1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <net/ip.h> 24 #include <net/ipv6.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_net.h> 29 #include <linux/of_address.h> 30 #include <linux/phy.h> 31 #include <linux/clk.h> 32 33 /* Registers */ 34 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 35 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 36 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 37 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 38 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 39 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 40 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 41 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 42 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 43 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 44 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 45 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 47 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 48 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 49 #define MVNETA_PORT_RX_RESET 0x1cc0 50 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 51 #define MVNETA_PHY_ADDR 0x2000 52 #define MVNETA_PHY_ADDR_MASK 0x1f 53 #define MVNETA_MBUS_RETRY 0x2010 54 #define MVNETA_UNIT_INTR_CAUSE 0x2080 55 #define MVNETA_UNIT_CONTROL 0x20B0 56 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 57 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 58 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 59 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 60 #define MVNETA_BASE_ADDR_ENABLE 0x2290 61 #define MVNETA_PORT_CONFIG 0x2400 62 #define MVNETA_UNI_PROMISC_MODE BIT(0) 63 #define MVNETA_DEF_RXQ(q) ((q) << 1) 64 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 65 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 66 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 67 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 68 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 69 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 70 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 71 MVNETA_DEF_RXQ_ARP(q) | \ 72 MVNETA_DEF_RXQ_TCP(q) | \ 73 MVNETA_DEF_RXQ_UDP(q) | \ 74 MVNETA_DEF_RXQ_BPDU(q) | \ 75 MVNETA_TX_UNSET_ERR_SUM | \ 76 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 77 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 78 #define MVNETA_MAC_ADDR_LOW 0x2414 79 #define MVNETA_MAC_ADDR_HIGH 0x2418 80 #define MVNETA_SDMA_CONFIG 0x241c 81 #define MVNETA_SDMA_BRST_SIZE_16 4 82 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 83 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 84 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 85 #define MVNETA_DESC_SWAP BIT(6) 86 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 87 #define MVNETA_PORT_STATUS 0x2444 88 #define MVNETA_TX_IN_PRGRS BIT(1) 89 #define MVNETA_TX_FIFO_EMPTY BIT(8) 90 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 91 #define MVNETA_SGMII_SERDES_CFG 0x24A0 92 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 93 #define MVNETA_TYPE_PRIO 0x24bc 94 #define MVNETA_FORCE_UNI BIT(21) 95 #define MVNETA_TXQ_CMD_1 0x24e4 96 #define MVNETA_TXQ_CMD 0x2448 97 #define MVNETA_TXQ_DISABLE_SHIFT 8 98 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 99 #define MVNETA_ACC_MODE 0x2500 100 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 101 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 102 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 103 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 104 #define MVNETA_INTR_NEW_CAUSE 0x25a0 105 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 106 #define MVNETA_INTR_NEW_MASK 0x25a4 107 #define MVNETA_INTR_OLD_CAUSE 0x25a8 108 #define MVNETA_INTR_OLD_MASK 0x25ac 109 #define MVNETA_INTR_MISC_CAUSE 0x25b0 110 #define MVNETA_INTR_MISC_MASK 0x25b4 111 #define MVNETA_INTR_ENABLE 0x25b8 112 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 113 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 114 #define MVNETA_RXQ_CMD 0x2680 115 #define MVNETA_RXQ_DISABLE_SHIFT 8 116 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 117 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 118 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 119 #define MVNETA_GMAC_CTRL_0 0x2c00 120 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 121 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 122 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 123 #define MVNETA_GMAC_CTRL_2 0x2c08 124 #define MVNETA_GMAC2_PSC_ENABLE BIT(3) 125 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 126 #define MVNETA_GMAC2_PORT_RESET BIT(6) 127 #define MVNETA_GMAC_STATUS 0x2c10 128 #define MVNETA_GMAC_LINK_UP BIT(0) 129 #define MVNETA_GMAC_SPEED_1000 BIT(1) 130 #define MVNETA_GMAC_SPEED_100 BIT(2) 131 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 132 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 133 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 134 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 135 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 136 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 137 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 138 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 139 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 140 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 141 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 142 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 143 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 144 #define MVNETA_MIB_COUNTERS_BASE 0x3080 145 #define MVNETA_MIB_LATE_COLLISION 0x7c 146 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 147 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 148 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 149 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 150 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 151 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 152 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 153 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 154 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 155 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 156 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 157 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 158 #define MVNETA_PORT_TX_RESET 0x3cf0 159 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 160 #define MVNETA_TX_MTU 0x3e0c 161 #define MVNETA_TX_TOKEN_SIZE 0x3e14 162 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 163 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 164 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 165 166 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 167 168 /* Descriptor ring Macros */ 169 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 170 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 171 172 /* Various constants */ 173 174 /* Coalescing */ 175 #define MVNETA_TXDONE_COAL_PKTS 16 176 #define MVNETA_RX_COAL_PKTS 32 177 #define MVNETA_RX_COAL_USEC 100 178 179 /* Timer */ 180 #define MVNETA_TX_DONE_TIMER_PERIOD 10 181 182 /* Napi polling weight */ 183 #define MVNETA_RX_POLL_WEIGHT 64 184 185 /* The two bytes Marvell header. Either contains a special value used 186 * by Marvell switches when a specific hardware mode is enabled (not 187 * supported by this driver) or is filled automatically by zeroes on 188 * the RX side. Those two bytes being at the front of the Ethernet 189 * header, they allow to have the IP header aligned on a 4 bytes 190 * boundary automatically: the hardware skips those two bytes on its 191 * own. 192 */ 193 #define MVNETA_MH_SIZE 2 194 195 #define MVNETA_VLAN_TAG_LEN 4 196 197 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 198 #define MVNETA_TX_CSUM_MAX_SIZE 9800 199 #define MVNETA_ACC_MODE_EXT 1 200 201 /* Timeout constants */ 202 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 203 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 204 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 205 206 #define MVNETA_TX_MTU_MAX 0x3ffff 207 208 /* Max number of Rx descriptors */ 209 #define MVNETA_MAX_RXD 128 210 211 /* Max number of Tx descriptors */ 212 #define MVNETA_MAX_TXD 532 213 214 /* descriptor aligned size */ 215 #define MVNETA_DESC_ALIGNED_SIZE 32 216 217 #define MVNETA_RX_PKT_SIZE(mtu) \ 218 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 219 ETH_HLEN + ETH_FCS_LEN, \ 220 MVNETA_CPU_D_CACHE_LINE_SIZE) 221 222 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 223 224 struct mvneta_stats { 225 struct u64_stats_sync syncp; 226 u64 packets; 227 u64 bytes; 228 }; 229 230 struct mvneta_port { 231 int pkt_size; 232 void __iomem *base; 233 struct mvneta_rx_queue *rxqs; 234 struct mvneta_tx_queue *txqs; 235 struct timer_list tx_done_timer; 236 struct net_device *dev; 237 238 u32 cause_rx_tx; 239 struct napi_struct napi; 240 241 /* Flags */ 242 unsigned long flags; 243 #define MVNETA_F_TX_DONE_TIMER_BIT 0 244 245 /* Napi weight */ 246 int weight; 247 248 /* Core clock */ 249 struct clk *clk; 250 u8 mcast_count[256]; 251 u16 tx_ring_size; 252 u16 rx_ring_size; 253 struct mvneta_stats tx_stats; 254 struct mvneta_stats rx_stats; 255 256 struct mii_bus *mii_bus; 257 struct phy_device *phy_dev; 258 phy_interface_t phy_interface; 259 struct device_node *phy_node; 260 unsigned int link; 261 unsigned int duplex; 262 unsigned int speed; 263 }; 264 265 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 266 * layout of the transmit and reception DMA descriptors, and their 267 * layout is therefore defined by the hardware design 268 */ 269 270 #define MVNETA_TX_L3_OFF_SHIFT 0 271 #define MVNETA_TX_IP_HLEN_SHIFT 8 272 #define MVNETA_TX_L4_UDP BIT(16) 273 #define MVNETA_TX_L3_IP6 BIT(17) 274 #define MVNETA_TXD_IP_CSUM BIT(18) 275 #define MVNETA_TXD_Z_PAD BIT(19) 276 #define MVNETA_TXD_L_DESC BIT(20) 277 #define MVNETA_TXD_F_DESC BIT(21) 278 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 279 MVNETA_TXD_L_DESC | \ 280 MVNETA_TXD_F_DESC) 281 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 282 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 283 284 #define MVNETA_RXD_ERR_CRC 0x0 285 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 286 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 287 #define MVNETA_RXD_ERR_LEN BIT(18) 288 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 289 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 290 #define MVNETA_RXD_L3_IP4 BIT(25) 291 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 292 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 293 294 #if defined(__LITTLE_ENDIAN) 295 struct mvneta_tx_desc { 296 u32 command; /* Options used by HW for packet transmitting.*/ 297 u16 reserverd1; /* csum_l4 (for future use) */ 298 u16 data_size; /* Data size of transmitted packet in bytes */ 299 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 300 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 301 u32 reserved3[4]; /* Reserved - (for future use) */ 302 }; 303 304 struct mvneta_rx_desc { 305 u32 status; /* Info about received packet */ 306 u16 reserved1; /* pnc_info - (for future use, PnC) */ 307 u16 data_size; /* Size of received packet in bytes */ 308 309 u32 buf_phys_addr; /* Physical address of the buffer */ 310 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 311 312 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 313 u16 reserved3; /* prefetch_cmd, for future use */ 314 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 315 316 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 317 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 318 }; 319 #else 320 struct mvneta_tx_desc { 321 u16 data_size; /* Data size of transmitted packet in bytes */ 322 u16 reserverd1; /* csum_l4 (for future use) */ 323 u32 command; /* Options used by HW for packet transmitting.*/ 324 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 325 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 326 u32 reserved3[4]; /* Reserved - (for future use) */ 327 }; 328 329 struct mvneta_rx_desc { 330 u16 data_size; /* Size of received packet in bytes */ 331 u16 reserved1; /* pnc_info - (for future use, PnC) */ 332 u32 status; /* Info about received packet */ 333 334 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 335 u32 buf_phys_addr; /* Physical address of the buffer */ 336 337 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 338 u16 reserved3; /* prefetch_cmd, for future use */ 339 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 340 341 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 342 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 343 }; 344 #endif 345 346 struct mvneta_tx_queue { 347 /* Number of this TX queue, in the range 0-7 */ 348 u8 id; 349 350 /* Number of TX DMA descriptors in the descriptor ring */ 351 int size; 352 353 /* Number of currently used TX DMA descriptor in the 354 * descriptor ring 355 */ 356 int count; 357 358 /* Array of transmitted skb */ 359 struct sk_buff **tx_skb; 360 361 /* Index of last TX DMA descriptor that was inserted */ 362 int txq_put_index; 363 364 /* Index of the TX DMA descriptor to be cleaned up */ 365 int txq_get_index; 366 367 u32 done_pkts_coal; 368 369 /* Virtual address of the TX DMA descriptors array */ 370 struct mvneta_tx_desc *descs; 371 372 /* DMA address of the TX DMA descriptors array */ 373 dma_addr_t descs_phys; 374 375 /* Index of the last TX DMA descriptor */ 376 int last_desc; 377 378 /* Index of the next TX DMA descriptor to process */ 379 int next_desc_to_proc; 380 }; 381 382 struct mvneta_rx_queue { 383 /* rx queue number, in the range 0-7 */ 384 u8 id; 385 386 /* num of rx descriptors in the rx descriptor ring */ 387 int size; 388 389 /* counter of times when mvneta_refill() failed */ 390 int missed; 391 392 u32 pkts_coal; 393 u32 time_coal; 394 395 /* Virtual address of the RX DMA descriptors array */ 396 struct mvneta_rx_desc *descs; 397 398 /* DMA address of the RX DMA descriptors array */ 399 dma_addr_t descs_phys; 400 401 /* Index of the last RX DMA descriptor */ 402 int last_desc; 403 404 /* Index of the next RX DMA descriptor to process */ 405 int next_desc_to_proc; 406 }; 407 408 static int rxq_number = 8; 409 static int txq_number = 8; 410 411 static int rxq_def; 412 413 #define MVNETA_DRIVER_NAME "mvneta" 414 #define MVNETA_DRIVER_VERSION "1.0" 415 416 /* Utility/helper methods */ 417 418 /* Write helper method */ 419 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 420 { 421 writel(data, pp->base + offset); 422 } 423 424 /* Read helper method */ 425 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 426 { 427 return readl(pp->base + offset); 428 } 429 430 /* Increment txq get counter */ 431 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 432 { 433 txq->txq_get_index++; 434 if (txq->txq_get_index == txq->size) 435 txq->txq_get_index = 0; 436 } 437 438 /* Increment txq put counter */ 439 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 440 { 441 txq->txq_put_index++; 442 if (txq->txq_put_index == txq->size) 443 txq->txq_put_index = 0; 444 } 445 446 447 /* Clear all MIB counters */ 448 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 449 { 450 int i; 451 u32 dummy; 452 453 /* Perform dummy reads from MIB counters */ 454 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 455 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 456 } 457 458 /* Get System Network Statistics */ 459 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 460 struct rtnl_link_stats64 *stats) 461 { 462 struct mvneta_port *pp = netdev_priv(dev); 463 unsigned int start; 464 465 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 466 467 do { 468 start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp); 469 stats->rx_packets = pp->rx_stats.packets; 470 stats->rx_bytes = pp->rx_stats.bytes; 471 } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start)); 472 473 474 do { 475 start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp); 476 stats->tx_packets = pp->tx_stats.packets; 477 stats->tx_bytes = pp->tx_stats.bytes; 478 } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start)); 479 480 stats->rx_errors = dev->stats.rx_errors; 481 stats->rx_dropped = dev->stats.rx_dropped; 482 483 stats->tx_dropped = dev->stats.tx_dropped; 484 485 return stats; 486 } 487 488 /* Rx descriptors helper methods */ 489 490 /* Checks whether the given RX descriptor is both the first and the 491 * last descriptor for the RX packet. Each RX packet is currently 492 * received through a single RX descriptor, so not having each RX 493 * descriptor with its first and last bits set is an error 494 */ 495 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc) 496 { 497 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) == 498 MVNETA_RXD_FIRST_LAST_DESC; 499 } 500 501 /* Add number of descriptors ready to receive new packets */ 502 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 503 struct mvneta_rx_queue *rxq, 504 int ndescs) 505 { 506 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 507 * be added at once 508 */ 509 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 510 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 511 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 512 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 513 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 514 } 515 516 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 517 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 518 } 519 520 /* Get number of RX descriptors occupied by received packets */ 521 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 522 struct mvneta_rx_queue *rxq) 523 { 524 u32 val; 525 526 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 527 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 528 } 529 530 /* Update num of rx desc called upon return from rx path or 531 * from mvneta_rxq_drop_pkts(). 532 */ 533 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 534 struct mvneta_rx_queue *rxq, 535 int rx_done, int rx_filled) 536 { 537 u32 val; 538 539 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 540 val = rx_done | 541 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 542 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 543 return; 544 } 545 546 /* Only 255 descriptors can be added at once */ 547 while ((rx_done > 0) || (rx_filled > 0)) { 548 if (rx_done <= 0xff) { 549 val = rx_done; 550 rx_done = 0; 551 } else { 552 val = 0xff; 553 rx_done -= 0xff; 554 } 555 if (rx_filled <= 0xff) { 556 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 557 rx_filled = 0; 558 } else { 559 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 560 rx_filled -= 0xff; 561 } 562 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 563 } 564 } 565 566 /* Get pointer to next RX descriptor to be processed by SW */ 567 static struct mvneta_rx_desc * 568 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 569 { 570 int rx_desc = rxq->next_desc_to_proc; 571 572 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 573 return rxq->descs + rx_desc; 574 } 575 576 /* Change maximum receive size of the port. */ 577 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 578 { 579 u32 val; 580 581 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 582 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 583 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 584 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 585 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 586 } 587 588 589 /* Set rx queue offset */ 590 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 591 struct mvneta_rx_queue *rxq, 592 int offset) 593 { 594 u32 val; 595 596 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 597 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 598 599 /* Offset is in */ 600 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 601 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 602 } 603 604 605 /* Tx descriptors helper methods */ 606 607 /* Update HW with number of TX descriptors to be sent */ 608 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 609 struct mvneta_tx_queue *txq, 610 int pend_desc) 611 { 612 u32 val; 613 614 /* Only 255 descriptors can be added at once ; Assume caller 615 * process TX desriptors in quanta less than 256 616 */ 617 val = pend_desc; 618 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 619 } 620 621 /* Get pointer to next TX descriptor to be processed (send) by HW */ 622 static struct mvneta_tx_desc * 623 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 624 { 625 int tx_desc = txq->next_desc_to_proc; 626 627 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 628 return txq->descs + tx_desc; 629 } 630 631 /* Release the last allocated TX descriptor. Useful to handle DMA 632 * mapping failures in the TX path. 633 */ 634 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 635 { 636 if (txq->next_desc_to_proc == 0) 637 txq->next_desc_to_proc = txq->last_desc - 1; 638 else 639 txq->next_desc_to_proc--; 640 } 641 642 /* Set rxq buf size */ 643 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 644 struct mvneta_rx_queue *rxq, 645 int buf_size) 646 { 647 u32 val; 648 649 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 650 651 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 652 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 653 654 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 655 } 656 657 /* Disable buffer management (BM) */ 658 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 659 struct mvneta_rx_queue *rxq) 660 { 661 u32 val; 662 663 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 664 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 665 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 666 } 667 668 669 670 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */ 671 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable) 672 { 673 u32 val; 674 675 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 676 677 if (enable) 678 val |= MVNETA_GMAC2_PORT_RGMII; 679 else 680 val &= ~MVNETA_GMAC2_PORT_RGMII; 681 682 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 683 } 684 685 /* Config SGMII port */ 686 static void mvneta_port_sgmii_config(struct mvneta_port *pp) 687 { 688 u32 val; 689 690 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 691 val |= MVNETA_GMAC2_PSC_ENABLE; 692 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 693 694 mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 695 } 696 697 /* Start the Ethernet port RX and TX activity */ 698 static void mvneta_port_up(struct mvneta_port *pp) 699 { 700 int queue; 701 u32 q_map; 702 703 /* Enable all initialized TXs. */ 704 mvneta_mib_counters_clear(pp); 705 q_map = 0; 706 for (queue = 0; queue < txq_number; queue++) { 707 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 708 if (txq->descs != NULL) 709 q_map |= (1 << queue); 710 } 711 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 712 713 /* Enable all initialized RXQs. */ 714 q_map = 0; 715 for (queue = 0; queue < rxq_number; queue++) { 716 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 717 if (rxq->descs != NULL) 718 q_map |= (1 << queue); 719 } 720 721 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 722 } 723 724 /* Stop the Ethernet port activity */ 725 static void mvneta_port_down(struct mvneta_port *pp) 726 { 727 u32 val; 728 int count; 729 730 /* Stop Rx port activity. Check port Rx activity. */ 731 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 732 733 /* Issue stop command for active channels only */ 734 if (val != 0) 735 mvreg_write(pp, MVNETA_RXQ_CMD, 736 val << MVNETA_RXQ_DISABLE_SHIFT); 737 738 /* Wait for all Rx activity to terminate. */ 739 count = 0; 740 do { 741 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 742 netdev_warn(pp->dev, 743 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 744 val); 745 break; 746 } 747 mdelay(1); 748 749 val = mvreg_read(pp, MVNETA_RXQ_CMD); 750 } while (val & 0xff); 751 752 /* Stop Tx port activity. Check port Tx activity. Issue stop 753 * command for active channels only 754 */ 755 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 756 757 if (val != 0) 758 mvreg_write(pp, MVNETA_TXQ_CMD, 759 (val << MVNETA_TXQ_DISABLE_SHIFT)); 760 761 /* Wait for all Tx activity to terminate. */ 762 count = 0; 763 do { 764 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 765 netdev_warn(pp->dev, 766 "TIMEOUT for TX stopped status=0x%08x\n", 767 val); 768 break; 769 } 770 mdelay(1); 771 772 /* Check TX Command reg that all Txqs are stopped */ 773 val = mvreg_read(pp, MVNETA_TXQ_CMD); 774 775 } while (val & 0xff); 776 777 /* Double check to verify that TX FIFO is empty */ 778 count = 0; 779 do { 780 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 781 netdev_warn(pp->dev, 782 "TX FIFO empty timeout status=0x08%x\n", 783 val); 784 break; 785 } 786 mdelay(1); 787 788 val = mvreg_read(pp, MVNETA_PORT_STATUS); 789 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 790 (val & MVNETA_TX_IN_PRGRS)); 791 792 udelay(200); 793 } 794 795 /* Enable the port by setting the port enable bit of the MAC control register */ 796 static void mvneta_port_enable(struct mvneta_port *pp) 797 { 798 u32 val; 799 800 /* Enable port */ 801 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 802 val |= MVNETA_GMAC0_PORT_ENABLE; 803 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 804 } 805 806 /* Disable the port and wait for about 200 usec before retuning */ 807 static void mvneta_port_disable(struct mvneta_port *pp) 808 { 809 u32 val; 810 811 /* Reset the Enable bit in the Serial Control Register */ 812 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 813 val &= ~MVNETA_GMAC0_PORT_ENABLE; 814 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 815 816 udelay(200); 817 } 818 819 /* Multicast tables methods */ 820 821 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 822 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 823 { 824 int offset; 825 u32 val; 826 827 if (queue == -1) { 828 val = 0; 829 } else { 830 val = 0x1 | (queue << 1); 831 val |= (val << 24) | (val << 16) | (val << 8); 832 } 833 834 for (offset = 0; offset <= 0xc; offset += 4) 835 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 836 } 837 838 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 839 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 840 { 841 int offset; 842 u32 val; 843 844 if (queue == -1) { 845 val = 0; 846 } else { 847 val = 0x1 | (queue << 1); 848 val |= (val << 24) | (val << 16) | (val << 8); 849 } 850 851 for (offset = 0; offset <= 0xfc; offset += 4) 852 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 853 854 } 855 856 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 857 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 858 { 859 int offset; 860 u32 val; 861 862 if (queue == -1) { 863 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 864 val = 0; 865 } else { 866 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 867 val = 0x1 | (queue << 1); 868 val |= (val << 24) | (val << 16) | (val << 8); 869 } 870 871 for (offset = 0; offset <= 0xfc; offset += 4) 872 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 873 } 874 875 /* This method sets defaults to the NETA port: 876 * Clears interrupt Cause and Mask registers. 877 * Clears all MAC tables. 878 * Sets defaults to all registers. 879 * Resets RX and TX descriptor rings. 880 * Resets PHY. 881 * This method can be called after mvneta_port_down() to return the port 882 * settings to defaults. 883 */ 884 static void mvneta_defaults_set(struct mvneta_port *pp) 885 { 886 int cpu; 887 int queue; 888 u32 val; 889 890 /* Clear all Cause registers */ 891 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 892 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 893 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 894 895 /* Mask all interrupts */ 896 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 897 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 898 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 899 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 900 901 /* Enable MBUS Retry bit16 */ 902 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 903 904 /* Set CPU queue access map - all CPUs have access to all RX 905 * queues and to all TX queues 906 */ 907 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 908 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 909 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 910 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 911 912 /* Reset RX and TX DMAs */ 913 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 914 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 915 916 /* Disable Legacy WRR, Disable EJP, Release from reset */ 917 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 918 for (queue = 0; queue < txq_number; queue++) { 919 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 920 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 921 } 922 923 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 924 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 925 926 /* Set Port Acceleration Mode */ 927 val = MVNETA_ACC_MODE_EXT; 928 mvreg_write(pp, MVNETA_ACC_MODE, val); 929 930 /* Update val of portCfg register accordingly with all RxQueue types */ 931 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 932 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 933 934 val = 0; 935 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 936 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 937 938 /* Build PORT_SDMA_CONFIG_REG */ 939 val = 0; 940 941 /* Default burst size */ 942 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 943 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 944 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 945 946 #if defined(__BIG_ENDIAN) 947 val |= MVNETA_DESC_SWAP; 948 #endif 949 950 /* Assign port SDMA configuration */ 951 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 952 953 /* Disable PHY polling in hardware, since we're using the 954 * kernel phylib to do this. 955 */ 956 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 957 val &= ~MVNETA_PHY_POLLING_ENABLE; 958 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 959 960 mvneta_set_ucast_table(pp, -1); 961 mvneta_set_special_mcast_table(pp, -1); 962 mvneta_set_other_mcast_table(pp, -1); 963 964 /* Set port interrupt enable register - default enable all */ 965 mvreg_write(pp, MVNETA_INTR_ENABLE, 966 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 967 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 968 } 969 970 /* Set max sizes for tx queues */ 971 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 972 973 { 974 u32 val, size, mtu; 975 int queue; 976 977 mtu = max_tx_size * 8; 978 if (mtu > MVNETA_TX_MTU_MAX) 979 mtu = MVNETA_TX_MTU_MAX; 980 981 /* Set MTU */ 982 val = mvreg_read(pp, MVNETA_TX_MTU); 983 val &= ~MVNETA_TX_MTU_MAX; 984 val |= mtu; 985 mvreg_write(pp, MVNETA_TX_MTU, val); 986 987 /* TX token size and all TXQs token size must be larger that MTU */ 988 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 989 990 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 991 if (size < mtu) { 992 size = mtu; 993 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 994 val |= size; 995 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 996 } 997 for (queue = 0; queue < txq_number; queue++) { 998 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 999 1000 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1001 if (size < mtu) { 1002 size = mtu; 1003 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1004 val |= size; 1005 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1006 } 1007 } 1008 } 1009 1010 /* Set unicast address */ 1011 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1012 int queue) 1013 { 1014 unsigned int unicast_reg; 1015 unsigned int tbl_offset; 1016 unsigned int reg_offset; 1017 1018 /* Locate the Unicast table entry */ 1019 last_nibble = (0xf & last_nibble); 1020 1021 /* offset from unicast tbl base */ 1022 tbl_offset = (last_nibble / 4) * 4; 1023 1024 /* offset within the above reg */ 1025 reg_offset = last_nibble % 4; 1026 1027 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1028 1029 if (queue == -1) { 1030 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1031 unicast_reg &= ~(0xff << (8 * reg_offset)); 1032 } else { 1033 unicast_reg &= ~(0xff << (8 * reg_offset)); 1034 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1035 } 1036 1037 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1038 } 1039 1040 /* Set mac address */ 1041 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1042 int queue) 1043 { 1044 unsigned int mac_h; 1045 unsigned int mac_l; 1046 1047 if (queue != -1) { 1048 mac_l = (addr[4] << 8) | (addr[5]); 1049 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1050 (addr[2] << 8) | (addr[3] << 0); 1051 1052 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1053 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1054 } 1055 1056 /* Accept frames of this address */ 1057 mvneta_set_ucast_addr(pp, addr[5], queue); 1058 } 1059 1060 /* Set the number of packets that will be received before RX interrupt 1061 * will be generated by HW. 1062 */ 1063 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1064 struct mvneta_rx_queue *rxq, u32 value) 1065 { 1066 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1067 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1068 rxq->pkts_coal = value; 1069 } 1070 1071 /* Set the time delay in usec before RX interrupt will be generated by 1072 * HW. 1073 */ 1074 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1075 struct mvneta_rx_queue *rxq, u32 value) 1076 { 1077 u32 val; 1078 unsigned long clk_rate; 1079 1080 clk_rate = clk_get_rate(pp->clk); 1081 val = (clk_rate / 1000000) * value; 1082 1083 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1084 rxq->time_coal = value; 1085 } 1086 1087 /* Set threshold for TX_DONE pkts coalescing */ 1088 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1089 struct mvneta_tx_queue *txq, u32 value) 1090 { 1091 u32 val; 1092 1093 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1094 1095 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1096 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1097 1098 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1099 1100 txq->done_pkts_coal = value; 1101 } 1102 1103 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */ 1104 static void mvneta_add_tx_done_timer(struct mvneta_port *pp) 1105 { 1106 if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) { 1107 pp->tx_done_timer.expires = jiffies + 1108 msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD); 1109 add_timer(&pp->tx_done_timer); 1110 } 1111 } 1112 1113 1114 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1115 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1116 u32 phys_addr, u32 cookie) 1117 { 1118 rx_desc->buf_cookie = cookie; 1119 rx_desc->buf_phys_addr = phys_addr; 1120 } 1121 1122 /* Decrement sent descriptors counter */ 1123 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1124 struct mvneta_tx_queue *txq, 1125 int sent_desc) 1126 { 1127 u32 val; 1128 1129 /* Only 255 TX descriptors can be updated at once */ 1130 while (sent_desc > 0xff) { 1131 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1132 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1133 sent_desc = sent_desc - 0xff; 1134 } 1135 1136 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1137 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1138 } 1139 1140 /* Get number of TX descriptors already sent by HW */ 1141 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1142 struct mvneta_tx_queue *txq) 1143 { 1144 u32 val; 1145 int sent_desc; 1146 1147 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1148 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1149 MVNETA_TXQ_SENT_DESC_SHIFT; 1150 1151 return sent_desc; 1152 } 1153 1154 /* Get number of sent descriptors and decrement counter. 1155 * The number of sent descriptors is returned. 1156 */ 1157 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1158 struct mvneta_tx_queue *txq) 1159 { 1160 int sent_desc; 1161 1162 /* Get number of sent descriptors */ 1163 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1164 1165 /* Decrement sent descriptors counter */ 1166 if (sent_desc) 1167 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1168 1169 return sent_desc; 1170 } 1171 1172 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1173 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1174 int ip_hdr_len, int l4_proto) 1175 { 1176 u32 command; 1177 1178 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1179 * G_L4_chk, L4_type; required only for checksum 1180 * calculation 1181 */ 1182 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1183 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1184 1185 if (l3_proto == swab16(ETH_P_IP)) 1186 command |= MVNETA_TXD_IP_CSUM; 1187 else 1188 command |= MVNETA_TX_L3_IP6; 1189 1190 if (l4_proto == IPPROTO_TCP) 1191 command |= MVNETA_TX_L4_CSUM_FULL; 1192 else if (l4_proto == IPPROTO_UDP) 1193 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1194 else 1195 command |= MVNETA_TX_L4_CSUM_NOT; 1196 1197 return command; 1198 } 1199 1200 1201 /* Display more error info */ 1202 static void mvneta_rx_error(struct mvneta_port *pp, 1203 struct mvneta_rx_desc *rx_desc) 1204 { 1205 u32 status = rx_desc->status; 1206 1207 if (!mvneta_rxq_desc_is_first_last(rx_desc)) { 1208 netdev_err(pp->dev, 1209 "bad rx status %08x (buffer oversize), size=%d\n", 1210 rx_desc->status, rx_desc->data_size); 1211 return; 1212 } 1213 1214 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1215 case MVNETA_RXD_ERR_CRC: 1216 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1217 status, rx_desc->data_size); 1218 break; 1219 case MVNETA_RXD_ERR_OVERRUN: 1220 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1221 status, rx_desc->data_size); 1222 break; 1223 case MVNETA_RXD_ERR_LEN: 1224 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1225 status, rx_desc->data_size); 1226 break; 1227 case MVNETA_RXD_ERR_RESOURCE: 1228 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1229 status, rx_desc->data_size); 1230 break; 1231 } 1232 } 1233 1234 /* Handle RX checksum offload */ 1235 static void mvneta_rx_csum(struct mvneta_port *pp, 1236 struct mvneta_rx_desc *rx_desc, 1237 struct sk_buff *skb) 1238 { 1239 if ((rx_desc->status & MVNETA_RXD_L3_IP4) && 1240 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) { 1241 skb->csum = 0; 1242 skb->ip_summed = CHECKSUM_UNNECESSARY; 1243 return; 1244 } 1245 1246 skb->ip_summed = CHECKSUM_NONE; 1247 } 1248 1249 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */ 1250 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1251 u32 cause) 1252 { 1253 int queue = fls(cause) - 1; 1254 1255 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue]; 1256 } 1257 1258 /* Free tx queue skbuffs */ 1259 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1260 struct mvneta_tx_queue *txq, int num) 1261 { 1262 int i; 1263 1264 for (i = 0; i < num; i++) { 1265 struct mvneta_tx_desc *tx_desc = txq->descs + 1266 txq->txq_get_index; 1267 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1268 1269 mvneta_txq_inc_get(txq); 1270 1271 if (!skb) 1272 continue; 1273 1274 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, 1275 tx_desc->data_size, DMA_TO_DEVICE); 1276 dev_kfree_skb_any(skb); 1277 } 1278 } 1279 1280 /* Handle end of transmission */ 1281 static int mvneta_txq_done(struct mvneta_port *pp, 1282 struct mvneta_tx_queue *txq) 1283 { 1284 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1285 int tx_done; 1286 1287 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1288 if (tx_done == 0) 1289 return tx_done; 1290 mvneta_txq_bufs_free(pp, txq, tx_done); 1291 1292 txq->count -= tx_done; 1293 1294 if (netif_tx_queue_stopped(nq)) { 1295 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1) 1296 netif_tx_wake_queue(nq); 1297 } 1298 1299 return tx_done; 1300 } 1301 1302 /* Refill processing */ 1303 static int mvneta_rx_refill(struct mvneta_port *pp, 1304 struct mvneta_rx_desc *rx_desc) 1305 1306 { 1307 dma_addr_t phys_addr; 1308 struct sk_buff *skb; 1309 1310 skb = netdev_alloc_skb(pp->dev, pp->pkt_size); 1311 if (!skb) 1312 return -ENOMEM; 1313 1314 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head, 1315 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1316 DMA_FROM_DEVICE); 1317 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1318 dev_kfree_skb(skb); 1319 return -ENOMEM; 1320 } 1321 1322 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1323 1324 return 0; 1325 } 1326 1327 /* Handle tx checksum */ 1328 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1329 { 1330 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1331 int ip_hdr_len = 0; 1332 u8 l4_proto; 1333 1334 if (skb->protocol == htons(ETH_P_IP)) { 1335 struct iphdr *ip4h = ip_hdr(skb); 1336 1337 /* Calculate IPv4 checksum and L4 checksum */ 1338 ip_hdr_len = ip4h->ihl; 1339 l4_proto = ip4h->protocol; 1340 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1341 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1342 1343 /* Read l4_protocol from one of IPv6 extra headers */ 1344 if (skb_network_header_len(skb) > 0) 1345 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1346 l4_proto = ip6h->nexthdr; 1347 } else 1348 return MVNETA_TX_L4_CSUM_NOT; 1349 1350 return mvneta_txq_desc_csum(skb_network_offset(skb), 1351 skb->protocol, ip_hdr_len, l4_proto); 1352 } 1353 1354 return MVNETA_TX_L4_CSUM_NOT; 1355 } 1356 1357 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1358 * value 1359 */ 1360 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1361 u32 cause) 1362 { 1363 int queue = fls(cause >> 8) - 1; 1364 1365 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1366 } 1367 1368 /* Drop packets received by the RXQ and free buffers */ 1369 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1370 struct mvneta_rx_queue *rxq) 1371 { 1372 int rx_done, i; 1373 1374 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1375 for (i = 0; i < rxq->size; i++) { 1376 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1377 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie; 1378 1379 dev_kfree_skb_any(skb); 1380 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1381 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1382 } 1383 1384 if (rx_done) 1385 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1386 } 1387 1388 /* Main rx processing */ 1389 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1390 struct mvneta_rx_queue *rxq) 1391 { 1392 struct net_device *dev = pp->dev; 1393 int rx_done, rx_filled; 1394 1395 /* Get number of received packets */ 1396 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1397 1398 if (rx_todo > rx_done) 1399 rx_todo = rx_done; 1400 1401 rx_done = 0; 1402 rx_filled = 0; 1403 1404 /* Fairness NAPI loop */ 1405 while (rx_done < rx_todo) { 1406 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1407 struct sk_buff *skb; 1408 u32 rx_status; 1409 int rx_bytes, err; 1410 1411 prefetch(rx_desc); 1412 rx_done++; 1413 rx_filled++; 1414 rx_status = rx_desc->status; 1415 skb = (struct sk_buff *)rx_desc->buf_cookie; 1416 1417 if (!mvneta_rxq_desc_is_first_last(rx_desc) || 1418 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1419 dev->stats.rx_errors++; 1420 mvneta_rx_error(pp, rx_desc); 1421 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr, 1422 (u32)skb); 1423 continue; 1424 } 1425 1426 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1427 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1428 1429 rx_bytes = rx_desc->data_size - 1430 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1431 u64_stats_update_begin(&pp->rx_stats.syncp); 1432 pp->rx_stats.packets++; 1433 pp->rx_stats.bytes += rx_bytes; 1434 u64_stats_update_end(&pp->rx_stats.syncp); 1435 1436 /* Linux processing */ 1437 skb_reserve(skb, MVNETA_MH_SIZE); 1438 skb_put(skb, rx_bytes); 1439 1440 skb->protocol = eth_type_trans(skb, dev); 1441 1442 mvneta_rx_csum(pp, rx_desc, skb); 1443 1444 napi_gro_receive(&pp->napi, skb); 1445 1446 /* Refill processing */ 1447 err = mvneta_rx_refill(pp, rx_desc); 1448 if (err) { 1449 netdev_err(pp->dev, "Linux processing - Can't refill\n"); 1450 rxq->missed++; 1451 rx_filled--; 1452 } 1453 } 1454 1455 /* Update rxq management counters */ 1456 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1457 1458 return rx_done; 1459 } 1460 1461 /* Handle tx fragmentation processing */ 1462 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1463 struct mvneta_tx_queue *txq) 1464 { 1465 struct mvneta_tx_desc *tx_desc; 1466 int i; 1467 1468 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1469 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1470 void *addr = page_address(frag->page.p) + frag->page_offset; 1471 1472 tx_desc = mvneta_txq_next_desc_get(txq); 1473 tx_desc->data_size = frag->size; 1474 1475 tx_desc->buf_phys_addr = 1476 dma_map_single(pp->dev->dev.parent, addr, 1477 tx_desc->data_size, DMA_TO_DEVICE); 1478 1479 if (dma_mapping_error(pp->dev->dev.parent, 1480 tx_desc->buf_phys_addr)) { 1481 mvneta_txq_desc_put(txq); 1482 goto error; 1483 } 1484 1485 if (i == (skb_shinfo(skb)->nr_frags - 1)) { 1486 /* Last descriptor */ 1487 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1488 1489 txq->tx_skb[txq->txq_put_index] = skb; 1490 1491 mvneta_txq_inc_put(txq); 1492 } else { 1493 /* Descriptor in the middle: Not First, Not Last */ 1494 tx_desc->command = 0; 1495 1496 txq->tx_skb[txq->txq_put_index] = NULL; 1497 mvneta_txq_inc_put(txq); 1498 } 1499 } 1500 1501 return 0; 1502 1503 error: 1504 /* Release all descriptors that were used to map fragments of 1505 * this packet, as well as the corresponding DMA mappings 1506 */ 1507 for (i = i - 1; i >= 0; i--) { 1508 tx_desc = txq->descs + i; 1509 dma_unmap_single(pp->dev->dev.parent, 1510 tx_desc->buf_phys_addr, 1511 tx_desc->data_size, 1512 DMA_TO_DEVICE); 1513 mvneta_txq_desc_put(txq); 1514 } 1515 1516 return -ENOMEM; 1517 } 1518 1519 /* Main tx processing */ 1520 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1521 { 1522 struct mvneta_port *pp = netdev_priv(dev); 1523 u16 txq_id = skb_get_queue_mapping(skb); 1524 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1525 struct mvneta_tx_desc *tx_desc; 1526 struct netdev_queue *nq; 1527 int frags = 0; 1528 u32 tx_cmd; 1529 1530 if (!netif_running(dev)) 1531 goto out; 1532 1533 frags = skb_shinfo(skb)->nr_frags + 1; 1534 nq = netdev_get_tx_queue(dev, txq_id); 1535 1536 /* Get a descriptor for the first part of the packet */ 1537 tx_desc = mvneta_txq_next_desc_get(txq); 1538 1539 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1540 1541 tx_desc->data_size = skb_headlen(skb); 1542 1543 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1544 tx_desc->data_size, 1545 DMA_TO_DEVICE); 1546 if (unlikely(dma_mapping_error(dev->dev.parent, 1547 tx_desc->buf_phys_addr))) { 1548 mvneta_txq_desc_put(txq); 1549 frags = 0; 1550 goto out; 1551 } 1552 1553 if (frags == 1) { 1554 /* First and Last descriptor */ 1555 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1556 tx_desc->command = tx_cmd; 1557 txq->tx_skb[txq->txq_put_index] = skb; 1558 mvneta_txq_inc_put(txq); 1559 } else { 1560 /* First but not Last */ 1561 tx_cmd |= MVNETA_TXD_F_DESC; 1562 txq->tx_skb[txq->txq_put_index] = NULL; 1563 mvneta_txq_inc_put(txq); 1564 tx_desc->command = tx_cmd; 1565 /* Continue with other skb fragments */ 1566 if (mvneta_tx_frag_process(pp, skb, txq)) { 1567 dma_unmap_single(dev->dev.parent, 1568 tx_desc->buf_phys_addr, 1569 tx_desc->data_size, 1570 DMA_TO_DEVICE); 1571 mvneta_txq_desc_put(txq); 1572 frags = 0; 1573 goto out; 1574 } 1575 } 1576 1577 txq->count += frags; 1578 mvneta_txq_pend_desc_add(pp, txq, frags); 1579 1580 if (txq->size - txq->count < MAX_SKB_FRAGS + 1) 1581 netif_tx_stop_queue(nq); 1582 1583 out: 1584 if (frags > 0) { 1585 u64_stats_update_begin(&pp->tx_stats.syncp); 1586 pp->tx_stats.packets++; 1587 pp->tx_stats.bytes += skb->len; 1588 u64_stats_update_end(&pp->tx_stats.syncp); 1589 1590 } else { 1591 dev->stats.tx_dropped++; 1592 dev_kfree_skb_any(skb); 1593 } 1594 1595 if (txq->count >= MVNETA_TXDONE_COAL_PKTS) 1596 mvneta_txq_done(pp, txq); 1597 1598 /* If after calling mvneta_txq_done, count equals 1599 * frags, we need to set the timer 1600 */ 1601 if (txq->count == frags && frags > 0) 1602 mvneta_add_tx_done_timer(pp); 1603 1604 return NETDEV_TX_OK; 1605 } 1606 1607 1608 /* Free tx resources, when resetting a port */ 1609 static void mvneta_txq_done_force(struct mvneta_port *pp, 1610 struct mvneta_tx_queue *txq) 1611 1612 { 1613 int tx_done = txq->count; 1614 1615 mvneta_txq_bufs_free(pp, txq, tx_done); 1616 1617 /* reset txq */ 1618 txq->count = 0; 1619 txq->txq_put_index = 0; 1620 txq->txq_get_index = 0; 1621 } 1622 1623 /* handle tx done - called from tx done timer callback */ 1624 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done, 1625 int *tx_todo) 1626 { 1627 struct mvneta_tx_queue *txq; 1628 u32 tx_done = 0; 1629 struct netdev_queue *nq; 1630 1631 *tx_todo = 0; 1632 while (cause_tx_done != 0) { 1633 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1634 if (!txq) 1635 break; 1636 1637 nq = netdev_get_tx_queue(pp->dev, txq->id); 1638 __netif_tx_lock(nq, smp_processor_id()); 1639 1640 if (txq->count) { 1641 tx_done += mvneta_txq_done(pp, txq); 1642 *tx_todo += txq->count; 1643 } 1644 1645 __netif_tx_unlock(nq); 1646 cause_tx_done &= ~((1 << txq->id)); 1647 } 1648 1649 return tx_done; 1650 } 1651 1652 /* Compute crc8 of the specified address, using a unique algorithm , 1653 * according to hw spec, different than generic crc8 algorithm 1654 */ 1655 static int mvneta_addr_crc(unsigned char *addr) 1656 { 1657 int crc = 0; 1658 int i; 1659 1660 for (i = 0; i < ETH_ALEN; i++) { 1661 int j; 1662 1663 crc = (crc ^ addr[i]) << 8; 1664 for (j = 7; j >= 0; j--) { 1665 if (crc & (0x100 << j)) 1666 crc ^= 0x107 << j; 1667 } 1668 } 1669 1670 return crc; 1671 } 1672 1673 /* This method controls the net device special MAC multicast support. 1674 * The Special Multicast Table for MAC addresses supports MAC of the form 1675 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1676 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1677 * Table entries in the DA-Filter table. This method set the Special 1678 * Multicast Table appropriate entry. 1679 */ 1680 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1681 unsigned char last_byte, 1682 int queue) 1683 { 1684 unsigned int smc_table_reg; 1685 unsigned int tbl_offset; 1686 unsigned int reg_offset; 1687 1688 /* Register offset from SMC table base */ 1689 tbl_offset = (last_byte / 4); 1690 /* Entry offset within the above reg */ 1691 reg_offset = last_byte % 4; 1692 1693 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1694 + tbl_offset * 4)); 1695 1696 if (queue == -1) 1697 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1698 else { 1699 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1700 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1701 } 1702 1703 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1704 smc_table_reg); 1705 } 1706 1707 /* This method controls the network device Other MAC multicast support. 1708 * The Other Multicast Table is used for multicast of another type. 1709 * A CRC-8 is used as an index to the Other Multicast Table entries 1710 * in the DA-Filter table. 1711 * The method gets the CRC-8 value from the calling routine and 1712 * sets the Other Multicast Table appropriate entry according to the 1713 * specified CRC-8 . 1714 */ 1715 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1716 unsigned char crc8, 1717 int queue) 1718 { 1719 unsigned int omc_table_reg; 1720 unsigned int tbl_offset; 1721 unsigned int reg_offset; 1722 1723 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1724 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1725 1726 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1727 1728 if (queue == -1) { 1729 /* Clear accepts frame bit at specified Other DA table entry */ 1730 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1731 } else { 1732 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1733 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1734 } 1735 1736 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1737 } 1738 1739 /* The network device supports multicast using two tables: 1740 * 1) Special Multicast Table for MAC addresses of the form 1741 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1742 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1743 * Table entries in the DA-Filter table. 1744 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1745 * is used as an index to the Other Multicast Table entries in the 1746 * DA-Filter table. 1747 */ 1748 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1749 int queue) 1750 { 1751 unsigned char crc_result = 0; 1752 1753 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1754 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1755 return 0; 1756 } 1757 1758 crc_result = mvneta_addr_crc(p_addr); 1759 if (queue == -1) { 1760 if (pp->mcast_count[crc_result] == 0) { 1761 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1762 crc_result); 1763 return -EINVAL; 1764 } 1765 1766 pp->mcast_count[crc_result]--; 1767 if (pp->mcast_count[crc_result] != 0) { 1768 netdev_info(pp->dev, 1769 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1770 pp->mcast_count[crc_result], crc_result); 1771 return -EINVAL; 1772 } 1773 } else 1774 pp->mcast_count[crc_result]++; 1775 1776 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1777 1778 return 0; 1779 } 1780 1781 /* Configure Fitering mode of Ethernet port */ 1782 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1783 int is_promisc) 1784 { 1785 u32 port_cfg_reg, val; 1786 1787 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1788 1789 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1790 1791 /* Set / Clear UPM bit in port configuration register */ 1792 if (is_promisc) { 1793 /* Accept all Unicast addresses */ 1794 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 1795 val |= MVNETA_FORCE_UNI; 1796 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 1797 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 1798 } else { 1799 /* Reject all Unicast addresses */ 1800 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 1801 val &= ~MVNETA_FORCE_UNI; 1802 } 1803 1804 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 1805 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 1806 } 1807 1808 /* register unicast and multicast addresses */ 1809 static void mvneta_set_rx_mode(struct net_device *dev) 1810 { 1811 struct mvneta_port *pp = netdev_priv(dev); 1812 struct netdev_hw_addr *ha; 1813 1814 if (dev->flags & IFF_PROMISC) { 1815 /* Accept all: Multicast + Unicast */ 1816 mvneta_rx_unicast_promisc_set(pp, 1); 1817 mvneta_set_ucast_table(pp, rxq_def); 1818 mvneta_set_special_mcast_table(pp, rxq_def); 1819 mvneta_set_other_mcast_table(pp, rxq_def); 1820 } else { 1821 /* Accept single Unicast */ 1822 mvneta_rx_unicast_promisc_set(pp, 0); 1823 mvneta_set_ucast_table(pp, -1); 1824 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 1825 1826 if (dev->flags & IFF_ALLMULTI) { 1827 /* Accept all multicast */ 1828 mvneta_set_special_mcast_table(pp, rxq_def); 1829 mvneta_set_other_mcast_table(pp, rxq_def); 1830 } else { 1831 /* Accept only initialized multicast */ 1832 mvneta_set_special_mcast_table(pp, -1); 1833 mvneta_set_other_mcast_table(pp, -1); 1834 1835 if (!netdev_mc_empty(dev)) { 1836 netdev_for_each_mc_addr(ha, dev) { 1837 mvneta_mcast_addr_set(pp, ha->addr, 1838 rxq_def); 1839 } 1840 } 1841 } 1842 } 1843 } 1844 1845 /* Interrupt handling - the callback for request_irq() */ 1846 static irqreturn_t mvneta_isr(int irq, void *dev_id) 1847 { 1848 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 1849 1850 /* Mask all interrupts */ 1851 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1852 1853 napi_schedule(&pp->napi); 1854 1855 return IRQ_HANDLED; 1856 } 1857 1858 /* NAPI handler 1859 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 1860 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 1861 * Bits 8 -15 of the cause Rx Tx register indicate that are received 1862 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 1863 * Each CPU has its own causeRxTx register 1864 */ 1865 static int mvneta_poll(struct napi_struct *napi, int budget) 1866 { 1867 int rx_done = 0; 1868 u32 cause_rx_tx; 1869 unsigned long flags; 1870 struct mvneta_port *pp = netdev_priv(napi->dev); 1871 1872 if (!netif_running(pp->dev)) { 1873 napi_complete(napi); 1874 return rx_done; 1875 } 1876 1877 /* Read cause register */ 1878 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) & 1879 MVNETA_RX_INTR_MASK(rxq_number); 1880 1881 /* For the case where the last mvneta_poll did not process all 1882 * RX packets 1883 */ 1884 cause_rx_tx |= pp->cause_rx_tx; 1885 if (rxq_number > 1) { 1886 while ((cause_rx_tx != 0) && (budget > 0)) { 1887 int count; 1888 struct mvneta_rx_queue *rxq; 1889 /* get rx queue number from cause_rx_tx */ 1890 rxq = mvneta_rx_policy(pp, cause_rx_tx); 1891 if (!rxq) 1892 break; 1893 1894 /* process the packet in that rx queue */ 1895 count = mvneta_rx(pp, budget, rxq); 1896 rx_done += count; 1897 budget -= count; 1898 if (budget > 0) { 1899 /* set off the rx bit of the 1900 * corresponding bit in the cause rx 1901 * tx register, so that next iteration 1902 * will find the next rx queue where 1903 * packets are received on 1904 */ 1905 cause_rx_tx &= ~((1 << rxq->id) << 8); 1906 } 1907 } 1908 } else { 1909 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 1910 budget -= rx_done; 1911 } 1912 1913 if (budget > 0) { 1914 cause_rx_tx = 0; 1915 napi_complete(napi); 1916 local_irq_save(flags); 1917 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1918 MVNETA_RX_INTR_MASK(rxq_number)); 1919 local_irq_restore(flags); 1920 } 1921 1922 pp->cause_rx_tx = cause_rx_tx; 1923 return rx_done; 1924 } 1925 1926 /* tx done timer callback */ 1927 static void mvneta_tx_done_timer_callback(unsigned long data) 1928 { 1929 struct net_device *dev = (struct net_device *)data; 1930 struct mvneta_port *pp = netdev_priv(dev); 1931 int tx_done = 0, tx_todo = 0; 1932 1933 if (!netif_running(dev)) 1934 return ; 1935 1936 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 1937 1938 tx_done = mvneta_tx_done_gbe(pp, 1939 (((1 << txq_number) - 1) & 1940 MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK), 1941 &tx_todo); 1942 if (tx_todo > 0) 1943 mvneta_add_tx_done_timer(pp); 1944 } 1945 1946 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 1947 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 1948 int num) 1949 { 1950 struct net_device *dev = pp->dev; 1951 int i; 1952 1953 for (i = 0; i < num; i++) { 1954 struct sk_buff *skb; 1955 struct mvneta_rx_desc *rx_desc; 1956 unsigned long phys_addr; 1957 1958 skb = dev_alloc_skb(pp->pkt_size); 1959 if (!skb) { 1960 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n", 1961 __func__, rxq->id, i, num); 1962 break; 1963 } 1964 1965 rx_desc = rxq->descs + i; 1966 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc)); 1967 phys_addr = dma_map_single(dev->dev.parent, skb->head, 1968 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1969 DMA_FROM_DEVICE); 1970 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) { 1971 dev_kfree_skb(skb); 1972 break; 1973 } 1974 1975 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1976 } 1977 1978 /* Add this number of RX descriptors as non occupied (ready to 1979 * get packets) 1980 */ 1981 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 1982 1983 return i; 1984 } 1985 1986 /* Free all packets pending transmit from all TXQs and reset TX port */ 1987 static void mvneta_tx_reset(struct mvneta_port *pp) 1988 { 1989 int queue; 1990 1991 /* free the skb's in the hal tx ring */ 1992 for (queue = 0; queue < txq_number; queue++) 1993 mvneta_txq_done_force(pp, &pp->txqs[queue]); 1994 1995 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1996 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1997 } 1998 1999 static void mvneta_rx_reset(struct mvneta_port *pp) 2000 { 2001 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2002 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2003 } 2004 2005 /* Rx/Tx queue initialization/cleanup methods */ 2006 2007 /* Create a specified RX queue */ 2008 static int mvneta_rxq_init(struct mvneta_port *pp, 2009 struct mvneta_rx_queue *rxq) 2010 2011 { 2012 rxq->size = pp->rx_ring_size; 2013 2014 /* Allocate memory for RX descriptors */ 2015 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2016 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2017 &rxq->descs_phys, GFP_KERNEL); 2018 if (rxq->descs == NULL) 2019 return -ENOMEM; 2020 2021 BUG_ON(rxq->descs != 2022 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2023 2024 rxq->last_desc = rxq->size - 1; 2025 2026 /* Set Rx descriptors queue starting address */ 2027 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2028 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2029 2030 /* Set Offset */ 2031 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2032 2033 /* Set coalescing pkts and time */ 2034 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2035 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2036 2037 /* Fill RXQ with buffers from RX pool */ 2038 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2039 mvneta_rxq_bm_disable(pp, rxq); 2040 mvneta_rxq_fill(pp, rxq, rxq->size); 2041 2042 return 0; 2043 } 2044 2045 /* Cleanup Rx queue */ 2046 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2047 struct mvneta_rx_queue *rxq) 2048 { 2049 mvneta_rxq_drop_pkts(pp, rxq); 2050 2051 if (rxq->descs) 2052 dma_free_coherent(pp->dev->dev.parent, 2053 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2054 rxq->descs, 2055 rxq->descs_phys); 2056 2057 rxq->descs = NULL; 2058 rxq->last_desc = 0; 2059 rxq->next_desc_to_proc = 0; 2060 rxq->descs_phys = 0; 2061 } 2062 2063 /* Create and initialize a tx queue */ 2064 static int mvneta_txq_init(struct mvneta_port *pp, 2065 struct mvneta_tx_queue *txq) 2066 { 2067 txq->size = pp->tx_ring_size; 2068 2069 /* Allocate memory for TX descriptors */ 2070 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2071 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2072 &txq->descs_phys, GFP_KERNEL); 2073 if (txq->descs == NULL) 2074 return -ENOMEM; 2075 2076 /* Make sure descriptor address is cache line size aligned */ 2077 BUG_ON(txq->descs != 2078 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2079 2080 txq->last_desc = txq->size - 1; 2081 2082 /* Set maximum bandwidth for enabled TXQs */ 2083 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2084 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2085 2086 /* Set Tx descriptors queue starting address */ 2087 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2088 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2089 2090 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2091 if (txq->tx_skb == NULL) { 2092 dma_free_coherent(pp->dev->dev.parent, 2093 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2094 txq->descs, txq->descs_phys); 2095 return -ENOMEM; 2096 } 2097 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2098 2099 return 0; 2100 } 2101 2102 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2103 static void mvneta_txq_deinit(struct mvneta_port *pp, 2104 struct mvneta_tx_queue *txq) 2105 { 2106 kfree(txq->tx_skb); 2107 2108 if (txq->descs) 2109 dma_free_coherent(pp->dev->dev.parent, 2110 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2111 txq->descs, txq->descs_phys); 2112 2113 txq->descs = NULL; 2114 txq->last_desc = 0; 2115 txq->next_desc_to_proc = 0; 2116 txq->descs_phys = 0; 2117 2118 /* Set minimum bandwidth for disabled TXQs */ 2119 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2120 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2121 2122 /* Set Tx descriptors queue starting address and size */ 2123 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2124 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2125 } 2126 2127 /* Cleanup all Tx queues */ 2128 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2129 { 2130 int queue; 2131 2132 for (queue = 0; queue < txq_number; queue++) 2133 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2134 } 2135 2136 /* Cleanup all Rx queues */ 2137 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2138 { 2139 int queue; 2140 2141 for (queue = 0; queue < rxq_number; queue++) 2142 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2143 } 2144 2145 2146 /* Init all Rx queues */ 2147 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2148 { 2149 int queue; 2150 2151 for (queue = 0; queue < rxq_number; queue++) { 2152 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2153 if (err) { 2154 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2155 __func__, queue); 2156 mvneta_cleanup_rxqs(pp); 2157 return err; 2158 } 2159 } 2160 2161 return 0; 2162 } 2163 2164 /* Init all tx queues */ 2165 static int mvneta_setup_txqs(struct mvneta_port *pp) 2166 { 2167 int queue; 2168 2169 for (queue = 0; queue < txq_number; queue++) { 2170 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2171 if (err) { 2172 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2173 __func__, queue); 2174 mvneta_cleanup_txqs(pp); 2175 return err; 2176 } 2177 } 2178 2179 return 0; 2180 } 2181 2182 static void mvneta_start_dev(struct mvneta_port *pp) 2183 { 2184 mvneta_max_rx_size_set(pp, pp->pkt_size); 2185 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2186 2187 /* start the Rx/Tx activity */ 2188 mvneta_port_enable(pp); 2189 2190 /* Enable polling on the port */ 2191 napi_enable(&pp->napi); 2192 2193 /* Unmask interrupts */ 2194 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2195 MVNETA_RX_INTR_MASK(rxq_number)); 2196 2197 phy_start(pp->phy_dev); 2198 netif_tx_start_all_queues(pp->dev); 2199 } 2200 2201 static void mvneta_stop_dev(struct mvneta_port *pp) 2202 { 2203 phy_stop(pp->phy_dev); 2204 2205 napi_disable(&pp->napi); 2206 2207 netif_carrier_off(pp->dev); 2208 2209 mvneta_port_down(pp); 2210 netif_tx_stop_all_queues(pp->dev); 2211 2212 /* Stop the port activity */ 2213 mvneta_port_disable(pp); 2214 2215 /* Clear all ethernet port interrupts */ 2216 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2217 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2218 2219 /* Mask all ethernet port interrupts */ 2220 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2221 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2222 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2223 2224 mvneta_tx_reset(pp); 2225 mvneta_rx_reset(pp); 2226 } 2227 2228 /* tx timeout callback - display a message and stop/start the network device */ 2229 static void mvneta_tx_timeout(struct net_device *dev) 2230 { 2231 struct mvneta_port *pp = netdev_priv(dev); 2232 2233 netdev_info(dev, "tx timeout\n"); 2234 mvneta_stop_dev(pp); 2235 mvneta_start_dev(pp); 2236 } 2237 2238 /* Return positive if MTU is valid */ 2239 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2240 { 2241 if (mtu < 68) { 2242 netdev_err(dev, "cannot change mtu to less than 68\n"); 2243 return -EINVAL; 2244 } 2245 2246 /* 9676 == 9700 - 20 and rounding to 8 */ 2247 if (mtu > 9676) { 2248 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2249 mtu = 9676; 2250 } 2251 2252 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2253 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2254 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2255 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2256 } 2257 2258 return mtu; 2259 } 2260 2261 /* Change the device mtu */ 2262 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2263 { 2264 struct mvneta_port *pp = netdev_priv(dev); 2265 int ret; 2266 2267 mtu = mvneta_check_mtu_valid(dev, mtu); 2268 if (mtu < 0) 2269 return -EINVAL; 2270 2271 dev->mtu = mtu; 2272 2273 if (!netif_running(dev)) 2274 return 0; 2275 2276 /* The interface is running, so we have to force a 2277 * reallocation of the RXQs 2278 */ 2279 mvneta_stop_dev(pp); 2280 2281 mvneta_cleanup_txqs(pp); 2282 mvneta_cleanup_rxqs(pp); 2283 2284 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2285 2286 ret = mvneta_setup_rxqs(pp); 2287 if (ret) { 2288 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n"); 2289 return ret; 2290 } 2291 2292 mvneta_setup_txqs(pp); 2293 2294 mvneta_start_dev(pp); 2295 mvneta_port_up(pp); 2296 2297 return 0; 2298 } 2299 2300 /* Get mac address */ 2301 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2302 { 2303 u32 mac_addr_l, mac_addr_h; 2304 2305 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2306 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2307 addr[0] = (mac_addr_h >> 24) & 0xFF; 2308 addr[1] = (mac_addr_h >> 16) & 0xFF; 2309 addr[2] = (mac_addr_h >> 8) & 0xFF; 2310 addr[3] = mac_addr_h & 0xFF; 2311 addr[4] = (mac_addr_l >> 8) & 0xFF; 2312 addr[5] = mac_addr_l & 0xFF; 2313 } 2314 2315 /* Handle setting mac address */ 2316 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2317 { 2318 struct mvneta_port *pp = netdev_priv(dev); 2319 u8 *mac = addr + 2; 2320 int i; 2321 2322 if (netif_running(dev)) 2323 return -EBUSY; 2324 2325 /* Remove previous address table entry */ 2326 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2327 2328 /* Set new addr in hw */ 2329 mvneta_mac_addr_set(pp, mac, rxq_def); 2330 2331 /* Set addr in the device */ 2332 for (i = 0; i < ETH_ALEN; i++) 2333 dev->dev_addr[i] = mac[i]; 2334 2335 return 0; 2336 } 2337 2338 static void mvneta_adjust_link(struct net_device *ndev) 2339 { 2340 struct mvneta_port *pp = netdev_priv(ndev); 2341 struct phy_device *phydev = pp->phy_dev; 2342 int status_change = 0; 2343 2344 if (phydev->link) { 2345 if ((pp->speed != phydev->speed) || 2346 (pp->duplex != phydev->duplex)) { 2347 u32 val; 2348 2349 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2350 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2351 MVNETA_GMAC_CONFIG_GMII_SPEED | 2352 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 2353 MVNETA_GMAC_AN_SPEED_EN | 2354 MVNETA_GMAC_AN_DUPLEX_EN); 2355 2356 if (phydev->duplex) 2357 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2358 2359 if (phydev->speed == SPEED_1000) 2360 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2361 else 2362 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2363 2364 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2365 2366 pp->duplex = phydev->duplex; 2367 pp->speed = phydev->speed; 2368 } 2369 } 2370 2371 if (phydev->link != pp->link) { 2372 if (!phydev->link) { 2373 pp->duplex = -1; 2374 pp->speed = 0; 2375 } 2376 2377 pp->link = phydev->link; 2378 status_change = 1; 2379 } 2380 2381 if (status_change) { 2382 if (phydev->link) { 2383 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2384 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 2385 MVNETA_GMAC_FORCE_LINK_DOWN); 2386 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2387 mvneta_port_up(pp); 2388 netdev_info(pp->dev, "link up\n"); 2389 } else { 2390 mvneta_port_down(pp); 2391 netdev_info(pp->dev, "link down\n"); 2392 } 2393 } 2394 } 2395 2396 static int mvneta_mdio_probe(struct mvneta_port *pp) 2397 { 2398 struct phy_device *phy_dev; 2399 2400 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2401 pp->phy_interface); 2402 if (!phy_dev) { 2403 netdev_err(pp->dev, "could not find the PHY\n"); 2404 return -ENODEV; 2405 } 2406 2407 phy_dev->supported &= PHY_GBIT_FEATURES; 2408 phy_dev->advertising = phy_dev->supported; 2409 2410 pp->phy_dev = phy_dev; 2411 pp->link = 0; 2412 pp->duplex = 0; 2413 pp->speed = 0; 2414 2415 return 0; 2416 } 2417 2418 static void mvneta_mdio_remove(struct mvneta_port *pp) 2419 { 2420 phy_disconnect(pp->phy_dev); 2421 pp->phy_dev = NULL; 2422 } 2423 2424 static int mvneta_open(struct net_device *dev) 2425 { 2426 struct mvneta_port *pp = netdev_priv(dev); 2427 int ret; 2428 2429 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2430 2431 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2432 2433 ret = mvneta_setup_rxqs(pp); 2434 if (ret) 2435 return ret; 2436 2437 ret = mvneta_setup_txqs(pp); 2438 if (ret) 2439 goto err_cleanup_rxqs; 2440 2441 /* Connect to port interrupt line */ 2442 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2443 MVNETA_DRIVER_NAME, pp); 2444 if (ret) { 2445 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2446 goto err_cleanup_txqs; 2447 } 2448 2449 /* In default link is down */ 2450 netif_carrier_off(pp->dev); 2451 2452 ret = mvneta_mdio_probe(pp); 2453 if (ret < 0) { 2454 netdev_err(dev, "cannot probe MDIO bus\n"); 2455 goto err_free_irq; 2456 } 2457 2458 mvneta_start_dev(pp); 2459 2460 return 0; 2461 2462 err_free_irq: 2463 free_irq(pp->dev->irq, pp); 2464 err_cleanup_txqs: 2465 mvneta_cleanup_txqs(pp); 2466 err_cleanup_rxqs: 2467 mvneta_cleanup_rxqs(pp); 2468 return ret; 2469 } 2470 2471 /* Stop the port, free port interrupt line */ 2472 static int mvneta_stop(struct net_device *dev) 2473 { 2474 struct mvneta_port *pp = netdev_priv(dev); 2475 2476 mvneta_stop_dev(pp); 2477 mvneta_mdio_remove(pp); 2478 free_irq(dev->irq, pp); 2479 mvneta_cleanup_rxqs(pp); 2480 mvneta_cleanup_txqs(pp); 2481 del_timer(&pp->tx_done_timer); 2482 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2483 2484 return 0; 2485 } 2486 2487 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2488 { 2489 struct mvneta_port *pp = netdev_priv(dev); 2490 int ret; 2491 2492 if (!pp->phy_dev) 2493 return -ENOTSUPP; 2494 2495 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2496 if (!ret) 2497 mvneta_adjust_link(dev); 2498 2499 return ret; 2500 } 2501 2502 /* Ethtool methods */ 2503 2504 /* Get settings (phy address, speed) for ethtools */ 2505 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2506 { 2507 struct mvneta_port *pp = netdev_priv(dev); 2508 2509 if (!pp->phy_dev) 2510 return -ENODEV; 2511 2512 return phy_ethtool_gset(pp->phy_dev, cmd); 2513 } 2514 2515 /* Set settings (phy address, speed) for ethtools */ 2516 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2517 { 2518 struct mvneta_port *pp = netdev_priv(dev); 2519 2520 if (!pp->phy_dev) 2521 return -ENODEV; 2522 2523 return phy_ethtool_sset(pp->phy_dev, cmd); 2524 } 2525 2526 /* Set interrupt coalescing for ethtools */ 2527 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2528 struct ethtool_coalesce *c) 2529 { 2530 struct mvneta_port *pp = netdev_priv(dev); 2531 int queue; 2532 2533 for (queue = 0; queue < rxq_number; queue++) { 2534 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2535 rxq->time_coal = c->rx_coalesce_usecs; 2536 rxq->pkts_coal = c->rx_max_coalesced_frames; 2537 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2538 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2539 } 2540 2541 for (queue = 0; queue < txq_number; queue++) { 2542 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2543 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2544 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2545 } 2546 2547 return 0; 2548 } 2549 2550 /* get coalescing for ethtools */ 2551 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2552 struct ethtool_coalesce *c) 2553 { 2554 struct mvneta_port *pp = netdev_priv(dev); 2555 2556 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2557 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2558 2559 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2560 return 0; 2561 } 2562 2563 2564 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2565 struct ethtool_drvinfo *drvinfo) 2566 { 2567 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2568 sizeof(drvinfo->driver)); 2569 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2570 sizeof(drvinfo->version)); 2571 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2572 sizeof(drvinfo->bus_info)); 2573 } 2574 2575 2576 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2577 struct ethtool_ringparam *ring) 2578 { 2579 struct mvneta_port *pp = netdev_priv(netdev); 2580 2581 ring->rx_max_pending = MVNETA_MAX_RXD; 2582 ring->tx_max_pending = MVNETA_MAX_TXD; 2583 ring->rx_pending = pp->rx_ring_size; 2584 ring->tx_pending = pp->tx_ring_size; 2585 } 2586 2587 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2588 struct ethtool_ringparam *ring) 2589 { 2590 struct mvneta_port *pp = netdev_priv(dev); 2591 2592 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2593 return -EINVAL; 2594 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2595 ring->rx_pending : MVNETA_MAX_RXD; 2596 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ? 2597 ring->tx_pending : MVNETA_MAX_TXD; 2598 2599 if (netif_running(dev)) { 2600 mvneta_stop(dev); 2601 if (mvneta_open(dev)) { 2602 netdev_err(dev, 2603 "error on opening device after ring param change\n"); 2604 return -ENOMEM; 2605 } 2606 } 2607 2608 return 0; 2609 } 2610 2611 static const struct net_device_ops mvneta_netdev_ops = { 2612 .ndo_open = mvneta_open, 2613 .ndo_stop = mvneta_stop, 2614 .ndo_start_xmit = mvneta_tx, 2615 .ndo_set_rx_mode = mvneta_set_rx_mode, 2616 .ndo_set_mac_address = mvneta_set_mac_addr, 2617 .ndo_change_mtu = mvneta_change_mtu, 2618 .ndo_tx_timeout = mvneta_tx_timeout, 2619 .ndo_get_stats64 = mvneta_get_stats64, 2620 .ndo_do_ioctl = mvneta_ioctl, 2621 }; 2622 2623 const struct ethtool_ops mvneta_eth_tool_ops = { 2624 .get_link = ethtool_op_get_link, 2625 .get_settings = mvneta_ethtool_get_settings, 2626 .set_settings = mvneta_ethtool_set_settings, 2627 .set_coalesce = mvneta_ethtool_set_coalesce, 2628 .get_coalesce = mvneta_ethtool_get_coalesce, 2629 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2630 .get_ringparam = mvneta_ethtool_get_ringparam, 2631 .set_ringparam = mvneta_ethtool_set_ringparam, 2632 }; 2633 2634 /* Initialize hw */ 2635 static int mvneta_init(struct mvneta_port *pp, int phy_addr) 2636 { 2637 int queue; 2638 2639 /* Disable port */ 2640 mvneta_port_disable(pp); 2641 2642 /* Set port default values */ 2643 mvneta_defaults_set(pp); 2644 2645 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), 2646 GFP_KERNEL); 2647 if (!pp->txqs) 2648 return -ENOMEM; 2649 2650 /* Initialize TX descriptor rings */ 2651 for (queue = 0; queue < txq_number; queue++) { 2652 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2653 txq->id = queue; 2654 txq->size = pp->tx_ring_size; 2655 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2656 } 2657 2658 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), 2659 GFP_KERNEL); 2660 if (!pp->rxqs) { 2661 kfree(pp->txqs); 2662 return -ENOMEM; 2663 } 2664 2665 /* Create Rx descriptor rings */ 2666 for (queue = 0; queue < rxq_number; queue++) { 2667 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2668 rxq->id = queue; 2669 rxq->size = pp->rx_ring_size; 2670 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2671 rxq->time_coal = MVNETA_RX_COAL_USEC; 2672 } 2673 2674 return 0; 2675 } 2676 2677 static void mvneta_deinit(struct mvneta_port *pp) 2678 { 2679 kfree(pp->txqs); 2680 kfree(pp->rxqs); 2681 } 2682 2683 /* platform glue : initialize decoding windows */ 2684 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2685 const struct mbus_dram_target_info *dram) 2686 { 2687 u32 win_enable; 2688 u32 win_protect; 2689 int i; 2690 2691 for (i = 0; i < 6; i++) { 2692 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2693 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2694 2695 if (i < 4) 2696 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2697 } 2698 2699 win_enable = 0x3f; 2700 win_protect = 0; 2701 2702 for (i = 0; i < dram->num_cs; i++) { 2703 const struct mbus_dram_window *cs = dram->cs + i; 2704 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2705 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2706 2707 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2708 (cs->size - 1) & 0xffff0000); 2709 2710 win_enable &= ~(1 << i); 2711 win_protect |= 3 << (2 * i); 2712 } 2713 2714 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2715 } 2716 2717 /* Power up the port */ 2718 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2719 { 2720 u32 val; 2721 2722 /* MAC Cause register should be cleared */ 2723 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2724 2725 if (phy_mode == PHY_INTERFACE_MODE_SGMII) 2726 mvneta_port_sgmii_config(pp); 2727 2728 mvneta_gmac_rgmii_set(pp, 1); 2729 2730 /* Cancel Port Reset */ 2731 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2732 val &= ~MVNETA_GMAC2_PORT_RESET; 2733 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 2734 2735 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2736 MVNETA_GMAC2_PORT_RESET) != 0) 2737 continue; 2738 } 2739 2740 /* Device initialization routine */ 2741 static int mvneta_probe(struct platform_device *pdev) 2742 { 2743 const struct mbus_dram_target_info *dram_target_info; 2744 struct device_node *dn = pdev->dev.of_node; 2745 struct device_node *phy_node; 2746 u32 phy_addr; 2747 struct mvneta_port *pp; 2748 struct net_device *dev; 2749 const char *dt_mac_addr; 2750 char hw_mac_addr[ETH_ALEN]; 2751 const char *mac_from; 2752 int phy_mode; 2753 int err; 2754 2755 /* Our multiqueue support is not complete, so for now, only 2756 * allow the usage of the first RX queue 2757 */ 2758 if (rxq_def != 0) { 2759 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 2760 return -EINVAL; 2761 } 2762 2763 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 2764 if (!dev) 2765 return -ENOMEM; 2766 2767 dev->irq = irq_of_parse_and_map(dn, 0); 2768 if (dev->irq == 0) { 2769 err = -EINVAL; 2770 goto err_free_netdev; 2771 } 2772 2773 phy_node = of_parse_phandle(dn, "phy", 0); 2774 if (!phy_node) { 2775 dev_err(&pdev->dev, "no associated PHY\n"); 2776 err = -ENODEV; 2777 goto err_free_irq; 2778 } 2779 2780 phy_mode = of_get_phy_mode(dn); 2781 if (phy_mode < 0) { 2782 dev_err(&pdev->dev, "incorrect phy-mode\n"); 2783 err = -EINVAL; 2784 goto err_free_irq; 2785 } 2786 2787 dev->tx_queue_len = MVNETA_MAX_TXD; 2788 dev->watchdog_timeo = 5 * HZ; 2789 dev->netdev_ops = &mvneta_netdev_ops; 2790 2791 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops); 2792 2793 pp = netdev_priv(dev); 2794 2795 u64_stats_init(&pp->tx_stats.syncp); 2796 u64_stats_init(&pp->rx_stats.syncp); 2797 2798 pp->weight = MVNETA_RX_POLL_WEIGHT; 2799 pp->phy_node = phy_node; 2800 pp->phy_interface = phy_mode; 2801 2802 pp->clk = devm_clk_get(&pdev->dev, NULL); 2803 if (IS_ERR(pp->clk)) { 2804 err = PTR_ERR(pp->clk); 2805 goto err_free_irq; 2806 } 2807 2808 clk_prepare_enable(pp->clk); 2809 2810 pp->base = of_iomap(dn, 0); 2811 if (pp->base == NULL) { 2812 err = -ENOMEM; 2813 goto err_clk; 2814 } 2815 2816 dt_mac_addr = of_get_mac_address(dn); 2817 if (dt_mac_addr) { 2818 mac_from = "device tree"; 2819 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 2820 } else { 2821 mvneta_get_mac_addr(pp, hw_mac_addr); 2822 if (is_valid_ether_addr(hw_mac_addr)) { 2823 mac_from = "hardware"; 2824 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 2825 } else { 2826 mac_from = "random"; 2827 eth_hw_addr_random(dev); 2828 } 2829 } 2830 2831 pp->tx_done_timer.data = (unsigned long)dev; 2832 pp->tx_done_timer.function = mvneta_tx_done_timer_callback; 2833 init_timer(&pp->tx_done_timer); 2834 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2835 2836 pp->tx_ring_size = MVNETA_MAX_TXD; 2837 pp->rx_ring_size = MVNETA_MAX_RXD; 2838 2839 pp->dev = dev; 2840 SET_NETDEV_DEV(dev, &pdev->dev); 2841 2842 err = mvneta_init(pp, phy_addr); 2843 if (err < 0) { 2844 dev_err(&pdev->dev, "can't init eth hal\n"); 2845 goto err_unmap; 2846 } 2847 mvneta_port_power_up(pp, phy_mode); 2848 2849 dram_target_info = mv_mbus_dram_info(); 2850 if (dram_target_info) 2851 mvneta_conf_mbus_windows(pp, dram_target_info); 2852 2853 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight); 2854 2855 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; 2856 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2857 dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2858 dev->priv_flags |= IFF_UNICAST_FLT; 2859 2860 err = register_netdev(dev); 2861 if (err < 0) { 2862 dev_err(&pdev->dev, "failed to register\n"); 2863 goto err_deinit; 2864 } 2865 2866 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 2867 dev->dev_addr); 2868 2869 platform_set_drvdata(pdev, pp->dev); 2870 2871 return 0; 2872 2873 err_deinit: 2874 mvneta_deinit(pp); 2875 err_unmap: 2876 iounmap(pp->base); 2877 err_clk: 2878 clk_disable_unprepare(pp->clk); 2879 err_free_irq: 2880 irq_dispose_mapping(dev->irq); 2881 err_free_netdev: 2882 free_netdev(dev); 2883 return err; 2884 } 2885 2886 /* Device removal routine */ 2887 static int mvneta_remove(struct platform_device *pdev) 2888 { 2889 struct net_device *dev = platform_get_drvdata(pdev); 2890 struct mvneta_port *pp = netdev_priv(dev); 2891 2892 unregister_netdev(dev); 2893 mvneta_deinit(pp); 2894 clk_disable_unprepare(pp->clk); 2895 iounmap(pp->base); 2896 irq_dispose_mapping(dev->irq); 2897 free_netdev(dev); 2898 2899 return 0; 2900 } 2901 2902 static const struct of_device_id mvneta_match[] = { 2903 { .compatible = "marvell,armada-370-neta" }, 2904 { } 2905 }; 2906 MODULE_DEVICE_TABLE(of, mvneta_match); 2907 2908 static struct platform_driver mvneta_driver = { 2909 .probe = mvneta_probe, 2910 .remove = mvneta_remove, 2911 .driver = { 2912 .name = MVNETA_DRIVER_NAME, 2913 .of_match_table = mvneta_match, 2914 }, 2915 }; 2916 2917 module_platform_driver(mvneta_driver); 2918 2919 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 2920 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 2921 MODULE_LICENSE("GPL"); 2922 2923 module_param(rxq_number, int, S_IRUGO); 2924 module_param(txq_number, int, S_IRUGO); 2925 2926 module_param(rxq_def, int, S_IRUGO); 2927