xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision b802fb99ae964681d1754428f67970911e0476e9)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tso.h>
36 
37 /* Registers */
38 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
39 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
40 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
41 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
42 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
43 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
44 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
45 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
46 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
47 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
48 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
49 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
51 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
52 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
53 #define MVNETA_PORT_RX_RESET                    0x1cc0
54 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
55 #define MVNETA_PHY_ADDR                         0x2000
56 #define      MVNETA_PHY_ADDR_MASK               0x1f
57 #define MVNETA_MBUS_RETRY                       0x2010
58 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
59 #define MVNETA_UNIT_CONTROL                     0x20B0
60 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
61 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
62 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
63 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
64 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
65 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
66 #define MVNETA_PORT_CONFIG                      0x2400
67 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
68 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
69 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
70 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
71 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
72 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
73 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
74 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
75 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
76 						 MVNETA_DEF_RXQ_ARP(q)	 | \
77 						 MVNETA_DEF_RXQ_TCP(q)	 | \
78 						 MVNETA_DEF_RXQ_UDP(q)	 | \
79 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
80 						 MVNETA_TX_UNSET_ERR_SUM | \
81 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
82 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
83 #define MVNETA_MAC_ADDR_LOW                      0x2414
84 #define MVNETA_MAC_ADDR_HIGH                     0x2418
85 #define MVNETA_SDMA_CONFIG                       0x241c
86 #define      MVNETA_SDMA_BRST_SIZE_16            4
87 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
88 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
89 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
90 #define      MVNETA_DESC_SWAP                    BIT(6)
91 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
92 #define MVNETA_PORT_STATUS                       0x2444
93 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
94 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
95 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
96 #define MVNETA_SERDES_CFG			 0x24A0
97 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
98 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
99 #define MVNETA_TYPE_PRIO                         0x24bc
100 #define      MVNETA_FORCE_UNI                    BIT(21)
101 #define MVNETA_TXQ_CMD_1                         0x24e4
102 #define MVNETA_TXQ_CMD                           0x2448
103 #define      MVNETA_TXQ_DISABLE_SHIFT            8
104 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
105 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
106 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
107 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
108 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
109 #define MVNETA_ACC_MODE                          0x2500
110 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
111 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
112 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
113 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
114 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
115 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
116 
117 /* Exception Interrupt Port/Queue Cause register
118  *
119  * Their behavior depend of the mapping done using the PCPX2Q
120  * registers. For a given CPU if the bit associated to a queue is not
121  * set, then for the register a read from this CPU will always return
122  * 0 and a write won't do anything
123  */
124 
125 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
126 #define MVNETA_INTR_NEW_MASK                     0x25a4
127 
128 /* bits  0..7  = TXQ SENT, one bit per queue.
129  * bits  8..15 = RXQ OCCUP, one bit per queue.
130  * bits 16..23 = RXQ FREE, one bit per queue.
131  * bit  29 = OLD_REG_SUM, see old reg ?
132  * bit  30 = TX_ERR_SUM, one bit for 4 ports
133  * bit  31 = MISC_SUM,   one bit for 4 ports
134  */
135 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
136 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
137 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
138 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
139 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
140 
141 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
142 #define MVNETA_INTR_OLD_MASK                     0x25ac
143 
144 /* Data Path Port/Queue Cause Register */
145 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
146 #define MVNETA_INTR_MISC_MASK                    0x25b4
147 
148 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
149 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
150 #define      MVNETA_CAUSE_PTP                    BIT(4)
151 
152 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
153 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
154 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
155 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
156 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
157 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
158 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
159 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
160 
161 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
162 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
163 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
164 
165 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
166 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
167 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
168 
169 #define MVNETA_INTR_ENABLE                       0x25b8
170 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
171 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
172 
173 #define MVNETA_RXQ_CMD                           0x2680
174 #define      MVNETA_RXQ_DISABLE_SHIFT            8
175 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
176 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
177 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
178 #define MVNETA_GMAC_CTRL_0                       0x2c00
179 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
180 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
181 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
182 #define MVNETA_GMAC_CTRL_2                       0x2c08
183 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
184 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
185 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
186 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
187 #define MVNETA_GMAC_STATUS                       0x2c10
188 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
189 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
190 #define      MVNETA_GMAC_SPEED_100               BIT(2)
191 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
192 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
193 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
194 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
195 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
196 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
197 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
198 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
199 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
200 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
201 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
202 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
203 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
204 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
205 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
206 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
207 #define      MVNETA_MIB_LATE_COLLISION           0x7c
208 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
209 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
210 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
211 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
212 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
213 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
214 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
215 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
216 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
217 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
218 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
219 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
220 #define MVNETA_PORT_TX_RESET                     0x3cf0
221 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
222 #define MVNETA_TX_MTU                            0x3e0c
223 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
224 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
226 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
227 
228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
229 
230 /* Descriptor ring Macros */
231 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
232 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
233 
234 /* Various constants */
235 
236 /* Coalescing */
237 #define MVNETA_TXDONE_COAL_PKTS		1
238 #define MVNETA_RX_COAL_PKTS		32
239 #define MVNETA_RX_COAL_USEC		100
240 
241 /* The two bytes Marvell header. Either contains a special value used
242  * by Marvell switches when a specific hardware mode is enabled (not
243  * supported by this driver) or is filled automatically by zeroes on
244  * the RX side. Those two bytes being at the front of the Ethernet
245  * header, they allow to have the IP header aligned on a 4 bytes
246  * boundary automatically: the hardware skips those two bytes on its
247  * own.
248  */
249 #define MVNETA_MH_SIZE			2
250 
251 #define MVNETA_VLAN_TAG_LEN             4
252 
253 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
254 #define MVNETA_TX_CSUM_DEF_SIZE		1600
255 #define MVNETA_TX_CSUM_MAX_SIZE		9800
256 #define MVNETA_ACC_MODE_EXT		1
257 
258 /* Timeout constants */
259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
262 
263 #define MVNETA_TX_MTU_MAX		0x3ffff
264 
265 /* The RSS lookup table actually has 256 entries but we do not use
266  * them yet
267  */
268 #define MVNETA_RSS_LU_TABLE_SIZE	1
269 
270 /* TSO header size */
271 #define TSO_HEADER_SIZE 128
272 
273 /* Max number of Rx descriptors */
274 #define MVNETA_MAX_RXD 128
275 
276 /* Max number of Tx descriptors */
277 #define MVNETA_MAX_TXD 532
278 
279 /* Max number of allowed TCP segments for software TSO */
280 #define MVNETA_MAX_TSO_SEGS 100
281 
282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
283 
284 /* descriptor aligned size */
285 #define MVNETA_DESC_ALIGNED_SIZE	32
286 
287 #define MVNETA_RX_PKT_SIZE(mtu) \
288 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
289 	      ETH_HLEN + ETH_FCS_LEN,			     \
290 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
291 
292 #define IS_TSO_HEADER(txq, addr) \
293 	((addr >= txq->tso_hdrs_phys) && \
294 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
295 
296 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
297 
298 struct mvneta_statistic {
299 	unsigned short offset;
300 	unsigned short type;
301 	const char name[ETH_GSTRING_LEN];
302 };
303 
304 #define T_REG_32	32
305 #define T_REG_64	64
306 
307 static const struct mvneta_statistic mvneta_statistics[] = {
308 	{ 0x3000, T_REG_64, "good_octets_received", },
309 	{ 0x3010, T_REG_32, "good_frames_received", },
310 	{ 0x3008, T_REG_32, "bad_octets_received", },
311 	{ 0x3014, T_REG_32, "bad_frames_received", },
312 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
313 	{ 0x301c, T_REG_32, "multicast_frames_received", },
314 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
315 	{ 0x3058, T_REG_32, "good_fc_received", },
316 	{ 0x305c, T_REG_32, "bad_fc_received", },
317 	{ 0x3060, T_REG_32, "undersize_received", },
318 	{ 0x3064, T_REG_32, "fragments_received", },
319 	{ 0x3068, T_REG_32, "oversize_received", },
320 	{ 0x306c, T_REG_32, "jabber_received", },
321 	{ 0x3070, T_REG_32, "mac_receive_error", },
322 	{ 0x3074, T_REG_32, "bad_crc_event", },
323 	{ 0x3078, T_REG_32, "collision", },
324 	{ 0x307c, T_REG_32, "late_collision", },
325 	{ 0x2484, T_REG_32, "rx_discard", },
326 	{ 0x2488, T_REG_32, "rx_overrun", },
327 	{ 0x3020, T_REG_32, "frames_64_octets", },
328 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
329 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
330 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
331 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
332 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
333 	{ 0x3038, T_REG_64, "good_octets_sent", },
334 	{ 0x3040, T_REG_32, "good_frames_sent", },
335 	{ 0x3044, T_REG_32, "excessive_collision", },
336 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
337 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
338 	{ 0x3054, T_REG_32, "fc_sent", },
339 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
340 };
341 
342 struct mvneta_pcpu_stats {
343 	struct	u64_stats_sync syncp;
344 	u64	rx_packets;
345 	u64	rx_bytes;
346 	u64	tx_packets;
347 	u64	tx_bytes;
348 };
349 
350 struct mvneta_pcpu_port {
351 	/* Pointer to the shared port */
352 	struct mvneta_port	*pp;
353 
354 	/* Pointer to the CPU-local NAPI struct */
355 	struct napi_struct	napi;
356 
357 	/* Cause of the previous interrupt */
358 	u32			cause_rx_tx;
359 };
360 
361 struct mvneta_port {
362 	struct mvneta_pcpu_port __percpu	*ports;
363 	struct mvneta_pcpu_stats __percpu	*stats;
364 
365 	int pkt_size;
366 	unsigned int frag_size;
367 	void __iomem *base;
368 	struct mvneta_rx_queue *rxqs;
369 	struct mvneta_tx_queue *txqs;
370 	struct net_device *dev;
371 	struct notifier_block cpu_notifier;
372 	int rxq_def;
373 
374 	/* Core clock */
375 	struct clk *clk;
376 	/* AXI clock */
377 	struct clk *clk_bus;
378 	u8 mcast_count[256];
379 	u16 tx_ring_size;
380 	u16 rx_ring_size;
381 
382 	struct mii_bus *mii_bus;
383 	struct phy_device *phy_dev;
384 	phy_interface_t phy_interface;
385 	struct device_node *phy_node;
386 	unsigned int link;
387 	unsigned int duplex;
388 	unsigned int speed;
389 	unsigned int tx_csum_limit;
390 	unsigned int use_inband_status:1;
391 
392 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
393 
394 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
395 };
396 
397 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
398  * layout of the transmit and reception DMA descriptors, and their
399  * layout is therefore defined by the hardware design
400  */
401 
402 #define MVNETA_TX_L3_OFF_SHIFT	0
403 #define MVNETA_TX_IP_HLEN_SHIFT	8
404 #define MVNETA_TX_L4_UDP	BIT(16)
405 #define MVNETA_TX_L3_IP6	BIT(17)
406 #define MVNETA_TXD_IP_CSUM	BIT(18)
407 #define MVNETA_TXD_Z_PAD	BIT(19)
408 #define MVNETA_TXD_L_DESC	BIT(20)
409 #define MVNETA_TXD_F_DESC	BIT(21)
410 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
411 				 MVNETA_TXD_L_DESC | \
412 				 MVNETA_TXD_F_DESC)
413 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
414 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
415 
416 #define MVNETA_RXD_ERR_CRC		0x0
417 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
418 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
419 #define MVNETA_RXD_ERR_LEN		BIT(18)
420 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
421 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
422 #define MVNETA_RXD_L3_IP4		BIT(25)
423 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
424 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
425 
426 #if defined(__LITTLE_ENDIAN)
427 struct mvneta_tx_desc {
428 	u32  command;		/* Options used by HW for packet transmitting.*/
429 	u16  reserverd1;	/* csum_l4 (for future use)		*/
430 	u16  data_size;		/* Data size of transmitted packet in bytes */
431 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
432 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
433 	u32  reserved3[4];	/* Reserved - (for future use)		*/
434 };
435 
436 struct mvneta_rx_desc {
437 	u32  status;		/* Info about received packet		*/
438 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
439 	u16  data_size;		/* Size of received packet in bytes	*/
440 
441 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
442 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
443 
444 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
445 	u16  reserved3;		/* prefetch_cmd, for future use		*/
446 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
447 
448 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
449 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
450 };
451 #else
452 struct mvneta_tx_desc {
453 	u16  data_size;		/* Data size of transmitted packet in bytes */
454 	u16  reserverd1;	/* csum_l4 (for future use)		*/
455 	u32  command;		/* Options used by HW for packet transmitting.*/
456 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
457 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
458 	u32  reserved3[4];	/* Reserved - (for future use)		*/
459 };
460 
461 struct mvneta_rx_desc {
462 	u16  data_size;		/* Size of received packet in bytes	*/
463 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
464 	u32  status;		/* Info about received packet		*/
465 
466 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
467 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
468 
469 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
470 	u16  reserved3;		/* prefetch_cmd, for future use		*/
471 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
472 
473 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
474 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
475 };
476 #endif
477 
478 struct mvneta_tx_queue {
479 	/* Number of this TX queue, in the range 0-7 */
480 	u8 id;
481 
482 	/* Number of TX DMA descriptors in the descriptor ring */
483 	int size;
484 
485 	/* Number of currently used TX DMA descriptor in the
486 	 * descriptor ring
487 	 */
488 	int count;
489 	int tx_stop_threshold;
490 	int tx_wake_threshold;
491 
492 	/* Array of transmitted skb */
493 	struct sk_buff **tx_skb;
494 
495 	/* Index of last TX DMA descriptor that was inserted */
496 	int txq_put_index;
497 
498 	/* Index of the TX DMA descriptor to be cleaned up */
499 	int txq_get_index;
500 
501 	u32 done_pkts_coal;
502 
503 	/* Virtual address of the TX DMA descriptors array */
504 	struct mvneta_tx_desc *descs;
505 
506 	/* DMA address of the TX DMA descriptors array */
507 	dma_addr_t descs_phys;
508 
509 	/* Index of the last TX DMA descriptor */
510 	int last_desc;
511 
512 	/* Index of the next TX DMA descriptor to process */
513 	int next_desc_to_proc;
514 
515 	/* DMA buffers for TSO headers */
516 	char *tso_hdrs;
517 
518 	/* DMA address of TSO headers */
519 	dma_addr_t tso_hdrs_phys;
520 
521 	/* Affinity mask for CPUs*/
522 	cpumask_t affinity_mask;
523 };
524 
525 struct mvneta_rx_queue {
526 	/* rx queue number, in the range 0-7 */
527 	u8 id;
528 
529 	/* num of rx descriptors in the rx descriptor ring */
530 	int size;
531 
532 	/* counter of times when mvneta_refill() failed */
533 	int missed;
534 
535 	u32 pkts_coal;
536 	u32 time_coal;
537 
538 	/* Virtual address of the RX DMA descriptors array */
539 	struct mvneta_rx_desc *descs;
540 
541 	/* DMA address of the RX DMA descriptors array */
542 	dma_addr_t descs_phys;
543 
544 	/* Index of the last RX DMA descriptor */
545 	int last_desc;
546 
547 	/* Index of the next RX DMA descriptor to process */
548 	int next_desc_to_proc;
549 };
550 
551 /* The hardware supports eight (8) rx queues, but we are only allowing
552  * the first one to be used. Therefore, let's just allocate one queue.
553  */
554 static int rxq_number = 8;
555 static int txq_number = 8;
556 
557 static int rxq_def;
558 
559 static int rx_copybreak __read_mostly = 256;
560 
561 #define MVNETA_DRIVER_NAME "mvneta"
562 #define MVNETA_DRIVER_VERSION "1.0"
563 
564 /* Utility/helper methods */
565 
566 /* Write helper method */
567 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
568 {
569 	writel(data, pp->base + offset);
570 }
571 
572 /* Read helper method */
573 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
574 {
575 	return readl(pp->base + offset);
576 }
577 
578 /* Increment txq get counter */
579 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
580 {
581 	txq->txq_get_index++;
582 	if (txq->txq_get_index == txq->size)
583 		txq->txq_get_index = 0;
584 }
585 
586 /* Increment txq put counter */
587 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
588 {
589 	txq->txq_put_index++;
590 	if (txq->txq_put_index == txq->size)
591 		txq->txq_put_index = 0;
592 }
593 
594 
595 /* Clear all MIB counters */
596 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
597 {
598 	int i;
599 	u32 dummy;
600 
601 	/* Perform dummy reads from MIB counters */
602 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
603 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
604 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
605 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
606 }
607 
608 /* Get System Network Statistics */
609 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
610 					     struct rtnl_link_stats64 *stats)
611 {
612 	struct mvneta_port *pp = netdev_priv(dev);
613 	unsigned int start;
614 	int cpu;
615 
616 	for_each_possible_cpu(cpu) {
617 		struct mvneta_pcpu_stats *cpu_stats;
618 		u64 rx_packets;
619 		u64 rx_bytes;
620 		u64 tx_packets;
621 		u64 tx_bytes;
622 
623 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
624 		do {
625 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
626 			rx_packets = cpu_stats->rx_packets;
627 			rx_bytes   = cpu_stats->rx_bytes;
628 			tx_packets = cpu_stats->tx_packets;
629 			tx_bytes   = cpu_stats->tx_bytes;
630 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
631 
632 		stats->rx_packets += rx_packets;
633 		stats->rx_bytes   += rx_bytes;
634 		stats->tx_packets += tx_packets;
635 		stats->tx_bytes   += tx_bytes;
636 	}
637 
638 	stats->rx_errors	= dev->stats.rx_errors;
639 	stats->rx_dropped	= dev->stats.rx_dropped;
640 
641 	stats->tx_dropped	= dev->stats.tx_dropped;
642 
643 	return stats;
644 }
645 
646 /* Rx descriptors helper methods */
647 
648 /* Checks whether the RX descriptor having this status is both the first
649  * and the last descriptor for the RX packet. Each RX packet is currently
650  * received through a single RX descriptor, so not having each RX
651  * descriptor with its first and last bits set is an error
652  */
653 static int mvneta_rxq_desc_is_first_last(u32 status)
654 {
655 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
656 		MVNETA_RXD_FIRST_LAST_DESC;
657 }
658 
659 /* Add number of descriptors ready to receive new packets */
660 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
661 					  struct mvneta_rx_queue *rxq,
662 					  int ndescs)
663 {
664 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
665 	 * be added at once
666 	 */
667 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
668 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
669 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
670 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
671 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
672 	}
673 
674 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
675 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
676 }
677 
678 /* Get number of RX descriptors occupied by received packets */
679 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
680 					struct mvneta_rx_queue *rxq)
681 {
682 	u32 val;
683 
684 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
685 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
686 }
687 
688 /* Update num of rx desc called upon return from rx path or
689  * from mvneta_rxq_drop_pkts().
690  */
691 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
692 				       struct mvneta_rx_queue *rxq,
693 				       int rx_done, int rx_filled)
694 {
695 	u32 val;
696 
697 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
698 		val = rx_done |
699 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
700 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
701 		return;
702 	}
703 
704 	/* Only 255 descriptors can be added at once */
705 	while ((rx_done > 0) || (rx_filled > 0)) {
706 		if (rx_done <= 0xff) {
707 			val = rx_done;
708 			rx_done = 0;
709 		} else {
710 			val = 0xff;
711 			rx_done -= 0xff;
712 		}
713 		if (rx_filled <= 0xff) {
714 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
715 			rx_filled = 0;
716 		} else {
717 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
718 			rx_filled -= 0xff;
719 		}
720 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
721 	}
722 }
723 
724 /* Get pointer to next RX descriptor to be processed by SW */
725 static struct mvneta_rx_desc *
726 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
727 {
728 	int rx_desc = rxq->next_desc_to_proc;
729 
730 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
731 	prefetch(rxq->descs + rxq->next_desc_to_proc);
732 	return rxq->descs + rx_desc;
733 }
734 
735 /* Change maximum receive size of the port. */
736 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
737 {
738 	u32 val;
739 
740 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
741 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
742 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
743 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
744 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
745 }
746 
747 
748 /* Set rx queue offset */
749 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
750 				  struct mvneta_rx_queue *rxq,
751 				  int offset)
752 {
753 	u32 val;
754 
755 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
756 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
757 
758 	/* Offset is in */
759 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
760 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
761 }
762 
763 
764 /* Tx descriptors helper methods */
765 
766 /* Update HW with number of TX descriptors to be sent */
767 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
768 				     struct mvneta_tx_queue *txq,
769 				     int pend_desc)
770 {
771 	u32 val;
772 
773 	/* Only 255 descriptors can be added at once ; Assume caller
774 	 * process TX desriptors in quanta less than 256
775 	 */
776 	val = pend_desc;
777 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
778 }
779 
780 /* Get pointer to next TX descriptor to be processed (send) by HW */
781 static struct mvneta_tx_desc *
782 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
783 {
784 	int tx_desc = txq->next_desc_to_proc;
785 
786 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
787 	return txq->descs + tx_desc;
788 }
789 
790 /* Release the last allocated TX descriptor. Useful to handle DMA
791  * mapping failures in the TX path.
792  */
793 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
794 {
795 	if (txq->next_desc_to_proc == 0)
796 		txq->next_desc_to_proc = txq->last_desc - 1;
797 	else
798 		txq->next_desc_to_proc--;
799 }
800 
801 /* Set rxq buf size */
802 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
803 				    struct mvneta_rx_queue *rxq,
804 				    int buf_size)
805 {
806 	u32 val;
807 
808 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
809 
810 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
811 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
812 
813 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
814 }
815 
816 /* Disable buffer management (BM) */
817 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
818 				  struct mvneta_rx_queue *rxq)
819 {
820 	u32 val;
821 
822 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
823 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
824 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
825 }
826 
827 /* Start the Ethernet port RX and TX activity */
828 static void mvneta_port_up(struct mvneta_port *pp)
829 {
830 	int queue;
831 	u32 q_map;
832 
833 	/* Enable all initialized TXs. */
834 	q_map = 0;
835 	for (queue = 0; queue < txq_number; queue++) {
836 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
837 		if (txq->descs != NULL)
838 			q_map |= (1 << queue);
839 	}
840 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
841 
842 	/* Enable all initialized RXQs. */
843 	for (queue = 0; queue < rxq_number; queue++) {
844 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
845 
846 		if (rxq->descs != NULL)
847 			q_map |= (1 << queue);
848 	}
849 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
850 }
851 
852 /* Stop the Ethernet port activity */
853 static void mvneta_port_down(struct mvneta_port *pp)
854 {
855 	u32 val;
856 	int count;
857 
858 	/* Stop Rx port activity. Check port Rx activity. */
859 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
860 
861 	/* Issue stop command for active channels only */
862 	if (val != 0)
863 		mvreg_write(pp, MVNETA_RXQ_CMD,
864 			    val << MVNETA_RXQ_DISABLE_SHIFT);
865 
866 	/* Wait for all Rx activity to terminate. */
867 	count = 0;
868 	do {
869 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
870 			netdev_warn(pp->dev,
871 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
872 				    val);
873 			break;
874 		}
875 		mdelay(1);
876 
877 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
878 	} while (val & 0xff);
879 
880 	/* Stop Tx port activity. Check port Tx activity. Issue stop
881 	 * command for active channels only
882 	 */
883 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
884 
885 	if (val != 0)
886 		mvreg_write(pp, MVNETA_TXQ_CMD,
887 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
888 
889 	/* Wait for all Tx activity to terminate. */
890 	count = 0;
891 	do {
892 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
893 			netdev_warn(pp->dev,
894 				    "TIMEOUT for TX stopped status=0x%08x\n",
895 				    val);
896 			break;
897 		}
898 		mdelay(1);
899 
900 		/* Check TX Command reg that all Txqs are stopped */
901 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
902 
903 	} while (val & 0xff);
904 
905 	/* Double check to verify that TX FIFO is empty */
906 	count = 0;
907 	do {
908 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
909 			netdev_warn(pp->dev,
910 				    "TX FIFO empty timeout status=0x08%x\n",
911 				    val);
912 			break;
913 		}
914 		mdelay(1);
915 
916 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
917 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
918 		 (val & MVNETA_TX_IN_PRGRS));
919 
920 	udelay(200);
921 }
922 
923 /* Enable the port by setting the port enable bit of the MAC control register */
924 static void mvneta_port_enable(struct mvneta_port *pp)
925 {
926 	u32 val;
927 
928 	/* Enable port */
929 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
930 	val |= MVNETA_GMAC0_PORT_ENABLE;
931 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
932 }
933 
934 /* Disable the port and wait for about 200 usec before retuning */
935 static void mvneta_port_disable(struct mvneta_port *pp)
936 {
937 	u32 val;
938 
939 	/* Reset the Enable bit in the Serial Control Register */
940 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
941 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
942 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
943 
944 	udelay(200);
945 }
946 
947 /* Multicast tables methods */
948 
949 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
950 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
951 {
952 	int offset;
953 	u32 val;
954 
955 	if (queue == -1) {
956 		val = 0;
957 	} else {
958 		val = 0x1 | (queue << 1);
959 		val |= (val << 24) | (val << 16) | (val << 8);
960 	}
961 
962 	for (offset = 0; offset <= 0xc; offset += 4)
963 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
964 }
965 
966 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
967 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
968 {
969 	int offset;
970 	u32 val;
971 
972 	if (queue == -1) {
973 		val = 0;
974 	} else {
975 		val = 0x1 | (queue << 1);
976 		val |= (val << 24) | (val << 16) | (val << 8);
977 	}
978 
979 	for (offset = 0; offset <= 0xfc; offset += 4)
980 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
981 
982 }
983 
984 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
985 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
986 {
987 	int offset;
988 	u32 val;
989 
990 	if (queue == -1) {
991 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
992 		val = 0;
993 	} else {
994 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
995 		val = 0x1 | (queue << 1);
996 		val |= (val << 24) | (val << 16) | (val << 8);
997 	}
998 
999 	for (offset = 0; offset <= 0xfc; offset += 4)
1000 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1001 }
1002 
1003 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1004 {
1005 	u32 val;
1006 
1007 	if (enable) {
1008 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1009 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1010 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1011 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1012 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1013 		       MVNETA_GMAC_AN_SPEED_EN |
1014 		       MVNETA_GMAC_AN_DUPLEX_EN;
1015 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1016 
1017 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1018 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1019 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1020 
1021 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1022 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1023 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1024 	} else {
1025 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1026 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1027 		       MVNETA_GMAC_AN_SPEED_EN |
1028 		       MVNETA_GMAC_AN_DUPLEX_EN);
1029 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1030 
1031 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1032 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1033 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1034 
1035 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1036 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1037 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1038 	}
1039 }
1040 
1041 /* This method sets defaults to the NETA port:
1042  *	Clears interrupt Cause and Mask registers.
1043  *	Clears all MAC tables.
1044  *	Sets defaults to all registers.
1045  *	Resets RX and TX descriptor rings.
1046  *	Resets PHY.
1047  * This method can be called after mvneta_port_down() to return the port
1048  *	settings to defaults.
1049  */
1050 static void mvneta_defaults_set(struct mvneta_port *pp)
1051 {
1052 	int cpu;
1053 	int queue;
1054 	u32 val;
1055 	int max_cpu = num_present_cpus();
1056 
1057 	/* Clear all Cause registers */
1058 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1059 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1060 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1061 
1062 	/* Mask all interrupts */
1063 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1064 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1065 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1066 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1067 
1068 	/* Enable MBUS Retry bit16 */
1069 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1070 
1071 	/* Set CPU queue access map. CPUs are assigned to the RX and
1072 	 * TX queues modulo their number. If there is only one TX
1073 	 * queue then it is assigned to the CPU associated to the
1074 	 * default RX queue.
1075 	 */
1076 	for_each_present_cpu(cpu) {
1077 		int rxq_map = 0, txq_map = 0;
1078 		int rxq, txq;
1079 
1080 		for (rxq = 0; rxq < rxq_number; rxq++)
1081 			if ((rxq % max_cpu) == cpu)
1082 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1083 
1084 		for (txq = 0; txq < txq_number; txq++)
1085 			if ((txq % max_cpu) == cpu)
1086 				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1087 
1088 		/* With only one TX queue we configure a special case
1089 		 * which will allow to get all the irq on a single
1090 		 * CPU
1091 		 */
1092 		if (txq_number == 1)
1093 			txq_map = (cpu == pp->rxq_def) ?
1094 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1095 
1096 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1097 	}
1098 
1099 	/* Reset RX and TX DMAs */
1100 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1101 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1102 
1103 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1104 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1105 	for (queue = 0; queue < txq_number; queue++) {
1106 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1107 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1108 	}
1109 
1110 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1111 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1112 
1113 	/* Set Port Acceleration Mode */
1114 	val = MVNETA_ACC_MODE_EXT;
1115 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1116 
1117 	/* Update val of portCfg register accordingly with all RxQueue types */
1118 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1119 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1120 
1121 	val = 0;
1122 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1123 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1124 
1125 	/* Build PORT_SDMA_CONFIG_REG */
1126 	val = 0;
1127 
1128 	/* Default burst size */
1129 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1130 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1131 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1132 
1133 #if defined(__BIG_ENDIAN)
1134 	val |= MVNETA_DESC_SWAP;
1135 #endif
1136 
1137 	/* Assign port SDMA configuration */
1138 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1139 
1140 	/* Disable PHY polling in hardware, since we're using the
1141 	 * kernel phylib to do this.
1142 	 */
1143 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1144 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1145 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1146 
1147 	mvneta_set_autoneg(pp, pp->use_inband_status);
1148 	mvneta_set_ucast_table(pp, -1);
1149 	mvneta_set_special_mcast_table(pp, -1);
1150 	mvneta_set_other_mcast_table(pp, -1);
1151 
1152 	/* Set port interrupt enable register - default enable all */
1153 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1154 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1155 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1156 
1157 	mvneta_mib_counters_clear(pp);
1158 }
1159 
1160 /* Set max sizes for tx queues */
1161 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1162 
1163 {
1164 	u32 val, size, mtu;
1165 	int queue;
1166 
1167 	mtu = max_tx_size * 8;
1168 	if (mtu > MVNETA_TX_MTU_MAX)
1169 		mtu = MVNETA_TX_MTU_MAX;
1170 
1171 	/* Set MTU */
1172 	val = mvreg_read(pp, MVNETA_TX_MTU);
1173 	val &= ~MVNETA_TX_MTU_MAX;
1174 	val |= mtu;
1175 	mvreg_write(pp, MVNETA_TX_MTU, val);
1176 
1177 	/* TX token size and all TXQs token size must be larger that MTU */
1178 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1179 
1180 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1181 	if (size < mtu) {
1182 		size = mtu;
1183 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1184 		val |= size;
1185 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1186 	}
1187 	for (queue = 0; queue < txq_number; queue++) {
1188 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1189 
1190 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1191 		if (size < mtu) {
1192 			size = mtu;
1193 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1194 			val |= size;
1195 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1196 		}
1197 	}
1198 }
1199 
1200 /* Set unicast address */
1201 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1202 				  int queue)
1203 {
1204 	unsigned int unicast_reg;
1205 	unsigned int tbl_offset;
1206 	unsigned int reg_offset;
1207 
1208 	/* Locate the Unicast table entry */
1209 	last_nibble = (0xf & last_nibble);
1210 
1211 	/* offset from unicast tbl base */
1212 	tbl_offset = (last_nibble / 4) * 4;
1213 
1214 	/* offset within the above reg  */
1215 	reg_offset = last_nibble % 4;
1216 
1217 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1218 
1219 	if (queue == -1) {
1220 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1221 		unicast_reg &= ~(0xff << (8 * reg_offset));
1222 	} else {
1223 		unicast_reg &= ~(0xff << (8 * reg_offset));
1224 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1225 	}
1226 
1227 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1228 }
1229 
1230 /* Set mac address */
1231 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1232 				int queue)
1233 {
1234 	unsigned int mac_h;
1235 	unsigned int mac_l;
1236 
1237 	if (queue != -1) {
1238 		mac_l = (addr[4] << 8) | (addr[5]);
1239 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1240 			(addr[2] << 8) | (addr[3] << 0);
1241 
1242 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1243 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1244 	}
1245 
1246 	/* Accept frames of this address */
1247 	mvneta_set_ucast_addr(pp, addr[5], queue);
1248 }
1249 
1250 /* Set the number of packets that will be received before RX interrupt
1251  * will be generated by HW.
1252  */
1253 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1254 				    struct mvneta_rx_queue *rxq, u32 value)
1255 {
1256 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1257 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1258 	rxq->pkts_coal = value;
1259 }
1260 
1261 /* Set the time delay in usec before RX interrupt will be generated by
1262  * HW.
1263  */
1264 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1265 				    struct mvneta_rx_queue *rxq, u32 value)
1266 {
1267 	u32 val;
1268 	unsigned long clk_rate;
1269 
1270 	clk_rate = clk_get_rate(pp->clk);
1271 	val = (clk_rate / 1000000) * value;
1272 
1273 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1274 	rxq->time_coal = value;
1275 }
1276 
1277 /* Set threshold for TX_DONE pkts coalescing */
1278 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1279 					 struct mvneta_tx_queue *txq, u32 value)
1280 {
1281 	u32 val;
1282 
1283 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1284 
1285 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1286 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1287 
1288 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1289 
1290 	txq->done_pkts_coal = value;
1291 }
1292 
1293 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1294 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1295 				u32 phys_addr, u32 cookie)
1296 {
1297 	rx_desc->buf_cookie = cookie;
1298 	rx_desc->buf_phys_addr = phys_addr;
1299 }
1300 
1301 /* Decrement sent descriptors counter */
1302 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1303 				     struct mvneta_tx_queue *txq,
1304 				     int sent_desc)
1305 {
1306 	u32 val;
1307 
1308 	/* Only 255 TX descriptors can be updated at once */
1309 	while (sent_desc > 0xff) {
1310 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1311 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1312 		sent_desc = sent_desc - 0xff;
1313 	}
1314 
1315 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1316 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1317 }
1318 
1319 /* Get number of TX descriptors already sent by HW */
1320 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1321 					struct mvneta_tx_queue *txq)
1322 {
1323 	u32 val;
1324 	int sent_desc;
1325 
1326 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1327 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1328 		MVNETA_TXQ_SENT_DESC_SHIFT;
1329 
1330 	return sent_desc;
1331 }
1332 
1333 /* Get number of sent descriptors and decrement counter.
1334  *  The number of sent descriptors is returned.
1335  */
1336 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1337 				     struct mvneta_tx_queue *txq)
1338 {
1339 	int sent_desc;
1340 
1341 	/* Get number of sent descriptors */
1342 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1343 
1344 	/* Decrement sent descriptors counter */
1345 	if (sent_desc)
1346 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1347 
1348 	return sent_desc;
1349 }
1350 
1351 /* Set TXQ descriptors fields relevant for CSUM calculation */
1352 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1353 				int ip_hdr_len, int l4_proto)
1354 {
1355 	u32 command;
1356 
1357 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1358 	 * G_L4_chk, L4_type; required only for checksum
1359 	 * calculation
1360 	 */
1361 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1362 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1363 
1364 	if (l3_proto == htons(ETH_P_IP))
1365 		command |= MVNETA_TXD_IP_CSUM;
1366 	else
1367 		command |= MVNETA_TX_L3_IP6;
1368 
1369 	if (l4_proto == IPPROTO_TCP)
1370 		command |=  MVNETA_TX_L4_CSUM_FULL;
1371 	else if (l4_proto == IPPROTO_UDP)
1372 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1373 	else
1374 		command |= MVNETA_TX_L4_CSUM_NOT;
1375 
1376 	return command;
1377 }
1378 
1379 
1380 /* Display more error info */
1381 static void mvneta_rx_error(struct mvneta_port *pp,
1382 			    struct mvneta_rx_desc *rx_desc)
1383 {
1384 	u32 status = rx_desc->status;
1385 
1386 	if (!mvneta_rxq_desc_is_first_last(status)) {
1387 		netdev_err(pp->dev,
1388 			   "bad rx status %08x (buffer oversize), size=%d\n",
1389 			   status, rx_desc->data_size);
1390 		return;
1391 	}
1392 
1393 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1394 	case MVNETA_RXD_ERR_CRC:
1395 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1396 			   status, rx_desc->data_size);
1397 		break;
1398 	case MVNETA_RXD_ERR_OVERRUN:
1399 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1400 			   status, rx_desc->data_size);
1401 		break;
1402 	case MVNETA_RXD_ERR_LEN:
1403 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1404 			   status, rx_desc->data_size);
1405 		break;
1406 	case MVNETA_RXD_ERR_RESOURCE:
1407 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1408 			   status, rx_desc->data_size);
1409 		break;
1410 	}
1411 }
1412 
1413 /* Handle RX checksum offload based on the descriptor's status */
1414 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1415 			   struct sk_buff *skb)
1416 {
1417 	if ((status & MVNETA_RXD_L3_IP4) &&
1418 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1419 		skb->csum = 0;
1420 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1421 		return;
1422 	}
1423 
1424 	skb->ip_summed = CHECKSUM_NONE;
1425 }
1426 
1427 /* Return tx queue pointer (find last set bit) according to <cause> returned
1428  * form tx_done reg. <cause> must not be null. The return value is always a
1429  * valid queue for matching the first one found in <cause>.
1430  */
1431 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1432 						     u32 cause)
1433 {
1434 	int queue = fls(cause) - 1;
1435 
1436 	return &pp->txqs[queue];
1437 }
1438 
1439 /* Free tx queue skbuffs */
1440 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1441 				 struct mvneta_tx_queue *txq, int num)
1442 {
1443 	int i;
1444 
1445 	for (i = 0; i < num; i++) {
1446 		struct mvneta_tx_desc *tx_desc = txq->descs +
1447 			txq->txq_get_index;
1448 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1449 
1450 		mvneta_txq_inc_get(txq);
1451 
1452 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1453 			dma_unmap_single(pp->dev->dev.parent,
1454 					 tx_desc->buf_phys_addr,
1455 					 tx_desc->data_size, DMA_TO_DEVICE);
1456 		if (!skb)
1457 			continue;
1458 		dev_kfree_skb_any(skb);
1459 	}
1460 }
1461 
1462 /* Handle end of transmission */
1463 static void mvneta_txq_done(struct mvneta_port *pp,
1464 			   struct mvneta_tx_queue *txq)
1465 {
1466 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1467 	int tx_done;
1468 
1469 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1470 	if (!tx_done)
1471 		return;
1472 
1473 	mvneta_txq_bufs_free(pp, txq, tx_done);
1474 
1475 	txq->count -= tx_done;
1476 
1477 	if (netif_tx_queue_stopped(nq)) {
1478 		if (txq->count <= txq->tx_wake_threshold)
1479 			netif_tx_wake_queue(nq);
1480 	}
1481 }
1482 
1483 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1484 {
1485 	if (likely(pp->frag_size <= PAGE_SIZE))
1486 		return netdev_alloc_frag(pp->frag_size);
1487 	else
1488 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1489 }
1490 
1491 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1492 {
1493 	if (likely(pp->frag_size <= PAGE_SIZE))
1494 		skb_free_frag(data);
1495 	else
1496 		kfree(data);
1497 }
1498 
1499 /* Refill processing */
1500 static int mvneta_rx_refill(struct mvneta_port *pp,
1501 			    struct mvneta_rx_desc *rx_desc)
1502 
1503 {
1504 	dma_addr_t phys_addr;
1505 	void *data;
1506 
1507 	data = mvneta_frag_alloc(pp);
1508 	if (!data)
1509 		return -ENOMEM;
1510 
1511 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1512 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1513 				   DMA_FROM_DEVICE);
1514 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1515 		mvneta_frag_free(pp, data);
1516 		return -ENOMEM;
1517 	}
1518 
1519 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1520 	return 0;
1521 }
1522 
1523 /* Handle tx checksum */
1524 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1525 {
1526 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1527 		int ip_hdr_len = 0;
1528 		__be16 l3_proto = vlan_get_protocol(skb);
1529 		u8 l4_proto;
1530 
1531 		if (l3_proto == htons(ETH_P_IP)) {
1532 			struct iphdr *ip4h = ip_hdr(skb);
1533 
1534 			/* Calculate IPv4 checksum and L4 checksum */
1535 			ip_hdr_len = ip4h->ihl;
1536 			l4_proto = ip4h->protocol;
1537 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1538 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1539 
1540 			/* Read l4_protocol from one of IPv6 extra headers */
1541 			if (skb_network_header_len(skb) > 0)
1542 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1543 			l4_proto = ip6h->nexthdr;
1544 		} else
1545 			return MVNETA_TX_L4_CSUM_NOT;
1546 
1547 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1548 					    l3_proto, ip_hdr_len, l4_proto);
1549 	}
1550 
1551 	return MVNETA_TX_L4_CSUM_NOT;
1552 }
1553 
1554 /* Drop packets received by the RXQ and free buffers */
1555 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1556 				 struct mvneta_rx_queue *rxq)
1557 {
1558 	int rx_done, i;
1559 
1560 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1561 	for (i = 0; i < rxq->size; i++) {
1562 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1563 		void *data = (void *)rx_desc->buf_cookie;
1564 
1565 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1566 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1567 		mvneta_frag_free(pp, data);
1568 	}
1569 
1570 	if (rx_done)
1571 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1572 }
1573 
1574 /* Main rx processing */
1575 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1576 		     struct mvneta_rx_queue *rxq)
1577 {
1578 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1579 	struct net_device *dev = pp->dev;
1580 	int rx_done;
1581 	u32 rcvd_pkts = 0;
1582 	u32 rcvd_bytes = 0;
1583 
1584 	/* Get number of received packets */
1585 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1586 
1587 	if (rx_todo > rx_done)
1588 		rx_todo = rx_done;
1589 
1590 	rx_done = 0;
1591 
1592 	/* Fairness NAPI loop */
1593 	while (rx_done < rx_todo) {
1594 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1595 		struct sk_buff *skb;
1596 		unsigned char *data;
1597 		dma_addr_t phys_addr;
1598 		u32 rx_status;
1599 		int rx_bytes, err;
1600 
1601 		rx_done++;
1602 		rx_status = rx_desc->status;
1603 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1604 		data = (unsigned char *)rx_desc->buf_cookie;
1605 		phys_addr = rx_desc->buf_phys_addr;
1606 
1607 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1608 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1609 		err_drop_frame:
1610 			dev->stats.rx_errors++;
1611 			mvneta_rx_error(pp, rx_desc);
1612 			/* leave the descriptor untouched */
1613 			continue;
1614 		}
1615 
1616 		if (rx_bytes <= rx_copybreak) {
1617 			/* better copy a small frame and not unmap the DMA region */
1618 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1619 			if (unlikely(!skb))
1620 				goto err_drop_frame;
1621 
1622 			dma_sync_single_range_for_cpu(dev->dev.parent,
1623 			                              rx_desc->buf_phys_addr,
1624 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1625 			                              rx_bytes,
1626 			                              DMA_FROM_DEVICE);
1627 			memcpy(skb_put(skb, rx_bytes),
1628 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1629 			       rx_bytes);
1630 
1631 			skb->protocol = eth_type_trans(skb, dev);
1632 			mvneta_rx_csum(pp, rx_status, skb);
1633 			napi_gro_receive(&port->napi, skb);
1634 
1635 			rcvd_pkts++;
1636 			rcvd_bytes += rx_bytes;
1637 
1638 			/* leave the descriptor and buffer untouched */
1639 			continue;
1640 		}
1641 
1642 		/* Refill processing */
1643 		err = mvneta_rx_refill(pp, rx_desc);
1644 		if (err) {
1645 			netdev_err(dev, "Linux processing - Can't refill\n");
1646 			rxq->missed++;
1647 			goto err_drop_frame;
1648 		}
1649 
1650 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1651 
1652 		/* After refill old buffer has to be unmapped regardless
1653 		 * the skb is successfully built or not.
1654 		 */
1655 		dma_unmap_single(dev->dev.parent, phys_addr,
1656 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1657 
1658 		if (!skb)
1659 			goto err_drop_frame;
1660 
1661 		rcvd_pkts++;
1662 		rcvd_bytes += rx_bytes;
1663 
1664 		/* Linux processing */
1665 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1666 		skb_put(skb, rx_bytes);
1667 
1668 		skb->protocol = eth_type_trans(skb, dev);
1669 
1670 		mvneta_rx_csum(pp, rx_status, skb);
1671 
1672 		napi_gro_receive(&port->napi, skb);
1673 	}
1674 
1675 	if (rcvd_pkts) {
1676 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1677 
1678 		u64_stats_update_begin(&stats->syncp);
1679 		stats->rx_packets += rcvd_pkts;
1680 		stats->rx_bytes   += rcvd_bytes;
1681 		u64_stats_update_end(&stats->syncp);
1682 	}
1683 
1684 	/* Update rxq management counters */
1685 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1686 
1687 	return rx_done;
1688 }
1689 
1690 static inline void
1691 mvneta_tso_put_hdr(struct sk_buff *skb,
1692 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1693 {
1694 	struct mvneta_tx_desc *tx_desc;
1695 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1696 
1697 	txq->tx_skb[txq->txq_put_index] = NULL;
1698 	tx_desc = mvneta_txq_next_desc_get(txq);
1699 	tx_desc->data_size = hdr_len;
1700 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1701 	tx_desc->command |= MVNETA_TXD_F_DESC;
1702 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1703 				 txq->txq_put_index * TSO_HEADER_SIZE;
1704 	mvneta_txq_inc_put(txq);
1705 }
1706 
1707 static inline int
1708 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1709 		    struct sk_buff *skb, char *data, int size,
1710 		    bool last_tcp, bool is_last)
1711 {
1712 	struct mvneta_tx_desc *tx_desc;
1713 
1714 	tx_desc = mvneta_txq_next_desc_get(txq);
1715 	tx_desc->data_size = size;
1716 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1717 						size, DMA_TO_DEVICE);
1718 	if (unlikely(dma_mapping_error(dev->dev.parent,
1719 		     tx_desc->buf_phys_addr))) {
1720 		mvneta_txq_desc_put(txq);
1721 		return -ENOMEM;
1722 	}
1723 
1724 	tx_desc->command = 0;
1725 	txq->tx_skb[txq->txq_put_index] = NULL;
1726 
1727 	if (last_tcp) {
1728 		/* last descriptor in the TCP packet */
1729 		tx_desc->command = MVNETA_TXD_L_DESC;
1730 
1731 		/* last descriptor in SKB */
1732 		if (is_last)
1733 			txq->tx_skb[txq->txq_put_index] = skb;
1734 	}
1735 	mvneta_txq_inc_put(txq);
1736 	return 0;
1737 }
1738 
1739 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1740 			 struct mvneta_tx_queue *txq)
1741 {
1742 	int total_len, data_left;
1743 	int desc_count = 0;
1744 	struct mvneta_port *pp = netdev_priv(dev);
1745 	struct tso_t tso;
1746 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1747 	int i;
1748 
1749 	/* Count needed descriptors */
1750 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1751 		return 0;
1752 
1753 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1754 		pr_info("*** Is this even  possible???!?!?\n");
1755 		return 0;
1756 	}
1757 
1758 	/* Initialize the TSO handler, and prepare the first payload */
1759 	tso_start(skb, &tso);
1760 
1761 	total_len = skb->len - hdr_len;
1762 	while (total_len > 0) {
1763 		char *hdr;
1764 
1765 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1766 		total_len -= data_left;
1767 		desc_count++;
1768 
1769 		/* prepare packet headers: MAC + IP + TCP */
1770 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1771 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1772 
1773 		mvneta_tso_put_hdr(skb, pp, txq);
1774 
1775 		while (data_left > 0) {
1776 			int size;
1777 			desc_count++;
1778 
1779 			size = min_t(int, tso.size, data_left);
1780 
1781 			if (mvneta_tso_put_data(dev, txq, skb,
1782 						 tso.data, size,
1783 						 size == data_left,
1784 						 total_len == 0))
1785 				goto err_release;
1786 			data_left -= size;
1787 
1788 			tso_build_data(skb, &tso, size);
1789 		}
1790 	}
1791 
1792 	return desc_count;
1793 
1794 err_release:
1795 	/* Release all used data descriptors; header descriptors must not
1796 	 * be DMA-unmapped.
1797 	 */
1798 	for (i = desc_count - 1; i >= 0; i--) {
1799 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1800 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1801 			dma_unmap_single(pp->dev->dev.parent,
1802 					 tx_desc->buf_phys_addr,
1803 					 tx_desc->data_size,
1804 					 DMA_TO_DEVICE);
1805 		mvneta_txq_desc_put(txq);
1806 	}
1807 	return 0;
1808 }
1809 
1810 /* Handle tx fragmentation processing */
1811 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1812 				  struct mvneta_tx_queue *txq)
1813 {
1814 	struct mvneta_tx_desc *tx_desc;
1815 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1816 
1817 	for (i = 0; i < nr_frags; i++) {
1818 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1819 		void *addr = page_address(frag->page.p) + frag->page_offset;
1820 
1821 		tx_desc = mvneta_txq_next_desc_get(txq);
1822 		tx_desc->data_size = frag->size;
1823 
1824 		tx_desc->buf_phys_addr =
1825 			dma_map_single(pp->dev->dev.parent, addr,
1826 				       tx_desc->data_size, DMA_TO_DEVICE);
1827 
1828 		if (dma_mapping_error(pp->dev->dev.parent,
1829 				      tx_desc->buf_phys_addr)) {
1830 			mvneta_txq_desc_put(txq);
1831 			goto error;
1832 		}
1833 
1834 		if (i == nr_frags - 1) {
1835 			/* Last descriptor */
1836 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1837 			txq->tx_skb[txq->txq_put_index] = skb;
1838 		} else {
1839 			/* Descriptor in the middle: Not First, Not Last */
1840 			tx_desc->command = 0;
1841 			txq->tx_skb[txq->txq_put_index] = NULL;
1842 		}
1843 		mvneta_txq_inc_put(txq);
1844 	}
1845 
1846 	return 0;
1847 
1848 error:
1849 	/* Release all descriptors that were used to map fragments of
1850 	 * this packet, as well as the corresponding DMA mappings
1851 	 */
1852 	for (i = i - 1; i >= 0; i--) {
1853 		tx_desc = txq->descs + i;
1854 		dma_unmap_single(pp->dev->dev.parent,
1855 				 tx_desc->buf_phys_addr,
1856 				 tx_desc->data_size,
1857 				 DMA_TO_DEVICE);
1858 		mvneta_txq_desc_put(txq);
1859 	}
1860 
1861 	return -ENOMEM;
1862 }
1863 
1864 /* Main tx processing */
1865 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1866 {
1867 	struct mvneta_port *pp = netdev_priv(dev);
1868 	u16 txq_id = skb_get_queue_mapping(skb);
1869 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1870 	struct mvneta_tx_desc *tx_desc;
1871 	int len = skb->len;
1872 	int frags = 0;
1873 	u32 tx_cmd;
1874 
1875 	if (!netif_running(dev))
1876 		goto out;
1877 
1878 	if (skb_is_gso(skb)) {
1879 		frags = mvneta_tx_tso(skb, dev, txq);
1880 		goto out;
1881 	}
1882 
1883 	frags = skb_shinfo(skb)->nr_frags + 1;
1884 
1885 	/* Get a descriptor for the first part of the packet */
1886 	tx_desc = mvneta_txq_next_desc_get(txq);
1887 
1888 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1889 
1890 	tx_desc->data_size = skb_headlen(skb);
1891 
1892 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1893 						tx_desc->data_size,
1894 						DMA_TO_DEVICE);
1895 	if (unlikely(dma_mapping_error(dev->dev.parent,
1896 				       tx_desc->buf_phys_addr))) {
1897 		mvneta_txq_desc_put(txq);
1898 		frags = 0;
1899 		goto out;
1900 	}
1901 
1902 	if (frags == 1) {
1903 		/* First and Last descriptor */
1904 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1905 		tx_desc->command = tx_cmd;
1906 		txq->tx_skb[txq->txq_put_index] = skb;
1907 		mvneta_txq_inc_put(txq);
1908 	} else {
1909 		/* First but not Last */
1910 		tx_cmd |= MVNETA_TXD_F_DESC;
1911 		txq->tx_skb[txq->txq_put_index] = NULL;
1912 		mvneta_txq_inc_put(txq);
1913 		tx_desc->command = tx_cmd;
1914 		/* Continue with other skb fragments */
1915 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1916 			dma_unmap_single(dev->dev.parent,
1917 					 tx_desc->buf_phys_addr,
1918 					 tx_desc->data_size,
1919 					 DMA_TO_DEVICE);
1920 			mvneta_txq_desc_put(txq);
1921 			frags = 0;
1922 			goto out;
1923 		}
1924 	}
1925 
1926 out:
1927 	if (frags > 0) {
1928 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1929 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1930 
1931 		txq->count += frags;
1932 		mvneta_txq_pend_desc_add(pp, txq, frags);
1933 
1934 		if (txq->count >= txq->tx_stop_threshold)
1935 			netif_tx_stop_queue(nq);
1936 
1937 		u64_stats_update_begin(&stats->syncp);
1938 		stats->tx_packets++;
1939 		stats->tx_bytes  += len;
1940 		u64_stats_update_end(&stats->syncp);
1941 	} else {
1942 		dev->stats.tx_dropped++;
1943 		dev_kfree_skb_any(skb);
1944 	}
1945 
1946 	return NETDEV_TX_OK;
1947 }
1948 
1949 
1950 /* Free tx resources, when resetting a port */
1951 static void mvneta_txq_done_force(struct mvneta_port *pp,
1952 				  struct mvneta_tx_queue *txq)
1953 
1954 {
1955 	int tx_done = txq->count;
1956 
1957 	mvneta_txq_bufs_free(pp, txq, tx_done);
1958 
1959 	/* reset txq */
1960 	txq->count = 0;
1961 	txq->txq_put_index = 0;
1962 	txq->txq_get_index = 0;
1963 }
1964 
1965 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1966  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1967  */
1968 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1969 {
1970 	struct mvneta_tx_queue *txq;
1971 	struct netdev_queue *nq;
1972 
1973 	while (cause_tx_done) {
1974 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1975 
1976 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1977 		__netif_tx_lock(nq, smp_processor_id());
1978 
1979 		if (txq->count)
1980 			mvneta_txq_done(pp, txq);
1981 
1982 		__netif_tx_unlock(nq);
1983 		cause_tx_done &= ~((1 << txq->id));
1984 	}
1985 }
1986 
1987 /* Compute crc8 of the specified address, using a unique algorithm ,
1988  * according to hw spec, different than generic crc8 algorithm
1989  */
1990 static int mvneta_addr_crc(unsigned char *addr)
1991 {
1992 	int crc = 0;
1993 	int i;
1994 
1995 	for (i = 0; i < ETH_ALEN; i++) {
1996 		int j;
1997 
1998 		crc = (crc ^ addr[i]) << 8;
1999 		for (j = 7; j >= 0; j--) {
2000 			if (crc & (0x100 << j))
2001 				crc ^= 0x107 << j;
2002 		}
2003 	}
2004 
2005 	return crc;
2006 }
2007 
2008 /* This method controls the net device special MAC multicast support.
2009  * The Special Multicast Table for MAC addresses supports MAC of the form
2010  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2011  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2012  * Table entries in the DA-Filter table. This method set the Special
2013  * Multicast Table appropriate entry.
2014  */
2015 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2016 					  unsigned char last_byte,
2017 					  int queue)
2018 {
2019 	unsigned int smc_table_reg;
2020 	unsigned int tbl_offset;
2021 	unsigned int reg_offset;
2022 
2023 	/* Register offset from SMC table base    */
2024 	tbl_offset = (last_byte / 4);
2025 	/* Entry offset within the above reg */
2026 	reg_offset = last_byte % 4;
2027 
2028 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2029 					+ tbl_offset * 4));
2030 
2031 	if (queue == -1)
2032 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2033 	else {
2034 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2035 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2036 	}
2037 
2038 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2039 		    smc_table_reg);
2040 }
2041 
2042 /* This method controls the network device Other MAC multicast support.
2043  * The Other Multicast Table is used for multicast of another type.
2044  * A CRC-8 is used as an index to the Other Multicast Table entries
2045  * in the DA-Filter table.
2046  * The method gets the CRC-8 value from the calling routine and
2047  * sets the Other Multicast Table appropriate entry according to the
2048  * specified CRC-8 .
2049  */
2050 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2051 					unsigned char crc8,
2052 					int queue)
2053 {
2054 	unsigned int omc_table_reg;
2055 	unsigned int tbl_offset;
2056 	unsigned int reg_offset;
2057 
2058 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2059 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2060 
2061 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2062 
2063 	if (queue == -1) {
2064 		/* Clear accepts frame bit at specified Other DA table entry */
2065 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2066 	} else {
2067 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2068 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2069 	}
2070 
2071 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2072 }
2073 
2074 /* The network device supports multicast using two tables:
2075  *    1) Special Multicast Table for MAC addresses of the form
2076  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2077  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2078  *       Table entries in the DA-Filter table.
2079  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2080  *       is used as an index to the Other Multicast Table entries in the
2081  *       DA-Filter table.
2082  */
2083 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2084 				 int queue)
2085 {
2086 	unsigned char crc_result = 0;
2087 
2088 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2089 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2090 		return 0;
2091 	}
2092 
2093 	crc_result = mvneta_addr_crc(p_addr);
2094 	if (queue == -1) {
2095 		if (pp->mcast_count[crc_result] == 0) {
2096 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2097 				    crc_result);
2098 			return -EINVAL;
2099 		}
2100 
2101 		pp->mcast_count[crc_result]--;
2102 		if (pp->mcast_count[crc_result] != 0) {
2103 			netdev_info(pp->dev,
2104 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2105 				    pp->mcast_count[crc_result], crc_result);
2106 			return -EINVAL;
2107 		}
2108 	} else
2109 		pp->mcast_count[crc_result]++;
2110 
2111 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2112 
2113 	return 0;
2114 }
2115 
2116 /* Configure Fitering mode of Ethernet port */
2117 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2118 					  int is_promisc)
2119 {
2120 	u32 port_cfg_reg, val;
2121 
2122 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2123 
2124 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2125 
2126 	/* Set / Clear UPM bit in port configuration register */
2127 	if (is_promisc) {
2128 		/* Accept all Unicast addresses */
2129 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2130 		val |= MVNETA_FORCE_UNI;
2131 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2132 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2133 	} else {
2134 		/* Reject all Unicast addresses */
2135 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2136 		val &= ~MVNETA_FORCE_UNI;
2137 	}
2138 
2139 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2140 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2141 }
2142 
2143 /* register unicast and multicast addresses */
2144 static void mvneta_set_rx_mode(struct net_device *dev)
2145 {
2146 	struct mvneta_port *pp = netdev_priv(dev);
2147 	struct netdev_hw_addr *ha;
2148 
2149 	if (dev->flags & IFF_PROMISC) {
2150 		/* Accept all: Multicast + Unicast */
2151 		mvneta_rx_unicast_promisc_set(pp, 1);
2152 		mvneta_set_ucast_table(pp, pp->rxq_def);
2153 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2154 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2155 	} else {
2156 		/* Accept single Unicast */
2157 		mvneta_rx_unicast_promisc_set(pp, 0);
2158 		mvneta_set_ucast_table(pp, -1);
2159 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2160 
2161 		if (dev->flags & IFF_ALLMULTI) {
2162 			/* Accept all multicast */
2163 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2164 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2165 		} else {
2166 			/* Accept only initialized multicast */
2167 			mvneta_set_special_mcast_table(pp, -1);
2168 			mvneta_set_other_mcast_table(pp, -1);
2169 
2170 			if (!netdev_mc_empty(dev)) {
2171 				netdev_for_each_mc_addr(ha, dev) {
2172 					mvneta_mcast_addr_set(pp, ha->addr,
2173 							      pp->rxq_def);
2174 				}
2175 			}
2176 		}
2177 	}
2178 }
2179 
2180 /* Interrupt handling - the callback for request_irq() */
2181 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2182 {
2183 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2184 
2185 	disable_percpu_irq(port->pp->dev->irq);
2186 	napi_schedule(&port->napi);
2187 
2188 	return IRQ_HANDLED;
2189 }
2190 
2191 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2192 				    struct phy_device *phy)
2193 {
2194 	struct fixed_phy_status status;
2195 	struct fixed_phy_status changed = {};
2196 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2197 
2198 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2199 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2200 		status.speed = SPEED_1000;
2201 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2202 		status.speed = SPEED_100;
2203 	else
2204 		status.speed = SPEED_10;
2205 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2206 	changed.link = 1;
2207 	changed.speed = 1;
2208 	changed.duplex = 1;
2209 	fixed_phy_update_state(phy, &status, &changed);
2210 	return 0;
2211 }
2212 
2213 /* NAPI handler
2214  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2215  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2216  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2217  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2218  * Each CPU has its own causeRxTx register
2219  */
2220 static int mvneta_poll(struct napi_struct *napi, int budget)
2221 {
2222 	int rx_done = 0;
2223 	u32 cause_rx_tx;
2224 	int rx_queue;
2225 	struct mvneta_port *pp = netdev_priv(napi->dev);
2226 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2227 
2228 	if (!netif_running(pp->dev)) {
2229 		napi_complete(&port->napi);
2230 		return rx_done;
2231 	}
2232 
2233 	/* Read cause register */
2234 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2235 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2236 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2237 
2238 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2239 		if (pp->use_inband_status && (cause_misc &
2240 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2241 				 MVNETA_CAUSE_LINK_CHANGE |
2242 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2243 			mvneta_fixed_link_update(pp, pp->phy_dev);
2244 		}
2245 	}
2246 
2247 	/* Release Tx descriptors */
2248 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2249 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2250 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2251 	}
2252 
2253 	/* For the case where the last mvneta_poll did not process all
2254 	 * RX packets
2255 	 */
2256 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2257 
2258 	cause_rx_tx |= port->cause_rx_tx;
2259 
2260 	if (rx_queue) {
2261 		rx_queue = rx_queue - 1;
2262 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]);
2263 	}
2264 
2265 	budget -= rx_done;
2266 
2267 	if (budget > 0) {
2268 		cause_rx_tx = 0;
2269 		napi_complete(&port->napi);
2270 		enable_percpu_irq(pp->dev->irq, 0);
2271 	}
2272 
2273 	port->cause_rx_tx = cause_rx_tx;
2274 	return rx_done;
2275 }
2276 
2277 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2278 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2279 			   int num)
2280 {
2281 	int i;
2282 
2283 	for (i = 0; i < num; i++) {
2284 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2285 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2286 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2287 				__func__, rxq->id, i, num);
2288 			break;
2289 		}
2290 	}
2291 
2292 	/* Add this number of RX descriptors as non occupied (ready to
2293 	 * get packets)
2294 	 */
2295 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2296 
2297 	return i;
2298 }
2299 
2300 /* Free all packets pending transmit from all TXQs and reset TX port */
2301 static void mvneta_tx_reset(struct mvneta_port *pp)
2302 {
2303 	int queue;
2304 
2305 	/* free the skb's in the tx ring */
2306 	for (queue = 0; queue < txq_number; queue++)
2307 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2308 
2309 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2310 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2311 }
2312 
2313 static void mvneta_rx_reset(struct mvneta_port *pp)
2314 {
2315 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2316 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2317 }
2318 
2319 /* Rx/Tx queue initialization/cleanup methods */
2320 
2321 /* Create a specified RX queue */
2322 static int mvneta_rxq_init(struct mvneta_port *pp,
2323 			   struct mvneta_rx_queue *rxq)
2324 
2325 {
2326 	rxq->size = pp->rx_ring_size;
2327 
2328 	/* Allocate memory for RX descriptors */
2329 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2330 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2331 					&rxq->descs_phys, GFP_KERNEL);
2332 	if (rxq->descs == NULL)
2333 		return -ENOMEM;
2334 
2335 	BUG_ON(rxq->descs !=
2336 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2337 
2338 	rxq->last_desc = rxq->size - 1;
2339 
2340 	/* Set Rx descriptors queue starting address */
2341 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2342 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2343 
2344 	/* Set Offset */
2345 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2346 
2347 	/* Set coalescing pkts and time */
2348 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2349 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2350 
2351 	/* Fill RXQ with buffers from RX pool */
2352 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2353 	mvneta_rxq_bm_disable(pp, rxq);
2354 	mvneta_rxq_fill(pp, rxq, rxq->size);
2355 
2356 	return 0;
2357 }
2358 
2359 /* Cleanup Rx queue */
2360 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2361 			      struct mvneta_rx_queue *rxq)
2362 {
2363 	mvneta_rxq_drop_pkts(pp, rxq);
2364 
2365 	if (rxq->descs)
2366 		dma_free_coherent(pp->dev->dev.parent,
2367 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2368 				  rxq->descs,
2369 				  rxq->descs_phys);
2370 
2371 	rxq->descs             = NULL;
2372 	rxq->last_desc         = 0;
2373 	rxq->next_desc_to_proc = 0;
2374 	rxq->descs_phys        = 0;
2375 }
2376 
2377 /* Create and initialize a tx queue */
2378 static int mvneta_txq_init(struct mvneta_port *pp,
2379 			   struct mvneta_tx_queue *txq)
2380 {
2381 	int cpu;
2382 
2383 	txq->size = pp->tx_ring_size;
2384 
2385 	/* A queue must always have room for at least one skb.
2386 	 * Therefore, stop the queue when the free entries reaches
2387 	 * the maximum number of descriptors per skb.
2388 	 */
2389 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2390 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2391 
2392 
2393 	/* Allocate memory for TX descriptors */
2394 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2395 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2396 					&txq->descs_phys, GFP_KERNEL);
2397 	if (txq->descs == NULL)
2398 		return -ENOMEM;
2399 
2400 	/* Make sure descriptor address is cache line size aligned  */
2401 	BUG_ON(txq->descs !=
2402 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2403 
2404 	txq->last_desc = txq->size - 1;
2405 
2406 	/* Set maximum bandwidth for enabled TXQs */
2407 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2408 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2409 
2410 	/* Set Tx descriptors queue starting address */
2411 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2412 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2413 
2414 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2415 	if (txq->tx_skb == NULL) {
2416 		dma_free_coherent(pp->dev->dev.parent,
2417 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2418 				  txq->descs, txq->descs_phys);
2419 		return -ENOMEM;
2420 	}
2421 
2422 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2423 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2424 					   txq->size * TSO_HEADER_SIZE,
2425 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2426 	if (txq->tso_hdrs == NULL) {
2427 		kfree(txq->tx_skb);
2428 		dma_free_coherent(pp->dev->dev.parent,
2429 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2430 				  txq->descs, txq->descs_phys);
2431 		return -ENOMEM;
2432 	}
2433 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2434 
2435 	/* Setup XPS mapping */
2436 	if (txq_number > 1)
2437 		cpu = txq->id % num_present_cpus();
2438 	else
2439 		cpu = pp->rxq_def % num_present_cpus();
2440 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2441 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2442 
2443 	return 0;
2444 }
2445 
2446 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2447 static void mvneta_txq_deinit(struct mvneta_port *pp,
2448 			      struct mvneta_tx_queue *txq)
2449 {
2450 	kfree(txq->tx_skb);
2451 
2452 	if (txq->tso_hdrs)
2453 		dma_free_coherent(pp->dev->dev.parent,
2454 				  txq->size * TSO_HEADER_SIZE,
2455 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2456 	if (txq->descs)
2457 		dma_free_coherent(pp->dev->dev.parent,
2458 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2459 				  txq->descs, txq->descs_phys);
2460 
2461 	txq->descs             = NULL;
2462 	txq->last_desc         = 0;
2463 	txq->next_desc_to_proc = 0;
2464 	txq->descs_phys        = 0;
2465 
2466 	/* Set minimum bandwidth for disabled TXQs */
2467 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2468 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2469 
2470 	/* Set Tx descriptors queue starting address and size */
2471 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2472 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2473 }
2474 
2475 /* Cleanup all Tx queues */
2476 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2477 {
2478 	int queue;
2479 
2480 	for (queue = 0; queue < txq_number; queue++)
2481 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2482 }
2483 
2484 /* Cleanup all Rx queues */
2485 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2486 {
2487 	int queue;
2488 
2489 	for (queue = 0; queue < txq_number; queue++)
2490 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2491 }
2492 
2493 
2494 /* Init all Rx queues */
2495 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2496 {
2497 	int queue;
2498 
2499 	for (queue = 0; queue < rxq_number; queue++) {
2500 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2501 
2502 		if (err) {
2503 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2504 				   __func__, queue);
2505 			mvneta_cleanup_rxqs(pp);
2506 			return err;
2507 		}
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 /* Init all tx queues */
2514 static int mvneta_setup_txqs(struct mvneta_port *pp)
2515 {
2516 	int queue;
2517 
2518 	for (queue = 0; queue < txq_number; queue++) {
2519 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2520 		if (err) {
2521 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2522 				   __func__, queue);
2523 			mvneta_cleanup_txqs(pp);
2524 			return err;
2525 		}
2526 	}
2527 
2528 	return 0;
2529 }
2530 
2531 static void mvneta_percpu_unmask_interrupt(void *arg)
2532 {
2533 	struct mvneta_port *pp = arg;
2534 
2535 	/* All the queue are unmasked, but actually only the ones
2536 	 * maped to this CPU will be unmasked
2537 	 */
2538 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2539 		    MVNETA_RX_INTR_MASK_ALL |
2540 		    MVNETA_TX_INTR_MASK_ALL |
2541 		    MVNETA_MISCINTR_INTR_MASK);
2542 }
2543 
2544 static void mvneta_percpu_mask_interrupt(void *arg)
2545 {
2546 	struct mvneta_port *pp = arg;
2547 
2548 	/* All the queue are masked, but actually only the ones
2549 	 * maped to this CPU will be masked
2550 	 */
2551 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2552 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2553 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2554 }
2555 
2556 static void mvneta_start_dev(struct mvneta_port *pp)
2557 {
2558 	unsigned int cpu;
2559 
2560 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2561 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2562 
2563 	/* start the Rx/Tx activity */
2564 	mvneta_port_enable(pp);
2565 
2566 	/* Enable polling on the port */
2567 	for_each_present_cpu(cpu) {
2568 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2569 
2570 		napi_enable(&port->napi);
2571 	}
2572 
2573 	/* Unmask interrupts. It has to be done from each CPU */
2574 	for_each_online_cpu(cpu)
2575 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
2576 					 pp, true);
2577 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2578 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2579 		    MVNETA_CAUSE_LINK_CHANGE |
2580 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2581 
2582 	phy_start(pp->phy_dev);
2583 	netif_tx_start_all_queues(pp->dev);
2584 }
2585 
2586 static void mvneta_stop_dev(struct mvneta_port *pp)
2587 {
2588 	unsigned int cpu;
2589 
2590 	phy_stop(pp->phy_dev);
2591 
2592 	for_each_present_cpu(cpu) {
2593 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2594 
2595 		napi_disable(&port->napi);
2596 	}
2597 
2598 	netif_carrier_off(pp->dev);
2599 
2600 	mvneta_port_down(pp);
2601 	netif_tx_stop_all_queues(pp->dev);
2602 
2603 	/* Stop the port activity */
2604 	mvneta_port_disable(pp);
2605 
2606 	/* Clear all ethernet port interrupts */
2607 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2608 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2609 
2610 	/* Mask all ethernet port interrupts */
2611 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2612 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2613 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2614 
2615 	mvneta_tx_reset(pp);
2616 	mvneta_rx_reset(pp);
2617 }
2618 
2619 /* Return positive if MTU is valid */
2620 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2621 {
2622 	if (mtu < 68) {
2623 		netdev_err(dev, "cannot change mtu to less than 68\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	/* 9676 == 9700 - 20 and rounding to 8 */
2628 	if (mtu > 9676) {
2629 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2630 		mtu = 9676;
2631 	}
2632 
2633 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2634 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2635 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2636 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2637 	}
2638 
2639 	return mtu;
2640 }
2641 
2642 /* Change the device mtu */
2643 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2644 {
2645 	struct mvneta_port *pp = netdev_priv(dev);
2646 	int ret;
2647 
2648 	mtu = mvneta_check_mtu_valid(dev, mtu);
2649 	if (mtu < 0)
2650 		return -EINVAL;
2651 
2652 	dev->mtu = mtu;
2653 
2654 	if (!netif_running(dev)) {
2655 		netdev_update_features(dev);
2656 		return 0;
2657 	}
2658 
2659 	/* The interface is running, so we have to force a
2660 	 * reallocation of the queues
2661 	 */
2662 	mvneta_stop_dev(pp);
2663 
2664 	mvneta_cleanup_txqs(pp);
2665 	mvneta_cleanup_rxqs(pp);
2666 
2667 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2668 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2669 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2670 
2671 	ret = mvneta_setup_rxqs(pp);
2672 	if (ret) {
2673 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2674 		return ret;
2675 	}
2676 
2677 	ret = mvneta_setup_txqs(pp);
2678 	if (ret) {
2679 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2680 		return ret;
2681 	}
2682 
2683 	mvneta_start_dev(pp);
2684 	mvneta_port_up(pp);
2685 
2686 	netdev_update_features(dev);
2687 
2688 	return 0;
2689 }
2690 
2691 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2692 					     netdev_features_t features)
2693 {
2694 	struct mvneta_port *pp = netdev_priv(dev);
2695 
2696 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2697 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2698 		netdev_info(dev,
2699 			    "Disable IP checksum for MTU greater than %dB\n",
2700 			    pp->tx_csum_limit);
2701 	}
2702 
2703 	return features;
2704 }
2705 
2706 /* Get mac address */
2707 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2708 {
2709 	u32 mac_addr_l, mac_addr_h;
2710 
2711 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2712 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2713 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2714 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2715 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2716 	addr[3] = mac_addr_h & 0xFF;
2717 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2718 	addr[5] = mac_addr_l & 0xFF;
2719 }
2720 
2721 /* Handle setting mac address */
2722 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2723 {
2724 	struct mvneta_port *pp = netdev_priv(dev);
2725 	struct sockaddr *sockaddr = addr;
2726 	int ret;
2727 
2728 	ret = eth_prepare_mac_addr_change(dev, addr);
2729 	if (ret < 0)
2730 		return ret;
2731 	/* Remove previous address table entry */
2732 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2733 
2734 	/* Set new addr in hw */
2735 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
2736 
2737 	eth_commit_mac_addr_change(dev, addr);
2738 	return 0;
2739 }
2740 
2741 static void mvneta_adjust_link(struct net_device *ndev)
2742 {
2743 	struct mvneta_port *pp = netdev_priv(ndev);
2744 	struct phy_device *phydev = pp->phy_dev;
2745 	int status_change = 0;
2746 
2747 	if (phydev->link) {
2748 		if ((pp->speed != phydev->speed) ||
2749 		    (pp->duplex != phydev->duplex)) {
2750 			u32 val;
2751 
2752 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2753 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2754 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2755 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2756 
2757 			if (phydev->duplex)
2758 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2759 
2760 			if (phydev->speed == SPEED_1000)
2761 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2762 			else if (phydev->speed == SPEED_100)
2763 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2764 
2765 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2766 
2767 			pp->duplex = phydev->duplex;
2768 			pp->speed  = phydev->speed;
2769 		}
2770 	}
2771 
2772 	if (phydev->link != pp->link) {
2773 		if (!phydev->link) {
2774 			pp->duplex = -1;
2775 			pp->speed = 0;
2776 		}
2777 
2778 		pp->link = phydev->link;
2779 		status_change = 1;
2780 	}
2781 
2782 	if (status_change) {
2783 		if (phydev->link) {
2784 			if (!pp->use_inband_status) {
2785 				u32 val = mvreg_read(pp,
2786 						  MVNETA_GMAC_AUTONEG_CONFIG);
2787 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2788 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2789 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2790 					    val);
2791 			}
2792 			mvneta_port_up(pp);
2793 		} else {
2794 			if (!pp->use_inband_status) {
2795 				u32 val = mvreg_read(pp,
2796 						  MVNETA_GMAC_AUTONEG_CONFIG);
2797 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2798 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2799 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2800 					    val);
2801 			}
2802 			mvneta_port_down(pp);
2803 		}
2804 		phy_print_status(phydev);
2805 	}
2806 }
2807 
2808 static int mvneta_mdio_probe(struct mvneta_port *pp)
2809 {
2810 	struct phy_device *phy_dev;
2811 
2812 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2813 				 pp->phy_interface);
2814 	if (!phy_dev) {
2815 		netdev_err(pp->dev, "could not find the PHY\n");
2816 		return -ENODEV;
2817 	}
2818 
2819 	phy_dev->supported &= PHY_GBIT_FEATURES;
2820 	phy_dev->advertising = phy_dev->supported;
2821 
2822 	pp->phy_dev = phy_dev;
2823 	pp->link    = 0;
2824 	pp->duplex  = 0;
2825 	pp->speed   = 0;
2826 
2827 	return 0;
2828 }
2829 
2830 static void mvneta_mdio_remove(struct mvneta_port *pp)
2831 {
2832 	phy_disconnect(pp->phy_dev);
2833 	pp->phy_dev = NULL;
2834 }
2835 
2836 static void mvneta_percpu_enable(void *arg)
2837 {
2838 	struct mvneta_port *pp = arg;
2839 
2840 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2841 }
2842 
2843 static void mvneta_percpu_disable(void *arg)
2844 {
2845 	struct mvneta_port *pp = arg;
2846 
2847 	disable_percpu_irq(pp->dev->irq);
2848 }
2849 
2850 static void mvneta_percpu_elect(struct mvneta_port *pp)
2851 {
2852 	int online_cpu_idx, max_cpu, cpu, i = 0;
2853 
2854 	online_cpu_idx = pp->rxq_def % num_online_cpus();
2855 	max_cpu = num_present_cpus();
2856 
2857 	for_each_online_cpu(cpu) {
2858 		int rxq_map = 0, txq_map = 0;
2859 		int rxq;
2860 
2861 		for (rxq = 0; rxq < rxq_number; rxq++)
2862 			if ((rxq % max_cpu) == cpu)
2863 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
2864 
2865 		if (i == online_cpu_idx)
2866 			/* Map the default receive queue queue to the
2867 			 * elected CPU
2868 			 */
2869 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
2870 
2871 		/* We update the TX queue map only if we have one
2872 		 * queue. In this case we associate the TX queue to
2873 		 * the CPU bound to the default RX queue
2874 		 */
2875 		if (txq_number == 1)
2876 			txq_map = (i == online_cpu_idx) ?
2877 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
2878 		else
2879 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
2880 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
2881 
2882 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
2883 
2884 		/* Update the interrupt mask on each CPU according the
2885 		 * new mapping
2886 		 */
2887 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
2888 					 pp, true);
2889 		i++;
2890 
2891 	}
2892 };
2893 
2894 static int mvneta_percpu_notifier(struct notifier_block *nfb,
2895 				  unsigned long action, void *hcpu)
2896 {
2897 	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2898 					      cpu_notifier);
2899 	int cpu = (unsigned long)hcpu, other_cpu;
2900 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2901 
2902 	switch (action) {
2903 	case CPU_ONLINE:
2904 	case CPU_ONLINE_FROZEN:
2905 		netif_tx_stop_all_queues(pp->dev);
2906 
2907 		/* We have to synchronise on tha napi of each CPU
2908 		 * except the one just being waked up
2909 		 */
2910 		for_each_online_cpu(other_cpu) {
2911 			if (other_cpu != cpu) {
2912 				struct mvneta_pcpu_port *other_port =
2913 					per_cpu_ptr(pp->ports, other_cpu);
2914 
2915 				napi_synchronize(&other_port->napi);
2916 			}
2917 		}
2918 
2919 		/* Mask all ethernet port interrupts */
2920 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2921 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2922 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2923 		napi_enable(&port->napi);
2924 
2925 
2926 		/* Enable per-CPU interrupts on the CPU that is
2927 		 * brought up.
2928 		 */
2929 		smp_call_function_single(cpu, mvneta_percpu_enable,
2930 					 pp, true);
2931 
2932 		/* Enable per-CPU interrupt on the one CPU we care
2933 		 * about.
2934 		 */
2935 		mvneta_percpu_elect(pp);
2936 
2937 		/* Unmask all ethernet port interrupts, as this
2938 		 * notifier is called for each CPU then the CPU to
2939 		 * Queue mapping is applied
2940 		 */
2941 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2942 			MVNETA_RX_INTR_MASK(rxq_number) |
2943 			MVNETA_TX_INTR_MASK(txq_number) |
2944 			MVNETA_MISCINTR_INTR_MASK);
2945 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2946 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2947 			MVNETA_CAUSE_LINK_CHANGE |
2948 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2949 		netif_tx_start_all_queues(pp->dev);
2950 		break;
2951 	case CPU_DOWN_PREPARE:
2952 	case CPU_DOWN_PREPARE_FROZEN:
2953 		netif_tx_stop_all_queues(pp->dev);
2954 		/* Mask all ethernet port interrupts */
2955 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2956 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2957 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2958 
2959 		napi_synchronize(&port->napi);
2960 		napi_disable(&port->napi);
2961 		/* Disable per-CPU interrupts on the CPU that is
2962 		 * brought down.
2963 		 */
2964 		smp_call_function_single(cpu, mvneta_percpu_disable,
2965 					 pp, true);
2966 
2967 		break;
2968 	case CPU_DEAD:
2969 	case CPU_DEAD_FROZEN:
2970 		/* Check if a new CPU must be elected now this on is down */
2971 		mvneta_percpu_elect(pp);
2972 		/* Unmask all ethernet port interrupts */
2973 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2974 			MVNETA_RX_INTR_MASK(rxq_number) |
2975 			MVNETA_TX_INTR_MASK(txq_number) |
2976 			MVNETA_MISCINTR_INTR_MASK);
2977 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2978 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2979 			MVNETA_CAUSE_LINK_CHANGE |
2980 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2981 		netif_tx_start_all_queues(pp->dev);
2982 		break;
2983 	}
2984 
2985 	return NOTIFY_OK;
2986 }
2987 
2988 static int mvneta_open(struct net_device *dev)
2989 {
2990 	struct mvneta_port *pp = netdev_priv(dev);
2991 	int ret, cpu;
2992 
2993 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2994 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2995 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2996 
2997 	ret = mvneta_setup_rxqs(pp);
2998 	if (ret)
2999 		return ret;
3000 
3001 	ret = mvneta_setup_txqs(pp);
3002 	if (ret)
3003 		goto err_cleanup_rxqs;
3004 
3005 	/* Connect to port interrupt line */
3006 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3007 				 MVNETA_DRIVER_NAME, pp->ports);
3008 	if (ret) {
3009 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3010 		goto err_cleanup_txqs;
3011 	}
3012 
3013 	/* Even though the documentation says that request_percpu_irq
3014 	 * doesn't enable the interrupts automatically, it actually
3015 	 * does so on the local CPU.
3016 	 *
3017 	 * Make sure it's disabled.
3018 	 */
3019 	mvneta_percpu_disable(pp);
3020 
3021 	/* Enable per-CPU interrupt on all the CPU to handle our RX
3022 	 * queue interrupts
3023 	 */
3024 	for_each_online_cpu(cpu)
3025 		smp_call_function_single(cpu, mvneta_percpu_enable,
3026 					 pp, true);
3027 
3028 
3029 	/* Register a CPU notifier to handle the case where our CPU
3030 	 * might be taken offline.
3031 	 */
3032 	register_cpu_notifier(&pp->cpu_notifier);
3033 
3034 	/* In default link is down */
3035 	netif_carrier_off(pp->dev);
3036 
3037 	ret = mvneta_mdio_probe(pp);
3038 	if (ret < 0) {
3039 		netdev_err(dev, "cannot probe MDIO bus\n");
3040 		goto err_free_irq;
3041 	}
3042 
3043 	mvneta_start_dev(pp);
3044 
3045 	return 0;
3046 
3047 err_free_irq:
3048 	free_percpu_irq(pp->dev->irq, pp->ports);
3049 err_cleanup_txqs:
3050 	mvneta_cleanup_txqs(pp);
3051 err_cleanup_rxqs:
3052 	mvneta_cleanup_rxqs(pp);
3053 	return ret;
3054 }
3055 
3056 /* Stop the port, free port interrupt line */
3057 static int mvneta_stop(struct net_device *dev)
3058 {
3059 	struct mvneta_port *pp = netdev_priv(dev);
3060 	int cpu;
3061 
3062 	mvneta_stop_dev(pp);
3063 	mvneta_mdio_remove(pp);
3064 	unregister_cpu_notifier(&pp->cpu_notifier);
3065 	for_each_present_cpu(cpu)
3066 		smp_call_function_single(cpu, mvneta_percpu_disable, pp, true);
3067 	free_percpu_irq(dev->irq, pp->ports);
3068 	mvneta_cleanup_rxqs(pp);
3069 	mvneta_cleanup_txqs(pp);
3070 
3071 	return 0;
3072 }
3073 
3074 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3075 {
3076 	struct mvneta_port *pp = netdev_priv(dev);
3077 
3078 	if (!pp->phy_dev)
3079 		return -ENOTSUPP;
3080 
3081 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3082 }
3083 
3084 /* Ethtool methods */
3085 
3086 /* Get settings (phy address, speed) for ethtools */
3087 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3088 {
3089 	struct mvneta_port *pp = netdev_priv(dev);
3090 
3091 	if (!pp->phy_dev)
3092 		return -ENODEV;
3093 
3094 	return phy_ethtool_gset(pp->phy_dev, cmd);
3095 }
3096 
3097 /* Set settings (phy address, speed) for ethtools */
3098 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3099 {
3100 	struct mvneta_port *pp = netdev_priv(dev);
3101 	struct phy_device *phydev = pp->phy_dev;
3102 
3103 	if (!phydev)
3104 		return -ENODEV;
3105 
3106 	if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3107 		u32 val;
3108 
3109 		mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3110 
3111 		if (cmd->autoneg == AUTONEG_DISABLE) {
3112 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3113 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3114 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3115 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3116 
3117 			if (phydev->duplex)
3118 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3119 
3120 			if (phydev->speed == SPEED_1000)
3121 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3122 			else if (phydev->speed == SPEED_100)
3123 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3124 
3125 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3126 		}
3127 
3128 		pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3129 		netdev_info(pp->dev, "autoneg status set to %i\n",
3130 			    pp->use_inband_status);
3131 
3132 		if (netif_running(dev)) {
3133 			mvneta_port_down(pp);
3134 			mvneta_port_up(pp);
3135 		}
3136 	}
3137 
3138 	return phy_ethtool_sset(pp->phy_dev, cmd);
3139 }
3140 
3141 /* Set interrupt coalescing for ethtools */
3142 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3143 				       struct ethtool_coalesce *c)
3144 {
3145 	struct mvneta_port *pp = netdev_priv(dev);
3146 	int queue;
3147 
3148 	for (queue = 0; queue < rxq_number; queue++) {
3149 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3150 		rxq->time_coal = c->rx_coalesce_usecs;
3151 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3152 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3153 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3154 	}
3155 
3156 	for (queue = 0; queue < txq_number; queue++) {
3157 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3158 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3159 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3160 	}
3161 
3162 	return 0;
3163 }
3164 
3165 /* get coalescing for ethtools */
3166 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3167 				       struct ethtool_coalesce *c)
3168 {
3169 	struct mvneta_port *pp = netdev_priv(dev);
3170 
3171 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3172 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3173 
3174 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3175 	return 0;
3176 }
3177 
3178 
3179 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3180 				    struct ethtool_drvinfo *drvinfo)
3181 {
3182 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3183 		sizeof(drvinfo->driver));
3184 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3185 		sizeof(drvinfo->version));
3186 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3187 		sizeof(drvinfo->bus_info));
3188 }
3189 
3190 
3191 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3192 					 struct ethtool_ringparam *ring)
3193 {
3194 	struct mvneta_port *pp = netdev_priv(netdev);
3195 
3196 	ring->rx_max_pending = MVNETA_MAX_RXD;
3197 	ring->tx_max_pending = MVNETA_MAX_TXD;
3198 	ring->rx_pending = pp->rx_ring_size;
3199 	ring->tx_pending = pp->tx_ring_size;
3200 }
3201 
3202 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3203 					struct ethtool_ringparam *ring)
3204 {
3205 	struct mvneta_port *pp = netdev_priv(dev);
3206 
3207 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3208 		return -EINVAL;
3209 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3210 		ring->rx_pending : MVNETA_MAX_RXD;
3211 
3212 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3213 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3214 	if (pp->tx_ring_size != ring->tx_pending)
3215 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3216 			    pp->tx_ring_size, ring->tx_pending);
3217 
3218 	if (netif_running(dev)) {
3219 		mvneta_stop(dev);
3220 		if (mvneta_open(dev)) {
3221 			netdev_err(dev,
3222 				   "error on opening device after ring param change\n");
3223 			return -ENOMEM;
3224 		}
3225 	}
3226 
3227 	return 0;
3228 }
3229 
3230 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3231 				       u8 *data)
3232 {
3233 	if (sset == ETH_SS_STATS) {
3234 		int i;
3235 
3236 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3237 			memcpy(data + i * ETH_GSTRING_LEN,
3238 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3239 	}
3240 }
3241 
3242 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3243 {
3244 	const struct mvneta_statistic *s;
3245 	void __iomem *base = pp->base;
3246 	u32 high, low, val;
3247 	u64 val64;
3248 	int i;
3249 
3250 	for (i = 0, s = mvneta_statistics;
3251 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3252 	     s++, i++) {
3253 		switch (s->type) {
3254 		case T_REG_32:
3255 			val = readl_relaxed(base + s->offset);
3256 			pp->ethtool_stats[i] += val;
3257 			break;
3258 		case T_REG_64:
3259 			/* Docs say to read low 32-bit then high */
3260 			low = readl_relaxed(base + s->offset);
3261 			high = readl_relaxed(base + s->offset + 4);
3262 			val64 = (u64)high << 32 | low;
3263 			pp->ethtool_stats[i] += val64;
3264 			break;
3265 		}
3266 	}
3267 }
3268 
3269 static void mvneta_ethtool_get_stats(struct net_device *dev,
3270 				     struct ethtool_stats *stats, u64 *data)
3271 {
3272 	struct mvneta_port *pp = netdev_priv(dev);
3273 	int i;
3274 
3275 	mvneta_ethtool_update_stats(pp);
3276 
3277 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3278 		*data++ = pp->ethtool_stats[i];
3279 }
3280 
3281 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3282 {
3283 	if (sset == ETH_SS_STATS)
3284 		return ARRAY_SIZE(mvneta_statistics);
3285 	return -EOPNOTSUPP;
3286 }
3287 
3288 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3289 {
3290 	return MVNETA_RSS_LU_TABLE_SIZE;
3291 }
3292 
3293 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3294 				    struct ethtool_rxnfc *info,
3295 				    u32 *rules __always_unused)
3296 {
3297 	switch (info->cmd) {
3298 	case ETHTOOL_GRXRINGS:
3299 		info->data =  rxq_number;
3300 		return 0;
3301 	case ETHTOOL_GRXFH:
3302 		return -EOPNOTSUPP;
3303 	default:
3304 		return -EOPNOTSUPP;
3305 	}
3306 }
3307 
3308 static int  mvneta_config_rss(struct mvneta_port *pp)
3309 {
3310 	int cpu;
3311 	u32 val;
3312 
3313 	netif_tx_stop_all_queues(pp->dev);
3314 
3315 	for_each_online_cpu(cpu)
3316 		smp_call_function_single(cpu, mvneta_percpu_mask_interrupt,
3317 					 pp, true);
3318 
3319 	/* We have to synchronise on the napi of each CPU */
3320 	for_each_online_cpu(cpu) {
3321 		struct mvneta_pcpu_port *pcpu_port =
3322 			per_cpu_ptr(pp->ports, cpu);
3323 
3324 		napi_synchronize(&pcpu_port->napi);
3325 		napi_disable(&pcpu_port->napi);
3326 	}
3327 
3328 	pp->rxq_def = pp->indir[0];
3329 
3330 	/* Update unicast mapping */
3331 	mvneta_set_rx_mode(pp->dev);
3332 
3333 	/* Update val of portCfg register accordingly with all RxQueue types */
3334 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3335 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3336 
3337 	/* Update the elected CPU matching the new rxq_def */
3338 	mvneta_percpu_elect(pp);
3339 
3340 	/* We have to synchronise on the napi of each CPU */
3341 	for_each_online_cpu(cpu) {
3342 		struct mvneta_pcpu_port *pcpu_port =
3343 			per_cpu_ptr(pp->ports, cpu);
3344 
3345 		napi_enable(&pcpu_port->napi);
3346 	}
3347 
3348 	netif_tx_start_all_queues(pp->dev);
3349 
3350 	return 0;
3351 }
3352 
3353 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3354 				   const u8 *key, const u8 hfunc)
3355 {
3356 	struct mvneta_port *pp = netdev_priv(dev);
3357 	/* We require at least one supported parameter to be changed
3358 	 * and no change in any of the unsupported parameters
3359 	 */
3360 	if (key ||
3361 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3362 		return -EOPNOTSUPP;
3363 
3364 	if (!indir)
3365 		return 0;
3366 
3367 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3368 
3369 	return mvneta_config_rss(pp);
3370 }
3371 
3372 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3373 				   u8 *hfunc)
3374 {
3375 	struct mvneta_port *pp = netdev_priv(dev);
3376 
3377 	if (hfunc)
3378 		*hfunc = ETH_RSS_HASH_TOP;
3379 
3380 	if (!indir)
3381 		return 0;
3382 
3383 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3384 
3385 	return 0;
3386 }
3387 
3388 static const struct net_device_ops mvneta_netdev_ops = {
3389 	.ndo_open            = mvneta_open,
3390 	.ndo_stop            = mvneta_stop,
3391 	.ndo_start_xmit      = mvneta_tx,
3392 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3393 	.ndo_set_mac_address = mvneta_set_mac_addr,
3394 	.ndo_change_mtu      = mvneta_change_mtu,
3395 	.ndo_fix_features    = mvneta_fix_features,
3396 	.ndo_get_stats64     = mvneta_get_stats64,
3397 	.ndo_do_ioctl        = mvneta_ioctl,
3398 };
3399 
3400 const struct ethtool_ops mvneta_eth_tool_ops = {
3401 	.get_link       = ethtool_op_get_link,
3402 	.get_settings   = mvneta_ethtool_get_settings,
3403 	.set_settings   = mvneta_ethtool_set_settings,
3404 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3405 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3406 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3407 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3408 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3409 	.get_strings	= mvneta_ethtool_get_strings,
3410 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3411 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3412 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3413 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3414 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3415 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3416 };
3417 
3418 /* Initialize hw */
3419 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3420 {
3421 	int queue;
3422 
3423 	/* Disable port */
3424 	mvneta_port_disable(pp);
3425 
3426 	/* Set port default values */
3427 	mvneta_defaults_set(pp);
3428 
3429 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3430 				GFP_KERNEL);
3431 	if (!pp->txqs)
3432 		return -ENOMEM;
3433 
3434 	/* Initialize TX descriptor rings */
3435 	for (queue = 0; queue < txq_number; queue++) {
3436 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3437 		txq->id = queue;
3438 		txq->size = pp->tx_ring_size;
3439 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3440 	}
3441 
3442 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3443 				GFP_KERNEL);
3444 	if (!pp->rxqs)
3445 		return -ENOMEM;
3446 
3447 	/* Create Rx descriptor rings */
3448 	for (queue = 0; queue < rxq_number; queue++) {
3449 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3450 		rxq->id = queue;
3451 		rxq->size = pp->rx_ring_size;
3452 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3453 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
3459 /* platform glue : initialize decoding windows */
3460 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3461 				     const struct mbus_dram_target_info *dram)
3462 {
3463 	u32 win_enable;
3464 	u32 win_protect;
3465 	int i;
3466 
3467 	for (i = 0; i < 6; i++) {
3468 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3469 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3470 
3471 		if (i < 4)
3472 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3473 	}
3474 
3475 	win_enable = 0x3f;
3476 	win_protect = 0;
3477 
3478 	for (i = 0; i < dram->num_cs; i++) {
3479 		const struct mbus_dram_window *cs = dram->cs + i;
3480 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3481 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3482 
3483 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3484 			    (cs->size - 1) & 0xffff0000);
3485 
3486 		win_enable &= ~(1 << i);
3487 		win_protect |= 3 << (2 * i);
3488 	}
3489 
3490 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3491 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3492 }
3493 
3494 /* Power up the port */
3495 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3496 {
3497 	u32 ctrl;
3498 
3499 	/* MAC Cause register should be cleared */
3500 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3501 
3502 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3503 
3504 	/* Even though it might look weird, when we're configured in
3505 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3506 	 */
3507 	switch(phy_mode) {
3508 	case PHY_INTERFACE_MODE_QSGMII:
3509 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3510 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3511 		break;
3512 	case PHY_INTERFACE_MODE_SGMII:
3513 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3514 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3515 		break;
3516 	case PHY_INTERFACE_MODE_RGMII:
3517 	case PHY_INTERFACE_MODE_RGMII_ID:
3518 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3519 		break;
3520 	default:
3521 		return -EINVAL;
3522 	}
3523 
3524 	/* Cancel Port Reset */
3525 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3526 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3527 
3528 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3529 		MVNETA_GMAC2_PORT_RESET) != 0)
3530 		continue;
3531 
3532 	return 0;
3533 }
3534 
3535 /* Device initialization routine */
3536 static int mvneta_probe(struct platform_device *pdev)
3537 {
3538 	const struct mbus_dram_target_info *dram_target_info;
3539 	struct resource *res;
3540 	struct device_node *dn = pdev->dev.of_node;
3541 	struct device_node *phy_node;
3542 	struct mvneta_port *pp;
3543 	struct net_device *dev;
3544 	const char *dt_mac_addr;
3545 	char hw_mac_addr[ETH_ALEN];
3546 	const char *mac_from;
3547 	const char *managed;
3548 	int tx_csum_limit;
3549 	int phy_mode;
3550 	int err;
3551 	int cpu;
3552 
3553 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3554 	if (!dev)
3555 		return -ENOMEM;
3556 
3557 	dev->irq = irq_of_parse_and_map(dn, 0);
3558 	if (dev->irq == 0) {
3559 		err = -EINVAL;
3560 		goto err_free_netdev;
3561 	}
3562 
3563 	phy_node = of_parse_phandle(dn, "phy", 0);
3564 	if (!phy_node) {
3565 		if (!of_phy_is_fixed_link(dn)) {
3566 			dev_err(&pdev->dev, "no PHY specified\n");
3567 			err = -ENODEV;
3568 			goto err_free_irq;
3569 		}
3570 
3571 		err = of_phy_register_fixed_link(dn);
3572 		if (err < 0) {
3573 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3574 			goto err_free_irq;
3575 		}
3576 
3577 		/* In the case of a fixed PHY, the DT node associated
3578 		 * to the PHY is the Ethernet MAC DT node.
3579 		 */
3580 		phy_node = of_node_get(dn);
3581 	}
3582 
3583 	phy_mode = of_get_phy_mode(dn);
3584 	if (phy_mode < 0) {
3585 		dev_err(&pdev->dev, "incorrect phy-mode\n");
3586 		err = -EINVAL;
3587 		goto err_put_phy_node;
3588 	}
3589 
3590 	dev->tx_queue_len = MVNETA_MAX_TXD;
3591 	dev->watchdog_timeo = 5 * HZ;
3592 	dev->netdev_ops = &mvneta_netdev_ops;
3593 
3594 	dev->ethtool_ops = &mvneta_eth_tool_ops;
3595 
3596 	pp = netdev_priv(dev);
3597 	pp->phy_node = phy_node;
3598 	pp->phy_interface = phy_mode;
3599 
3600 	err = of_property_read_string(dn, "managed", &managed);
3601 	pp->use_inband_status = (err == 0 &&
3602 				 strcmp(managed, "in-band-status") == 0);
3603 	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3604 
3605 	pp->rxq_def = rxq_def;
3606 
3607 	pp->indir[0] = rxq_def;
3608 
3609 	pp->clk = devm_clk_get(&pdev->dev, "core");
3610 	if (IS_ERR(pp->clk))
3611 		pp->clk = devm_clk_get(&pdev->dev, NULL);
3612 	if (IS_ERR(pp->clk)) {
3613 		err = PTR_ERR(pp->clk);
3614 		goto err_put_phy_node;
3615 	}
3616 
3617 	clk_prepare_enable(pp->clk);
3618 
3619 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
3620 	if (!IS_ERR(pp->clk_bus))
3621 		clk_prepare_enable(pp->clk_bus);
3622 
3623 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3624 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3625 	if (IS_ERR(pp->base)) {
3626 		err = PTR_ERR(pp->base);
3627 		goto err_clk;
3628 	}
3629 
3630 	/* Alloc per-cpu port structure */
3631 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3632 	if (!pp->ports) {
3633 		err = -ENOMEM;
3634 		goto err_clk;
3635 	}
3636 
3637 	/* Alloc per-cpu stats */
3638 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3639 	if (!pp->stats) {
3640 		err = -ENOMEM;
3641 		goto err_free_ports;
3642 	}
3643 
3644 	dt_mac_addr = of_get_mac_address(dn);
3645 	if (dt_mac_addr) {
3646 		mac_from = "device tree";
3647 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3648 	} else {
3649 		mvneta_get_mac_addr(pp, hw_mac_addr);
3650 		if (is_valid_ether_addr(hw_mac_addr)) {
3651 			mac_from = "hardware";
3652 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3653 		} else {
3654 			mac_from = "random";
3655 			eth_hw_addr_random(dev);
3656 		}
3657 	}
3658 
3659 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
3660 		if (tx_csum_limit < 0 ||
3661 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
3662 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3663 			dev_info(&pdev->dev,
3664 				 "Wrong TX csum limit in DT, set to %dB\n",
3665 				 MVNETA_TX_CSUM_DEF_SIZE);
3666 		}
3667 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
3668 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3669 	} else {
3670 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
3671 	}
3672 
3673 	pp->tx_csum_limit = tx_csum_limit;
3674 
3675 	pp->tx_ring_size = MVNETA_MAX_TXD;
3676 	pp->rx_ring_size = MVNETA_MAX_RXD;
3677 
3678 	pp->dev = dev;
3679 	SET_NETDEV_DEV(dev, &pdev->dev);
3680 
3681 	err = mvneta_init(&pdev->dev, pp);
3682 	if (err < 0)
3683 		goto err_free_stats;
3684 
3685 	err = mvneta_port_power_up(pp, phy_mode);
3686 	if (err < 0) {
3687 		dev_err(&pdev->dev, "can't power up port\n");
3688 		goto err_free_stats;
3689 	}
3690 
3691 	dram_target_info = mv_mbus_dram_info();
3692 	if (dram_target_info)
3693 		mvneta_conf_mbus_windows(pp, dram_target_info);
3694 
3695 	for_each_present_cpu(cpu) {
3696 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3697 
3698 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3699 		port->pp = pp;
3700 	}
3701 
3702 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3703 	dev->hw_features |= dev->features;
3704 	dev->vlan_features |= dev->features;
3705 	dev->priv_flags |= IFF_UNICAST_FLT;
3706 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3707 
3708 	err = register_netdev(dev);
3709 	if (err < 0) {
3710 		dev_err(&pdev->dev, "failed to register\n");
3711 		goto err_free_stats;
3712 	}
3713 
3714 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3715 		    dev->dev_addr);
3716 
3717 	platform_set_drvdata(pdev, pp->dev);
3718 
3719 	if (pp->use_inband_status) {
3720 		struct phy_device *phy = of_phy_find_device(dn);
3721 
3722 		mvneta_fixed_link_update(pp, phy);
3723 
3724 		put_device(&phy->mdio.dev);
3725 	}
3726 
3727 	return 0;
3728 
3729 err_free_stats:
3730 	free_percpu(pp->stats);
3731 err_free_ports:
3732 	free_percpu(pp->ports);
3733 err_clk:
3734 	clk_disable_unprepare(pp->clk_bus);
3735 	clk_disable_unprepare(pp->clk);
3736 err_put_phy_node:
3737 	of_node_put(phy_node);
3738 err_free_irq:
3739 	irq_dispose_mapping(dev->irq);
3740 err_free_netdev:
3741 	free_netdev(dev);
3742 	return err;
3743 }
3744 
3745 /* Device removal routine */
3746 static int mvneta_remove(struct platform_device *pdev)
3747 {
3748 	struct net_device  *dev = platform_get_drvdata(pdev);
3749 	struct mvneta_port *pp = netdev_priv(dev);
3750 
3751 	unregister_netdev(dev);
3752 	clk_disable_unprepare(pp->clk_bus);
3753 	clk_disable_unprepare(pp->clk);
3754 	free_percpu(pp->ports);
3755 	free_percpu(pp->stats);
3756 	irq_dispose_mapping(dev->irq);
3757 	of_node_put(pp->phy_node);
3758 	free_netdev(dev);
3759 
3760 	return 0;
3761 }
3762 
3763 static const struct of_device_id mvneta_match[] = {
3764 	{ .compatible = "marvell,armada-370-neta" },
3765 	{ .compatible = "marvell,armada-xp-neta" },
3766 	{ }
3767 };
3768 MODULE_DEVICE_TABLE(of, mvneta_match);
3769 
3770 static struct platform_driver mvneta_driver = {
3771 	.probe = mvneta_probe,
3772 	.remove = mvneta_remove,
3773 	.driver = {
3774 		.name = MVNETA_DRIVER_NAME,
3775 		.of_match_table = mvneta_match,
3776 	},
3777 };
3778 
3779 module_platform_driver(mvneta_driver);
3780 
3781 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3782 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3783 MODULE_LICENSE("GPL");
3784 
3785 module_param(rxq_number, int, S_IRUGO);
3786 module_param(txq_number, int, S_IRUGO);
3787 
3788 module_param(rxq_def, int, S_IRUGO);
3789 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3790