 2527 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2528 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2529 } 2530 2531 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2532 smc_table_reg); 2533 } 2534 2535 /* This method controls the network device Other MAC multicast support. 2536 * The Other Multicast Table is used for multicast of another type. 2537 * A CRC-8 is used as an index to the Other Multicast Table entries 2538 * in the DA-Filter table. 2539 * The method gets the CRC-8 value from the calling routine and 2540 * sets the Other Multicast Table appropriate entry according to the 2541 * specified CRC-8 . 2542 */ 2543 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2544 unsigned char crc8, 2545 int queue) 2546 { 2547 unsigned int omc_table_reg; 2548 unsigned int tbl_offset; 2549 unsigned int reg_offset; 2550 2551 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2552 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2553 2554 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2555 2556 if (queue == -1) { 2557 /* Clear accepts frame bit at specified Other DA table entry */ 2558 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2559 } else { 2560 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2561 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2562 } 2563 2564 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2565 } 2566 2567 /* The network device supports multicast using two tables: 2568 * 1) Special Multicast Table for MAC addresses of the form 2569 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2570 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2571 * Table entries in the DA-Filter table. 2572 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2573 * is used as an index to the Other Multicast Table entries in the 2574 * DA-Filter table. 2575 */ 2576 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2577 int queue) 2578 { 2579 unsigned char crc_result = 0; 2580 2581 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2582 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2583 return 0; 2584 } 2585 2586 crc_result = mvneta_addr_crc(p_addr); 2587 if (queue == -1) { 2588 if (pp->mcast_count[crc_result] == 0) { 2589 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2590 crc_result); 2591 return -EINVAL; 2592 } 2593 2594 pp->mcast_count[crc_result]--; 2595 if (pp->mcast_count[crc_result] != 0) { 2596 netdev_info(pp->dev, 2597 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2598 pp->mcast_count[crc_result], crc_result); 2599 return -EINVAL; 2600 } 2601 } else 2602 pp->mcast_count[crc_result]++; 2603 2604 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2605 2606 return 0; 2607 } 2608 2609 /* Configure Fitering mode of Ethernet port */ 2610 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2611 int is_promisc) 2612 { 2613 u32 port_cfg_reg, val; 2614 2615 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2616 2617 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2618 2619 /* Set / Clear UPM bit in port configuration register */ 2620 if (is_promisc) { 2621 /* Accept all Unicast addresses */ 2622 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2623 val |= MVNETA_FORCE_UNI; 2624 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2625 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2626 } else { 2627 /* Reject all Unicast addresses */ 2628 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2629 val &= ~MVNETA_FORCE_UNI; 2630 } 2631 2632 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2633 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2634 } 2635 2636 /* register unicast and multicast addresses */ 2637 static void mvneta_set_rx_mode(struct net_device *dev) 2638 { 2639 struct mvneta_port *pp = netdev_priv(dev); 2640 struct netdev_hw_addr *ha; 2641 2642 if (dev->flags & IFF_PROMISC) { 2643 /* Accept all: Multicast + Unicast */ 2644 mvneta_rx_unicast_promisc_set(pp, 1); 2645 mvneta_set_ucast_table(pp, pp->rxq_def); 2646 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2647 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2648 } else { 2649 /* Accept single Unicast */ 2650 mvneta_rx_unicast_promisc_set(pp, 0); 2651 mvneta_set_ucast_table(pp, -1); 2652 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2653 2654 if (dev->flags & IFF_ALLMULTI) { 2655 /* Accept all multicast */ 2656 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2657 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2658 } else { 2659 /* Accept only initialized multicast */ 2660 mvneta_set_special_mcast_table(pp, -1); 2661 mvneta_set_other_mcast_table(pp, -1); 2662 2663 if (!netdev_mc_empty(dev)) { 2664 netdev_for_each_mc_addr(ha, dev) { 2665 mvneta_mcast_addr_set(pp, ha->addr, 2666 pp->rxq_def); 2667 } 2668 } 2669 } 2670 } 2671 } 2672 2673 /* Interrupt handling - the callback for request_irq() */ 2674 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2675 { 2676 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2677 2678 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2679 napi_schedule(&pp->napi); 2680 2681 return IRQ_HANDLED; 2682 } 2683 2684 /* Interrupt handling - the callback for request_percpu_irq() */ 2685 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2686 { 2687 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2688 2689 disable_percpu_irq(port->pp->dev->irq); 2690 napi_schedule(&port->napi); 2691 2692 return IRQ_HANDLED; 2693 } 2694 2695 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2696 struct phy_device *phy) 2697 { 2698 struct fixed_phy_status status; 2699 struct fixed_phy_status changed = {}; 2700 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2701 2702 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2703 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2704 status.speed = SPEED_1000; 2705 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2706 status.speed = SPEED_100; 2707 else 2708 status.speed = SPEED_10; 2709 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2710 changed.link = 1; 2711 changed.speed = 1; 2712 changed.duplex = 1; 2713 fixed_phy_update_state(phy, &status, &changed); 2714 return 0; 2715 } 2716 2717 /* NAPI handler 2718 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2719 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2720 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2721 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2722 * Each CPU has its own causeRxTx register 2723 */ 2724 static int mvneta_poll(struct napi_struct *napi, int budget) 2725 { 2726 int rx_done = 0; 2727 u32 cause_rx_tx; 2728 int rx_queue; 2729 struct mvneta_port *pp = netdev_priv(napi->dev); 2730 struct net_device *ndev = pp->dev; 2731 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2732 2733 if (!netif_running(pp->dev)) { 2734 napi_complete(napi); 2735 return rx_done; 2736 } 2737 2738 /* Read cause register */ 2739 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2740 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2741 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2742 2743 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2744 if (pp->use_inband_status && (cause_misc & 2745 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2746 MVNETA_CAUSE_LINK_CHANGE | 2747 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2748 mvneta_fixed_link_update(pp, ndev->phydev); 2749 } 2750 } 2751 2752 /* Release Tx descriptors */ 2753 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2754 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2755 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2756 } 2757 2758 /* For the case where the last mvneta_poll did not process all 2759 * RX packets 2760 */ 2761 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2762 2763 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2764 port->cause_rx_tx; 2765 2766 if (rx_queue) { 2767 rx_queue = rx_queue - 1; 2768 if (pp->bm_priv) 2769 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2770 else 2771 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2772 } 2773 2774 if (rx_done < budget) { 2775 cause_rx_tx = 0; 2776 napi_complete_done(napi, rx_done); 2777 2778 if (pp->neta_armada3700) { 2779 unsigned long flags; 2780 2781 local_irq_save(flags); 2782 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2783 MVNETA_RX_INTR_MASK(rxq_number) | 2784 MVNETA_TX_INTR_MASK(txq_number) | 2785 MVNETA_MISCINTR_INTR_MASK); 2786 local_irq_restore(flags); 2787 } else { 2788 enable_percpu_irq(pp->dev->irq, 0); 2789 } 2790 } 2791 2792 if (pp->neta_armada3700) 2793 pp->cause_rx_tx = cause_rx_tx; 2794 else 2795 port->cause_rx_tx = cause_rx_tx; 2796 2797 return rx_done; 2798 } 2799 2800 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2801 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2802 int num) 2803 { 2804 int i; 2805 2806 for (i = 0; i < num; i++) { 2807 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2808 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2809 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2810 __func__, rxq->id, i, num); 2811 break; 2812 } 2813 } 2814 2815 /* Add this number of RX descriptors as non occupied (ready to 2816 * get packets) 2817 */ 2818 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2819 2820 return i; 2821 } 2822 2823 /* Free all packets pending transmit from all TXQs and reset TX port */ 2824 static void mvneta_tx_reset(struct mvneta_port *pp) 2825 { 2826 int queue; 2827 2828 /* free the skb's in the tx ring */ 2829 for (queue = 0; queue < txq_number; queue++) 2830 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2831 2832 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2833 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2834 } 2835 2836 static void mvneta_rx_reset(struct mvneta_port *pp) 2837 { 2838 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2839 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2840 } 2841 2842 /* Rx/Tx queue initialization/cleanup methods */ 2843 2844 /* Create a specified RX queue */ 2845 static int mvneta_rxq_init(struct mvneta_port *pp, 2846 struct mvneta_rx_queue *rxq) 2847 2848 { 2849 rxq->size = pp->rx_ring_size; 2850 2851 /* Allocate memory for RX descriptors */ 2852 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2853 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2854 &rxq->descs_phys, GFP_KERNEL); 2855 if (!rxq->descs) 2856 return -ENOMEM; 2857 2858 rxq->last_desc = rxq->size - 1; 2859 2860 /* Set Rx descriptors queue starting address */ 2861 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2862 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2863 2864 /* Set Offset */ 2865 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2866 2867 /* Set coalescing pkts and time */ 2868 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2869 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2870 2871 if (!pp->bm_priv) { 2872 /* Fill RXQ with buffers from RX pool */ 2873 mvneta_rxq_buf_size_set(pp, rxq, 2874 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2875 mvneta_rxq_bm_disable(pp, rxq); 2876 mvneta_rxq_fill(pp, rxq, rxq->size); 2877 } else { 2878 mvneta_rxq_bm_enable(pp, rxq); 2879 mvneta_rxq_long_pool_set(pp, rxq); 2880 mvneta_rxq_short_pool_set(pp, rxq); 2881 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2882 } 2883 2884 return 0; 2885 } 2886 2887 /* Cleanup Rx queue */ 2888 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2889 struct mvneta_rx_queue *rxq) 2890 { 2891 mvneta_rxq_drop_pkts(pp, rxq); 2892 2893 if (rxq->descs) 2894 dma_free_coherent(pp->dev->dev.parent, 2895 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2896 rxq->descs, 2897 rxq->descs_phys); 2898 2899 rxq->descs = NULL; 2900 rxq->last_desc = 0; 2901 rxq->next_desc_to_proc = 0; 2902 rxq->descs_phys = 0; 2903 } 2904 2905 /* Create and initialize a tx queue */ 2906 static int mvneta_txq_init(struct mvneta_port *pp, 2907 struct mvneta_tx_queue *txq) 2908 { 2909 int cpu; 2910 2911 txq->size = pp->tx_ring_size; 2912 2913 /* A queue must always have room for at least one skb. 2914 * Therefore, stop the queue when the free entries reaches 2915 * the maximum number of descriptors per skb. 2916 */ 2917 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2918 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2919 2920 2921 /* Allocate memory for TX descriptors */ 2922 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2923 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2924 &txq->descs_phys, GFP_KERNEL); 2925 if (!txq->descs) 2926 return -ENOMEM; 2927 2928 txq->last_desc = txq->size - 1; 2929 2930 /* Set maximum bandwidth for enabled TXQs */ 2931 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2932 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2933 2934 /* Set Tx descriptors queue starting address */ 2935 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2936 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2937 2938 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2939 GFP_KERNEL); 2940 if (!txq->tx_skb) { 2941 dma_free_coherent(pp->dev->dev.parent, 2942 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2943 txq->descs, txq->descs_phys); 2944 return -ENOMEM; 2945 } 2946 2947 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2948 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2949 txq->size * TSO_HEADER_SIZE, 2950 &txq->tso_hdrs_phys, GFP_KERNEL); 2951 if (!txq->tso_hdrs) { 2952 kfree(txq->tx_skb); 2953 dma_free_coherent(pp->dev->dev.parent, 2954 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2955 txq->descs, txq->descs_phys); 2956 return -ENOMEM; 2957 } 2958 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2959 2960 /* Setup XPS mapping */ 2961 if (txq_number > 1) 2962 cpu = txq->id % num_present_cpus(); 2963 else 2964 cpu = pp->rxq_def % num_present_cpus(); 2965 cpumask_set_cpu(cpu, &txq->affinity_mask); 2966 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2967 2968 return 0; 2969 } 2970 2971 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2972 static void mvneta_txq_deinit(struct mvneta_port *pp, 2973 struct mvneta_tx_queue *txq) 2974 { 2975 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2976 2977 kfree(txq->tx_skb); 2978 2979 if (txq->tso_hdrs) 2980 dma_free_coherent(pp->dev->dev.parent, 2981 txq->size * TSO_HEADER_SIZE, 2982 txq->tso_hdrs, txq->tso_hdrs_phys); 2983 if (txq->descs) 2984 dma_free_coherent(pp->dev->dev.parent, 2985 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2986 txq->descs, txq->descs_phys); 2987 2988 netdev_tx_reset_queue(nq); 2989 2990 txq->descs = NULL; 2991 txq->last_desc = 0; 2992 txq->next_desc_to_proc = 0; 2993 txq->descs_phys = 0; 2994 2995 /* Set minimum bandwidth for disabled TXQs */ 2996 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2997 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2998 2999 /* Set Tx descriptors queue starting address and size */ 3000 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3001 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3002 } 3003 3004 /* Cleanup all Tx queues */ 3005 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3006 { 3007 int queue; 3008 3009 for (queue = 0; queue < txq_number; queue++) 3010 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3011 } 3012 3013 /* Cleanup all Rx queues */ 3014 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3015 { 3016 int queue; 3017 3018 for (queue = 0; queue < rxq_number; queue++) 3019 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3020 } 3021 3022 3023 /* Init all Rx queues */ 3024 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3025 { 3026 int queue; 3027 3028 for (queue = 0; queue < rxq_number; queue++) { 3029 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3030 3031 if (err) { 3032 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3033 __func__, queue); 3034 mvneta_cleanup_rxqs(pp); 3035 return err; 3036 } 3037 } 3038 3039 return 0; 3040 } 3041 3042 /* Init all tx queues */ 3043 static int mvneta_setup_txqs(struct mvneta_port *pp) 3044 { 3045 int queue; 3046 3047 for (queue = 0; queue < txq_number; queue++) { 3048 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3049 if (err) { 3050 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3051 __func__, queue); 3052 mvneta_cleanup_txqs(pp); 3053 return err; 3054 } 3055 } 3056 3057 return 0; 3058 } 3059 3060 static void mvneta_start_dev(struct mvneta_port *pp) 3061 { 3062 int cpu; 3063 struct net_device *ndev = pp->dev; 3064 3065 mvneta_max_rx_size_set(pp, pp->pkt_size); 3066 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3067 3068 /* start the Rx/Tx activity */ 3069 mvneta_port_enable(pp); 3070 3071 if (!pp->neta_armada3700) { 3072 /* Enable polling on the port */ 3073 for_each_online_cpu(cpu) { 3074 struct mvneta_pcpu_port *port = 3075 per_cpu_ptr(pp->ports, cpu); 3076 3077 napi_enable(&port->napi); 3078 } 3079 } else { 3080 napi_enable(&pp->napi); 3081 } 3082 3083 /* Unmask interrupts. It has to be done from each CPU */ 3084 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3085 3086 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3087 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3088 MVNETA_CAUSE_LINK_CHANGE | 3089 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3090 3091 phy_start(ndev->phydev); 3092 netif_tx_start_all_queues(pp->dev); 3093 } 3094 3095 static void mvneta_stop_dev(struct mvneta_port *pp) 3096 { 3097 unsigned int cpu; 3098 struct net_device *ndev = pp->dev; 3099 3100 phy_stop(ndev->phydev); 3101 3102 if (!pp->neta_armada3700) { 3103 for_each_online_cpu(cpu) { 3104 struct mvneta_pcpu_port *port = 3105 per_cpu_ptr(pp->ports, cpu); 3106 3107 napi_disable(&port->napi); 3108 } 3109 } else { 3110 napi_disable(&pp->napi); 3111 } 3112 3113 netif_carrier_off(pp->dev); 3114 3115 mvneta_port_down(pp); 3116 netif_tx_stop_all_queues(pp->dev); 3117 3118 /* Stop the port activity */ 3119 mvneta_port_disable(pp); 3120 3121 /* Clear all ethernet port interrupts */ 3122 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3123 3124 /* Mask all ethernet port interrupts */ 3125 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3126 3127 mvneta_tx_reset(pp); 3128 mvneta_rx_reset(pp); 3129 } 3130 3131 static void mvneta_percpu_enable(void *arg) 3132 { 3133 struct mvneta_port *pp = arg; 3134 3135 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3136 } 3137 3138 static void mvneta_percpu_disable(void *arg) 3139 { 3140 struct mvneta_port *pp = arg; 3141 3142 disable_percpu_irq(pp->dev->irq); 3143 } 3144 3145 /* Change the device mtu */ 3146 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3147 { 3148 struct mvneta_port *pp = netdev_priv(dev); 3149 int ret; 3150 3151 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3152 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3153 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3154 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3155 } 3156 3157 dev->mtu = mtu; 3158 3159 if (!netif_running(dev)) { 3160 if (pp->bm_priv) 3161 mvneta_bm_update_mtu(pp, mtu); 3162 3163 netdev_update_features(dev); 3164 return 0; 3165 } 3166 3167 /* The interface is running, so we have to force a 3168 * reallocation of the queues 3169 */ 3170 mvneta_stop_dev(pp); 3171 on_each_cpu(mvneta_percpu_disable, pp, true); 3172 3173 mvneta_cleanup_txqs(pp); 3174 mvneta_cleanup_rxqs(pp); 3175 3176 if (pp->bm_priv) 3177 mvneta_bm_update_mtu(pp, mtu); 3178 3179 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3180 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3181 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3182 3183 ret = mvneta_setup_rxqs(pp); 3184 if (ret) { 3185 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3186 return ret; 3187 } 3188 3189 ret = mvneta_setup_txqs(pp); 3190 if (ret) { 3191 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3192 return ret; 3193 } 3194 3195 on_each_cpu(mvneta_percpu_enable, pp, true); 3196 mvneta_start_dev(pp); 3197 mvneta_port_up(pp); 3198 3199 netdev_update_features(dev); 3200 3201 return 0; 3202 } 3203 3204 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3205 netdev_features_t features) 3206 { 3207 struct mvneta_port *pp = netdev_priv(dev); 3208 3209 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3210 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3211 netdev_info(dev, 3212 "Disable IP checksum for MTU greater than %dB\n", 3213 pp->tx_csum_limit); 3214 } 3215 3216 return features; 3217 } 3218 3219 /* Get mac address */ 3220 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3221 { 3222 u32 mac_addr_l, mac_addr_h; 3223 3224 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3225 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3226 addr[0] = (mac_addr_h >> 24) & 0xFF; 3227 addr[1] = (mac_addr_h >> 16) & 0xFF; 3228 addr[2] = (mac_addr_h >> 8) & 0xFF; 3229 addr[3] = mac_addr_h & 0xFF; 3230 addr[4] = (mac_addr_l >> 8) & 0xFF; 3231 addr[5] = mac_addr_l & 0xFF; 3232 } 3233 3234 /* Handle setting mac address */ 3235 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3236 { 3237 struct mvneta_port *pp = netdev_priv(dev); 3238 struct sockaddr *sockaddr = addr; 3239 int ret; 3240 3241 ret = eth_prepare_mac_addr_change(dev, addr); 3242 if (ret < 0) 3243 return ret; 3244 /* Remove previous address table entry */ 3245 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3246 3247 /* Set new addr in hw */ 3248 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3249 3250 eth_commit_mac_addr_change(dev, addr); 3251 return 0; 3252 } 3253 3254 static void mvneta_adjust_link(struct net_device *ndev) 3255 { 3256 struct mvneta_port *pp = netdev_priv(ndev); 3257 struct phy_device *phydev = ndev->phydev; 3258 int status_change = 0; 3259 3260 if (phydev->link) { 3261 if ((pp->speed != phydev->speed) || 3262 (pp->duplex != phydev->duplex)) { 3263 u32 val; 3264 3265 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3266 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3267 MVNETA_GMAC_CONFIG_GMII_SPEED | 3268 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3269 3270 if (phydev->duplex) 3271 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3272 3273 if (phydev->speed == SPEED_1000) 3274 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3275 else if (phydev->speed == SPEED_100) 3276 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3277 3278 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3279 3280 pp->duplex = phydev->duplex; 3281 pp->speed = phydev->speed; 3282 } 3283 } 3284 3285 if (phydev->link != pp->link) { 3286 if (!phydev->link) { 3287 pp->duplex = -1; 3288 pp->speed = 0; 3289 } 3290 3291 pp->link = phydev->link; 3292 status_change = 1; 3293 } 3294 3295 if (status_change) { 3296 if (phydev->link) { 3297 if (!pp->use_inband_status) { 3298 u32 val = mvreg_read(pp, 3299 MVNETA_GMAC_AUTONEG_CONFIG); 3300 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3301 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3302 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3303 val); 3304 } 3305 mvneta_port_up(pp); 3306 } else { 3307 if (!pp->use_inband_status) { 3308 u32 val = mvreg_read(pp, 3309 MVNETA_GMAC_AUTONEG_CONFIG); 3310 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3311 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3312 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3313 val); 3314 } 3315 mvneta_port_down(pp); 3316 } 3317 phy_print_status(phydev); 3318 } 3319 } 3320 3321 static int mvneta_mdio_probe(struct mvneta_port *pp) 3322 { 3323 struct phy_device *phy_dev; 3324 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3325 3326 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3327 pp->phy_interface); 3328 if (!phy_dev) { 3329 netdev_err(pp->dev, "could not find the PHY\n"); 3330 return -ENODEV; 3331 } 3332 3333 phy_ethtool_get_wol(phy_dev, &wol); 3334 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3335 3336 phy_dev->supported &= PHY_GBIT_FEATURES; 3337 phy_dev->advertising = phy_dev->supported; 3338 3339 pp->link = 0; 3340 pp->duplex = 0; 3341 pp->speed = 0; 3342 3343 return 0; 3344 } 3345 3346 static void mvneta_mdio_remove(struct mvneta_port *pp) 3347 { 3348 struct net_device *ndev = pp->dev; 3349 3350 phy_disconnect(ndev->phydev); 3351 } 3352 3353 /* Electing a CPU must be done in an atomic way: it should be done 3354 * after or before the removal/insertion of a CPU and this function is 3355 * not reentrant. 3356 */ 3357 static void mvneta_percpu_elect(struct mvneta_port *pp) 3358 { 3359 int elected_cpu = 0, max_cpu, cpu, i = 0; 3360 3361 /* Use the cpu associated to the rxq when it is online, in all 3362 * the other cases, use the cpu 0 which can't be offline. 3363 */ 3364 if (cpu_online(pp->rxq_def)) 3365 elected_cpu = pp->rxq_def; 3366 3367 max_cpu = num_present_cpus(); 3368 3369 for_each_online_cpu(cpu) { 3370 int rxq_map = 0, txq_map = 0; 3371 int rxq; 3372 3373 for (rxq = 0; rxq < rxq_number; rxq++) 3374 if ((rxq % max_cpu) == cpu) 3375 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3376 3377 if (cpu == elected_cpu) 3378 /* Map the default receive queue queue to the 3379 * elected CPU 3380 */ 3381 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3382 3383 /* We update the TX queue map only if we have one 3384 * queue. In this case we associate the TX queue to 3385 * the CPU bound to the default RX queue 3386 */ 3387 if (txq_number == 1) 3388 txq_map = (cpu == elected_cpu) ? 3389 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3390 else 3391 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3392 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3393 3394 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3395 3396 /* Update the interrupt mask on each CPU according the 3397 * new mapping 3398 */ 3399 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3400 pp, true); 3401 i++; 3402 3403 } 3404 }; 3405 3406 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3407 { 3408 int other_cpu; 3409 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3410 node_online); 3411 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3412 3413 3414 spin_lock(&pp->lock); 3415 /* 3416 * Configuring the driver for a new CPU while the driver is 3417 * stopping is racy, so just avoid it. 3418 */ 3419 if (pp->is_stopped) { 3420 spin_unlock(&pp->lock); 3421 return 0; 3422 } 3423 netif_tx_stop_all_queues(pp->dev); 3424 3425 /* 3426 * We have to synchronise on tha napi of each CPU except the one 3427 * just being woken up 3428 */ 3429 for_each_online_cpu(other_cpu) { 3430 if (other_cpu != cpu) { 3431 struct mvneta_pcpu_port *other_port = 3432 per_cpu_ptr(pp->ports, other_cpu); 3433 3434 napi_synchronize(&other_port->napi); 3435 } 3436 } 3437 3438 /* Mask all ethernet port interrupts */ 3439 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3440 napi_enable(&port->napi); 3441 3442 /* 3443 * Enable per-CPU interrupts on the CPU that is 3444 * brought up. 3445 */ 3446 mvneta_percpu_enable(pp); 3447 3448 /* 3449 * Enable per-CPU interrupt on the one CPU we care 3450 * about. 3451 */ 3452 mvneta_percpu_elect(pp); 3453 3454 /* Unmask all ethernet port interrupts */ 3455 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3456 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3457 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3458 MVNETA_CAUSE_LINK_CHANGE | 3459 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3460 netif_tx_start_all_queues(pp->dev); 3461 spin_unlock(&pp->lock); 3462 return 0; 3463 } 3464 3465 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3466 { 3467 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3468 node_online); 3469 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3470 3471 /* 3472 * Thanks to this lock we are sure that any pending cpu election is 3473 * done. 3474 */ 3475 spin_lock(&pp->lock); 3476 /* Mask all ethernet port interrupts */ 3477 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3478 spin_unlock(&pp->lock); 3479 3480 napi_synchronize(&port->napi); 3481 napi_disable(&port->napi); 3482 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3483 mvneta_percpu_disable(pp); 3484 return 0; 3485 } 3486 3487 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3488 { 3489 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3490 node_dead); 3491 3492 /* Check if a new CPU must be elected now this on is down */ 3493 spin_lock(&pp->lock); 3494 mvneta_percpu_elect(pp); 3495 spin_unlock(&pp->lock); 3496 /* Unmask all ethernet port interrupts */ 3497 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3498 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3499 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3500 MVNETA_CAUSE_LINK_CHANGE | 3501 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3502 netif_tx_start_all_queues(pp->dev); 3503 return 0; 3504 } 3505 3506 static int mvneta_open(struct net_device *dev) 3507 { 3508 struct mvneta_port *pp = netdev_priv(dev); 3509 int ret; 3510 3511 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3512 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3513 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3514 3515 ret = mvneta_setup_rxqs(pp); 3516 if (ret) 3517 return ret; 3518 3519 ret = mvneta_setup_txqs(pp); 3520 if (ret) 3521 goto err_cleanup_rxqs; 3522 3523 /* Connect to port interrupt line */ 3524 if (pp->neta_armada3700) 3525 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3526 dev->name, pp); 3527 else 3528 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3529 dev->name, pp->ports); 3530 if (ret) { 3531 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3532 goto err_cleanup_txqs; 3533 } 3534 3535 if (!pp->neta_armada3700) { 3536 /* Enable per-CPU interrupt on all the CPU to handle our RX 3537 * queue interrupts 3538 */ 3539 on_each_cpu(mvneta_percpu_enable, pp, true); 3540 3541 pp->is_stopped = false; 3542 /* Register a CPU notifier to handle the case where our CPU 3543 * might be taken offline. 3544 */ 3545 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3546 &pp->node_online); 3547 if (ret) 3548 goto err_free_irq; 3549 3550 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3551 &pp->node_dead); 3552 if (ret) 3553 goto err_free_online_hp; 3554 } 3555 3556 /* In default link is down */ 3557 netif_carrier_off(pp->dev); 3558 3559 ret = mvneta_mdio_probe(pp); 3560 if (ret < 0) { 3561 netdev_err(dev, "cannot probe MDIO bus\n"); 3562 goto err_free_dead_hp; 3563 } 3564 3565 mvneta_start_dev(pp); 3566 3567 return 0; 3568 3569 err_free_dead_hp: 3570 if (!pp->neta_armada3700) 3571 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3572 &pp->node_dead); 3573 err_free_online_hp: 3574 if (!pp->neta_armada3700) 3575 cpuhp_state_remove_instance_nocalls(online_hpstate, 3576 &pp->node_online); 3577 err_free_irq: 3578 if (pp->neta_armada3700) { 3579 free_irq(pp->dev->irq, pp); 3580 } else { 3581 on_each_cpu(mvneta_percpu_disable, pp, true); 3582 free_percpu_irq(pp->dev->irq, pp->ports); 3583 } 3584 err_cleanup_txqs: 3585 mvneta_cleanup_txqs(pp); 3586 err_cleanup_rxqs: 3587 mvneta_cleanup_rxqs(pp); 3588 return ret; 3589 } 3590 3591 /* Stop the port, free port interrupt line */ 3592 static int mvneta_stop(struct net_device *dev) 3593 { 3594 struct mvneta_port *pp = netdev_priv(dev); 3595 3596 if (!pp->neta_armada3700) { 3597 /* Inform that we are stopping so we don't want to setup the 3598 * driver for new CPUs in the notifiers. The code of the 3599 * notifier for CPU online is protected by the same spinlock, 3600 * so when we get the lock, the notifer work is done. 3601 */ 3602 spin_lock(&pp->lock); 3603 pp->is_stopped = true; 3604 spin_unlock(&pp->lock); 3605 3606 mvneta_stop_dev(pp); 3607 mvneta_mdio_remove(pp); 3608 3609 cpuhp_state_remove_instance_nocalls(online_hpstate, 3610 &pp->node_online); 3611 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3612 &pp->node_dead); 3613 on_each_cpu(mvneta_percpu_disable, pp, true); 3614 free_percpu_irq(dev->irq, pp->ports); 3615 } else { 3616 mvneta_stop_dev(pp); 3617 mvneta_mdio_remove(pp); 3618 free_irq(dev->irq, pp); 3619 } 3620 3621 mvneta_cleanup_rxqs(pp); 3622 mvneta_cleanup_txqs(pp); 3623 3624 return 0; 3625 } 3626 3627 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3628 { 3629 if (!dev->phydev) 3630 return -ENOTSUPP; 3631 3632 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3633 } 3634 3635 /* Ethtool methods */ 3636 3637 /* Set link ksettings (phy address, speed) for ethtools */ 3638 static int 3639 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3640 const struct ethtool_link_ksettings *cmd) 3641 { 3642 struct mvneta_port *pp = netdev_priv(ndev); 3643 struct phy_device *phydev = ndev->phydev; 3644 3645 if (!phydev) 3646 return -ENODEV; 3647 3648 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3649 u32 val; 3650 3651 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3652 3653 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3654 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3655 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3656 MVNETA_GMAC_CONFIG_GMII_SPEED | 3657 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3658 3659 if (phydev->duplex) 3660 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3661 3662 if (phydev->speed == SPEED_1000) 3663 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3664 else if (phydev->speed == SPEED_100) 3665 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3666 3667 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3668 } 3669 3670 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3671 netdev_info(pp->dev, "autoneg status set to %i\n", 3672 pp->use_inband_status); 3673 3674 if (netif_running(ndev)) { 3675 mvneta_port_down(pp); 3676 mvneta_port_up(pp); 3677 } 3678 } 3679 3680 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3681 } 3682 3683 /* Set interrupt coalescing for ethtools */ 3684 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3685 struct ethtool_coalesce *c) 3686 { 3687 struct mvneta_port *pp = netdev_priv(dev); 3688 int queue; 3689 3690 for (queue = 0; queue < rxq_number; queue++) { 3691 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3692 rxq->time_coal = c->rx_coalesce_usecs; 3693 rxq->pkts_coal = c->rx_max_coalesced_frames; 3694 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3695 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3696 } 3697 3698 for (queue = 0; queue < txq_number; queue++) { 3699 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3700 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3701 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3702 } 3703 3704 return 0; 3705 } 3706 3707 /* get coalescing for ethtools */ 3708 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3709 struct ethtool_coalesce *c) 3710 { 3711 struct mvneta_port *pp = netdev_priv(dev); 3712 3713 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3714 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3715 3716 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3717 return 0; 3718 } 3719 3720 3721 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3722 struct ethtool_drvinfo *drvinfo) 3723 { 3724 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3725 sizeof(drvinfo->driver)); 3726 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3727 sizeof(drvinfo->version)); 3728 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3729 sizeof(drvinfo->bus_info)); 3730 } 3731 3732 3733 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3734 struct ethtool_ringparam *ring) 3735 { 3736 struct mvneta_port *pp = netdev_priv(netdev); 3737 3738 ring->rx_max_pending = MVNETA_MAX_RXD; 3739 ring->tx_max_pending = MVNETA_MAX_TXD; 3740 ring->rx_pending = pp->rx_ring_size; 3741 ring->tx_pending = pp->tx_ring_size; 3742 } 3743 3744 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3745 struct ethtool_ringparam *ring) 3746 { 3747 struct mvneta_port *pp = netdev_priv(dev); 3748 3749 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3750 return -EINVAL; 3751 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3752 ring->rx_pending : MVNETA_MAX_RXD; 3753 3754 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3755 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3756 if (pp->tx_ring_size != ring->tx_pending) 3757 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3758 pp->tx_ring_size, ring->tx_pending); 3759 3760 if (netif_running(dev)) { 3761 mvneta_stop(dev); 3762 if (mvneta_open(dev)) { 3763 netdev_err(dev, 3764 "error on opening device after ring param change\n"); 3765 return -ENOMEM; 3766 } 3767 } 3768 3769 return 0; 3770 } 3771 3772 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3773 u8 *data) 3774 { 3775 if (sset == ETH_SS_STATS) { 3776 int i; 3777 3778 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3779 memcpy(data + i * ETH_GSTRING_LEN, 3780 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3781 } 3782 } 3783 3784 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3785 { 3786 const struct mvneta_statistic *s; 3787 void __iomem *base = pp->base; 3788 u32 high, low, val; 3789 u64 val64; 3790 int i; 3791 3792 for (i = 0, s = mvneta_statistics; 3793 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3794 s++, i++) { 3795 switch (s->type) { 3796 case T_REG_32: 3797 val = readl_relaxed(base + s->offset); 3798 pp->ethtool_stats[i] += val; 3799 break; 3800 case T_REG_64: 3801 /* Docs say to read low 32-bit then high */ 3802 low = readl_relaxed(base + s->offset); 3803 high = readl_relaxed(base + s->offset + 4); 3804 val64 = (u64)high << 32 | low; 3805 pp->ethtool_stats[i] += val64; 3806 break; 3807 } 3808 } 3809 } 3810 3811 static void mvneta_ethtool_get_stats(struct net_device *dev, 3812 struct ethtool_stats *stats, u64 *data) 3813 { 3814 struct mvneta_port *pp = netdev_priv(dev); 3815 int i; 3816 3817 mvneta_ethtool_update_stats(pp); 3818 3819 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3820 *data++ = pp->ethtool_stats[i]; 3821 } 3822 3823 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3824 { 3825 if (sset == ETH_SS_STATS) 3826 return ARRAY_SIZE(mvneta_statistics); 3827 return -EOPNOTSUPP; 3828 } 3829 3830 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3831 { 3832 return MVNETA_RSS_LU_TABLE_SIZE; 3833 } 3834 3835 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3836 struct ethtool_rxnfc *info, 3837 u32 *rules __always_unused) 3838 { 3839 switch (info->cmd) { 3840 case ETHTOOL_GRXRINGS: 3841 info->data = rxq_number; 3842 return 0; 3843 case ETHTOOL_GRXFH: 3844 return -EOPNOTSUPP; 3845 default: 3846 return -EOPNOTSUPP; 3847 } 3848 } 3849 3850 static int mvneta_config_rss(struct mvneta_port *pp) 3851 { 3852 int cpu; 3853 u32 val; 3854 3855 netif_tx_stop_all_queues(pp->dev); 3856 3857 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3858 3859 /* We have to synchronise on the napi of each CPU */ 3860 for_each_online_cpu(cpu) { 3861 struct mvneta_pcpu_port *pcpu_port = 3862 per_cpu_ptr(pp->ports, cpu); 3863 3864 napi_synchronize(&pcpu_port->napi); 3865 napi_disable(&pcpu_port->napi); 3866 } 3867 3868 pp->rxq_def = pp->indir[0]; 3869 3870 /* Update unicast mapping */ 3871 mvneta_set_rx_mode(pp->dev); 3872 3873 /* Update val of portCfg register accordingly with all RxQueue types */ 3874 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3875 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3876 3877 /* Update the elected CPU matching the new rxq_def */ 3878 spin_lock(&pp->lock); 3879 mvneta_percpu_elect(pp); 3880 spin_unlock(&pp->lock); 3881 3882 /* We have to synchronise on the napi of each CPU */ 3883 for_each_online_cpu(cpu) { 3884 struct mvneta_pcpu_port *pcpu_port = 3885 per_cpu_ptr(pp->ports, cpu); 3886 3887 napi_enable(&pcpu_port->napi); 3888 } 3889 3890 netif_tx_start_all_queues(pp->dev); 3891 3892 return 0; 3893 } 3894 3895 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3896 const u8 *key, const u8 hfunc) 3897 { 3898 struct mvneta_port *pp = netdev_priv(dev); 3899 3900 /* Current code for Armada 3700 doesn't support RSS features yet */ 3901 if (pp->neta_armada3700) 3902 return -EOPNOTSUPP; 3903 3904 /* We require at least one supported parameter to be changed 3905 * and no change in any of the unsupported parameters 3906 */ 3907 if (key || 3908 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3909 return -EOPNOTSUPP; 3910 3911 if (!indir) 3912 return 0; 3913 3914 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3915 3916 return mvneta_config_rss(pp); 3917 } 3918 3919 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3920 u8 *hfunc) 3921 { 3922 struct mvneta_port *pp = netdev_priv(dev); 3923 3924 /* Current code for Armada 3700 doesn't support RSS features yet */ 3925 if (pp->neta_armada3700) 3926 return -EOPNOTSUPP; 3927 3928 if (hfunc) 3929 *hfunc = ETH_RSS_HASH_TOP; 3930 3931 if (!indir) 3932 return 0; 3933 3934 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3935 3936 return 0; 3937 } 3938 3939 static void mvneta_ethtool_get_wol(struct net_device *dev, 3940 struct ethtool_wolinfo *wol) 3941 { 3942 wol->supported = 0; 3943 wol->wolopts = 0; 3944 3945 if (dev->phydev) 3946 phy_ethtool_get_wol(dev->phydev, wol); 3947 } 3948 3949 static int mvneta_ethtool_set_wol(struct net_device *dev, 3950 struct ethtool_wolinfo *wol) 3951 { 3952 int ret; 3953 3954 if (!dev->phydev) 3955 return -EOPNOTSUPP; 3956 3957 ret = phy_ethtool_set_wol(dev->phydev, wol); 3958 if (!ret) 3959 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 3960 3961 return ret; 3962 } 3963 3964 static const struct net_device_ops mvneta_netdev_ops = { 3965 .ndo_open = mvneta_open, 3966 .ndo_stop = mvneta_stop, 3967 .ndo_start_xmit = mvneta_tx, 3968 .ndo_set_rx_mode = mvneta_set_rx_mode, 3969 .ndo_set_mac_address = mvneta_set_mac_addr, 3970 .ndo_change_mtu = mvneta_change_mtu, 3971 .ndo_fix_features = mvneta_fix_features, 3972 .ndo_get_stats64 = mvneta_get_stats64, 3973 .ndo_do_ioctl = mvneta_ioctl, 3974 }; 3975 3976 static const struct ethtool_ops mvneta_eth_tool_ops = { 3977 .nway_reset = phy_ethtool_nway_reset, 3978 .get_link = ethtool_op_get_link, 3979 .set_coalesce = mvneta_ethtool_set_coalesce, 3980 .get_coalesce = mvneta_ethtool_get_coalesce, 3981 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3982 .get_ringparam = mvneta_ethtool_get_ringparam, 3983 .set_ringparam = mvneta_ethtool_set_ringparam, 3984 .get_strings = mvneta_ethtool_get_strings, 3985 .get_ethtool_stats = mvneta_ethtool_get_stats, 3986 .get_sset_count = mvneta_ethtool_get_sset_count, 3987 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3988 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3989 .get_rxfh = mvneta_ethtool_get_rxfh, 3990 .set_rxfh = mvneta_ethtool_set_rxfh, 3991 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3992 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3993 .get_wol = mvneta_ethtool_get_wol, 3994 .set_wol = mvneta_ethtool_set_wol, 3995 }; 3996 3997 /* Initialize hw */ 3998 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3999 { 4000 int queue; 4001 4002 /* Disable port */ 4003 mvneta_port_disable(pp); 4004 4005 /* Set port default values */ 4006 mvneta_defaults_set(pp); 4007 4008 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4009 if (!pp->txqs) 4010 return -ENOMEM; 4011 4012 /* Initialize TX descriptor rings */ 4013 for (queue = 0; queue < txq_number; queue++) { 4014 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4015 txq->id = queue; 4016 txq->size = pp->tx_ring_size; 4017 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4018 } 4019 4020 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4021 if (!pp->rxqs) 4022 return -ENOMEM; 4023 4024 /* Create Rx descriptor rings */ 4025 for (queue = 0; queue < rxq_number; queue++) { 4026 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4027 rxq->id = queue; 4028 rxq->size = pp->rx_ring_size; 4029 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4030 rxq->time_coal = MVNETA_RX_COAL_USEC; 4031 rxq->buf_virt_addr 4032 = devm_kmalloc_array(pp->dev->dev.parent, 4033 rxq->size, 4034 sizeof(*rxq->buf_virt_addr), 4035 GFP_KERNEL); 4036 if (!rxq->buf_virt_addr) 4037 return -ENOMEM; 4038 } 4039 4040 return 0; 4041 } 4042 4043 /* platform glue : initialize decoding windows */ 4044 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4045 const struct mbus_dram_target_info *dram) 4046 { 4047 u32 win_enable; 4048 u32 win_protect; 4049 int i; 4050 4051 for (i = 0; i < 6; i++) { 4052 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4053 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4054 4055 if (i < 4) 4056 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4057 } 4058 4059 win_enable = 0x3f; 4060 win_protect = 0; 4061 4062 if (dram) { 4063 for (i = 0; i < dram->num_cs; i++) { 4064 const struct mbus_dram_window *cs = dram->cs + i; 4065 4066 mvreg_write(pp, MVNETA_WIN_BASE(i), 4067 (cs->base & 0xffff0000) | 4068 (cs->mbus_attr << 8) | 4069 dram->mbus_dram_target_id); 4070 4071 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4072 (cs->size - 1) & 0xffff0000); 4073 4074 win_enable &= ~(1 << i); 4075 win_protect |= 3 << (2 * i); 4076 } 4077 } else { 4078 /* For Armada3700 open default 4GB Mbus window, leaving 4079 * arbitration of target/attribute to a different layer 4080 * of configuration. 4081 */ 4082 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4083 win_enable &= ~BIT(0); 4084 win_protect = 3; 4085 } 4086 4087 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4088 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4089 } 4090 4091 /* Power up the port */ 4092 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4093 { 4094 u32 ctrl; 4095 4096 /* MAC Cause register should be cleared */ 4097 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4098 4099 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4100 4101 /* Even though it might look weird, when we're configured in 4102 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4103 */ 4104 switch(phy_mode) { 4105 case PHY_INTERFACE_MODE_QSGMII: 4106 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4107 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4108 break; 4109 case PHY_INTERFACE_MODE_SGMII: 4110 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4111 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4112 break; 4113 case PHY_INTERFACE_MODE_RGMII: 4114 case PHY_INTERFACE_MODE_RGMII_ID: 4115 case PHY_INTERFACE_MODE_RGMII_RXID: 4116 case PHY_INTERFACE_MODE_RGMII_TXID: 4117 ctrl |= MVNETA_GMAC2_PORT_RGMII; 4118 break; 4119 default: 4120 return -EINVAL; 4121 } 4122 4123 /* Cancel Port Reset */ 4124 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 4125 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 4126 4127 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4128 MVNETA_GMAC2_PORT_RESET) != 0) 4129 continue; 4130 4131 return 0; 4132 } 4133 4134 /* Device initialization routine */ 4135 static int mvneta_probe(struct platform_device *pdev) 4136 { 4137 struct resource *res; 4138 struct device_node *dn = pdev->dev.of_node; 4139 struct device_node *phy_node; 4140 struct device_node *bm_node; 4141 struct mvneta_port *pp; 4142 struct net_device *dev; 4143 const char *dt_mac_addr; 4144 char hw_mac_addr[ETH_ALEN]; 4145 const char *mac_from; 4146 const char *managed; 4147 int tx_csum_limit; 4148 int phy_mode; 4149 int err; 4150 int cpu; 4151 4152 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4153 if (!dev) 4154 return -ENOMEM; 4155 4156 dev->irq = irq_of_parse_and_map(dn, 0); 4157 if (dev->irq == 0) { 4158 err = -EINVAL; 4159 goto err_free_netdev; 4160 } 4161 4162 phy_node = of_parse_phandle(dn, "phy", 0); 4163 if (!phy_node) { 4164 if (!of_phy_is_fixed_link(dn)) { 4165 dev_err(&pdev->dev, "no PHY specified\n"); 4166 err = -ENODEV; 4167 goto err_free_irq; 4168 } 4169 4170 err = of_phy_register_fixed_link(dn); 4171 if (err < 0) { 4172 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4173 goto err_free_irq; 4174 } 4175 4176 /* In the case of a fixed PHY, the DT node associated 4177 * to the PHY is the Ethernet MAC DT node. 4178 */ 4179 phy_node = of_node_get(dn); 4180 } 4181 4182 phy_mode = of_get_phy_mode(dn); 4183 if (phy_mode < 0) { 4184 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4185 err = -EINVAL; 4186 goto err_put_phy_node; 4187 } 4188 4189 dev->tx_queue_len = MVNETA_MAX_TXD; 4190 dev->watchdog_timeo = 5 * HZ; 4191 dev->netdev_ops = &mvneta_netdev_ops; 4192 4193 dev->ethtool_ops = &mvneta_eth_tool_ops; 4194 4195 pp = netdev_priv(dev); 4196 spin_lock_init(&pp->lock); 4197 pp->phy_node = phy_node; 4198 pp->phy_interface = phy_mode; 4199 4200 err = of_property_read_string(dn, "managed", &managed); 4201 pp->use_inband_status = (err == 0 && 4202 strcmp(managed, "in-band-status") == 0); 4203 4204 pp->rxq_def = rxq_def; 4205 4206 /* Set RX packet offset correction for platforms, whose 4207 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4208 * platforms and 0B for 32-bit ones. 4209 */ 4210 pp->rx_offset_correction = 4211 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4212 4213 pp->indir[0] = rxq_def; 4214 4215 /* Get special SoC configurations */ 4216 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4217 pp->neta_armada3700 = true; 4218 4219 pp->clk = devm_clk_get(&pdev->dev, "core"); 4220 if (IS_ERR(pp->clk)) 4221 pp->clk = devm_clk_get(&pdev->dev, NULL); 4222 if (IS_ERR(pp->clk)) { 4223 err = PTR_ERR(pp->clk); 4224 goto err_put_phy_node; 4225 } 4226 4227 clk_prepare_enable(pp->clk); 4228 4229 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4230 if (!IS_ERR(pp->clk_bus)) 4231 clk_prepare_enable(pp->clk_bus); 4232 4233 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4234 pp->base = devm_ioremap_resource(&pdev->dev, res); 4235 if (IS_ERR(pp->base)) { 4236 err = PTR_ERR(pp->base); 4237 goto err_clk; 4238 } 4239 4240 /* Alloc per-cpu port structure */ 4241 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4242 if (!pp->ports) { 4243 err = -ENOMEM; 4244 goto err_clk; 4245 } 4246 4247 /* Alloc per-cpu stats */ 4248 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4249 if (!pp->stats) { 4250 err = -ENOMEM; 4251 goto err_free_ports; 4252 } 4253 4254 dt_mac_addr = of_get_mac_address(dn); 4255 if (dt_mac_addr) { 4256 mac_from = "device tree"; 4257 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4258 } else { 4259 mvneta_get_mac_addr(pp, hw_mac_addr); 4260 if (is_valid_ether_addr(hw_mac_addr)) { 4261 mac_from = "hardware"; 4262 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4263 } else { 4264 mac_from = "random"; 4265 eth_hw_addr_random(dev); 4266 } 4267 } 4268 4269 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4270 if (tx_csum_limit < 0 || 4271 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4272 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4273 dev_info(&pdev->dev, 4274 "Wrong TX csum limit in DT, set to %dB\n", 4275 MVNETA_TX_CSUM_DEF_SIZE); 4276 } 4277 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4278 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4279 } else { 4280 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4281 } 4282 4283 pp->tx_csum_limit = tx_csum_limit; 4284 4285 pp->dram_target_info = mv_mbus_dram_info(); 4286 /* Armada3700 requires setting default configuration of Mbus 4287 * windows, however without using filled mbus_dram_target_info 4288 * structure. 4289 */ 4290 if (pp->dram_target_info || pp->neta_armada3700) 4291 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4292 4293 pp->tx_ring_size = MVNETA_MAX_TXD; 4294 pp->rx_ring_size = MVNETA_MAX_RXD; 4295 4296 pp->dev = dev; 4297 SET_NETDEV_DEV(dev, &pdev->dev); 4298 4299 pp->id = global_port_id++; 4300 4301 /* Obtain access to BM resources if enabled and already initialized */ 4302 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4303 if (bm_node && bm_node->data) { 4304 pp->bm_priv = bm_node->data; 4305 err = mvneta_bm_port_init(pdev, pp); 4306 if (err < 0) { 4307 dev_info(&pdev->dev, "use SW buffer management\n"); 4308 pp->bm_priv = NULL; 4309 } 4310 } 4311 of_node_put(bm_node); 4312 4313 err = mvneta_init(&pdev->dev, pp); 4314 if (err < 0) 4315 goto err_netdev; 4316 4317 err = mvneta_port_power_up(pp, phy_mode); 4318 if (err < 0) { 4319 dev_err(&pdev->dev, "can't power up port\n"); 4320 goto err_netdev; 4321 } 4322 4323 /* Armada3700 network controller does not support per-cpu 4324 * operation, so only single NAPI should be initialized. 4325 */ 4326 if (pp->neta_armada3700) { 4327 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4328 } else { 4329 for_each_present_cpu(cpu) { 4330 struct mvneta_pcpu_port *port = 4331 per_cpu_ptr(pp->ports, cpu); 4332 4333 netif_napi_add(dev, &port->napi, mvneta_poll, 4334 NAPI_POLL_WEIGHT); 4335 port->pp = pp; 4336 } 4337 } 4338 4339 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO; 4340 dev->hw_features |= dev->features; 4341 dev->vlan_features |= dev->features; 4342 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4343 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4344 4345 /* MTU range: 68 - 9676 */ 4346 dev->min_mtu = ETH_MIN_MTU; 4347 /* 9676 == 9700 - 20 and rounding to 8 */ 4348 dev->max_mtu = 9676; 4349 4350 err = register_netdev(dev); 4351 if (err < 0) { 4352 dev_err(&pdev->dev, "failed to register\n"); 4353 goto err_free_stats; 4354 } 4355 4356 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4357 dev->dev_addr); 4358 4359 platform_set_drvdata(pdev, pp->dev); 4360 4361 if (pp->use_inband_status) { 4362 struct phy_device *phy = of_phy_find_device(dn); 4363 4364 mvneta_fixed_link_update(pp, phy); 4365 4366 put_device(&phy->mdio.dev); 4367 } 4368 4369 return 0; 4370 4371 err_netdev: 4372 unregister_netdev(dev); 4373 if (pp->bm_priv) { 4374 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4375 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4376 1 << pp->id); 4377 } 4378 err_free_stats: 4379 free_percpu(pp->stats); 4380 err_free_ports: 4381 free_percpu(pp->ports); 4382 err_clk: 4383 clk_disable_unprepare(pp->clk_bus); 4384 clk_disable_unprepare(pp->clk); 4385 err_put_phy_node: 4386 of_node_put(phy_node); 4387 if (of_phy_is_fixed_link(dn)) 4388 of_phy_deregister_fixed_link(dn); 4389 err_free_irq: 4390 irq_dispose_mapping(dev->irq); 4391 err_free_netdev: 4392 free_netdev(dev); 4393 return err; 4394 } 4395 4396 /* Device removal routine */ 4397 static int mvneta_remove(struct platform_device *pdev) 4398 { 4399 struct net_device *dev = platform_get_drvdata(pdev); 4400 struct device_node *dn = pdev->dev.of_node; 4401 struct mvneta_port *pp = netdev_priv(dev); 4402 4403 unregister_netdev(dev); 4404 clk_disable_unprepare(pp->clk_bus); 4405 clk_disable_unprepare(pp->clk); 4406 free_percpu(pp->ports); 4407 free_percpu(pp->stats); 4408 if (of_phy_is_fixed_link(dn)) 4409 of_phy_deregister_fixed_link(dn); 4410 irq_dispose_mapping(dev->irq); 4411 of_node_put(pp->phy_node); 4412 free_netdev(dev); 4413 4414 if (pp->bm_priv) { 4415 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4416 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4417 1 << pp->id); 4418 } 4419 4420 return 0; 4421 } 4422 4423 #ifdef CONFIG_PM_SLEEP 4424 static int mvneta_suspend(struct device *device) 4425 { 4426 struct net_device *dev = dev_get_drvdata(device); 4427 struct mvneta_port *pp = netdev_priv(dev); 4428 4429 if (netif_running(dev)) 4430 mvneta_stop(dev); 4431 netif_device_detach(dev); 4432 clk_disable_unprepare(pp->clk_bus); 4433 clk_disable_unprepare(pp->clk); 4434 return 0; 4435 } 4436 4437 static int mvneta_resume(struct device *device) 4438 { 4439 struct platform_device *pdev = to_platform_device(device); 4440 struct net_device *dev = dev_get_drvdata(device); 4441 struct mvneta_port *pp = netdev_priv(dev); 4442 int err; 4443 4444 clk_prepare_enable(pp->clk); 4445 if (!IS_ERR(pp->clk_bus)) 4446 clk_prepare_enable(pp->clk_bus); 4447 if (pp->dram_target_info || pp->neta_armada3700) 4448 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4449 if (pp->bm_priv) { 4450 err = mvneta_bm_port_init(pdev, pp); 4451 if (err < 0) { 4452 dev_info(&pdev->dev, "use SW buffer management\n"); 4453 pp->bm_priv = NULL; 4454 } 4455 } 4456 mvneta_defaults_set(pp); 4457 err = mvneta_port_power_up(pp, pp->phy_interface); 4458 if (err < 0) { 4459 dev_err(device, "can't power up port\n"); 4460 return err; 4461 } 4462 4463 if (pp->use_inband_status) 4464 mvneta_fixed_link_update(pp, dev->phydev); 4465 4466 netif_device_attach(dev); 4467 if (netif_running(dev)) { 4468 mvneta_open(dev); 4469 mvneta_set_rx_mode(dev); 4470 } 4471 4472 return 0; 4473 } 4474 #endif 4475 4476 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4477 4478 static const struct of_device_id mvneta_match[] = { 4479 { .compatible = "marvell,armada-370-neta" }, 4480 { .compatible = "marvell,armada-xp-neta" }, 4481 { .compatible = "marvell,armada-3700-neta" }, 4482 { } 4483 }; 4484 MODULE_DEVICE_TABLE(of, mvneta_match); 4485 4486 static struct platform_driver mvneta_driver = { 4487 .probe = mvneta_probe, 4488 .remove = mvneta_remove, 4489 .driver = { 4490 .name = MVNETA_DRIVER_NAME, 4491 .of_match_table = mvneta_match, 4492 .pm = &mvneta_pm_ops, 4493 }, 4494 }; 4495 4496 static int __init mvneta_driver_init(void) 4497 { 4498 int ret; 4499 4500 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4501 mvneta_cpu_online, 4502 mvneta_cpu_down_prepare); 4503 if (ret < 0) 4504 goto out; 4505 online_hpstate = ret; 4506 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4507 NULL, mvneta_cpu_dead); 4508 if (ret) 4509 goto err_dead; 4510 4511 ret = platform_driver_register(&mvneta_driver); 4512 if (ret) 4513 goto err; 4514 return 0; 4515 4516 err: 4517 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4518 err_dead: 4519 cpuhp_remove_multi_state(online_hpstate); 4520 out: 4521 return ret; 4522 } 4523 module_init(mvneta_driver_init); 4524 4525 static void __exit mvneta_driver_exit(void) 4526 { 4527 platform_driver_unregister(&mvneta_driver); 4528 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4529 cpuhp_remove_multi_state(online_hpstate); 4530 } 4531 module_exit(mvneta_driver_exit); 4532 4533 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4534 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4535 MODULE_LICENSE("GPL"); 4536 4537 module_param(rxq_number, int, S_IRUGO); 4538 module_param(txq_number, int, S_IRUGO); 4539 4540 module_param(rxq_def, int, S_IRUGO); 4541 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4542