1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/phy.h>
31 #include <linux/clk.h>
32 
33 /* Registers */
34 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
35 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
36 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
37 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
38 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
39 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
40 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
41 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
42 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
43 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
44 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
45 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
47 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
49 #define MVNETA_PORT_RX_RESET                    0x1cc0
50 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
51 #define MVNETA_PHY_ADDR                         0x2000
52 #define      MVNETA_PHY_ADDR_MASK               0x1f
53 #define MVNETA_MBUS_RETRY                       0x2010
54 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
55 #define MVNETA_UNIT_CONTROL                     0x20B0
56 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
57 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
58 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
59 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
60 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
61 #define MVNETA_PORT_CONFIG                      0x2400
62 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
63 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
64 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
65 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
66 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
67 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
68 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
69 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
70 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
71 						 MVNETA_DEF_RXQ_ARP(q)	 | \
72 						 MVNETA_DEF_RXQ_TCP(q)	 | \
73 						 MVNETA_DEF_RXQ_UDP(q)	 | \
74 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
75 						 MVNETA_TX_UNSET_ERR_SUM | \
76 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
78 #define MVNETA_MAC_ADDR_LOW                      0x2414
79 #define MVNETA_MAC_ADDR_HIGH                     0x2418
80 #define MVNETA_SDMA_CONFIG                       0x241c
81 #define      MVNETA_SDMA_BRST_SIZE_16            4
82 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
83 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
84 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
85 #define      MVNETA_DESC_SWAP                    BIT(6)
86 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
87 #define MVNETA_PORT_STATUS                       0x2444
88 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
89 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
90 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
91 #define MVNETA_SGMII_SERDES_CFG			 0x24A0
92 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
93 #define MVNETA_TYPE_PRIO                         0x24bc
94 #define      MVNETA_FORCE_UNI                    BIT(21)
95 #define MVNETA_TXQ_CMD_1                         0x24e4
96 #define MVNETA_TXQ_CMD                           0x2448
97 #define      MVNETA_TXQ_DISABLE_SHIFT            8
98 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
99 #define MVNETA_ACC_MODE                          0x2500
100 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
101 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
102 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
103 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
104 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
105 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
106 #define MVNETA_INTR_NEW_MASK                     0x25a4
107 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
108 #define MVNETA_INTR_OLD_MASK                     0x25ac
109 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
110 #define MVNETA_INTR_MISC_MASK                    0x25b4
111 #define MVNETA_INTR_ENABLE                       0x25b8
112 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
113 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000
114 #define MVNETA_RXQ_CMD                           0x2680
115 #define      MVNETA_RXQ_DISABLE_SHIFT            8
116 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
117 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
118 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
119 #define MVNETA_GMAC_CTRL_0                       0x2c00
120 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
121 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
122 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
123 #define MVNETA_GMAC_CTRL_2                       0x2c08
124 #define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
125 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
126 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
127 #define MVNETA_GMAC_STATUS                       0x2c10
128 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
129 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
130 #define      MVNETA_GMAC_SPEED_100               BIT(2)
131 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
132 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
133 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
134 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
135 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
136 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
137 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
138 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
139 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
140 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
141 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
142 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
143 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
144 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
145 #define      MVNETA_MIB_LATE_COLLISION           0x7c
146 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
147 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
148 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
149 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
150 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
151 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
152 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
153 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
154 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
155 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
156 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
157 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
158 #define MVNETA_PORT_TX_RESET                     0x3cf0
159 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
160 #define MVNETA_TX_MTU                            0x3e0c
161 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
162 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
163 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
164 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
165 
166 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
167 
168 /* Descriptor ring Macros */
169 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
170 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
171 
172 /* Various constants */
173 
174 /* Coalescing */
175 #define MVNETA_TXDONE_COAL_PKTS		16
176 #define MVNETA_RX_COAL_PKTS		32
177 #define MVNETA_RX_COAL_USEC		100
178 
179 /* Timer */
180 #define MVNETA_TX_DONE_TIMER_PERIOD	10
181 
182 /* Napi polling weight */
183 #define MVNETA_RX_POLL_WEIGHT		64
184 
185 /* The two bytes Marvell header. Either contains a special value used
186  * by Marvell switches when a specific hardware mode is enabled (not
187  * supported by this driver) or is filled automatically by zeroes on
188  * the RX side. Those two bytes being at the front of the Ethernet
189  * header, they allow to have the IP header aligned on a 4 bytes
190  * boundary automatically: the hardware skips those two bytes on its
191  * own.
192  */
193 #define MVNETA_MH_SIZE			2
194 
195 #define MVNETA_VLAN_TAG_LEN             4
196 
197 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
198 #define MVNETA_TX_CSUM_MAX_SIZE		9800
199 #define MVNETA_ACC_MODE_EXT		1
200 
201 /* Timeout constants */
202 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
203 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
204 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
205 
206 #define MVNETA_TX_MTU_MAX		0x3ffff
207 
208 /* Max number of Rx descriptors */
209 #define MVNETA_MAX_RXD 128
210 
211 /* Max number of Tx descriptors */
212 #define MVNETA_MAX_TXD 532
213 
214 /* descriptor aligned size */
215 #define MVNETA_DESC_ALIGNED_SIZE	32
216 
217 #define MVNETA_RX_PKT_SIZE(mtu) \
218 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
219 	      ETH_HLEN + ETH_FCS_LEN,			     \
220 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
221 
222 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
223 
224 struct mvneta_stats {
225 	struct	u64_stats_sync syncp;
226 	u64	packets;
227 	u64	bytes;
228 };
229 
230 struct mvneta_port {
231 	int pkt_size;
232 	void __iomem *base;
233 	struct mvneta_rx_queue *rxqs;
234 	struct mvneta_tx_queue *txqs;
235 	struct timer_list tx_done_timer;
236 	struct net_device *dev;
237 
238 	u32 cause_rx_tx;
239 	struct napi_struct napi;
240 
241 	/* Flags */
242 	unsigned long flags;
243 #define MVNETA_F_TX_DONE_TIMER_BIT  0
244 
245 	/* Napi weight */
246 	int weight;
247 
248 	/* Core clock */
249 	struct clk *clk;
250 	u8 mcast_count[256];
251 	u16 tx_ring_size;
252 	u16 rx_ring_size;
253 	struct mvneta_stats tx_stats;
254 	struct mvneta_stats rx_stats;
255 
256 	struct mii_bus *mii_bus;
257 	struct phy_device *phy_dev;
258 	phy_interface_t phy_interface;
259 	struct device_node *phy_node;
260 	unsigned int link;
261 	unsigned int duplex;
262 	unsigned int speed;
263 };
264 
265 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
266  * layout of the transmit and reception DMA descriptors, and their
267  * layout is therefore defined by the hardware design
268  */
269 
270 #define MVNETA_TX_L3_OFF_SHIFT	0
271 #define MVNETA_TX_IP_HLEN_SHIFT	8
272 #define MVNETA_TX_L4_UDP	BIT(16)
273 #define MVNETA_TX_L3_IP6	BIT(17)
274 #define MVNETA_TXD_IP_CSUM	BIT(18)
275 #define MVNETA_TXD_Z_PAD	BIT(19)
276 #define MVNETA_TXD_L_DESC	BIT(20)
277 #define MVNETA_TXD_F_DESC	BIT(21)
278 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
279 				 MVNETA_TXD_L_DESC | \
280 				 MVNETA_TXD_F_DESC)
281 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
282 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
283 
284 #define MVNETA_RXD_ERR_CRC		0x0
285 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
286 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
287 #define MVNETA_RXD_ERR_LEN		BIT(18)
288 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
289 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
290 #define MVNETA_RXD_L3_IP4		BIT(25)
291 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
292 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
293 
294 #if defined(__LITTLE_ENDIAN)
295 struct mvneta_tx_desc {
296 	u32  command;		/* Options used by HW for packet transmitting.*/
297 	u16  reserverd1;	/* csum_l4 (for future use)		*/
298 	u16  data_size;		/* Data size of transmitted packet in bytes */
299 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
300 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
301 	u32  reserved3[4];	/* Reserved - (for future use)		*/
302 };
303 
304 struct mvneta_rx_desc {
305 	u32  status;		/* Info about received packet		*/
306 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
307 	u16  data_size;		/* Size of received packet in bytes	*/
308 
309 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
310 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
311 
312 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
313 	u16  reserved3;		/* prefetch_cmd, for future use		*/
314 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
315 
316 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
317 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
318 };
319 #else
320 struct mvneta_tx_desc {
321 	u16  data_size;		/* Data size of transmitted packet in bytes */
322 	u16  reserverd1;	/* csum_l4 (for future use)		*/
323 	u32  command;		/* Options used by HW for packet transmitting.*/
324 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
325 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
326 	u32  reserved3[4];	/* Reserved - (for future use)		*/
327 };
328 
329 struct mvneta_rx_desc {
330 	u16  data_size;		/* Size of received packet in bytes	*/
331 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
332 	u32  status;		/* Info about received packet		*/
333 
334 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
335 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
336 
337 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
338 	u16  reserved3;		/* prefetch_cmd, for future use		*/
339 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
340 
341 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
342 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
343 };
344 #endif
345 
346 struct mvneta_tx_queue {
347 	/* Number of this TX queue, in the range 0-7 */
348 	u8 id;
349 
350 	/* Number of TX DMA descriptors in the descriptor ring */
351 	int size;
352 
353 	/* Number of currently used TX DMA descriptor in the
354 	 * descriptor ring
355 	 */
356 	int count;
357 
358 	/* Array of transmitted skb */
359 	struct sk_buff **tx_skb;
360 
361 	/* Index of last TX DMA descriptor that was inserted */
362 	int txq_put_index;
363 
364 	/* Index of the TX DMA descriptor to be cleaned up */
365 	int txq_get_index;
366 
367 	u32 done_pkts_coal;
368 
369 	/* Virtual address of the TX DMA descriptors array */
370 	struct mvneta_tx_desc *descs;
371 
372 	/* DMA address of the TX DMA descriptors array */
373 	dma_addr_t descs_phys;
374 
375 	/* Index of the last TX DMA descriptor */
376 	int last_desc;
377 
378 	/* Index of the next TX DMA descriptor to process */
379 	int next_desc_to_proc;
380 };
381 
382 struct mvneta_rx_queue {
383 	/* rx queue number, in the range 0-7 */
384 	u8 id;
385 
386 	/* num of rx descriptors in the rx descriptor ring */
387 	int size;
388 
389 	/* counter of times when mvneta_refill() failed */
390 	int missed;
391 
392 	u32 pkts_coal;
393 	u32 time_coal;
394 
395 	/* Virtual address of the RX DMA descriptors array */
396 	struct mvneta_rx_desc *descs;
397 
398 	/* DMA address of the RX DMA descriptors array */
399 	dma_addr_t descs_phys;
400 
401 	/* Index of the last RX DMA descriptor */
402 	int last_desc;
403 
404 	/* Index of the next RX DMA descriptor to process */
405 	int next_desc_to_proc;
406 };
407 
408 static int rxq_number = 8;
409 static int txq_number = 8;
410 
411 static int rxq_def;
412 
413 #define MVNETA_DRIVER_NAME "mvneta"
414 #define MVNETA_DRIVER_VERSION "1.0"
415 
416 /* Utility/helper methods */
417 
418 /* Write helper method */
419 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
420 {
421 	writel(data, pp->base + offset);
422 }
423 
424 /* Read helper method */
425 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
426 {
427 	return readl(pp->base + offset);
428 }
429 
430 /* Increment txq get counter */
431 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
432 {
433 	txq->txq_get_index++;
434 	if (txq->txq_get_index == txq->size)
435 		txq->txq_get_index = 0;
436 }
437 
438 /* Increment txq put counter */
439 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
440 {
441 	txq->txq_put_index++;
442 	if (txq->txq_put_index == txq->size)
443 		txq->txq_put_index = 0;
444 }
445 
446 
447 /* Clear all MIB counters */
448 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
449 {
450 	int i;
451 	u32 dummy;
452 
453 	/* Perform dummy reads from MIB counters */
454 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
455 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
456 }
457 
458 /* Get System Network Statistics */
459 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
460 					     struct rtnl_link_stats64 *stats)
461 {
462 	struct mvneta_port *pp = netdev_priv(dev);
463 	unsigned int start;
464 
465 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
466 
467 	do {
468 		start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
469 		stats->rx_packets = pp->rx_stats.packets;
470 		stats->rx_bytes	= pp->rx_stats.bytes;
471 	} while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
472 
473 
474 	do {
475 		start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
476 		stats->tx_packets = pp->tx_stats.packets;
477 		stats->tx_bytes	= pp->tx_stats.bytes;
478 	} while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
479 
480 	stats->rx_errors	= dev->stats.rx_errors;
481 	stats->rx_dropped	= dev->stats.rx_dropped;
482 
483 	stats->tx_dropped	= dev->stats.tx_dropped;
484 
485 	return stats;
486 }
487 
488 /* Rx descriptors helper methods */
489 
490 /* Checks whether the given RX descriptor is both the first and the
491  * last descriptor for the RX packet. Each RX packet is currently
492  * received through a single RX descriptor, so not having each RX
493  * descriptor with its first and last bits set is an error
494  */
495 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
496 {
497 	return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
498 		MVNETA_RXD_FIRST_LAST_DESC;
499 }
500 
501 /* Add number of descriptors ready to receive new packets */
502 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
503 					  struct mvneta_rx_queue *rxq,
504 					  int ndescs)
505 {
506 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
507 	 * be added at once
508 	 */
509 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
510 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
511 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
512 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
513 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
514 	}
515 
516 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
517 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
518 }
519 
520 /* Get number of RX descriptors occupied by received packets */
521 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
522 					struct mvneta_rx_queue *rxq)
523 {
524 	u32 val;
525 
526 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
527 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
528 }
529 
530 /* Update num of rx desc called upon return from rx path or
531  * from mvneta_rxq_drop_pkts().
532  */
533 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
534 				       struct mvneta_rx_queue *rxq,
535 				       int rx_done, int rx_filled)
536 {
537 	u32 val;
538 
539 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
540 		val = rx_done |
541 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
542 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
543 		return;
544 	}
545 
546 	/* Only 255 descriptors can be added at once */
547 	while ((rx_done > 0) || (rx_filled > 0)) {
548 		if (rx_done <= 0xff) {
549 			val = rx_done;
550 			rx_done = 0;
551 		} else {
552 			val = 0xff;
553 			rx_done -= 0xff;
554 		}
555 		if (rx_filled <= 0xff) {
556 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
557 			rx_filled = 0;
558 		} else {
559 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
560 			rx_filled -= 0xff;
561 		}
562 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
563 	}
564 }
565 
566 /* Get pointer to next RX descriptor to be processed by SW */
567 static struct mvneta_rx_desc *
568 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
569 {
570 	int rx_desc = rxq->next_desc_to_proc;
571 
572 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
573 	return rxq->descs + rx_desc;
574 }
575 
576 /* Change maximum receive size of the port. */
577 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
578 {
579 	u32 val;
580 
581 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
582 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
583 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
584 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
585 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
586 }
587 
588 
589 /* Set rx queue offset */
590 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
591 				  struct mvneta_rx_queue *rxq,
592 				  int offset)
593 {
594 	u32 val;
595 
596 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
597 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
598 
599 	/* Offset is in */
600 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
601 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
602 }
603 
604 
605 /* Tx descriptors helper methods */
606 
607 /* Update HW with number of TX descriptors to be sent */
608 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
609 				     struct mvneta_tx_queue *txq,
610 				     int pend_desc)
611 {
612 	u32 val;
613 
614 	/* Only 255 descriptors can be added at once ; Assume caller
615 	 * process TX desriptors in quanta less than 256
616 	 */
617 	val = pend_desc;
618 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
619 }
620 
621 /* Get pointer to next TX descriptor to be processed (send) by HW */
622 static struct mvneta_tx_desc *
623 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
624 {
625 	int tx_desc = txq->next_desc_to_proc;
626 
627 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
628 	return txq->descs + tx_desc;
629 }
630 
631 /* Release the last allocated TX descriptor. Useful to handle DMA
632  * mapping failures in the TX path.
633  */
634 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
635 {
636 	if (txq->next_desc_to_proc == 0)
637 		txq->next_desc_to_proc = txq->last_desc - 1;
638 	else
639 		txq->next_desc_to_proc--;
640 }
641 
642 /* Set rxq buf size */
643 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
644 				    struct mvneta_rx_queue *rxq,
645 				    int buf_size)
646 {
647 	u32 val;
648 
649 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
650 
651 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
652 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
653 
654 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
655 }
656 
657 /* Disable buffer management (BM) */
658 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
659 				  struct mvneta_rx_queue *rxq)
660 {
661 	u32 val;
662 
663 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
664 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
665 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
666 }
667 
668 
669 
670 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
671 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
672 {
673 	u32  val;
674 
675 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
676 
677 	if (enable)
678 		val |= MVNETA_GMAC2_PORT_RGMII;
679 	else
680 		val &= ~MVNETA_GMAC2_PORT_RGMII;
681 
682 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
683 }
684 
685 /* Config SGMII port */
686 static void mvneta_port_sgmii_config(struct mvneta_port *pp)
687 {
688 	u32 val;
689 
690 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
691 	val |= MVNETA_GMAC2_PSC_ENABLE;
692 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
693 
694 	mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
695 }
696 
697 /* Start the Ethernet port RX and TX activity */
698 static void mvneta_port_up(struct mvneta_port *pp)
699 {
700 	int queue;
701 	u32 q_map;
702 
703 	/* Enable all initialized TXs. */
704 	mvneta_mib_counters_clear(pp);
705 	q_map = 0;
706 	for (queue = 0; queue < txq_number; queue++) {
707 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
708 		if (txq->descs != NULL)
709 			q_map |= (1 << queue);
710 	}
711 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
712 
713 	/* Enable all initialized RXQs. */
714 	q_map = 0;
715 	for (queue = 0; queue < rxq_number; queue++) {
716 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
717 		if (rxq->descs != NULL)
718 			q_map |= (1 << queue);
719 	}
720 
721 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
722 }
723 
724 /* Stop the Ethernet port activity */
725 static void mvneta_port_down(struct mvneta_port *pp)
726 {
727 	u32 val;
728 	int count;
729 
730 	/* Stop Rx port activity. Check port Rx activity. */
731 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
732 
733 	/* Issue stop command for active channels only */
734 	if (val != 0)
735 		mvreg_write(pp, MVNETA_RXQ_CMD,
736 			    val << MVNETA_RXQ_DISABLE_SHIFT);
737 
738 	/* Wait for all Rx activity to terminate. */
739 	count = 0;
740 	do {
741 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
742 			netdev_warn(pp->dev,
743 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
744 				    val);
745 			break;
746 		}
747 		mdelay(1);
748 
749 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
750 	} while (val & 0xff);
751 
752 	/* Stop Tx port activity. Check port Tx activity. Issue stop
753 	 * command for active channels only
754 	 */
755 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
756 
757 	if (val != 0)
758 		mvreg_write(pp, MVNETA_TXQ_CMD,
759 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
760 
761 	/* Wait for all Tx activity to terminate. */
762 	count = 0;
763 	do {
764 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
765 			netdev_warn(pp->dev,
766 				    "TIMEOUT for TX stopped status=0x%08x\n",
767 				    val);
768 			break;
769 		}
770 		mdelay(1);
771 
772 		/* Check TX Command reg that all Txqs are stopped */
773 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
774 
775 	} while (val & 0xff);
776 
777 	/* Double check to verify that TX FIFO is empty */
778 	count = 0;
779 	do {
780 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
781 			netdev_warn(pp->dev,
782 				    "TX FIFO empty timeout status=0x08%x\n",
783 				    val);
784 			break;
785 		}
786 		mdelay(1);
787 
788 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
789 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
790 		 (val & MVNETA_TX_IN_PRGRS));
791 
792 	udelay(200);
793 }
794 
795 /* Enable the port by setting the port enable bit of the MAC control register */
796 static void mvneta_port_enable(struct mvneta_port *pp)
797 {
798 	u32 val;
799 
800 	/* Enable port */
801 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
802 	val |= MVNETA_GMAC0_PORT_ENABLE;
803 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
804 }
805 
806 /* Disable the port and wait for about 200 usec before retuning */
807 static void mvneta_port_disable(struct mvneta_port *pp)
808 {
809 	u32 val;
810 
811 	/* Reset the Enable bit in the Serial Control Register */
812 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
813 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
814 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
815 
816 	udelay(200);
817 }
818 
819 /* Multicast tables methods */
820 
821 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
822 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
823 {
824 	int offset;
825 	u32 val;
826 
827 	if (queue == -1) {
828 		val = 0;
829 	} else {
830 		val = 0x1 | (queue << 1);
831 		val |= (val << 24) | (val << 16) | (val << 8);
832 	}
833 
834 	for (offset = 0; offset <= 0xc; offset += 4)
835 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
836 }
837 
838 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
839 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
840 {
841 	int offset;
842 	u32 val;
843 
844 	if (queue == -1) {
845 		val = 0;
846 	} else {
847 		val = 0x1 | (queue << 1);
848 		val |= (val << 24) | (val << 16) | (val << 8);
849 	}
850 
851 	for (offset = 0; offset <= 0xfc; offset += 4)
852 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
853 
854 }
855 
856 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
857 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
858 {
859 	int offset;
860 	u32 val;
861 
862 	if (queue == -1) {
863 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
864 		val = 0;
865 	} else {
866 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
867 		val = 0x1 | (queue << 1);
868 		val |= (val << 24) | (val << 16) | (val << 8);
869 	}
870 
871 	for (offset = 0; offset <= 0xfc; offset += 4)
872 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
873 }
874 
875 /* This method sets defaults to the NETA port:
876  *	Clears interrupt Cause and Mask registers.
877  *	Clears all MAC tables.
878  *	Sets defaults to all registers.
879  *	Resets RX and TX descriptor rings.
880  *	Resets PHY.
881  * This method can be called after mvneta_port_down() to return the port
882  *	settings to defaults.
883  */
884 static void mvneta_defaults_set(struct mvneta_port *pp)
885 {
886 	int cpu;
887 	int queue;
888 	u32 val;
889 
890 	/* Clear all Cause registers */
891 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
892 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
893 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
894 
895 	/* Mask all interrupts */
896 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
897 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
898 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
899 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
900 
901 	/* Enable MBUS Retry bit16 */
902 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
903 
904 	/* Set CPU queue access map - all CPUs have access to all RX
905 	 * queues and to all TX queues
906 	 */
907 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
908 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
909 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
910 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
911 
912 	/* Reset RX and TX DMAs */
913 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
914 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
915 
916 	/* Disable Legacy WRR, Disable EJP, Release from reset */
917 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
918 	for (queue = 0; queue < txq_number; queue++) {
919 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
920 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
921 	}
922 
923 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
924 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
925 
926 	/* Set Port Acceleration Mode */
927 	val = MVNETA_ACC_MODE_EXT;
928 	mvreg_write(pp, MVNETA_ACC_MODE, val);
929 
930 	/* Update val of portCfg register accordingly with all RxQueue types */
931 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
932 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
933 
934 	val = 0;
935 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
936 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
937 
938 	/* Build PORT_SDMA_CONFIG_REG */
939 	val = 0;
940 
941 	/* Default burst size */
942 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
943 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
944 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
945 
946 #if defined(__BIG_ENDIAN)
947 	val |= MVNETA_DESC_SWAP;
948 #endif
949 
950 	/* Assign port SDMA configuration */
951 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
952 
953 	/* Disable PHY polling in hardware, since we're using the
954 	 * kernel phylib to do this.
955 	 */
956 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
957 	val &= ~MVNETA_PHY_POLLING_ENABLE;
958 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
959 
960 	mvneta_set_ucast_table(pp, -1);
961 	mvneta_set_special_mcast_table(pp, -1);
962 	mvneta_set_other_mcast_table(pp, -1);
963 
964 	/* Set port interrupt enable register - default enable all */
965 	mvreg_write(pp, MVNETA_INTR_ENABLE,
966 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
967 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
968 }
969 
970 /* Set max sizes for tx queues */
971 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
972 
973 {
974 	u32 val, size, mtu;
975 	int queue;
976 
977 	mtu = max_tx_size * 8;
978 	if (mtu > MVNETA_TX_MTU_MAX)
979 		mtu = MVNETA_TX_MTU_MAX;
980 
981 	/* Set MTU */
982 	val = mvreg_read(pp, MVNETA_TX_MTU);
983 	val &= ~MVNETA_TX_MTU_MAX;
984 	val |= mtu;
985 	mvreg_write(pp, MVNETA_TX_MTU, val);
986 
987 	/* TX token size and all TXQs token size must be larger that MTU */
988 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
989 
990 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
991 	if (size < mtu) {
992 		size = mtu;
993 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
994 		val |= size;
995 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
996 	}
997 	for (queue = 0; queue < txq_number; queue++) {
998 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
999 
1000 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1001 		if (size < mtu) {
1002 			size = mtu;
1003 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1004 			val |= size;
1005 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1006 		}
1007 	}
1008 }
1009 
1010 /* Set unicast address */
1011 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1012 				  int queue)
1013 {
1014 	unsigned int unicast_reg;
1015 	unsigned int tbl_offset;
1016 	unsigned int reg_offset;
1017 
1018 	/* Locate the Unicast table entry */
1019 	last_nibble = (0xf & last_nibble);
1020 
1021 	/* offset from unicast tbl base */
1022 	tbl_offset = (last_nibble / 4) * 4;
1023 
1024 	/* offset within the above reg  */
1025 	reg_offset = last_nibble % 4;
1026 
1027 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1028 
1029 	if (queue == -1) {
1030 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1031 		unicast_reg &= ~(0xff << (8 * reg_offset));
1032 	} else {
1033 		unicast_reg &= ~(0xff << (8 * reg_offset));
1034 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1035 	}
1036 
1037 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1038 }
1039 
1040 /* Set mac address */
1041 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1042 				int queue)
1043 {
1044 	unsigned int mac_h;
1045 	unsigned int mac_l;
1046 
1047 	if (queue != -1) {
1048 		mac_l = (addr[4] << 8) | (addr[5]);
1049 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1050 			(addr[2] << 8) | (addr[3] << 0);
1051 
1052 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1053 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1054 	}
1055 
1056 	/* Accept frames of this address */
1057 	mvneta_set_ucast_addr(pp, addr[5], queue);
1058 }
1059 
1060 /* Set the number of packets that will be received before RX interrupt
1061  * will be generated by HW.
1062  */
1063 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1064 				    struct mvneta_rx_queue *rxq, u32 value)
1065 {
1066 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1067 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1068 	rxq->pkts_coal = value;
1069 }
1070 
1071 /* Set the time delay in usec before RX interrupt will be generated by
1072  * HW.
1073  */
1074 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1075 				    struct mvneta_rx_queue *rxq, u32 value)
1076 {
1077 	u32 val;
1078 	unsigned long clk_rate;
1079 
1080 	clk_rate = clk_get_rate(pp->clk);
1081 	val = (clk_rate / 1000000) * value;
1082 
1083 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1084 	rxq->time_coal = value;
1085 }
1086 
1087 /* Set threshold for TX_DONE pkts coalescing */
1088 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1089 					 struct mvneta_tx_queue *txq, u32 value)
1090 {
1091 	u32 val;
1092 
1093 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1094 
1095 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1096 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1097 
1098 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1099 
1100 	txq->done_pkts_coal = value;
1101 }
1102 
1103 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1104 static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1105 {
1106 	if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1107 		pp->tx_done_timer.expires = jiffies +
1108 			msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1109 		add_timer(&pp->tx_done_timer);
1110 	}
1111 }
1112 
1113 
1114 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1115 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1116 				u32 phys_addr, u32 cookie)
1117 {
1118 	rx_desc->buf_cookie = cookie;
1119 	rx_desc->buf_phys_addr = phys_addr;
1120 }
1121 
1122 /* Decrement sent descriptors counter */
1123 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1124 				     struct mvneta_tx_queue *txq,
1125 				     int sent_desc)
1126 {
1127 	u32 val;
1128 
1129 	/* Only 255 TX descriptors can be updated at once */
1130 	while (sent_desc > 0xff) {
1131 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1132 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1133 		sent_desc = sent_desc - 0xff;
1134 	}
1135 
1136 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1137 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1138 }
1139 
1140 /* Get number of TX descriptors already sent by HW */
1141 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1142 					struct mvneta_tx_queue *txq)
1143 {
1144 	u32 val;
1145 	int sent_desc;
1146 
1147 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1148 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1149 		MVNETA_TXQ_SENT_DESC_SHIFT;
1150 
1151 	return sent_desc;
1152 }
1153 
1154 /* Get number of sent descriptors and decrement counter.
1155  *  The number of sent descriptors is returned.
1156  */
1157 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1158 				     struct mvneta_tx_queue *txq)
1159 {
1160 	int sent_desc;
1161 
1162 	/* Get number of sent descriptors */
1163 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1164 
1165 	/* Decrement sent descriptors counter */
1166 	if (sent_desc)
1167 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1168 
1169 	return sent_desc;
1170 }
1171 
1172 /* Set TXQ descriptors fields relevant for CSUM calculation */
1173 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1174 				int ip_hdr_len, int l4_proto)
1175 {
1176 	u32 command;
1177 
1178 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1179 	 * G_L4_chk, L4_type; required only for checksum
1180 	 * calculation
1181 	 */
1182 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1183 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1184 
1185 	if (l3_proto == swab16(ETH_P_IP))
1186 		command |= MVNETA_TXD_IP_CSUM;
1187 	else
1188 		command |= MVNETA_TX_L3_IP6;
1189 
1190 	if (l4_proto == IPPROTO_TCP)
1191 		command |=  MVNETA_TX_L4_CSUM_FULL;
1192 	else if (l4_proto == IPPROTO_UDP)
1193 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1194 	else
1195 		command |= MVNETA_TX_L4_CSUM_NOT;
1196 
1197 	return command;
1198 }
1199 
1200 
1201 /* Display more error info */
1202 static void mvneta_rx_error(struct mvneta_port *pp,
1203 			    struct mvneta_rx_desc *rx_desc)
1204 {
1205 	u32 status = rx_desc->status;
1206 
1207 	if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1208 		netdev_err(pp->dev,
1209 			   "bad rx status %08x (buffer oversize), size=%d\n",
1210 			   rx_desc->status, rx_desc->data_size);
1211 		return;
1212 	}
1213 
1214 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1215 	case MVNETA_RXD_ERR_CRC:
1216 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1217 			   status, rx_desc->data_size);
1218 		break;
1219 	case MVNETA_RXD_ERR_OVERRUN:
1220 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1221 			   status, rx_desc->data_size);
1222 		break;
1223 	case MVNETA_RXD_ERR_LEN:
1224 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1225 			   status, rx_desc->data_size);
1226 		break;
1227 	case MVNETA_RXD_ERR_RESOURCE:
1228 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1229 			   status, rx_desc->data_size);
1230 		break;
1231 	}
1232 }
1233 
1234 /* Handle RX checksum offload */
1235 static void mvneta_rx_csum(struct mvneta_port *pp,
1236 			   struct mvneta_rx_desc *rx_desc,
1237 			   struct sk_buff *skb)
1238 {
1239 	if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1240 	    (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1241 		skb->csum = 0;
1242 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1243 		return;
1244 	}
1245 
1246 	skb->ip_summed = CHECKSUM_NONE;
1247 }
1248 
1249 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1250 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1251 						     u32 cause)
1252 {
1253 	int queue = fls(cause) - 1;
1254 
1255 	return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1256 }
1257 
1258 /* Free tx queue skbuffs */
1259 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1260 				 struct mvneta_tx_queue *txq, int num)
1261 {
1262 	int i;
1263 
1264 	for (i = 0; i < num; i++) {
1265 		struct mvneta_tx_desc *tx_desc = txq->descs +
1266 			txq->txq_get_index;
1267 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1268 
1269 		mvneta_txq_inc_get(txq);
1270 
1271 		if (!skb)
1272 			continue;
1273 
1274 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1275 				 tx_desc->data_size, DMA_TO_DEVICE);
1276 		dev_kfree_skb_any(skb);
1277 	}
1278 }
1279 
1280 /* Handle end of transmission */
1281 static int mvneta_txq_done(struct mvneta_port *pp,
1282 			   struct mvneta_tx_queue *txq)
1283 {
1284 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1285 	int tx_done;
1286 
1287 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1288 	if (tx_done == 0)
1289 		return tx_done;
1290 	mvneta_txq_bufs_free(pp, txq, tx_done);
1291 
1292 	txq->count -= tx_done;
1293 
1294 	if (netif_tx_queue_stopped(nq)) {
1295 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1296 			netif_tx_wake_queue(nq);
1297 	}
1298 
1299 	return tx_done;
1300 }
1301 
1302 /* Refill processing */
1303 static int mvneta_rx_refill(struct mvneta_port *pp,
1304 			    struct mvneta_rx_desc *rx_desc)
1305 
1306 {
1307 	dma_addr_t phys_addr;
1308 	struct sk_buff *skb;
1309 
1310 	skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1311 	if (!skb)
1312 		return -ENOMEM;
1313 
1314 	phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1315 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1316 				   DMA_FROM_DEVICE);
1317 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1318 		dev_kfree_skb(skb);
1319 		return -ENOMEM;
1320 	}
1321 
1322 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1323 
1324 	return 0;
1325 }
1326 
1327 /* Handle tx checksum */
1328 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1329 {
1330 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1331 		int ip_hdr_len = 0;
1332 		u8 l4_proto;
1333 
1334 		if (skb->protocol == htons(ETH_P_IP)) {
1335 			struct iphdr *ip4h = ip_hdr(skb);
1336 
1337 			/* Calculate IPv4 checksum and L4 checksum */
1338 			ip_hdr_len = ip4h->ihl;
1339 			l4_proto = ip4h->protocol;
1340 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1341 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1342 
1343 			/* Read l4_protocol from one of IPv6 extra headers */
1344 			if (skb_network_header_len(skb) > 0)
1345 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1346 			l4_proto = ip6h->nexthdr;
1347 		} else
1348 			return MVNETA_TX_L4_CSUM_NOT;
1349 
1350 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1351 				skb->protocol, ip_hdr_len, l4_proto);
1352 	}
1353 
1354 	return MVNETA_TX_L4_CSUM_NOT;
1355 }
1356 
1357 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1358  * value
1359  */
1360 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1361 						u32 cause)
1362 {
1363 	int queue = fls(cause >> 8) - 1;
1364 
1365 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1366 }
1367 
1368 /* Drop packets received by the RXQ and free buffers */
1369 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1370 				 struct mvneta_rx_queue *rxq)
1371 {
1372 	int rx_done, i;
1373 
1374 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1375 	for (i = 0; i < rxq->size; i++) {
1376 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1377 		struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1378 
1379 		dev_kfree_skb_any(skb);
1380 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1381 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1382 	}
1383 
1384 	if (rx_done)
1385 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1386 }
1387 
1388 /* Main rx processing */
1389 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1390 		     struct mvneta_rx_queue *rxq)
1391 {
1392 	struct net_device *dev = pp->dev;
1393 	int rx_done, rx_filled;
1394 
1395 	/* Get number of received packets */
1396 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1397 
1398 	if (rx_todo > rx_done)
1399 		rx_todo = rx_done;
1400 
1401 	rx_done = 0;
1402 	rx_filled = 0;
1403 
1404 	/* Fairness NAPI loop */
1405 	while (rx_done < rx_todo) {
1406 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1407 		struct sk_buff *skb;
1408 		u32 rx_status;
1409 		int rx_bytes, err;
1410 
1411 		prefetch(rx_desc);
1412 		rx_done++;
1413 		rx_filled++;
1414 		rx_status = rx_desc->status;
1415 		skb = (struct sk_buff *)rx_desc->buf_cookie;
1416 
1417 		if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1418 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1419 			dev->stats.rx_errors++;
1420 			mvneta_rx_error(pp, rx_desc);
1421 			mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1422 					    (u32)skb);
1423 			continue;
1424 		}
1425 
1426 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1427 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1428 
1429 		rx_bytes = rx_desc->data_size -
1430 			(ETH_FCS_LEN + MVNETA_MH_SIZE);
1431 		u64_stats_update_begin(&pp->rx_stats.syncp);
1432 		pp->rx_stats.packets++;
1433 		pp->rx_stats.bytes += rx_bytes;
1434 		u64_stats_update_end(&pp->rx_stats.syncp);
1435 
1436 		/* Linux processing */
1437 		skb_reserve(skb, MVNETA_MH_SIZE);
1438 		skb_put(skb, rx_bytes);
1439 
1440 		skb->protocol = eth_type_trans(skb, dev);
1441 
1442 		mvneta_rx_csum(pp, rx_desc, skb);
1443 
1444 		napi_gro_receive(&pp->napi, skb);
1445 
1446 		/* Refill processing */
1447 		err = mvneta_rx_refill(pp, rx_desc);
1448 		if (err) {
1449 			netdev_err(pp->dev, "Linux processing - Can't refill\n");
1450 			rxq->missed++;
1451 			rx_filled--;
1452 		}
1453 	}
1454 
1455 	/* Update rxq management counters */
1456 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1457 
1458 	return rx_done;
1459 }
1460 
1461 /* Handle tx fragmentation processing */
1462 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1463 				  struct mvneta_tx_queue *txq)
1464 {
1465 	struct mvneta_tx_desc *tx_desc;
1466 	int i;
1467 
1468 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1469 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1470 		void *addr = page_address(frag->page.p) + frag->page_offset;
1471 
1472 		tx_desc = mvneta_txq_next_desc_get(txq);
1473 		tx_desc->data_size = frag->size;
1474 
1475 		tx_desc->buf_phys_addr =
1476 			dma_map_single(pp->dev->dev.parent, addr,
1477 				       tx_desc->data_size, DMA_TO_DEVICE);
1478 
1479 		if (dma_mapping_error(pp->dev->dev.parent,
1480 				      tx_desc->buf_phys_addr)) {
1481 			mvneta_txq_desc_put(txq);
1482 			goto error;
1483 		}
1484 
1485 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1486 			/* Last descriptor */
1487 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1488 
1489 			txq->tx_skb[txq->txq_put_index] = skb;
1490 
1491 			mvneta_txq_inc_put(txq);
1492 		} else {
1493 			/* Descriptor in the middle: Not First, Not Last */
1494 			tx_desc->command = 0;
1495 
1496 			txq->tx_skb[txq->txq_put_index] = NULL;
1497 			mvneta_txq_inc_put(txq);
1498 		}
1499 	}
1500 
1501 	return 0;
1502 
1503 error:
1504 	/* Release all descriptors that were used to map fragments of
1505 	 * this packet, as well as the corresponding DMA mappings
1506 	 */
1507 	for (i = i - 1; i >= 0; i--) {
1508 		tx_desc = txq->descs + i;
1509 		dma_unmap_single(pp->dev->dev.parent,
1510 				 tx_desc->buf_phys_addr,
1511 				 tx_desc->data_size,
1512 				 DMA_TO_DEVICE);
1513 		mvneta_txq_desc_put(txq);
1514 	}
1515 
1516 	return -ENOMEM;
1517 }
1518 
1519 /* Main tx processing */
1520 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1521 {
1522 	struct mvneta_port *pp = netdev_priv(dev);
1523 	u16 txq_id = skb_get_queue_mapping(skb);
1524 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1525 	struct mvneta_tx_desc *tx_desc;
1526 	struct netdev_queue *nq;
1527 	int frags = 0;
1528 	u32 tx_cmd;
1529 
1530 	if (!netif_running(dev))
1531 		goto out;
1532 
1533 	frags = skb_shinfo(skb)->nr_frags + 1;
1534 	nq    = netdev_get_tx_queue(dev, txq_id);
1535 
1536 	/* Get a descriptor for the first part of the packet */
1537 	tx_desc = mvneta_txq_next_desc_get(txq);
1538 
1539 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1540 
1541 	tx_desc->data_size = skb_headlen(skb);
1542 
1543 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1544 						tx_desc->data_size,
1545 						DMA_TO_DEVICE);
1546 	if (unlikely(dma_mapping_error(dev->dev.parent,
1547 				       tx_desc->buf_phys_addr))) {
1548 		mvneta_txq_desc_put(txq);
1549 		frags = 0;
1550 		goto out;
1551 	}
1552 
1553 	if (frags == 1) {
1554 		/* First and Last descriptor */
1555 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1556 		tx_desc->command = tx_cmd;
1557 		txq->tx_skb[txq->txq_put_index] = skb;
1558 		mvneta_txq_inc_put(txq);
1559 	} else {
1560 		/* First but not Last */
1561 		tx_cmd |= MVNETA_TXD_F_DESC;
1562 		txq->tx_skb[txq->txq_put_index] = NULL;
1563 		mvneta_txq_inc_put(txq);
1564 		tx_desc->command = tx_cmd;
1565 		/* Continue with other skb fragments */
1566 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1567 			dma_unmap_single(dev->dev.parent,
1568 					 tx_desc->buf_phys_addr,
1569 					 tx_desc->data_size,
1570 					 DMA_TO_DEVICE);
1571 			mvneta_txq_desc_put(txq);
1572 			frags = 0;
1573 			goto out;
1574 		}
1575 	}
1576 
1577 	txq->count += frags;
1578 	mvneta_txq_pend_desc_add(pp, txq, frags);
1579 
1580 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1581 		netif_tx_stop_queue(nq);
1582 
1583 out:
1584 	if (frags > 0) {
1585 		u64_stats_update_begin(&pp->tx_stats.syncp);
1586 		pp->tx_stats.packets++;
1587 		pp->tx_stats.bytes += skb->len;
1588 		u64_stats_update_end(&pp->tx_stats.syncp);
1589 
1590 	} else {
1591 		dev->stats.tx_dropped++;
1592 		dev_kfree_skb_any(skb);
1593 	}
1594 
1595 	if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1596 		mvneta_txq_done(pp, txq);
1597 
1598 	/* If after calling mvneta_txq_done, count equals
1599 	 * frags, we need to set the timer
1600 	 */
1601 	if (txq->count == frags && frags > 0)
1602 		mvneta_add_tx_done_timer(pp);
1603 
1604 	return NETDEV_TX_OK;
1605 }
1606 
1607 
1608 /* Free tx resources, when resetting a port */
1609 static void mvneta_txq_done_force(struct mvneta_port *pp,
1610 				  struct mvneta_tx_queue *txq)
1611 
1612 {
1613 	int tx_done = txq->count;
1614 
1615 	mvneta_txq_bufs_free(pp, txq, tx_done);
1616 
1617 	/* reset txq */
1618 	txq->count = 0;
1619 	txq->txq_put_index = 0;
1620 	txq->txq_get_index = 0;
1621 }
1622 
1623 /* handle tx done - called from tx done timer callback */
1624 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1625 			      int *tx_todo)
1626 {
1627 	struct mvneta_tx_queue *txq;
1628 	u32 tx_done = 0;
1629 	struct netdev_queue *nq;
1630 
1631 	*tx_todo = 0;
1632 	while (cause_tx_done != 0) {
1633 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1634 		if (!txq)
1635 			break;
1636 
1637 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1638 		__netif_tx_lock(nq, smp_processor_id());
1639 
1640 		if (txq->count) {
1641 			tx_done += mvneta_txq_done(pp, txq);
1642 			*tx_todo += txq->count;
1643 		}
1644 
1645 		__netif_tx_unlock(nq);
1646 		cause_tx_done &= ~((1 << txq->id));
1647 	}
1648 
1649 	return tx_done;
1650 }
1651 
1652 /* Compute crc8 of the specified address, using a unique algorithm ,
1653  * according to hw spec, different than generic crc8 algorithm
1654  */
1655 static int mvneta_addr_crc(unsigned char *addr)
1656 {
1657 	int crc = 0;
1658 	int i;
1659 
1660 	for (i = 0; i < ETH_ALEN; i++) {
1661 		int j;
1662 
1663 		crc = (crc ^ addr[i]) << 8;
1664 		for (j = 7; j >= 0; j--) {
1665 			if (crc & (0x100 << j))
1666 				crc ^= 0x107 << j;
1667 		}
1668 	}
1669 
1670 	return crc;
1671 }
1672 
1673 /* This method controls the net device special MAC multicast support.
1674  * The Special Multicast Table for MAC addresses supports MAC of the form
1675  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1676  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1677  * Table entries in the DA-Filter table. This method set the Special
1678  * Multicast Table appropriate entry.
1679  */
1680 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1681 					  unsigned char last_byte,
1682 					  int queue)
1683 {
1684 	unsigned int smc_table_reg;
1685 	unsigned int tbl_offset;
1686 	unsigned int reg_offset;
1687 
1688 	/* Register offset from SMC table base    */
1689 	tbl_offset = (last_byte / 4);
1690 	/* Entry offset within the above reg */
1691 	reg_offset = last_byte % 4;
1692 
1693 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1694 					+ tbl_offset * 4));
1695 
1696 	if (queue == -1)
1697 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1698 	else {
1699 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1700 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1701 	}
1702 
1703 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1704 		    smc_table_reg);
1705 }
1706 
1707 /* This method controls the network device Other MAC multicast support.
1708  * The Other Multicast Table is used for multicast of another type.
1709  * A CRC-8 is used as an index to the Other Multicast Table entries
1710  * in the DA-Filter table.
1711  * The method gets the CRC-8 value from the calling routine and
1712  * sets the Other Multicast Table appropriate entry according to the
1713  * specified CRC-8 .
1714  */
1715 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1716 					unsigned char crc8,
1717 					int queue)
1718 {
1719 	unsigned int omc_table_reg;
1720 	unsigned int tbl_offset;
1721 	unsigned int reg_offset;
1722 
1723 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1724 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1725 
1726 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1727 
1728 	if (queue == -1) {
1729 		/* Clear accepts frame bit at specified Other DA table entry */
1730 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1731 	} else {
1732 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1733 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1734 	}
1735 
1736 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1737 }
1738 
1739 /* The network device supports multicast using two tables:
1740  *    1) Special Multicast Table for MAC addresses of the form
1741  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1742  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1743  *       Table entries in the DA-Filter table.
1744  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1745  *       is used as an index to the Other Multicast Table entries in the
1746  *       DA-Filter table.
1747  */
1748 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1749 				 int queue)
1750 {
1751 	unsigned char crc_result = 0;
1752 
1753 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1754 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1755 		return 0;
1756 	}
1757 
1758 	crc_result = mvneta_addr_crc(p_addr);
1759 	if (queue == -1) {
1760 		if (pp->mcast_count[crc_result] == 0) {
1761 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1762 				    crc_result);
1763 			return -EINVAL;
1764 		}
1765 
1766 		pp->mcast_count[crc_result]--;
1767 		if (pp->mcast_count[crc_result] != 0) {
1768 			netdev_info(pp->dev,
1769 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1770 				    pp->mcast_count[crc_result], crc_result);
1771 			return -EINVAL;
1772 		}
1773 	} else
1774 		pp->mcast_count[crc_result]++;
1775 
1776 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1777 
1778 	return 0;
1779 }
1780 
1781 /* Configure Fitering mode of Ethernet port */
1782 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1783 					  int is_promisc)
1784 {
1785 	u32 port_cfg_reg, val;
1786 
1787 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1788 
1789 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1790 
1791 	/* Set / Clear UPM bit in port configuration register */
1792 	if (is_promisc) {
1793 		/* Accept all Unicast addresses */
1794 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1795 		val |= MVNETA_FORCE_UNI;
1796 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1797 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1798 	} else {
1799 		/* Reject all Unicast addresses */
1800 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1801 		val &= ~MVNETA_FORCE_UNI;
1802 	}
1803 
1804 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1805 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1806 }
1807 
1808 /* register unicast and multicast addresses */
1809 static void mvneta_set_rx_mode(struct net_device *dev)
1810 {
1811 	struct mvneta_port *pp = netdev_priv(dev);
1812 	struct netdev_hw_addr *ha;
1813 
1814 	if (dev->flags & IFF_PROMISC) {
1815 		/* Accept all: Multicast + Unicast */
1816 		mvneta_rx_unicast_promisc_set(pp, 1);
1817 		mvneta_set_ucast_table(pp, rxq_def);
1818 		mvneta_set_special_mcast_table(pp, rxq_def);
1819 		mvneta_set_other_mcast_table(pp, rxq_def);
1820 	} else {
1821 		/* Accept single Unicast */
1822 		mvneta_rx_unicast_promisc_set(pp, 0);
1823 		mvneta_set_ucast_table(pp, -1);
1824 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1825 
1826 		if (dev->flags & IFF_ALLMULTI) {
1827 			/* Accept all multicast */
1828 			mvneta_set_special_mcast_table(pp, rxq_def);
1829 			mvneta_set_other_mcast_table(pp, rxq_def);
1830 		} else {
1831 			/* Accept only initialized multicast */
1832 			mvneta_set_special_mcast_table(pp, -1);
1833 			mvneta_set_other_mcast_table(pp, -1);
1834 
1835 			if (!netdev_mc_empty(dev)) {
1836 				netdev_for_each_mc_addr(ha, dev) {
1837 					mvneta_mcast_addr_set(pp, ha->addr,
1838 							      rxq_def);
1839 				}
1840 			}
1841 		}
1842 	}
1843 }
1844 
1845 /* Interrupt handling - the callback for request_irq() */
1846 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1847 {
1848 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1849 
1850 	/* Mask all interrupts */
1851 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1852 
1853 	napi_schedule(&pp->napi);
1854 
1855 	return IRQ_HANDLED;
1856 }
1857 
1858 /* NAPI handler
1859  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1860  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1861  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1862  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1863  * Each CPU has its own causeRxTx register
1864  */
1865 static int mvneta_poll(struct napi_struct *napi, int budget)
1866 {
1867 	int rx_done = 0;
1868 	u32 cause_rx_tx;
1869 	unsigned long flags;
1870 	struct mvneta_port *pp = netdev_priv(napi->dev);
1871 
1872 	if (!netif_running(pp->dev)) {
1873 		napi_complete(napi);
1874 		return rx_done;
1875 	}
1876 
1877 	/* Read cause register */
1878 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1879 		MVNETA_RX_INTR_MASK(rxq_number);
1880 
1881 	/* For the case where the last mvneta_poll did not process all
1882 	 * RX packets
1883 	 */
1884 	cause_rx_tx |= pp->cause_rx_tx;
1885 	if (rxq_number > 1) {
1886 		while ((cause_rx_tx != 0) && (budget > 0)) {
1887 			int count;
1888 			struct mvneta_rx_queue *rxq;
1889 			/* get rx queue number from cause_rx_tx */
1890 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1891 			if (!rxq)
1892 				break;
1893 
1894 			/* process the packet in that rx queue */
1895 			count = mvneta_rx(pp, budget, rxq);
1896 			rx_done += count;
1897 			budget -= count;
1898 			if (budget > 0) {
1899 				/* set off the rx bit of the
1900 				 * corresponding bit in the cause rx
1901 				 * tx register, so that next iteration
1902 				 * will find the next rx queue where
1903 				 * packets are received on
1904 				 */
1905 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1906 			}
1907 		}
1908 	} else {
1909 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1910 		budget -= rx_done;
1911 	}
1912 
1913 	if (budget > 0) {
1914 		cause_rx_tx = 0;
1915 		napi_complete(napi);
1916 		local_irq_save(flags);
1917 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1918 			    MVNETA_RX_INTR_MASK(rxq_number));
1919 		local_irq_restore(flags);
1920 	}
1921 
1922 	pp->cause_rx_tx = cause_rx_tx;
1923 	return rx_done;
1924 }
1925 
1926 /* tx done timer callback */
1927 static void mvneta_tx_done_timer_callback(unsigned long data)
1928 {
1929 	struct net_device *dev = (struct net_device *)data;
1930 	struct mvneta_port *pp = netdev_priv(dev);
1931 	int tx_done = 0, tx_todo = 0;
1932 
1933 	if (!netif_running(dev))
1934 		return ;
1935 
1936 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1937 
1938 	tx_done = mvneta_tx_done_gbe(pp,
1939 				     (((1 << txq_number) - 1) &
1940 				      MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1941 				     &tx_todo);
1942 	if (tx_todo > 0)
1943 		mvneta_add_tx_done_timer(pp);
1944 }
1945 
1946 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1947 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1948 			   int num)
1949 {
1950 	struct net_device *dev = pp->dev;
1951 	int i;
1952 
1953 	for (i = 0; i < num; i++) {
1954 		struct sk_buff *skb;
1955 		struct mvneta_rx_desc *rx_desc;
1956 		unsigned long phys_addr;
1957 
1958 		skb = dev_alloc_skb(pp->pkt_size);
1959 		if (!skb) {
1960 			netdev_err(dev, "%s:rxq %d, %d of %d buffs  filled\n",
1961 				__func__, rxq->id, i, num);
1962 			break;
1963 		}
1964 
1965 		rx_desc = rxq->descs + i;
1966 		memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1967 		phys_addr = dma_map_single(dev->dev.parent, skb->head,
1968 					   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1969 					   DMA_FROM_DEVICE);
1970 		if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1971 			dev_kfree_skb(skb);
1972 			break;
1973 		}
1974 
1975 		mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1976 	}
1977 
1978 	/* Add this number of RX descriptors as non occupied (ready to
1979 	 * get packets)
1980 	 */
1981 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1982 
1983 	return i;
1984 }
1985 
1986 /* Free all packets pending transmit from all TXQs and reset TX port */
1987 static void mvneta_tx_reset(struct mvneta_port *pp)
1988 {
1989 	int queue;
1990 
1991 	/* free the skb's in the hal tx ring */
1992 	for (queue = 0; queue < txq_number; queue++)
1993 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
1994 
1995 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1996 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1997 }
1998 
1999 static void mvneta_rx_reset(struct mvneta_port *pp)
2000 {
2001 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2002 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2003 }
2004 
2005 /* Rx/Tx queue initialization/cleanup methods */
2006 
2007 /* Create a specified RX queue */
2008 static int mvneta_rxq_init(struct mvneta_port *pp,
2009 			   struct mvneta_rx_queue *rxq)
2010 
2011 {
2012 	rxq->size = pp->rx_ring_size;
2013 
2014 	/* Allocate memory for RX descriptors */
2015 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2016 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2017 					&rxq->descs_phys, GFP_KERNEL);
2018 	if (rxq->descs == NULL)
2019 		return -ENOMEM;
2020 
2021 	BUG_ON(rxq->descs !=
2022 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2023 
2024 	rxq->last_desc = rxq->size - 1;
2025 
2026 	/* Set Rx descriptors queue starting address */
2027 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2028 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2029 
2030 	/* Set Offset */
2031 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2032 
2033 	/* Set coalescing pkts and time */
2034 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2035 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2036 
2037 	/* Fill RXQ with buffers from RX pool */
2038 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2039 	mvneta_rxq_bm_disable(pp, rxq);
2040 	mvneta_rxq_fill(pp, rxq, rxq->size);
2041 
2042 	return 0;
2043 }
2044 
2045 /* Cleanup Rx queue */
2046 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2047 			      struct mvneta_rx_queue *rxq)
2048 {
2049 	mvneta_rxq_drop_pkts(pp, rxq);
2050 
2051 	if (rxq->descs)
2052 		dma_free_coherent(pp->dev->dev.parent,
2053 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2054 				  rxq->descs,
2055 				  rxq->descs_phys);
2056 
2057 	rxq->descs             = NULL;
2058 	rxq->last_desc         = 0;
2059 	rxq->next_desc_to_proc = 0;
2060 	rxq->descs_phys        = 0;
2061 }
2062 
2063 /* Create and initialize a tx queue */
2064 static int mvneta_txq_init(struct mvneta_port *pp,
2065 			   struct mvneta_tx_queue *txq)
2066 {
2067 	txq->size = pp->tx_ring_size;
2068 
2069 	/* Allocate memory for TX descriptors */
2070 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2071 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2072 					&txq->descs_phys, GFP_KERNEL);
2073 	if (txq->descs == NULL)
2074 		return -ENOMEM;
2075 
2076 	/* Make sure descriptor address is cache line size aligned  */
2077 	BUG_ON(txq->descs !=
2078 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2079 
2080 	txq->last_desc = txq->size - 1;
2081 
2082 	/* Set maximum bandwidth for enabled TXQs */
2083 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2084 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2085 
2086 	/* Set Tx descriptors queue starting address */
2087 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2088 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2089 
2090 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2091 	if (txq->tx_skb == NULL) {
2092 		dma_free_coherent(pp->dev->dev.parent,
2093 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2094 				  txq->descs, txq->descs_phys);
2095 		return -ENOMEM;
2096 	}
2097 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2098 
2099 	return 0;
2100 }
2101 
2102 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2103 static void mvneta_txq_deinit(struct mvneta_port *pp,
2104 			      struct mvneta_tx_queue *txq)
2105 {
2106 	kfree(txq->tx_skb);
2107 
2108 	if (txq->descs)
2109 		dma_free_coherent(pp->dev->dev.parent,
2110 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2111 				  txq->descs, txq->descs_phys);
2112 
2113 	txq->descs             = NULL;
2114 	txq->last_desc         = 0;
2115 	txq->next_desc_to_proc = 0;
2116 	txq->descs_phys        = 0;
2117 
2118 	/* Set minimum bandwidth for disabled TXQs */
2119 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2120 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2121 
2122 	/* Set Tx descriptors queue starting address and size */
2123 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2124 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2125 }
2126 
2127 /* Cleanup all Tx queues */
2128 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2129 {
2130 	int queue;
2131 
2132 	for (queue = 0; queue < txq_number; queue++)
2133 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2134 }
2135 
2136 /* Cleanup all Rx queues */
2137 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2138 {
2139 	int queue;
2140 
2141 	for (queue = 0; queue < rxq_number; queue++)
2142 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2143 }
2144 
2145 
2146 /* Init all Rx queues */
2147 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2148 {
2149 	int queue;
2150 
2151 	for (queue = 0; queue < rxq_number; queue++) {
2152 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2153 		if (err) {
2154 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2155 				   __func__, queue);
2156 			mvneta_cleanup_rxqs(pp);
2157 			return err;
2158 		}
2159 	}
2160 
2161 	return 0;
2162 }
2163 
2164 /* Init all tx queues */
2165 static int mvneta_setup_txqs(struct mvneta_port *pp)
2166 {
2167 	int queue;
2168 
2169 	for (queue = 0; queue < txq_number; queue++) {
2170 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2171 		if (err) {
2172 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2173 				   __func__, queue);
2174 			mvneta_cleanup_txqs(pp);
2175 			return err;
2176 		}
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 static void mvneta_start_dev(struct mvneta_port *pp)
2183 {
2184 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2185 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2186 
2187 	/* start the Rx/Tx activity */
2188 	mvneta_port_enable(pp);
2189 
2190 	/* Enable polling on the port */
2191 	napi_enable(&pp->napi);
2192 
2193 	/* Unmask interrupts */
2194 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2195 		    MVNETA_RX_INTR_MASK(rxq_number));
2196 
2197 	phy_start(pp->phy_dev);
2198 	netif_tx_start_all_queues(pp->dev);
2199 }
2200 
2201 static void mvneta_stop_dev(struct mvneta_port *pp)
2202 {
2203 	phy_stop(pp->phy_dev);
2204 
2205 	napi_disable(&pp->napi);
2206 
2207 	netif_carrier_off(pp->dev);
2208 
2209 	mvneta_port_down(pp);
2210 	netif_tx_stop_all_queues(pp->dev);
2211 
2212 	/* Stop the port activity */
2213 	mvneta_port_disable(pp);
2214 
2215 	/* Clear all ethernet port interrupts */
2216 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2217 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2218 
2219 	/* Mask all ethernet port interrupts */
2220 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2221 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2222 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2223 
2224 	mvneta_tx_reset(pp);
2225 	mvneta_rx_reset(pp);
2226 }
2227 
2228 /* tx timeout callback - display a message and stop/start the network device */
2229 static void mvneta_tx_timeout(struct net_device *dev)
2230 {
2231 	struct mvneta_port *pp = netdev_priv(dev);
2232 
2233 	netdev_info(dev, "tx timeout\n");
2234 	mvneta_stop_dev(pp);
2235 	mvneta_start_dev(pp);
2236 }
2237 
2238 /* Return positive if MTU is valid */
2239 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2240 {
2241 	if (mtu < 68) {
2242 		netdev_err(dev, "cannot change mtu to less than 68\n");
2243 		return -EINVAL;
2244 	}
2245 
2246 	/* 9676 == 9700 - 20 and rounding to 8 */
2247 	if (mtu > 9676) {
2248 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2249 		mtu = 9676;
2250 	}
2251 
2252 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2253 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2254 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2255 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2256 	}
2257 
2258 	return mtu;
2259 }
2260 
2261 /* Change the device mtu */
2262 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2263 {
2264 	struct mvneta_port *pp = netdev_priv(dev);
2265 	int ret;
2266 
2267 	mtu = mvneta_check_mtu_valid(dev, mtu);
2268 	if (mtu < 0)
2269 		return -EINVAL;
2270 
2271 	dev->mtu = mtu;
2272 
2273 	if (!netif_running(dev))
2274 		return 0;
2275 
2276 	/* The interface is running, so we have to force a
2277 	 * reallocation of the RXQs
2278 	 */
2279 	mvneta_stop_dev(pp);
2280 
2281 	mvneta_cleanup_txqs(pp);
2282 	mvneta_cleanup_rxqs(pp);
2283 
2284 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2285 
2286 	ret = mvneta_setup_rxqs(pp);
2287 	if (ret) {
2288 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2289 		return ret;
2290 	}
2291 
2292 	mvneta_setup_txqs(pp);
2293 
2294 	mvneta_start_dev(pp);
2295 	mvneta_port_up(pp);
2296 
2297 	return 0;
2298 }
2299 
2300 /* Get mac address */
2301 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2302 {
2303 	u32 mac_addr_l, mac_addr_h;
2304 
2305 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2306 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2307 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2308 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2309 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2310 	addr[3] = mac_addr_h & 0xFF;
2311 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2312 	addr[5] = mac_addr_l & 0xFF;
2313 }
2314 
2315 /* Handle setting mac address */
2316 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2317 {
2318 	struct mvneta_port *pp = netdev_priv(dev);
2319 	u8 *mac = addr + 2;
2320 	int i;
2321 
2322 	if (netif_running(dev))
2323 		return -EBUSY;
2324 
2325 	/* Remove previous address table entry */
2326 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2327 
2328 	/* Set new addr in hw */
2329 	mvneta_mac_addr_set(pp, mac, rxq_def);
2330 
2331 	/* Set addr in the device */
2332 	for (i = 0; i < ETH_ALEN; i++)
2333 		dev->dev_addr[i] = mac[i];
2334 
2335 	return 0;
2336 }
2337 
2338 static void mvneta_adjust_link(struct net_device *ndev)
2339 {
2340 	struct mvneta_port *pp = netdev_priv(ndev);
2341 	struct phy_device *phydev = pp->phy_dev;
2342 	int status_change = 0;
2343 
2344 	if (phydev->link) {
2345 		if ((pp->speed != phydev->speed) ||
2346 		    (pp->duplex != phydev->duplex)) {
2347 			u32 val;
2348 
2349 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2350 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2351 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2352 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2353 				 MVNETA_GMAC_AN_SPEED_EN |
2354 				 MVNETA_GMAC_AN_DUPLEX_EN);
2355 
2356 			if (phydev->duplex)
2357 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2358 
2359 			if (phydev->speed == SPEED_1000)
2360 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2361 			else
2362 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2363 
2364 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2365 
2366 			pp->duplex = phydev->duplex;
2367 			pp->speed  = phydev->speed;
2368 		}
2369 	}
2370 
2371 	if (phydev->link != pp->link) {
2372 		if (!phydev->link) {
2373 			pp->duplex = -1;
2374 			pp->speed = 0;
2375 		}
2376 
2377 		pp->link = phydev->link;
2378 		status_change = 1;
2379 	}
2380 
2381 	if (status_change) {
2382 		if (phydev->link) {
2383 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2384 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2385 				MVNETA_GMAC_FORCE_LINK_DOWN);
2386 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2387 			mvneta_port_up(pp);
2388 			netdev_info(pp->dev, "link up\n");
2389 		} else {
2390 			mvneta_port_down(pp);
2391 			netdev_info(pp->dev, "link down\n");
2392 		}
2393 	}
2394 }
2395 
2396 static int mvneta_mdio_probe(struct mvneta_port *pp)
2397 {
2398 	struct phy_device *phy_dev;
2399 
2400 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2401 				 pp->phy_interface);
2402 	if (!phy_dev) {
2403 		netdev_err(pp->dev, "could not find the PHY\n");
2404 		return -ENODEV;
2405 	}
2406 
2407 	phy_dev->supported &= PHY_GBIT_FEATURES;
2408 	phy_dev->advertising = phy_dev->supported;
2409 
2410 	pp->phy_dev = phy_dev;
2411 	pp->link    = 0;
2412 	pp->duplex  = 0;
2413 	pp->speed   = 0;
2414 
2415 	return 0;
2416 }
2417 
2418 static void mvneta_mdio_remove(struct mvneta_port *pp)
2419 {
2420 	phy_disconnect(pp->phy_dev);
2421 	pp->phy_dev = NULL;
2422 }
2423 
2424 static int mvneta_open(struct net_device *dev)
2425 {
2426 	struct mvneta_port *pp = netdev_priv(dev);
2427 	int ret;
2428 
2429 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2430 
2431 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2432 
2433 	ret = mvneta_setup_rxqs(pp);
2434 	if (ret)
2435 		return ret;
2436 
2437 	ret = mvneta_setup_txqs(pp);
2438 	if (ret)
2439 		goto err_cleanup_rxqs;
2440 
2441 	/* Connect to port interrupt line */
2442 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2443 			  MVNETA_DRIVER_NAME, pp);
2444 	if (ret) {
2445 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2446 		goto err_cleanup_txqs;
2447 	}
2448 
2449 	/* In default link is down */
2450 	netif_carrier_off(pp->dev);
2451 
2452 	ret = mvneta_mdio_probe(pp);
2453 	if (ret < 0) {
2454 		netdev_err(dev, "cannot probe MDIO bus\n");
2455 		goto err_free_irq;
2456 	}
2457 
2458 	mvneta_start_dev(pp);
2459 
2460 	return 0;
2461 
2462 err_free_irq:
2463 	free_irq(pp->dev->irq, pp);
2464 err_cleanup_txqs:
2465 	mvneta_cleanup_txqs(pp);
2466 err_cleanup_rxqs:
2467 	mvneta_cleanup_rxqs(pp);
2468 	return ret;
2469 }
2470 
2471 /* Stop the port, free port interrupt line */
2472 static int mvneta_stop(struct net_device *dev)
2473 {
2474 	struct mvneta_port *pp = netdev_priv(dev);
2475 
2476 	mvneta_stop_dev(pp);
2477 	mvneta_mdio_remove(pp);
2478 	free_irq(dev->irq, pp);
2479 	mvneta_cleanup_rxqs(pp);
2480 	mvneta_cleanup_txqs(pp);
2481 	del_timer(&pp->tx_done_timer);
2482 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2483 
2484 	return 0;
2485 }
2486 
2487 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2488 {
2489 	struct mvneta_port *pp = netdev_priv(dev);
2490 	int ret;
2491 
2492 	if (!pp->phy_dev)
2493 		return -ENOTSUPP;
2494 
2495 	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2496 	if (!ret)
2497 		mvneta_adjust_link(dev);
2498 
2499 	return ret;
2500 }
2501 
2502 /* Ethtool methods */
2503 
2504 /* Get settings (phy address, speed) for ethtools */
2505 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2506 {
2507 	struct mvneta_port *pp = netdev_priv(dev);
2508 
2509 	if (!pp->phy_dev)
2510 		return -ENODEV;
2511 
2512 	return phy_ethtool_gset(pp->phy_dev, cmd);
2513 }
2514 
2515 /* Set settings (phy address, speed) for ethtools */
2516 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2517 {
2518 	struct mvneta_port *pp = netdev_priv(dev);
2519 
2520 	if (!pp->phy_dev)
2521 		return -ENODEV;
2522 
2523 	return phy_ethtool_sset(pp->phy_dev, cmd);
2524 }
2525 
2526 /* Set interrupt coalescing for ethtools */
2527 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2528 				       struct ethtool_coalesce *c)
2529 {
2530 	struct mvneta_port *pp = netdev_priv(dev);
2531 	int queue;
2532 
2533 	for (queue = 0; queue < rxq_number; queue++) {
2534 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2535 		rxq->time_coal = c->rx_coalesce_usecs;
2536 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2537 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2538 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2539 	}
2540 
2541 	for (queue = 0; queue < txq_number; queue++) {
2542 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2543 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2544 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 /* get coalescing for ethtools */
2551 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2552 				       struct ethtool_coalesce *c)
2553 {
2554 	struct mvneta_port *pp = netdev_priv(dev);
2555 
2556 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2557 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2558 
2559 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2560 	return 0;
2561 }
2562 
2563 
2564 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2565 				    struct ethtool_drvinfo *drvinfo)
2566 {
2567 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2568 		sizeof(drvinfo->driver));
2569 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2570 		sizeof(drvinfo->version));
2571 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2572 		sizeof(drvinfo->bus_info));
2573 }
2574 
2575 
2576 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2577 					 struct ethtool_ringparam *ring)
2578 {
2579 	struct mvneta_port *pp = netdev_priv(netdev);
2580 
2581 	ring->rx_max_pending = MVNETA_MAX_RXD;
2582 	ring->tx_max_pending = MVNETA_MAX_TXD;
2583 	ring->rx_pending = pp->rx_ring_size;
2584 	ring->tx_pending = pp->tx_ring_size;
2585 }
2586 
2587 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2588 					struct ethtool_ringparam *ring)
2589 {
2590 	struct mvneta_port *pp = netdev_priv(dev);
2591 
2592 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2593 		return -EINVAL;
2594 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2595 		ring->rx_pending : MVNETA_MAX_RXD;
2596 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2597 		ring->tx_pending : MVNETA_MAX_TXD;
2598 
2599 	if (netif_running(dev)) {
2600 		mvneta_stop(dev);
2601 		if (mvneta_open(dev)) {
2602 			netdev_err(dev,
2603 				   "error on opening device after ring param change\n");
2604 			return -ENOMEM;
2605 		}
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static const struct net_device_ops mvneta_netdev_ops = {
2612 	.ndo_open            = mvneta_open,
2613 	.ndo_stop            = mvneta_stop,
2614 	.ndo_start_xmit      = mvneta_tx,
2615 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2616 	.ndo_set_mac_address = mvneta_set_mac_addr,
2617 	.ndo_change_mtu      = mvneta_change_mtu,
2618 	.ndo_tx_timeout      = mvneta_tx_timeout,
2619 	.ndo_get_stats64     = mvneta_get_stats64,
2620 	.ndo_do_ioctl        = mvneta_ioctl,
2621 };
2622 
2623 const struct ethtool_ops mvneta_eth_tool_ops = {
2624 	.get_link       = ethtool_op_get_link,
2625 	.get_settings   = mvneta_ethtool_get_settings,
2626 	.set_settings   = mvneta_ethtool_set_settings,
2627 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2628 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2629 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2630 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2631 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2632 };
2633 
2634 /* Initialize hw */
2635 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2636 {
2637 	int queue;
2638 
2639 	/* Disable port */
2640 	mvneta_port_disable(pp);
2641 
2642 	/* Set port default values */
2643 	mvneta_defaults_set(pp);
2644 
2645 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2646 			   GFP_KERNEL);
2647 	if (!pp->txqs)
2648 		return -ENOMEM;
2649 
2650 	/* Initialize TX descriptor rings */
2651 	for (queue = 0; queue < txq_number; queue++) {
2652 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2653 		txq->id = queue;
2654 		txq->size = pp->tx_ring_size;
2655 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2656 	}
2657 
2658 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2659 			   GFP_KERNEL);
2660 	if (!pp->rxqs) {
2661 		kfree(pp->txqs);
2662 		return -ENOMEM;
2663 	}
2664 
2665 	/* Create Rx descriptor rings */
2666 	for (queue = 0; queue < rxq_number; queue++) {
2667 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2668 		rxq->id = queue;
2669 		rxq->size = pp->rx_ring_size;
2670 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2671 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static void mvneta_deinit(struct mvneta_port *pp)
2678 {
2679 	kfree(pp->txqs);
2680 	kfree(pp->rxqs);
2681 }
2682 
2683 /* platform glue : initialize decoding windows */
2684 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2685 				     const struct mbus_dram_target_info *dram)
2686 {
2687 	u32 win_enable;
2688 	u32 win_protect;
2689 	int i;
2690 
2691 	for (i = 0; i < 6; i++) {
2692 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2693 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2694 
2695 		if (i < 4)
2696 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2697 	}
2698 
2699 	win_enable = 0x3f;
2700 	win_protect = 0;
2701 
2702 	for (i = 0; i < dram->num_cs; i++) {
2703 		const struct mbus_dram_window *cs = dram->cs + i;
2704 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2705 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2706 
2707 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2708 			    (cs->size - 1) & 0xffff0000);
2709 
2710 		win_enable &= ~(1 << i);
2711 		win_protect |= 3 << (2 * i);
2712 	}
2713 
2714 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2715 }
2716 
2717 /* Power up the port */
2718 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2719 {
2720 	u32 val;
2721 
2722 	/* MAC Cause register should be cleared */
2723 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2724 
2725 	if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2726 		mvneta_port_sgmii_config(pp);
2727 
2728 	mvneta_gmac_rgmii_set(pp, 1);
2729 
2730 	/* Cancel Port Reset */
2731 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2732 	val &= ~MVNETA_GMAC2_PORT_RESET;
2733 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2734 
2735 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2736 		MVNETA_GMAC2_PORT_RESET) != 0)
2737 		continue;
2738 }
2739 
2740 /* Device initialization routine */
2741 static int mvneta_probe(struct platform_device *pdev)
2742 {
2743 	const struct mbus_dram_target_info *dram_target_info;
2744 	struct device_node *dn = pdev->dev.of_node;
2745 	struct device_node *phy_node;
2746 	u32 phy_addr;
2747 	struct mvneta_port *pp;
2748 	struct net_device *dev;
2749 	const char *dt_mac_addr;
2750 	char hw_mac_addr[ETH_ALEN];
2751 	const char *mac_from;
2752 	int phy_mode;
2753 	int err;
2754 
2755 	/* Our multiqueue support is not complete, so for now, only
2756 	 * allow the usage of the first RX queue
2757 	 */
2758 	if (rxq_def != 0) {
2759 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2760 		return -EINVAL;
2761 	}
2762 
2763 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2764 	if (!dev)
2765 		return -ENOMEM;
2766 
2767 	dev->irq = irq_of_parse_and_map(dn, 0);
2768 	if (dev->irq == 0) {
2769 		err = -EINVAL;
2770 		goto err_free_netdev;
2771 	}
2772 
2773 	phy_node = of_parse_phandle(dn, "phy", 0);
2774 	if (!phy_node) {
2775 		dev_err(&pdev->dev, "no associated PHY\n");
2776 		err = -ENODEV;
2777 		goto err_free_irq;
2778 	}
2779 
2780 	phy_mode = of_get_phy_mode(dn);
2781 	if (phy_mode < 0) {
2782 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2783 		err = -EINVAL;
2784 		goto err_free_irq;
2785 	}
2786 
2787 	dev->tx_queue_len = MVNETA_MAX_TXD;
2788 	dev->watchdog_timeo = 5 * HZ;
2789 	dev->netdev_ops = &mvneta_netdev_ops;
2790 
2791 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2792 
2793 	pp = netdev_priv(dev);
2794 
2795 	u64_stats_init(&pp->tx_stats.syncp);
2796 	u64_stats_init(&pp->rx_stats.syncp);
2797 
2798 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2799 	pp->phy_node = phy_node;
2800 	pp->phy_interface = phy_mode;
2801 
2802 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2803 	if (IS_ERR(pp->clk)) {
2804 		err = PTR_ERR(pp->clk);
2805 		goto err_free_irq;
2806 	}
2807 
2808 	clk_prepare_enable(pp->clk);
2809 
2810 	pp->base = of_iomap(dn, 0);
2811 	if (pp->base == NULL) {
2812 		err = -ENOMEM;
2813 		goto err_clk;
2814 	}
2815 
2816 	dt_mac_addr = of_get_mac_address(dn);
2817 	if (dt_mac_addr) {
2818 		mac_from = "device tree";
2819 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2820 	} else {
2821 		mvneta_get_mac_addr(pp, hw_mac_addr);
2822 		if (is_valid_ether_addr(hw_mac_addr)) {
2823 			mac_from = "hardware";
2824 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2825 		} else {
2826 			mac_from = "random";
2827 			eth_hw_addr_random(dev);
2828 		}
2829 	}
2830 
2831 	pp->tx_done_timer.data = (unsigned long)dev;
2832 	pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2833 	init_timer(&pp->tx_done_timer);
2834 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2835 
2836 	pp->tx_ring_size = MVNETA_MAX_TXD;
2837 	pp->rx_ring_size = MVNETA_MAX_RXD;
2838 
2839 	pp->dev = dev;
2840 	SET_NETDEV_DEV(dev, &pdev->dev);
2841 
2842 	err = mvneta_init(pp, phy_addr);
2843 	if (err < 0) {
2844 		dev_err(&pdev->dev, "can't init eth hal\n");
2845 		goto err_unmap;
2846 	}
2847 	mvneta_port_power_up(pp, phy_mode);
2848 
2849 	dram_target_info = mv_mbus_dram_info();
2850 	if (dram_target_info)
2851 		mvneta_conf_mbus_windows(pp, dram_target_info);
2852 
2853 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2854 
2855 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2856 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2857 	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2858 	dev->priv_flags |= IFF_UNICAST_FLT;
2859 
2860 	err = register_netdev(dev);
2861 	if (err < 0) {
2862 		dev_err(&pdev->dev, "failed to register\n");
2863 		goto err_deinit;
2864 	}
2865 
2866 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2867 		    dev->dev_addr);
2868 
2869 	platform_set_drvdata(pdev, pp->dev);
2870 
2871 	return 0;
2872 
2873 err_deinit:
2874 	mvneta_deinit(pp);
2875 err_unmap:
2876 	iounmap(pp->base);
2877 err_clk:
2878 	clk_disable_unprepare(pp->clk);
2879 err_free_irq:
2880 	irq_dispose_mapping(dev->irq);
2881 err_free_netdev:
2882 	free_netdev(dev);
2883 	return err;
2884 }
2885 
2886 /* Device removal routine */
2887 static int mvneta_remove(struct platform_device *pdev)
2888 {
2889 	struct net_device  *dev = platform_get_drvdata(pdev);
2890 	struct mvneta_port *pp = netdev_priv(dev);
2891 
2892 	unregister_netdev(dev);
2893 	mvneta_deinit(pp);
2894 	clk_disable_unprepare(pp->clk);
2895 	iounmap(pp->base);
2896 	irq_dispose_mapping(dev->irq);
2897 	free_netdev(dev);
2898 
2899 	return 0;
2900 }
2901 
2902 static const struct of_device_id mvneta_match[] = {
2903 	{ .compatible = "marvell,armada-370-neta" },
2904 	{ }
2905 };
2906 MODULE_DEVICE_TABLE(of, mvneta_match);
2907 
2908 static struct platform_driver mvneta_driver = {
2909 	.probe = mvneta_probe,
2910 	.remove = mvneta_remove,
2911 	.driver = {
2912 		.name = MVNETA_DRIVER_NAME,
2913 		.of_match_table = mvneta_match,
2914 	},
2915 };
2916 
2917 module_platform_driver(mvneta_driver);
2918 
2919 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2920 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2921 MODULE_LICENSE("GPL");
2922 
2923 module_param(rxq_number, int, S_IRUGO);
2924 module_param(txq_number, int, S_IRUGO);
2925 
2926 module_param(rxq_def, int, S_IRUGO);
2927