1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
193 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
194 #define MVNETA_GMAC_CTRL_2                       0x2c08
195 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
196 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
197 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
198 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
199 #define MVNETA_GMAC_STATUS                       0x2c10
200 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
201 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
202 #define      MVNETA_GMAC_SPEED_100               BIT(2)
203 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
206 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
207 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
208 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
209 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
211 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
212 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
213 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
214 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
215 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
216 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
217 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
218 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
219 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
220 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
221 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
222 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
223 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
225 #define      MVNETA_MIB_LATE_COLLISION           0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
231 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
232 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
234 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
235 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
236 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
237 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
238 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
239 #define MVNETA_PORT_TX_RESET                     0x3cf0
240 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
241 #define MVNETA_TX_MTU                            0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
243 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
245 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
246 
247 #define MVNETA_LPI_CTRL_0                        0x2cc0
248 #define MVNETA_LPI_CTRL_1                        0x2cc4
249 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
250 #define MVNETA_LPI_CTRL_2                        0x2cc8
251 #define MVNETA_LPI_STATUS                        0x2ccc
252 
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
254 
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
257 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
258 
259 /* Various constants */
260 
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS		32
264 #define MVNETA_RX_COAL_USEC		100
265 
266 /* The two bytes Marvell header. Either contains a special value used
267  * by Marvell switches when a specific hardware mode is enabled (not
268  * supported by this driver) or is filled automatically by zeroes on
269  * the RX side. Those two bytes being at the front of the Ethernet
270  * header, they allow to have the IP header aligned on a 4 bytes
271  * boundary automatically: the hardware skips those two bytes on its
272  * own.
273  */
274 #define MVNETA_MH_SIZE			2
275 
276 #define MVNETA_VLAN_TAG_LEN             4
277 
278 #define MVNETA_TX_CSUM_DEF_SIZE		1600
279 #define MVNETA_TX_CSUM_MAX_SIZE		9800
280 #define MVNETA_ACC_MODE_EXT1		1
281 #define MVNETA_ACC_MODE_EXT2		2
282 
283 #define MVNETA_MAX_DECODE_WIN		6
284 
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
289 
290 #define MVNETA_TX_MTU_MAX		0x3ffff
291 
292 /* The RSS lookup table actually has 256 entries but we do not use
293  * them yet
294  */
295 #define MVNETA_RSS_LU_TABLE_SIZE	1
296 
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 128
299 
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 532
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305 
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307 
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE	32
310 
311 /* Number of bytes to be taken into account by HW when putting incoming data
312  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314  */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
316 
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 	      ETH_HLEN + ETH_FCS_LEN,			     \
320 	      cache_line_size())
321 
322 #define IS_TSO_HEADER(txq, addr) \
323 	((addr >= txq->tso_hdrs_phys) && \
324 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325 
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328 
329 enum {
330 	ETHTOOL_STAT_EEE_WAKEUP,
331 	ETHTOOL_MAX_STATS,
332 };
333 
334 struct mvneta_statistic {
335 	unsigned short offset;
336 	unsigned short type;
337 	const char name[ETH_GSTRING_LEN];
338 };
339 
340 #define T_REG_32	32
341 #define T_REG_64	64
342 #define T_SW		1
343 
344 static const struct mvneta_statistic mvneta_statistics[] = {
345 	{ 0x3000, T_REG_64, "good_octets_received", },
346 	{ 0x3010, T_REG_32, "good_frames_received", },
347 	{ 0x3008, T_REG_32, "bad_octets_received", },
348 	{ 0x3014, T_REG_32, "bad_frames_received", },
349 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
350 	{ 0x301c, T_REG_32, "multicast_frames_received", },
351 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
352 	{ 0x3058, T_REG_32, "good_fc_received", },
353 	{ 0x305c, T_REG_32, "bad_fc_received", },
354 	{ 0x3060, T_REG_32, "undersize_received", },
355 	{ 0x3064, T_REG_32, "fragments_received", },
356 	{ 0x3068, T_REG_32, "oversize_received", },
357 	{ 0x306c, T_REG_32, "jabber_received", },
358 	{ 0x3070, T_REG_32, "mac_receive_error", },
359 	{ 0x3074, T_REG_32, "bad_crc_event", },
360 	{ 0x3078, T_REG_32, "collision", },
361 	{ 0x307c, T_REG_32, "late_collision", },
362 	{ 0x2484, T_REG_32, "rx_discard", },
363 	{ 0x2488, T_REG_32, "rx_overrun", },
364 	{ 0x3020, T_REG_32, "frames_64_octets", },
365 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
366 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
367 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
368 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
369 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
370 	{ 0x3038, T_REG_64, "good_octets_sent", },
371 	{ 0x3040, T_REG_32, "good_frames_sent", },
372 	{ 0x3044, T_REG_32, "excessive_collision", },
373 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
374 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
375 	{ 0x3054, T_REG_32, "fc_sent", },
376 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
377 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
378 };
379 
380 struct mvneta_pcpu_stats {
381 	struct	u64_stats_sync syncp;
382 	u64	rx_packets;
383 	u64	rx_bytes;
384 	u64	tx_packets;
385 	u64	tx_bytes;
386 };
387 
388 struct mvneta_pcpu_port {
389 	/* Pointer to the shared port */
390 	struct mvneta_port	*pp;
391 
392 	/* Pointer to the CPU-local NAPI struct */
393 	struct napi_struct	napi;
394 
395 	/* Cause of the previous interrupt */
396 	u32			cause_rx_tx;
397 };
398 
399 struct mvneta_port {
400 	u8 id;
401 	struct mvneta_pcpu_port __percpu	*ports;
402 	struct mvneta_pcpu_stats __percpu	*stats;
403 
404 	int pkt_size;
405 	unsigned int frag_size;
406 	void __iomem *base;
407 	struct mvneta_rx_queue *rxqs;
408 	struct mvneta_tx_queue *txqs;
409 	struct net_device *dev;
410 	struct hlist_node node_online;
411 	struct hlist_node node_dead;
412 	int rxq_def;
413 	/* Protect the access to the percpu interrupt registers,
414 	 * ensuring that the configuration remains coherent.
415 	 */
416 	spinlock_t lock;
417 	bool is_stopped;
418 
419 	u32 cause_rx_tx;
420 	struct napi_struct napi;
421 
422 	/* Core clock */
423 	struct clk *clk;
424 	/* AXI clock */
425 	struct clk *clk_bus;
426 	u8 mcast_count[256];
427 	u16 tx_ring_size;
428 	u16 rx_ring_size;
429 
430 	phy_interface_t phy_interface;
431 	struct device_node *dn;
432 	unsigned int tx_csum_limit;
433 	struct phylink *phylink;
434 
435 	struct mvneta_bm *bm_priv;
436 	struct mvneta_bm_pool *pool_long;
437 	struct mvneta_bm_pool *pool_short;
438 	int bm_win_id;
439 
440 	bool eee_enabled;
441 	bool eee_active;
442 	bool tx_lpi_enabled;
443 
444 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
445 
446 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
447 
448 	/* Flags for special SoC configurations */
449 	bool neta_armada3700;
450 	u16 rx_offset_correction;
451 	const struct mbus_dram_target_info *dram_target_info;
452 };
453 
454 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
455  * layout of the transmit and reception DMA descriptors, and their
456  * layout is therefore defined by the hardware design
457  */
458 
459 #define MVNETA_TX_L3_OFF_SHIFT	0
460 #define MVNETA_TX_IP_HLEN_SHIFT	8
461 #define MVNETA_TX_L4_UDP	BIT(16)
462 #define MVNETA_TX_L3_IP6	BIT(17)
463 #define MVNETA_TXD_IP_CSUM	BIT(18)
464 #define MVNETA_TXD_Z_PAD	BIT(19)
465 #define MVNETA_TXD_L_DESC	BIT(20)
466 #define MVNETA_TXD_F_DESC	BIT(21)
467 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
468 				 MVNETA_TXD_L_DESC | \
469 				 MVNETA_TXD_F_DESC)
470 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
471 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
472 
473 #define MVNETA_RXD_ERR_CRC		0x0
474 #define MVNETA_RXD_BM_POOL_SHIFT	13
475 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
476 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
477 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
478 #define MVNETA_RXD_ERR_LEN		BIT(18)
479 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
480 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
481 #define MVNETA_RXD_L3_IP4		BIT(25)
482 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
483 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
484 
485 #if defined(__LITTLE_ENDIAN)
486 struct mvneta_tx_desc {
487 	u32  command;		/* Options used by HW for packet transmitting.*/
488 	u16  reserverd1;	/* csum_l4 (for future use)		*/
489 	u16  data_size;		/* Data size of transmitted packet in bytes */
490 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
491 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
492 	u32  reserved3[4];	/* Reserved - (for future use)		*/
493 };
494 
495 struct mvneta_rx_desc {
496 	u32  status;		/* Info about received packet		*/
497 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
498 	u16  data_size;		/* Size of received packet in bytes	*/
499 
500 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
501 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
502 
503 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
504 	u16  reserved3;		/* prefetch_cmd, for future use		*/
505 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
506 
507 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
508 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
509 };
510 #else
511 struct mvneta_tx_desc {
512 	u16  data_size;		/* Data size of transmitted packet in bytes */
513 	u16  reserverd1;	/* csum_l4 (for future use)		*/
514 	u32  command;		/* Options used by HW for packet transmitting.*/
515 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
516 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
517 	u32  reserved3[4];	/* Reserved - (for future use)		*/
518 };
519 
520 struct mvneta_rx_desc {
521 	u16  data_size;		/* Size of received packet in bytes	*/
522 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
523 	u32  status;		/* Info about received packet		*/
524 
525 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
526 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
527 
528 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
529 	u16  reserved3;		/* prefetch_cmd, for future use		*/
530 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
531 
532 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
533 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
534 };
535 #endif
536 
537 struct mvneta_tx_queue {
538 	/* Number of this TX queue, in the range 0-7 */
539 	u8 id;
540 
541 	/* Number of TX DMA descriptors in the descriptor ring */
542 	int size;
543 
544 	/* Number of currently used TX DMA descriptor in the
545 	 * descriptor ring
546 	 */
547 	int count;
548 	int pending;
549 	int tx_stop_threshold;
550 	int tx_wake_threshold;
551 
552 	/* Array of transmitted skb */
553 	struct sk_buff **tx_skb;
554 
555 	/* Index of last TX DMA descriptor that was inserted */
556 	int txq_put_index;
557 
558 	/* Index of the TX DMA descriptor to be cleaned up */
559 	int txq_get_index;
560 
561 	u32 done_pkts_coal;
562 
563 	/* Virtual address of the TX DMA descriptors array */
564 	struct mvneta_tx_desc *descs;
565 
566 	/* DMA address of the TX DMA descriptors array */
567 	dma_addr_t descs_phys;
568 
569 	/* Index of the last TX DMA descriptor */
570 	int last_desc;
571 
572 	/* Index of the next TX DMA descriptor to process */
573 	int next_desc_to_proc;
574 
575 	/* DMA buffers for TSO headers */
576 	char *tso_hdrs;
577 
578 	/* DMA address of TSO headers */
579 	dma_addr_t tso_hdrs_phys;
580 
581 	/* Affinity mask for CPUs*/
582 	cpumask_t affinity_mask;
583 };
584 
585 struct mvneta_rx_queue {
586 	/* rx queue number, in the range 0-7 */
587 	u8 id;
588 
589 	/* num of rx descriptors in the rx descriptor ring */
590 	int size;
591 
592 	/* counter of times when mvneta_refill() failed */
593 	int missed;
594 
595 	u32 pkts_coal;
596 	u32 time_coal;
597 
598 	/* Virtual address of the RX buffer */
599 	void  **buf_virt_addr;
600 
601 	/* Virtual address of the RX DMA descriptors array */
602 	struct mvneta_rx_desc *descs;
603 
604 	/* DMA address of the RX DMA descriptors array */
605 	dma_addr_t descs_phys;
606 
607 	/* Index of the last RX DMA descriptor */
608 	int last_desc;
609 
610 	/* Index of the next RX DMA descriptor to process */
611 	int next_desc_to_proc;
612 };
613 
614 static enum cpuhp_state online_hpstate;
615 /* The hardware supports eight (8) rx queues, but we are only allowing
616  * the first one to be used. Therefore, let's just allocate one queue.
617  */
618 static int rxq_number = 8;
619 static int txq_number = 8;
620 
621 static int rxq_def;
622 
623 static int rx_copybreak __read_mostly = 256;
624 
625 /* HW BM need that each port be identify by a unique ID */
626 static int global_port_id;
627 
628 #define MVNETA_DRIVER_NAME "mvneta"
629 #define MVNETA_DRIVER_VERSION "1.0"
630 
631 /* Utility/helper methods */
632 
633 /* Write helper method */
634 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
635 {
636 	writel(data, pp->base + offset);
637 }
638 
639 /* Read helper method */
640 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
641 {
642 	return readl(pp->base + offset);
643 }
644 
645 /* Increment txq get counter */
646 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
647 {
648 	txq->txq_get_index++;
649 	if (txq->txq_get_index == txq->size)
650 		txq->txq_get_index = 0;
651 }
652 
653 /* Increment txq put counter */
654 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
655 {
656 	txq->txq_put_index++;
657 	if (txq->txq_put_index == txq->size)
658 		txq->txq_put_index = 0;
659 }
660 
661 
662 /* Clear all MIB counters */
663 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
664 {
665 	int i;
666 	u32 dummy;
667 
668 	/* Perform dummy reads from MIB counters */
669 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
670 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
671 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
672 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
673 }
674 
675 /* Get System Network Statistics */
676 static void
677 mvneta_get_stats64(struct net_device *dev,
678 		   struct rtnl_link_stats64 *stats)
679 {
680 	struct mvneta_port *pp = netdev_priv(dev);
681 	unsigned int start;
682 	int cpu;
683 
684 	for_each_possible_cpu(cpu) {
685 		struct mvneta_pcpu_stats *cpu_stats;
686 		u64 rx_packets;
687 		u64 rx_bytes;
688 		u64 tx_packets;
689 		u64 tx_bytes;
690 
691 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
692 		do {
693 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
694 			rx_packets = cpu_stats->rx_packets;
695 			rx_bytes   = cpu_stats->rx_bytes;
696 			tx_packets = cpu_stats->tx_packets;
697 			tx_bytes   = cpu_stats->tx_bytes;
698 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
699 
700 		stats->rx_packets += rx_packets;
701 		stats->rx_bytes   += rx_bytes;
702 		stats->tx_packets += tx_packets;
703 		stats->tx_bytes   += tx_bytes;
704 	}
705 
706 	stats->rx_errors	= dev->stats.rx_errors;
707 	stats->rx_dropped	= dev->stats.rx_dropped;
708 
709 	stats->tx_dropped	= dev->stats.tx_dropped;
710 }
711 
712 /* Rx descriptors helper methods */
713 
714 /* Checks whether the RX descriptor having this status is both the first
715  * and the last descriptor for the RX packet. Each RX packet is currently
716  * received through a single RX descriptor, so not having each RX
717  * descriptor with its first and last bits set is an error
718  */
719 static int mvneta_rxq_desc_is_first_last(u32 status)
720 {
721 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
722 		MVNETA_RXD_FIRST_LAST_DESC;
723 }
724 
725 /* Add number of descriptors ready to receive new packets */
726 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
727 					  struct mvneta_rx_queue *rxq,
728 					  int ndescs)
729 {
730 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
731 	 * be added at once
732 	 */
733 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
734 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
735 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
736 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
737 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
738 	}
739 
740 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
741 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
742 }
743 
744 /* Get number of RX descriptors occupied by received packets */
745 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
746 					struct mvneta_rx_queue *rxq)
747 {
748 	u32 val;
749 
750 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
751 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
752 }
753 
754 /* Update num of rx desc called upon return from rx path or
755  * from mvneta_rxq_drop_pkts().
756  */
757 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
758 				       struct mvneta_rx_queue *rxq,
759 				       int rx_done, int rx_filled)
760 {
761 	u32 val;
762 
763 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
764 		val = rx_done |
765 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
766 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 		return;
768 	}
769 
770 	/* Only 255 descriptors can be added at once */
771 	while ((rx_done > 0) || (rx_filled > 0)) {
772 		if (rx_done <= 0xff) {
773 			val = rx_done;
774 			rx_done = 0;
775 		} else {
776 			val = 0xff;
777 			rx_done -= 0xff;
778 		}
779 		if (rx_filled <= 0xff) {
780 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
781 			rx_filled = 0;
782 		} else {
783 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
784 			rx_filled -= 0xff;
785 		}
786 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
787 	}
788 }
789 
790 /* Get pointer to next RX descriptor to be processed by SW */
791 static struct mvneta_rx_desc *
792 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
793 {
794 	int rx_desc = rxq->next_desc_to_proc;
795 
796 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
797 	prefetch(rxq->descs + rxq->next_desc_to_proc);
798 	return rxq->descs + rx_desc;
799 }
800 
801 /* Change maximum receive size of the port. */
802 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
803 {
804 	u32 val;
805 
806 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
807 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
808 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
809 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
810 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
811 }
812 
813 
814 /* Set rx queue offset */
815 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
816 				  struct mvneta_rx_queue *rxq,
817 				  int offset)
818 {
819 	u32 val;
820 
821 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
822 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
823 
824 	/* Offset is in */
825 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
826 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
827 }
828 
829 
830 /* Tx descriptors helper methods */
831 
832 /* Update HW with number of TX descriptors to be sent */
833 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
834 				     struct mvneta_tx_queue *txq,
835 				     int pend_desc)
836 {
837 	u32 val;
838 
839 	pend_desc += txq->pending;
840 
841 	/* Only 255 Tx descriptors can be added at once */
842 	do {
843 		val = min(pend_desc, 255);
844 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
845 		pend_desc -= val;
846 	} while (pend_desc > 0);
847 	txq->pending = 0;
848 }
849 
850 /* Get pointer to next TX descriptor to be processed (send) by HW */
851 static struct mvneta_tx_desc *
852 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
853 {
854 	int tx_desc = txq->next_desc_to_proc;
855 
856 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
857 	return txq->descs + tx_desc;
858 }
859 
860 /* Release the last allocated TX descriptor. Useful to handle DMA
861  * mapping failures in the TX path.
862  */
863 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
864 {
865 	if (txq->next_desc_to_proc == 0)
866 		txq->next_desc_to_proc = txq->last_desc - 1;
867 	else
868 		txq->next_desc_to_proc--;
869 }
870 
871 /* Set rxq buf size */
872 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
873 				    struct mvneta_rx_queue *rxq,
874 				    int buf_size)
875 {
876 	u32 val;
877 
878 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
879 
880 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
881 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
882 
883 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
884 }
885 
886 /* Disable buffer management (BM) */
887 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
888 				  struct mvneta_rx_queue *rxq)
889 {
890 	u32 val;
891 
892 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
893 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
894 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
895 }
896 
897 /* Enable buffer management (BM) */
898 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
899 				 struct mvneta_rx_queue *rxq)
900 {
901 	u32 val;
902 
903 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
904 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
905 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
906 }
907 
908 /* Notify HW about port's assignment of pool for bigger packets */
909 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
910 				     struct mvneta_rx_queue *rxq)
911 {
912 	u32 val;
913 
914 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
915 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
916 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
917 
918 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
919 }
920 
921 /* Notify HW about port's assignment of pool for smaller packets */
922 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
923 				      struct mvneta_rx_queue *rxq)
924 {
925 	u32 val;
926 
927 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
928 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
929 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
930 
931 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
932 }
933 
934 /* Set port's receive buffer size for assigned BM pool */
935 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
936 					      int buf_size,
937 					      u8 pool_id)
938 {
939 	u32 val;
940 
941 	if (!IS_ALIGNED(buf_size, 8)) {
942 		dev_warn(pp->dev->dev.parent,
943 			 "illegal buf_size value %d, round to %d\n",
944 			 buf_size, ALIGN(buf_size, 8));
945 		buf_size = ALIGN(buf_size, 8);
946 	}
947 
948 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
949 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
950 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
951 }
952 
953 /* Configure MBUS window in order to enable access BM internal SRAM */
954 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
955 				  u8 target, u8 attr)
956 {
957 	u32 win_enable, win_protect;
958 	int i;
959 
960 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
961 
962 	if (pp->bm_win_id < 0) {
963 		/* Find first not occupied window */
964 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
965 			if (win_enable & (1 << i)) {
966 				pp->bm_win_id = i;
967 				break;
968 			}
969 		}
970 		if (i == MVNETA_MAX_DECODE_WIN)
971 			return -ENOMEM;
972 	} else {
973 		i = pp->bm_win_id;
974 	}
975 
976 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
977 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
978 
979 	if (i < 4)
980 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
981 
982 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
983 		    (attr << 8) | target);
984 
985 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
986 
987 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
988 	win_protect |= 3 << (2 * i);
989 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
990 
991 	win_enable &= ~(1 << i);
992 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
993 
994 	return 0;
995 }
996 
997 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
998 {
999 	u32 wsize;
1000 	u8 target, attr;
1001 	int err;
1002 
1003 	/* Get BM window information */
1004 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1005 					 &target, &attr);
1006 	if (err < 0)
1007 		return err;
1008 
1009 	pp->bm_win_id = -1;
1010 
1011 	/* Open NETA -> BM window */
1012 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1013 				     target, attr);
1014 	if (err < 0) {
1015 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1016 		return err;
1017 	}
1018 	return 0;
1019 }
1020 
1021 /* Assign and initialize pools for port. In case of fail
1022  * buffer manager will remain disabled for current port.
1023  */
1024 static int mvneta_bm_port_init(struct platform_device *pdev,
1025 			       struct mvneta_port *pp)
1026 {
1027 	struct device_node *dn = pdev->dev.of_node;
1028 	u32 long_pool_id, short_pool_id;
1029 
1030 	if (!pp->neta_armada3700) {
1031 		int ret;
1032 
1033 		ret = mvneta_bm_port_mbus_init(pp);
1034 		if (ret)
1035 			return ret;
1036 	}
1037 
1038 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1039 		netdev_info(pp->dev, "missing long pool id\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	/* Create port's long pool depending on mtu */
1044 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1045 					   MVNETA_BM_LONG, pp->id,
1046 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1047 	if (!pp->pool_long) {
1048 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1049 		return -ENOMEM;
1050 	}
1051 
1052 	pp->pool_long->port_map |= 1 << pp->id;
1053 
1054 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1055 				   pp->pool_long->id);
1056 
1057 	/* If short pool id is not defined, assume using single pool */
1058 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1059 		short_pool_id = long_pool_id;
1060 
1061 	/* Create port's short pool */
1062 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1063 					    MVNETA_BM_SHORT, pp->id,
1064 					    MVNETA_BM_SHORT_PKT_SIZE);
1065 	if (!pp->pool_short) {
1066 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1067 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	if (short_pool_id != long_pool_id) {
1072 		pp->pool_short->port_map |= 1 << pp->id;
1073 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1074 					   pp->pool_short->id);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /* Update settings of a pool for bigger packets */
1081 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1082 {
1083 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1084 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1085 	int num;
1086 
1087 	/* Release all buffers from long pool */
1088 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1089 	if (hwbm_pool->buf_num) {
1090 		WARN(1, "cannot free all buffers in pool %d\n",
1091 		     bm_pool->id);
1092 		goto bm_mtu_err;
1093 	}
1094 
1095 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1096 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1097 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1098 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1099 
1100 	/* Fill entire long pool */
1101 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1102 	if (num != hwbm_pool->size) {
1103 		WARN(1, "pool %d: %d of %d allocated\n",
1104 		     bm_pool->id, num, hwbm_pool->size);
1105 		goto bm_mtu_err;
1106 	}
1107 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1108 
1109 	return;
1110 
1111 bm_mtu_err:
1112 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1113 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1114 
1115 	pp->bm_priv = NULL;
1116 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1117 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1118 }
1119 
1120 /* Start the Ethernet port RX and TX activity */
1121 static void mvneta_port_up(struct mvneta_port *pp)
1122 {
1123 	int queue;
1124 	u32 q_map;
1125 
1126 	/* Enable all initialized TXs. */
1127 	q_map = 0;
1128 	for (queue = 0; queue < txq_number; queue++) {
1129 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1130 		if (txq->descs)
1131 			q_map |= (1 << queue);
1132 	}
1133 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1134 
1135 	q_map = 0;
1136 	/* Enable all initialized RXQs. */
1137 	for (queue = 0; queue < rxq_number; queue++) {
1138 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1139 
1140 		if (rxq->descs)
1141 			q_map |= (1 << queue);
1142 	}
1143 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1144 }
1145 
1146 /* Stop the Ethernet port activity */
1147 static void mvneta_port_down(struct mvneta_port *pp)
1148 {
1149 	u32 val;
1150 	int count;
1151 
1152 	/* Stop Rx port activity. Check port Rx activity. */
1153 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1154 
1155 	/* Issue stop command for active channels only */
1156 	if (val != 0)
1157 		mvreg_write(pp, MVNETA_RXQ_CMD,
1158 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1159 
1160 	/* Wait for all Rx activity to terminate. */
1161 	count = 0;
1162 	do {
1163 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1164 			netdev_warn(pp->dev,
1165 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1166 				    val);
1167 			break;
1168 		}
1169 		mdelay(1);
1170 
1171 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1172 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1173 
1174 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1175 	 * command for active channels only
1176 	 */
1177 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1178 
1179 	if (val != 0)
1180 		mvreg_write(pp, MVNETA_TXQ_CMD,
1181 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1182 
1183 	/* Wait for all Tx activity to terminate. */
1184 	count = 0;
1185 	do {
1186 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1187 			netdev_warn(pp->dev,
1188 				    "TIMEOUT for TX stopped status=0x%08x\n",
1189 				    val);
1190 			break;
1191 		}
1192 		mdelay(1);
1193 
1194 		/* Check TX Command reg that all Txqs are stopped */
1195 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1196 
1197 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1198 
1199 	/* Double check to verify that TX FIFO is empty */
1200 	count = 0;
1201 	do {
1202 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1203 			netdev_warn(pp->dev,
1204 				    "TX FIFO empty timeout status=0x%08x\n",
1205 				    val);
1206 			break;
1207 		}
1208 		mdelay(1);
1209 
1210 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1211 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1212 		 (val & MVNETA_TX_IN_PRGRS));
1213 
1214 	udelay(200);
1215 }
1216 
1217 /* Enable the port by setting the port enable bit of the MAC control register */
1218 static void mvneta_port_enable(struct mvneta_port *pp)
1219 {
1220 	u32 val;
1221 
1222 	/* Enable port */
1223 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1224 	val |= MVNETA_GMAC0_PORT_ENABLE;
1225 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1226 }
1227 
1228 /* Disable the port and wait for about 200 usec before retuning */
1229 static void mvneta_port_disable(struct mvneta_port *pp)
1230 {
1231 	u32 val;
1232 
1233 	/* Reset the Enable bit in the Serial Control Register */
1234 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1235 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1236 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1237 
1238 	udelay(200);
1239 }
1240 
1241 /* Multicast tables methods */
1242 
1243 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1244 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1245 {
1246 	int offset;
1247 	u32 val;
1248 
1249 	if (queue == -1) {
1250 		val = 0;
1251 	} else {
1252 		val = 0x1 | (queue << 1);
1253 		val |= (val << 24) | (val << 16) | (val << 8);
1254 	}
1255 
1256 	for (offset = 0; offset <= 0xc; offset += 4)
1257 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1258 }
1259 
1260 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1261 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1262 {
1263 	int offset;
1264 	u32 val;
1265 
1266 	if (queue == -1) {
1267 		val = 0;
1268 	} else {
1269 		val = 0x1 | (queue << 1);
1270 		val |= (val << 24) | (val << 16) | (val << 8);
1271 	}
1272 
1273 	for (offset = 0; offset <= 0xfc; offset += 4)
1274 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1275 
1276 }
1277 
1278 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1279 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1280 {
1281 	int offset;
1282 	u32 val;
1283 
1284 	if (queue == -1) {
1285 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1286 		val = 0;
1287 	} else {
1288 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1289 		val = 0x1 | (queue << 1);
1290 		val |= (val << 24) | (val << 16) | (val << 8);
1291 	}
1292 
1293 	for (offset = 0; offset <= 0xfc; offset += 4)
1294 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1295 }
1296 
1297 static void mvneta_percpu_unmask_interrupt(void *arg)
1298 {
1299 	struct mvneta_port *pp = arg;
1300 
1301 	/* All the queue are unmasked, but actually only the ones
1302 	 * mapped to this CPU will be unmasked
1303 	 */
1304 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1305 		    MVNETA_RX_INTR_MASK_ALL |
1306 		    MVNETA_TX_INTR_MASK_ALL |
1307 		    MVNETA_MISCINTR_INTR_MASK);
1308 }
1309 
1310 static void mvneta_percpu_mask_interrupt(void *arg)
1311 {
1312 	struct mvneta_port *pp = arg;
1313 
1314 	/* All the queue are masked, but actually only the ones
1315 	 * mapped to this CPU will be masked
1316 	 */
1317 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1318 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1319 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1320 }
1321 
1322 static void mvneta_percpu_clear_intr_cause(void *arg)
1323 {
1324 	struct mvneta_port *pp = arg;
1325 
1326 	/* All the queue are cleared, but actually only the ones
1327 	 * mapped to this CPU will be cleared
1328 	 */
1329 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1330 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1331 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1332 }
1333 
1334 /* This method sets defaults to the NETA port:
1335  *	Clears interrupt Cause and Mask registers.
1336  *	Clears all MAC tables.
1337  *	Sets defaults to all registers.
1338  *	Resets RX and TX descriptor rings.
1339  *	Resets PHY.
1340  * This method can be called after mvneta_port_down() to return the port
1341  *	settings to defaults.
1342  */
1343 static void mvneta_defaults_set(struct mvneta_port *pp)
1344 {
1345 	int cpu;
1346 	int queue;
1347 	u32 val;
1348 	int max_cpu = num_present_cpus();
1349 
1350 	/* Clear all Cause registers */
1351 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1352 
1353 	/* Mask all interrupts */
1354 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1355 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1356 
1357 	/* Enable MBUS Retry bit16 */
1358 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1359 
1360 	/* Set CPU queue access map. CPUs are assigned to the RX and
1361 	 * TX queues modulo their number. If there is only one TX
1362 	 * queue then it is assigned to the CPU associated to the
1363 	 * default RX queue.
1364 	 */
1365 	for_each_present_cpu(cpu) {
1366 		int rxq_map = 0, txq_map = 0;
1367 		int rxq, txq;
1368 		if (!pp->neta_armada3700) {
1369 			for (rxq = 0; rxq < rxq_number; rxq++)
1370 				if ((rxq % max_cpu) == cpu)
1371 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1372 
1373 			for (txq = 0; txq < txq_number; txq++)
1374 				if ((txq % max_cpu) == cpu)
1375 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1376 
1377 			/* With only one TX queue we configure a special case
1378 			 * which will allow to get all the irq on a single
1379 			 * CPU
1380 			 */
1381 			if (txq_number == 1)
1382 				txq_map = (cpu == pp->rxq_def) ?
1383 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1384 
1385 		} else {
1386 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1387 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1388 		}
1389 
1390 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1391 	}
1392 
1393 	/* Reset RX and TX DMAs */
1394 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1395 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1396 
1397 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1398 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1399 	for (queue = 0; queue < txq_number; queue++) {
1400 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1401 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1402 	}
1403 
1404 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1405 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1406 
1407 	/* Set Port Acceleration Mode */
1408 	if (pp->bm_priv)
1409 		/* HW buffer management + legacy parser */
1410 		val = MVNETA_ACC_MODE_EXT2;
1411 	else
1412 		/* SW buffer management + legacy parser */
1413 		val = MVNETA_ACC_MODE_EXT1;
1414 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1415 
1416 	if (pp->bm_priv)
1417 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1418 
1419 	/* Update val of portCfg register accordingly with all RxQueue types */
1420 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1421 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1422 
1423 	val = 0;
1424 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1425 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1426 
1427 	/* Build PORT_SDMA_CONFIG_REG */
1428 	val = 0;
1429 
1430 	/* Default burst size */
1431 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1432 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1433 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1434 
1435 #if defined(__BIG_ENDIAN)
1436 	val |= MVNETA_DESC_SWAP;
1437 #endif
1438 
1439 	/* Assign port SDMA configuration */
1440 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1441 
1442 	/* Disable PHY polling in hardware, since we're using the
1443 	 * kernel phylib to do this.
1444 	 */
1445 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1446 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1447 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1448 
1449 	mvneta_set_ucast_table(pp, -1);
1450 	mvneta_set_special_mcast_table(pp, -1);
1451 	mvneta_set_other_mcast_table(pp, -1);
1452 
1453 	/* Set port interrupt enable register - default enable all */
1454 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1455 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1456 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1457 
1458 	mvneta_mib_counters_clear(pp);
1459 }
1460 
1461 /* Set max sizes for tx queues */
1462 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1463 
1464 {
1465 	u32 val, size, mtu;
1466 	int queue;
1467 
1468 	mtu = max_tx_size * 8;
1469 	if (mtu > MVNETA_TX_MTU_MAX)
1470 		mtu = MVNETA_TX_MTU_MAX;
1471 
1472 	/* Set MTU */
1473 	val = mvreg_read(pp, MVNETA_TX_MTU);
1474 	val &= ~MVNETA_TX_MTU_MAX;
1475 	val |= mtu;
1476 	mvreg_write(pp, MVNETA_TX_MTU, val);
1477 
1478 	/* TX token size and all TXQs token size must be larger that MTU */
1479 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1480 
1481 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1482 	if (size < mtu) {
1483 		size = mtu;
1484 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1485 		val |= size;
1486 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1487 	}
1488 	for (queue = 0; queue < txq_number; queue++) {
1489 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1490 
1491 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1492 		if (size < mtu) {
1493 			size = mtu;
1494 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1495 			val |= size;
1496 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1497 		}
1498 	}
1499 }
1500 
1501 /* Set unicast address */
1502 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1503 				  int queue)
1504 {
1505 	unsigned int unicast_reg;
1506 	unsigned int tbl_offset;
1507 	unsigned int reg_offset;
1508 
1509 	/* Locate the Unicast table entry */
1510 	last_nibble = (0xf & last_nibble);
1511 
1512 	/* offset from unicast tbl base */
1513 	tbl_offset = (last_nibble / 4) * 4;
1514 
1515 	/* offset within the above reg  */
1516 	reg_offset = last_nibble % 4;
1517 
1518 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1519 
1520 	if (queue == -1) {
1521 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1522 		unicast_reg &= ~(0xff << (8 * reg_offset));
1523 	} else {
1524 		unicast_reg &= ~(0xff << (8 * reg_offset));
1525 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1526 	}
1527 
1528 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1529 }
1530 
1531 /* Set mac address */
1532 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1533 				int queue)
1534 {
1535 	unsigned int mac_h;
1536 	unsigned int mac_l;
1537 
1538 	if (queue != -1) {
1539 		mac_l = (addr[4] << 8) | (addr[5]);
1540 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1541 			(addr[2] << 8) | (addr[3] << 0);
1542 
1543 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1544 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1545 	}
1546 
1547 	/* Accept frames of this address */
1548 	mvneta_set_ucast_addr(pp, addr[5], queue);
1549 }
1550 
1551 /* Set the number of packets that will be received before RX interrupt
1552  * will be generated by HW.
1553  */
1554 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1555 				    struct mvneta_rx_queue *rxq, u32 value)
1556 {
1557 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1558 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1559 }
1560 
1561 /* Set the time delay in usec before RX interrupt will be generated by
1562  * HW.
1563  */
1564 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1565 				    struct mvneta_rx_queue *rxq, u32 value)
1566 {
1567 	u32 val;
1568 	unsigned long clk_rate;
1569 
1570 	clk_rate = clk_get_rate(pp->clk);
1571 	val = (clk_rate / 1000000) * value;
1572 
1573 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1574 }
1575 
1576 /* Set threshold for TX_DONE pkts coalescing */
1577 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1578 					 struct mvneta_tx_queue *txq, u32 value)
1579 {
1580 	u32 val;
1581 
1582 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1583 
1584 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1585 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1586 
1587 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1588 }
1589 
1590 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1591 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1592 				u32 phys_addr, void *virt_addr,
1593 				struct mvneta_rx_queue *rxq)
1594 {
1595 	int i;
1596 
1597 	rx_desc->buf_phys_addr = phys_addr;
1598 	i = rx_desc - rxq->descs;
1599 	rxq->buf_virt_addr[i] = virt_addr;
1600 }
1601 
1602 /* Decrement sent descriptors counter */
1603 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1604 				     struct mvneta_tx_queue *txq,
1605 				     int sent_desc)
1606 {
1607 	u32 val;
1608 
1609 	/* Only 255 TX descriptors can be updated at once */
1610 	while (sent_desc > 0xff) {
1611 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1612 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1613 		sent_desc = sent_desc - 0xff;
1614 	}
1615 
1616 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1617 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1618 }
1619 
1620 /* Get number of TX descriptors already sent by HW */
1621 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1622 					struct mvneta_tx_queue *txq)
1623 {
1624 	u32 val;
1625 	int sent_desc;
1626 
1627 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1628 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1629 		MVNETA_TXQ_SENT_DESC_SHIFT;
1630 
1631 	return sent_desc;
1632 }
1633 
1634 /* Get number of sent descriptors and decrement counter.
1635  *  The number of sent descriptors is returned.
1636  */
1637 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1638 				     struct mvneta_tx_queue *txq)
1639 {
1640 	int sent_desc;
1641 
1642 	/* Get number of sent descriptors */
1643 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1644 
1645 	/* Decrement sent descriptors counter */
1646 	if (sent_desc)
1647 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1648 
1649 	return sent_desc;
1650 }
1651 
1652 /* Set TXQ descriptors fields relevant for CSUM calculation */
1653 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1654 				int ip_hdr_len, int l4_proto)
1655 {
1656 	u32 command;
1657 
1658 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1659 	 * G_L4_chk, L4_type; required only for checksum
1660 	 * calculation
1661 	 */
1662 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1663 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1664 
1665 	if (l3_proto == htons(ETH_P_IP))
1666 		command |= MVNETA_TXD_IP_CSUM;
1667 	else
1668 		command |= MVNETA_TX_L3_IP6;
1669 
1670 	if (l4_proto == IPPROTO_TCP)
1671 		command |=  MVNETA_TX_L4_CSUM_FULL;
1672 	else if (l4_proto == IPPROTO_UDP)
1673 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1674 	else
1675 		command |= MVNETA_TX_L4_CSUM_NOT;
1676 
1677 	return command;
1678 }
1679 
1680 
1681 /* Display more error info */
1682 static void mvneta_rx_error(struct mvneta_port *pp,
1683 			    struct mvneta_rx_desc *rx_desc)
1684 {
1685 	u32 status = rx_desc->status;
1686 
1687 	if (!mvneta_rxq_desc_is_first_last(status)) {
1688 		netdev_err(pp->dev,
1689 			   "bad rx status %08x (buffer oversize), size=%d\n",
1690 			   status, rx_desc->data_size);
1691 		return;
1692 	}
1693 
1694 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1695 	case MVNETA_RXD_ERR_CRC:
1696 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1697 			   status, rx_desc->data_size);
1698 		break;
1699 	case MVNETA_RXD_ERR_OVERRUN:
1700 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1701 			   status, rx_desc->data_size);
1702 		break;
1703 	case MVNETA_RXD_ERR_LEN:
1704 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1705 			   status, rx_desc->data_size);
1706 		break;
1707 	case MVNETA_RXD_ERR_RESOURCE:
1708 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1709 			   status, rx_desc->data_size);
1710 		break;
1711 	}
1712 }
1713 
1714 /* Handle RX checksum offload based on the descriptor's status */
1715 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1716 			   struct sk_buff *skb)
1717 {
1718 	if ((status & MVNETA_RXD_L3_IP4) &&
1719 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1720 		skb->csum = 0;
1721 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1722 		return;
1723 	}
1724 
1725 	skb->ip_summed = CHECKSUM_NONE;
1726 }
1727 
1728 /* Return tx queue pointer (find last set bit) according to <cause> returned
1729  * form tx_done reg. <cause> must not be null. The return value is always a
1730  * valid queue for matching the first one found in <cause>.
1731  */
1732 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1733 						     u32 cause)
1734 {
1735 	int queue = fls(cause) - 1;
1736 
1737 	return &pp->txqs[queue];
1738 }
1739 
1740 /* Free tx queue skbuffs */
1741 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1742 				 struct mvneta_tx_queue *txq, int num,
1743 				 struct netdev_queue *nq)
1744 {
1745 	unsigned int bytes_compl = 0, pkts_compl = 0;
1746 	int i;
1747 
1748 	for (i = 0; i < num; i++) {
1749 		struct mvneta_tx_desc *tx_desc = txq->descs +
1750 			txq->txq_get_index;
1751 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1752 
1753 		if (skb) {
1754 			bytes_compl += skb->len;
1755 			pkts_compl++;
1756 		}
1757 
1758 		mvneta_txq_inc_get(txq);
1759 
1760 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1761 			dma_unmap_single(pp->dev->dev.parent,
1762 					 tx_desc->buf_phys_addr,
1763 					 tx_desc->data_size, DMA_TO_DEVICE);
1764 		if (!skb)
1765 			continue;
1766 		dev_kfree_skb_any(skb);
1767 	}
1768 
1769 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1770 }
1771 
1772 /* Handle end of transmission */
1773 static void mvneta_txq_done(struct mvneta_port *pp,
1774 			   struct mvneta_tx_queue *txq)
1775 {
1776 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1777 	int tx_done;
1778 
1779 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1780 	if (!tx_done)
1781 		return;
1782 
1783 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1784 
1785 	txq->count -= tx_done;
1786 
1787 	if (netif_tx_queue_stopped(nq)) {
1788 		if (txq->count <= txq->tx_wake_threshold)
1789 			netif_tx_wake_queue(nq);
1790 	}
1791 }
1792 
1793 void *mvneta_frag_alloc(unsigned int frag_size)
1794 {
1795 	if (likely(frag_size <= PAGE_SIZE))
1796 		return netdev_alloc_frag(frag_size);
1797 	else
1798 		return kmalloc(frag_size, GFP_ATOMIC);
1799 }
1800 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1801 
1802 void mvneta_frag_free(unsigned int frag_size, void *data)
1803 {
1804 	if (likely(frag_size <= PAGE_SIZE))
1805 		skb_free_frag(data);
1806 	else
1807 		kfree(data);
1808 }
1809 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1810 
1811 /* Refill processing for SW buffer management */
1812 static int mvneta_rx_refill(struct mvneta_port *pp,
1813 			    struct mvneta_rx_desc *rx_desc,
1814 			    struct mvneta_rx_queue *rxq)
1815 
1816 {
1817 	dma_addr_t phys_addr;
1818 	void *data;
1819 
1820 	data = mvneta_frag_alloc(pp->frag_size);
1821 	if (!data)
1822 		return -ENOMEM;
1823 
1824 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1825 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1826 				   DMA_FROM_DEVICE);
1827 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1828 		mvneta_frag_free(pp->frag_size, data);
1829 		return -ENOMEM;
1830 	}
1831 
1832 	phys_addr += pp->rx_offset_correction;
1833 	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1834 	return 0;
1835 }
1836 
1837 /* Handle tx checksum */
1838 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1839 {
1840 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1841 		int ip_hdr_len = 0;
1842 		__be16 l3_proto = vlan_get_protocol(skb);
1843 		u8 l4_proto;
1844 
1845 		if (l3_proto == htons(ETH_P_IP)) {
1846 			struct iphdr *ip4h = ip_hdr(skb);
1847 
1848 			/* Calculate IPv4 checksum and L4 checksum */
1849 			ip_hdr_len = ip4h->ihl;
1850 			l4_proto = ip4h->protocol;
1851 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1852 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1853 
1854 			/* Read l4_protocol from one of IPv6 extra headers */
1855 			if (skb_network_header_len(skb) > 0)
1856 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1857 			l4_proto = ip6h->nexthdr;
1858 		} else
1859 			return MVNETA_TX_L4_CSUM_NOT;
1860 
1861 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1862 					    l3_proto, ip_hdr_len, l4_proto);
1863 	}
1864 
1865 	return MVNETA_TX_L4_CSUM_NOT;
1866 }
1867 
1868 /* Drop packets received by the RXQ and free buffers */
1869 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1870 				 struct mvneta_rx_queue *rxq)
1871 {
1872 	int rx_done, i;
1873 
1874 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1875 	if (rx_done)
1876 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1877 
1878 	if (pp->bm_priv) {
1879 		for (i = 0; i < rx_done; i++) {
1880 			struct mvneta_rx_desc *rx_desc =
1881 						  mvneta_rxq_next_desc_get(rxq);
1882 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1883 			struct mvneta_bm_pool *bm_pool;
1884 
1885 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1886 			/* Return dropped buffer to the pool */
1887 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1888 					      rx_desc->buf_phys_addr);
1889 		}
1890 		return;
1891 	}
1892 
1893 	for (i = 0; i < rxq->size; i++) {
1894 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1895 		void *data = rxq->buf_virt_addr[i];
1896 
1897 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1898 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1899 		mvneta_frag_free(pp->frag_size, data);
1900 	}
1901 }
1902 
1903 /* Main rx processing when using software buffer management */
1904 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1905 			  struct mvneta_rx_queue *rxq)
1906 {
1907 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1908 	struct net_device *dev = pp->dev;
1909 	int rx_done;
1910 	u32 rcvd_pkts = 0;
1911 	u32 rcvd_bytes = 0;
1912 
1913 	/* Get number of received packets */
1914 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1915 
1916 	if (rx_todo > rx_done)
1917 		rx_todo = rx_done;
1918 
1919 	rx_done = 0;
1920 
1921 	/* Fairness NAPI loop */
1922 	while (rx_done < rx_todo) {
1923 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1924 		struct sk_buff *skb;
1925 		unsigned char *data;
1926 		dma_addr_t phys_addr;
1927 		u32 rx_status, frag_size;
1928 		int rx_bytes, err, index;
1929 
1930 		rx_done++;
1931 		rx_status = rx_desc->status;
1932 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1933 		index = rx_desc - rxq->descs;
1934 		data = rxq->buf_virt_addr[index];
1935 		phys_addr = rx_desc->buf_phys_addr - pp->rx_offset_correction;
1936 
1937 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1938 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1939 			mvneta_rx_error(pp, rx_desc);
1940 err_drop_frame:
1941 			dev->stats.rx_errors++;
1942 			/* leave the descriptor untouched */
1943 			continue;
1944 		}
1945 
1946 		if (rx_bytes <= rx_copybreak) {
1947 		/* better copy a small frame and not unmap the DMA region */
1948 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1949 			if (unlikely(!skb))
1950 				goto err_drop_frame;
1951 
1952 			dma_sync_single_range_for_cpu(dev->dev.parent,
1953 						      phys_addr,
1954 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1955 						      rx_bytes,
1956 						      DMA_FROM_DEVICE);
1957 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1958 				     rx_bytes);
1959 
1960 			skb->protocol = eth_type_trans(skb, dev);
1961 			mvneta_rx_csum(pp, rx_status, skb);
1962 			napi_gro_receive(&port->napi, skb);
1963 
1964 			rcvd_pkts++;
1965 			rcvd_bytes += rx_bytes;
1966 
1967 			/* leave the descriptor and buffer untouched */
1968 			continue;
1969 		}
1970 
1971 		/* Refill processing */
1972 		err = mvneta_rx_refill(pp, rx_desc, rxq);
1973 		if (err) {
1974 			netdev_err(dev, "Linux processing - Can't refill\n");
1975 			rxq->missed++;
1976 			goto err_drop_frame;
1977 		}
1978 
1979 		frag_size = pp->frag_size;
1980 
1981 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1982 
1983 		/* After refill old buffer has to be unmapped regardless
1984 		 * the skb is successfully built or not.
1985 		 */
1986 		dma_unmap_single(dev->dev.parent, phys_addr,
1987 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1988 				 DMA_FROM_DEVICE);
1989 
1990 		if (!skb)
1991 			goto err_drop_frame;
1992 
1993 		rcvd_pkts++;
1994 		rcvd_bytes += rx_bytes;
1995 
1996 		/* Linux processing */
1997 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1998 		skb_put(skb, rx_bytes);
1999 
2000 		skb->protocol = eth_type_trans(skb, dev);
2001 
2002 		mvneta_rx_csum(pp, rx_status, skb);
2003 
2004 		napi_gro_receive(&port->napi, skb);
2005 	}
2006 
2007 	if (rcvd_pkts) {
2008 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2009 
2010 		u64_stats_update_begin(&stats->syncp);
2011 		stats->rx_packets += rcvd_pkts;
2012 		stats->rx_bytes   += rcvd_bytes;
2013 		u64_stats_update_end(&stats->syncp);
2014 	}
2015 
2016 	/* Update rxq management counters */
2017 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2018 
2019 	return rx_done;
2020 }
2021 
2022 /* Main rx processing when using hardware buffer management */
2023 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2024 			  struct mvneta_rx_queue *rxq)
2025 {
2026 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2027 	struct net_device *dev = pp->dev;
2028 	int rx_done;
2029 	u32 rcvd_pkts = 0;
2030 	u32 rcvd_bytes = 0;
2031 
2032 	/* Get number of received packets */
2033 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2034 
2035 	if (rx_todo > rx_done)
2036 		rx_todo = rx_done;
2037 
2038 	rx_done = 0;
2039 
2040 	/* Fairness NAPI loop */
2041 	while (rx_done < rx_todo) {
2042 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2043 		struct mvneta_bm_pool *bm_pool = NULL;
2044 		struct sk_buff *skb;
2045 		unsigned char *data;
2046 		dma_addr_t phys_addr;
2047 		u32 rx_status, frag_size;
2048 		int rx_bytes, err;
2049 		u8 pool_id;
2050 
2051 		rx_done++;
2052 		rx_status = rx_desc->status;
2053 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2054 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2055 		phys_addr = rx_desc->buf_phys_addr;
2056 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2057 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2058 
2059 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2060 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2061 err_drop_frame_ret_pool:
2062 			/* Return the buffer to the pool */
2063 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2064 					      rx_desc->buf_phys_addr);
2065 err_drop_frame:
2066 			dev->stats.rx_errors++;
2067 			mvneta_rx_error(pp, rx_desc);
2068 			/* leave the descriptor untouched */
2069 			continue;
2070 		}
2071 
2072 		if (rx_bytes <= rx_copybreak) {
2073 			/* better copy a small frame and not unmap the DMA region */
2074 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2075 			if (unlikely(!skb))
2076 				goto err_drop_frame_ret_pool;
2077 
2078 			dma_sync_single_range_for_cpu(dev->dev.parent,
2079 			                              rx_desc->buf_phys_addr,
2080 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2081 			                              rx_bytes,
2082 			                              DMA_FROM_DEVICE);
2083 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2084 				     rx_bytes);
2085 
2086 			skb->protocol = eth_type_trans(skb, dev);
2087 			mvneta_rx_csum(pp, rx_status, skb);
2088 			napi_gro_receive(&port->napi, skb);
2089 
2090 			rcvd_pkts++;
2091 			rcvd_bytes += rx_bytes;
2092 
2093 			/* Return the buffer to the pool */
2094 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2095 					      rx_desc->buf_phys_addr);
2096 
2097 			/* leave the descriptor and buffer untouched */
2098 			continue;
2099 		}
2100 
2101 		/* Refill processing */
2102 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2103 		if (err) {
2104 			netdev_err(dev, "Linux processing - Can't refill\n");
2105 			rxq->missed++;
2106 			goto err_drop_frame_ret_pool;
2107 		}
2108 
2109 		frag_size = bm_pool->hwbm_pool.frag_size;
2110 
2111 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2112 
2113 		/* After refill old buffer has to be unmapped regardless
2114 		 * the skb is successfully built or not.
2115 		 */
2116 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2117 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2118 		if (!skb)
2119 			goto err_drop_frame;
2120 
2121 		rcvd_pkts++;
2122 		rcvd_bytes += rx_bytes;
2123 
2124 		/* Linux processing */
2125 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2126 		skb_put(skb, rx_bytes);
2127 
2128 		skb->protocol = eth_type_trans(skb, dev);
2129 
2130 		mvneta_rx_csum(pp, rx_status, skb);
2131 
2132 		napi_gro_receive(&port->napi, skb);
2133 	}
2134 
2135 	if (rcvd_pkts) {
2136 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2137 
2138 		u64_stats_update_begin(&stats->syncp);
2139 		stats->rx_packets += rcvd_pkts;
2140 		stats->rx_bytes   += rcvd_bytes;
2141 		u64_stats_update_end(&stats->syncp);
2142 	}
2143 
2144 	/* Update rxq management counters */
2145 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2146 
2147 	return rx_done;
2148 }
2149 
2150 static inline void
2151 mvneta_tso_put_hdr(struct sk_buff *skb,
2152 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2153 {
2154 	struct mvneta_tx_desc *tx_desc;
2155 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2156 
2157 	txq->tx_skb[txq->txq_put_index] = NULL;
2158 	tx_desc = mvneta_txq_next_desc_get(txq);
2159 	tx_desc->data_size = hdr_len;
2160 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2161 	tx_desc->command |= MVNETA_TXD_F_DESC;
2162 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2163 				 txq->txq_put_index * TSO_HEADER_SIZE;
2164 	mvneta_txq_inc_put(txq);
2165 }
2166 
2167 static inline int
2168 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2169 		    struct sk_buff *skb, char *data, int size,
2170 		    bool last_tcp, bool is_last)
2171 {
2172 	struct mvneta_tx_desc *tx_desc;
2173 
2174 	tx_desc = mvneta_txq_next_desc_get(txq);
2175 	tx_desc->data_size = size;
2176 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2177 						size, DMA_TO_DEVICE);
2178 	if (unlikely(dma_mapping_error(dev->dev.parent,
2179 		     tx_desc->buf_phys_addr))) {
2180 		mvneta_txq_desc_put(txq);
2181 		return -ENOMEM;
2182 	}
2183 
2184 	tx_desc->command = 0;
2185 	txq->tx_skb[txq->txq_put_index] = NULL;
2186 
2187 	if (last_tcp) {
2188 		/* last descriptor in the TCP packet */
2189 		tx_desc->command = MVNETA_TXD_L_DESC;
2190 
2191 		/* last descriptor in SKB */
2192 		if (is_last)
2193 			txq->tx_skb[txq->txq_put_index] = skb;
2194 	}
2195 	mvneta_txq_inc_put(txq);
2196 	return 0;
2197 }
2198 
2199 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2200 			 struct mvneta_tx_queue *txq)
2201 {
2202 	int total_len, data_left;
2203 	int desc_count = 0;
2204 	struct mvneta_port *pp = netdev_priv(dev);
2205 	struct tso_t tso;
2206 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2207 	int i;
2208 
2209 	/* Count needed descriptors */
2210 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2211 		return 0;
2212 
2213 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2214 		pr_info("*** Is this even  possible???!?!?\n");
2215 		return 0;
2216 	}
2217 
2218 	/* Initialize the TSO handler, and prepare the first payload */
2219 	tso_start(skb, &tso);
2220 
2221 	total_len = skb->len - hdr_len;
2222 	while (total_len > 0) {
2223 		char *hdr;
2224 
2225 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2226 		total_len -= data_left;
2227 		desc_count++;
2228 
2229 		/* prepare packet headers: MAC + IP + TCP */
2230 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2231 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2232 
2233 		mvneta_tso_put_hdr(skb, pp, txq);
2234 
2235 		while (data_left > 0) {
2236 			int size;
2237 			desc_count++;
2238 
2239 			size = min_t(int, tso.size, data_left);
2240 
2241 			if (mvneta_tso_put_data(dev, txq, skb,
2242 						 tso.data, size,
2243 						 size == data_left,
2244 						 total_len == 0))
2245 				goto err_release;
2246 			data_left -= size;
2247 
2248 			tso_build_data(skb, &tso, size);
2249 		}
2250 	}
2251 
2252 	return desc_count;
2253 
2254 err_release:
2255 	/* Release all used data descriptors; header descriptors must not
2256 	 * be DMA-unmapped.
2257 	 */
2258 	for (i = desc_count - 1; i >= 0; i--) {
2259 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2260 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2261 			dma_unmap_single(pp->dev->dev.parent,
2262 					 tx_desc->buf_phys_addr,
2263 					 tx_desc->data_size,
2264 					 DMA_TO_DEVICE);
2265 		mvneta_txq_desc_put(txq);
2266 	}
2267 	return 0;
2268 }
2269 
2270 /* Handle tx fragmentation processing */
2271 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2272 				  struct mvneta_tx_queue *txq)
2273 {
2274 	struct mvneta_tx_desc *tx_desc;
2275 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2276 
2277 	for (i = 0; i < nr_frags; i++) {
2278 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2279 		void *addr = page_address(frag->page.p) + frag->page_offset;
2280 
2281 		tx_desc = mvneta_txq_next_desc_get(txq);
2282 		tx_desc->data_size = frag->size;
2283 
2284 		tx_desc->buf_phys_addr =
2285 			dma_map_single(pp->dev->dev.parent, addr,
2286 				       tx_desc->data_size, DMA_TO_DEVICE);
2287 
2288 		if (dma_mapping_error(pp->dev->dev.parent,
2289 				      tx_desc->buf_phys_addr)) {
2290 			mvneta_txq_desc_put(txq);
2291 			goto error;
2292 		}
2293 
2294 		if (i == nr_frags - 1) {
2295 			/* Last descriptor */
2296 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2297 			txq->tx_skb[txq->txq_put_index] = skb;
2298 		} else {
2299 			/* Descriptor in the middle: Not First, Not Last */
2300 			tx_desc->command = 0;
2301 			txq->tx_skb[txq->txq_put_index] = NULL;
2302 		}
2303 		mvneta_txq_inc_put(txq);
2304 	}
2305 
2306 	return 0;
2307 
2308 error:
2309 	/* Release all descriptors that were used to map fragments of
2310 	 * this packet, as well as the corresponding DMA mappings
2311 	 */
2312 	for (i = i - 1; i >= 0; i--) {
2313 		tx_desc = txq->descs + i;
2314 		dma_unmap_single(pp->dev->dev.parent,
2315 				 tx_desc->buf_phys_addr,
2316 				 tx_desc->data_size,
2317 				 DMA_TO_DEVICE);
2318 		mvneta_txq_desc_put(txq);
2319 	}
2320 
2321 	return -ENOMEM;
2322 }
2323 
2324 /* Main tx processing */
2325 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2326 {
2327 	struct mvneta_port *pp = netdev_priv(dev);
2328 	u16 txq_id = skb_get_queue_mapping(skb);
2329 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2330 	struct mvneta_tx_desc *tx_desc;
2331 	int len = skb->len;
2332 	int frags = 0;
2333 	u32 tx_cmd;
2334 
2335 	if (!netif_running(dev))
2336 		goto out;
2337 
2338 	if (skb_is_gso(skb)) {
2339 		frags = mvneta_tx_tso(skb, dev, txq);
2340 		goto out;
2341 	}
2342 
2343 	frags = skb_shinfo(skb)->nr_frags + 1;
2344 
2345 	/* Get a descriptor for the first part of the packet */
2346 	tx_desc = mvneta_txq_next_desc_get(txq);
2347 
2348 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2349 
2350 	tx_desc->data_size = skb_headlen(skb);
2351 
2352 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2353 						tx_desc->data_size,
2354 						DMA_TO_DEVICE);
2355 	if (unlikely(dma_mapping_error(dev->dev.parent,
2356 				       tx_desc->buf_phys_addr))) {
2357 		mvneta_txq_desc_put(txq);
2358 		frags = 0;
2359 		goto out;
2360 	}
2361 
2362 	if (frags == 1) {
2363 		/* First and Last descriptor */
2364 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2365 		tx_desc->command = tx_cmd;
2366 		txq->tx_skb[txq->txq_put_index] = skb;
2367 		mvneta_txq_inc_put(txq);
2368 	} else {
2369 		/* First but not Last */
2370 		tx_cmd |= MVNETA_TXD_F_DESC;
2371 		txq->tx_skb[txq->txq_put_index] = NULL;
2372 		mvneta_txq_inc_put(txq);
2373 		tx_desc->command = tx_cmd;
2374 		/* Continue with other skb fragments */
2375 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2376 			dma_unmap_single(dev->dev.parent,
2377 					 tx_desc->buf_phys_addr,
2378 					 tx_desc->data_size,
2379 					 DMA_TO_DEVICE);
2380 			mvneta_txq_desc_put(txq);
2381 			frags = 0;
2382 			goto out;
2383 		}
2384 	}
2385 
2386 out:
2387 	if (frags > 0) {
2388 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2389 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2390 
2391 		netdev_tx_sent_queue(nq, len);
2392 
2393 		txq->count += frags;
2394 		if (txq->count >= txq->tx_stop_threshold)
2395 			netif_tx_stop_queue(nq);
2396 
2397 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2398 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2399 			mvneta_txq_pend_desc_add(pp, txq, frags);
2400 		else
2401 			txq->pending += frags;
2402 
2403 		u64_stats_update_begin(&stats->syncp);
2404 		stats->tx_packets++;
2405 		stats->tx_bytes  += len;
2406 		u64_stats_update_end(&stats->syncp);
2407 	} else {
2408 		dev->stats.tx_dropped++;
2409 		dev_kfree_skb_any(skb);
2410 	}
2411 
2412 	return NETDEV_TX_OK;
2413 }
2414 
2415 
2416 /* Free tx resources, when resetting a port */
2417 static void mvneta_txq_done_force(struct mvneta_port *pp,
2418 				  struct mvneta_tx_queue *txq)
2419 
2420 {
2421 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2422 	int tx_done = txq->count;
2423 
2424 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2425 
2426 	/* reset txq */
2427 	txq->count = 0;
2428 	txq->txq_put_index = 0;
2429 	txq->txq_get_index = 0;
2430 }
2431 
2432 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2433  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2434  */
2435 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2436 {
2437 	struct mvneta_tx_queue *txq;
2438 	struct netdev_queue *nq;
2439 
2440 	while (cause_tx_done) {
2441 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2442 
2443 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2444 		__netif_tx_lock(nq, smp_processor_id());
2445 
2446 		if (txq->count)
2447 			mvneta_txq_done(pp, txq);
2448 
2449 		__netif_tx_unlock(nq);
2450 		cause_tx_done &= ~((1 << txq->id));
2451 	}
2452 }
2453 
2454 /* Compute crc8 of the specified address, using a unique algorithm ,
2455  * according to hw spec, different than generic crc8 algorithm
2456  */
2457 static int mvneta_addr_crc(unsigned char *addr)
2458 {
2459 	int crc = 0;
2460 	int i;
2461 
2462 	for (i = 0; i < ETH_ALEN; i++) {
2463 		int j;
2464 
2465 		crc = (crc ^ addr[i]) << 8;
2466 		for (j = 7; j >= 0; j--) {
2467 			if (crc & (0x100 << j))
2468 				crc ^= 0x107 << j;
2469 		}
2470 	}
2471 
2472 	return crc;
2473 }
2474 
2475 /* This method controls the net device special MAC multicast support.
2476  * The Special Multicast Table for MAC addresses supports MAC of the form
2477  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2478  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2479  * Table entries in the DA-Filter table. This method set the Special
2480  * Multicast Table appropriate entry.
2481  */
2482 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2483 					  unsigned char last_byte,
2484 					  int queue)
2485 {
2486 	unsigned int smc_table_reg;
2487 	unsigned int tbl_offset;
2488 	unsigned int reg_offset;
2489 
2490 	/* Register offset from SMC table base    */
2491 	tbl_offset = (last_byte / 4);
2492 	/* Entry offset within the above reg */
2493 	reg_offset = last_byte % 4;
2494 
2495 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2496 					+ tbl_offset * 4));
2497 
2498 	if (queue == -1)
2499 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2500 	else {
2501 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2502 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2503 	}
2504 
2505 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2506 		    smc_table_reg);
2507 }
2508 
2509 /* This method controls the network device Other MAC multicast support.
2510  * The Other Multicast Table is used for multicast of another type.
2511  * A CRC-8 is used as an index to the Other Multicast Table entries
2512  * in the DA-Filter table.
2513  * The method gets the CRC-8 value from the calling routine and
2514  * sets the Other Multicast Table appropriate entry according to the
2515  * specified CRC-8 .
2516  */
2517 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2518 					unsigned char crc8,
2519 					int queue)
2520 {
2521 	unsigned int omc_table_reg;
2522 	unsigned int tbl_offset;
2523 	unsigned int reg_offset;
2524 
2525 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2526 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2527 
2528 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2529 
2530 	if (queue == -1) {
2531 		/* Clear accepts frame bit at specified Other DA table entry */
2532 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2533 	} else {
2534 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2535 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2536 	}
2537 
2538 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2539 }
2540 
2541 /* The network device supports multicast using two tables:
2542  *    1) Special Multicast Table for MAC addresses of the form
2543  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2544  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2545  *       Table entries in the DA-Filter table.
2546  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2547  *       is used as an index to the Other Multicast Table entries in the
2548  *       DA-Filter table.
2549  */
2550 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2551 				 int queue)
2552 {
2553 	unsigned char crc_result = 0;
2554 
2555 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2556 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2557 		return 0;
2558 	}
2559 
2560 	crc_result = mvneta_addr_crc(p_addr);
2561 	if (queue == -1) {
2562 		if (pp->mcast_count[crc_result] == 0) {
2563 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2564 				    crc_result);
2565 			return -EINVAL;
2566 		}
2567 
2568 		pp->mcast_count[crc_result]--;
2569 		if (pp->mcast_count[crc_result] != 0) {
2570 			netdev_info(pp->dev,
2571 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2572 				    pp->mcast_count[crc_result], crc_result);
2573 			return -EINVAL;
2574 		}
2575 	} else
2576 		pp->mcast_count[crc_result]++;
2577 
2578 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2579 
2580 	return 0;
2581 }
2582 
2583 /* Configure Fitering mode of Ethernet port */
2584 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2585 					  int is_promisc)
2586 {
2587 	u32 port_cfg_reg, val;
2588 
2589 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2590 
2591 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2592 
2593 	/* Set / Clear UPM bit in port configuration register */
2594 	if (is_promisc) {
2595 		/* Accept all Unicast addresses */
2596 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2597 		val |= MVNETA_FORCE_UNI;
2598 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2599 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2600 	} else {
2601 		/* Reject all Unicast addresses */
2602 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2603 		val &= ~MVNETA_FORCE_UNI;
2604 	}
2605 
2606 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2607 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2608 }
2609 
2610 /* register unicast and multicast addresses */
2611 static void mvneta_set_rx_mode(struct net_device *dev)
2612 {
2613 	struct mvneta_port *pp = netdev_priv(dev);
2614 	struct netdev_hw_addr *ha;
2615 
2616 	if (dev->flags & IFF_PROMISC) {
2617 		/* Accept all: Multicast + Unicast */
2618 		mvneta_rx_unicast_promisc_set(pp, 1);
2619 		mvneta_set_ucast_table(pp, pp->rxq_def);
2620 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2621 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2622 	} else {
2623 		/* Accept single Unicast */
2624 		mvneta_rx_unicast_promisc_set(pp, 0);
2625 		mvneta_set_ucast_table(pp, -1);
2626 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2627 
2628 		if (dev->flags & IFF_ALLMULTI) {
2629 			/* Accept all multicast */
2630 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2631 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2632 		} else {
2633 			/* Accept only initialized multicast */
2634 			mvneta_set_special_mcast_table(pp, -1);
2635 			mvneta_set_other_mcast_table(pp, -1);
2636 
2637 			if (!netdev_mc_empty(dev)) {
2638 				netdev_for_each_mc_addr(ha, dev) {
2639 					mvneta_mcast_addr_set(pp, ha->addr,
2640 							      pp->rxq_def);
2641 				}
2642 			}
2643 		}
2644 	}
2645 }
2646 
2647 /* Interrupt handling - the callback for request_irq() */
2648 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2649 {
2650 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2651 
2652 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2653 	napi_schedule(&pp->napi);
2654 
2655 	return IRQ_HANDLED;
2656 }
2657 
2658 /* Interrupt handling - the callback for request_percpu_irq() */
2659 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2660 {
2661 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2662 
2663 	disable_percpu_irq(port->pp->dev->irq);
2664 	napi_schedule(&port->napi);
2665 
2666 	return IRQ_HANDLED;
2667 }
2668 
2669 static void mvneta_link_change(struct mvneta_port *pp)
2670 {
2671 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2672 
2673 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2674 }
2675 
2676 /* NAPI handler
2677  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2678  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2679  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2680  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2681  * Each CPU has its own causeRxTx register
2682  */
2683 static int mvneta_poll(struct napi_struct *napi, int budget)
2684 {
2685 	int rx_done = 0;
2686 	u32 cause_rx_tx;
2687 	int rx_queue;
2688 	struct mvneta_port *pp = netdev_priv(napi->dev);
2689 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2690 
2691 	if (!netif_running(pp->dev)) {
2692 		napi_complete(napi);
2693 		return rx_done;
2694 	}
2695 
2696 	/* Read cause register */
2697 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2698 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2699 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2700 
2701 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2702 
2703 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2704 				  MVNETA_CAUSE_LINK_CHANGE))
2705 			mvneta_link_change(pp);
2706 	}
2707 
2708 	/* Release Tx descriptors */
2709 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2710 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2711 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2712 	}
2713 
2714 	/* For the case where the last mvneta_poll did not process all
2715 	 * RX packets
2716 	 */
2717 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2718 
2719 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2720 		port->cause_rx_tx;
2721 
2722 	if (rx_queue) {
2723 		rx_queue = rx_queue - 1;
2724 		if (pp->bm_priv)
2725 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2726 		else
2727 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2728 	}
2729 
2730 	if (rx_done < budget) {
2731 		cause_rx_tx = 0;
2732 		napi_complete_done(napi, rx_done);
2733 
2734 		if (pp->neta_armada3700) {
2735 			unsigned long flags;
2736 
2737 			local_irq_save(flags);
2738 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2739 				    MVNETA_RX_INTR_MASK(rxq_number) |
2740 				    MVNETA_TX_INTR_MASK(txq_number) |
2741 				    MVNETA_MISCINTR_INTR_MASK);
2742 			local_irq_restore(flags);
2743 		} else {
2744 			enable_percpu_irq(pp->dev->irq, 0);
2745 		}
2746 	}
2747 
2748 	if (pp->neta_armada3700)
2749 		pp->cause_rx_tx = cause_rx_tx;
2750 	else
2751 		port->cause_rx_tx = cause_rx_tx;
2752 
2753 	return rx_done;
2754 }
2755 
2756 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2757 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2758 			   int num)
2759 {
2760 	int i;
2761 
2762 	for (i = 0; i < num; i++) {
2763 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2764 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2765 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2766 				__func__, rxq->id, i, num);
2767 			break;
2768 		}
2769 	}
2770 
2771 	/* Add this number of RX descriptors as non occupied (ready to
2772 	 * get packets)
2773 	 */
2774 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2775 
2776 	return i;
2777 }
2778 
2779 /* Free all packets pending transmit from all TXQs and reset TX port */
2780 static void mvneta_tx_reset(struct mvneta_port *pp)
2781 {
2782 	int queue;
2783 
2784 	/* free the skb's in the tx ring */
2785 	for (queue = 0; queue < txq_number; queue++)
2786 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2787 
2788 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2789 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2790 }
2791 
2792 static void mvneta_rx_reset(struct mvneta_port *pp)
2793 {
2794 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2795 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2796 }
2797 
2798 /* Rx/Tx queue initialization/cleanup methods */
2799 
2800 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2801 			      struct mvneta_rx_queue *rxq)
2802 {
2803 	rxq->size = pp->rx_ring_size;
2804 
2805 	/* Allocate memory for RX descriptors */
2806 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2807 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2808 					&rxq->descs_phys, GFP_KERNEL);
2809 	if (!rxq->descs)
2810 		return -ENOMEM;
2811 
2812 	rxq->last_desc = rxq->size - 1;
2813 
2814 	return 0;
2815 }
2816 
2817 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2818 			       struct mvneta_rx_queue *rxq)
2819 {
2820 	/* Set Rx descriptors queue starting address */
2821 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2822 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2823 
2824 	/* Set Offset */
2825 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2826 
2827 	/* Set coalescing pkts and time */
2828 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2829 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2830 
2831 	if (!pp->bm_priv) {
2832 		/* Fill RXQ with buffers from RX pool */
2833 		mvneta_rxq_buf_size_set(pp, rxq,
2834 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2835 		mvneta_rxq_bm_disable(pp, rxq);
2836 		mvneta_rxq_fill(pp, rxq, rxq->size);
2837 	} else {
2838 		mvneta_rxq_bm_enable(pp, rxq);
2839 		mvneta_rxq_long_pool_set(pp, rxq);
2840 		mvneta_rxq_short_pool_set(pp, rxq);
2841 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2842 	}
2843 }
2844 
2845 /* Create a specified RX queue */
2846 static int mvneta_rxq_init(struct mvneta_port *pp,
2847 			   struct mvneta_rx_queue *rxq)
2848 
2849 {
2850 	int ret;
2851 
2852 	ret = mvneta_rxq_sw_init(pp, rxq);
2853 	if (ret < 0)
2854 		return ret;
2855 
2856 	mvneta_rxq_hw_init(pp, rxq);
2857 
2858 	return 0;
2859 }
2860 
2861 /* Cleanup Rx queue */
2862 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2863 			      struct mvneta_rx_queue *rxq)
2864 {
2865 	mvneta_rxq_drop_pkts(pp, rxq);
2866 
2867 	if (rxq->descs)
2868 		dma_free_coherent(pp->dev->dev.parent,
2869 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2870 				  rxq->descs,
2871 				  rxq->descs_phys);
2872 
2873 	rxq->descs             = NULL;
2874 	rxq->last_desc         = 0;
2875 	rxq->next_desc_to_proc = 0;
2876 	rxq->descs_phys        = 0;
2877 }
2878 
2879 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2880 			      struct mvneta_tx_queue *txq)
2881 {
2882 	int cpu;
2883 
2884 	txq->size = pp->tx_ring_size;
2885 
2886 	/* A queue must always have room for at least one skb.
2887 	 * Therefore, stop the queue when the free entries reaches
2888 	 * the maximum number of descriptors per skb.
2889 	 */
2890 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2891 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2892 
2893 	/* Allocate memory for TX descriptors */
2894 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2895 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2896 					&txq->descs_phys, GFP_KERNEL);
2897 	if (!txq->descs)
2898 		return -ENOMEM;
2899 
2900 	txq->last_desc = txq->size - 1;
2901 
2902 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2903 				    GFP_KERNEL);
2904 	if (!txq->tx_skb) {
2905 		dma_free_coherent(pp->dev->dev.parent,
2906 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2907 				  txq->descs, txq->descs_phys);
2908 		return -ENOMEM;
2909 	}
2910 
2911 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2912 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2913 					   txq->size * TSO_HEADER_SIZE,
2914 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2915 	if (!txq->tso_hdrs) {
2916 		kfree(txq->tx_skb);
2917 		dma_free_coherent(pp->dev->dev.parent,
2918 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2919 				  txq->descs, txq->descs_phys);
2920 		return -ENOMEM;
2921 	}
2922 
2923 	/* Setup XPS mapping */
2924 	if (txq_number > 1)
2925 		cpu = txq->id % num_present_cpus();
2926 	else
2927 		cpu = pp->rxq_def % num_present_cpus();
2928 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2929 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2930 
2931 	return 0;
2932 }
2933 
2934 static void mvneta_txq_hw_init(struct mvneta_port *pp,
2935 			       struct mvneta_tx_queue *txq)
2936 {
2937 	/* Set maximum bandwidth for enabled TXQs */
2938 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2939 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2940 
2941 	/* Set Tx descriptors queue starting address */
2942 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2943 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2944 
2945 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2946 }
2947 
2948 /* Create and initialize a tx queue */
2949 static int mvneta_txq_init(struct mvneta_port *pp,
2950 			   struct mvneta_tx_queue *txq)
2951 {
2952 	int ret;
2953 
2954 	ret = mvneta_txq_sw_init(pp, txq);
2955 	if (ret < 0)
2956 		return ret;
2957 
2958 	mvneta_txq_hw_init(pp, txq);
2959 
2960 	return 0;
2961 }
2962 
2963 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2964 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
2965 				 struct mvneta_tx_queue *txq)
2966 {
2967 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2968 
2969 	kfree(txq->tx_skb);
2970 
2971 	if (txq->tso_hdrs)
2972 		dma_free_coherent(pp->dev->dev.parent,
2973 				  txq->size * TSO_HEADER_SIZE,
2974 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2975 	if (txq->descs)
2976 		dma_free_coherent(pp->dev->dev.parent,
2977 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2978 				  txq->descs, txq->descs_phys);
2979 
2980 	netdev_tx_reset_queue(nq);
2981 
2982 	txq->descs             = NULL;
2983 	txq->last_desc         = 0;
2984 	txq->next_desc_to_proc = 0;
2985 	txq->descs_phys        = 0;
2986 }
2987 
2988 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
2989 				 struct mvneta_tx_queue *txq)
2990 {
2991 	/* Set minimum bandwidth for disabled TXQs */
2992 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2993 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2994 
2995 	/* Set Tx descriptors queue starting address and size */
2996 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2997 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2998 }
2999 
3000 static void mvneta_txq_deinit(struct mvneta_port *pp,
3001 			      struct mvneta_tx_queue *txq)
3002 {
3003 	mvneta_txq_sw_deinit(pp, txq);
3004 	mvneta_txq_hw_deinit(pp, txq);
3005 }
3006 
3007 /* Cleanup all Tx queues */
3008 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3009 {
3010 	int queue;
3011 
3012 	for (queue = 0; queue < txq_number; queue++)
3013 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3014 }
3015 
3016 /* Cleanup all Rx queues */
3017 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3018 {
3019 	int queue;
3020 
3021 	for (queue = 0; queue < rxq_number; queue++)
3022 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3023 }
3024 
3025 
3026 /* Init all Rx queues */
3027 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3028 {
3029 	int queue;
3030 
3031 	for (queue = 0; queue < rxq_number; queue++) {
3032 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3033 
3034 		if (err) {
3035 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3036 				   __func__, queue);
3037 			mvneta_cleanup_rxqs(pp);
3038 			return err;
3039 		}
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 /* Init all tx queues */
3046 static int mvneta_setup_txqs(struct mvneta_port *pp)
3047 {
3048 	int queue;
3049 
3050 	for (queue = 0; queue < txq_number; queue++) {
3051 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3052 		if (err) {
3053 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3054 				   __func__, queue);
3055 			mvneta_cleanup_txqs(pp);
3056 			return err;
3057 		}
3058 	}
3059 
3060 	return 0;
3061 }
3062 
3063 static void mvneta_start_dev(struct mvneta_port *pp)
3064 {
3065 	int cpu;
3066 
3067 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3068 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3069 
3070 	/* start the Rx/Tx activity */
3071 	mvneta_port_enable(pp);
3072 
3073 	if (!pp->neta_armada3700) {
3074 		/* Enable polling on the port */
3075 		for_each_online_cpu(cpu) {
3076 			struct mvneta_pcpu_port *port =
3077 				per_cpu_ptr(pp->ports, cpu);
3078 
3079 			napi_enable(&port->napi);
3080 		}
3081 	} else {
3082 		napi_enable(&pp->napi);
3083 	}
3084 
3085 	/* Unmask interrupts. It has to be done from each CPU */
3086 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3087 
3088 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3089 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3090 		    MVNETA_CAUSE_LINK_CHANGE);
3091 
3092 	phylink_start(pp->phylink);
3093 	netif_tx_start_all_queues(pp->dev);
3094 }
3095 
3096 static void mvneta_stop_dev(struct mvneta_port *pp)
3097 {
3098 	unsigned int cpu;
3099 
3100 	phylink_stop(pp->phylink);
3101 
3102 	if (!pp->neta_armada3700) {
3103 		for_each_online_cpu(cpu) {
3104 			struct mvneta_pcpu_port *port =
3105 				per_cpu_ptr(pp->ports, cpu);
3106 
3107 			napi_disable(&port->napi);
3108 		}
3109 	} else {
3110 		napi_disable(&pp->napi);
3111 	}
3112 
3113 	netif_carrier_off(pp->dev);
3114 
3115 	mvneta_port_down(pp);
3116 	netif_tx_stop_all_queues(pp->dev);
3117 
3118 	/* Stop the port activity */
3119 	mvneta_port_disable(pp);
3120 
3121 	/* Clear all ethernet port interrupts */
3122 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3123 
3124 	/* Mask all ethernet port interrupts */
3125 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3126 
3127 	mvneta_tx_reset(pp);
3128 	mvneta_rx_reset(pp);
3129 }
3130 
3131 static void mvneta_percpu_enable(void *arg)
3132 {
3133 	struct mvneta_port *pp = arg;
3134 
3135 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3136 }
3137 
3138 static void mvneta_percpu_disable(void *arg)
3139 {
3140 	struct mvneta_port *pp = arg;
3141 
3142 	disable_percpu_irq(pp->dev->irq);
3143 }
3144 
3145 /* Change the device mtu */
3146 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3147 {
3148 	struct mvneta_port *pp = netdev_priv(dev);
3149 	int ret;
3150 
3151 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3152 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3153 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3154 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3155 	}
3156 
3157 	dev->mtu = mtu;
3158 
3159 	if (!netif_running(dev)) {
3160 		if (pp->bm_priv)
3161 			mvneta_bm_update_mtu(pp, mtu);
3162 
3163 		netdev_update_features(dev);
3164 		return 0;
3165 	}
3166 
3167 	/* The interface is running, so we have to force a
3168 	 * reallocation of the queues
3169 	 */
3170 	mvneta_stop_dev(pp);
3171 	on_each_cpu(mvneta_percpu_disable, pp, true);
3172 
3173 	mvneta_cleanup_txqs(pp);
3174 	mvneta_cleanup_rxqs(pp);
3175 
3176 	if (pp->bm_priv)
3177 		mvneta_bm_update_mtu(pp, mtu);
3178 
3179 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3180 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3181 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3182 
3183 	ret = mvneta_setup_rxqs(pp);
3184 	if (ret) {
3185 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3186 		return ret;
3187 	}
3188 
3189 	ret = mvneta_setup_txqs(pp);
3190 	if (ret) {
3191 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3192 		return ret;
3193 	}
3194 
3195 	on_each_cpu(mvneta_percpu_enable, pp, true);
3196 	mvneta_start_dev(pp);
3197 	mvneta_port_up(pp);
3198 
3199 	netdev_update_features(dev);
3200 
3201 	return 0;
3202 }
3203 
3204 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3205 					     netdev_features_t features)
3206 {
3207 	struct mvneta_port *pp = netdev_priv(dev);
3208 
3209 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3210 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3211 		netdev_info(dev,
3212 			    "Disable IP checksum for MTU greater than %dB\n",
3213 			    pp->tx_csum_limit);
3214 	}
3215 
3216 	return features;
3217 }
3218 
3219 /* Get mac address */
3220 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3221 {
3222 	u32 mac_addr_l, mac_addr_h;
3223 
3224 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3225 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3226 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3227 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3228 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3229 	addr[3] = mac_addr_h & 0xFF;
3230 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3231 	addr[5] = mac_addr_l & 0xFF;
3232 }
3233 
3234 /* Handle setting mac address */
3235 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3236 {
3237 	struct mvneta_port *pp = netdev_priv(dev);
3238 	struct sockaddr *sockaddr = addr;
3239 	int ret;
3240 
3241 	ret = eth_prepare_mac_addr_change(dev, addr);
3242 	if (ret < 0)
3243 		return ret;
3244 	/* Remove previous address table entry */
3245 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3246 
3247 	/* Set new addr in hw */
3248 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3249 
3250 	eth_commit_mac_addr_change(dev, addr);
3251 	return 0;
3252 }
3253 
3254 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3255 			    struct phylink_link_state *state)
3256 {
3257 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3258 
3259 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3260 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3261 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3262 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3263 	    !phy_interface_mode_is_8023z(state->interface) &&
3264 	    !phy_interface_mode_is_rgmii(state->interface)) {
3265 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3266 		return;
3267 	}
3268 
3269 	/* Allow all the expected bits */
3270 	phylink_set(mask, Autoneg);
3271 	phylink_set_port_modes(mask);
3272 
3273 	/* Asymmetric pause is unsupported */
3274 	phylink_set(mask, Pause);
3275 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3276 	phylink_set(mask, 1000baseT_Full);
3277 	phylink_set(mask, 1000baseX_Full);
3278 
3279 	if (!phy_interface_mode_is_8023z(state->interface)) {
3280 		/* 10M and 100M are only supported in non-802.3z mode */
3281 		phylink_set(mask, 10baseT_Half);
3282 		phylink_set(mask, 10baseT_Full);
3283 		phylink_set(mask, 100baseT_Half);
3284 		phylink_set(mask, 100baseT_Full);
3285 	}
3286 
3287 	bitmap_and(supported, supported, mask,
3288 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3289 	bitmap_and(state->advertising, state->advertising, mask,
3290 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3291 }
3292 
3293 static int mvneta_mac_link_state(struct net_device *ndev,
3294 				 struct phylink_link_state *state)
3295 {
3296 	struct mvneta_port *pp = netdev_priv(ndev);
3297 	u32 gmac_stat;
3298 
3299 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3300 
3301 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3302 		state->speed = SPEED_1000;
3303 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3304 		state->speed = SPEED_100;
3305 	else
3306 		state->speed = SPEED_10;
3307 
3308 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3309 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3310 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3311 
3312 	state->pause = 0;
3313 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3314 		state->pause |= MLO_PAUSE_RX;
3315 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3316 		state->pause |= MLO_PAUSE_TX;
3317 
3318 	return 1;
3319 }
3320 
3321 static void mvneta_mac_an_restart(struct net_device *ndev)
3322 {
3323 	struct mvneta_port *pp = netdev_priv(ndev);
3324 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3325 
3326 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3327 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3328 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3329 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3330 }
3331 
3332 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3333 	const struct phylink_link_state *state)
3334 {
3335 	struct mvneta_port *pp = netdev_priv(ndev);
3336 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3337 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3338 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3339 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3340 
3341 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3342 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3343 				   MVNETA_GMAC2_PORT_RESET);
3344 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3345 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3346 			     MVNETA_GMAC_INBAND_RESTART_AN |
3347 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3348 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3349 			     MVNETA_GMAC_AN_SPEED_EN |
3350 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3351 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3352 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3353 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3354 			     MVNETA_GMAC_AN_DUPLEX_EN);
3355 
3356 	/* Even though it might look weird, when we're configured in
3357 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3358 	 */
3359 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3360 
3361 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3362 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3363 	    phy_interface_mode_is_8023z(state->interface))
3364 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3365 
3366 	if (phylink_test(state->advertising, Pause))
3367 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3368 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3369 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3370 
3371 	if (!phylink_autoneg_inband(mode)) {
3372 		/* Phy or fixed speed */
3373 		if (state->duplex)
3374 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3375 
3376 		if (state->speed == SPEED_1000)
3377 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3378 		else if (state->speed == SPEED_100)
3379 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3380 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3381 		/* SGMII mode receives the state from the PHY */
3382 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3383 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3384 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3385 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3386 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3387 			 MVNETA_GMAC_AN_SPEED_EN |
3388 			 MVNETA_GMAC_AN_DUPLEX_EN;
3389 	} else {
3390 		/* 802.3z negotiation - only 1000base-X */
3391 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3392 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3393 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3394 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3395 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3396 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3397 			 /* The MAC only supports FD mode */
3398 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3399 
3400 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3401 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3402 	}
3403 
3404 	/* Armada 370 documentation says we can only change the port mode
3405 	 * and in-band enable when the link is down, so force it down
3406 	 * while making these changes. We also do this for GMAC_CTRL2 */
3407 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3408 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3409 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3410 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3411 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3412 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3413 	}
3414 
3415 	if (new_ctrl0 != gmac_ctrl0)
3416 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3417 	if (new_ctrl2 != gmac_ctrl2)
3418 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3419 	if (new_clk != gmac_clk)
3420 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3421 	if (new_an != gmac_an)
3422 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3423 
3424 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3425 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3426 			MVNETA_GMAC2_PORT_RESET) != 0)
3427 			continue;
3428 	}
3429 }
3430 
3431 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3432 {
3433 	u32 lpi_ctl1;
3434 
3435 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3436 	if (enable)
3437 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3438 	else
3439 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3440 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3441 }
3442 
3443 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3444 				 phy_interface_t interface)
3445 {
3446 	struct mvneta_port *pp = netdev_priv(ndev);
3447 	u32 val;
3448 
3449 	mvneta_port_down(pp);
3450 
3451 	if (!phylink_autoneg_inband(mode)) {
3452 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3453 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3454 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3455 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3456 	}
3457 
3458 	pp->eee_active = false;
3459 	mvneta_set_eee(pp, false);
3460 }
3461 
3462 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3463 			       phy_interface_t interface,
3464 			       struct phy_device *phy)
3465 {
3466 	struct mvneta_port *pp = netdev_priv(ndev);
3467 	u32 val;
3468 
3469 	if (!phylink_autoneg_inband(mode)) {
3470 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3471 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3472 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3473 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3474 	}
3475 
3476 	mvneta_port_up(pp);
3477 
3478 	if (phy && pp->eee_enabled) {
3479 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3480 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3481 	}
3482 }
3483 
3484 static const struct phylink_mac_ops mvneta_phylink_ops = {
3485 	.validate = mvneta_validate,
3486 	.mac_link_state = mvneta_mac_link_state,
3487 	.mac_an_restart = mvneta_mac_an_restart,
3488 	.mac_config = mvneta_mac_config,
3489 	.mac_link_down = mvneta_mac_link_down,
3490 	.mac_link_up = mvneta_mac_link_up,
3491 };
3492 
3493 static int mvneta_mdio_probe(struct mvneta_port *pp)
3494 {
3495 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3496 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3497 
3498 	if (err)
3499 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3500 
3501 	phylink_ethtool_get_wol(pp->phylink, &wol);
3502 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3503 
3504 	return err;
3505 }
3506 
3507 static void mvneta_mdio_remove(struct mvneta_port *pp)
3508 {
3509 	phylink_disconnect_phy(pp->phylink);
3510 }
3511 
3512 /* Electing a CPU must be done in an atomic way: it should be done
3513  * after or before the removal/insertion of a CPU and this function is
3514  * not reentrant.
3515  */
3516 static void mvneta_percpu_elect(struct mvneta_port *pp)
3517 {
3518 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3519 
3520 	/* Use the cpu associated to the rxq when it is online, in all
3521 	 * the other cases, use the cpu 0 which can't be offline.
3522 	 */
3523 	if (cpu_online(pp->rxq_def))
3524 		elected_cpu = pp->rxq_def;
3525 
3526 	max_cpu = num_present_cpus();
3527 
3528 	for_each_online_cpu(cpu) {
3529 		int rxq_map = 0, txq_map = 0;
3530 		int rxq;
3531 
3532 		for (rxq = 0; rxq < rxq_number; rxq++)
3533 			if ((rxq % max_cpu) == cpu)
3534 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3535 
3536 		if (cpu == elected_cpu)
3537 			/* Map the default receive queue queue to the
3538 			 * elected CPU
3539 			 */
3540 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3541 
3542 		/* We update the TX queue map only if we have one
3543 		 * queue. In this case we associate the TX queue to
3544 		 * the CPU bound to the default RX queue
3545 		 */
3546 		if (txq_number == 1)
3547 			txq_map = (cpu == elected_cpu) ?
3548 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3549 		else
3550 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3551 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3552 
3553 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3554 
3555 		/* Update the interrupt mask on each CPU according the
3556 		 * new mapping
3557 		 */
3558 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3559 					 pp, true);
3560 		i++;
3561 
3562 	}
3563 };
3564 
3565 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3566 {
3567 	int other_cpu;
3568 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3569 						  node_online);
3570 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3571 
3572 
3573 	spin_lock(&pp->lock);
3574 	/*
3575 	 * Configuring the driver for a new CPU while the driver is
3576 	 * stopping is racy, so just avoid it.
3577 	 */
3578 	if (pp->is_stopped) {
3579 		spin_unlock(&pp->lock);
3580 		return 0;
3581 	}
3582 	netif_tx_stop_all_queues(pp->dev);
3583 
3584 	/*
3585 	 * We have to synchronise on tha napi of each CPU except the one
3586 	 * just being woken up
3587 	 */
3588 	for_each_online_cpu(other_cpu) {
3589 		if (other_cpu != cpu) {
3590 			struct mvneta_pcpu_port *other_port =
3591 				per_cpu_ptr(pp->ports, other_cpu);
3592 
3593 			napi_synchronize(&other_port->napi);
3594 		}
3595 	}
3596 
3597 	/* Mask all ethernet port interrupts */
3598 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3599 	napi_enable(&port->napi);
3600 
3601 	/*
3602 	 * Enable per-CPU interrupts on the CPU that is
3603 	 * brought up.
3604 	 */
3605 	mvneta_percpu_enable(pp);
3606 
3607 	/*
3608 	 * Enable per-CPU interrupt on the one CPU we care
3609 	 * about.
3610 	 */
3611 	mvneta_percpu_elect(pp);
3612 
3613 	/* Unmask all ethernet port interrupts */
3614 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3615 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3616 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3617 		    MVNETA_CAUSE_LINK_CHANGE);
3618 	netif_tx_start_all_queues(pp->dev);
3619 	spin_unlock(&pp->lock);
3620 	return 0;
3621 }
3622 
3623 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3624 {
3625 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3626 						  node_online);
3627 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3628 
3629 	/*
3630 	 * Thanks to this lock we are sure that any pending cpu election is
3631 	 * done.
3632 	 */
3633 	spin_lock(&pp->lock);
3634 	/* Mask all ethernet port interrupts */
3635 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3636 	spin_unlock(&pp->lock);
3637 
3638 	napi_synchronize(&port->napi);
3639 	napi_disable(&port->napi);
3640 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3641 	mvneta_percpu_disable(pp);
3642 	return 0;
3643 }
3644 
3645 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3646 {
3647 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3648 						  node_dead);
3649 
3650 	/* Check if a new CPU must be elected now this on is down */
3651 	spin_lock(&pp->lock);
3652 	mvneta_percpu_elect(pp);
3653 	spin_unlock(&pp->lock);
3654 	/* Unmask all ethernet port interrupts */
3655 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3656 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3657 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3658 		    MVNETA_CAUSE_LINK_CHANGE);
3659 	netif_tx_start_all_queues(pp->dev);
3660 	return 0;
3661 }
3662 
3663 static int mvneta_open(struct net_device *dev)
3664 {
3665 	struct mvneta_port *pp = netdev_priv(dev);
3666 	int ret;
3667 
3668 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3669 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3670 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3671 
3672 	ret = mvneta_setup_rxqs(pp);
3673 	if (ret)
3674 		return ret;
3675 
3676 	ret = mvneta_setup_txqs(pp);
3677 	if (ret)
3678 		goto err_cleanup_rxqs;
3679 
3680 	/* Connect to port interrupt line */
3681 	if (pp->neta_armada3700)
3682 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3683 				  dev->name, pp);
3684 	else
3685 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3686 					 dev->name, pp->ports);
3687 	if (ret) {
3688 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3689 		goto err_cleanup_txqs;
3690 	}
3691 
3692 	if (!pp->neta_armada3700) {
3693 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3694 		 * queue interrupts
3695 		 */
3696 		on_each_cpu(mvneta_percpu_enable, pp, true);
3697 
3698 		pp->is_stopped = false;
3699 		/* Register a CPU notifier to handle the case where our CPU
3700 		 * might be taken offline.
3701 		 */
3702 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3703 						       &pp->node_online);
3704 		if (ret)
3705 			goto err_free_irq;
3706 
3707 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3708 						       &pp->node_dead);
3709 		if (ret)
3710 			goto err_free_online_hp;
3711 	}
3712 
3713 	/* In default link is down */
3714 	netif_carrier_off(pp->dev);
3715 
3716 	ret = mvneta_mdio_probe(pp);
3717 	if (ret < 0) {
3718 		netdev_err(dev, "cannot probe MDIO bus\n");
3719 		goto err_free_dead_hp;
3720 	}
3721 
3722 	mvneta_start_dev(pp);
3723 
3724 	return 0;
3725 
3726 err_free_dead_hp:
3727 	if (!pp->neta_armada3700)
3728 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3729 						    &pp->node_dead);
3730 err_free_online_hp:
3731 	if (!pp->neta_armada3700)
3732 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3733 						    &pp->node_online);
3734 err_free_irq:
3735 	if (pp->neta_armada3700) {
3736 		free_irq(pp->dev->irq, pp);
3737 	} else {
3738 		on_each_cpu(mvneta_percpu_disable, pp, true);
3739 		free_percpu_irq(pp->dev->irq, pp->ports);
3740 	}
3741 err_cleanup_txqs:
3742 	mvneta_cleanup_txqs(pp);
3743 err_cleanup_rxqs:
3744 	mvneta_cleanup_rxqs(pp);
3745 	return ret;
3746 }
3747 
3748 /* Stop the port, free port interrupt line */
3749 static int mvneta_stop(struct net_device *dev)
3750 {
3751 	struct mvneta_port *pp = netdev_priv(dev);
3752 
3753 	if (!pp->neta_armada3700) {
3754 		/* Inform that we are stopping so we don't want to setup the
3755 		 * driver for new CPUs in the notifiers. The code of the
3756 		 * notifier for CPU online is protected by the same spinlock,
3757 		 * so when we get the lock, the notifer work is done.
3758 		 */
3759 		spin_lock(&pp->lock);
3760 		pp->is_stopped = true;
3761 		spin_unlock(&pp->lock);
3762 
3763 		mvneta_stop_dev(pp);
3764 		mvneta_mdio_remove(pp);
3765 
3766 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3767 						    &pp->node_online);
3768 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3769 						    &pp->node_dead);
3770 		on_each_cpu(mvneta_percpu_disable, pp, true);
3771 		free_percpu_irq(dev->irq, pp->ports);
3772 	} else {
3773 		mvneta_stop_dev(pp);
3774 		mvneta_mdio_remove(pp);
3775 		free_irq(dev->irq, pp);
3776 	}
3777 
3778 	mvneta_cleanup_rxqs(pp);
3779 	mvneta_cleanup_txqs(pp);
3780 
3781 	return 0;
3782 }
3783 
3784 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3785 {
3786 	struct mvneta_port *pp = netdev_priv(dev);
3787 
3788 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3789 }
3790 
3791 /* Ethtool methods */
3792 
3793 /* Set link ksettings (phy address, speed) for ethtools */
3794 static int
3795 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3796 				  const struct ethtool_link_ksettings *cmd)
3797 {
3798 	struct mvneta_port *pp = netdev_priv(ndev);
3799 
3800 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3801 }
3802 
3803 /* Get link ksettings for ethtools */
3804 static int
3805 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3806 				  struct ethtool_link_ksettings *cmd)
3807 {
3808 	struct mvneta_port *pp = netdev_priv(ndev);
3809 
3810 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3811 }
3812 
3813 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3814 {
3815 	struct mvneta_port *pp = netdev_priv(dev);
3816 
3817 	return phylink_ethtool_nway_reset(pp->phylink);
3818 }
3819 
3820 /* Set interrupt coalescing for ethtools */
3821 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3822 				       struct ethtool_coalesce *c)
3823 {
3824 	struct mvneta_port *pp = netdev_priv(dev);
3825 	int queue;
3826 
3827 	for (queue = 0; queue < rxq_number; queue++) {
3828 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3829 		rxq->time_coal = c->rx_coalesce_usecs;
3830 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3831 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3832 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3833 	}
3834 
3835 	for (queue = 0; queue < txq_number; queue++) {
3836 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3837 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3838 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3839 	}
3840 
3841 	return 0;
3842 }
3843 
3844 /* get coalescing for ethtools */
3845 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3846 				       struct ethtool_coalesce *c)
3847 {
3848 	struct mvneta_port *pp = netdev_priv(dev);
3849 
3850 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3851 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3852 
3853 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3854 	return 0;
3855 }
3856 
3857 
3858 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3859 				    struct ethtool_drvinfo *drvinfo)
3860 {
3861 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3862 		sizeof(drvinfo->driver));
3863 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3864 		sizeof(drvinfo->version));
3865 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3866 		sizeof(drvinfo->bus_info));
3867 }
3868 
3869 
3870 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3871 					 struct ethtool_ringparam *ring)
3872 {
3873 	struct mvneta_port *pp = netdev_priv(netdev);
3874 
3875 	ring->rx_max_pending = MVNETA_MAX_RXD;
3876 	ring->tx_max_pending = MVNETA_MAX_TXD;
3877 	ring->rx_pending = pp->rx_ring_size;
3878 	ring->tx_pending = pp->tx_ring_size;
3879 }
3880 
3881 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3882 					struct ethtool_ringparam *ring)
3883 {
3884 	struct mvneta_port *pp = netdev_priv(dev);
3885 
3886 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3887 		return -EINVAL;
3888 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3889 		ring->rx_pending : MVNETA_MAX_RXD;
3890 
3891 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3892 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3893 	if (pp->tx_ring_size != ring->tx_pending)
3894 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3895 			    pp->tx_ring_size, ring->tx_pending);
3896 
3897 	if (netif_running(dev)) {
3898 		mvneta_stop(dev);
3899 		if (mvneta_open(dev)) {
3900 			netdev_err(dev,
3901 				   "error on opening device after ring param change\n");
3902 			return -ENOMEM;
3903 		}
3904 	}
3905 
3906 	return 0;
3907 }
3908 
3909 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3910 					  struct ethtool_pauseparam *pause)
3911 {
3912 	struct mvneta_port *pp = netdev_priv(dev);
3913 
3914 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
3915 }
3916 
3917 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
3918 					 struct ethtool_pauseparam *pause)
3919 {
3920 	struct mvneta_port *pp = netdev_priv(dev);
3921 
3922 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
3923 }
3924 
3925 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3926 				       u8 *data)
3927 {
3928 	if (sset == ETH_SS_STATS) {
3929 		int i;
3930 
3931 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3932 			memcpy(data + i * ETH_GSTRING_LEN,
3933 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3934 	}
3935 }
3936 
3937 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3938 {
3939 	const struct mvneta_statistic *s;
3940 	void __iomem *base = pp->base;
3941 	u32 high, low;
3942 	u64 val;
3943 	int i;
3944 
3945 	for (i = 0, s = mvneta_statistics;
3946 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3947 	     s++, i++) {
3948 		val = 0;
3949 
3950 		switch (s->type) {
3951 		case T_REG_32:
3952 			val = readl_relaxed(base + s->offset);
3953 			break;
3954 		case T_REG_64:
3955 			/* Docs say to read low 32-bit then high */
3956 			low = readl_relaxed(base + s->offset);
3957 			high = readl_relaxed(base + s->offset + 4);
3958 			val = (u64)high << 32 | low;
3959 			break;
3960 		case T_SW:
3961 			switch (s->offset) {
3962 			case ETHTOOL_STAT_EEE_WAKEUP:
3963 				val = phylink_get_eee_err(pp->phylink);
3964 				break;
3965 			}
3966 			break;
3967 		}
3968 
3969 		pp->ethtool_stats[i] += val;
3970 	}
3971 }
3972 
3973 static void mvneta_ethtool_get_stats(struct net_device *dev,
3974 				     struct ethtool_stats *stats, u64 *data)
3975 {
3976 	struct mvneta_port *pp = netdev_priv(dev);
3977 	int i;
3978 
3979 	mvneta_ethtool_update_stats(pp);
3980 
3981 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3982 		*data++ = pp->ethtool_stats[i];
3983 }
3984 
3985 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3986 {
3987 	if (sset == ETH_SS_STATS)
3988 		return ARRAY_SIZE(mvneta_statistics);
3989 	return -EOPNOTSUPP;
3990 }
3991 
3992 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3993 {
3994 	return MVNETA_RSS_LU_TABLE_SIZE;
3995 }
3996 
3997 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3998 				    struct ethtool_rxnfc *info,
3999 				    u32 *rules __always_unused)
4000 {
4001 	switch (info->cmd) {
4002 	case ETHTOOL_GRXRINGS:
4003 		info->data =  rxq_number;
4004 		return 0;
4005 	case ETHTOOL_GRXFH:
4006 		return -EOPNOTSUPP;
4007 	default:
4008 		return -EOPNOTSUPP;
4009 	}
4010 }
4011 
4012 static int  mvneta_config_rss(struct mvneta_port *pp)
4013 {
4014 	int cpu;
4015 	u32 val;
4016 
4017 	netif_tx_stop_all_queues(pp->dev);
4018 
4019 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4020 
4021 	/* We have to synchronise on the napi of each CPU */
4022 	for_each_online_cpu(cpu) {
4023 		struct mvneta_pcpu_port *pcpu_port =
4024 			per_cpu_ptr(pp->ports, cpu);
4025 
4026 		napi_synchronize(&pcpu_port->napi);
4027 		napi_disable(&pcpu_port->napi);
4028 	}
4029 
4030 	pp->rxq_def = pp->indir[0];
4031 
4032 	/* Update unicast mapping */
4033 	mvneta_set_rx_mode(pp->dev);
4034 
4035 	/* Update val of portCfg register accordingly with all RxQueue types */
4036 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4037 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4038 
4039 	/* Update the elected CPU matching the new rxq_def */
4040 	spin_lock(&pp->lock);
4041 	mvneta_percpu_elect(pp);
4042 	spin_unlock(&pp->lock);
4043 
4044 	/* We have to synchronise on the napi of each CPU */
4045 	for_each_online_cpu(cpu) {
4046 		struct mvneta_pcpu_port *pcpu_port =
4047 			per_cpu_ptr(pp->ports, cpu);
4048 
4049 		napi_enable(&pcpu_port->napi);
4050 	}
4051 
4052 	netif_tx_start_all_queues(pp->dev);
4053 
4054 	return 0;
4055 }
4056 
4057 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4058 				   const u8 *key, const u8 hfunc)
4059 {
4060 	struct mvneta_port *pp = netdev_priv(dev);
4061 
4062 	/* Current code for Armada 3700 doesn't support RSS features yet */
4063 	if (pp->neta_armada3700)
4064 		return -EOPNOTSUPP;
4065 
4066 	/* We require at least one supported parameter to be changed
4067 	 * and no change in any of the unsupported parameters
4068 	 */
4069 	if (key ||
4070 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4071 		return -EOPNOTSUPP;
4072 
4073 	if (!indir)
4074 		return 0;
4075 
4076 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4077 
4078 	return mvneta_config_rss(pp);
4079 }
4080 
4081 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4082 				   u8 *hfunc)
4083 {
4084 	struct mvneta_port *pp = netdev_priv(dev);
4085 
4086 	/* Current code for Armada 3700 doesn't support RSS features yet */
4087 	if (pp->neta_armada3700)
4088 		return -EOPNOTSUPP;
4089 
4090 	if (hfunc)
4091 		*hfunc = ETH_RSS_HASH_TOP;
4092 
4093 	if (!indir)
4094 		return 0;
4095 
4096 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4097 
4098 	return 0;
4099 }
4100 
4101 static void mvneta_ethtool_get_wol(struct net_device *dev,
4102 				   struct ethtool_wolinfo *wol)
4103 {
4104 	struct mvneta_port *pp = netdev_priv(dev);
4105 
4106 	phylink_ethtool_get_wol(pp->phylink, wol);
4107 }
4108 
4109 static int mvneta_ethtool_set_wol(struct net_device *dev,
4110 				  struct ethtool_wolinfo *wol)
4111 {
4112 	struct mvneta_port *pp = netdev_priv(dev);
4113 	int ret;
4114 
4115 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4116 	if (!ret)
4117 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4118 
4119 	return ret;
4120 }
4121 
4122 static int mvneta_ethtool_get_eee(struct net_device *dev,
4123 				  struct ethtool_eee *eee)
4124 {
4125 	struct mvneta_port *pp = netdev_priv(dev);
4126 	u32 lpi_ctl0;
4127 
4128 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4129 
4130 	eee->eee_enabled = pp->eee_enabled;
4131 	eee->eee_active = pp->eee_active;
4132 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4133 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4134 
4135 	return phylink_ethtool_get_eee(pp->phylink, eee);
4136 }
4137 
4138 static int mvneta_ethtool_set_eee(struct net_device *dev,
4139 				  struct ethtool_eee *eee)
4140 {
4141 	struct mvneta_port *pp = netdev_priv(dev);
4142 	u32 lpi_ctl0;
4143 
4144 	/* The Armada 37x documents do not give limits for this other than
4145 	 * it being an 8-bit register. */
4146 	if (eee->tx_lpi_enabled &&
4147 	    (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4148 		return -EINVAL;
4149 
4150 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4151 	lpi_ctl0 &= ~(0xff << 8);
4152 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4153 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4154 
4155 	pp->eee_enabled = eee->eee_enabled;
4156 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4157 
4158 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4159 
4160 	return phylink_ethtool_set_eee(pp->phylink, eee);
4161 }
4162 
4163 static const struct net_device_ops mvneta_netdev_ops = {
4164 	.ndo_open            = mvneta_open,
4165 	.ndo_stop            = mvneta_stop,
4166 	.ndo_start_xmit      = mvneta_tx,
4167 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4168 	.ndo_set_mac_address = mvneta_set_mac_addr,
4169 	.ndo_change_mtu      = mvneta_change_mtu,
4170 	.ndo_fix_features    = mvneta_fix_features,
4171 	.ndo_get_stats64     = mvneta_get_stats64,
4172 	.ndo_do_ioctl        = mvneta_ioctl,
4173 };
4174 
4175 static const struct ethtool_ops mvneta_eth_tool_ops = {
4176 	.nway_reset	= mvneta_ethtool_nway_reset,
4177 	.get_link       = ethtool_op_get_link,
4178 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4179 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4180 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4181 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4182 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4183 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4184 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4185 	.get_strings	= mvneta_ethtool_get_strings,
4186 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4187 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4188 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4189 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4190 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4191 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4192 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4193 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4194 	.get_wol        = mvneta_ethtool_get_wol,
4195 	.set_wol        = mvneta_ethtool_set_wol,
4196 	.get_eee	= mvneta_ethtool_get_eee,
4197 	.set_eee	= mvneta_ethtool_set_eee,
4198 };
4199 
4200 /* Initialize hw */
4201 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4202 {
4203 	int queue;
4204 
4205 	/* Disable port */
4206 	mvneta_port_disable(pp);
4207 
4208 	/* Set port default values */
4209 	mvneta_defaults_set(pp);
4210 
4211 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4212 	if (!pp->txqs)
4213 		return -ENOMEM;
4214 
4215 	/* Initialize TX descriptor rings */
4216 	for (queue = 0; queue < txq_number; queue++) {
4217 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4218 		txq->id = queue;
4219 		txq->size = pp->tx_ring_size;
4220 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4221 	}
4222 
4223 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4224 	if (!pp->rxqs)
4225 		return -ENOMEM;
4226 
4227 	/* Create Rx descriptor rings */
4228 	for (queue = 0; queue < rxq_number; queue++) {
4229 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4230 		rxq->id = queue;
4231 		rxq->size = pp->rx_ring_size;
4232 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4233 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4234 		rxq->buf_virt_addr
4235 			= devm_kmalloc_array(pp->dev->dev.parent,
4236 					     rxq->size,
4237 					     sizeof(*rxq->buf_virt_addr),
4238 					     GFP_KERNEL);
4239 		if (!rxq->buf_virt_addr)
4240 			return -ENOMEM;
4241 	}
4242 
4243 	return 0;
4244 }
4245 
4246 /* platform glue : initialize decoding windows */
4247 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4248 				     const struct mbus_dram_target_info *dram)
4249 {
4250 	u32 win_enable;
4251 	u32 win_protect;
4252 	int i;
4253 
4254 	for (i = 0; i < 6; i++) {
4255 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4256 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4257 
4258 		if (i < 4)
4259 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4260 	}
4261 
4262 	win_enable = 0x3f;
4263 	win_protect = 0;
4264 
4265 	if (dram) {
4266 		for (i = 0; i < dram->num_cs; i++) {
4267 			const struct mbus_dram_window *cs = dram->cs + i;
4268 
4269 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4270 				    (cs->base & 0xffff0000) |
4271 				    (cs->mbus_attr << 8) |
4272 				    dram->mbus_dram_target_id);
4273 
4274 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4275 				    (cs->size - 1) & 0xffff0000);
4276 
4277 			win_enable &= ~(1 << i);
4278 			win_protect |= 3 << (2 * i);
4279 		}
4280 	} else {
4281 		/* For Armada3700 open default 4GB Mbus window, leaving
4282 		 * arbitration of target/attribute to a different layer
4283 		 * of configuration.
4284 		 */
4285 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4286 		win_enable &= ~BIT(0);
4287 		win_protect = 3;
4288 	}
4289 
4290 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4291 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4292 }
4293 
4294 /* Power up the port */
4295 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4296 {
4297 	/* MAC Cause register should be cleared */
4298 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4299 
4300 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4301 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4302 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4303 		 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4304 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4305 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4306 		return -EINVAL;
4307 
4308 	return 0;
4309 }
4310 
4311 /* Device initialization routine */
4312 static int mvneta_probe(struct platform_device *pdev)
4313 {
4314 	struct resource *res;
4315 	struct device_node *dn = pdev->dev.of_node;
4316 	struct device_node *bm_node;
4317 	struct mvneta_port *pp;
4318 	struct net_device *dev;
4319 	struct phylink *phylink;
4320 	const char *dt_mac_addr;
4321 	char hw_mac_addr[ETH_ALEN];
4322 	const char *mac_from;
4323 	int tx_csum_limit;
4324 	int phy_mode;
4325 	int err;
4326 	int cpu;
4327 
4328 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4329 	if (!dev)
4330 		return -ENOMEM;
4331 
4332 	dev->irq = irq_of_parse_and_map(dn, 0);
4333 	if (dev->irq == 0) {
4334 		err = -EINVAL;
4335 		goto err_free_netdev;
4336 	}
4337 
4338 	phy_mode = of_get_phy_mode(dn);
4339 	if (phy_mode < 0) {
4340 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4341 		err = -EINVAL;
4342 		goto err_free_irq;
4343 	}
4344 
4345 	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4346 				 &mvneta_phylink_ops);
4347 	if (IS_ERR(phylink)) {
4348 		err = PTR_ERR(phylink);
4349 		goto err_free_irq;
4350 	}
4351 
4352 	dev->tx_queue_len = MVNETA_MAX_TXD;
4353 	dev->watchdog_timeo = 5 * HZ;
4354 	dev->netdev_ops = &mvneta_netdev_ops;
4355 
4356 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4357 
4358 	pp = netdev_priv(dev);
4359 	spin_lock_init(&pp->lock);
4360 	pp->phylink = phylink;
4361 	pp->phy_interface = phy_mode;
4362 	pp->dn = dn;
4363 
4364 	pp->rxq_def = rxq_def;
4365 
4366 	/* Set RX packet offset correction for platforms, whose
4367 	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4368 	 * platforms and 0B for 32-bit ones.
4369 	 */
4370 	pp->rx_offset_correction =
4371 		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4372 
4373 	pp->indir[0] = rxq_def;
4374 
4375 	/* Get special SoC configurations */
4376 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4377 		pp->neta_armada3700 = true;
4378 
4379 	pp->clk = devm_clk_get(&pdev->dev, "core");
4380 	if (IS_ERR(pp->clk))
4381 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4382 	if (IS_ERR(pp->clk)) {
4383 		err = PTR_ERR(pp->clk);
4384 		goto err_free_phylink;
4385 	}
4386 
4387 	clk_prepare_enable(pp->clk);
4388 
4389 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4390 	if (!IS_ERR(pp->clk_bus))
4391 		clk_prepare_enable(pp->clk_bus);
4392 
4393 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4394 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4395 	if (IS_ERR(pp->base)) {
4396 		err = PTR_ERR(pp->base);
4397 		goto err_clk;
4398 	}
4399 
4400 	/* Alloc per-cpu port structure */
4401 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4402 	if (!pp->ports) {
4403 		err = -ENOMEM;
4404 		goto err_clk;
4405 	}
4406 
4407 	/* Alloc per-cpu stats */
4408 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4409 	if (!pp->stats) {
4410 		err = -ENOMEM;
4411 		goto err_free_ports;
4412 	}
4413 
4414 	dt_mac_addr = of_get_mac_address(dn);
4415 	if (dt_mac_addr) {
4416 		mac_from = "device tree";
4417 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4418 	} else {
4419 		mvneta_get_mac_addr(pp, hw_mac_addr);
4420 		if (is_valid_ether_addr(hw_mac_addr)) {
4421 			mac_from = "hardware";
4422 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4423 		} else {
4424 			mac_from = "random";
4425 			eth_hw_addr_random(dev);
4426 		}
4427 	}
4428 
4429 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4430 		if (tx_csum_limit < 0 ||
4431 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4432 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4433 			dev_info(&pdev->dev,
4434 				 "Wrong TX csum limit in DT, set to %dB\n",
4435 				 MVNETA_TX_CSUM_DEF_SIZE);
4436 		}
4437 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4438 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4439 	} else {
4440 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4441 	}
4442 
4443 	pp->tx_csum_limit = tx_csum_limit;
4444 
4445 	pp->dram_target_info = mv_mbus_dram_info();
4446 	/* Armada3700 requires setting default configuration of Mbus
4447 	 * windows, however without using filled mbus_dram_target_info
4448 	 * structure.
4449 	 */
4450 	if (pp->dram_target_info || pp->neta_armada3700)
4451 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4452 
4453 	pp->tx_ring_size = MVNETA_MAX_TXD;
4454 	pp->rx_ring_size = MVNETA_MAX_RXD;
4455 
4456 	pp->dev = dev;
4457 	SET_NETDEV_DEV(dev, &pdev->dev);
4458 
4459 	pp->id = global_port_id++;
4460 
4461 	/* Obtain access to BM resources if enabled and already initialized */
4462 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4463 	if (bm_node && bm_node->data) {
4464 		pp->bm_priv = bm_node->data;
4465 		err = mvneta_bm_port_init(pdev, pp);
4466 		if (err < 0) {
4467 			dev_info(&pdev->dev, "use SW buffer management\n");
4468 			pp->bm_priv = NULL;
4469 		}
4470 	}
4471 	of_node_put(bm_node);
4472 
4473 	err = mvneta_init(&pdev->dev, pp);
4474 	if (err < 0)
4475 		goto err_netdev;
4476 
4477 	err = mvneta_port_power_up(pp, phy_mode);
4478 	if (err < 0) {
4479 		dev_err(&pdev->dev, "can't power up port\n");
4480 		goto err_netdev;
4481 	}
4482 
4483 	/* Armada3700 network controller does not support per-cpu
4484 	 * operation, so only single NAPI should be initialized.
4485 	 */
4486 	if (pp->neta_armada3700) {
4487 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4488 	} else {
4489 		for_each_present_cpu(cpu) {
4490 			struct mvneta_pcpu_port *port =
4491 				per_cpu_ptr(pp->ports, cpu);
4492 
4493 			netif_napi_add(dev, &port->napi, mvneta_poll,
4494 				       NAPI_POLL_WEIGHT);
4495 			port->pp = pp;
4496 		}
4497 	}
4498 
4499 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4500 	dev->hw_features |= dev->features;
4501 	dev->vlan_features |= dev->features;
4502 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4503 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4504 
4505 	/* MTU range: 68 - 9676 */
4506 	dev->min_mtu = ETH_MIN_MTU;
4507 	/* 9676 == 9700 - 20 and rounding to 8 */
4508 	dev->max_mtu = 9676;
4509 
4510 	err = register_netdev(dev);
4511 	if (err < 0) {
4512 		dev_err(&pdev->dev, "failed to register\n");
4513 		goto err_free_stats;
4514 	}
4515 
4516 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4517 		    dev->dev_addr);
4518 
4519 	platform_set_drvdata(pdev, pp->dev);
4520 
4521 	return 0;
4522 
4523 err_netdev:
4524 	unregister_netdev(dev);
4525 	if (pp->bm_priv) {
4526 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4527 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4528 				       1 << pp->id);
4529 	}
4530 err_free_stats:
4531 	free_percpu(pp->stats);
4532 err_free_ports:
4533 	free_percpu(pp->ports);
4534 err_clk:
4535 	clk_disable_unprepare(pp->clk_bus);
4536 	clk_disable_unprepare(pp->clk);
4537 err_free_phylink:
4538 	if (pp->phylink)
4539 		phylink_destroy(pp->phylink);
4540 err_free_irq:
4541 	irq_dispose_mapping(dev->irq);
4542 err_free_netdev:
4543 	free_netdev(dev);
4544 	return err;
4545 }
4546 
4547 /* Device removal routine */
4548 static int mvneta_remove(struct platform_device *pdev)
4549 {
4550 	struct net_device  *dev = platform_get_drvdata(pdev);
4551 	struct mvneta_port *pp = netdev_priv(dev);
4552 
4553 	unregister_netdev(dev);
4554 	clk_disable_unprepare(pp->clk_bus);
4555 	clk_disable_unprepare(pp->clk);
4556 	free_percpu(pp->ports);
4557 	free_percpu(pp->stats);
4558 	irq_dispose_mapping(dev->irq);
4559 	phylink_destroy(pp->phylink);
4560 	free_netdev(dev);
4561 
4562 	if (pp->bm_priv) {
4563 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4564 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4565 				       1 << pp->id);
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 #ifdef CONFIG_PM_SLEEP
4572 static int mvneta_suspend(struct device *device)
4573 {
4574 	int queue;
4575 	struct net_device *dev = dev_get_drvdata(device);
4576 	struct mvneta_port *pp = netdev_priv(dev);
4577 
4578 	if (!netif_running(dev))
4579 		goto clean_exit;
4580 
4581 	if (!pp->neta_armada3700) {
4582 		spin_lock(&pp->lock);
4583 		pp->is_stopped = true;
4584 		spin_unlock(&pp->lock);
4585 
4586 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4587 						    &pp->node_online);
4588 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4589 						    &pp->node_dead);
4590 	}
4591 
4592 	rtnl_lock();
4593 	mvneta_stop_dev(pp);
4594 	rtnl_unlock();
4595 
4596 	for (queue = 0; queue < rxq_number; queue++) {
4597 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4598 
4599 		mvneta_rxq_drop_pkts(pp, rxq);
4600 	}
4601 
4602 	for (queue = 0; queue < txq_number; queue++) {
4603 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4604 
4605 		mvneta_txq_hw_deinit(pp, txq);
4606 	}
4607 
4608 clean_exit:
4609 	netif_device_detach(dev);
4610 	clk_disable_unprepare(pp->clk_bus);
4611 	clk_disable_unprepare(pp->clk);
4612 
4613 	return 0;
4614 }
4615 
4616 static int mvneta_resume(struct device *device)
4617 {
4618 	struct platform_device *pdev = to_platform_device(device);
4619 	struct net_device *dev = dev_get_drvdata(device);
4620 	struct mvneta_port *pp = netdev_priv(dev);
4621 	int err, queue;
4622 
4623 	clk_prepare_enable(pp->clk);
4624 	if (!IS_ERR(pp->clk_bus))
4625 		clk_prepare_enable(pp->clk_bus);
4626 	if (pp->dram_target_info || pp->neta_armada3700)
4627 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4628 	if (pp->bm_priv) {
4629 		err = mvneta_bm_port_init(pdev, pp);
4630 		if (err < 0) {
4631 			dev_info(&pdev->dev, "use SW buffer management\n");
4632 			pp->bm_priv = NULL;
4633 		}
4634 	}
4635 	mvneta_defaults_set(pp);
4636 	err = mvneta_port_power_up(pp, pp->phy_interface);
4637 	if (err < 0) {
4638 		dev_err(device, "can't power up port\n");
4639 		return err;
4640 	}
4641 
4642 	netif_device_attach(dev);
4643 
4644 	if (!netif_running(dev))
4645 		return 0;
4646 
4647 	for (queue = 0; queue < rxq_number; queue++) {
4648 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4649 
4650 		rxq->next_desc_to_proc = 0;
4651 		mvneta_rxq_hw_init(pp, rxq);
4652 	}
4653 
4654 	for (queue = 0; queue < txq_number; queue++) {
4655 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4656 
4657 		txq->next_desc_to_proc = 0;
4658 		mvneta_txq_hw_init(pp, txq);
4659 	}
4660 
4661 	if (!pp->neta_armada3700) {
4662 		spin_lock(&pp->lock);
4663 		pp->is_stopped = false;
4664 		spin_unlock(&pp->lock);
4665 		cpuhp_state_add_instance_nocalls(online_hpstate,
4666 						 &pp->node_online);
4667 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4668 						 &pp->node_dead);
4669 	}
4670 
4671 	rtnl_lock();
4672 	mvneta_start_dev(pp);
4673 	rtnl_unlock();
4674 	mvneta_set_rx_mode(dev);
4675 
4676 	return 0;
4677 }
4678 #endif
4679 
4680 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4681 
4682 static const struct of_device_id mvneta_match[] = {
4683 	{ .compatible = "marvell,armada-370-neta" },
4684 	{ .compatible = "marvell,armada-xp-neta" },
4685 	{ .compatible = "marvell,armada-3700-neta" },
4686 	{ }
4687 };
4688 MODULE_DEVICE_TABLE(of, mvneta_match);
4689 
4690 static struct platform_driver mvneta_driver = {
4691 	.probe = mvneta_probe,
4692 	.remove = mvneta_remove,
4693 	.driver = {
4694 		.name = MVNETA_DRIVER_NAME,
4695 		.of_match_table = mvneta_match,
4696 		.pm = &mvneta_pm_ops,
4697 	},
4698 };
4699 
4700 static int __init mvneta_driver_init(void)
4701 {
4702 	int ret;
4703 
4704 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4705 				      mvneta_cpu_online,
4706 				      mvneta_cpu_down_prepare);
4707 	if (ret < 0)
4708 		goto out;
4709 	online_hpstate = ret;
4710 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4711 				      NULL, mvneta_cpu_dead);
4712 	if (ret)
4713 		goto err_dead;
4714 
4715 	ret = platform_driver_register(&mvneta_driver);
4716 	if (ret)
4717 		goto err;
4718 	return 0;
4719 
4720 err:
4721 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4722 err_dead:
4723 	cpuhp_remove_multi_state(online_hpstate);
4724 out:
4725 	return ret;
4726 }
4727 module_init(mvneta_driver_init);
4728 
4729 static void __exit mvneta_driver_exit(void)
4730 {
4731 	platform_driver_unregister(&mvneta_driver);
4732 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4733 	cpuhp_remove_multi_state(online_hpstate);
4734 }
4735 module_exit(mvneta_driver_exit);
4736 
4737 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4738 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4739 MODULE_LICENSE("GPL");
4740 
4741 module_param(rxq_number, int, 0444);
4742 module_param(txq_number, int, 0444);
4743 
4744 module_param(rxq_def, int, 0444);
4745 module_param(rx_copybreak, int, 0644);
4746