1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <net/pkt_cls.h> 42 #include <linux/bpf_trace.h> 43 44 /* Registers */ 45 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 46 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 47 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 48 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 49 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 50 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 65 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 66 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 67 #define MVNETA_PORT_RX_RESET 0x1cc0 68 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 69 #define MVNETA_PHY_ADDR 0x2000 70 #define MVNETA_PHY_ADDR_MASK 0x1f 71 #define MVNETA_MBUS_RETRY 0x2010 72 #define MVNETA_UNIT_INTR_CAUSE 0x2080 73 #define MVNETA_UNIT_CONTROL 0x20B0 74 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 75 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 76 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 77 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 78 #define MVNETA_BASE_ADDR_ENABLE 0x2290 79 #define MVNETA_AC5_CNM_DDR_TARGET 0x2 80 #define MVNETA_AC5_CNM_DDR_ATTR 0xb 81 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 82 #define MVNETA_PORT_CONFIG 0x2400 83 #define MVNETA_UNI_PROMISC_MODE BIT(0) 84 #define MVNETA_DEF_RXQ(q) ((q) << 1) 85 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 86 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 87 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 88 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 89 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 90 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 91 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 92 MVNETA_DEF_RXQ_ARP(q) | \ 93 MVNETA_DEF_RXQ_TCP(q) | \ 94 MVNETA_DEF_RXQ_UDP(q) | \ 95 MVNETA_DEF_RXQ_BPDU(q) | \ 96 MVNETA_TX_UNSET_ERR_SUM | \ 97 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 98 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 99 #define MVNETA_MAC_ADDR_LOW 0x2414 100 #define MVNETA_MAC_ADDR_HIGH 0x2418 101 #define MVNETA_SDMA_CONFIG 0x241c 102 #define MVNETA_SDMA_BRST_SIZE_16 4 103 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 104 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 105 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 106 #define MVNETA_DESC_SWAP BIT(6) 107 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 108 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440 109 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3)) 110 #define MVNETA_PORT_STATUS 0x2444 111 #define MVNETA_TX_IN_PRGRS BIT(0) 112 #define MVNETA_TX_FIFO_EMPTY BIT(8) 113 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 114 /* Only exists on Armada XP and Armada 370 */ 115 #define MVNETA_SERDES_CFG 0x24A0 116 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 117 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 118 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 119 #define MVNETA_TYPE_PRIO 0x24bc 120 #define MVNETA_FORCE_UNI BIT(21) 121 #define MVNETA_TXQ_CMD_1 0x24e4 122 #define MVNETA_TXQ_CMD 0x2448 123 #define MVNETA_TXQ_DISABLE_SHIFT 8 124 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 125 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 126 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 127 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 128 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 129 #define MVNETA_ACC_MODE 0x2500 130 #define MVNETA_BM_ADDRESS 0x2504 131 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 132 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 133 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 134 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 135 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 136 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 137 138 /* Exception Interrupt Port/Queue Cause register 139 * 140 * Their behavior depend of the mapping done using the PCPX2Q 141 * registers. For a given CPU if the bit associated to a queue is not 142 * set, then for the register a read from this CPU will always return 143 * 0 and a write won't do anything 144 */ 145 146 #define MVNETA_INTR_NEW_CAUSE 0x25a0 147 #define MVNETA_INTR_NEW_MASK 0x25a4 148 149 /* bits 0..7 = TXQ SENT, one bit per queue. 150 * bits 8..15 = RXQ OCCUP, one bit per queue. 151 * bits 16..23 = RXQ FREE, one bit per queue. 152 * bit 29 = OLD_REG_SUM, see old reg ? 153 * bit 30 = TX_ERR_SUM, one bit for 4 ports 154 * bit 31 = MISC_SUM, one bit for 4 ports 155 */ 156 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 157 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 158 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 159 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 160 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 161 162 #define MVNETA_INTR_OLD_CAUSE 0x25a8 163 #define MVNETA_INTR_OLD_MASK 0x25ac 164 165 /* Data Path Port/Queue Cause Register */ 166 #define MVNETA_INTR_MISC_CAUSE 0x25b0 167 #define MVNETA_INTR_MISC_MASK 0x25b4 168 169 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 170 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 171 #define MVNETA_CAUSE_PTP BIT(4) 172 173 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 174 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 175 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 176 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 177 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 178 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 179 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 180 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 181 182 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 183 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 184 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 185 186 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 187 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 188 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 189 190 #define MVNETA_INTR_ENABLE 0x25b8 191 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 192 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 193 194 #define MVNETA_RXQ_CMD 0x2680 195 #define MVNETA_RXQ_DISABLE_SHIFT 8 196 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 197 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 198 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 199 #define MVNETA_GMAC_CTRL_0 0x2c00 200 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 201 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 202 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 203 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 204 #define MVNETA_GMAC_CTRL_2 0x2c08 205 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 206 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 207 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 208 #define MVNETA_GMAC2_PORT_RESET BIT(6) 209 #define MVNETA_GMAC_STATUS 0x2c10 210 #define MVNETA_GMAC_LINK_UP BIT(0) 211 #define MVNETA_GMAC_SPEED_1000 BIT(1) 212 #define MVNETA_GMAC_SPEED_100 BIT(2) 213 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 214 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 215 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 216 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 217 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 218 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 219 #define MVNETA_GMAC_SYNC_OK BIT(14) 220 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 221 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 222 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 223 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 224 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 225 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 226 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 227 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 228 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 229 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 230 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 231 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 232 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 233 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 234 #define MVNETA_GMAC_CTRL_4 0x2c90 235 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 236 #define MVNETA_MIB_COUNTERS_BASE 0x3000 237 #define MVNETA_MIB_LATE_COLLISION 0x7c 238 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 239 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 240 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 241 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 242 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 243 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 244 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 245 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 246 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 247 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 248 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 249 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 250 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 251 #define MVNETA_PORT_TX_RESET 0x3cf0 252 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 253 #define MVNETA_TXQ_CMD1_REG 0x3e00 254 #define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3) 255 #define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0) 256 #define MVNETA_REFILL_NUM_CLK_REG 0x3e08 257 #define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff 258 #define MVNETA_TX_MTU 0x3e0c 259 #define MVNETA_TX_TOKEN_SIZE 0x3e14 260 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 261 #define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2)) 262 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000 263 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20 264 #define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff 265 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 266 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 267 268 /* The values of the bucket refill base period and refill period are taken from 269 * the reference manual, and adds up to a base resolution of 10Kbps. This allows 270 * to cover all rate-limit values from 10Kbps up to 5Gbps 271 */ 272 273 /* Base period for the rate limit algorithm */ 274 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100 275 276 /* Number of Base Period to wait between each bucket refill */ 277 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000 278 279 /* The base resolution for rate limiting, in bps. Any max_rate value should be 280 * a multiple of that value. 281 */ 282 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \ 283 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \ 284 MVNETA_TXQ_BUCKET_REFILL_PERIOD)) 285 286 #define MVNETA_LPI_CTRL_0 0x2cc0 287 #define MVNETA_LPI_CTRL_1 0x2cc4 288 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 289 #define MVNETA_LPI_CTRL_2 0x2cc8 290 #define MVNETA_LPI_STATUS 0x2ccc 291 292 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 293 294 /* Descriptor ring Macros */ 295 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 296 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 297 298 /* Various constants */ 299 300 /* Coalescing */ 301 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 302 #define MVNETA_RX_COAL_PKTS 32 303 #define MVNETA_RX_COAL_USEC 100 304 305 /* The two bytes Marvell header. Either contains a special value used 306 * by Marvell switches when a specific hardware mode is enabled (not 307 * supported by this driver) or is filled automatically by zeroes on 308 * the RX side. Those two bytes being at the front of the Ethernet 309 * header, they allow to have the IP header aligned on a 4 bytes 310 * boundary automatically: the hardware skips those two bytes on its 311 * own. 312 */ 313 #define MVNETA_MH_SIZE 2 314 315 #define MVNETA_VLAN_TAG_LEN 4 316 317 #define MVNETA_TX_CSUM_DEF_SIZE 1600 318 #define MVNETA_TX_CSUM_MAX_SIZE 9800 319 #define MVNETA_ACC_MODE_EXT1 1 320 #define MVNETA_ACC_MODE_EXT2 2 321 322 #define MVNETA_MAX_DECODE_WIN 6 323 324 /* Timeout constants */ 325 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 326 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 327 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 328 329 #define MVNETA_TX_MTU_MAX 0x3ffff 330 331 /* The RSS lookup table actually has 256 entries but we do not use 332 * them yet 333 */ 334 #define MVNETA_RSS_LU_TABLE_SIZE 1 335 336 /* Max number of Rx descriptors */ 337 #define MVNETA_MAX_RXD 512 338 339 /* Max number of Tx descriptors */ 340 #define MVNETA_MAX_TXD 1024 341 342 /* Max number of allowed TCP segments for software TSO */ 343 #define MVNETA_MAX_TSO_SEGS 100 344 345 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 346 347 /* descriptor aligned size */ 348 #define MVNETA_DESC_ALIGNED_SIZE 32 349 350 /* Number of bytes to be taken into account by HW when putting incoming data 351 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 352 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 353 */ 354 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 355 356 #define MVNETA_RX_PKT_SIZE(mtu) \ 357 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 358 ETH_HLEN + ETH_FCS_LEN, \ 359 cache_line_size()) 360 361 /* Driver assumes that the last 3 bits are 0 */ 362 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 363 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 364 MVNETA_SKB_HEADROOM)) 365 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 366 367 #define IS_TSO_HEADER(txq, addr) \ 368 ((addr >= txq->tso_hdrs_phys) && \ 369 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 370 371 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 372 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 373 374 enum { 375 ETHTOOL_STAT_EEE_WAKEUP, 376 ETHTOOL_STAT_SKB_ALLOC_ERR, 377 ETHTOOL_STAT_REFILL_ERR, 378 ETHTOOL_XDP_REDIRECT, 379 ETHTOOL_XDP_PASS, 380 ETHTOOL_XDP_DROP, 381 ETHTOOL_XDP_TX, 382 ETHTOOL_XDP_TX_ERR, 383 ETHTOOL_XDP_XMIT, 384 ETHTOOL_XDP_XMIT_ERR, 385 ETHTOOL_MAX_STATS, 386 }; 387 388 struct mvneta_statistic { 389 unsigned short offset; 390 unsigned short type; 391 const char name[ETH_GSTRING_LEN]; 392 }; 393 394 #define T_REG_32 32 395 #define T_REG_64 64 396 #define T_SW 1 397 398 #define MVNETA_XDP_PASS 0 399 #define MVNETA_XDP_DROPPED BIT(0) 400 #define MVNETA_XDP_TX BIT(1) 401 #define MVNETA_XDP_REDIR BIT(2) 402 403 static const struct mvneta_statistic mvneta_statistics[] = { 404 { 0x3000, T_REG_64, "good_octets_received", }, 405 { 0x3010, T_REG_32, "good_frames_received", }, 406 { 0x3008, T_REG_32, "bad_octets_received", }, 407 { 0x3014, T_REG_32, "bad_frames_received", }, 408 { 0x3018, T_REG_32, "broadcast_frames_received", }, 409 { 0x301c, T_REG_32, "multicast_frames_received", }, 410 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 411 { 0x3058, T_REG_32, "good_fc_received", }, 412 { 0x305c, T_REG_32, "bad_fc_received", }, 413 { 0x3060, T_REG_32, "undersize_received", }, 414 { 0x3064, T_REG_32, "fragments_received", }, 415 { 0x3068, T_REG_32, "oversize_received", }, 416 { 0x306c, T_REG_32, "jabber_received", }, 417 { 0x3070, T_REG_32, "mac_receive_error", }, 418 { 0x3074, T_REG_32, "bad_crc_event", }, 419 { 0x3078, T_REG_32, "collision", }, 420 { 0x307c, T_REG_32, "late_collision", }, 421 { 0x2484, T_REG_32, "rx_discard", }, 422 { 0x2488, T_REG_32, "rx_overrun", }, 423 { 0x3020, T_REG_32, "frames_64_octets", }, 424 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 425 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 426 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 427 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 428 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 429 { 0x3038, T_REG_64, "good_octets_sent", }, 430 { 0x3040, T_REG_32, "good_frames_sent", }, 431 { 0x3044, T_REG_32, "excessive_collision", }, 432 { 0x3048, T_REG_32, "multicast_frames_sent", }, 433 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 434 { 0x3054, T_REG_32, "fc_sent", }, 435 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 436 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 437 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 438 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 439 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 440 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 441 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 442 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 443 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 444 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 445 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 446 }; 447 448 struct mvneta_stats { 449 u64 rx_packets; 450 u64 rx_bytes; 451 u64 tx_packets; 452 u64 tx_bytes; 453 /* xdp */ 454 u64 xdp_redirect; 455 u64 xdp_pass; 456 u64 xdp_drop; 457 u64 xdp_xmit; 458 u64 xdp_xmit_err; 459 u64 xdp_tx; 460 u64 xdp_tx_err; 461 }; 462 463 struct mvneta_ethtool_stats { 464 struct mvneta_stats ps; 465 u64 skb_alloc_error; 466 u64 refill_error; 467 }; 468 469 struct mvneta_pcpu_stats { 470 struct u64_stats_sync syncp; 471 472 struct mvneta_ethtool_stats es; 473 u64 rx_dropped; 474 u64 rx_errors; 475 }; 476 477 struct mvneta_pcpu_port { 478 /* Pointer to the shared port */ 479 struct mvneta_port *pp; 480 481 /* Pointer to the CPU-local NAPI struct */ 482 struct napi_struct napi; 483 484 /* Cause of the previous interrupt */ 485 u32 cause_rx_tx; 486 }; 487 488 enum { 489 __MVNETA_DOWN, 490 }; 491 492 struct mvneta_port { 493 u8 id; 494 struct mvneta_pcpu_port __percpu *ports; 495 struct mvneta_pcpu_stats __percpu *stats; 496 497 unsigned long state; 498 499 int pkt_size; 500 void __iomem *base; 501 struct mvneta_rx_queue *rxqs; 502 struct mvneta_tx_queue *txqs; 503 struct net_device *dev; 504 struct hlist_node node_online; 505 struct hlist_node node_dead; 506 int rxq_def; 507 /* Protect the access to the percpu interrupt registers, 508 * ensuring that the configuration remains coherent. 509 */ 510 spinlock_t lock; 511 bool is_stopped; 512 513 u32 cause_rx_tx; 514 struct napi_struct napi; 515 516 struct bpf_prog *xdp_prog; 517 518 /* Core clock */ 519 struct clk *clk; 520 /* AXI clock */ 521 struct clk *clk_bus; 522 u8 mcast_count[256]; 523 u16 tx_ring_size; 524 u16 rx_ring_size; 525 526 phy_interface_t phy_interface; 527 struct device_node *dn; 528 unsigned int tx_csum_limit; 529 struct phylink *phylink; 530 struct phylink_config phylink_config; 531 struct phylink_pcs phylink_pcs; 532 struct phy *comphy; 533 534 struct mvneta_bm *bm_priv; 535 struct mvneta_bm_pool *pool_long; 536 struct mvneta_bm_pool *pool_short; 537 int bm_win_id; 538 539 bool eee_enabled; 540 bool eee_active; 541 bool tx_lpi_enabled; 542 543 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 544 545 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 546 547 /* Flags for special SoC configurations */ 548 bool neta_armada3700; 549 bool neta_ac5; 550 u16 rx_offset_correction; 551 const struct mbus_dram_target_info *dram_target_info; 552 }; 553 554 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 555 * layout of the transmit and reception DMA descriptors, and their 556 * layout is therefore defined by the hardware design 557 */ 558 559 #define MVNETA_TX_L3_OFF_SHIFT 0 560 #define MVNETA_TX_IP_HLEN_SHIFT 8 561 #define MVNETA_TX_L4_UDP BIT(16) 562 #define MVNETA_TX_L3_IP6 BIT(17) 563 #define MVNETA_TXD_IP_CSUM BIT(18) 564 #define MVNETA_TXD_Z_PAD BIT(19) 565 #define MVNETA_TXD_L_DESC BIT(20) 566 #define MVNETA_TXD_F_DESC BIT(21) 567 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 568 MVNETA_TXD_L_DESC | \ 569 MVNETA_TXD_F_DESC) 570 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 571 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 572 573 #define MVNETA_RXD_ERR_CRC 0x0 574 #define MVNETA_RXD_BM_POOL_SHIFT 13 575 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 576 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 577 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 578 #define MVNETA_RXD_ERR_LEN BIT(18) 579 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 580 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 581 #define MVNETA_RXD_L3_IP4 BIT(25) 582 #define MVNETA_RXD_LAST_DESC BIT(26) 583 #define MVNETA_RXD_FIRST_DESC BIT(27) 584 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 585 MVNETA_RXD_LAST_DESC) 586 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 587 588 #if defined(__LITTLE_ENDIAN) 589 struct mvneta_tx_desc { 590 u32 command; /* Options used by HW for packet transmitting.*/ 591 u16 reserved1; /* csum_l4 (for future use) */ 592 u16 data_size; /* Data size of transmitted packet in bytes */ 593 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 594 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 595 u32 reserved3[4]; /* Reserved - (for future use) */ 596 }; 597 598 struct mvneta_rx_desc { 599 u32 status; /* Info about received packet */ 600 u16 reserved1; /* pnc_info - (for future use, PnC) */ 601 u16 data_size; /* Size of received packet in bytes */ 602 603 u32 buf_phys_addr; /* Physical address of the buffer */ 604 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 605 606 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 607 u16 reserved3; /* prefetch_cmd, for future use */ 608 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 609 610 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 611 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 612 }; 613 #else 614 struct mvneta_tx_desc { 615 u16 data_size; /* Data size of transmitted packet in bytes */ 616 u16 reserved1; /* csum_l4 (for future use) */ 617 u32 command; /* Options used by HW for packet transmitting.*/ 618 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 619 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 620 u32 reserved3[4]; /* Reserved - (for future use) */ 621 }; 622 623 struct mvneta_rx_desc { 624 u16 data_size; /* Size of received packet in bytes */ 625 u16 reserved1; /* pnc_info - (for future use, PnC) */ 626 u32 status; /* Info about received packet */ 627 628 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 629 u32 buf_phys_addr; /* Physical address of the buffer */ 630 631 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 632 u16 reserved3; /* prefetch_cmd, for future use */ 633 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 634 635 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 636 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 637 }; 638 #endif 639 640 enum mvneta_tx_buf_type { 641 MVNETA_TYPE_SKB, 642 MVNETA_TYPE_XDP_TX, 643 MVNETA_TYPE_XDP_NDO, 644 }; 645 646 struct mvneta_tx_buf { 647 enum mvneta_tx_buf_type type; 648 union { 649 struct xdp_frame *xdpf; 650 struct sk_buff *skb; 651 }; 652 }; 653 654 struct mvneta_tx_queue { 655 /* Number of this TX queue, in the range 0-7 */ 656 u8 id; 657 658 /* Number of TX DMA descriptors in the descriptor ring */ 659 int size; 660 661 /* Number of currently used TX DMA descriptor in the 662 * descriptor ring 663 */ 664 int count; 665 int pending; 666 int tx_stop_threshold; 667 int tx_wake_threshold; 668 669 /* Array of transmitted buffers */ 670 struct mvneta_tx_buf *buf; 671 672 /* Index of last TX DMA descriptor that was inserted */ 673 int txq_put_index; 674 675 /* Index of the TX DMA descriptor to be cleaned up */ 676 int txq_get_index; 677 678 u32 done_pkts_coal; 679 680 /* Virtual address of the TX DMA descriptors array */ 681 struct mvneta_tx_desc *descs; 682 683 /* DMA address of the TX DMA descriptors array */ 684 dma_addr_t descs_phys; 685 686 /* Index of the last TX DMA descriptor */ 687 int last_desc; 688 689 /* Index of the next TX DMA descriptor to process */ 690 int next_desc_to_proc; 691 692 /* DMA buffers for TSO headers */ 693 char *tso_hdrs; 694 695 /* DMA address of TSO headers */ 696 dma_addr_t tso_hdrs_phys; 697 698 /* Affinity mask for CPUs*/ 699 cpumask_t affinity_mask; 700 }; 701 702 struct mvneta_rx_queue { 703 /* rx queue number, in the range 0-7 */ 704 u8 id; 705 706 /* num of rx descriptors in the rx descriptor ring */ 707 int size; 708 709 u32 pkts_coal; 710 u32 time_coal; 711 712 /* page_pool */ 713 struct page_pool *page_pool; 714 struct xdp_rxq_info xdp_rxq; 715 716 /* Virtual address of the RX buffer */ 717 void **buf_virt_addr; 718 719 /* Virtual address of the RX DMA descriptors array */ 720 struct mvneta_rx_desc *descs; 721 722 /* DMA address of the RX DMA descriptors array */ 723 dma_addr_t descs_phys; 724 725 /* Index of the last RX DMA descriptor */ 726 int last_desc; 727 728 /* Index of the next RX DMA descriptor to process */ 729 int next_desc_to_proc; 730 731 /* Index of first RX DMA descriptor to refill */ 732 int first_to_refill; 733 u32 refill_num; 734 }; 735 736 static enum cpuhp_state online_hpstate; 737 /* The hardware supports eight (8) rx queues, but we are only allowing 738 * the first one to be used. Therefore, let's just allocate one queue. 739 */ 740 static int rxq_number = 8; 741 static int txq_number = 8; 742 743 static int rxq_def; 744 745 static int rx_copybreak __read_mostly = 256; 746 747 /* HW BM need that each port be identify by a unique ID */ 748 static int global_port_id; 749 750 #define MVNETA_DRIVER_NAME "mvneta" 751 #define MVNETA_DRIVER_VERSION "1.0" 752 753 /* Utility/helper methods */ 754 755 /* Write helper method */ 756 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 757 { 758 writel(data, pp->base + offset); 759 } 760 761 /* Read helper method */ 762 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 763 { 764 return readl(pp->base + offset); 765 } 766 767 /* Increment txq get counter */ 768 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 769 { 770 txq->txq_get_index++; 771 if (txq->txq_get_index == txq->size) 772 txq->txq_get_index = 0; 773 } 774 775 /* Increment txq put counter */ 776 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 777 { 778 txq->txq_put_index++; 779 if (txq->txq_put_index == txq->size) 780 txq->txq_put_index = 0; 781 } 782 783 784 /* Clear all MIB counters */ 785 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 786 { 787 int i; 788 789 /* Perform dummy reads from MIB counters */ 790 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 791 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 792 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 793 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 794 } 795 796 /* Get System Network Statistics */ 797 static void 798 mvneta_get_stats64(struct net_device *dev, 799 struct rtnl_link_stats64 *stats) 800 { 801 struct mvneta_port *pp = netdev_priv(dev); 802 unsigned int start; 803 int cpu; 804 805 for_each_possible_cpu(cpu) { 806 struct mvneta_pcpu_stats *cpu_stats; 807 u64 rx_packets; 808 u64 rx_bytes; 809 u64 rx_dropped; 810 u64 rx_errors; 811 u64 tx_packets; 812 u64 tx_bytes; 813 814 cpu_stats = per_cpu_ptr(pp->stats, cpu); 815 do { 816 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 817 rx_packets = cpu_stats->es.ps.rx_packets; 818 rx_bytes = cpu_stats->es.ps.rx_bytes; 819 rx_dropped = cpu_stats->rx_dropped; 820 rx_errors = cpu_stats->rx_errors; 821 tx_packets = cpu_stats->es.ps.tx_packets; 822 tx_bytes = cpu_stats->es.ps.tx_bytes; 823 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 824 825 stats->rx_packets += rx_packets; 826 stats->rx_bytes += rx_bytes; 827 stats->rx_dropped += rx_dropped; 828 stats->rx_errors += rx_errors; 829 stats->tx_packets += tx_packets; 830 stats->tx_bytes += tx_bytes; 831 } 832 833 stats->tx_dropped = dev->stats.tx_dropped; 834 } 835 836 /* Rx descriptors helper methods */ 837 838 /* Checks whether the RX descriptor having this status is both the first 839 * and the last descriptor for the RX packet. Each RX packet is currently 840 * received through a single RX descriptor, so not having each RX 841 * descriptor with its first and last bits set is an error 842 */ 843 static int mvneta_rxq_desc_is_first_last(u32 status) 844 { 845 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 846 MVNETA_RXD_FIRST_LAST_DESC; 847 } 848 849 /* Add number of descriptors ready to receive new packets */ 850 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 851 struct mvneta_rx_queue *rxq, 852 int ndescs) 853 { 854 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 855 * be added at once 856 */ 857 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 858 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 859 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 860 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 861 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 862 } 863 864 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 865 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 866 } 867 868 /* Get number of RX descriptors occupied by received packets */ 869 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 870 struct mvneta_rx_queue *rxq) 871 { 872 u32 val; 873 874 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 875 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 876 } 877 878 /* Update num of rx desc called upon return from rx path or 879 * from mvneta_rxq_drop_pkts(). 880 */ 881 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 882 struct mvneta_rx_queue *rxq, 883 int rx_done, int rx_filled) 884 { 885 u32 val; 886 887 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 888 val = rx_done | 889 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 890 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 891 return; 892 } 893 894 /* Only 255 descriptors can be added at once */ 895 while ((rx_done > 0) || (rx_filled > 0)) { 896 if (rx_done <= 0xff) { 897 val = rx_done; 898 rx_done = 0; 899 } else { 900 val = 0xff; 901 rx_done -= 0xff; 902 } 903 if (rx_filled <= 0xff) { 904 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 905 rx_filled = 0; 906 } else { 907 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 908 rx_filled -= 0xff; 909 } 910 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 911 } 912 } 913 914 /* Get pointer to next RX descriptor to be processed by SW */ 915 static struct mvneta_rx_desc * 916 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 917 { 918 int rx_desc = rxq->next_desc_to_proc; 919 920 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 921 prefetch(rxq->descs + rxq->next_desc_to_proc); 922 return rxq->descs + rx_desc; 923 } 924 925 /* Change maximum receive size of the port. */ 926 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 927 { 928 u32 val; 929 930 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 931 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 932 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 933 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 934 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 935 } 936 937 938 /* Set rx queue offset */ 939 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 940 struct mvneta_rx_queue *rxq, 941 int offset) 942 { 943 u32 val; 944 945 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 946 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 947 948 /* Offset is in */ 949 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 950 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 951 } 952 953 954 /* Tx descriptors helper methods */ 955 956 /* Update HW with number of TX descriptors to be sent */ 957 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 958 struct mvneta_tx_queue *txq, 959 int pend_desc) 960 { 961 u32 val; 962 963 pend_desc += txq->pending; 964 965 /* Only 255 Tx descriptors can be added at once */ 966 do { 967 val = min(pend_desc, 255); 968 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 969 pend_desc -= val; 970 } while (pend_desc > 0); 971 txq->pending = 0; 972 } 973 974 /* Get pointer to next TX descriptor to be processed (send) by HW */ 975 static struct mvneta_tx_desc * 976 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 977 { 978 int tx_desc = txq->next_desc_to_proc; 979 980 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 981 return txq->descs + tx_desc; 982 } 983 984 /* Release the last allocated TX descriptor. Useful to handle DMA 985 * mapping failures in the TX path. 986 */ 987 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 988 { 989 if (txq->next_desc_to_proc == 0) 990 txq->next_desc_to_proc = txq->last_desc - 1; 991 else 992 txq->next_desc_to_proc--; 993 } 994 995 /* Set rxq buf size */ 996 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 997 struct mvneta_rx_queue *rxq, 998 int buf_size) 999 { 1000 u32 val; 1001 1002 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 1003 1004 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 1005 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 1006 1007 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 1008 } 1009 1010 /* Disable buffer management (BM) */ 1011 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 1012 struct mvneta_rx_queue *rxq) 1013 { 1014 u32 val; 1015 1016 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1017 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 1018 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1019 } 1020 1021 /* Enable buffer management (BM) */ 1022 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 1023 struct mvneta_rx_queue *rxq) 1024 { 1025 u32 val; 1026 1027 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1028 val |= MVNETA_RXQ_HW_BUF_ALLOC; 1029 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1030 } 1031 1032 /* Notify HW about port's assignment of pool for bigger packets */ 1033 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1034 struct mvneta_rx_queue *rxq) 1035 { 1036 u32 val; 1037 1038 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1039 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1040 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1041 1042 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1043 } 1044 1045 /* Notify HW about port's assignment of pool for smaller packets */ 1046 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1047 struct mvneta_rx_queue *rxq) 1048 { 1049 u32 val; 1050 1051 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1052 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1053 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1054 1055 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1056 } 1057 1058 /* Set port's receive buffer size for assigned BM pool */ 1059 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1060 int buf_size, 1061 u8 pool_id) 1062 { 1063 u32 val; 1064 1065 if (!IS_ALIGNED(buf_size, 8)) { 1066 dev_warn(pp->dev->dev.parent, 1067 "illegal buf_size value %d, round to %d\n", 1068 buf_size, ALIGN(buf_size, 8)); 1069 buf_size = ALIGN(buf_size, 8); 1070 } 1071 1072 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1073 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1074 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1075 } 1076 1077 /* Configure MBUS window in order to enable access BM internal SRAM */ 1078 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1079 u8 target, u8 attr) 1080 { 1081 u32 win_enable, win_protect; 1082 int i; 1083 1084 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1085 1086 if (pp->bm_win_id < 0) { 1087 /* Find first not occupied window */ 1088 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1089 if (win_enable & (1 << i)) { 1090 pp->bm_win_id = i; 1091 break; 1092 } 1093 } 1094 if (i == MVNETA_MAX_DECODE_WIN) 1095 return -ENOMEM; 1096 } else { 1097 i = pp->bm_win_id; 1098 } 1099 1100 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1101 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1102 1103 if (i < 4) 1104 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1105 1106 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1107 (attr << 8) | target); 1108 1109 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1110 1111 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1112 win_protect |= 3 << (2 * i); 1113 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1114 1115 win_enable &= ~(1 << i); 1116 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1117 1118 return 0; 1119 } 1120 1121 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1122 { 1123 u32 wsize; 1124 u8 target, attr; 1125 int err; 1126 1127 /* Get BM window information */ 1128 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1129 &target, &attr); 1130 if (err < 0) 1131 return err; 1132 1133 pp->bm_win_id = -1; 1134 1135 /* Open NETA -> BM window */ 1136 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1137 target, attr); 1138 if (err < 0) { 1139 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1140 return err; 1141 } 1142 return 0; 1143 } 1144 1145 /* Assign and initialize pools for port. In case of fail 1146 * buffer manager will remain disabled for current port. 1147 */ 1148 static int mvneta_bm_port_init(struct platform_device *pdev, 1149 struct mvneta_port *pp) 1150 { 1151 struct device_node *dn = pdev->dev.of_node; 1152 u32 long_pool_id, short_pool_id; 1153 1154 if (!pp->neta_armada3700) { 1155 int ret; 1156 1157 ret = mvneta_bm_port_mbus_init(pp); 1158 if (ret) 1159 return ret; 1160 } 1161 1162 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1163 netdev_info(pp->dev, "missing long pool id\n"); 1164 return -EINVAL; 1165 } 1166 1167 /* Create port's long pool depending on mtu */ 1168 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1169 MVNETA_BM_LONG, pp->id, 1170 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1171 if (!pp->pool_long) { 1172 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1173 return -ENOMEM; 1174 } 1175 1176 pp->pool_long->port_map |= 1 << pp->id; 1177 1178 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1179 pp->pool_long->id); 1180 1181 /* If short pool id is not defined, assume using single pool */ 1182 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1183 short_pool_id = long_pool_id; 1184 1185 /* Create port's short pool */ 1186 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1187 MVNETA_BM_SHORT, pp->id, 1188 MVNETA_BM_SHORT_PKT_SIZE); 1189 if (!pp->pool_short) { 1190 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1191 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1192 return -ENOMEM; 1193 } 1194 1195 if (short_pool_id != long_pool_id) { 1196 pp->pool_short->port_map |= 1 << pp->id; 1197 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1198 pp->pool_short->id); 1199 } 1200 1201 return 0; 1202 } 1203 1204 /* Update settings of a pool for bigger packets */ 1205 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1206 { 1207 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1208 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1209 int num; 1210 1211 /* Release all buffers from long pool */ 1212 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1213 if (hwbm_pool->buf_num) { 1214 WARN(1, "cannot free all buffers in pool %d\n", 1215 bm_pool->id); 1216 goto bm_mtu_err; 1217 } 1218 1219 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1220 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1221 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1222 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1223 1224 /* Fill entire long pool */ 1225 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1226 if (num != hwbm_pool->size) { 1227 WARN(1, "pool %d: %d of %d allocated\n", 1228 bm_pool->id, num, hwbm_pool->size); 1229 goto bm_mtu_err; 1230 } 1231 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1232 1233 return; 1234 1235 bm_mtu_err: 1236 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1237 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1238 1239 pp->bm_priv = NULL; 1240 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1241 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1242 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1243 } 1244 1245 /* Start the Ethernet port RX and TX activity */ 1246 static void mvneta_port_up(struct mvneta_port *pp) 1247 { 1248 int queue; 1249 u32 q_map; 1250 1251 /* Enable all initialized TXs. */ 1252 q_map = 0; 1253 for (queue = 0; queue < txq_number; queue++) { 1254 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1255 if (txq->descs) 1256 q_map |= (1 << queue); 1257 } 1258 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1259 1260 q_map = 0; 1261 /* Enable all initialized RXQs. */ 1262 for (queue = 0; queue < rxq_number; queue++) { 1263 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1264 1265 if (rxq->descs) 1266 q_map |= (1 << queue); 1267 } 1268 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1269 } 1270 1271 /* Stop the Ethernet port activity */ 1272 static void mvneta_port_down(struct mvneta_port *pp) 1273 { 1274 u32 val; 1275 int count; 1276 1277 /* Stop Rx port activity. Check port Rx activity. */ 1278 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1279 1280 /* Issue stop command for active channels only */ 1281 if (val != 0) 1282 mvreg_write(pp, MVNETA_RXQ_CMD, 1283 val << MVNETA_RXQ_DISABLE_SHIFT); 1284 1285 /* Wait for all Rx activity to terminate. */ 1286 count = 0; 1287 do { 1288 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1289 netdev_warn(pp->dev, 1290 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1291 val); 1292 break; 1293 } 1294 mdelay(1); 1295 1296 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1297 } while (val & MVNETA_RXQ_ENABLE_MASK); 1298 1299 /* Stop Tx port activity. Check port Tx activity. Issue stop 1300 * command for active channels only 1301 */ 1302 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1303 1304 if (val != 0) 1305 mvreg_write(pp, MVNETA_TXQ_CMD, 1306 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1307 1308 /* Wait for all Tx activity to terminate. */ 1309 count = 0; 1310 do { 1311 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1312 netdev_warn(pp->dev, 1313 "TIMEOUT for TX stopped status=0x%08x\n", 1314 val); 1315 break; 1316 } 1317 mdelay(1); 1318 1319 /* Check TX Command reg that all Txqs are stopped */ 1320 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1321 1322 } while (val & MVNETA_TXQ_ENABLE_MASK); 1323 1324 /* Double check to verify that TX FIFO is empty */ 1325 count = 0; 1326 do { 1327 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1328 netdev_warn(pp->dev, 1329 "TX FIFO empty timeout status=0x%08x\n", 1330 val); 1331 break; 1332 } 1333 mdelay(1); 1334 1335 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1336 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1337 (val & MVNETA_TX_IN_PRGRS)); 1338 1339 udelay(200); 1340 } 1341 1342 /* Enable the port by setting the port enable bit of the MAC control register */ 1343 static void mvneta_port_enable(struct mvneta_port *pp) 1344 { 1345 u32 val; 1346 1347 /* Enable port */ 1348 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1349 val |= MVNETA_GMAC0_PORT_ENABLE; 1350 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1351 } 1352 1353 /* Disable the port and wait for about 200 usec before retuning */ 1354 static void mvneta_port_disable(struct mvneta_port *pp) 1355 { 1356 u32 val; 1357 1358 /* Reset the Enable bit in the Serial Control Register */ 1359 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1360 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1361 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1362 1363 udelay(200); 1364 } 1365 1366 /* Multicast tables methods */ 1367 1368 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1369 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1370 { 1371 int offset; 1372 u32 val; 1373 1374 if (queue == -1) { 1375 val = 0; 1376 } else { 1377 val = 0x1 | (queue << 1); 1378 val |= (val << 24) | (val << 16) | (val << 8); 1379 } 1380 1381 for (offset = 0; offset <= 0xc; offset += 4) 1382 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1383 } 1384 1385 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1386 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1387 { 1388 int offset; 1389 u32 val; 1390 1391 if (queue == -1) { 1392 val = 0; 1393 } else { 1394 val = 0x1 | (queue << 1); 1395 val |= (val << 24) | (val << 16) | (val << 8); 1396 } 1397 1398 for (offset = 0; offset <= 0xfc; offset += 4) 1399 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1400 1401 } 1402 1403 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1404 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1405 { 1406 int offset; 1407 u32 val; 1408 1409 if (queue == -1) { 1410 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1411 val = 0; 1412 } else { 1413 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1414 val = 0x1 | (queue << 1); 1415 val |= (val << 24) | (val << 16) | (val << 8); 1416 } 1417 1418 for (offset = 0; offset <= 0xfc; offset += 4) 1419 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1420 } 1421 1422 static void mvneta_percpu_unmask_interrupt(void *arg) 1423 { 1424 struct mvneta_port *pp = arg; 1425 1426 /* All the queue are unmasked, but actually only the ones 1427 * mapped to this CPU will be unmasked 1428 */ 1429 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1430 MVNETA_RX_INTR_MASK_ALL | 1431 MVNETA_TX_INTR_MASK_ALL | 1432 MVNETA_MISCINTR_INTR_MASK); 1433 } 1434 1435 static void mvneta_percpu_mask_interrupt(void *arg) 1436 { 1437 struct mvneta_port *pp = arg; 1438 1439 /* All the queue are masked, but actually only the ones 1440 * mapped to this CPU will be masked 1441 */ 1442 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1443 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1444 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1445 } 1446 1447 static void mvneta_percpu_clear_intr_cause(void *arg) 1448 { 1449 struct mvneta_port *pp = arg; 1450 1451 /* All the queue are cleared, but actually only the ones 1452 * mapped to this CPU will be cleared 1453 */ 1454 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1455 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1456 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1457 } 1458 1459 /* This method sets defaults to the NETA port: 1460 * Clears interrupt Cause and Mask registers. 1461 * Clears all MAC tables. 1462 * Sets defaults to all registers. 1463 * Resets RX and TX descriptor rings. 1464 * Resets PHY. 1465 * This method can be called after mvneta_port_down() to return the port 1466 * settings to defaults. 1467 */ 1468 static void mvneta_defaults_set(struct mvneta_port *pp) 1469 { 1470 int cpu; 1471 int queue; 1472 u32 val; 1473 int max_cpu = num_present_cpus(); 1474 1475 /* Clear all Cause registers */ 1476 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1477 1478 /* Mask all interrupts */ 1479 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1480 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1481 1482 /* Enable MBUS Retry bit16 */ 1483 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1484 1485 /* Set CPU queue access map. CPUs are assigned to the RX and 1486 * TX queues modulo their number. If there is only one TX 1487 * queue then it is assigned to the CPU associated to the 1488 * default RX queue. 1489 */ 1490 for_each_present_cpu(cpu) { 1491 int rxq_map = 0, txq_map = 0; 1492 int rxq, txq; 1493 if (!pp->neta_armada3700) { 1494 for (rxq = 0; rxq < rxq_number; rxq++) 1495 if ((rxq % max_cpu) == cpu) 1496 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1497 1498 for (txq = 0; txq < txq_number; txq++) 1499 if ((txq % max_cpu) == cpu) 1500 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1501 1502 /* With only one TX queue we configure a special case 1503 * which will allow to get all the irq on a single 1504 * CPU 1505 */ 1506 if (txq_number == 1) 1507 txq_map = (cpu == pp->rxq_def) ? 1508 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1509 1510 } else { 1511 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1512 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1513 } 1514 1515 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1516 } 1517 1518 /* Reset RX and TX DMAs */ 1519 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1520 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1521 1522 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1523 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1524 for (queue = 0; queue < txq_number; queue++) { 1525 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1526 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1527 } 1528 1529 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1530 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1531 1532 /* Set Port Acceleration Mode */ 1533 if (pp->bm_priv) 1534 /* HW buffer management + legacy parser */ 1535 val = MVNETA_ACC_MODE_EXT2; 1536 else 1537 /* SW buffer management + legacy parser */ 1538 val = MVNETA_ACC_MODE_EXT1; 1539 mvreg_write(pp, MVNETA_ACC_MODE, val); 1540 1541 if (pp->bm_priv) 1542 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1543 1544 /* Update val of portCfg register accordingly with all RxQueue types */ 1545 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1546 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1547 1548 val = 0; 1549 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1550 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1551 1552 /* Build PORT_SDMA_CONFIG_REG */ 1553 val = 0; 1554 1555 /* Default burst size */ 1556 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1557 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1558 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1559 1560 #if defined(__BIG_ENDIAN) 1561 val |= MVNETA_DESC_SWAP; 1562 #endif 1563 1564 /* Assign port SDMA configuration */ 1565 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1566 1567 /* Disable PHY polling in hardware, since we're using the 1568 * kernel phylib to do this. 1569 */ 1570 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1571 val &= ~MVNETA_PHY_POLLING_ENABLE; 1572 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1573 1574 mvneta_set_ucast_table(pp, -1); 1575 mvneta_set_special_mcast_table(pp, -1); 1576 mvneta_set_other_mcast_table(pp, -1); 1577 1578 /* Set port interrupt enable register - default enable all */ 1579 mvreg_write(pp, MVNETA_INTR_ENABLE, 1580 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1581 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1582 1583 mvneta_mib_counters_clear(pp); 1584 } 1585 1586 /* Set max sizes for tx queues */ 1587 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1588 1589 { 1590 u32 val, size, mtu; 1591 int queue; 1592 1593 mtu = max_tx_size * 8; 1594 if (mtu > MVNETA_TX_MTU_MAX) 1595 mtu = MVNETA_TX_MTU_MAX; 1596 1597 /* Set MTU */ 1598 val = mvreg_read(pp, MVNETA_TX_MTU); 1599 val &= ~MVNETA_TX_MTU_MAX; 1600 val |= mtu; 1601 mvreg_write(pp, MVNETA_TX_MTU, val); 1602 1603 /* TX token size and all TXQs token size must be larger that MTU */ 1604 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1605 1606 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1607 if (size < mtu) { 1608 size = mtu; 1609 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1610 val |= size; 1611 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1612 } 1613 for (queue = 0; queue < txq_number; queue++) { 1614 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1615 1616 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1617 if (size < mtu) { 1618 size = mtu; 1619 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1620 val |= size; 1621 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1622 } 1623 } 1624 } 1625 1626 /* Set unicast address */ 1627 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1628 int queue) 1629 { 1630 unsigned int unicast_reg; 1631 unsigned int tbl_offset; 1632 unsigned int reg_offset; 1633 1634 /* Locate the Unicast table entry */ 1635 last_nibble = (0xf & last_nibble); 1636 1637 /* offset from unicast tbl base */ 1638 tbl_offset = (last_nibble / 4) * 4; 1639 1640 /* offset within the above reg */ 1641 reg_offset = last_nibble % 4; 1642 1643 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1644 1645 if (queue == -1) { 1646 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1647 unicast_reg &= ~(0xff << (8 * reg_offset)); 1648 } else { 1649 unicast_reg &= ~(0xff << (8 * reg_offset)); 1650 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1651 } 1652 1653 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1654 } 1655 1656 /* Set mac address */ 1657 static void mvneta_mac_addr_set(struct mvneta_port *pp, 1658 const unsigned char *addr, int queue) 1659 { 1660 unsigned int mac_h; 1661 unsigned int mac_l; 1662 1663 if (queue != -1) { 1664 mac_l = (addr[4] << 8) | (addr[5]); 1665 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1666 (addr[2] << 8) | (addr[3] << 0); 1667 1668 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1669 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1670 } 1671 1672 /* Accept frames of this address */ 1673 mvneta_set_ucast_addr(pp, addr[5], queue); 1674 } 1675 1676 /* Set the number of packets that will be received before RX interrupt 1677 * will be generated by HW. 1678 */ 1679 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1680 struct mvneta_rx_queue *rxq, u32 value) 1681 { 1682 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1683 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1684 } 1685 1686 /* Set the time delay in usec before RX interrupt will be generated by 1687 * HW. 1688 */ 1689 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1690 struct mvneta_rx_queue *rxq, u32 value) 1691 { 1692 u32 val; 1693 unsigned long clk_rate; 1694 1695 clk_rate = clk_get_rate(pp->clk); 1696 val = (clk_rate / 1000000) * value; 1697 1698 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1699 } 1700 1701 /* Set threshold for TX_DONE pkts coalescing */ 1702 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1703 struct mvneta_tx_queue *txq, u32 value) 1704 { 1705 u32 val; 1706 1707 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1708 1709 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1710 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1711 1712 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1713 } 1714 1715 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1716 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1717 u32 phys_addr, void *virt_addr, 1718 struct mvneta_rx_queue *rxq) 1719 { 1720 int i; 1721 1722 rx_desc->buf_phys_addr = phys_addr; 1723 i = rx_desc - rxq->descs; 1724 rxq->buf_virt_addr[i] = virt_addr; 1725 } 1726 1727 /* Decrement sent descriptors counter */ 1728 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1729 struct mvneta_tx_queue *txq, 1730 int sent_desc) 1731 { 1732 u32 val; 1733 1734 /* Only 255 TX descriptors can be updated at once */ 1735 while (sent_desc > 0xff) { 1736 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1737 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1738 sent_desc = sent_desc - 0xff; 1739 } 1740 1741 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1742 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1743 } 1744 1745 /* Get number of TX descriptors already sent by HW */ 1746 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1747 struct mvneta_tx_queue *txq) 1748 { 1749 u32 val; 1750 int sent_desc; 1751 1752 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1753 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1754 MVNETA_TXQ_SENT_DESC_SHIFT; 1755 1756 return sent_desc; 1757 } 1758 1759 /* Get number of sent descriptors and decrement counter. 1760 * The number of sent descriptors is returned. 1761 */ 1762 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1763 struct mvneta_tx_queue *txq) 1764 { 1765 int sent_desc; 1766 1767 /* Get number of sent descriptors */ 1768 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1769 1770 /* Decrement sent descriptors counter */ 1771 if (sent_desc) 1772 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1773 1774 return sent_desc; 1775 } 1776 1777 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1778 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1779 int ip_hdr_len, int l4_proto) 1780 { 1781 u32 command; 1782 1783 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1784 * G_L4_chk, L4_type; required only for checksum 1785 * calculation 1786 */ 1787 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1788 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1789 1790 if (l3_proto == htons(ETH_P_IP)) 1791 command |= MVNETA_TXD_IP_CSUM; 1792 else 1793 command |= MVNETA_TX_L3_IP6; 1794 1795 if (l4_proto == IPPROTO_TCP) 1796 command |= MVNETA_TX_L4_CSUM_FULL; 1797 else if (l4_proto == IPPROTO_UDP) 1798 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1799 else 1800 command |= MVNETA_TX_L4_CSUM_NOT; 1801 1802 return command; 1803 } 1804 1805 1806 /* Display more error info */ 1807 static void mvneta_rx_error(struct mvneta_port *pp, 1808 struct mvneta_rx_desc *rx_desc) 1809 { 1810 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1811 u32 status = rx_desc->status; 1812 1813 /* update per-cpu counter */ 1814 u64_stats_update_begin(&stats->syncp); 1815 stats->rx_errors++; 1816 u64_stats_update_end(&stats->syncp); 1817 1818 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1819 case MVNETA_RXD_ERR_CRC: 1820 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1821 status, rx_desc->data_size); 1822 break; 1823 case MVNETA_RXD_ERR_OVERRUN: 1824 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1825 status, rx_desc->data_size); 1826 break; 1827 case MVNETA_RXD_ERR_LEN: 1828 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1829 status, rx_desc->data_size); 1830 break; 1831 case MVNETA_RXD_ERR_RESOURCE: 1832 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1833 status, rx_desc->data_size); 1834 break; 1835 } 1836 } 1837 1838 /* Handle RX checksum offload based on the descriptor's status */ 1839 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status) 1840 { 1841 if ((pp->dev->features & NETIF_F_RXCSUM) && 1842 (status & MVNETA_RXD_L3_IP4) && 1843 (status & MVNETA_RXD_L4_CSUM_OK)) 1844 return CHECKSUM_UNNECESSARY; 1845 1846 return CHECKSUM_NONE; 1847 } 1848 1849 /* Return tx queue pointer (find last set bit) according to <cause> returned 1850 * form tx_done reg. <cause> must not be null. The return value is always a 1851 * valid queue for matching the first one found in <cause>. 1852 */ 1853 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1854 u32 cause) 1855 { 1856 int queue = fls(cause) - 1; 1857 1858 return &pp->txqs[queue]; 1859 } 1860 1861 /* Free tx queue skbuffs */ 1862 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1863 struct mvneta_tx_queue *txq, int num, 1864 struct netdev_queue *nq, bool napi) 1865 { 1866 unsigned int bytes_compl = 0, pkts_compl = 0; 1867 struct xdp_frame_bulk bq; 1868 int i; 1869 1870 xdp_frame_bulk_init(&bq); 1871 1872 rcu_read_lock(); /* need for xdp_return_frame_bulk */ 1873 1874 for (i = 0; i < num; i++) { 1875 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1876 struct mvneta_tx_desc *tx_desc = txq->descs + 1877 txq->txq_get_index; 1878 1879 mvneta_txq_inc_get(txq); 1880 1881 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1882 buf->type != MVNETA_TYPE_XDP_TX) 1883 dma_unmap_single(pp->dev->dev.parent, 1884 tx_desc->buf_phys_addr, 1885 tx_desc->data_size, DMA_TO_DEVICE); 1886 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1887 bytes_compl += buf->skb->len; 1888 pkts_compl++; 1889 dev_kfree_skb_any(buf->skb); 1890 } else if ((buf->type == MVNETA_TYPE_XDP_TX || 1891 buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) { 1892 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1893 xdp_return_frame_rx_napi(buf->xdpf); 1894 else 1895 xdp_return_frame_bulk(buf->xdpf, &bq); 1896 } 1897 } 1898 xdp_flush_frame_bulk(&bq); 1899 1900 rcu_read_unlock(); 1901 1902 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1903 } 1904 1905 /* Handle end of transmission */ 1906 static void mvneta_txq_done(struct mvneta_port *pp, 1907 struct mvneta_tx_queue *txq) 1908 { 1909 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1910 int tx_done; 1911 1912 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1913 if (!tx_done) 1914 return; 1915 1916 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1917 1918 txq->count -= tx_done; 1919 1920 if (netif_tx_queue_stopped(nq)) { 1921 if (txq->count <= txq->tx_wake_threshold) 1922 netif_tx_wake_queue(nq); 1923 } 1924 } 1925 1926 /* Refill processing for SW buffer management */ 1927 /* Allocate page per descriptor */ 1928 static int mvneta_rx_refill(struct mvneta_port *pp, 1929 struct mvneta_rx_desc *rx_desc, 1930 struct mvneta_rx_queue *rxq, 1931 gfp_t gfp_mask) 1932 { 1933 dma_addr_t phys_addr; 1934 struct page *page; 1935 1936 page = page_pool_alloc_pages(rxq->page_pool, 1937 gfp_mask | __GFP_NOWARN); 1938 if (!page) 1939 return -ENOMEM; 1940 1941 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1942 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1943 1944 return 0; 1945 } 1946 1947 /* Handle tx checksum */ 1948 static u32 mvneta_skb_tx_csum(struct sk_buff *skb) 1949 { 1950 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1951 int ip_hdr_len = 0; 1952 __be16 l3_proto = vlan_get_protocol(skb); 1953 u8 l4_proto; 1954 1955 if (l3_proto == htons(ETH_P_IP)) { 1956 struct iphdr *ip4h = ip_hdr(skb); 1957 1958 /* Calculate IPv4 checksum and L4 checksum */ 1959 ip_hdr_len = ip4h->ihl; 1960 l4_proto = ip4h->protocol; 1961 } else if (l3_proto == htons(ETH_P_IPV6)) { 1962 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1963 1964 /* Read l4_protocol from one of IPv6 extra headers */ 1965 if (skb_network_header_len(skb) > 0) 1966 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1967 l4_proto = ip6h->nexthdr; 1968 } else 1969 return MVNETA_TX_L4_CSUM_NOT; 1970 1971 return mvneta_txq_desc_csum(skb_network_offset(skb), 1972 l3_proto, ip_hdr_len, l4_proto); 1973 } 1974 1975 return MVNETA_TX_L4_CSUM_NOT; 1976 } 1977 1978 /* Drop packets received by the RXQ and free buffers */ 1979 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1980 struct mvneta_rx_queue *rxq) 1981 { 1982 int rx_done, i; 1983 1984 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1985 if (rx_done) 1986 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1987 1988 if (pp->bm_priv) { 1989 for (i = 0; i < rx_done; i++) { 1990 struct mvneta_rx_desc *rx_desc = 1991 mvneta_rxq_next_desc_get(rxq); 1992 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1993 struct mvneta_bm_pool *bm_pool; 1994 1995 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1996 /* Return dropped buffer to the pool */ 1997 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1998 rx_desc->buf_phys_addr); 1999 } 2000 return; 2001 } 2002 2003 for (i = 0; i < rxq->size; i++) { 2004 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 2005 void *data = rxq->buf_virt_addr[i]; 2006 if (!data || !(rx_desc->buf_phys_addr)) 2007 continue; 2008 2009 page_pool_put_full_page(rxq->page_pool, data, false); 2010 } 2011 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 2012 xdp_rxq_info_unreg(&rxq->xdp_rxq); 2013 page_pool_destroy(rxq->page_pool); 2014 rxq->page_pool = NULL; 2015 } 2016 2017 static void 2018 mvneta_update_stats(struct mvneta_port *pp, 2019 struct mvneta_stats *ps) 2020 { 2021 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2022 2023 u64_stats_update_begin(&stats->syncp); 2024 stats->es.ps.rx_packets += ps->rx_packets; 2025 stats->es.ps.rx_bytes += ps->rx_bytes; 2026 /* xdp */ 2027 stats->es.ps.xdp_redirect += ps->xdp_redirect; 2028 stats->es.ps.xdp_pass += ps->xdp_pass; 2029 stats->es.ps.xdp_drop += ps->xdp_drop; 2030 u64_stats_update_end(&stats->syncp); 2031 } 2032 2033 static inline 2034 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 2035 { 2036 struct mvneta_rx_desc *rx_desc; 2037 int curr_desc = rxq->first_to_refill; 2038 int i; 2039 2040 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2041 rx_desc = rxq->descs + curr_desc; 2042 if (!(rx_desc->buf_phys_addr)) { 2043 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2044 struct mvneta_pcpu_stats *stats; 2045 2046 pr_err("Can't refill queue %d. Done %d from %d\n", 2047 rxq->id, i, rxq->refill_num); 2048 2049 stats = this_cpu_ptr(pp->stats); 2050 u64_stats_update_begin(&stats->syncp); 2051 stats->es.refill_error++; 2052 u64_stats_update_end(&stats->syncp); 2053 break; 2054 } 2055 } 2056 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2057 } 2058 rxq->refill_num -= i; 2059 rxq->first_to_refill = curr_desc; 2060 2061 return i; 2062 } 2063 2064 static void 2065 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2066 struct xdp_buff *xdp, int sync_len) 2067 { 2068 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2069 int i; 2070 2071 if (likely(!xdp_buff_has_frags(xdp))) 2072 goto out; 2073 2074 for (i = 0; i < sinfo->nr_frags; i++) 2075 page_pool_put_full_page(rxq->page_pool, 2076 skb_frag_page(&sinfo->frags[i]), true); 2077 2078 out: 2079 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2080 sync_len, true); 2081 } 2082 2083 static int 2084 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2085 struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map) 2086 { 2087 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2088 struct device *dev = pp->dev->dev.parent; 2089 struct mvneta_tx_desc *tx_desc; 2090 int i, num_frames = 1; 2091 struct page *page; 2092 2093 if (unlikely(xdp_frame_has_frags(xdpf))) 2094 num_frames += sinfo->nr_frags; 2095 2096 if (txq->count + num_frames >= txq->size) 2097 return MVNETA_XDP_DROPPED; 2098 2099 for (i = 0; i < num_frames; i++) { 2100 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2101 skb_frag_t *frag = NULL; 2102 int len = xdpf->len; 2103 dma_addr_t dma_addr; 2104 2105 if (unlikely(i)) { /* paged area */ 2106 frag = &sinfo->frags[i - 1]; 2107 len = skb_frag_size(frag); 2108 } 2109 2110 tx_desc = mvneta_txq_next_desc_get(txq); 2111 if (dma_map) { 2112 /* ndo_xdp_xmit */ 2113 void *data; 2114 2115 data = unlikely(frag) ? skb_frag_address(frag) 2116 : xdpf->data; 2117 dma_addr = dma_map_single(dev, data, len, 2118 DMA_TO_DEVICE); 2119 if (dma_mapping_error(dev, dma_addr)) { 2120 mvneta_txq_desc_put(txq); 2121 goto unmap; 2122 } 2123 2124 buf->type = MVNETA_TYPE_XDP_NDO; 2125 } else { 2126 page = unlikely(frag) ? skb_frag_page(frag) 2127 : virt_to_page(xdpf->data); 2128 dma_addr = page_pool_get_dma_addr(page); 2129 if (unlikely(frag)) 2130 dma_addr += skb_frag_off(frag); 2131 else 2132 dma_addr += sizeof(*xdpf) + xdpf->headroom; 2133 dma_sync_single_for_device(dev, dma_addr, len, 2134 DMA_BIDIRECTIONAL); 2135 buf->type = MVNETA_TYPE_XDP_TX; 2136 } 2137 buf->xdpf = unlikely(i) ? NULL : xdpf; 2138 2139 tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC; 2140 tx_desc->buf_phys_addr = dma_addr; 2141 tx_desc->data_size = len; 2142 *nxmit_byte += len; 2143 2144 mvneta_txq_inc_put(txq); 2145 } 2146 /*last descriptor */ 2147 tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2148 2149 txq->pending += num_frames; 2150 txq->count += num_frames; 2151 2152 return MVNETA_XDP_TX; 2153 2154 unmap: 2155 for (i--; i >= 0; i--) { 2156 mvneta_txq_desc_put(txq); 2157 tx_desc = txq->descs + txq->next_desc_to_proc; 2158 dma_unmap_single(dev, tx_desc->buf_phys_addr, 2159 tx_desc->data_size, 2160 DMA_TO_DEVICE); 2161 } 2162 2163 return MVNETA_XDP_DROPPED; 2164 } 2165 2166 static int 2167 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2168 { 2169 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2170 struct mvneta_tx_queue *txq; 2171 struct netdev_queue *nq; 2172 int cpu, nxmit_byte = 0; 2173 struct xdp_frame *xdpf; 2174 u32 ret; 2175 2176 xdpf = xdp_convert_buff_to_frame(xdp); 2177 if (unlikely(!xdpf)) 2178 return MVNETA_XDP_DROPPED; 2179 2180 cpu = smp_processor_id(); 2181 txq = &pp->txqs[cpu % txq_number]; 2182 nq = netdev_get_tx_queue(pp->dev, txq->id); 2183 2184 __netif_tx_lock(nq, cpu); 2185 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false); 2186 if (ret == MVNETA_XDP_TX) { 2187 u64_stats_update_begin(&stats->syncp); 2188 stats->es.ps.tx_bytes += nxmit_byte; 2189 stats->es.ps.tx_packets++; 2190 stats->es.ps.xdp_tx++; 2191 u64_stats_update_end(&stats->syncp); 2192 2193 mvneta_txq_pend_desc_add(pp, txq, 0); 2194 } else { 2195 u64_stats_update_begin(&stats->syncp); 2196 stats->es.ps.xdp_tx_err++; 2197 u64_stats_update_end(&stats->syncp); 2198 } 2199 __netif_tx_unlock(nq); 2200 2201 return ret; 2202 } 2203 2204 static int 2205 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2206 struct xdp_frame **frames, u32 flags) 2207 { 2208 struct mvneta_port *pp = netdev_priv(dev); 2209 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2210 int i, nxmit_byte = 0, nxmit = 0; 2211 int cpu = smp_processor_id(); 2212 struct mvneta_tx_queue *txq; 2213 struct netdev_queue *nq; 2214 u32 ret; 2215 2216 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2217 return -ENETDOWN; 2218 2219 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2220 return -EINVAL; 2221 2222 txq = &pp->txqs[cpu % txq_number]; 2223 nq = netdev_get_tx_queue(pp->dev, txq->id); 2224 2225 __netif_tx_lock(nq, cpu); 2226 for (i = 0; i < num_frame; i++) { 2227 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte, 2228 true); 2229 if (ret != MVNETA_XDP_TX) 2230 break; 2231 2232 nxmit++; 2233 } 2234 2235 if (unlikely(flags & XDP_XMIT_FLUSH)) 2236 mvneta_txq_pend_desc_add(pp, txq, 0); 2237 __netif_tx_unlock(nq); 2238 2239 u64_stats_update_begin(&stats->syncp); 2240 stats->es.ps.tx_bytes += nxmit_byte; 2241 stats->es.ps.tx_packets += nxmit; 2242 stats->es.ps.xdp_xmit += nxmit; 2243 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2244 u64_stats_update_end(&stats->syncp); 2245 2246 return nxmit; 2247 } 2248 2249 static int 2250 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2251 struct bpf_prog *prog, struct xdp_buff *xdp, 2252 u32 frame_sz, struct mvneta_stats *stats) 2253 { 2254 unsigned int len, data_len, sync; 2255 u32 ret, act; 2256 2257 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2258 data_len = xdp->data_end - xdp->data; 2259 act = bpf_prog_run_xdp(prog, xdp); 2260 2261 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2262 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2263 sync = max(sync, len); 2264 2265 switch (act) { 2266 case XDP_PASS: 2267 stats->xdp_pass++; 2268 return MVNETA_XDP_PASS; 2269 case XDP_REDIRECT: { 2270 int err; 2271 2272 err = xdp_do_redirect(pp->dev, xdp, prog); 2273 if (unlikely(err)) { 2274 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2275 ret = MVNETA_XDP_DROPPED; 2276 } else { 2277 ret = MVNETA_XDP_REDIR; 2278 stats->xdp_redirect++; 2279 } 2280 break; 2281 } 2282 case XDP_TX: 2283 ret = mvneta_xdp_xmit_back(pp, xdp); 2284 if (ret != MVNETA_XDP_TX) 2285 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2286 break; 2287 default: 2288 bpf_warn_invalid_xdp_action(pp->dev, prog, act); 2289 fallthrough; 2290 case XDP_ABORTED: 2291 trace_xdp_exception(pp->dev, prog, act); 2292 fallthrough; 2293 case XDP_DROP: 2294 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2295 ret = MVNETA_XDP_DROPPED; 2296 stats->xdp_drop++; 2297 break; 2298 } 2299 2300 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2301 stats->rx_packets++; 2302 2303 return ret; 2304 } 2305 2306 static void 2307 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2308 struct mvneta_rx_desc *rx_desc, 2309 struct mvneta_rx_queue *rxq, 2310 struct xdp_buff *xdp, int *size, 2311 struct page *page) 2312 { 2313 unsigned char *data = page_address(page); 2314 int data_len = -MVNETA_MH_SIZE, len; 2315 struct net_device *dev = pp->dev; 2316 enum dma_data_direction dma_dir; 2317 2318 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2319 len = MVNETA_MAX_RX_BUF_SIZE; 2320 data_len += len; 2321 } else { 2322 len = *size; 2323 data_len += len - ETH_FCS_LEN; 2324 } 2325 *size = *size - len; 2326 2327 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2328 dma_sync_single_for_cpu(dev->dev.parent, 2329 rx_desc->buf_phys_addr, 2330 len, dma_dir); 2331 2332 rx_desc->buf_phys_addr = 0; 2333 2334 /* Prefetch header */ 2335 prefetch(data); 2336 xdp_buff_clear_frags_flag(xdp); 2337 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE, 2338 data_len, false); 2339 } 2340 2341 static void 2342 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2343 struct mvneta_rx_desc *rx_desc, 2344 struct mvneta_rx_queue *rxq, 2345 struct xdp_buff *xdp, int *size, 2346 struct page *page) 2347 { 2348 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2349 struct net_device *dev = pp->dev; 2350 enum dma_data_direction dma_dir; 2351 int data_len, len; 2352 2353 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2354 len = MVNETA_MAX_RX_BUF_SIZE; 2355 data_len = len; 2356 } else { 2357 len = *size; 2358 data_len = len - ETH_FCS_LEN; 2359 } 2360 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2361 dma_sync_single_for_cpu(dev->dev.parent, 2362 rx_desc->buf_phys_addr, 2363 len, dma_dir); 2364 rx_desc->buf_phys_addr = 0; 2365 2366 if (!xdp_buff_has_frags(xdp)) 2367 sinfo->nr_frags = 0; 2368 2369 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) { 2370 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++]; 2371 2372 skb_frag_off_set(frag, pp->rx_offset_correction); 2373 skb_frag_size_set(frag, data_len); 2374 __skb_frag_set_page(frag, page); 2375 2376 if (!xdp_buff_has_frags(xdp)) { 2377 sinfo->xdp_frags_size = *size; 2378 xdp_buff_set_frags_flag(xdp); 2379 } 2380 if (page_is_pfmemalloc(page)) 2381 xdp_buff_set_frag_pfmemalloc(xdp); 2382 } else { 2383 page_pool_put_full_page(rxq->page_pool, page, true); 2384 } 2385 *size -= len; 2386 } 2387 2388 static struct sk_buff * 2389 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool, 2390 struct xdp_buff *xdp, u32 desc_status) 2391 { 2392 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2393 struct sk_buff *skb; 2394 u8 num_frags; 2395 2396 if (unlikely(xdp_buff_has_frags(xdp))) 2397 num_frags = sinfo->nr_frags; 2398 2399 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2400 if (!skb) 2401 return ERR_PTR(-ENOMEM); 2402 2403 skb_mark_for_recycle(skb); 2404 2405 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2406 skb_put(skb, xdp->data_end - xdp->data); 2407 skb->ip_summed = mvneta_rx_csum(pp, desc_status); 2408 2409 if (unlikely(xdp_buff_has_frags(xdp))) 2410 xdp_update_skb_shared_info(skb, num_frags, 2411 sinfo->xdp_frags_size, 2412 num_frags * xdp->frame_sz, 2413 xdp_buff_is_frag_pfmemalloc(xdp)); 2414 2415 return skb; 2416 } 2417 2418 /* Main rx processing when using software buffer management */ 2419 static int mvneta_rx_swbm(struct napi_struct *napi, 2420 struct mvneta_port *pp, int budget, 2421 struct mvneta_rx_queue *rxq) 2422 { 2423 int rx_proc = 0, rx_todo, refill, size = 0; 2424 struct net_device *dev = pp->dev; 2425 struct mvneta_stats ps = {}; 2426 struct bpf_prog *xdp_prog; 2427 u32 desc_status, frame_sz; 2428 struct xdp_buff xdp_buf; 2429 2430 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq); 2431 xdp_buf.data_hard_start = NULL; 2432 2433 /* Get number of received packets */ 2434 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2435 2436 xdp_prog = READ_ONCE(pp->xdp_prog); 2437 2438 /* Fairness NAPI loop */ 2439 while (rx_proc < budget && rx_proc < rx_todo) { 2440 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2441 u32 rx_status, index; 2442 struct sk_buff *skb; 2443 struct page *page; 2444 2445 index = rx_desc - rxq->descs; 2446 page = (struct page *)rxq->buf_virt_addr[index]; 2447 2448 rx_status = rx_desc->status; 2449 rx_proc++; 2450 rxq->refill_num++; 2451 2452 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2453 /* Check errors only for FIRST descriptor */ 2454 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2455 mvneta_rx_error(pp, rx_desc); 2456 goto next; 2457 } 2458 2459 size = rx_desc->data_size; 2460 frame_sz = size - ETH_FCS_LEN; 2461 desc_status = rx_status; 2462 2463 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2464 &size, page); 2465 } else { 2466 if (unlikely(!xdp_buf.data_hard_start)) { 2467 rx_desc->buf_phys_addr = 0; 2468 page_pool_put_full_page(rxq->page_pool, page, 2469 true); 2470 goto next; 2471 } 2472 2473 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2474 &size, page); 2475 } /* Middle or Last descriptor */ 2476 2477 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2478 /* no last descriptor this time */ 2479 continue; 2480 2481 if (size) { 2482 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2483 goto next; 2484 } 2485 2486 if (xdp_prog && 2487 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2488 goto next; 2489 2490 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status); 2491 if (IS_ERR(skb)) { 2492 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2493 2494 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2495 2496 u64_stats_update_begin(&stats->syncp); 2497 stats->es.skb_alloc_error++; 2498 stats->rx_dropped++; 2499 u64_stats_update_end(&stats->syncp); 2500 2501 goto next; 2502 } 2503 2504 ps.rx_bytes += skb->len; 2505 ps.rx_packets++; 2506 2507 skb->protocol = eth_type_trans(skb, dev); 2508 napi_gro_receive(napi, skb); 2509 next: 2510 xdp_buf.data_hard_start = NULL; 2511 } 2512 2513 if (xdp_buf.data_hard_start) 2514 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2515 2516 if (ps.xdp_redirect) 2517 xdp_do_flush_map(); 2518 2519 if (ps.rx_packets) 2520 mvneta_update_stats(pp, &ps); 2521 2522 /* return some buffers to hardware queue, one at a time is too slow */ 2523 refill = mvneta_rx_refill_queue(pp, rxq); 2524 2525 /* Update rxq management counters */ 2526 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2527 2528 return ps.rx_packets; 2529 } 2530 2531 /* Main rx processing when using hardware buffer management */ 2532 static int mvneta_rx_hwbm(struct napi_struct *napi, 2533 struct mvneta_port *pp, int rx_todo, 2534 struct mvneta_rx_queue *rxq) 2535 { 2536 struct net_device *dev = pp->dev; 2537 int rx_done; 2538 u32 rcvd_pkts = 0; 2539 u32 rcvd_bytes = 0; 2540 2541 /* Get number of received packets */ 2542 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2543 2544 if (rx_todo > rx_done) 2545 rx_todo = rx_done; 2546 2547 rx_done = 0; 2548 2549 /* Fairness NAPI loop */ 2550 while (rx_done < rx_todo) { 2551 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2552 struct mvneta_bm_pool *bm_pool = NULL; 2553 struct sk_buff *skb; 2554 unsigned char *data; 2555 dma_addr_t phys_addr; 2556 u32 rx_status, frag_size; 2557 int rx_bytes, err; 2558 u8 pool_id; 2559 2560 rx_done++; 2561 rx_status = rx_desc->status; 2562 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2563 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2564 phys_addr = rx_desc->buf_phys_addr; 2565 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2566 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2567 2568 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2569 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2570 err_drop_frame_ret_pool: 2571 /* Return the buffer to the pool */ 2572 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2573 rx_desc->buf_phys_addr); 2574 err_drop_frame: 2575 mvneta_rx_error(pp, rx_desc); 2576 /* leave the descriptor untouched */ 2577 continue; 2578 } 2579 2580 if (rx_bytes <= rx_copybreak) { 2581 /* better copy a small frame and not unmap the DMA region */ 2582 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2583 if (unlikely(!skb)) 2584 goto err_drop_frame_ret_pool; 2585 2586 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2587 rx_desc->buf_phys_addr, 2588 MVNETA_MH_SIZE + NET_SKB_PAD, 2589 rx_bytes, 2590 DMA_FROM_DEVICE); 2591 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2592 rx_bytes); 2593 2594 skb->protocol = eth_type_trans(skb, dev); 2595 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2596 napi_gro_receive(napi, skb); 2597 2598 rcvd_pkts++; 2599 rcvd_bytes += rx_bytes; 2600 2601 /* Return the buffer to the pool */ 2602 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2603 rx_desc->buf_phys_addr); 2604 2605 /* leave the descriptor and buffer untouched */ 2606 continue; 2607 } 2608 2609 /* Refill processing */ 2610 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2611 if (err) { 2612 struct mvneta_pcpu_stats *stats; 2613 2614 netdev_err(dev, "Linux processing - Can't refill\n"); 2615 2616 stats = this_cpu_ptr(pp->stats); 2617 u64_stats_update_begin(&stats->syncp); 2618 stats->es.refill_error++; 2619 u64_stats_update_end(&stats->syncp); 2620 2621 goto err_drop_frame_ret_pool; 2622 } 2623 2624 frag_size = bm_pool->hwbm_pool.frag_size; 2625 2626 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2627 2628 /* After refill old buffer has to be unmapped regardless 2629 * the skb is successfully built or not. 2630 */ 2631 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2632 bm_pool->buf_size, DMA_FROM_DEVICE); 2633 if (!skb) 2634 goto err_drop_frame; 2635 2636 rcvd_pkts++; 2637 rcvd_bytes += rx_bytes; 2638 2639 /* Linux processing */ 2640 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2641 skb_put(skb, rx_bytes); 2642 2643 skb->protocol = eth_type_trans(skb, dev); 2644 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2645 2646 napi_gro_receive(napi, skb); 2647 } 2648 2649 if (rcvd_pkts) { 2650 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2651 2652 u64_stats_update_begin(&stats->syncp); 2653 stats->es.ps.rx_packets += rcvd_pkts; 2654 stats->es.ps.rx_bytes += rcvd_bytes; 2655 u64_stats_update_end(&stats->syncp); 2656 } 2657 2658 /* Update rxq management counters */ 2659 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2660 2661 return rx_done; 2662 } 2663 2664 static inline void 2665 mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq) 2666 { 2667 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2668 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2669 struct mvneta_tx_desc *tx_desc; 2670 2671 tx_desc = mvneta_txq_next_desc_get(txq); 2672 tx_desc->data_size = hdr_len; 2673 tx_desc->command = mvneta_skb_tx_csum(skb); 2674 tx_desc->command |= MVNETA_TXD_F_DESC; 2675 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2676 txq->txq_put_index * TSO_HEADER_SIZE; 2677 buf->type = MVNETA_TYPE_SKB; 2678 buf->skb = NULL; 2679 2680 mvneta_txq_inc_put(txq); 2681 } 2682 2683 static inline int 2684 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2685 struct sk_buff *skb, char *data, int size, 2686 bool last_tcp, bool is_last) 2687 { 2688 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2689 struct mvneta_tx_desc *tx_desc; 2690 2691 tx_desc = mvneta_txq_next_desc_get(txq); 2692 tx_desc->data_size = size; 2693 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2694 size, DMA_TO_DEVICE); 2695 if (unlikely(dma_mapping_error(dev->dev.parent, 2696 tx_desc->buf_phys_addr))) { 2697 mvneta_txq_desc_put(txq); 2698 return -ENOMEM; 2699 } 2700 2701 tx_desc->command = 0; 2702 buf->type = MVNETA_TYPE_SKB; 2703 buf->skb = NULL; 2704 2705 if (last_tcp) { 2706 /* last descriptor in the TCP packet */ 2707 tx_desc->command = MVNETA_TXD_L_DESC; 2708 2709 /* last descriptor in SKB */ 2710 if (is_last) 2711 buf->skb = skb; 2712 } 2713 mvneta_txq_inc_put(txq); 2714 return 0; 2715 } 2716 2717 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2718 struct mvneta_tx_queue *txq) 2719 { 2720 int hdr_len, total_len, data_left; 2721 int desc_count = 0; 2722 struct mvneta_port *pp = netdev_priv(dev); 2723 struct tso_t tso; 2724 int i; 2725 2726 /* Count needed descriptors */ 2727 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2728 return 0; 2729 2730 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2731 pr_info("*** Is this even possible?\n"); 2732 return 0; 2733 } 2734 2735 /* Initialize the TSO handler, and prepare the first payload */ 2736 hdr_len = tso_start(skb, &tso); 2737 2738 total_len = skb->len - hdr_len; 2739 while (total_len > 0) { 2740 char *hdr; 2741 2742 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2743 total_len -= data_left; 2744 desc_count++; 2745 2746 /* prepare packet headers: MAC + IP + TCP */ 2747 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2748 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2749 2750 mvneta_tso_put_hdr(skb, txq); 2751 2752 while (data_left > 0) { 2753 int size; 2754 desc_count++; 2755 2756 size = min_t(int, tso.size, data_left); 2757 2758 if (mvneta_tso_put_data(dev, txq, skb, 2759 tso.data, size, 2760 size == data_left, 2761 total_len == 0)) 2762 goto err_release; 2763 data_left -= size; 2764 2765 tso_build_data(skb, &tso, size); 2766 } 2767 } 2768 2769 return desc_count; 2770 2771 err_release: 2772 /* Release all used data descriptors; header descriptors must not 2773 * be DMA-unmapped. 2774 */ 2775 for (i = desc_count - 1; i >= 0; i--) { 2776 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2777 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2778 dma_unmap_single(pp->dev->dev.parent, 2779 tx_desc->buf_phys_addr, 2780 tx_desc->data_size, 2781 DMA_TO_DEVICE); 2782 mvneta_txq_desc_put(txq); 2783 } 2784 return 0; 2785 } 2786 2787 /* Handle tx fragmentation processing */ 2788 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2789 struct mvneta_tx_queue *txq) 2790 { 2791 struct mvneta_tx_desc *tx_desc; 2792 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2793 2794 for (i = 0; i < nr_frags; i++) { 2795 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2796 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2797 void *addr = skb_frag_address(frag); 2798 2799 tx_desc = mvneta_txq_next_desc_get(txq); 2800 tx_desc->data_size = skb_frag_size(frag); 2801 2802 tx_desc->buf_phys_addr = 2803 dma_map_single(pp->dev->dev.parent, addr, 2804 tx_desc->data_size, DMA_TO_DEVICE); 2805 2806 if (dma_mapping_error(pp->dev->dev.parent, 2807 tx_desc->buf_phys_addr)) { 2808 mvneta_txq_desc_put(txq); 2809 goto error; 2810 } 2811 2812 if (i == nr_frags - 1) { 2813 /* Last descriptor */ 2814 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2815 buf->skb = skb; 2816 } else { 2817 /* Descriptor in the middle: Not First, Not Last */ 2818 tx_desc->command = 0; 2819 buf->skb = NULL; 2820 } 2821 buf->type = MVNETA_TYPE_SKB; 2822 mvneta_txq_inc_put(txq); 2823 } 2824 2825 return 0; 2826 2827 error: 2828 /* Release all descriptors that were used to map fragments of 2829 * this packet, as well as the corresponding DMA mappings 2830 */ 2831 for (i = i - 1; i >= 0; i--) { 2832 tx_desc = txq->descs + i; 2833 dma_unmap_single(pp->dev->dev.parent, 2834 tx_desc->buf_phys_addr, 2835 tx_desc->data_size, 2836 DMA_TO_DEVICE); 2837 mvneta_txq_desc_put(txq); 2838 } 2839 2840 return -ENOMEM; 2841 } 2842 2843 /* Main tx processing */ 2844 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2845 { 2846 struct mvneta_port *pp = netdev_priv(dev); 2847 u16 txq_id = skb_get_queue_mapping(skb); 2848 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2849 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2850 struct mvneta_tx_desc *tx_desc; 2851 int len = skb->len; 2852 int frags = 0; 2853 u32 tx_cmd; 2854 2855 if (!netif_running(dev)) 2856 goto out; 2857 2858 if (skb_is_gso(skb)) { 2859 frags = mvneta_tx_tso(skb, dev, txq); 2860 goto out; 2861 } 2862 2863 frags = skb_shinfo(skb)->nr_frags + 1; 2864 2865 /* Get a descriptor for the first part of the packet */ 2866 tx_desc = mvneta_txq_next_desc_get(txq); 2867 2868 tx_cmd = mvneta_skb_tx_csum(skb); 2869 2870 tx_desc->data_size = skb_headlen(skb); 2871 2872 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2873 tx_desc->data_size, 2874 DMA_TO_DEVICE); 2875 if (unlikely(dma_mapping_error(dev->dev.parent, 2876 tx_desc->buf_phys_addr))) { 2877 mvneta_txq_desc_put(txq); 2878 frags = 0; 2879 goto out; 2880 } 2881 2882 buf->type = MVNETA_TYPE_SKB; 2883 if (frags == 1) { 2884 /* First and Last descriptor */ 2885 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2886 tx_desc->command = tx_cmd; 2887 buf->skb = skb; 2888 mvneta_txq_inc_put(txq); 2889 } else { 2890 /* First but not Last */ 2891 tx_cmd |= MVNETA_TXD_F_DESC; 2892 buf->skb = NULL; 2893 mvneta_txq_inc_put(txq); 2894 tx_desc->command = tx_cmd; 2895 /* Continue with other skb fragments */ 2896 if (mvneta_tx_frag_process(pp, skb, txq)) { 2897 dma_unmap_single(dev->dev.parent, 2898 tx_desc->buf_phys_addr, 2899 tx_desc->data_size, 2900 DMA_TO_DEVICE); 2901 mvneta_txq_desc_put(txq); 2902 frags = 0; 2903 goto out; 2904 } 2905 } 2906 2907 out: 2908 if (frags > 0) { 2909 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2910 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2911 2912 netdev_tx_sent_queue(nq, len); 2913 2914 txq->count += frags; 2915 if (txq->count >= txq->tx_stop_threshold) 2916 netif_tx_stop_queue(nq); 2917 2918 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2919 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2920 mvneta_txq_pend_desc_add(pp, txq, frags); 2921 else 2922 txq->pending += frags; 2923 2924 u64_stats_update_begin(&stats->syncp); 2925 stats->es.ps.tx_bytes += len; 2926 stats->es.ps.tx_packets++; 2927 u64_stats_update_end(&stats->syncp); 2928 } else { 2929 dev->stats.tx_dropped++; 2930 dev_kfree_skb_any(skb); 2931 } 2932 2933 return NETDEV_TX_OK; 2934 } 2935 2936 2937 /* Free tx resources, when resetting a port */ 2938 static void mvneta_txq_done_force(struct mvneta_port *pp, 2939 struct mvneta_tx_queue *txq) 2940 2941 { 2942 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2943 int tx_done = txq->count; 2944 2945 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 2946 2947 /* reset txq */ 2948 txq->count = 0; 2949 txq->txq_put_index = 0; 2950 txq->txq_get_index = 0; 2951 } 2952 2953 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2954 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2955 */ 2956 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2957 { 2958 struct mvneta_tx_queue *txq; 2959 struct netdev_queue *nq; 2960 int cpu = smp_processor_id(); 2961 2962 while (cause_tx_done) { 2963 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2964 2965 nq = netdev_get_tx_queue(pp->dev, txq->id); 2966 __netif_tx_lock(nq, cpu); 2967 2968 if (txq->count) 2969 mvneta_txq_done(pp, txq); 2970 2971 __netif_tx_unlock(nq); 2972 cause_tx_done &= ~((1 << txq->id)); 2973 } 2974 } 2975 2976 /* Compute crc8 of the specified address, using a unique algorithm , 2977 * according to hw spec, different than generic crc8 algorithm 2978 */ 2979 static int mvneta_addr_crc(unsigned char *addr) 2980 { 2981 int crc = 0; 2982 int i; 2983 2984 for (i = 0; i < ETH_ALEN; i++) { 2985 int j; 2986 2987 crc = (crc ^ addr[i]) << 8; 2988 for (j = 7; j >= 0; j--) { 2989 if (crc & (0x100 << j)) 2990 crc ^= 0x107 << j; 2991 } 2992 } 2993 2994 return crc; 2995 } 2996 2997 /* This method controls the net device special MAC multicast support. 2998 * The Special Multicast Table for MAC addresses supports MAC of the form 2999 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3000 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3001 * Table entries in the DA-Filter table. This method set the Special 3002 * Multicast Table appropriate entry. 3003 */ 3004 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 3005 unsigned char last_byte, 3006 int queue) 3007 { 3008 unsigned int smc_table_reg; 3009 unsigned int tbl_offset; 3010 unsigned int reg_offset; 3011 3012 /* Register offset from SMC table base */ 3013 tbl_offset = (last_byte / 4); 3014 /* Entry offset within the above reg */ 3015 reg_offset = last_byte % 4; 3016 3017 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 3018 + tbl_offset * 4)); 3019 3020 if (queue == -1) 3021 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3022 else { 3023 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3024 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3025 } 3026 3027 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 3028 smc_table_reg); 3029 } 3030 3031 /* This method controls the network device Other MAC multicast support. 3032 * The Other Multicast Table is used for multicast of another type. 3033 * A CRC-8 is used as an index to the Other Multicast Table entries 3034 * in the DA-Filter table. 3035 * The method gets the CRC-8 value from the calling routine and 3036 * sets the Other Multicast Table appropriate entry according to the 3037 * specified CRC-8 . 3038 */ 3039 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 3040 unsigned char crc8, 3041 int queue) 3042 { 3043 unsigned int omc_table_reg; 3044 unsigned int tbl_offset; 3045 unsigned int reg_offset; 3046 3047 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 3048 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 3049 3050 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 3051 3052 if (queue == -1) { 3053 /* Clear accepts frame bit at specified Other DA table entry */ 3054 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3055 } else { 3056 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3057 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3058 } 3059 3060 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 3061 } 3062 3063 /* The network device supports multicast using two tables: 3064 * 1) Special Multicast Table for MAC addresses of the form 3065 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3066 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3067 * Table entries in the DA-Filter table. 3068 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 3069 * is used as an index to the Other Multicast Table entries in the 3070 * DA-Filter table. 3071 */ 3072 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 3073 int queue) 3074 { 3075 unsigned char crc_result = 0; 3076 3077 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 3078 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3079 return 0; 3080 } 3081 3082 crc_result = mvneta_addr_crc(p_addr); 3083 if (queue == -1) { 3084 if (pp->mcast_count[crc_result] == 0) { 3085 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3086 crc_result); 3087 return -EINVAL; 3088 } 3089 3090 pp->mcast_count[crc_result]--; 3091 if (pp->mcast_count[crc_result] != 0) { 3092 netdev_info(pp->dev, 3093 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3094 pp->mcast_count[crc_result], crc_result); 3095 return -EINVAL; 3096 } 3097 } else 3098 pp->mcast_count[crc_result]++; 3099 3100 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3101 3102 return 0; 3103 } 3104 3105 /* Configure Fitering mode of Ethernet port */ 3106 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3107 int is_promisc) 3108 { 3109 u32 port_cfg_reg, val; 3110 3111 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3112 3113 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3114 3115 /* Set / Clear UPM bit in port configuration register */ 3116 if (is_promisc) { 3117 /* Accept all Unicast addresses */ 3118 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3119 val |= MVNETA_FORCE_UNI; 3120 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3121 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3122 } else { 3123 /* Reject all Unicast addresses */ 3124 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3125 val &= ~MVNETA_FORCE_UNI; 3126 } 3127 3128 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3129 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3130 } 3131 3132 /* register unicast and multicast addresses */ 3133 static void mvneta_set_rx_mode(struct net_device *dev) 3134 { 3135 struct mvneta_port *pp = netdev_priv(dev); 3136 struct netdev_hw_addr *ha; 3137 3138 if (dev->flags & IFF_PROMISC) { 3139 /* Accept all: Multicast + Unicast */ 3140 mvneta_rx_unicast_promisc_set(pp, 1); 3141 mvneta_set_ucast_table(pp, pp->rxq_def); 3142 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3143 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3144 } else { 3145 /* Accept single Unicast */ 3146 mvneta_rx_unicast_promisc_set(pp, 0); 3147 mvneta_set_ucast_table(pp, -1); 3148 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3149 3150 if (dev->flags & IFF_ALLMULTI) { 3151 /* Accept all multicast */ 3152 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3153 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3154 } else { 3155 /* Accept only initialized multicast */ 3156 mvneta_set_special_mcast_table(pp, -1); 3157 mvneta_set_other_mcast_table(pp, -1); 3158 3159 if (!netdev_mc_empty(dev)) { 3160 netdev_for_each_mc_addr(ha, dev) { 3161 mvneta_mcast_addr_set(pp, ha->addr, 3162 pp->rxq_def); 3163 } 3164 } 3165 } 3166 } 3167 } 3168 3169 /* Interrupt handling - the callback for request_irq() */ 3170 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3171 { 3172 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3173 3174 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3175 napi_schedule(&pp->napi); 3176 3177 return IRQ_HANDLED; 3178 } 3179 3180 /* Interrupt handling - the callback for request_percpu_irq() */ 3181 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3182 { 3183 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3184 3185 disable_percpu_irq(port->pp->dev->irq); 3186 napi_schedule(&port->napi); 3187 3188 return IRQ_HANDLED; 3189 } 3190 3191 static void mvneta_link_change(struct mvneta_port *pp) 3192 { 3193 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3194 3195 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3196 } 3197 3198 /* NAPI handler 3199 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3200 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3201 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3202 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3203 * Each CPU has its own causeRxTx register 3204 */ 3205 static int mvneta_poll(struct napi_struct *napi, int budget) 3206 { 3207 int rx_done = 0; 3208 u32 cause_rx_tx; 3209 int rx_queue; 3210 struct mvneta_port *pp = netdev_priv(napi->dev); 3211 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3212 3213 if (!netif_running(pp->dev)) { 3214 napi_complete(napi); 3215 return rx_done; 3216 } 3217 3218 /* Read cause register */ 3219 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3220 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3221 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3222 3223 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3224 3225 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3226 MVNETA_CAUSE_LINK_CHANGE)) 3227 mvneta_link_change(pp); 3228 } 3229 3230 /* Release Tx descriptors */ 3231 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3232 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3233 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3234 } 3235 3236 /* For the case where the last mvneta_poll did not process all 3237 * RX packets 3238 */ 3239 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3240 port->cause_rx_tx; 3241 3242 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3243 if (rx_queue) { 3244 rx_queue = rx_queue - 1; 3245 if (pp->bm_priv) 3246 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3247 &pp->rxqs[rx_queue]); 3248 else 3249 rx_done = mvneta_rx_swbm(napi, pp, budget, 3250 &pp->rxqs[rx_queue]); 3251 } 3252 3253 if (rx_done < budget) { 3254 cause_rx_tx = 0; 3255 napi_complete_done(napi, rx_done); 3256 3257 if (pp->neta_armada3700) { 3258 unsigned long flags; 3259 3260 local_irq_save(flags); 3261 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3262 MVNETA_RX_INTR_MASK(rxq_number) | 3263 MVNETA_TX_INTR_MASK(txq_number) | 3264 MVNETA_MISCINTR_INTR_MASK); 3265 local_irq_restore(flags); 3266 } else { 3267 enable_percpu_irq(pp->dev->irq, 0); 3268 } 3269 } 3270 3271 if (pp->neta_armada3700) 3272 pp->cause_rx_tx = cause_rx_tx; 3273 else 3274 port->cause_rx_tx = cause_rx_tx; 3275 3276 return rx_done; 3277 } 3278 3279 static int mvneta_create_page_pool(struct mvneta_port *pp, 3280 struct mvneta_rx_queue *rxq, int size) 3281 { 3282 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3283 struct page_pool_params pp_params = { 3284 .order = 0, 3285 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3286 .pool_size = size, 3287 .nid = NUMA_NO_NODE, 3288 .dev = pp->dev->dev.parent, 3289 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3290 .offset = pp->rx_offset_correction, 3291 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3292 }; 3293 int err; 3294 3295 rxq->page_pool = page_pool_create(&pp_params); 3296 if (IS_ERR(rxq->page_pool)) { 3297 err = PTR_ERR(rxq->page_pool); 3298 rxq->page_pool = NULL; 3299 return err; 3300 } 3301 3302 err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0, 3303 PAGE_SIZE); 3304 if (err < 0) 3305 goto err_free_pp; 3306 3307 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3308 rxq->page_pool); 3309 if (err) 3310 goto err_unregister_rxq; 3311 3312 return 0; 3313 3314 err_unregister_rxq: 3315 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3316 err_free_pp: 3317 page_pool_destroy(rxq->page_pool); 3318 rxq->page_pool = NULL; 3319 return err; 3320 } 3321 3322 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3323 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3324 int num) 3325 { 3326 int i, err; 3327 3328 err = mvneta_create_page_pool(pp, rxq, num); 3329 if (err < 0) 3330 return err; 3331 3332 for (i = 0; i < num; i++) { 3333 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3334 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3335 GFP_KERNEL) != 0) { 3336 netdev_err(pp->dev, 3337 "%s:rxq %d, %d of %d buffs filled\n", 3338 __func__, rxq->id, i, num); 3339 break; 3340 } 3341 } 3342 3343 /* Add this number of RX descriptors as non occupied (ready to 3344 * get packets) 3345 */ 3346 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3347 3348 return i; 3349 } 3350 3351 /* Free all packets pending transmit from all TXQs and reset TX port */ 3352 static void mvneta_tx_reset(struct mvneta_port *pp) 3353 { 3354 int queue; 3355 3356 /* free the skb's in the tx ring */ 3357 for (queue = 0; queue < txq_number; queue++) 3358 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3359 3360 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3361 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3362 } 3363 3364 static void mvneta_rx_reset(struct mvneta_port *pp) 3365 { 3366 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3367 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3368 } 3369 3370 /* Rx/Tx queue initialization/cleanup methods */ 3371 3372 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3373 struct mvneta_rx_queue *rxq) 3374 { 3375 rxq->size = pp->rx_ring_size; 3376 3377 /* Allocate memory for RX descriptors */ 3378 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3379 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3380 &rxq->descs_phys, GFP_KERNEL); 3381 if (!rxq->descs) 3382 return -ENOMEM; 3383 3384 rxq->last_desc = rxq->size - 1; 3385 3386 return 0; 3387 } 3388 3389 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3390 struct mvneta_rx_queue *rxq) 3391 { 3392 /* Set Rx descriptors queue starting address */ 3393 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3394 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3395 3396 /* Set coalescing pkts and time */ 3397 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3398 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3399 3400 if (!pp->bm_priv) { 3401 /* Set Offset */ 3402 mvneta_rxq_offset_set(pp, rxq, 0); 3403 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3404 MVNETA_MAX_RX_BUF_SIZE : 3405 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3406 mvneta_rxq_bm_disable(pp, rxq); 3407 mvneta_rxq_fill(pp, rxq, rxq->size); 3408 } else { 3409 /* Set Offset */ 3410 mvneta_rxq_offset_set(pp, rxq, 3411 NET_SKB_PAD - pp->rx_offset_correction); 3412 3413 mvneta_rxq_bm_enable(pp, rxq); 3414 /* Fill RXQ with buffers from RX pool */ 3415 mvneta_rxq_long_pool_set(pp, rxq); 3416 mvneta_rxq_short_pool_set(pp, rxq); 3417 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3418 } 3419 } 3420 3421 /* Create a specified RX queue */ 3422 static int mvneta_rxq_init(struct mvneta_port *pp, 3423 struct mvneta_rx_queue *rxq) 3424 3425 { 3426 int ret; 3427 3428 ret = mvneta_rxq_sw_init(pp, rxq); 3429 if (ret < 0) 3430 return ret; 3431 3432 mvneta_rxq_hw_init(pp, rxq); 3433 3434 return 0; 3435 } 3436 3437 /* Cleanup Rx queue */ 3438 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3439 struct mvneta_rx_queue *rxq) 3440 { 3441 mvneta_rxq_drop_pkts(pp, rxq); 3442 3443 if (rxq->descs) 3444 dma_free_coherent(pp->dev->dev.parent, 3445 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3446 rxq->descs, 3447 rxq->descs_phys); 3448 3449 rxq->descs = NULL; 3450 rxq->last_desc = 0; 3451 rxq->next_desc_to_proc = 0; 3452 rxq->descs_phys = 0; 3453 rxq->first_to_refill = 0; 3454 rxq->refill_num = 0; 3455 } 3456 3457 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3458 struct mvneta_tx_queue *txq) 3459 { 3460 int cpu; 3461 3462 txq->size = pp->tx_ring_size; 3463 3464 /* A queue must always have room for at least one skb. 3465 * Therefore, stop the queue when the free entries reaches 3466 * the maximum number of descriptors per skb. 3467 */ 3468 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3469 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3470 3471 /* Allocate memory for TX descriptors */ 3472 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3473 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3474 &txq->descs_phys, GFP_KERNEL); 3475 if (!txq->descs) 3476 return -ENOMEM; 3477 3478 txq->last_desc = txq->size - 1; 3479 3480 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3481 if (!txq->buf) 3482 return -ENOMEM; 3483 3484 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3485 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3486 txq->size * TSO_HEADER_SIZE, 3487 &txq->tso_hdrs_phys, GFP_KERNEL); 3488 if (!txq->tso_hdrs) 3489 return -ENOMEM; 3490 3491 /* Setup XPS mapping */ 3492 if (pp->neta_armada3700) 3493 cpu = 0; 3494 else if (txq_number > 1) 3495 cpu = txq->id % num_present_cpus(); 3496 else 3497 cpu = pp->rxq_def % num_present_cpus(); 3498 cpumask_set_cpu(cpu, &txq->affinity_mask); 3499 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3500 3501 return 0; 3502 } 3503 3504 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3505 struct mvneta_tx_queue *txq) 3506 { 3507 /* Set maximum bandwidth for enabled TXQs */ 3508 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3509 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3510 3511 /* Set Tx descriptors queue starting address */ 3512 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3513 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3514 3515 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3516 } 3517 3518 /* Create and initialize a tx queue */ 3519 static int mvneta_txq_init(struct mvneta_port *pp, 3520 struct mvneta_tx_queue *txq) 3521 { 3522 int ret; 3523 3524 ret = mvneta_txq_sw_init(pp, txq); 3525 if (ret < 0) 3526 return ret; 3527 3528 mvneta_txq_hw_init(pp, txq); 3529 3530 return 0; 3531 } 3532 3533 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3534 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3535 struct mvneta_tx_queue *txq) 3536 { 3537 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3538 3539 kfree(txq->buf); 3540 3541 if (txq->tso_hdrs) 3542 dma_free_coherent(pp->dev->dev.parent, 3543 txq->size * TSO_HEADER_SIZE, 3544 txq->tso_hdrs, txq->tso_hdrs_phys); 3545 if (txq->descs) 3546 dma_free_coherent(pp->dev->dev.parent, 3547 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3548 txq->descs, txq->descs_phys); 3549 3550 netdev_tx_reset_queue(nq); 3551 3552 txq->descs = NULL; 3553 txq->last_desc = 0; 3554 txq->next_desc_to_proc = 0; 3555 txq->descs_phys = 0; 3556 } 3557 3558 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3559 struct mvneta_tx_queue *txq) 3560 { 3561 /* Set minimum bandwidth for disabled TXQs */ 3562 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3563 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3564 3565 /* Set Tx descriptors queue starting address and size */ 3566 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3567 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3568 } 3569 3570 static void mvneta_txq_deinit(struct mvneta_port *pp, 3571 struct mvneta_tx_queue *txq) 3572 { 3573 mvneta_txq_sw_deinit(pp, txq); 3574 mvneta_txq_hw_deinit(pp, txq); 3575 } 3576 3577 /* Cleanup all Tx queues */ 3578 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3579 { 3580 int queue; 3581 3582 for (queue = 0; queue < txq_number; queue++) 3583 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3584 } 3585 3586 /* Cleanup all Rx queues */ 3587 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3588 { 3589 int queue; 3590 3591 for (queue = 0; queue < rxq_number; queue++) 3592 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3593 } 3594 3595 3596 /* Init all Rx queues */ 3597 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3598 { 3599 int queue; 3600 3601 for (queue = 0; queue < rxq_number; queue++) { 3602 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3603 3604 if (err) { 3605 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3606 __func__, queue); 3607 mvneta_cleanup_rxqs(pp); 3608 return err; 3609 } 3610 } 3611 3612 return 0; 3613 } 3614 3615 /* Init all tx queues */ 3616 static int mvneta_setup_txqs(struct mvneta_port *pp) 3617 { 3618 int queue; 3619 3620 for (queue = 0; queue < txq_number; queue++) { 3621 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3622 if (err) { 3623 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3624 __func__, queue); 3625 mvneta_cleanup_txqs(pp); 3626 return err; 3627 } 3628 } 3629 3630 return 0; 3631 } 3632 3633 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3634 { 3635 int ret; 3636 3637 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3638 if (ret) 3639 return ret; 3640 3641 return phy_power_on(pp->comphy); 3642 } 3643 3644 static int mvneta_config_interface(struct mvneta_port *pp, 3645 phy_interface_t interface) 3646 { 3647 int ret = 0; 3648 3649 if (pp->comphy) { 3650 if (interface == PHY_INTERFACE_MODE_SGMII || 3651 interface == PHY_INTERFACE_MODE_1000BASEX || 3652 interface == PHY_INTERFACE_MODE_2500BASEX) { 3653 ret = mvneta_comphy_init(pp, interface); 3654 } 3655 } else { 3656 switch (interface) { 3657 case PHY_INTERFACE_MODE_QSGMII: 3658 mvreg_write(pp, MVNETA_SERDES_CFG, 3659 MVNETA_QSGMII_SERDES_PROTO); 3660 break; 3661 3662 case PHY_INTERFACE_MODE_SGMII: 3663 case PHY_INTERFACE_MODE_1000BASEX: 3664 mvreg_write(pp, MVNETA_SERDES_CFG, 3665 MVNETA_SGMII_SERDES_PROTO); 3666 break; 3667 3668 case PHY_INTERFACE_MODE_2500BASEX: 3669 mvreg_write(pp, MVNETA_SERDES_CFG, 3670 MVNETA_HSGMII_SERDES_PROTO); 3671 break; 3672 default: 3673 break; 3674 } 3675 } 3676 3677 pp->phy_interface = interface; 3678 3679 return ret; 3680 } 3681 3682 static void mvneta_start_dev(struct mvneta_port *pp) 3683 { 3684 int cpu; 3685 3686 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3687 3688 mvneta_max_rx_size_set(pp, pp->pkt_size); 3689 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3690 3691 /* start the Rx/Tx activity */ 3692 mvneta_port_enable(pp); 3693 3694 if (!pp->neta_armada3700) { 3695 /* Enable polling on the port */ 3696 for_each_online_cpu(cpu) { 3697 struct mvneta_pcpu_port *port = 3698 per_cpu_ptr(pp->ports, cpu); 3699 3700 napi_enable(&port->napi); 3701 } 3702 } else { 3703 napi_enable(&pp->napi); 3704 } 3705 3706 /* Unmask interrupts. It has to be done from each CPU */ 3707 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3708 3709 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3710 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3711 MVNETA_CAUSE_LINK_CHANGE); 3712 3713 phylink_start(pp->phylink); 3714 3715 /* We may have called phylink_speed_down before */ 3716 phylink_speed_up(pp->phylink); 3717 3718 netif_tx_start_all_queues(pp->dev); 3719 3720 clear_bit(__MVNETA_DOWN, &pp->state); 3721 } 3722 3723 static void mvneta_stop_dev(struct mvneta_port *pp) 3724 { 3725 unsigned int cpu; 3726 3727 set_bit(__MVNETA_DOWN, &pp->state); 3728 3729 if (device_may_wakeup(&pp->dev->dev)) 3730 phylink_speed_down(pp->phylink, false); 3731 3732 phylink_stop(pp->phylink); 3733 3734 if (!pp->neta_armada3700) { 3735 for_each_online_cpu(cpu) { 3736 struct mvneta_pcpu_port *port = 3737 per_cpu_ptr(pp->ports, cpu); 3738 3739 napi_disable(&port->napi); 3740 } 3741 } else { 3742 napi_disable(&pp->napi); 3743 } 3744 3745 netif_carrier_off(pp->dev); 3746 3747 mvneta_port_down(pp); 3748 netif_tx_stop_all_queues(pp->dev); 3749 3750 /* Stop the port activity */ 3751 mvneta_port_disable(pp); 3752 3753 /* Clear all ethernet port interrupts */ 3754 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3755 3756 /* Mask all ethernet port interrupts */ 3757 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3758 3759 mvneta_tx_reset(pp); 3760 mvneta_rx_reset(pp); 3761 3762 WARN_ON(phy_power_off(pp->comphy)); 3763 } 3764 3765 static void mvneta_percpu_enable(void *arg) 3766 { 3767 struct mvneta_port *pp = arg; 3768 3769 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3770 } 3771 3772 static void mvneta_percpu_disable(void *arg) 3773 { 3774 struct mvneta_port *pp = arg; 3775 3776 disable_percpu_irq(pp->dev->irq); 3777 } 3778 3779 /* Change the device mtu */ 3780 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3781 { 3782 struct mvneta_port *pp = netdev_priv(dev); 3783 struct bpf_prog *prog = pp->xdp_prog; 3784 int ret; 3785 3786 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3787 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3788 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3789 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3790 } 3791 3792 if (prog && !prog->aux->xdp_has_frags && 3793 mtu > MVNETA_MAX_RX_BUF_SIZE) { 3794 netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n", 3795 mtu); 3796 3797 return -EINVAL; 3798 } 3799 3800 dev->mtu = mtu; 3801 3802 if (!netif_running(dev)) { 3803 if (pp->bm_priv) 3804 mvneta_bm_update_mtu(pp, mtu); 3805 3806 netdev_update_features(dev); 3807 return 0; 3808 } 3809 3810 /* The interface is running, so we have to force a 3811 * reallocation of the queues 3812 */ 3813 mvneta_stop_dev(pp); 3814 on_each_cpu(mvneta_percpu_disable, pp, true); 3815 3816 mvneta_cleanup_txqs(pp); 3817 mvneta_cleanup_rxqs(pp); 3818 3819 if (pp->bm_priv) 3820 mvneta_bm_update_mtu(pp, mtu); 3821 3822 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3823 3824 ret = mvneta_setup_rxqs(pp); 3825 if (ret) { 3826 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3827 return ret; 3828 } 3829 3830 ret = mvneta_setup_txqs(pp); 3831 if (ret) { 3832 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3833 return ret; 3834 } 3835 3836 on_each_cpu(mvneta_percpu_enable, pp, true); 3837 mvneta_start_dev(pp); 3838 3839 netdev_update_features(dev); 3840 3841 return 0; 3842 } 3843 3844 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3845 netdev_features_t features) 3846 { 3847 struct mvneta_port *pp = netdev_priv(dev); 3848 3849 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3850 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3851 netdev_info(dev, 3852 "Disable IP checksum for MTU greater than %dB\n", 3853 pp->tx_csum_limit); 3854 } 3855 3856 return features; 3857 } 3858 3859 /* Get mac address */ 3860 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3861 { 3862 u32 mac_addr_l, mac_addr_h; 3863 3864 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3865 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3866 addr[0] = (mac_addr_h >> 24) & 0xFF; 3867 addr[1] = (mac_addr_h >> 16) & 0xFF; 3868 addr[2] = (mac_addr_h >> 8) & 0xFF; 3869 addr[3] = mac_addr_h & 0xFF; 3870 addr[4] = (mac_addr_l >> 8) & 0xFF; 3871 addr[5] = mac_addr_l & 0xFF; 3872 } 3873 3874 /* Handle setting mac address */ 3875 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3876 { 3877 struct mvneta_port *pp = netdev_priv(dev); 3878 struct sockaddr *sockaddr = addr; 3879 int ret; 3880 3881 ret = eth_prepare_mac_addr_change(dev, addr); 3882 if (ret < 0) 3883 return ret; 3884 /* Remove previous address table entry */ 3885 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3886 3887 /* Set new addr in hw */ 3888 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3889 3890 eth_commit_mac_addr_change(dev, addr); 3891 return 0; 3892 } 3893 3894 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs) 3895 { 3896 return container_of(pcs, struct mvneta_port, phylink_pcs); 3897 } 3898 3899 static int mvneta_pcs_validate(struct phylink_pcs *pcs, 3900 unsigned long *supported, 3901 const struct phylink_link_state *state) 3902 { 3903 /* We only support QSGMII, SGMII, 802.3z and RGMII modes. 3904 * When in 802.3z mode, we must have AN enabled: 3905 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ... 3906 * When <PortType> = 1 (1000BASE-X) this field must be set to 1." 3907 */ 3908 if (phy_interface_mode_is_8023z(state->interface) && 3909 !phylink_test(state->advertising, Autoneg)) 3910 return -EINVAL; 3911 3912 return 0; 3913 } 3914 3915 static void mvneta_pcs_get_state(struct phylink_pcs *pcs, 3916 struct phylink_link_state *state) 3917 { 3918 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3919 u32 gmac_stat; 3920 3921 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3922 3923 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3924 state->speed = 3925 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3926 SPEED_2500 : SPEED_1000; 3927 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3928 state->speed = SPEED_100; 3929 else 3930 state->speed = SPEED_10; 3931 3932 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3933 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3934 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3935 3936 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3937 state->pause |= MLO_PAUSE_RX; 3938 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3939 state->pause |= MLO_PAUSE_TX; 3940 } 3941 3942 static int mvneta_pcs_config(struct phylink_pcs *pcs, 3943 unsigned int mode, phy_interface_t interface, 3944 const unsigned long *advertising, 3945 bool permit_pause_to_mac) 3946 { 3947 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3948 u32 mask, val, an, old_an, changed; 3949 3950 mask = MVNETA_GMAC_INBAND_AN_ENABLE | 3951 MVNETA_GMAC_INBAND_RESTART_AN | 3952 MVNETA_GMAC_AN_SPEED_EN | 3953 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3954 MVNETA_GMAC_AN_DUPLEX_EN; 3955 3956 if (phylink_autoneg_inband(mode)) { 3957 mask |= MVNETA_GMAC_CONFIG_MII_SPEED | 3958 MVNETA_GMAC_CONFIG_GMII_SPEED | 3959 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3960 val = MVNETA_GMAC_INBAND_AN_ENABLE; 3961 3962 if (interface == PHY_INTERFACE_MODE_SGMII) { 3963 /* SGMII mode receives the speed and duplex from PHY */ 3964 val |= MVNETA_GMAC_AN_SPEED_EN | 3965 MVNETA_GMAC_AN_DUPLEX_EN; 3966 } else { 3967 /* 802.3z mode has fixed speed and duplex */ 3968 val |= MVNETA_GMAC_CONFIG_GMII_SPEED | 3969 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3970 3971 /* The FLOW_CTRL_EN bit selects either the hardware 3972 * automatically or the CONFIG_FLOW_CTRL manually 3973 * controls the GMAC pause mode. 3974 */ 3975 if (permit_pause_to_mac) 3976 val |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3977 3978 /* Update the advertisement bits */ 3979 mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3980 if (phylink_test(advertising, Pause)) 3981 val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3982 } 3983 } else { 3984 /* Phy or fixed speed - disable in-band AN modes */ 3985 val = 0; 3986 } 3987 3988 old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3989 an = (an & ~mask) | val; 3990 changed = old_an ^ an; 3991 if (changed) 3992 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an); 3993 3994 /* We are only interested in the advertisement bits changing */ 3995 return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL); 3996 } 3997 3998 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs) 3999 { 4000 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 4001 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4002 4003 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4004 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 4005 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4006 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 4007 } 4008 4009 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = { 4010 .pcs_validate = mvneta_pcs_validate, 4011 .pcs_get_state = mvneta_pcs_get_state, 4012 .pcs_config = mvneta_pcs_config, 4013 .pcs_an_restart = mvneta_pcs_an_restart, 4014 }; 4015 4016 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config, 4017 phy_interface_t interface) 4018 { 4019 struct net_device *ndev = to_net_dev(config->dev); 4020 struct mvneta_port *pp = netdev_priv(ndev); 4021 4022 return &pp->phylink_pcs; 4023 } 4024 4025 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode, 4026 phy_interface_t interface) 4027 { 4028 struct net_device *ndev = to_net_dev(config->dev); 4029 struct mvneta_port *pp = netdev_priv(ndev); 4030 u32 val; 4031 4032 if (pp->phy_interface != interface || 4033 phylink_autoneg_inband(mode)) { 4034 /* Force the link down when changing the interface or if in 4035 * in-band mode. According to Armada 370 documentation, we 4036 * can only change the port mode and in-band enable when the 4037 * link is down. 4038 */ 4039 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4040 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4041 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4042 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4043 } 4044 4045 if (pp->phy_interface != interface) 4046 WARN_ON(phy_power_off(pp->comphy)); 4047 4048 /* Enable the 1ms clock */ 4049 if (phylink_autoneg_inband(mode)) { 4050 unsigned long rate = clk_get_rate(pp->clk); 4051 4052 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, 4053 MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000)); 4054 } 4055 4056 return 0; 4057 } 4058 4059 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 4060 const struct phylink_link_state *state) 4061 { 4062 struct net_device *ndev = to_net_dev(config->dev); 4063 struct mvneta_port *pp = netdev_priv(ndev); 4064 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 4065 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4066 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 4067 4068 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 4069 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 4070 MVNETA_GMAC2_PORT_RESET); 4071 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 4072 4073 /* Even though it might look weird, when we're configured in 4074 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4075 */ 4076 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 4077 4078 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 4079 state->interface == PHY_INTERFACE_MODE_SGMII || 4080 phy_interface_mode_is_8023z(state->interface)) 4081 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 4082 4083 if (!phylink_autoneg_inband(mode)) { 4084 /* Phy or fixed speed - nothing to do, leave the 4085 * configured speed, duplex and flow control as-is. 4086 */ 4087 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 4088 /* SGMII mode receives the state from the PHY */ 4089 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 4090 } else { 4091 /* 802.3z negotiation - only 1000base-X */ 4092 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 4093 } 4094 4095 /* When at 2.5G, the link partner can send frames with shortened 4096 * preambles. 4097 */ 4098 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 4099 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 4100 4101 if (new_ctrl0 != gmac_ctrl0) 4102 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 4103 if (new_ctrl2 != gmac_ctrl2) 4104 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 4105 if (new_ctrl4 != gmac_ctrl4) 4106 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4107 4108 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4109 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4110 MVNETA_GMAC2_PORT_RESET) != 0) 4111 continue; 4112 } 4113 } 4114 4115 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode, 4116 phy_interface_t interface) 4117 { 4118 struct net_device *ndev = to_net_dev(config->dev); 4119 struct mvneta_port *pp = netdev_priv(ndev); 4120 u32 val, clk; 4121 4122 /* Disable 1ms clock if not in in-band mode */ 4123 if (!phylink_autoneg_inband(mode)) { 4124 clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 4125 clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 4126 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk); 4127 } 4128 4129 if (pp->phy_interface != interface) 4130 /* Enable the Serdes PHY */ 4131 WARN_ON(mvneta_config_interface(pp, interface)); 4132 4133 /* Allow the link to come up if in in-band mode, otherwise the 4134 * link is forced via mac_link_down()/mac_link_up() 4135 */ 4136 if (phylink_autoneg_inband(mode)) { 4137 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4138 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 4139 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4140 } 4141 4142 return 0; 4143 } 4144 4145 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4146 { 4147 u32 lpi_ctl1; 4148 4149 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4150 if (enable) 4151 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4152 else 4153 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4154 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4155 } 4156 4157 static void mvneta_mac_link_down(struct phylink_config *config, 4158 unsigned int mode, phy_interface_t interface) 4159 { 4160 struct net_device *ndev = to_net_dev(config->dev); 4161 struct mvneta_port *pp = netdev_priv(ndev); 4162 u32 val; 4163 4164 mvneta_port_down(pp); 4165 4166 if (!phylink_autoneg_inband(mode)) { 4167 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4168 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4169 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4170 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4171 } 4172 4173 pp->eee_active = false; 4174 mvneta_set_eee(pp, false); 4175 } 4176 4177 static void mvneta_mac_link_up(struct phylink_config *config, 4178 struct phy_device *phy, 4179 unsigned int mode, phy_interface_t interface, 4180 int speed, int duplex, 4181 bool tx_pause, bool rx_pause) 4182 { 4183 struct net_device *ndev = to_net_dev(config->dev); 4184 struct mvneta_port *pp = netdev_priv(ndev); 4185 u32 val; 4186 4187 if (!phylink_autoneg_inband(mode)) { 4188 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4189 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4190 MVNETA_GMAC_CONFIG_MII_SPEED | 4191 MVNETA_GMAC_CONFIG_GMII_SPEED | 4192 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4193 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4194 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4195 4196 if (speed == SPEED_1000 || speed == SPEED_2500) 4197 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4198 else if (speed == SPEED_100) 4199 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4200 4201 if (duplex == DUPLEX_FULL) 4202 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4203 4204 if (tx_pause || rx_pause) 4205 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4206 4207 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4208 } else { 4209 /* When inband doesn't cover flow control or flow control is 4210 * disabled, we need to manually configure it. This bit will 4211 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4212 */ 4213 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4214 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4215 4216 if (tx_pause || rx_pause) 4217 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4218 4219 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4220 } 4221 4222 mvneta_port_up(pp); 4223 4224 if (phy && pp->eee_enabled) { 4225 pp->eee_active = phy_init_eee(phy, false) >= 0; 4226 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4227 } 4228 } 4229 4230 static const struct phylink_mac_ops mvneta_phylink_ops = { 4231 .validate = phylink_generic_validate, 4232 .mac_select_pcs = mvneta_mac_select_pcs, 4233 .mac_prepare = mvneta_mac_prepare, 4234 .mac_config = mvneta_mac_config, 4235 .mac_finish = mvneta_mac_finish, 4236 .mac_link_down = mvneta_mac_link_down, 4237 .mac_link_up = mvneta_mac_link_up, 4238 }; 4239 4240 static int mvneta_mdio_probe(struct mvneta_port *pp) 4241 { 4242 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4243 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4244 4245 if (err) 4246 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4247 4248 phylink_ethtool_get_wol(pp->phylink, &wol); 4249 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4250 4251 /* PHY WoL may be enabled but device wakeup disabled */ 4252 if (wol.supported) 4253 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4254 4255 return err; 4256 } 4257 4258 static void mvneta_mdio_remove(struct mvneta_port *pp) 4259 { 4260 phylink_disconnect_phy(pp->phylink); 4261 } 4262 4263 /* Electing a CPU must be done in an atomic way: it should be done 4264 * after or before the removal/insertion of a CPU and this function is 4265 * not reentrant. 4266 */ 4267 static void mvneta_percpu_elect(struct mvneta_port *pp) 4268 { 4269 int elected_cpu = 0, max_cpu, cpu, i = 0; 4270 4271 /* Use the cpu associated to the rxq when it is online, in all 4272 * the other cases, use the cpu 0 which can't be offline. 4273 */ 4274 if (cpu_online(pp->rxq_def)) 4275 elected_cpu = pp->rxq_def; 4276 4277 max_cpu = num_present_cpus(); 4278 4279 for_each_online_cpu(cpu) { 4280 int rxq_map = 0, txq_map = 0; 4281 int rxq; 4282 4283 for (rxq = 0; rxq < rxq_number; rxq++) 4284 if ((rxq % max_cpu) == cpu) 4285 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4286 4287 if (cpu == elected_cpu) 4288 /* Map the default receive queue to the elected CPU */ 4289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4290 4291 /* We update the TX queue map only if we have one 4292 * queue. In this case we associate the TX queue to 4293 * the CPU bound to the default RX queue 4294 */ 4295 if (txq_number == 1) 4296 txq_map = (cpu == elected_cpu) ? 4297 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4298 else 4299 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4300 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4301 4302 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4303 4304 /* Update the interrupt mask on each CPU according the 4305 * new mapping 4306 */ 4307 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4308 pp, true); 4309 i++; 4310 4311 } 4312 }; 4313 4314 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4315 { 4316 int other_cpu; 4317 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4318 node_online); 4319 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4320 4321 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts 4322 * are routed to CPU 0, so we don't need all the cpu-hotplug support 4323 */ 4324 if (pp->neta_armada3700) 4325 return 0; 4326 4327 spin_lock(&pp->lock); 4328 /* 4329 * Configuring the driver for a new CPU while the driver is 4330 * stopping is racy, so just avoid it. 4331 */ 4332 if (pp->is_stopped) { 4333 spin_unlock(&pp->lock); 4334 return 0; 4335 } 4336 netif_tx_stop_all_queues(pp->dev); 4337 4338 /* 4339 * We have to synchronise on tha napi of each CPU except the one 4340 * just being woken up 4341 */ 4342 for_each_online_cpu(other_cpu) { 4343 if (other_cpu != cpu) { 4344 struct mvneta_pcpu_port *other_port = 4345 per_cpu_ptr(pp->ports, other_cpu); 4346 4347 napi_synchronize(&other_port->napi); 4348 } 4349 } 4350 4351 /* Mask all ethernet port interrupts */ 4352 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4353 napi_enable(&port->napi); 4354 4355 /* 4356 * Enable per-CPU interrupts on the CPU that is 4357 * brought up. 4358 */ 4359 mvneta_percpu_enable(pp); 4360 4361 /* 4362 * Enable per-CPU interrupt on the one CPU we care 4363 * about. 4364 */ 4365 mvneta_percpu_elect(pp); 4366 4367 /* Unmask all ethernet port interrupts */ 4368 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4369 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4370 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4371 MVNETA_CAUSE_LINK_CHANGE); 4372 netif_tx_start_all_queues(pp->dev); 4373 spin_unlock(&pp->lock); 4374 return 0; 4375 } 4376 4377 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4378 { 4379 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4380 node_online); 4381 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4382 4383 /* 4384 * Thanks to this lock we are sure that any pending cpu election is 4385 * done. 4386 */ 4387 spin_lock(&pp->lock); 4388 /* Mask all ethernet port interrupts */ 4389 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4390 spin_unlock(&pp->lock); 4391 4392 napi_synchronize(&port->napi); 4393 napi_disable(&port->napi); 4394 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4395 mvneta_percpu_disable(pp); 4396 return 0; 4397 } 4398 4399 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4400 { 4401 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4402 node_dead); 4403 4404 /* Check if a new CPU must be elected now this on is down */ 4405 spin_lock(&pp->lock); 4406 mvneta_percpu_elect(pp); 4407 spin_unlock(&pp->lock); 4408 /* Unmask all ethernet port interrupts */ 4409 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4410 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4411 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4412 MVNETA_CAUSE_LINK_CHANGE); 4413 netif_tx_start_all_queues(pp->dev); 4414 return 0; 4415 } 4416 4417 static int mvneta_open(struct net_device *dev) 4418 { 4419 struct mvneta_port *pp = netdev_priv(dev); 4420 int ret; 4421 4422 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4423 4424 ret = mvneta_setup_rxqs(pp); 4425 if (ret) 4426 return ret; 4427 4428 ret = mvneta_setup_txqs(pp); 4429 if (ret) 4430 goto err_cleanup_rxqs; 4431 4432 /* Connect to port interrupt line */ 4433 if (pp->neta_armada3700) 4434 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4435 dev->name, pp); 4436 else 4437 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4438 dev->name, pp->ports); 4439 if (ret) { 4440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4441 goto err_cleanup_txqs; 4442 } 4443 4444 if (!pp->neta_armada3700) { 4445 /* Enable per-CPU interrupt on all the CPU to handle our RX 4446 * queue interrupts 4447 */ 4448 on_each_cpu(mvneta_percpu_enable, pp, true); 4449 4450 pp->is_stopped = false; 4451 /* Register a CPU notifier to handle the case where our CPU 4452 * might be taken offline. 4453 */ 4454 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4455 &pp->node_online); 4456 if (ret) 4457 goto err_free_irq; 4458 4459 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4460 &pp->node_dead); 4461 if (ret) 4462 goto err_free_online_hp; 4463 } 4464 4465 ret = mvneta_mdio_probe(pp); 4466 if (ret < 0) { 4467 netdev_err(dev, "cannot probe MDIO bus\n"); 4468 goto err_free_dead_hp; 4469 } 4470 4471 mvneta_start_dev(pp); 4472 4473 return 0; 4474 4475 err_free_dead_hp: 4476 if (!pp->neta_armada3700) 4477 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4478 &pp->node_dead); 4479 err_free_online_hp: 4480 if (!pp->neta_armada3700) 4481 cpuhp_state_remove_instance_nocalls(online_hpstate, 4482 &pp->node_online); 4483 err_free_irq: 4484 if (pp->neta_armada3700) { 4485 free_irq(pp->dev->irq, pp); 4486 } else { 4487 on_each_cpu(mvneta_percpu_disable, pp, true); 4488 free_percpu_irq(pp->dev->irq, pp->ports); 4489 } 4490 err_cleanup_txqs: 4491 mvneta_cleanup_txqs(pp); 4492 err_cleanup_rxqs: 4493 mvneta_cleanup_rxqs(pp); 4494 return ret; 4495 } 4496 4497 /* Stop the port, free port interrupt line */ 4498 static int mvneta_stop(struct net_device *dev) 4499 { 4500 struct mvneta_port *pp = netdev_priv(dev); 4501 4502 if (!pp->neta_armada3700) { 4503 /* Inform that we are stopping so we don't want to setup the 4504 * driver for new CPUs in the notifiers. The code of the 4505 * notifier for CPU online is protected by the same spinlock, 4506 * so when we get the lock, the notifer work is done. 4507 */ 4508 spin_lock(&pp->lock); 4509 pp->is_stopped = true; 4510 spin_unlock(&pp->lock); 4511 4512 mvneta_stop_dev(pp); 4513 mvneta_mdio_remove(pp); 4514 4515 cpuhp_state_remove_instance_nocalls(online_hpstate, 4516 &pp->node_online); 4517 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4518 &pp->node_dead); 4519 on_each_cpu(mvneta_percpu_disable, pp, true); 4520 free_percpu_irq(dev->irq, pp->ports); 4521 } else { 4522 mvneta_stop_dev(pp); 4523 mvneta_mdio_remove(pp); 4524 free_irq(dev->irq, pp); 4525 } 4526 4527 mvneta_cleanup_rxqs(pp); 4528 mvneta_cleanup_txqs(pp); 4529 4530 return 0; 4531 } 4532 4533 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4534 { 4535 struct mvneta_port *pp = netdev_priv(dev); 4536 4537 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4538 } 4539 4540 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4541 struct netlink_ext_ack *extack) 4542 { 4543 bool need_update, running = netif_running(dev); 4544 struct mvneta_port *pp = netdev_priv(dev); 4545 struct bpf_prog *old_prog; 4546 4547 if (prog && !prog->aux->xdp_has_frags && 4548 dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4549 NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags"); 4550 return -EOPNOTSUPP; 4551 } 4552 4553 if (pp->bm_priv) { 4554 NL_SET_ERR_MSG_MOD(extack, 4555 "Hardware Buffer Management not supported on XDP"); 4556 return -EOPNOTSUPP; 4557 } 4558 4559 need_update = !!pp->xdp_prog != !!prog; 4560 if (running && need_update) 4561 mvneta_stop(dev); 4562 4563 old_prog = xchg(&pp->xdp_prog, prog); 4564 if (old_prog) 4565 bpf_prog_put(old_prog); 4566 4567 if (running && need_update) 4568 return mvneta_open(dev); 4569 4570 return 0; 4571 } 4572 4573 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4574 { 4575 switch (xdp->command) { 4576 case XDP_SETUP_PROG: 4577 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4578 default: 4579 return -EINVAL; 4580 } 4581 } 4582 4583 /* Ethtool methods */ 4584 4585 /* Set link ksettings (phy address, speed) for ethtools */ 4586 static int 4587 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4588 const struct ethtool_link_ksettings *cmd) 4589 { 4590 struct mvneta_port *pp = netdev_priv(ndev); 4591 4592 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4593 } 4594 4595 /* Get link ksettings for ethtools */ 4596 static int 4597 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4598 struct ethtool_link_ksettings *cmd) 4599 { 4600 struct mvneta_port *pp = netdev_priv(ndev); 4601 4602 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4603 } 4604 4605 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4606 { 4607 struct mvneta_port *pp = netdev_priv(dev); 4608 4609 return phylink_ethtool_nway_reset(pp->phylink); 4610 } 4611 4612 /* Set interrupt coalescing for ethtools */ 4613 static int 4614 mvneta_ethtool_set_coalesce(struct net_device *dev, 4615 struct ethtool_coalesce *c, 4616 struct kernel_ethtool_coalesce *kernel_coal, 4617 struct netlink_ext_ack *extack) 4618 { 4619 struct mvneta_port *pp = netdev_priv(dev); 4620 int queue; 4621 4622 for (queue = 0; queue < rxq_number; queue++) { 4623 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4624 rxq->time_coal = c->rx_coalesce_usecs; 4625 rxq->pkts_coal = c->rx_max_coalesced_frames; 4626 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4627 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4628 } 4629 4630 for (queue = 0; queue < txq_number; queue++) { 4631 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4632 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4633 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4634 } 4635 4636 return 0; 4637 } 4638 4639 /* get coalescing for ethtools */ 4640 static int 4641 mvneta_ethtool_get_coalesce(struct net_device *dev, 4642 struct ethtool_coalesce *c, 4643 struct kernel_ethtool_coalesce *kernel_coal, 4644 struct netlink_ext_ack *extack) 4645 { 4646 struct mvneta_port *pp = netdev_priv(dev); 4647 4648 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4649 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4650 4651 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4652 return 0; 4653 } 4654 4655 4656 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4657 struct ethtool_drvinfo *drvinfo) 4658 { 4659 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4660 sizeof(drvinfo->driver)); 4661 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4662 sizeof(drvinfo->version)); 4663 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4664 sizeof(drvinfo->bus_info)); 4665 } 4666 4667 4668 static void 4669 mvneta_ethtool_get_ringparam(struct net_device *netdev, 4670 struct ethtool_ringparam *ring, 4671 struct kernel_ethtool_ringparam *kernel_ring, 4672 struct netlink_ext_ack *extack) 4673 { 4674 struct mvneta_port *pp = netdev_priv(netdev); 4675 4676 ring->rx_max_pending = MVNETA_MAX_RXD; 4677 ring->tx_max_pending = MVNETA_MAX_TXD; 4678 ring->rx_pending = pp->rx_ring_size; 4679 ring->tx_pending = pp->tx_ring_size; 4680 } 4681 4682 static int 4683 mvneta_ethtool_set_ringparam(struct net_device *dev, 4684 struct ethtool_ringparam *ring, 4685 struct kernel_ethtool_ringparam *kernel_ring, 4686 struct netlink_ext_ack *extack) 4687 { 4688 struct mvneta_port *pp = netdev_priv(dev); 4689 4690 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4691 return -EINVAL; 4692 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4693 ring->rx_pending : MVNETA_MAX_RXD; 4694 4695 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4696 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4697 if (pp->tx_ring_size != ring->tx_pending) 4698 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4699 pp->tx_ring_size, ring->tx_pending); 4700 4701 if (netif_running(dev)) { 4702 mvneta_stop(dev); 4703 if (mvneta_open(dev)) { 4704 netdev_err(dev, 4705 "error on opening device after ring param change\n"); 4706 return -ENOMEM; 4707 } 4708 } 4709 4710 return 0; 4711 } 4712 4713 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4714 struct ethtool_pauseparam *pause) 4715 { 4716 struct mvneta_port *pp = netdev_priv(dev); 4717 4718 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4719 } 4720 4721 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4722 struct ethtool_pauseparam *pause) 4723 { 4724 struct mvneta_port *pp = netdev_priv(dev); 4725 4726 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4727 } 4728 4729 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4730 u8 *data) 4731 { 4732 if (sset == ETH_SS_STATS) { 4733 int i; 4734 4735 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4736 memcpy(data + i * ETH_GSTRING_LEN, 4737 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4738 } 4739 } 4740 4741 static void 4742 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4743 struct mvneta_ethtool_stats *es) 4744 { 4745 unsigned int start; 4746 int cpu; 4747 4748 for_each_possible_cpu(cpu) { 4749 struct mvneta_pcpu_stats *stats; 4750 u64 skb_alloc_error; 4751 u64 refill_error; 4752 u64 xdp_redirect; 4753 u64 xdp_xmit_err; 4754 u64 xdp_tx_err; 4755 u64 xdp_pass; 4756 u64 xdp_drop; 4757 u64 xdp_xmit; 4758 u64 xdp_tx; 4759 4760 stats = per_cpu_ptr(pp->stats, cpu); 4761 do { 4762 start = u64_stats_fetch_begin_irq(&stats->syncp); 4763 skb_alloc_error = stats->es.skb_alloc_error; 4764 refill_error = stats->es.refill_error; 4765 xdp_redirect = stats->es.ps.xdp_redirect; 4766 xdp_pass = stats->es.ps.xdp_pass; 4767 xdp_drop = stats->es.ps.xdp_drop; 4768 xdp_xmit = stats->es.ps.xdp_xmit; 4769 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4770 xdp_tx = stats->es.ps.xdp_tx; 4771 xdp_tx_err = stats->es.ps.xdp_tx_err; 4772 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4773 4774 es->skb_alloc_error += skb_alloc_error; 4775 es->refill_error += refill_error; 4776 es->ps.xdp_redirect += xdp_redirect; 4777 es->ps.xdp_pass += xdp_pass; 4778 es->ps.xdp_drop += xdp_drop; 4779 es->ps.xdp_xmit += xdp_xmit; 4780 es->ps.xdp_xmit_err += xdp_xmit_err; 4781 es->ps.xdp_tx += xdp_tx; 4782 es->ps.xdp_tx_err += xdp_tx_err; 4783 } 4784 } 4785 4786 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4787 { 4788 struct mvneta_ethtool_stats stats = {}; 4789 const struct mvneta_statistic *s; 4790 void __iomem *base = pp->base; 4791 u32 high, low; 4792 u64 val; 4793 int i; 4794 4795 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4796 for (i = 0, s = mvneta_statistics; 4797 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4798 s++, i++) { 4799 switch (s->type) { 4800 case T_REG_32: 4801 val = readl_relaxed(base + s->offset); 4802 pp->ethtool_stats[i] += val; 4803 break; 4804 case T_REG_64: 4805 /* Docs say to read low 32-bit then high */ 4806 low = readl_relaxed(base + s->offset); 4807 high = readl_relaxed(base + s->offset + 4); 4808 val = (u64)high << 32 | low; 4809 pp->ethtool_stats[i] += val; 4810 break; 4811 case T_SW: 4812 switch (s->offset) { 4813 case ETHTOOL_STAT_EEE_WAKEUP: 4814 val = phylink_get_eee_err(pp->phylink); 4815 pp->ethtool_stats[i] += val; 4816 break; 4817 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4818 pp->ethtool_stats[i] = stats.skb_alloc_error; 4819 break; 4820 case ETHTOOL_STAT_REFILL_ERR: 4821 pp->ethtool_stats[i] = stats.refill_error; 4822 break; 4823 case ETHTOOL_XDP_REDIRECT: 4824 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4825 break; 4826 case ETHTOOL_XDP_PASS: 4827 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4828 break; 4829 case ETHTOOL_XDP_DROP: 4830 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4831 break; 4832 case ETHTOOL_XDP_TX: 4833 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4834 break; 4835 case ETHTOOL_XDP_TX_ERR: 4836 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4837 break; 4838 case ETHTOOL_XDP_XMIT: 4839 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4840 break; 4841 case ETHTOOL_XDP_XMIT_ERR: 4842 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4843 break; 4844 } 4845 break; 4846 } 4847 } 4848 } 4849 4850 static void mvneta_ethtool_get_stats(struct net_device *dev, 4851 struct ethtool_stats *stats, u64 *data) 4852 { 4853 struct mvneta_port *pp = netdev_priv(dev); 4854 int i; 4855 4856 mvneta_ethtool_update_stats(pp); 4857 4858 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4859 *data++ = pp->ethtool_stats[i]; 4860 } 4861 4862 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4863 { 4864 if (sset == ETH_SS_STATS) 4865 return ARRAY_SIZE(mvneta_statistics); 4866 return -EOPNOTSUPP; 4867 } 4868 4869 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4870 { 4871 return MVNETA_RSS_LU_TABLE_SIZE; 4872 } 4873 4874 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4875 struct ethtool_rxnfc *info, 4876 u32 *rules __always_unused) 4877 { 4878 switch (info->cmd) { 4879 case ETHTOOL_GRXRINGS: 4880 info->data = rxq_number; 4881 return 0; 4882 case ETHTOOL_GRXFH: 4883 return -EOPNOTSUPP; 4884 default: 4885 return -EOPNOTSUPP; 4886 } 4887 } 4888 4889 static int mvneta_config_rss(struct mvneta_port *pp) 4890 { 4891 int cpu; 4892 u32 val; 4893 4894 netif_tx_stop_all_queues(pp->dev); 4895 4896 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4897 4898 if (!pp->neta_armada3700) { 4899 /* We have to synchronise on the napi of each CPU */ 4900 for_each_online_cpu(cpu) { 4901 struct mvneta_pcpu_port *pcpu_port = 4902 per_cpu_ptr(pp->ports, cpu); 4903 4904 napi_synchronize(&pcpu_port->napi); 4905 napi_disable(&pcpu_port->napi); 4906 } 4907 } else { 4908 napi_synchronize(&pp->napi); 4909 napi_disable(&pp->napi); 4910 } 4911 4912 pp->rxq_def = pp->indir[0]; 4913 4914 /* Update unicast mapping */ 4915 mvneta_set_rx_mode(pp->dev); 4916 4917 /* Update val of portCfg register accordingly with all RxQueue types */ 4918 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4919 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4920 4921 /* Update the elected CPU matching the new rxq_def */ 4922 spin_lock(&pp->lock); 4923 mvneta_percpu_elect(pp); 4924 spin_unlock(&pp->lock); 4925 4926 if (!pp->neta_armada3700) { 4927 /* We have to synchronise on the napi of each CPU */ 4928 for_each_online_cpu(cpu) { 4929 struct mvneta_pcpu_port *pcpu_port = 4930 per_cpu_ptr(pp->ports, cpu); 4931 4932 napi_enable(&pcpu_port->napi); 4933 } 4934 } else { 4935 napi_enable(&pp->napi); 4936 } 4937 4938 netif_tx_start_all_queues(pp->dev); 4939 4940 return 0; 4941 } 4942 4943 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4944 const u8 *key, const u8 hfunc) 4945 { 4946 struct mvneta_port *pp = netdev_priv(dev); 4947 4948 /* Current code for Armada 3700 doesn't support RSS features yet */ 4949 if (pp->neta_armada3700) 4950 return -EOPNOTSUPP; 4951 4952 /* We require at least one supported parameter to be changed 4953 * and no change in any of the unsupported parameters 4954 */ 4955 if (key || 4956 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4957 return -EOPNOTSUPP; 4958 4959 if (!indir) 4960 return 0; 4961 4962 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4963 4964 return mvneta_config_rss(pp); 4965 } 4966 4967 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4968 u8 *hfunc) 4969 { 4970 struct mvneta_port *pp = netdev_priv(dev); 4971 4972 /* Current code for Armada 3700 doesn't support RSS features yet */ 4973 if (pp->neta_armada3700) 4974 return -EOPNOTSUPP; 4975 4976 if (hfunc) 4977 *hfunc = ETH_RSS_HASH_TOP; 4978 4979 if (!indir) 4980 return 0; 4981 4982 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4983 4984 return 0; 4985 } 4986 4987 static void mvneta_ethtool_get_wol(struct net_device *dev, 4988 struct ethtool_wolinfo *wol) 4989 { 4990 struct mvneta_port *pp = netdev_priv(dev); 4991 4992 phylink_ethtool_get_wol(pp->phylink, wol); 4993 } 4994 4995 static int mvneta_ethtool_set_wol(struct net_device *dev, 4996 struct ethtool_wolinfo *wol) 4997 { 4998 struct mvneta_port *pp = netdev_priv(dev); 4999 int ret; 5000 5001 ret = phylink_ethtool_set_wol(pp->phylink, wol); 5002 if (!ret) 5003 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 5004 5005 return ret; 5006 } 5007 5008 static int mvneta_ethtool_get_eee(struct net_device *dev, 5009 struct ethtool_eee *eee) 5010 { 5011 struct mvneta_port *pp = netdev_priv(dev); 5012 u32 lpi_ctl0; 5013 5014 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5015 5016 eee->eee_enabled = pp->eee_enabled; 5017 eee->eee_active = pp->eee_active; 5018 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 5019 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 5020 5021 return phylink_ethtool_get_eee(pp->phylink, eee); 5022 } 5023 5024 static int mvneta_ethtool_set_eee(struct net_device *dev, 5025 struct ethtool_eee *eee) 5026 { 5027 struct mvneta_port *pp = netdev_priv(dev); 5028 u32 lpi_ctl0; 5029 5030 /* The Armada 37x documents do not give limits for this other than 5031 * it being an 8-bit register. 5032 */ 5033 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 5034 return -EINVAL; 5035 5036 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5037 lpi_ctl0 &= ~(0xff << 8); 5038 lpi_ctl0 |= eee->tx_lpi_timer << 8; 5039 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 5040 5041 pp->eee_enabled = eee->eee_enabled; 5042 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 5043 5044 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 5045 5046 return phylink_ethtool_set_eee(pp->phylink, eee); 5047 } 5048 5049 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp) 5050 { 5051 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0); 5052 } 5053 5054 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq) 5055 { 5056 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ); 5057 5058 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7); 5059 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq); 5060 5061 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val); 5062 } 5063 5064 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp) 5065 { 5066 unsigned long core_clk_rate; 5067 u32 refill_cycles; 5068 u32 val; 5069 5070 core_clk_rate = clk_get_rate(pp->clk); 5071 if (!core_clk_rate) 5072 return -EINVAL; 5073 5074 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS / 5075 (NSEC_PER_SEC / core_clk_rate); 5076 5077 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK) 5078 return -EINVAL; 5079 5080 /* Enable bw limit algorithm version 3 */ 5081 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5082 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5083 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5084 5085 /* Set the base refill rate */ 5086 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles); 5087 5088 return 0; 5089 } 5090 5091 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp) 5092 { 5093 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5094 5095 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5096 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5097 } 5098 5099 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue, 5100 u64 min_rate, u64 max_rate) 5101 { 5102 u32 refill_val, rem; 5103 u32 val = 0; 5104 5105 /* Convert to from Bps to bps */ 5106 max_rate *= 8; 5107 5108 if (min_rate) 5109 return -EINVAL; 5110 5111 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION, 5112 &rem); 5113 5114 if (rem || !refill_val || 5115 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX) 5116 return -EINVAL; 5117 5118 val = refill_val; 5119 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD << 5120 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT); 5121 5122 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val); 5123 5124 return 0; 5125 } 5126 5127 static int mvneta_setup_mqprio(struct net_device *dev, 5128 struct tc_mqprio_qopt_offload *mqprio) 5129 { 5130 struct mvneta_port *pp = netdev_priv(dev); 5131 int rxq, txq, tc, ret; 5132 u8 num_tc; 5133 5134 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS) 5135 return 0; 5136 5137 num_tc = mqprio->qopt.num_tc; 5138 5139 if (num_tc > rxq_number) 5140 return -EINVAL; 5141 5142 mvneta_clear_rx_prio_map(pp); 5143 5144 if (!num_tc) { 5145 mvneta_disable_per_queue_rate_limit(pp); 5146 netdev_reset_tc(dev); 5147 return 0; 5148 } 5149 5150 netdev_set_num_tc(dev, mqprio->qopt.num_tc); 5151 5152 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5153 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc], 5154 mqprio->qopt.offset[tc]); 5155 5156 for (rxq = mqprio->qopt.offset[tc]; 5157 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5158 rxq++) { 5159 if (rxq >= rxq_number) 5160 return -EINVAL; 5161 5162 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq); 5163 } 5164 } 5165 5166 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) { 5167 mvneta_disable_per_queue_rate_limit(pp); 5168 return 0; 5169 } 5170 5171 if (mqprio->qopt.num_tc > txq_number) 5172 return -EINVAL; 5173 5174 ret = mvneta_enable_per_queue_rate_limit(pp); 5175 if (ret) 5176 return ret; 5177 5178 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5179 for (txq = mqprio->qopt.offset[tc]; 5180 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5181 txq++) { 5182 if (txq >= txq_number) 5183 return -EINVAL; 5184 5185 ret = mvneta_setup_queue_rates(pp, txq, 5186 mqprio->min_rate[tc], 5187 mqprio->max_rate[tc]); 5188 if (ret) 5189 return ret; 5190 } 5191 } 5192 5193 return 0; 5194 } 5195 5196 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type, 5197 void *type_data) 5198 { 5199 switch (type) { 5200 case TC_SETUP_QDISC_MQPRIO: 5201 return mvneta_setup_mqprio(dev, type_data); 5202 default: 5203 return -EOPNOTSUPP; 5204 } 5205 } 5206 5207 static const struct net_device_ops mvneta_netdev_ops = { 5208 .ndo_open = mvneta_open, 5209 .ndo_stop = mvneta_stop, 5210 .ndo_start_xmit = mvneta_tx, 5211 .ndo_set_rx_mode = mvneta_set_rx_mode, 5212 .ndo_set_mac_address = mvneta_set_mac_addr, 5213 .ndo_change_mtu = mvneta_change_mtu, 5214 .ndo_fix_features = mvneta_fix_features, 5215 .ndo_get_stats64 = mvneta_get_stats64, 5216 .ndo_eth_ioctl = mvneta_ioctl, 5217 .ndo_bpf = mvneta_xdp, 5218 .ndo_xdp_xmit = mvneta_xdp_xmit, 5219 .ndo_setup_tc = mvneta_setup_tc, 5220 }; 5221 5222 static const struct ethtool_ops mvneta_eth_tool_ops = { 5223 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 5224 ETHTOOL_COALESCE_MAX_FRAMES, 5225 .nway_reset = mvneta_ethtool_nway_reset, 5226 .get_link = ethtool_op_get_link, 5227 .set_coalesce = mvneta_ethtool_set_coalesce, 5228 .get_coalesce = mvneta_ethtool_get_coalesce, 5229 .get_drvinfo = mvneta_ethtool_get_drvinfo, 5230 .get_ringparam = mvneta_ethtool_get_ringparam, 5231 .set_ringparam = mvneta_ethtool_set_ringparam, 5232 .get_pauseparam = mvneta_ethtool_get_pauseparam, 5233 .set_pauseparam = mvneta_ethtool_set_pauseparam, 5234 .get_strings = mvneta_ethtool_get_strings, 5235 .get_ethtool_stats = mvneta_ethtool_get_stats, 5236 .get_sset_count = mvneta_ethtool_get_sset_count, 5237 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 5238 .get_rxnfc = mvneta_ethtool_get_rxnfc, 5239 .get_rxfh = mvneta_ethtool_get_rxfh, 5240 .set_rxfh = mvneta_ethtool_set_rxfh, 5241 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 5242 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 5243 .get_wol = mvneta_ethtool_get_wol, 5244 .set_wol = mvneta_ethtool_set_wol, 5245 .get_eee = mvneta_ethtool_get_eee, 5246 .set_eee = mvneta_ethtool_set_eee, 5247 }; 5248 5249 /* Initialize hw */ 5250 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 5251 { 5252 int queue; 5253 5254 /* Disable port */ 5255 mvneta_port_disable(pp); 5256 5257 /* Set port default values */ 5258 mvneta_defaults_set(pp); 5259 5260 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 5261 if (!pp->txqs) 5262 return -ENOMEM; 5263 5264 /* Initialize TX descriptor rings */ 5265 for (queue = 0; queue < txq_number; queue++) { 5266 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5267 txq->id = queue; 5268 txq->size = pp->tx_ring_size; 5269 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 5270 } 5271 5272 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 5273 if (!pp->rxqs) 5274 return -ENOMEM; 5275 5276 /* Create Rx descriptor rings */ 5277 for (queue = 0; queue < rxq_number; queue++) { 5278 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5279 rxq->id = queue; 5280 rxq->size = pp->rx_ring_size; 5281 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 5282 rxq->time_coal = MVNETA_RX_COAL_USEC; 5283 rxq->buf_virt_addr 5284 = devm_kmalloc_array(pp->dev->dev.parent, 5285 rxq->size, 5286 sizeof(*rxq->buf_virt_addr), 5287 GFP_KERNEL); 5288 if (!rxq->buf_virt_addr) 5289 return -ENOMEM; 5290 } 5291 5292 return 0; 5293 } 5294 5295 /* platform glue : initialize decoding windows */ 5296 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 5297 const struct mbus_dram_target_info *dram) 5298 { 5299 u32 win_enable; 5300 u32 win_protect; 5301 int i; 5302 5303 for (i = 0; i < 6; i++) { 5304 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 5305 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 5306 5307 if (i < 4) 5308 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5309 } 5310 5311 win_enable = 0x3f; 5312 win_protect = 0; 5313 5314 if (dram) { 5315 for (i = 0; i < dram->num_cs; i++) { 5316 const struct mbus_dram_window *cs = dram->cs + i; 5317 5318 mvreg_write(pp, MVNETA_WIN_BASE(i), 5319 (cs->base & 0xffff0000) | 5320 (cs->mbus_attr << 8) | 5321 dram->mbus_dram_target_id); 5322 5323 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5324 (cs->size - 1) & 0xffff0000); 5325 5326 win_enable &= ~(1 << i); 5327 win_protect |= 3 << (2 * i); 5328 } 5329 } else { 5330 if (pp->neta_ac5) 5331 mvreg_write(pp, MVNETA_WIN_BASE(0), 5332 (MVNETA_AC5_CNM_DDR_ATTR << 8) | 5333 MVNETA_AC5_CNM_DDR_TARGET); 5334 /* For Armada3700 open default 4GB Mbus window, leaving 5335 * arbitration of target/attribute to a different layer 5336 * of configuration. 5337 */ 5338 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5339 win_enable &= ~BIT(0); 5340 win_protect = 3; 5341 } 5342 5343 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5344 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5345 } 5346 5347 /* Power up the port */ 5348 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5349 { 5350 /* MAC Cause register should be cleared */ 5351 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5352 5353 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5354 phy_mode != PHY_INTERFACE_MODE_SGMII && 5355 !phy_interface_mode_is_8023z(phy_mode) && 5356 !phy_interface_mode_is_rgmii(phy_mode)) 5357 return -EINVAL; 5358 5359 return 0; 5360 } 5361 5362 /* Device initialization routine */ 5363 static int mvneta_probe(struct platform_device *pdev) 5364 { 5365 struct device_node *dn = pdev->dev.of_node; 5366 struct device_node *bm_node; 5367 struct mvneta_port *pp; 5368 struct net_device *dev; 5369 struct phylink *phylink; 5370 struct phy *comphy; 5371 char hw_mac_addr[ETH_ALEN]; 5372 phy_interface_t phy_mode; 5373 const char *mac_from; 5374 int tx_csum_limit; 5375 int err; 5376 int cpu; 5377 5378 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5379 txq_number, rxq_number); 5380 if (!dev) 5381 return -ENOMEM; 5382 5383 dev->tx_queue_len = MVNETA_MAX_TXD; 5384 dev->watchdog_timeo = 5 * HZ; 5385 dev->netdev_ops = &mvneta_netdev_ops; 5386 dev->ethtool_ops = &mvneta_eth_tool_ops; 5387 5388 pp = netdev_priv(dev); 5389 spin_lock_init(&pp->lock); 5390 pp->dn = dn; 5391 5392 pp->rxq_def = rxq_def; 5393 pp->indir[0] = rxq_def; 5394 5395 err = of_get_phy_mode(dn, &phy_mode); 5396 if (err) { 5397 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5398 return err; 5399 } 5400 5401 pp->phy_interface = phy_mode; 5402 5403 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5404 if (comphy == ERR_PTR(-EPROBE_DEFER)) 5405 return -EPROBE_DEFER; 5406 5407 if (IS_ERR(comphy)) 5408 comphy = NULL; 5409 5410 pp->comphy = comphy; 5411 5412 pp->base = devm_platform_ioremap_resource(pdev, 0); 5413 if (IS_ERR(pp->base)) 5414 return PTR_ERR(pp->base); 5415 5416 /* Get special SoC configurations */ 5417 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5418 pp->neta_armada3700 = true; 5419 if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) { 5420 pp->neta_armada3700 = true; 5421 pp->neta_ac5 = true; 5422 } 5423 5424 dev->irq = irq_of_parse_and_map(dn, 0); 5425 if (dev->irq == 0) 5426 return -EINVAL; 5427 5428 pp->clk = devm_clk_get(&pdev->dev, "core"); 5429 if (IS_ERR(pp->clk)) 5430 pp->clk = devm_clk_get(&pdev->dev, NULL); 5431 if (IS_ERR(pp->clk)) { 5432 err = PTR_ERR(pp->clk); 5433 goto err_free_irq; 5434 } 5435 5436 clk_prepare_enable(pp->clk); 5437 5438 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5439 if (!IS_ERR(pp->clk_bus)) 5440 clk_prepare_enable(pp->clk_bus); 5441 5442 pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops; 5443 5444 pp->phylink_config.dev = &dev->dev; 5445 pp->phylink_config.type = PHYLINK_NETDEV; 5446 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | 5447 MAC_100 | MAC_1000FD | MAC_2500FD; 5448 5449 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces); 5450 __set_bit(PHY_INTERFACE_MODE_QSGMII, 5451 pp->phylink_config.supported_interfaces); 5452 if (comphy) { 5453 /* If a COMPHY is present, we can support any of the serdes 5454 * modes and switch between them. 5455 */ 5456 __set_bit(PHY_INTERFACE_MODE_SGMII, 5457 pp->phylink_config.supported_interfaces); 5458 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5459 pp->phylink_config.supported_interfaces); 5460 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5461 pp->phylink_config.supported_interfaces); 5462 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) { 5463 /* No COMPHY, with only 2500BASE-X mode supported */ 5464 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5465 pp->phylink_config.supported_interfaces); 5466 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX || 5467 phy_mode == PHY_INTERFACE_MODE_SGMII) { 5468 /* No COMPHY, we can switch between 1000BASE-X and SGMII */ 5469 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5470 pp->phylink_config.supported_interfaces); 5471 __set_bit(PHY_INTERFACE_MODE_SGMII, 5472 pp->phylink_config.supported_interfaces); 5473 } 5474 5475 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5476 phy_mode, &mvneta_phylink_ops); 5477 if (IS_ERR(phylink)) { 5478 err = PTR_ERR(phylink); 5479 goto err_clk; 5480 } 5481 5482 pp->phylink = phylink; 5483 5484 /* Alloc per-cpu port structure */ 5485 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5486 if (!pp->ports) { 5487 err = -ENOMEM; 5488 goto err_free_phylink; 5489 } 5490 5491 /* Alloc per-cpu stats */ 5492 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5493 if (!pp->stats) { 5494 err = -ENOMEM; 5495 goto err_free_ports; 5496 } 5497 5498 err = of_get_ethdev_address(dn, dev); 5499 if (!err) { 5500 mac_from = "device tree"; 5501 } else { 5502 mvneta_get_mac_addr(pp, hw_mac_addr); 5503 if (is_valid_ether_addr(hw_mac_addr)) { 5504 mac_from = "hardware"; 5505 eth_hw_addr_set(dev, hw_mac_addr); 5506 } else { 5507 mac_from = "random"; 5508 eth_hw_addr_random(dev); 5509 } 5510 } 5511 5512 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5513 if (tx_csum_limit < 0 || 5514 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5515 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5516 dev_info(&pdev->dev, 5517 "Wrong TX csum limit in DT, set to %dB\n", 5518 MVNETA_TX_CSUM_DEF_SIZE); 5519 } 5520 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5521 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5522 } else { 5523 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5524 } 5525 5526 pp->tx_csum_limit = tx_csum_limit; 5527 5528 pp->dram_target_info = mv_mbus_dram_info(); 5529 /* Armada3700 requires setting default configuration of Mbus 5530 * windows, however without using filled mbus_dram_target_info 5531 * structure. 5532 */ 5533 if (pp->dram_target_info || pp->neta_armada3700) 5534 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5535 5536 pp->tx_ring_size = MVNETA_MAX_TXD; 5537 pp->rx_ring_size = MVNETA_MAX_RXD; 5538 5539 pp->dev = dev; 5540 SET_NETDEV_DEV(dev, &pdev->dev); 5541 5542 pp->id = global_port_id++; 5543 5544 /* Obtain access to BM resources if enabled and already initialized */ 5545 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5546 if (bm_node) { 5547 pp->bm_priv = mvneta_bm_get(bm_node); 5548 if (pp->bm_priv) { 5549 err = mvneta_bm_port_init(pdev, pp); 5550 if (err < 0) { 5551 dev_info(&pdev->dev, 5552 "use SW buffer management\n"); 5553 mvneta_bm_put(pp->bm_priv); 5554 pp->bm_priv = NULL; 5555 } 5556 } 5557 /* Set RX packet offset correction for platforms, whose 5558 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5559 * platforms and 0B for 32-bit ones. 5560 */ 5561 pp->rx_offset_correction = max(0, 5562 NET_SKB_PAD - 5563 MVNETA_RX_PKT_OFFSET_CORRECTION); 5564 } 5565 of_node_put(bm_node); 5566 5567 /* sw buffer management */ 5568 if (!pp->bm_priv) 5569 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5570 5571 err = mvneta_init(&pdev->dev, pp); 5572 if (err < 0) 5573 goto err_netdev; 5574 5575 err = mvneta_port_power_up(pp, pp->phy_interface); 5576 if (err < 0) { 5577 dev_err(&pdev->dev, "can't power up port\n"); 5578 goto err_netdev; 5579 } 5580 5581 /* Armada3700 network controller does not support per-cpu 5582 * operation, so only single NAPI should be initialized. 5583 */ 5584 if (pp->neta_armada3700) { 5585 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5586 } else { 5587 for_each_present_cpu(cpu) { 5588 struct mvneta_pcpu_port *port = 5589 per_cpu_ptr(pp->ports, cpu); 5590 5591 netif_napi_add(dev, &port->napi, mvneta_poll, 5592 NAPI_POLL_WEIGHT); 5593 port->pp = pp; 5594 } 5595 } 5596 5597 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5598 NETIF_F_TSO | NETIF_F_RXCSUM; 5599 dev->hw_features |= dev->features; 5600 dev->vlan_features |= dev->features; 5601 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5602 netif_set_gso_max_segs(dev, MVNETA_MAX_TSO_SEGS); 5603 5604 /* MTU range: 68 - 9676 */ 5605 dev->min_mtu = ETH_MIN_MTU; 5606 /* 9676 == 9700 - 20 and rounding to 8 */ 5607 dev->max_mtu = 9676; 5608 5609 err = register_netdev(dev); 5610 if (err < 0) { 5611 dev_err(&pdev->dev, "failed to register\n"); 5612 goto err_netdev; 5613 } 5614 5615 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5616 dev->dev_addr); 5617 5618 platform_set_drvdata(pdev, pp->dev); 5619 5620 return 0; 5621 5622 err_netdev: 5623 if (pp->bm_priv) { 5624 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5625 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5626 1 << pp->id); 5627 mvneta_bm_put(pp->bm_priv); 5628 } 5629 free_percpu(pp->stats); 5630 err_free_ports: 5631 free_percpu(pp->ports); 5632 err_free_phylink: 5633 if (pp->phylink) 5634 phylink_destroy(pp->phylink); 5635 err_clk: 5636 clk_disable_unprepare(pp->clk_bus); 5637 clk_disable_unprepare(pp->clk); 5638 err_free_irq: 5639 irq_dispose_mapping(dev->irq); 5640 return err; 5641 } 5642 5643 /* Device removal routine */ 5644 static int mvneta_remove(struct platform_device *pdev) 5645 { 5646 struct net_device *dev = platform_get_drvdata(pdev); 5647 struct mvneta_port *pp = netdev_priv(dev); 5648 5649 unregister_netdev(dev); 5650 clk_disable_unprepare(pp->clk_bus); 5651 clk_disable_unprepare(pp->clk); 5652 free_percpu(pp->ports); 5653 free_percpu(pp->stats); 5654 irq_dispose_mapping(dev->irq); 5655 phylink_destroy(pp->phylink); 5656 5657 if (pp->bm_priv) { 5658 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5659 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5660 1 << pp->id); 5661 mvneta_bm_put(pp->bm_priv); 5662 } 5663 5664 return 0; 5665 } 5666 5667 #ifdef CONFIG_PM_SLEEP 5668 static int mvneta_suspend(struct device *device) 5669 { 5670 int queue; 5671 struct net_device *dev = dev_get_drvdata(device); 5672 struct mvneta_port *pp = netdev_priv(dev); 5673 5674 if (!netif_running(dev)) 5675 goto clean_exit; 5676 5677 if (!pp->neta_armada3700) { 5678 spin_lock(&pp->lock); 5679 pp->is_stopped = true; 5680 spin_unlock(&pp->lock); 5681 5682 cpuhp_state_remove_instance_nocalls(online_hpstate, 5683 &pp->node_online); 5684 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5685 &pp->node_dead); 5686 } 5687 5688 rtnl_lock(); 5689 mvneta_stop_dev(pp); 5690 rtnl_unlock(); 5691 5692 for (queue = 0; queue < rxq_number; queue++) { 5693 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5694 5695 mvneta_rxq_drop_pkts(pp, rxq); 5696 } 5697 5698 for (queue = 0; queue < txq_number; queue++) { 5699 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5700 5701 mvneta_txq_hw_deinit(pp, txq); 5702 } 5703 5704 clean_exit: 5705 netif_device_detach(dev); 5706 clk_disable_unprepare(pp->clk_bus); 5707 clk_disable_unprepare(pp->clk); 5708 5709 return 0; 5710 } 5711 5712 static int mvneta_resume(struct device *device) 5713 { 5714 struct platform_device *pdev = to_platform_device(device); 5715 struct net_device *dev = dev_get_drvdata(device); 5716 struct mvneta_port *pp = netdev_priv(dev); 5717 int err, queue; 5718 5719 clk_prepare_enable(pp->clk); 5720 if (!IS_ERR(pp->clk_bus)) 5721 clk_prepare_enable(pp->clk_bus); 5722 if (pp->dram_target_info || pp->neta_armada3700) 5723 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5724 if (pp->bm_priv) { 5725 err = mvneta_bm_port_init(pdev, pp); 5726 if (err < 0) { 5727 dev_info(&pdev->dev, "use SW buffer management\n"); 5728 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5729 pp->bm_priv = NULL; 5730 } 5731 } 5732 mvneta_defaults_set(pp); 5733 err = mvneta_port_power_up(pp, pp->phy_interface); 5734 if (err < 0) { 5735 dev_err(device, "can't power up port\n"); 5736 return err; 5737 } 5738 5739 netif_device_attach(dev); 5740 5741 if (!netif_running(dev)) 5742 return 0; 5743 5744 for (queue = 0; queue < rxq_number; queue++) { 5745 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5746 5747 rxq->next_desc_to_proc = 0; 5748 mvneta_rxq_hw_init(pp, rxq); 5749 } 5750 5751 for (queue = 0; queue < txq_number; queue++) { 5752 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5753 5754 txq->next_desc_to_proc = 0; 5755 mvneta_txq_hw_init(pp, txq); 5756 } 5757 5758 if (!pp->neta_armada3700) { 5759 spin_lock(&pp->lock); 5760 pp->is_stopped = false; 5761 spin_unlock(&pp->lock); 5762 cpuhp_state_add_instance_nocalls(online_hpstate, 5763 &pp->node_online); 5764 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5765 &pp->node_dead); 5766 } 5767 5768 rtnl_lock(); 5769 mvneta_start_dev(pp); 5770 rtnl_unlock(); 5771 mvneta_set_rx_mode(dev); 5772 5773 return 0; 5774 } 5775 #endif 5776 5777 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5778 5779 static const struct of_device_id mvneta_match[] = { 5780 { .compatible = "marvell,armada-370-neta" }, 5781 { .compatible = "marvell,armada-xp-neta" }, 5782 { .compatible = "marvell,armada-3700-neta" }, 5783 { .compatible = "marvell,armada-ac5-neta" }, 5784 { } 5785 }; 5786 MODULE_DEVICE_TABLE(of, mvneta_match); 5787 5788 static struct platform_driver mvneta_driver = { 5789 .probe = mvneta_probe, 5790 .remove = mvneta_remove, 5791 .driver = { 5792 .name = MVNETA_DRIVER_NAME, 5793 .of_match_table = mvneta_match, 5794 .pm = &mvneta_pm_ops, 5795 }, 5796 }; 5797 5798 static int __init mvneta_driver_init(void) 5799 { 5800 int ret; 5801 5802 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5803 mvneta_cpu_online, 5804 mvneta_cpu_down_prepare); 5805 if (ret < 0) 5806 goto out; 5807 online_hpstate = ret; 5808 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5809 NULL, mvneta_cpu_dead); 5810 if (ret) 5811 goto err_dead; 5812 5813 ret = platform_driver_register(&mvneta_driver); 5814 if (ret) 5815 goto err; 5816 return 0; 5817 5818 err: 5819 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5820 err_dead: 5821 cpuhp_remove_multi_state(online_hpstate); 5822 out: 5823 return ret; 5824 } 5825 module_init(mvneta_driver_init); 5826 5827 static void __exit mvneta_driver_exit(void) 5828 { 5829 platform_driver_unregister(&mvneta_driver); 5830 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5831 cpuhp_remove_multi_state(online_hpstate); 5832 } 5833 module_exit(mvneta_driver_exit); 5834 5835 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5836 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5837 MODULE_LICENSE("GPL"); 5838 5839 module_param(rxq_number, int, 0444); 5840 module_param(txq_number, int, 0444); 5841 5842 module_param(rxq_def, int, 0444); 5843 module_param(rx_copybreak, int, 0644); 5844