1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
193 #define MVNETA_GMAC_CTRL_2                       0x2c08
194 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
195 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
196 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
197 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
198 #define MVNETA_GMAC_STATUS                       0x2c10
199 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
200 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
201 #define      MVNETA_GMAC_SPEED_100               BIT(2)
202 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
203 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
204 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
205 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
206 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
207 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
208 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
209 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
210 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
211 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
212 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
213 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
214 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
215 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
216 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
217 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
218 #define      MVNETA_MIB_LATE_COLLISION           0x7c
219 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
220 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
221 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
222 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
223 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
224 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
225 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
226 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
227 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
228 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
229 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
230 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
231 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
232 #define MVNETA_PORT_TX_RESET                     0x3cf0
233 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
234 #define MVNETA_TX_MTU                            0x3e0c
235 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
236 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
238 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
239 
240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
241 
242 /* Descriptor ring Macros */
243 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
244 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
245 
246 /* Various constants */
247 
248 /* Coalescing */
249 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
250 #define MVNETA_RX_COAL_PKTS		32
251 #define MVNETA_RX_COAL_USEC		100
252 
253 /* The two bytes Marvell header. Either contains a special value used
254  * by Marvell switches when a specific hardware mode is enabled (not
255  * supported by this driver) or is filled automatically by zeroes on
256  * the RX side. Those two bytes being at the front of the Ethernet
257  * header, they allow to have the IP header aligned on a 4 bytes
258  * boundary automatically: the hardware skips those two bytes on its
259  * own.
260  */
261 #define MVNETA_MH_SIZE			2
262 
263 #define MVNETA_VLAN_TAG_LEN             4
264 
265 #define MVNETA_TX_CSUM_DEF_SIZE		1600
266 #define MVNETA_TX_CSUM_MAX_SIZE		9800
267 #define MVNETA_ACC_MODE_EXT1		1
268 #define MVNETA_ACC_MODE_EXT2		2
269 
270 #define MVNETA_MAX_DECODE_WIN		6
271 
272 /* Timeout constants */
273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
276 
277 #define MVNETA_TX_MTU_MAX		0x3ffff
278 
279 /* The RSS lookup table actually has 256 entries but we do not use
280  * them yet
281  */
282 #define MVNETA_RSS_LU_TABLE_SIZE	1
283 
284 /* Max number of Rx descriptors */
285 #define MVNETA_MAX_RXD 128
286 
287 /* Max number of Tx descriptors */
288 #define MVNETA_MAX_TXD 532
289 
290 /* Max number of allowed TCP segments for software TSO */
291 #define MVNETA_MAX_TSO_SEGS 100
292 
293 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
294 
295 /* descriptor aligned size */
296 #define MVNETA_DESC_ALIGNED_SIZE	32
297 
298 /* Number of bytes to be taken into account by HW when putting incoming data
299  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
300  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
301  */
302 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
303 
304 #define MVNETA_RX_PKT_SIZE(mtu) \
305 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
306 	      ETH_HLEN + ETH_FCS_LEN,			     \
307 	      cache_line_size())
308 
309 #define IS_TSO_HEADER(txq, addr) \
310 	((addr >= txq->tso_hdrs_phys) && \
311 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
312 
313 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
314 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
315 
316 struct mvneta_statistic {
317 	unsigned short offset;
318 	unsigned short type;
319 	const char name[ETH_GSTRING_LEN];
320 };
321 
322 #define T_REG_32	32
323 #define T_REG_64	64
324 
325 static const struct mvneta_statistic mvneta_statistics[] = {
326 	{ 0x3000, T_REG_64, "good_octets_received", },
327 	{ 0x3010, T_REG_32, "good_frames_received", },
328 	{ 0x3008, T_REG_32, "bad_octets_received", },
329 	{ 0x3014, T_REG_32, "bad_frames_received", },
330 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
331 	{ 0x301c, T_REG_32, "multicast_frames_received", },
332 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
333 	{ 0x3058, T_REG_32, "good_fc_received", },
334 	{ 0x305c, T_REG_32, "bad_fc_received", },
335 	{ 0x3060, T_REG_32, "undersize_received", },
336 	{ 0x3064, T_REG_32, "fragments_received", },
337 	{ 0x3068, T_REG_32, "oversize_received", },
338 	{ 0x306c, T_REG_32, "jabber_received", },
339 	{ 0x3070, T_REG_32, "mac_receive_error", },
340 	{ 0x3074, T_REG_32, "bad_crc_event", },
341 	{ 0x3078, T_REG_32, "collision", },
342 	{ 0x307c, T_REG_32, "late_collision", },
343 	{ 0x2484, T_REG_32, "rx_discard", },
344 	{ 0x2488, T_REG_32, "rx_overrun", },
345 	{ 0x3020, T_REG_32, "frames_64_octets", },
346 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
347 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
348 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
349 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
350 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
351 	{ 0x3038, T_REG_64, "good_octets_sent", },
352 	{ 0x3040, T_REG_32, "good_frames_sent", },
353 	{ 0x3044, T_REG_32, "excessive_collision", },
354 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
355 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
356 	{ 0x3054, T_REG_32, "fc_sent", },
357 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
358 };
359 
360 struct mvneta_pcpu_stats {
361 	struct	u64_stats_sync syncp;
362 	u64	rx_packets;
363 	u64	rx_bytes;
364 	u64	tx_packets;
365 	u64	tx_bytes;
366 };
367 
368 struct mvneta_pcpu_port {
369 	/* Pointer to the shared port */
370 	struct mvneta_port	*pp;
371 
372 	/* Pointer to the CPU-local NAPI struct */
373 	struct napi_struct	napi;
374 
375 	/* Cause of the previous interrupt */
376 	u32			cause_rx_tx;
377 };
378 
379 struct mvneta_port {
380 	u8 id;
381 	struct mvneta_pcpu_port __percpu	*ports;
382 	struct mvneta_pcpu_stats __percpu	*stats;
383 
384 	int pkt_size;
385 	unsigned int frag_size;
386 	void __iomem *base;
387 	struct mvneta_rx_queue *rxqs;
388 	struct mvneta_tx_queue *txqs;
389 	struct net_device *dev;
390 	struct hlist_node node_online;
391 	struct hlist_node node_dead;
392 	int rxq_def;
393 	/* Protect the access to the percpu interrupt registers,
394 	 * ensuring that the configuration remains coherent.
395 	 */
396 	spinlock_t lock;
397 	bool is_stopped;
398 
399 	u32 cause_rx_tx;
400 	struct napi_struct napi;
401 
402 	/* Core clock */
403 	struct clk *clk;
404 	/* AXI clock */
405 	struct clk *clk_bus;
406 	u8 mcast_count[256];
407 	u16 tx_ring_size;
408 	u16 rx_ring_size;
409 
410 	struct mii_bus *mii_bus;
411 	phy_interface_t phy_interface;
412 	struct device_node *phy_node;
413 	unsigned int link;
414 	unsigned int duplex;
415 	unsigned int speed;
416 	unsigned int tx_csum_limit;
417 	unsigned int use_inband_status:1;
418 
419 	struct mvneta_bm *bm_priv;
420 	struct mvneta_bm_pool *pool_long;
421 	struct mvneta_bm_pool *pool_short;
422 	int bm_win_id;
423 
424 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
425 
426 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
427 
428 	/* Flags for special SoC configurations */
429 	bool neta_armada3700;
430 	u16 rx_offset_correction;
431 	const struct mbus_dram_target_info *dram_target_info;
432 };
433 
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435  * layout of the transmit and reception DMA descriptors, and their
436  * layout is therefore defined by the hardware design
437  */
438 
439 #define MVNETA_TX_L3_OFF_SHIFT	0
440 #define MVNETA_TX_IP_HLEN_SHIFT	8
441 #define MVNETA_TX_L4_UDP	BIT(16)
442 #define MVNETA_TX_L3_IP6	BIT(17)
443 #define MVNETA_TXD_IP_CSUM	BIT(18)
444 #define MVNETA_TXD_Z_PAD	BIT(19)
445 #define MVNETA_TXD_L_DESC	BIT(20)
446 #define MVNETA_TXD_F_DESC	BIT(21)
447 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
448 				 MVNETA_TXD_L_DESC | \
449 				 MVNETA_TXD_F_DESC)
450 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
452 
453 #define MVNETA_RXD_ERR_CRC		0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT	13
455 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
458 #define MVNETA_RXD_ERR_LEN		BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4		BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
464 
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc {
467 	u32  command;		/* Options used by HW for packet transmitting.*/
468 	u16  reserverd1;	/* csum_l4 (for future use)		*/
469 	u16  data_size;		/* Data size of transmitted packet in bytes */
470 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
471 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
472 	u32  reserved3[4];	/* Reserved - (for future use)		*/
473 };
474 
475 struct mvneta_rx_desc {
476 	u32  status;		/* Info about received packet		*/
477 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
478 	u16  data_size;		/* Size of received packet in bytes	*/
479 
480 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
481 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
482 
483 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
484 	u16  reserved3;		/* prefetch_cmd, for future use		*/
485 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
486 
487 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
488 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
489 };
490 #else
491 struct mvneta_tx_desc {
492 	u16  data_size;		/* Data size of transmitted packet in bytes */
493 	u16  reserverd1;	/* csum_l4 (for future use)		*/
494 	u32  command;		/* Options used by HW for packet transmitting.*/
495 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
496 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
497 	u32  reserved3[4];	/* Reserved - (for future use)		*/
498 };
499 
500 struct mvneta_rx_desc {
501 	u16  data_size;		/* Size of received packet in bytes	*/
502 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
503 	u32  status;		/* Info about received packet		*/
504 
505 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
506 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
507 
508 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
509 	u16  reserved3;		/* prefetch_cmd, for future use		*/
510 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
511 
512 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
513 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
514 };
515 #endif
516 
517 struct mvneta_tx_queue {
518 	/* Number of this TX queue, in the range 0-7 */
519 	u8 id;
520 
521 	/* Number of TX DMA descriptors in the descriptor ring */
522 	int size;
523 
524 	/* Number of currently used TX DMA descriptor in the
525 	 * descriptor ring
526 	 */
527 	int count;
528 	int pending;
529 	int tx_stop_threshold;
530 	int tx_wake_threshold;
531 
532 	/* Array of transmitted skb */
533 	struct sk_buff **tx_skb;
534 
535 	/* Index of last TX DMA descriptor that was inserted */
536 	int txq_put_index;
537 
538 	/* Index of the TX DMA descriptor to be cleaned up */
539 	int txq_get_index;
540 
541 	u32 done_pkts_coal;
542 
543 	/* Virtual address of the TX DMA descriptors array */
544 	struct mvneta_tx_desc *descs;
545 
546 	/* DMA address of the TX DMA descriptors array */
547 	dma_addr_t descs_phys;
548 
549 	/* Index of the last TX DMA descriptor */
550 	int last_desc;
551 
552 	/* Index of the next TX DMA descriptor to process */
553 	int next_desc_to_proc;
554 
555 	/* DMA buffers for TSO headers */
556 	char *tso_hdrs;
557 
558 	/* DMA address of TSO headers */
559 	dma_addr_t tso_hdrs_phys;
560 
561 	/* Affinity mask for CPUs*/
562 	cpumask_t affinity_mask;
563 };
564 
565 struct mvneta_rx_queue {
566 	/* rx queue number, in the range 0-7 */
567 	u8 id;
568 
569 	/* num of rx descriptors in the rx descriptor ring */
570 	int size;
571 
572 	/* counter of times when mvneta_refill() failed */
573 	int missed;
574 
575 	u32 pkts_coal;
576 	u32 time_coal;
577 
578 	/* Virtual address of the RX buffer */
579 	void  **buf_virt_addr;
580 
581 	/* Virtual address of the RX DMA descriptors array */
582 	struct mvneta_rx_desc *descs;
583 
584 	/* DMA address of the RX DMA descriptors array */
585 	dma_addr_t descs_phys;
586 
587 	/* Index of the last RX DMA descriptor */
588 	int last_desc;
589 
590 	/* Index of the next RX DMA descriptor to process */
591 	int next_desc_to_proc;
592 };
593 
594 static enum cpuhp_state online_hpstate;
595 /* The hardware supports eight (8) rx queues, but we are only allowing
596  * the first one to be used. Therefore, let's just allocate one queue.
597  */
598 static int rxq_number = 8;
599 static int txq_number = 8;
600 
601 static int rxq_def;
602 
603 static int rx_copybreak __read_mostly = 256;
604 
605 /* HW BM need that each port be identify by a unique ID */
606 static int global_port_id;
607 
608 #define MVNETA_DRIVER_NAME "mvneta"
609 #define MVNETA_DRIVER_VERSION "1.0"
610 
611 /* Utility/helper methods */
612 
613 /* Write helper method */
614 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
615 {
616 	writel(data, pp->base + offset);
617 }
618 
619 /* Read helper method */
620 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
621 {
622 	return readl(pp->base + offset);
623 }
624 
625 /* Increment txq get counter */
626 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
627 {
628 	txq->txq_get_index++;
629 	if (txq->txq_get_index == txq->size)
630 		txq->txq_get_index = 0;
631 }
632 
633 /* Increment txq put counter */
634 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
635 {
636 	txq->txq_put_index++;
637 	if (txq->txq_put_index == txq->size)
638 		txq->txq_put_index = 0;
639 }
640 
641 
642 /* Clear all MIB counters */
643 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
644 {
645 	int i;
646 	u32 dummy;
647 
648 	/* Perform dummy reads from MIB counters */
649 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
650 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
651 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
652 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
653 }
654 
655 /* Get System Network Statistics */
656 static void
657 mvneta_get_stats64(struct net_device *dev,
658 		   struct rtnl_link_stats64 *stats)
659 {
660 	struct mvneta_port *pp = netdev_priv(dev);
661 	unsigned int start;
662 	int cpu;
663 
664 	for_each_possible_cpu(cpu) {
665 		struct mvneta_pcpu_stats *cpu_stats;
666 		u64 rx_packets;
667 		u64 rx_bytes;
668 		u64 tx_packets;
669 		u64 tx_bytes;
670 
671 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
672 		do {
673 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
674 			rx_packets = cpu_stats->rx_packets;
675 			rx_bytes   = cpu_stats->rx_bytes;
676 			tx_packets = cpu_stats->tx_packets;
677 			tx_bytes   = cpu_stats->tx_bytes;
678 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
679 
680 		stats->rx_packets += rx_packets;
681 		stats->rx_bytes   += rx_bytes;
682 		stats->tx_packets += tx_packets;
683 		stats->tx_bytes   += tx_bytes;
684 	}
685 
686 	stats->rx_errors	= dev->stats.rx_errors;
687 	stats->rx_dropped	= dev->stats.rx_dropped;
688 
689 	stats->tx_dropped	= dev->stats.tx_dropped;
690 }
691 
692 /* Rx descriptors helper methods */
693 
694 /* Checks whether the RX descriptor having this status is both the first
695  * and the last descriptor for the RX packet. Each RX packet is currently
696  * received through a single RX descriptor, so not having each RX
697  * descriptor with its first and last bits set is an error
698  */
699 static int mvneta_rxq_desc_is_first_last(u32 status)
700 {
701 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
702 		MVNETA_RXD_FIRST_LAST_DESC;
703 }
704 
705 /* Add number of descriptors ready to receive new packets */
706 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
707 					  struct mvneta_rx_queue *rxq,
708 					  int ndescs)
709 {
710 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
711 	 * be added at once
712 	 */
713 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
714 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
715 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
716 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
717 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
718 	}
719 
720 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
721 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
722 }
723 
724 /* Get number of RX descriptors occupied by received packets */
725 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
726 					struct mvneta_rx_queue *rxq)
727 {
728 	u32 val;
729 
730 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
731 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
732 }
733 
734 /* Update num of rx desc called upon return from rx path or
735  * from mvneta_rxq_drop_pkts().
736  */
737 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
738 				       struct mvneta_rx_queue *rxq,
739 				       int rx_done, int rx_filled)
740 {
741 	u32 val;
742 
743 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
744 		val = rx_done |
745 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
746 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
747 		return;
748 	}
749 
750 	/* Only 255 descriptors can be added at once */
751 	while ((rx_done > 0) || (rx_filled > 0)) {
752 		if (rx_done <= 0xff) {
753 			val = rx_done;
754 			rx_done = 0;
755 		} else {
756 			val = 0xff;
757 			rx_done -= 0xff;
758 		}
759 		if (rx_filled <= 0xff) {
760 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
761 			rx_filled = 0;
762 		} else {
763 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
764 			rx_filled -= 0xff;
765 		}
766 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 	}
768 }
769 
770 /* Get pointer to next RX descriptor to be processed by SW */
771 static struct mvneta_rx_desc *
772 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
773 {
774 	int rx_desc = rxq->next_desc_to_proc;
775 
776 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
777 	prefetch(rxq->descs + rxq->next_desc_to_proc);
778 	return rxq->descs + rx_desc;
779 }
780 
781 /* Change maximum receive size of the port. */
782 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
783 {
784 	u32 val;
785 
786 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
787 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
788 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
789 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
790 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
791 }
792 
793 
794 /* Set rx queue offset */
795 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
796 				  struct mvneta_rx_queue *rxq,
797 				  int offset)
798 {
799 	u32 val;
800 
801 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
802 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
803 
804 	/* Offset is in */
805 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
806 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
807 }
808 
809 
810 /* Tx descriptors helper methods */
811 
812 /* Update HW with number of TX descriptors to be sent */
813 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
814 				     struct mvneta_tx_queue *txq,
815 				     int pend_desc)
816 {
817 	u32 val;
818 
819 	/* Only 255 descriptors can be added at once ; Assume caller
820 	 * process TX desriptors in quanta less than 256
821 	 */
822 	val = pend_desc + txq->pending;
823 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
824 	txq->pending = 0;
825 }
826 
827 /* Get pointer to next TX descriptor to be processed (send) by HW */
828 static struct mvneta_tx_desc *
829 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
830 {
831 	int tx_desc = txq->next_desc_to_proc;
832 
833 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
834 	return txq->descs + tx_desc;
835 }
836 
837 /* Release the last allocated TX descriptor. Useful to handle DMA
838  * mapping failures in the TX path.
839  */
840 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
841 {
842 	if (txq->next_desc_to_proc == 0)
843 		txq->next_desc_to_proc = txq->last_desc - 1;
844 	else
845 		txq->next_desc_to_proc--;
846 }
847 
848 /* Set rxq buf size */
849 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
850 				    struct mvneta_rx_queue *rxq,
851 				    int buf_size)
852 {
853 	u32 val;
854 
855 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
856 
857 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
858 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
859 
860 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
861 }
862 
863 /* Disable buffer management (BM) */
864 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
865 				  struct mvneta_rx_queue *rxq)
866 {
867 	u32 val;
868 
869 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
870 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
871 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
872 }
873 
874 /* Enable buffer management (BM) */
875 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
876 				 struct mvneta_rx_queue *rxq)
877 {
878 	u32 val;
879 
880 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
881 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
882 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
883 }
884 
885 /* Notify HW about port's assignment of pool for bigger packets */
886 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
887 				     struct mvneta_rx_queue *rxq)
888 {
889 	u32 val;
890 
891 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
892 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
893 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
894 
895 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
896 }
897 
898 /* Notify HW about port's assignment of pool for smaller packets */
899 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
900 				      struct mvneta_rx_queue *rxq)
901 {
902 	u32 val;
903 
904 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
905 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
906 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
907 
908 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
909 }
910 
911 /* Set port's receive buffer size for assigned BM pool */
912 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
913 					      int buf_size,
914 					      u8 pool_id)
915 {
916 	u32 val;
917 
918 	if (!IS_ALIGNED(buf_size, 8)) {
919 		dev_warn(pp->dev->dev.parent,
920 			 "illegal buf_size value %d, round to %d\n",
921 			 buf_size, ALIGN(buf_size, 8));
922 		buf_size = ALIGN(buf_size, 8);
923 	}
924 
925 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
926 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
927 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
928 }
929 
930 /* Configure MBUS window in order to enable access BM internal SRAM */
931 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
932 				  u8 target, u8 attr)
933 {
934 	u32 win_enable, win_protect;
935 	int i;
936 
937 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
938 
939 	if (pp->bm_win_id < 0) {
940 		/* Find first not occupied window */
941 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
942 			if (win_enable & (1 << i)) {
943 				pp->bm_win_id = i;
944 				break;
945 			}
946 		}
947 		if (i == MVNETA_MAX_DECODE_WIN)
948 			return -ENOMEM;
949 	} else {
950 		i = pp->bm_win_id;
951 	}
952 
953 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
954 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
955 
956 	if (i < 4)
957 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
958 
959 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
960 		    (attr << 8) | target);
961 
962 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
963 
964 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
965 	win_protect |= 3 << (2 * i);
966 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
967 
968 	win_enable &= ~(1 << i);
969 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
970 
971 	return 0;
972 }
973 
974 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
975 {
976 	u32 wsize;
977 	u8 target, attr;
978 	int err;
979 
980 	/* Get BM window information */
981 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
982 					 &target, &attr);
983 	if (err < 0)
984 		return err;
985 
986 	pp->bm_win_id = -1;
987 
988 	/* Open NETA -> BM window */
989 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
990 				     target, attr);
991 	if (err < 0) {
992 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
993 		return err;
994 	}
995 	return 0;
996 }
997 
998 /* Assign and initialize pools for port. In case of fail
999  * buffer manager will remain disabled for current port.
1000  */
1001 static int mvneta_bm_port_init(struct platform_device *pdev,
1002 			       struct mvneta_port *pp)
1003 {
1004 	struct device_node *dn = pdev->dev.of_node;
1005 	u32 long_pool_id, short_pool_id;
1006 
1007 	if (!pp->neta_armada3700) {
1008 		int ret;
1009 
1010 		ret = mvneta_bm_port_mbus_init(pp);
1011 		if (ret)
1012 			return ret;
1013 	}
1014 
1015 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1016 		netdev_info(pp->dev, "missing long pool id\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Create port's long pool depending on mtu */
1021 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1022 					   MVNETA_BM_LONG, pp->id,
1023 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1024 	if (!pp->pool_long) {
1025 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1026 		return -ENOMEM;
1027 	}
1028 
1029 	pp->pool_long->port_map |= 1 << pp->id;
1030 
1031 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1032 				   pp->pool_long->id);
1033 
1034 	/* If short pool id is not defined, assume using single pool */
1035 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1036 		short_pool_id = long_pool_id;
1037 
1038 	/* Create port's short pool */
1039 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1040 					    MVNETA_BM_SHORT, pp->id,
1041 					    MVNETA_BM_SHORT_PKT_SIZE);
1042 	if (!pp->pool_short) {
1043 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1044 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	if (short_pool_id != long_pool_id) {
1049 		pp->pool_short->port_map |= 1 << pp->id;
1050 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1051 					   pp->pool_short->id);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /* Update settings of a pool for bigger packets */
1058 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1059 {
1060 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1061 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1062 	int num;
1063 
1064 	/* Release all buffers from long pool */
1065 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1066 	if (hwbm_pool->buf_num) {
1067 		WARN(1, "cannot free all buffers in pool %d\n",
1068 		     bm_pool->id);
1069 		goto bm_mtu_err;
1070 	}
1071 
1072 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1073 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1074 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1075 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1076 
1077 	/* Fill entire long pool */
1078 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1079 	if (num != hwbm_pool->size) {
1080 		WARN(1, "pool %d: %d of %d allocated\n",
1081 		     bm_pool->id, num, hwbm_pool->size);
1082 		goto bm_mtu_err;
1083 	}
1084 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1085 
1086 	return;
1087 
1088 bm_mtu_err:
1089 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1090 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1091 
1092 	pp->bm_priv = NULL;
1093 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1094 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1095 }
1096 
1097 /* Start the Ethernet port RX and TX activity */
1098 static void mvneta_port_up(struct mvneta_port *pp)
1099 {
1100 	int queue;
1101 	u32 q_map;
1102 
1103 	/* Enable all initialized TXs. */
1104 	q_map = 0;
1105 	for (queue = 0; queue < txq_number; queue++) {
1106 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1107 		if (txq->descs)
1108 			q_map |= (1 << queue);
1109 	}
1110 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1111 
1112 	/* Enable all initialized RXQs. */
1113 	for (queue = 0; queue < rxq_number; queue++) {
1114 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1115 
1116 		if (rxq->descs)
1117 			q_map |= (1 << queue);
1118 	}
1119 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1120 }
1121 
1122 /* Stop the Ethernet port activity */
1123 static void mvneta_port_down(struct mvneta_port *pp)
1124 {
1125 	u32 val;
1126 	int count;
1127 
1128 	/* Stop Rx port activity. Check port Rx activity. */
1129 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1130 
1131 	/* Issue stop command for active channels only */
1132 	if (val != 0)
1133 		mvreg_write(pp, MVNETA_RXQ_CMD,
1134 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1135 
1136 	/* Wait for all Rx activity to terminate. */
1137 	count = 0;
1138 	do {
1139 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1140 			netdev_warn(pp->dev,
1141 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1142 				    val);
1143 			break;
1144 		}
1145 		mdelay(1);
1146 
1147 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1148 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1149 
1150 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1151 	 * command for active channels only
1152 	 */
1153 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1154 
1155 	if (val != 0)
1156 		mvreg_write(pp, MVNETA_TXQ_CMD,
1157 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1158 
1159 	/* Wait for all Tx activity to terminate. */
1160 	count = 0;
1161 	do {
1162 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1163 			netdev_warn(pp->dev,
1164 				    "TIMEOUT for TX stopped status=0x%08x\n",
1165 				    val);
1166 			break;
1167 		}
1168 		mdelay(1);
1169 
1170 		/* Check TX Command reg that all Txqs are stopped */
1171 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1172 
1173 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1174 
1175 	/* Double check to verify that TX FIFO is empty */
1176 	count = 0;
1177 	do {
1178 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1179 			netdev_warn(pp->dev,
1180 				    "TX FIFO empty timeout status=0x%08x\n",
1181 				    val);
1182 			break;
1183 		}
1184 		mdelay(1);
1185 
1186 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1187 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1188 		 (val & MVNETA_TX_IN_PRGRS));
1189 
1190 	udelay(200);
1191 }
1192 
1193 /* Enable the port by setting the port enable bit of the MAC control register */
1194 static void mvneta_port_enable(struct mvneta_port *pp)
1195 {
1196 	u32 val;
1197 
1198 	/* Enable port */
1199 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1200 	val |= MVNETA_GMAC0_PORT_ENABLE;
1201 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1202 }
1203 
1204 /* Disable the port and wait for about 200 usec before retuning */
1205 static void mvneta_port_disable(struct mvneta_port *pp)
1206 {
1207 	u32 val;
1208 
1209 	/* Reset the Enable bit in the Serial Control Register */
1210 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1211 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1212 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1213 
1214 	udelay(200);
1215 }
1216 
1217 /* Multicast tables methods */
1218 
1219 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1220 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1221 {
1222 	int offset;
1223 	u32 val;
1224 
1225 	if (queue == -1) {
1226 		val = 0;
1227 	} else {
1228 		val = 0x1 | (queue << 1);
1229 		val |= (val << 24) | (val << 16) | (val << 8);
1230 	}
1231 
1232 	for (offset = 0; offset <= 0xc; offset += 4)
1233 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1234 }
1235 
1236 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1237 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1238 {
1239 	int offset;
1240 	u32 val;
1241 
1242 	if (queue == -1) {
1243 		val = 0;
1244 	} else {
1245 		val = 0x1 | (queue << 1);
1246 		val |= (val << 24) | (val << 16) | (val << 8);
1247 	}
1248 
1249 	for (offset = 0; offset <= 0xfc; offset += 4)
1250 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1251 
1252 }
1253 
1254 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1255 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1256 {
1257 	int offset;
1258 	u32 val;
1259 
1260 	if (queue == -1) {
1261 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1262 		val = 0;
1263 	} else {
1264 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1265 		val = 0x1 | (queue << 1);
1266 		val |= (val << 24) | (val << 16) | (val << 8);
1267 	}
1268 
1269 	for (offset = 0; offset <= 0xfc; offset += 4)
1270 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1271 }
1272 
1273 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1274 {
1275 	u32 val;
1276 
1277 	if (enable) {
1278 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1279 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1280 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1281 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1282 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1283 		       MVNETA_GMAC_AN_SPEED_EN |
1284 		       MVNETA_GMAC_AN_DUPLEX_EN;
1285 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1286 
1287 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1288 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1289 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1290 
1291 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1292 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1293 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1294 	} else {
1295 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1296 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1297 		       MVNETA_GMAC_AN_SPEED_EN |
1298 		       MVNETA_GMAC_AN_DUPLEX_EN);
1299 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1300 
1301 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1302 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1303 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1304 
1305 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1306 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1307 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1308 	}
1309 }
1310 
1311 static void mvneta_percpu_unmask_interrupt(void *arg)
1312 {
1313 	struct mvneta_port *pp = arg;
1314 
1315 	/* All the queue are unmasked, but actually only the ones
1316 	 * mapped to this CPU will be unmasked
1317 	 */
1318 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1319 		    MVNETA_RX_INTR_MASK_ALL |
1320 		    MVNETA_TX_INTR_MASK_ALL |
1321 		    MVNETA_MISCINTR_INTR_MASK);
1322 }
1323 
1324 static void mvneta_percpu_mask_interrupt(void *arg)
1325 {
1326 	struct mvneta_port *pp = arg;
1327 
1328 	/* All the queue are masked, but actually only the ones
1329 	 * mapped to this CPU will be masked
1330 	 */
1331 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1332 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1333 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1334 }
1335 
1336 static void mvneta_percpu_clear_intr_cause(void *arg)
1337 {
1338 	struct mvneta_port *pp = arg;
1339 
1340 	/* All the queue are cleared, but actually only the ones
1341 	 * mapped to this CPU will be cleared
1342 	 */
1343 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1344 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1345 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1346 }
1347 
1348 /* This method sets defaults to the NETA port:
1349  *	Clears interrupt Cause and Mask registers.
1350  *	Clears all MAC tables.
1351  *	Sets defaults to all registers.
1352  *	Resets RX and TX descriptor rings.
1353  *	Resets PHY.
1354  * This method can be called after mvneta_port_down() to return the port
1355  *	settings to defaults.
1356  */
1357 static void mvneta_defaults_set(struct mvneta_port *pp)
1358 {
1359 	int cpu;
1360 	int queue;
1361 	u32 val;
1362 	int max_cpu = num_present_cpus();
1363 
1364 	/* Clear all Cause registers */
1365 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1366 
1367 	/* Mask all interrupts */
1368 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1369 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1370 
1371 	/* Enable MBUS Retry bit16 */
1372 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1373 
1374 	/* Set CPU queue access map. CPUs are assigned to the RX and
1375 	 * TX queues modulo their number. If there is only one TX
1376 	 * queue then it is assigned to the CPU associated to the
1377 	 * default RX queue.
1378 	 */
1379 	for_each_present_cpu(cpu) {
1380 		int rxq_map = 0, txq_map = 0;
1381 		int rxq, txq;
1382 		if (!pp->neta_armada3700) {
1383 			for (rxq = 0; rxq < rxq_number; rxq++)
1384 				if ((rxq % max_cpu) == cpu)
1385 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1386 
1387 			for (txq = 0; txq < txq_number; txq++)
1388 				if ((txq % max_cpu) == cpu)
1389 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1390 
1391 			/* With only one TX queue we configure a special case
1392 			 * which will allow to get all the irq on a single
1393 			 * CPU
1394 			 */
1395 			if (txq_number == 1)
1396 				txq_map = (cpu == pp->rxq_def) ?
1397 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1398 
1399 		} else {
1400 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1401 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1402 		}
1403 
1404 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1405 	}
1406 
1407 	/* Reset RX and TX DMAs */
1408 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1409 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1410 
1411 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1412 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1413 	for (queue = 0; queue < txq_number; queue++) {
1414 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1415 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1416 	}
1417 
1418 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1419 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1420 
1421 	/* Set Port Acceleration Mode */
1422 	if (pp->bm_priv)
1423 		/* HW buffer management + legacy parser */
1424 		val = MVNETA_ACC_MODE_EXT2;
1425 	else
1426 		/* SW buffer management + legacy parser */
1427 		val = MVNETA_ACC_MODE_EXT1;
1428 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1429 
1430 	if (pp->bm_priv)
1431 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1432 
1433 	/* Update val of portCfg register accordingly with all RxQueue types */
1434 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1435 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1436 
1437 	val = 0;
1438 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1439 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1440 
1441 	/* Build PORT_SDMA_CONFIG_REG */
1442 	val = 0;
1443 
1444 	/* Default burst size */
1445 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1446 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1447 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1448 
1449 #if defined(__BIG_ENDIAN)
1450 	val |= MVNETA_DESC_SWAP;
1451 #endif
1452 
1453 	/* Assign port SDMA configuration */
1454 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1455 
1456 	/* Disable PHY polling in hardware, since we're using the
1457 	 * kernel phylib to do this.
1458 	 */
1459 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1460 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1461 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1462 
1463 	mvneta_set_autoneg(pp, pp->use_inband_status);
1464 	mvneta_set_ucast_table(pp, -1);
1465 	mvneta_set_special_mcast_table(pp, -1);
1466 	mvneta_set_other_mcast_table(pp, -1);
1467 
1468 	/* Set port interrupt enable register - default enable all */
1469 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1470 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1471 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1472 
1473 	mvneta_mib_counters_clear(pp);
1474 }
1475 
1476 /* Set max sizes for tx queues */
1477 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1478 
1479 {
1480 	u32 val, size, mtu;
1481 	int queue;
1482 
1483 	mtu = max_tx_size * 8;
1484 	if (mtu > MVNETA_TX_MTU_MAX)
1485 		mtu = MVNETA_TX_MTU_MAX;
1486 
1487 	/* Set MTU */
1488 	val = mvreg_read(pp, MVNETA_TX_MTU);
1489 	val &= ~MVNETA_TX_MTU_MAX;
1490 	val |= mtu;
1491 	mvreg_write(pp, MVNETA_TX_MTU, val);
1492 
1493 	/* TX token size and all TXQs token size must be larger that MTU */
1494 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1495 
1496 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1497 	if (size < mtu) {
1498 		size = mtu;
1499 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1500 		val |= size;
1501 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1502 	}
1503 	for (queue = 0; queue < txq_number; queue++) {
1504 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1505 
1506 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1507 		if (size < mtu) {
1508 			size = mtu;
1509 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1510 			val |= size;
1511 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1512 		}
1513 	}
1514 }
1515 
1516 /* Set unicast address */
1517 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1518 				  int queue)
1519 {
1520 	unsigned int unicast_reg;
1521 	unsigned int tbl_offset;
1522 	unsigned int reg_offset;
1523 
1524 	/* Locate the Unicast table entry */
1525 	last_nibble = (0xf & last_nibble);
1526 
1527 	/* offset from unicast tbl base */
1528 	tbl_offset = (last_nibble / 4) * 4;
1529 
1530 	/* offset within the above reg  */
1531 	reg_offset = last_nibble % 4;
1532 
1533 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1534 
1535 	if (queue == -1) {
1536 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1537 		unicast_reg &= ~(0xff << (8 * reg_offset));
1538 	} else {
1539 		unicast_reg &= ~(0xff << (8 * reg_offset));
1540 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1541 	}
1542 
1543 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1544 }
1545 
1546 /* Set mac address */
1547 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1548 				int queue)
1549 {
1550 	unsigned int mac_h;
1551 	unsigned int mac_l;
1552 
1553 	if (queue != -1) {
1554 		mac_l = (addr[4] << 8) | (addr[5]);
1555 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1556 			(addr[2] << 8) | (addr[3] << 0);
1557 
1558 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1559 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1560 	}
1561 
1562 	/* Accept frames of this address */
1563 	mvneta_set_ucast_addr(pp, addr[5], queue);
1564 }
1565 
1566 /* Set the number of packets that will be received before RX interrupt
1567  * will be generated by HW.
1568  */
1569 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1570 				    struct mvneta_rx_queue *rxq, u32 value)
1571 {
1572 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1573 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1574 	rxq->pkts_coal = value;
1575 }
1576 
1577 /* Set the time delay in usec before RX interrupt will be generated by
1578  * HW.
1579  */
1580 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1581 				    struct mvneta_rx_queue *rxq, u32 value)
1582 {
1583 	u32 val;
1584 	unsigned long clk_rate;
1585 
1586 	clk_rate = clk_get_rate(pp->clk);
1587 	val = (clk_rate / 1000000) * value;
1588 
1589 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1590 	rxq->time_coal = value;
1591 }
1592 
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 					 struct mvneta_tx_queue *txq, u32 value)
1596 {
1597 	u32 val;
1598 
1599 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1600 
1601 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1603 
1604 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1605 
1606 	txq->done_pkts_coal = value;
1607 }
1608 
1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1611 				u32 phys_addr, void *virt_addr,
1612 				struct mvneta_rx_queue *rxq)
1613 {
1614 	int i;
1615 
1616 	rx_desc->buf_phys_addr = phys_addr;
1617 	i = rx_desc - rxq->descs;
1618 	rxq->buf_virt_addr[i] = virt_addr;
1619 }
1620 
1621 /* Decrement sent descriptors counter */
1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1623 				     struct mvneta_tx_queue *txq,
1624 				     int sent_desc)
1625 {
1626 	u32 val;
1627 
1628 	/* Only 255 TX descriptors can be updated at once */
1629 	while (sent_desc > 0xff) {
1630 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1631 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1632 		sent_desc = sent_desc - 0xff;
1633 	}
1634 
1635 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1636 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1637 }
1638 
1639 /* Get number of TX descriptors already sent by HW */
1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1641 					struct mvneta_tx_queue *txq)
1642 {
1643 	u32 val;
1644 	int sent_desc;
1645 
1646 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1647 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1648 		MVNETA_TXQ_SENT_DESC_SHIFT;
1649 
1650 	return sent_desc;
1651 }
1652 
1653 /* Get number of sent descriptors and decrement counter.
1654  *  The number of sent descriptors is returned.
1655  */
1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1657 				     struct mvneta_tx_queue *txq)
1658 {
1659 	int sent_desc;
1660 
1661 	/* Get number of sent descriptors */
1662 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1663 
1664 	/* Decrement sent descriptors counter */
1665 	if (sent_desc)
1666 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1667 
1668 	return sent_desc;
1669 }
1670 
1671 /* Set TXQ descriptors fields relevant for CSUM calculation */
1672 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1673 				int ip_hdr_len, int l4_proto)
1674 {
1675 	u32 command;
1676 
1677 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 	 * G_L4_chk, L4_type; required only for checksum
1679 	 * calculation
1680 	 */
1681 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1682 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1683 
1684 	if (l3_proto == htons(ETH_P_IP))
1685 		command |= MVNETA_TXD_IP_CSUM;
1686 	else
1687 		command |= MVNETA_TX_L3_IP6;
1688 
1689 	if (l4_proto == IPPROTO_TCP)
1690 		command |=  MVNETA_TX_L4_CSUM_FULL;
1691 	else if (l4_proto == IPPROTO_UDP)
1692 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1693 	else
1694 		command |= MVNETA_TX_L4_CSUM_NOT;
1695 
1696 	return command;
1697 }
1698 
1699 
1700 /* Display more error info */
1701 static void mvneta_rx_error(struct mvneta_port *pp,
1702 			    struct mvneta_rx_desc *rx_desc)
1703 {
1704 	u32 status = rx_desc->status;
1705 
1706 	if (!mvneta_rxq_desc_is_first_last(status)) {
1707 		netdev_err(pp->dev,
1708 			   "bad rx status %08x (buffer oversize), size=%d\n",
1709 			   status, rx_desc->data_size);
1710 		return;
1711 	}
1712 
1713 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1714 	case MVNETA_RXD_ERR_CRC:
1715 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1716 			   status, rx_desc->data_size);
1717 		break;
1718 	case MVNETA_RXD_ERR_OVERRUN:
1719 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1720 			   status, rx_desc->data_size);
1721 		break;
1722 	case MVNETA_RXD_ERR_LEN:
1723 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1724 			   status, rx_desc->data_size);
1725 		break;
1726 	case MVNETA_RXD_ERR_RESOURCE:
1727 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1728 			   status, rx_desc->data_size);
1729 		break;
1730 	}
1731 }
1732 
1733 /* Handle RX checksum offload based on the descriptor's status */
1734 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1735 			   struct sk_buff *skb)
1736 {
1737 	if ((status & MVNETA_RXD_L3_IP4) &&
1738 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1739 		skb->csum = 0;
1740 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1741 		return;
1742 	}
1743 
1744 	skb->ip_summed = CHECKSUM_NONE;
1745 }
1746 
1747 /* Return tx queue pointer (find last set bit) according to <cause> returned
1748  * form tx_done reg. <cause> must not be null. The return value is always a
1749  * valid queue for matching the first one found in <cause>.
1750  */
1751 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1752 						     u32 cause)
1753 {
1754 	int queue = fls(cause) - 1;
1755 
1756 	return &pp->txqs[queue];
1757 }
1758 
1759 /* Free tx queue skbuffs */
1760 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1761 				 struct mvneta_tx_queue *txq, int num,
1762 				 struct netdev_queue *nq)
1763 {
1764 	unsigned int bytes_compl = 0, pkts_compl = 0;
1765 	int i;
1766 
1767 	for (i = 0; i < num; i++) {
1768 		struct mvneta_tx_desc *tx_desc = txq->descs +
1769 			txq->txq_get_index;
1770 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1771 
1772 		if (skb) {
1773 			bytes_compl += skb->len;
1774 			pkts_compl++;
1775 		}
1776 
1777 		mvneta_txq_inc_get(txq);
1778 
1779 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1780 			dma_unmap_single(pp->dev->dev.parent,
1781 					 tx_desc->buf_phys_addr,
1782 					 tx_desc->data_size, DMA_TO_DEVICE);
1783 		if (!skb)
1784 			continue;
1785 		dev_kfree_skb_any(skb);
1786 	}
1787 
1788 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1789 }
1790 
1791 /* Handle end of transmission */
1792 static void mvneta_txq_done(struct mvneta_port *pp,
1793 			   struct mvneta_tx_queue *txq)
1794 {
1795 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1796 	int tx_done;
1797 
1798 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1799 	if (!tx_done)
1800 		return;
1801 
1802 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1803 
1804 	txq->count -= tx_done;
1805 
1806 	if (netif_tx_queue_stopped(nq)) {
1807 		if (txq->count <= txq->tx_wake_threshold)
1808 			netif_tx_wake_queue(nq);
1809 	}
1810 }
1811 
1812 void *mvneta_frag_alloc(unsigned int frag_size)
1813 {
1814 	if (likely(frag_size <= PAGE_SIZE))
1815 		return netdev_alloc_frag(frag_size);
1816 	else
1817 		return kmalloc(frag_size, GFP_ATOMIC);
1818 }
1819 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1820 
1821 void mvneta_frag_free(unsigned int frag_size, void *data)
1822 {
1823 	if (likely(frag_size <= PAGE_SIZE))
1824 		skb_free_frag(data);
1825 	else
1826 		kfree(data);
1827 }
1828 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1829 
1830 /* Refill processing for SW buffer management */
1831 static int mvneta_rx_refill(struct mvneta_port *pp,
1832 			    struct mvneta_rx_desc *rx_desc,
1833 			    struct mvneta_rx_queue *rxq)
1834 
1835 {
1836 	dma_addr_t phys_addr;
1837 	void *data;
1838 
1839 	data = mvneta_frag_alloc(pp->frag_size);
1840 	if (!data)
1841 		return -ENOMEM;
1842 
1843 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1844 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1845 				   DMA_FROM_DEVICE);
1846 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1847 		mvneta_frag_free(pp->frag_size, data);
1848 		return -ENOMEM;
1849 	}
1850 
1851 	phys_addr += pp->rx_offset_correction;
1852 	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1853 	return 0;
1854 }
1855 
1856 /* Handle tx checksum */
1857 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1858 {
1859 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1860 		int ip_hdr_len = 0;
1861 		__be16 l3_proto = vlan_get_protocol(skb);
1862 		u8 l4_proto;
1863 
1864 		if (l3_proto == htons(ETH_P_IP)) {
1865 			struct iphdr *ip4h = ip_hdr(skb);
1866 
1867 			/* Calculate IPv4 checksum and L4 checksum */
1868 			ip_hdr_len = ip4h->ihl;
1869 			l4_proto = ip4h->protocol;
1870 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1871 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1872 
1873 			/* Read l4_protocol from one of IPv6 extra headers */
1874 			if (skb_network_header_len(skb) > 0)
1875 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1876 			l4_proto = ip6h->nexthdr;
1877 		} else
1878 			return MVNETA_TX_L4_CSUM_NOT;
1879 
1880 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1881 					    l3_proto, ip_hdr_len, l4_proto);
1882 	}
1883 
1884 	return MVNETA_TX_L4_CSUM_NOT;
1885 }
1886 
1887 /* Drop packets received by the RXQ and free buffers */
1888 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1889 				 struct mvneta_rx_queue *rxq)
1890 {
1891 	int rx_done, i;
1892 
1893 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1894 	if (rx_done)
1895 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1896 
1897 	if (pp->bm_priv) {
1898 		for (i = 0; i < rx_done; i++) {
1899 			struct mvneta_rx_desc *rx_desc =
1900 						  mvneta_rxq_next_desc_get(rxq);
1901 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1902 			struct mvneta_bm_pool *bm_pool;
1903 
1904 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1905 			/* Return dropped buffer to the pool */
1906 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1907 					      rx_desc->buf_phys_addr);
1908 		}
1909 		return;
1910 	}
1911 
1912 	for (i = 0; i < rxq->size; i++) {
1913 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1914 		void *data = rxq->buf_virt_addr[i];
1915 
1916 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1917 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1918 		mvneta_frag_free(pp->frag_size, data);
1919 	}
1920 }
1921 
1922 /* Main rx processing when using software buffer management */
1923 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1924 			  struct mvneta_rx_queue *rxq)
1925 {
1926 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1927 	struct net_device *dev = pp->dev;
1928 	int rx_done;
1929 	u32 rcvd_pkts = 0;
1930 	u32 rcvd_bytes = 0;
1931 
1932 	/* Get number of received packets */
1933 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1934 
1935 	if (rx_todo > rx_done)
1936 		rx_todo = rx_done;
1937 
1938 	rx_done = 0;
1939 
1940 	/* Fairness NAPI loop */
1941 	while (rx_done < rx_todo) {
1942 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1943 		struct sk_buff *skb;
1944 		unsigned char *data;
1945 		dma_addr_t phys_addr;
1946 		u32 rx_status, frag_size;
1947 		int rx_bytes, err, index;
1948 
1949 		rx_done++;
1950 		rx_status = rx_desc->status;
1951 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1952 		index = rx_desc - rxq->descs;
1953 		data = rxq->buf_virt_addr[index];
1954 		phys_addr = rx_desc->buf_phys_addr;
1955 
1956 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1957 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1958 err_drop_frame:
1959 			dev->stats.rx_errors++;
1960 			mvneta_rx_error(pp, rx_desc);
1961 			/* leave the descriptor untouched */
1962 			continue;
1963 		}
1964 
1965 		if (rx_bytes <= rx_copybreak) {
1966 		/* better copy a small frame and not unmap the DMA region */
1967 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1968 			if (unlikely(!skb))
1969 				goto err_drop_frame;
1970 
1971 			dma_sync_single_range_for_cpu(dev->dev.parent,
1972 						      phys_addr,
1973 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1974 						      rx_bytes,
1975 						      DMA_FROM_DEVICE);
1976 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1977 				     rx_bytes);
1978 
1979 			skb->protocol = eth_type_trans(skb, dev);
1980 			mvneta_rx_csum(pp, rx_status, skb);
1981 			napi_gro_receive(&port->napi, skb);
1982 
1983 			rcvd_pkts++;
1984 			rcvd_bytes += rx_bytes;
1985 
1986 			/* leave the descriptor and buffer untouched */
1987 			continue;
1988 		}
1989 
1990 		/* Refill processing */
1991 		err = mvneta_rx_refill(pp, rx_desc, rxq);
1992 		if (err) {
1993 			netdev_err(dev, "Linux processing - Can't refill\n");
1994 			rxq->missed++;
1995 			goto err_drop_frame;
1996 		}
1997 
1998 		frag_size = pp->frag_size;
1999 
2000 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2001 
2002 		/* After refill old buffer has to be unmapped regardless
2003 		 * the skb is successfully built or not.
2004 		 */
2005 		dma_unmap_single(dev->dev.parent, phys_addr,
2006 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
2007 				 DMA_FROM_DEVICE);
2008 
2009 		if (!skb)
2010 			goto err_drop_frame;
2011 
2012 		rcvd_pkts++;
2013 		rcvd_bytes += rx_bytes;
2014 
2015 		/* Linux processing */
2016 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2017 		skb_put(skb, rx_bytes);
2018 
2019 		skb->protocol = eth_type_trans(skb, dev);
2020 
2021 		mvneta_rx_csum(pp, rx_status, skb);
2022 
2023 		napi_gro_receive(&port->napi, skb);
2024 	}
2025 
2026 	if (rcvd_pkts) {
2027 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2028 
2029 		u64_stats_update_begin(&stats->syncp);
2030 		stats->rx_packets += rcvd_pkts;
2031 		stats->rx_bytes   += rcvd_bytes;
2032 		u64_stats_update_end(&stats->syncp);
2033 	}
2034 
2035 	/* Update rxq management counters */
2036 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2037 
2038 	return rx_done;
2039 }
2040 
2041 /* Main rx processing when using hardware buffer management */
2042 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2043 			  struct mvneta_rx_queue *rxq)
2044 {
2045 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2046 	struct net_device *dev = pp->dev;
2047 	int rx_done;
2048 	u32 rcvd_pkts = 0;
2049 	u32 rcvd_bytes = 0;
2050 
2051 	/* Get number of received packets */
2052 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2053 
2054 	if (rx_todo > rx_done)
2055 		rx_todo = rx_done;
2056 
2057 	rx_done = 0;
2058 
2059 	/* Fairness NAPI loop */
2060 	while (rx_done < rx_todo) {
2061 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2062 		struct mvneta_bm_pool *bm_pool = NULL;
2063 		struct sk_buff *skb;
2064 		unsigned char *data;
2065 		dma_addr_t phys_addr;
2066 		u32 rx_status, frag_size;
2067 		int rx_bytes, err;
2068 		u8 pool_id;
2069 
2070 		rx_done++;
2071 		rx_status = rx_desc->status;
2072 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2073 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2074 		phys_addr = rx_desc->buf_phys_addr;
2075 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2076 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2077 
2078 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2079 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2080 err_drop_frame_ret_pool:
2081 			/* Return the buffer to the pool */
2082 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2083 					      rx_desc->buf_phys_addr);
2084 err_drop_frame:
2085 			dev->stats.rx_errors++;
2086 			mvneta_rx_error(pp, rx_desc);
2087 			/* leave the descriptor untouched */
2088 			continue;
2089 		}
2090 
2091 		if (rx_bytes <= rx_copybreak) {
2092 			/* better copy a small frame and not unmap the DMA region */
2093 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2094 			if (unlikely(!skb))
2095 				goto err_drop_frame_ret_pool;
2096 
2097 			dma_sync_single_range_for_cpu(dev->dev.parent,
2098 			                              rx_desc->buf_phys_addr,
2099 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2100 			                              rx_bytes,
2101 			                              DMA_FROM_DEVICE);
2102 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2103 				     rx_bytes);
2104 
2105 			skb->protocol = eth_type_trans(skb, dev);
2106 			mvneta_rx_csum(pp, rx_status, skb);
2107 			napi_gro_receive(&port->napi, skb);
2108 
2109 			rcvd_pkts++;
2110 			rcvd_bytes += rx_bytes;
2111 
2112 			/* Return the buffer to the pool */
2113 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2114 					      rx_desc->buf_phys_addr);
2115 
2116 			/* leave the descriptor and buffer untouched */
2117 			continue;
2118 		}
2119 
2120 		/* Refill processing */
2121 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2122 		if (err) {
2123 			netdev_err(dev, "Linux processing - Can't refill\n");
2124 			rxq->missed++;
2125 			goto err_drop_frame_ret_pool;
2126 		}
2127 
2128 		frag_size = bm_pool->hwbm_pool.frag_size;
2129 
2130 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2131 
2132 		/* After refill old buffer has to be unmapped regardless
2133 		 * the skb is successfully built or not.
2134 		 */
2135 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2136 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2137 		if (!skb)
2138 			goto err_drop_frame;
2139 
2140 		rcvd_pkts++;
2141 		rcvd_bytes += rx_bytes;
2142 
2143 		/* Linux processing */
2144 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2145 		skb_put(skb, rx_bytes);
2146 
2147 		skb->protocol = eth_type_trans(skb, dev);
2148 
2149 		mvneta_rx_csum(pp, rx_status, skb);
2150 
2151 		napi_gro_receive(&port->napi, skb);
2152 	}
2153 
2154 	if (rcvd_pkts) {
2155 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2156 
2157 		u64_stats_update_begin(&stats->syncp);
2158 		stats->rx_packets += rcvd_pkts;
2159 		stats->rx_bytes   += rcvd_bytes;
2160 		u64_stats_update_end(&stats->syncp);
2161 	}
2162 
2163 	/* Update rxq management counters */
2164 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2165 
2166 	return rx_done;
2167 }
2168 
2169 static inline void
2170 mvneta_tso_put_hdr(struct sk_buff *skb,
2171 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2172 {
2173 	struct mvneta_tx_desc *tx_desc;
2174 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2175 
2176 	txq->tx_skb[txq->txq_put_index] = NULL;
2177 	tx_desc = mvneta_txq_next_desc_get(txq);
2178 	tx_desc->data_size = hdr_len;
2179 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2180 	tx_desc->command |= MVNETA_TXD_F_DESC;
2181 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2182 				 txq->txq_put_index * TSO_HEADER_SIZE;
2183 	mvneta_txq_inc_put(txq);
2184 }
2185 
2186 static inline int
2187 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2188 		    struct sk_buff *skb, char *data, int size,
2189 		    bool last_tcp, bool is_last)
2190 {
2191 	struct mvneta_tx_desc *tx_desc;
2192 
2193 	tx_desc = mvneta_txq_next_desc_get(txq);
2194 	tx_desc->data_size = size;
2195 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2196 						size, DMA_TO_DEVICE);
2197 	if (unlikely(dma_mapping_error(dev->dev.parent,
2198 		     tx_desc->buf_phys_addr))) {
2199 		mvneta_txq_desc_put(txq);
2200 		return -ENOMEM;
2201 	}
2202 
2203 	tx_desc->command = 0;
2204 	txq->tx_skb[txq->txq_put_index] = NULL;
2205 
2206 	if (last_tcp) {
2207 		/* last descriptor in the TCP packet */
2208 		tx_desc->command = MVNETA_TXD_L_DESC;
2209 
2210 		/* last descriptor in SKB */
2211 		if (is_last)
2212 			txq->tx_skb[txq->txq_put_index] = skb;
2213 	}
2214 	mvneta_txq_inc_put(txq);
2215 	return 0;
2216 }
2217 
2218 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2219 			 struct mvneta_tx_queue *txq)
2220 {
2221 	int total_len, data_left;
2222 	int desc_count = 0;
2223 	struct mvneta_port *pp = netdev_priv(dev);
2224 	struct tso_t tso;
2225 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2226 	int i;
2227 
2228 	/* Count needed descriptors */
2229 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2230 		return 0;
2231 
2232 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2233 		pr_info("*** Is this even  possible???!?!?\n");
2234 		return 0;
2235 	}
2236 
2237 	/* Initialize the TSO handler, and prepare the first payload */
2238 	tso_start(skb, &tso);
2239 
2240 	total_len = skb->len - hdr_len;
2241 	while (total_len > 0) {
2242 		char *hdr;
2243 
2244 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2245 		total_len -= data_left;
2246 		desc_count++;
2247 
2248 		/* prepare packet headers: MAC + IP + TCP */
2249 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2250 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2251 
2252 		mvneta_tso_put_hdr(skb, pp, txq);
2253 
2254 		while (data_left > 0) {
2255 			int size;
2256 			desc_count++;
2257 
2258 			size = min_t(int, tso.size, data_left);
2259 
2260 			if (mvneta_tso_put_data(dev, txq, skb,
2261 						 tso.data, size,
2262 						 size == data_left,
2263 						 total_len == 0))
2264 				goto err_release;
2265 			data_left -= size;
2266 
2267 			tso_build_data(skb, &tso, size);
2268 		}
2269 	}
2270 
2271 	return desc_count;
2272 
2273 err_release:
2274 	/* Release all used data descriptors; header descriptors must not
2275 	 * be DMA-unmapped.
2276 	 */
2277 	for (i = desc_count - 1; i >= 0; i--) {
2278 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2279 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2280 			dma_unmap_single(pp->dev->dev.parent,
2281 					 tx_desc->buf_phys_addr,
2282 					 tx_desc->data_size,
2283 					 DMA_TO_DEVICE);
2284 		mvneta_txq_desc_put(txq);
2285 	}
2286 	return 0;
2287 }
2288 
2289 /* Handle tx fragmentation processing */
2290 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2291 				  struct mvneta_tx_queue *txq)
2292 {
2293 	struct mvneta_tx_desc *tx_desc;
2294 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2295 
2296 	for (i = 0; i < nr_frags; i++) {
2297 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2298 		void *addr = page_address(frag->page.p) + frag->page_offset;
2299 
2300 		tx_desc = mvneta_txq_next_desc_get(txq);
2301 		tx_desc->data_size = frag->size;
2302 
2303 		tx_desc->buf_phys_addr =
2304 			dma_map_single(pp->dev->dev.parent, addr,
2305 				       tx_desc->data_size, DMA_TO_DEVICE);
2306 
2307 		if (dma_mapping_error(pp->dev->dev.parent,
2308 				      tx_desc->buf_phys_addr)) {
2309 			mvneta_txq_desc_put(txq);
2310 			goto error;
2311 		}
2312 
2313 		if (i == nr_frags - 1) {
2314 			/* Last descriptor */
2315 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2316 			txq->tx_skb[txq->txq_put_index] = skb;
2317 		} else {
2318 			/* Descriptor in the middle: Not First, Not Last */
2319 			tx_desc->command = 0;
2320 			txq->tx_skb[txq->txq_put_index] = NULL;
2321 		}
2322 		mvneta_txq_inc_put(txq);
2323 	}
2324 
2325 	return 0;
2326 
2327 error:
2328 	/* Release all descriptors that were used to map fragments of
2329 	 * this packet, as well as the corresponding DMA mappings
2330 	 */
2331 	for (i = i - 1; i >= 0; i--) {
2332 		tx_desc = txq->descs + i;
2333 		dma_unmap_single(pp->dev->dev.parent,
2334 				 tx_desc->buf_phys_addr,
2335 				 tx_desc->data_size,
2336 				 DMA_TO_DEVICE);
2337 		mvneta_txq_desc_put(txq);
2338 	}
2339 
2340 	return -ENOMEM;
2341 }
2342 
2343 /* Main tx processing */
2344 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2345 {
2346 	struct mvneta_port *pp = netdev_priv(dev);
2347 	u16 txq_id = skb_get_queue_mapping(skb);
2348 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2349 	struct mvneta_tx_desc *tx_desc;
2350 	int len = skb->len;
2351 	int frags = 0;
2352 	u32 tx_cmd;
2353 
2354 	if (!netif_running(dev))
2355 		goto out;
2356 
2357 	if (skb_is_gso(skb)) {
2358 		frags = mvneta_tx_tso(skb, dev, txq);
2359 		goto out;
2360 	}
2361 
2362 	frags = skb_shinfo(skb)->nr_frags + 1;
2363 
2364 	/* Get a descriptor for the first part of the packet */
2365 	tx_desc = mvneta_txq_next_desc_get(txq);
2366 
2367 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2368 
2369 	tx_desc->data_size = skb_headlen(skb);
2370 
2371 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2372 						tx_desc->data_size,
2373 						DMA_TO_DEVICE);
2374 	if (unlikely(dma_mapping_error(dev->dev.parent,
2375 				       tx_desc->buf_phys_addr))) {
2376 		mvneta_txq_desc_put(txq);
2377 		frags = 0;
2378 		goto out;
2379 	}
2380 
2381 	if (frags == 1) {
2382 		/* First and Last descriptor */
2383 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2384 		tx_desc->command = tx_cmd;
2385 		txq->tx_skb[txq->txq_put_index] = skb;
2386 		mvneta_txq_inc_put(txq);
2387 	} else {
2388 		/* First but not Last */
2389 		tx_cmd |= MVNETA_TXD_F_DESC;
2390 		txq->tx_skb[txq->txq_put_index] = NULL;
2391 		mvneta_txq_inc_put(txq);
2392 		tx_desc->command = tx_cmd;
2393 		/* Continue with other skb fragments */
2394 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2395 			dma_unmap_single(dev->dev.parent,
2396 					 tx_desc->buf_phys_addr,
2397 					 tx_desc->data_size,
2398 					 DMA_TO_DEVICE);
2399 			mvneta_txq_desc_put(txq);
2400 			frags = 0;
2401 			goto out;
2402 		}
2403 	}
2404 
2405 out:
2406 	if (frags > 0) {
2407 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2408 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2409 
2410 		netdev_tx_sent_queue(nq, len);
2411 
2412 		txq->count += frags;
2413 		if (txq->count >= txq->tx_stop_threshold)
2414 			netif_tx_stop_queue(nq);
2415 
2416 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2417 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2418 			mvneta_txq_pend_desc_add(pp, txq, frags);
2419 		else
2420 			txq->pending += frags;
2421 
2422 		u64_stats_update_begin(&stats->syncp);
2423 		stats->tx_packets++;
2424 		stats->tx_bytes  += len;
2425 		u64_stats_update_end(&stats->syncp);
2426 	} else {
2427 		dev->stats.tx_dropped++;
2428 		dev_kfree_skb_any(skb);
2429 	}
2430 
2431 	return NETDEV_TX_OK;
2432 }
2433 
2434 
2435 /* Free tx resources, when resetting a port */
2436 static void mvneta_txq_done_force(struct mvneta_port *pp,
2437 				  struct mvneta_tx_queue *txq)
2438 
2439 {
2440 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2441 	int tx_done = txq->count;
2442 
2443 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2444 
2445 	/* reset txq */
2446 	txq->count = 0;
2447 	txq->txq_put_index = 0;
2448 	txq->txq_get_index = 0;
2449 }
2450 
2451 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2452  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2453  */
2454 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2455 {
2456 	struct mvneta_tx_queue *txq;
2457 	struct netdev_queue *nq;
2458 
2459 	while (cause_tx_done) {
2460 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2461 
2462 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2463 		__netif_tx_lock(nq, smp_processor_id());
2464 
2465 		if (txq->count)
2466 			mvneta_txq_done(pp, txq);
2467 
2468 		__netif_tx_unlock(nq);
2469 		cause_tx_done &= ~((1 << txq->id));
2470 	}
2471 }
2472 
2473 /* Compute crc8 of the specified address, using a unique algorithm ,
2474  * according to hw spec, different than generic crc8 algorithm
2475  */
2476 static int mvneta_addr_crc(unsigned char *addr)
2477 {
2478 	int crc = 0;
2479 	int i;
2480 
2481 	for (i = 0; i < ETH_ALEN; i++) {
2482 		int j;
2483 
2484 		crc = (crc ^ addr[i]) << 8;
2485 		for (j = 7; j >= 0; j--) {
2486 			if (crc & (0x100 << j))
2487 				crc ^= 0x107 << j;
2488 		}
2489 	}
2490 
2491 	return crc;
2492 }
2493 
2494 /* This method controls the net device special MAC multicast support.
2495  * The Special Multicast Table for MAC addresses supports MAC of the form
2496  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2497  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2498  * Table entries in the DA-Filter table. This method set the Special
2499  * Multicast Table appropriate entry.
2500  */
2501 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2502 					  unsigned char last_byte,
2503 					  int queue)
2504 {
2505 	unsigned int smc_table_reg;
2506 	unsigned int tbl_offset;
2507 	unsigned int reg_offset;
2508 
2509 	/* Register offset from SMC table base    */
2510 	tbl_offset = (last_byte / 4);
2511 	/* Entry offset within the above reg */
2512 	reg_offset = last_byte % 4;
2513 
2514 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2515 					+ tbl_offset * 4));
2516 
2517 	if (queue == -1)
2518 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2519 	else {
2520 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2521 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2522 	}
2523 
2524 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2525 		    smc_table_reg);
2526 }
2527 
2528 /* This method controls the network device Other MAC multicast support.
2529  * The Other Multicast Table is used for multicast of another type.
2530  * A CRC-8 is used as an index to the Other Multicast Table entries
2531  * in the DA-Filter table.
2532  * The method gets the CRC-8 value from the calling routine and
2533  * sets the Other Multicast Table appropriate entry according to the
2534  * specified CRC-8 .
2535  */
2536 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2537 					unsigned char crc8,
2538 					int queue)
2539 {
2540 	unsigned int omc_table_reg;
2541 	unsigned int tbl_offset;
2542 	unsigned int reg_offset;
2543 
2544 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2545 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2546 
2547 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2548 
2549 	if (queue == -1) {
2550 		/* Clear accepts frame bit at specified Other DA table entry */
2551 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2552 	} else {
2553 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2554 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2555 	}
2556 
2557 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2558 }
2559 
2560 /* The network device supports multicast using two tables:
2561  *    1) Special Multicast Table for MAC addresses of the form
2562  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2563  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2564  *       Table entries in the DA-Filter table.
2565  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2566  *       is used as an index to the Other Multicast Table entries in the
2567  *       DA-Filter table.
2568  */
2569 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2570 				 int queue)
2571 {
2572 	unsigned char crc_result = 0;
2573 
2574 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2575 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2576 		return 0;
2577 	}
2578 
2579 	crc_result = mvneta_addr_crc(p_addr);
2580 	if (queue == -1) {
2581 		if (pp->mcast_count[crc_result] == 0) {
2582 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2583 				    crc_result);
2584 			return -EINVAL;
2585 		}
2586 
2587 		pp->mcast_count[crc_result]--;
2588 		if (pp->mcast_count[crc_result] != 0) {
2589 			netdev_info(pp->dev,
2590 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2591 				    pp->mcast_count[crc_result], crc_result);
2592 			return -EINVAL;
2593 		}
2594 	} else
2595 		pp->mcast_count[crc_result]++;
2596 
2597 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2598 
2599 	return 0;
2600 }
2601 
2602 /* Configure Fitering mode of Ethernet port */
2603 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2604 					  int is_promisc)
2605 {
2606 	u32 port_cfg_reg, val;
2607 
2608 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2609 
2610 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2611 
2612 	/* Set / Clear UPM bit in port configuration register */
2613 	if (is_promisc) {
2614 		/* Accept all Unicast addresses */
2615 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2616 		val |= MVNETA_FORCE_UNI;
2617 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2618 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2619 	} else {
2620 		/* Reject all Unicast addresses */
2621 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2622 		val &= ~MVNETA_FORCE_UNI;
2623 	}
2624 
2625 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2626 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2627 }
2628 
2629 /* register unicast and multicast addresses */
2630 static void mvneta_set_rx_mode(struct net_device *dev)
2631 {
2632 	struct mvneta_port *pp = netdev_priv(dev);
2633 	struct netdev_hw_addr *ha;
2634 
2635 	if (dev->flags & IFF_PROMISC) {
2636 		/* Accept all: Multicast + Unicast */
2637 		mvneta_rx_unicast_promisc_set(pp, 1);
2638 		mvneta_set_ucast_table(pp, pp->rxq_def);
2639 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2640 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2641 	} else {
2642 		/* Accept single Unicast */
2643 		mvneta_rx_unicast_promisc_set(pp, 0);
2644 		mvneta_set_ucast_table(pp, -1);
2645 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2646 
2647 		if (dev->flags & IFF_ALLMULTI) {
2648 			/* Accept all multicast */
2649 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2650 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2651 		} else {
2652 			/* Accept only initialized multicast */
2653 			mvneta_set_special_mcast_table(pp, -1);
2654 			mvneta_set_other_mcast_table(pp, -1);
2655 
2656 			if (!netdev_mc_empty(dev)) {
2657 				netdev_for_each_mc_addr(ha, dev) {
2658 					mvneta_mcast_addr_set(pp, ha->addr,
2659 							      pp->rxq_def);
2660 				}
2661 			}
2662 		}
2663 	}
2664 }
2665 
2666 /* Interrupt handling - the callback for request_irq() */
2667 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2668 {
2669 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2670 
2671 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2672 	napi_schedule(&pp->napi);
2673 
2674 	return IRQ_HANDLED;
2675 }
2676 
2677 /* Interrupt handling - the callback for request_percpu_irq() */
2678 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2679 {
2680 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2681 
2682 	disable_percpu_irq(port->pp->dev->irq);
2683 	napi_schedule(&port->napi);
2684 
2685 	return IRQ_HANDLED;
2686 }
2687 
2688 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2689 				    struct phy_device *phy)
2690 {
2691 	struct fixed_phy_status status;
2692 	struct fixed_phy_status changed = {};
2693 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2694 
2695 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2696 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2697 		status.speed = SPEED_1000;
2698 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2699 		status.speed = SPEED_100;
2700 	else
2701 		status.speed = SPEED_10;
2702 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2703 	changed.link = 1;
2704 	changed.speed = 1;
2705 	changed.duplex = 1;
2706 	fixed_phy_update_state(phy, &status, &changed);
2707 	return 0;
2708 }
2709 
2710 /* NAPI handler
2711  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2712  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2713  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2714  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2715  * Each CPU has its own causeRxTx register
2716  */
2717 static int mvneta_poll(struct napi_struct *napi, int budget)
2718 {
2719 	int rx_done = 0;
2720 	u32 cause_rx_tx;
2721 	int rx_queue;
2722 	struct mvneta_port *pp = netdev_priv(napi->dev);
2723 	struct net_device *ndev = pp->dev;
2724 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2725 
2726 	if (!netif_running(pp->dev)) {
2727 		napi_complete(napi);
2728 		return rx_done;
2729 	}
2730 
2731 	/* Read cause register */
2732 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2733 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2734 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2735 
2736 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2737 		if (pp->use_inband_status && (cause_misc &
2738 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2739 				 MVNETA_CAUSE_LINK_CHANGE |
2740 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2741 			mvneta_fixed_link_update(pp, ndev->phydev);
2742 		}
2743 	}
2744 
2745 	/* Release Tx descriptors */
2746 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2747 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2748 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2749 	}
2750 
2751 	/* For the case where the last mvneta_poll did not process all
2752 	 * RX packets
2753 	 */
2754 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2755 
2756 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2757 		port->cause_rx_tx;
2758 
2759 	if (rx_queue) {
2760 		rx_queue = rx_queue - 1;
2761 		if (pp->bm_priv)
2762 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2763 		else
2764 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2765 	}
2766 
2767 	if (rx_done < budget) {
2768 		cause_rx_tx = 0;
2769 		napi_complete_done(napi, rx_done);
2770 
2771 		if (pp->neta_armada3700) {
2772 			unsigned long flags;
2773 
2774 			local_irq_save(flags);
2775 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2776 				    MVNETA_RX_INTR_MASK(rxq_number) |
2777 				    MVNETA_TX_INTR_MASK(txq_number) |
2778 				    MVNETA_MISCINTR_INTR_MASK);
2779 			local_irq_restore(flags);
2780 		} else {
2781 			enable_percpu_irq(pp->dev->irq, 0);
2782 		}
2783 	}
2784 
2785 	if (pp->neta_armada3700)
2786 		pp->cause_rx_tx = cause_rx_tx;
2787 	else
2788 		port->cause_rx_tx = cause_rx_tx;
2789 
2790 	return rx_done;
2791 }
2792 
2793 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2794 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2795 			   int num)
2796 {
2797 	int i;
2798 
2799 	for (i = 0; i < num; i++) {
2800 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2801 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2802 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2803 				__func__, rxq->id, i, num);
2804 			break;
2805 		}
2806 	}
2807 
2808 	/* Add this number of RX descriptors as non occupied (ready to
2809 	 * get packets)
2810 	 */
2811 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2812 
2813 	return i;
2814 }
2815 
2816 /* Free all packets pending transmit from all TXQs and reset TX port */
2817 static void mvneta_tx_reset(struct mvneta_port *pp)
2818 {
2819 	int queue;
2820 
2821 	/* free the skb's in the tx ring */
2822 	for (queue = 0; queue < txq_number; queue++)
2823 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2824 
2825 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2826 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2827 }
2828 
2829 static void mvneta_rx_reset(struct mvneta_port *pp)
2830 {
2831 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2832 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2833 }
2834 
2835 /* Rx/Tx queue initialization/cleanup methods */
2836 
2837 /* Create a specified RX queue */
2838 static int mvneta_rxq_init(struct mvneta_port *pp,
2839 			   struct mvneta_rx_queue *rxq)
2840 
2841 {
2842 	rxq->size = pp->rx_ring_size;
2843 
2844 	/* Allocate memory for RX descriptors */
2845 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2846 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2847 					&rxq->descs_phys, GFP_KERNEL);
2848 	if (!rxq->descs)
2849 		return -ENOMEM;
2850 
2851 	rxq->last_desc = rxq->size - 1;
2852 
2853 	/* Set Rx descriptors queue starting address */
2854 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2855 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2856 
2857 	/* Set Offset */
2858 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2859 
2860 	/* Set coalescing pkts and time */
2861 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2862 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2863 
2864 	if (!pp->bm_priv) {
2865 		/* Fill RXQ with buffers from RX pool */
2866 		mvneta_rxq_buf_size_set(pp, rxq,
2867 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2868 		mvneta_rxq_bm_disable(pp, rxq);
2869 		mvneta_rxq_fill(pp, rxq, rxq->size);
2870 	} else {
2871 		mvneta_rxq_bm_enable(pp, rxq);
2872 		mvneta_rxq_long_pool_set(pp, rxq);
2873 		mvneta_rxq_short_pool_set(pp, rxq);
2874 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 /* Cleanup Rx queue */
2881 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2882 			      struct mvneta_rx_queue *rxq)
2883 {
2884 	mvneta_rxq_drop_pkts(pp, rxq);
2885 
2886 	if (rxq->descs)
2887 		dma_free_coherent(pp->dev->dev.parent,
2888 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2889 				  rxq->descs,
2890 				  rxq->descs_phys);
2891 
2892 	rxq->descs             = NULL;
2893 	rxq->last_desc         = 0;
2894 	rxq->next_desc_to_proc = 0;
2895 	rxq->descs_phys        = 0;
2896 }
2897 
2898 /* Create and initialize a tx queue */
2899 static int mvneta_txq_init(struct mvneta_port *pp,
2900 			   struct mvneta_tx_queue *txq)
2901 {
2902 	int cpu;
2903 
2904 	txq->size = pp->tx_ring_size;
2905 
2906 	/* A queue must always have room for at least one skb.
2907 	 * Therefore, stop the queue when the free entries reaches
2908 	 * the maximum number of descriptors per skb.
2909 	 */
2910 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2911 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2912 
2913 
2914 	/* Allocate memory for TX descriptors */
2915 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2916 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2917 					&txq->descs_phys, GFP_KERNEL);
2918 	if (!txq->descs)
2919 		return -ENOMEM;
2920 
2921 	txq->last_desc = txq->size - 1;
2922 
2923 	/* Set maximum bandwidth for enabled TXQs */
2924 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2925 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2926 
2927 	/* Set Tx descriptors queue starting address */
2928 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2929 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2930 
2931 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2932 				    GFP_KERNEL);
2933 	if (!txq->tx_skb) {
2934 		dma_free_coherent(pp->dev->dev.parent,
2935 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2936 				  txq->descs, txq->descs_phys);
2937 		return -ENOMEM;
2938 	}
2939 
2940 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2941 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2942 					   txq->size * TSO_HEADER_SIZE,
2943 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2944 	if (!txq->tso_hdrs) {
2945 		kfree(txq->tx_skb);
2946 		dma_free_coherent(pp->dev->dev.parent,
2947 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2948 				  txq->descs, txq->descs_phys);
2949 		return -ENOMEM;
2950 	}
2951 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2952 
2953 	/* Setup XPS mapping */
2954 	if (txq_number > 1)
2955 		cpu = txq->id % num_present_cpus();
2956 	else
2957 		cpu = pp->rxq_def % num_present_cpus();
2958 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2959 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2960 
2961 	return 0;
2962 }
2963 
2964 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2965 static void mvneta_txq_deinit(struct mvneta_port *pp,
2966 			      struct mvneta_tx_queue *txq)
2967 {
2968 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2969 
2970 	kfree(txq->tx_skb);
2971 
2972 	if (txq->tso_hdrs)
2973 		dma_free_coherent(pp->dev->dev.parent,
2974 				  txq->size * TSO_HEADER_SIZE,
2975 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2976 	if (txq->descs)
2977 		dma_free_coherent(pp->dev->dev.parent,
2978 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2979 				  txq->descs, txq->descs_phys);
2980 
2981 	netdev_tx_reset_queue(nq);
2982 
2983 	txq->descs             = NULL;
2984 	txq->last_desc         = 0;
2985 	txq->next_desc_to_proc = 0;
2986 	txq->descs_phys        = 0;
2987 
2988 	/* Set minimum bandwidth for disabled TXQs */
2989 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2990 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2991 
2992 	/* Set Tx descriptors queue starting address and size */
2993 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2994 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2995 }
2996 
2997 /* Cleanup all Tx queues */
2998 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2999 {
3000 	int queue;
3001 
3002 	for (queue = 0; queue < txq_number; queue++)
3003 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3004 }
3005 
3006 /* Cleanup all Rx queues */
3007 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3008 {
3009 	int queue;
3010 
3011 	for (queue = 0; queue < txq_number; queue++)
3012 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3013 }
3014 
3015 
3016 /* Init all Rx queues */
3017 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3018 {
3019 	int queue;
3020 
3021 	for (queue = 0; queue < rxq_number; queue++) {
3022 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3023 
3024 		if (err) {
3025 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3026 				   __func__, queue);
3027 			mvneta_cleanup_rxqs(pp);
3028 			return err;
3029 		}
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 /* Init all tx queues */
3036 static int mvneta_setup_txqs(struct mvneta_port *pp)
3037 {
3038 	int queue;
3039 
3040 	for (queue = 0; queue < txq_number; queue++) {
3041 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3042 		if (err) {
3043 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3044 				   __func__, queue);
3045 			mvneta_cleanup_txqs(pp);
3046 			return err;
3047 		}
3048 	}
3049 
3050 	return 0;
3051 }
3052 
3053 static void mvneta_start_dev(struct mvneta_port *pp)
3054 {
3055 	int cpu;
3056 	struct net_device *ndev = pp->dev;
3057 
3058 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3059 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3060 
3061 	/* start the Rx/Tx activity */
3062 	mvneta_port_enable(pp);
3063 
3064 	if (!pp->neta_armada3700) {
3065 		/* Enable polling on the port */
3066 		for_each_online_cpu(cpu) {
3067 			struct mvneta_pcpu_port *port =
3068 				per_cpu_ptr(pp->ports, cpu);
3069 
3070 			napi_enable(&port->napi);
3071 		}
3072 	} else {
3073 		napi_enable(&pp->napi);
3074 	}
3075 
3076 	/* Unmask interrupts. It has to be done from each CPU */
3077 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3078 
3079 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3080 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3081 		    MVNETA_CAUSE_LINK_CHANGE |
3082 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3083 
3084 	phy_start(ndev->phydev);
3085 	netif_tx_start_all_queues(pp->dev);
3086 }
3087 
3088 static void mvneta_stop_dev(struct mvneta_port *pp)
3089 {
3090 	unsigned int cpu;
3091 	struct net_device *ndev = pp->dev;
3092 
3093 	phy_stop(ndev->phydev);
3094 
3095 	if (!pp->neta_armada3700) {
3096 		for_each_online_cpu(cpu) {
3097 			struct mvneta_pcpu_port *port =
3098 				per_cpu_ptr(pp->ports, cpu);
3099 
3100 			napi_disable(&port->napi);
3101 		}
3102 	} else {
3103 		napi_disable(&pp->napi);
3104 	}
3105 
3106 	netif_carrier_off(pp->dev);
3107 
3108 	mvneta_port_down(pp);
3109 	netif_tx_stop_all_queues(pp->dev);
3110 
3111 	/* Stop the port activity */
3112 	mvneta_port_disable(pp);
3113 
3114 	/* Clear all ethernet port interrupts */
3115 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3116 
3117 	/* Mask all ethernet port interrupts */
3118 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3119 
3120 	mvneta_tx_reset(pp);
3121 	mvneta_rx_reset(pp);
3122 }
3123 
3124 static void mvneta_percpu_enable(void *arg)
3125 {
3126 	struct mvneta_port *pp = arg;
3127 
3128 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3129 }
3130 
3131 static void mvneta_percpu_disable(void *arg)
3132 {
3133 	struct mvneta_port *pp = arg;
3134 
3135 	disable_percpu_irq(pp->dev->irq);
3136 }
3137 
3138 /* Change the device mtu */
3139 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3140 {
3141 	struct mvneta_port *pp = netdev_priv(dev);
3142 	int ret;
3143 
3144 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3145 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3146 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3147 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3148 	}
3149 
3150 	dev->mtu = mtu;
3151 
3152 	if (!netif_running(dev)) {
3153 		if (pp->bm_priv)
3154 			mvneta_bm_update_mtu(pp, mtu);
3155 
3156 		netdev_update_features(dev);
3157 		return 0;
3158 	}
3159 
3160 	/* The interface is running, so we have to force a
3161 	 * reallocation of the queues
3162 	 */
3163 	mvneta_stop_dev(pp);
3164 	on_each_cpu(mvneta_percpu_disable, pp, true);
3165 
3166 	mvneta_cleanup_txqs(pp);
3167 	mvneta_cleanup_rxqs(pp);
3168 
3169 	if (pp->bm_priv)
3170 		mvneta_bm_update_mtu(pp, mtu);
3171 
3172 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3173 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3174 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3175 
3176 	ret = mvneta_setup_rxqs(pp);
3177 	if (ret) {
3178 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3179 		return ret;
3180 	}
3181 
3182 	ret = mvneta_setup_txqs(pp);
3183 	if (ret) {
3184 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3185 		return ret;
3186 	}
3187 
3188 	on_each_cpu(mvneta_percpu_enable, pp, true);
3189 	mvneta_start_dev(pp);
3190 	mvneta_port_up(pp);
3191 
3192 	netdev_update_features(dev);
3193 
3194 	return 0;
3195 }
3196 
3197 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3198 					     netdev_features_t features)
3199 {
3200 	struct mvneta_port *pp = netdev_priv(dev);
3201 
3202 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3203 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3204 		netdev_info(dev,
3205 			    "Disable IP checksum for MTU greater than %dB\n",
3206 			    pp->tx_csum_limit);
3207 	}
3208 
3209 	return features;
3210 }
3211 
3212 /* Get mac address */
3213 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3214 {
3215 	u32 mac_addr_l, mac_addr_h;
3216 
3217 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3218 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3219 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3220 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3221 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3222 	addr[3] = mac_addr_h & 0xFF;
3223 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3224 	addr[5] = mac_addr_l & 0xFF;
3225 }
3226 
3227 /* Handle setting mac address */
3228 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3229 {
3230 	struct mvneta_port *pp = netdev_priv(dev);
3231 	struct sockaddr *sockaddr = addr;
3232 	int ret;
3233 
3234 	ret = eth_prepare_mac_addr_change(dev, addr);
3235 	if (ret < 0)
3236 		return ret;
3237 	/* Remove previous address table entry */
3238 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3239 
3240 	/* Set new addr in hw */
3241 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3242 
3243 	eth_commit_mac_addr_change(dev, addr);
3244 	return 0;
3245 }
3246 
3247 static void mvneta_adjust_link(struct net_device *ndev)
3248 {
3249 	struct mvneta_port *pp = netdev_priv(ndev);
3250 	struct phy_device *phydev = ndev->phydev;
3251 	int status_change = 0;
3252 
3253 	if (phydev->link) {
3254 		if ((pp->speed != phydev->speed) ||
3255 		    (pp->duplex != phydev->duplex)) {
3256 			u32 val;
3257 
3258 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3259 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3260 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3261 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3262 
3263 			if (phydev->duplex)
3264 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3265 
3266 			if (phydev->speed == SPEED_1000)
3267 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3268 			else if (phydev->speed == SPEED_100)
3269 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3270 
3271 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3272 
3273 			pp->duplex = phydev->duplex;
3274 			pp->speed  = phydev->speed;
3275 		}
3276 	}
3277 
3278 	if (phydev->link != pp->link) {
3279 		if (!phydev->link) {
3280 			pp->duplex = -1;
3281 			pp->speed = 0;
3282 		}
3283 
3284 		pp->link = phydev->link;
3285 		status_change = 1;
3286 	}
3287 
3288 	if (status_change) {
3289 		if (phydev->link) {
3290 			if (!pp->use_inband_status) {
3291 				u32 val = mvreg_read(pp,
3292 						  MVNETA_GMAC_AUTONEG_CONFIG);
3293 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3294 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
3295 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3296 					    val);
3297 			}
3298 			mvneta_port_up(pp);
3299 		} else {
3300 			if (!pp->use_inband_status) {
3301 				u32 val = mvreg_read(pp,
3302 						  MVNETA_GMAC_AUTONEG_CONFIG);
3303 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3304 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3305 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3306 					    val);
3307 			}
3308 			mvneta_port_down(pp);
3309 		}
3310 		phy_print_status(phydev);
3311 	}
3312 }
3313 
3314 static int mvneta_mdio_probe(struct mvneta_port *pp)
3315 {
3316 	struct phy_device *phy_dev;
3317 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3318 
3319 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3320 				 pp->phy_interface);
3321 	if (!phy_dev) {
3322 		netdev_err(pp->dev, "could not find the PHY\n");
3323 		return -ENODEV;
3324 	}
3325 
3326 	phy_ethtool_get_wol(phy_dev, &wol);
3327 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3328 
3329 	phy_dev->supported &= PHY_GBIT_FEATURES;
3330 	phy_dev->advertising = phy_dev->supported;
3331 
3332 	pp->link    = 0;
3333 	pp->duplex  = 0;
3334 	pp->speed   = 0;
3335 
3336 	return 0;
3337 }
3338 
3339 static void mvneta_mdio_remove(struct mvneta_port *pp)
3340 {
3341 	struct net_device *ndev = pp->dev;
3342 
3343 	phy_disconnect(ndev->phydev);
3344 }
3345 
3346 /* Electing a CPU must be done in an atomic way: it should be done
3347  * after or before the removal/insertion of a CPU and this function is
3348  * not reentrant.
3349  */
3350 static void mvneta_percpu_elect(struct mvneta_port *pp)
3351 {
3352 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3353 
3354 	/* Use the cpu associated to the rxq when it is online, in all
3355 	 * the other cases, use the cpu 0 which can't be offline.
3356 	 */
3357 	if (cpu_online(pp->rxq_def))
3358 		elected_cpu = pp->rxq_def;
3359 
3360 	max_cpu = num_present_cpus();
3361 
3362 	for_each_online_cpu(cpu) {
3363 		int rxq_map = 0, txq_map = 0;
3364 		int rxq;
3365 
3366 		for (rxq = 0; rxq < rxq_number; rxq++)
3367 			if ((rxq % max_cpu) == cpu)
3368 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3369 
3370 		if (cpu == elected_cpu)
3371 			/* Map the default receive queue queue to the
3372 			 * elected CPU
3373 			 */
3374 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3375 
3376 		/* We update the TX queue map only if we have one
3377 		 * queue. In this case we associate the TX queue to
3378 		 * the CPU bound to the default RX queue
3379 		 */
3380 		if (txq_number == 1)
3381 			txq_map = (cpu == elected_cpu) ?
3382 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3383 		else
3384 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3385 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3386 
3387 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3388 
3389 		/* Update the interrupt mask on each CPU according the
3390 		 * new mapping
3391 		 */
3392 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3393 					 pp, true);
3394 		i++;
3395 
3396 	}
3397 };
3398 
3399 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3400 {
3401 	int other_cpu;
3402 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3403 						  node_online);
3404 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3405 
3406 
3407 	spin_lock(&pp->lock);
3408 	/*
3409 	 * Configuring the driver for a new CPU while the driver is
3410 	 * stopping is racy, so just avoid it.
3411 	 */
3412 	if (pp->is_stopped) {
3413 		spin_unlock(&pp->lock);
3414 		return 0;
3415 	}
3416 	netif_tx_stop_all_queues(pp->dev);
3417 
3418 	/*
3419 	 * We have to synchronise on tha napi of each CPU except the one
3420 	 * just being woken up
3421 	 */
3422 	for_each_online_cpu(other_cpu) {
3423 		if (other_cpu != cpu) {
3424 			struct mvneta_pcpu_port *other_port =
3425 				per_cpu_ptr(pp->ports, other_cpu);
3426 
3427 			napi_synchronize(&other_port->napi);
3428 		}
3429 	}
3430 
3431 	/* Mask all ethernet port interrupts */
3432 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3433 	napi_enable(&port->napi);
3434 
3435 	/*
3436 	 * Enable per-CPU interrupts on the CPU that is
3437 	 * brought up.
3438 	 */
3439 	mvneta_percpu_enable(pp);
3440 
3441 	/*
3442 	 * Enable per-CPU interrupt on the one CPU we care
3443 	 * about.
3444 	 */
3445 	mvneta_percpu_elect(pp);
3446 
3447 	/* Unmask all ethernet port interrupts */
3448 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3449 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3450 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3451 		    MVNETA_CAUSE_LINK_CHANGE |
3452 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3453 	netif_tx_start_all_queues(pp->dev);
3454 	spin_unlock(&pp->lock);
3455 	return 0;
3456 }
3457 
3458 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3459 {
3460 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3461 						  node_online);
3462 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3463 
3464 	/*
3465 	 * Thanks to this lock we are sure that any pending cpu election is
3466 	 * done.
3467 	 */
3468 	spin_lock(&pp->lock);
3469 	/* Mask all ethernet port interrupts */
3470 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3471 	spin_unlock(&pp->lock);
3472 
3473 	napi_synchronize(&port->napi);
3474 	napi_disable(&port->napi);
3475 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3476 	mvneta_percpu_disable(pp);
3477 	return 0;
3478 }
3479 
3480 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3481 {
3482 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3483 						  node_dead);
3484 
3485 	/* Check if a new CPU must be elected now this on is down */
3486 	spin_lock(&pp->lock);
3487 	mvneta_percpu_elect(pp);
3488 	spin_unlock(&pp->lock);
3489 	/* Unmask all ethernet port interrupts */
3490 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3491 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3492 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3493 		    MVNETA_CAUSE_LINK_CHANGE |
3494 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3495 	netif_tx_start_all_queues(pp->dev);
3496 	return 0;
3497 }
3498 
3499 static int mvneta_open(struct net_device *dev)
3500 {
3501 	struct mvneta_port *pp = netdev_priv(dev);
3502 	int ret;
3503 
3504 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3505 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3506 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3507 
3508 	ret = mvneta_setup_rxqs(pp);
3509 	if (ret)
3510 		return ret;
3511 
3512 	ret = mvneta_setup_txqs(pp);
3513 	if (ret)
3514 		goto err_cleanup_rxqs;
3515 
3516 	/* Connect to port interrupt line */
3517 	if (pp->neta_armada3700)
3518 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3519 				  dev->name, pp);
3520 	else
3521 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3522 					 dev->name, pp->ports);
3523 	if (ret) {
3524 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3525 		goto err_cleanup_txqs;
3526 	}
3527 
3528 	if (!pp->neta_armada3700) {
3529 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3530 		 * queue interrupts
3531 		 */
3532 		on_each_cpu(mvneta_percpu_enable, pp, true);
3533 
3534 		pp->is_stopped = false;
3535 		/* Register a CPU notifier to handle the case where our CPU
3536 		 * might be taken offline.
3537 		 */
3538 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3539 						       &pp->node_online);
3540 		if (ret)
3541 			goto err_free_irq;
3542 
3543 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3544 						       &pp->node_dead);
3545 		if (ret)
3546 			goto err_free_online_hp;
3547 	}
3548 
3549 	/* In default link is down */
3550 	netif_carrier_off(pp->dev);
3551 
3552 	ret = mvneta_mdio_probe(pp);
3553 	if (ret < 0) {
3554 		netdev_err(dev, "cannot probe MDIO bus\n");
3555 		goto err_free_dead_hp;
3556 	}
3557 
3558 	mvneta_start_dev(pp);
3559 
3560 	return 0;
3561 
3562 err_free_dead_hp:
3563 	if (!pp->neta_armada3700)
3564 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3565 						    &pp->node_dead);
3566 err_free_online_hp:
3567 	if (!pp->neta_armada3700)
3568 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3569 						    &pp->node_online);
3570 err_free_irq:
3571 	if (pp->neta_armada3700) {
3572 		free_irq(pp->dev->irq, pp);
3573 	} else {
3574 		on_each_cpu(mvneta_percpu_disable, pp, true);
3575 		free_percpu_irq(pp->dev->irq, pp->ports);
3576 	}
3577 err_cleanup_txqs:
3578 	mvneta_cleanup_txqs(pp);
3579 err_cleanup_rxqs:
3580 	mvneta_cleanup_rxqs(pp);
3581 	return ret;
3582 }
3583 
3584 /* Stop the port, free port interrupt line */
3585 static int mvneta_stop(struct net_device *dev)
3586 {
3587 	struct mvneta_port *pp = netdev_priv(dev);
3588 
3589 	if (!pp->neta_armada3700) {
3590 		/* Inform that we are stopping so we don't want to setup the
3591 		 * driver for new CPUs in the notifiers. The code of the
3592 		 * notifier for CPU online is protected by the same spinlock,
3593 		 * so when we get the lock, the notifer work is done.
3594 		 */
3595 		spin_lock(&pp->lock);
3596 		pp->is_stopped = true;
3597 		spin_unlock(&pp->lock);
3598 
3599 		mvneta_stop_dev(pp);
3600 		mvneta_mdio_remove(pp);
3601 
3602 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3603 						    &pp->node_online);
3604 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3605 						    &pp->node_dead);
3606 		on_each_cpu(mvneta_percpu_disable, pp, true);
3607 		free_percpu_irq(dev->irq, pp->ports);
3608 	} else {
3609 		mvneta_stop_dev(pp);
3610 		mvneta_mdio_remove(pp);
3611 		free_irq(dev->irq, pp);
3612 	}
3613 
3614 	mvneta_cleanup_rxqs(pp);
3615 	mvneta_cleanup_txqs(pp);
3616 
3617 	return 0;
3618 }
3619 
3620 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3621 {
3622 	if (!dev->phydev)
3623 		return -ENOTSUPP;
3624 
3625 	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3626 }
3627 
3628 /* Ethtool methods */
3629 
3630 /* Set link ksettings (phy address, speed) for ethtools */
3631 static int
3632 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3633 				  const struct ethtool_link_ksettings *cmd)
3634 {
3635 	struct mvneta_port *pp = netdev_priv(ndev);
3636 	struct phy_device *phydev = ndev->phydev;
3637 
3638 	if (!phydev)
3639 		return -ENODEV;
3640 
3641 	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3642 		u32 val;
3643 
3644 		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3645 
3646 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3647 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3648 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3649 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3650 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3651 
3652 			if (phydev->duplex)
3653 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3654 
3655 			if (phydev->speed == SPEED_1000)
3656 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3657 			else if (phydev->speed == SPEED_100)
3658 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3659 
3660 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3661 		}
3662 
3663 		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3664 		netdev_info(pp->dev, "autoneg status set to %i\n",
3665 			    pp->use_inband_status);
3666 
3667 		if (netif_running(ndev)) {
3668 			mvneta_port_down(pp);
3669 			mvneta_port_up(pp);
3670 		}
3671 	}
3672 
3673 	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3674 }
3675 
3676 /* Set interrupt coalescing for ethtools */
3677 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3678 				       struct ethtool_coalesce *c)
3679 {
3680 	struct mvneta_port *pp = netdev_priv(dev);
3681 	int queue;
3682 
3683 	for (queue = 0; queue < rxq_number; queue++) {
3684 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3685 		rxq->time_coal = c->rx_coalesce_usecs;
3686 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3687 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3688 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3689 	}
3690 
3691 	for (queue = 0; queue < txq_number; queue++) {
3692 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3693 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3694 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3695 	}
3696 
3697 	return 0;
3698 }
3699 
3700 /* get coalescing for ethtools */
3701 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3702 				       struct ethtool_coalesce *c)
3703 {
3704 	struct mvneta_port *pp = netdev_priv(dev);
3705 
3706 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3707 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3708 
3709 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3710 	return 0;
3711 }
3712 
3713 
3714 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3715 				    struct ethtool_drvinfo *drvinfo)
3716 {
3717 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3718 		sizeof(drvinfo->driver));
3719 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3720 		sizeof(drvinfo->version));
3721 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3722 		sizeof(drvinfo->bus_info));
3723 }
3724 
3725 
3726 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3727 					 struct ethtool_ringparam *ring)
3728 {
3729 	struct mvneta_port *pp = netdev_priv(netdev);
3730 
3731 	ring->rx_max_pending = MVNETA_MAX_RXD;
3732 	ring->tx_max_pending = MVNETA_MAX_TXD;
3733 	ring->rx_pending = pp->rx_ring_size;
3734 	ring->tx_pending = pp->tx_ring_size;
3735 }
3736 
3737 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3738 					struct ethtool_ringparam *ring)
3739 {
3740 	struct mvneta_port *pp = netdev_priv(dev);
3741 
3742 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3743 		return -EINVAL;
3744 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3745 		ring->rx_pending : MVNETA_MAX_RXD;
3746 
3747 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3748 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3749 	if (pp->tx_ring_size != ring->tx_pending)
3750 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3751 			    pp->tx_ring_size, ring->tx_pending);
3752 
3753 	if (netif_running(dev)) {
3754 		mvneta_stop(dev);
3755 		if (mvneta_open(dev)) {
3756 			netdev_err(dev,
3757 				   "error on opening device after ring param change\n");
3758 			return -ENOMEM;
3759 		}
3760 	}
3761 
3762 	return 0;
3763 }
3764 
3765 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3766 				       u8 *data)
3767 {
3768 	if (sset == ETH_SS_STATS) {
3769 		int i;
3770 
3771 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3772 			memcpy(data + i * ETH_GSTRING_LEN,
3773 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3774 	}
3775 }
3776 
3777 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3778 {
3779 	const struct mvneta_statistic *s;
3780 	void __iomem *base = pp->base;
3781 	u32 high, low, val;
3782 	u64 val64;
3783 	int i;
3784 
3785 	for (i = 0, s = mvneta_statistics;
3786 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3787 	     s++, i++) {
3788 		switch (s->type) {
3789 		case T_REG_32:
3790 			val = readl_relaxed(base + s->offset);
3791 			pp->ethtool_stats[i] += val;
3792 			break;
3793 		case T_REG_64:
3794 			/* Docs say to read low 32-bit then high */
3795 			low = readl_relaxed(base + s->offset);
3796 			high = readl_relaxed(base + s->offset + 4);
3797 			val64 = (u64)high << 32 | low;
3798 			pp->ethtool_stats[i] += val64;
3799 			break;
3800 		}
3801 	}
3802 }
3803 
3804 static void mvneta_ethtool_get_stats(struct net_device *dev,
3805 				     struct ethtool_stats *stats, u64 *data)
3806 {
3807 	struct mvneta_port *pp = netdev_priv(dev);
3808 	int i;
3809 
3810 	mvneta_ethtool_update_stats(pp);
3811 
3812 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3813 		*data++ = pp->ethtool_stats[i];
3814 }
3815 
3816 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3817 {
3818 	if (sset == ETH_SS_STATS)
3819 		return ARRAY_SIZE(mvneta_statistics);
3820 	return -EOPNOTSUPP;
3821 }
3822 
3823 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3824 {
3825 	return MVNETA_RSS_LU_TABLE_SIZE;
3826 }
3827 
3828 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3829 				    struct ethtool_rxnfc *info,
3830 				    u32 *rules __always_unused)
3831 {
3832 	switch (info->cmd) {
3833 	case ETHTOOL_GRXRINGS:
3834 		info->data =  rxq_number;
3835 		return 0;
3836 	case ETHTOOL_GRXFH:
3837 		return -EOPNOTSUPP;
3838 	default:
3839 		return -EOPNOTSUPP;
3840 	}
3841 }
3842 
3843 static int  mvneta_config_rss(struct mvneta_port *pp)
3844 {
3845 	int cpu;
3846 	u32 val;
3847 
3848 	netif_tx_stop_all_queues(pp->dev);
3849 
3850 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3851 
3852 	/* We have to synchronise on the napi of each CPU */
3853 	for_each_online_cpu(cpu) {
3854 		struct mvneta_pcpu_port *pcpu_port =
3855 			per_cpu_ptr(pp->ports, cpu);
3856 
3857 		napi_synchronize(&pcpu_port->napi);
3858 		napi_disable(&pcpu_port->napi);
3859 	}
3860 
3861 	pp->rxq_def = pp->indir[0];
3862 
3863 	/* Update unicast mapping */
3864 	mvneta_set_rx_mode(pp->dev);
3865 
3866 	/* Update val of portCfg register accordingly with all RxQueue types */
3867 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3868 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3869 
3870 	/* Update the elected CPU matching the new rxq_def */
3871 	spin_lock(&pp->lock);
3872 	mvneta_percpu_elect(pp);
3873 	spin_unlock(&pp->lock);
3874 
3875 	/* We have to synchronise on the napi of each CPU */
3876 	for_each_online_cpu(cpu) {
3877 		struct mvneta_pcpu_port *pcpu_port =
3878 			per_cpu_ptr(pp->ports, cpu);
3879 
3880 		napi_enable(&pcpu_port->napi);
3881 	}
3882 
3883 	netif_tx_start_all_queues(pp->dev);
3884 
3885 	return 0;
3886 }
3887 
3888 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3889 				   const u8 *key, const u8 hfunc)
3890 {
3891 	struct mvneta_port *pp = netdev_priv(dev);
3892 
3893 	/* Current code for Armada 3700 doesn't support RSS features yet */
3894 	if (pp->neta_armada3700)
3895 		return -EOPNOTSUPP;
3896 
3897 	/* We require at least one supported parameter to be changed
3898 	 * and no change in any of the unsupported parameters
3899 	 */
3900 	if (key ||
3901 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3902 		return -EOPNOTSUPP;
3903 
3904 	if (!indir)
3905 		return 0;
3906 
3907 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3908 
3909 	return mvneta_config_rss(pp);
3910 }
3911 
3912 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3913 				   u8 *hfunc)
3914 {
3915 	struct mvneta_port *pp = netdev_priv(dev);
3916 
3917 	/* Current code for Armada 3700 doesn't support RSS features yet */
3918 	if (pp->neta_armada3700)
3919 		return -EOPNOTSUPP;
3920 
3921 	if (hfunc)
3922 		*hfunc = ETH_RSS_HASH_TOP;
3923 
3924 	if (!indir)
3925 		return 0;
3926 
3927 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3928 
3929 	return 0;
3930 }
3931 
3932 static void mvneta_ethtool_get_wol(struct net_device *dev,
3933 				   struct ethtool_wolinfo *wol)
3934 {
3935 	wol->supported = 0;
3936 	wol->wolopts = 0;
3937 
3938 	if (dev->phydev)
3939 		phy_ethtool_get_wol(dev->phydev, wol);
3940 }
3941 
3942 static int mvneta_ethtool_set_wol(struct net_device *dev,
3943 				  struct ethtool_wolinfo *wol)
3944 {
3945 	int ret;
3946 
3947 	if (!dev->phydev)
3948 		return -EOPNOTSUPP;
3949 
3950 	ret = phy_ethtool_set_wol(dev->phydev, wol);
3951 	if (!ret)
3952 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
3953 
3954 	return ret;
3955 }
3956 
3957 static const struct net_device_ops mvneta_netdev_ops = {
3958 	.ndo_open            = mvneta_open,
3959 	.ndo_stop            = mvneta_stop,
3960 	.ndo_start_xmit      = mvneta_tx,
3961 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3962 	.ndo_set_mac_address = mvneta_set_mac_addr,
3963 	.ndo_change_mtu      = mvneta_change_mtu,
3964 	.ndo_fix_features    = mvneta_fix_features,
3965 	.ndo_get_stats64     = mvneta_get_stats64,
3966 	.ndo_do_ioctl        = mvneta_ioctl,
3967 };
3968 
3969 static const struct ethtool_ops mvneta_eth_tool_ops = {
3970 	.nway_reset	= phy_ethtool_nway_reset,
3971 	.get_link       = ethtool_op_get_link,
3972 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3973 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3974 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3975 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3976 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3977 	.get_strings	= mvneta_ethtool_get_strings,
3978 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3979 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3980 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3981 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3982 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3983 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3984 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
3985 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3986 	.get_wol        = mvneta_ethtool_get_wol,
3987 	.set_wol        = mvneta_ethtool_set_wol,
3988 };
3989 
3990 /* Initialize hw */
3991 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3992 {
3993 	int queue;
3994 
3995 	/* Disable port */
3996 	mvneta_port_disable(pp);
3997 
3998 	/* Set port default values */
3999 	mvneta_defaults_set(pp);
4000 
4001 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4002 	if (!pp->txqs)
4003 		return -ENOMEM;
4004 
4005 	/* Initialize TX descriptor rings */
4006 	for (queue = 0; queue < txq_number; queue++) {
4007 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4008 		txq->id = queue;
4009 		txq->size = pp->tx_ring_size;
4010 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4011 	}
4012 
4013 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4014 	if (!pp->rxqs)
4015 		return -ENOMEM;
4016 
4017 	/* Create Rx descriptor rings */
4018 	for (queue = 0; queue < rxq_number; queue++) {
4019 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4020 		rxq->id = queue;
4021 		rxq->size = pp->rx_ring_size;
4022 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4023 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4024 		rxq->buf_virt_addr
4025 			= devm_kmalloc_array(pp->dev->dev.parent,
4026 					     rxq->size,
4027 					     sizeof(*rxq->buf_virt_addr),
4028 					     GFP_KERNEL);
4029 		if (!rxq->buf_virt_addr)
4030 			return -ENOMEM;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 /* platform glue : initialize decoding windows */
4037 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4038 				     const struct mbus_dram_target_info *dram)
4039 {
4040 	u32 win_enable;
4041 	u32 win_protect;
4042 	int i;
4043 
4044 	for (i = 0; i < 6; i++) {
4045 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4046 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4047 
4048 		if (i < 4)
4049 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4050 	}
4051 
4052 	win_enable = 0x3f;
4053 	win_protect = 0;
4054 
4055 	if (dram) {
4056 		for (i = 0; i < dram->num_cs; i++) {
4057 			const struct mbus_dram_window *cs = dram->cs + i;
4058 
4059 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4060 				    (cs->base & 0xffff0000) |
4061 				    (cs->mbus_attr << 8) |
4062 				    dram->mbus_dram_target_id);
4063 
4064 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4065 				    (cs->size - 1) & 0xffff0000);
4066 
4067 			win_enable &= ~(1 << i);
4068 			win_protect |= 3 << (2 * i);
4069 		}
4070 	} else {
4071 		/* For Armada3700 open default 4GB Mbus window, leaving
4072 		 * arbitration of target/attribute to a different layer
4073 		 * of configuration.
4074 		 */
4075 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4076 		win_enable &= ~BIT(0);
4077 		win_protect = 3;
4078 	}
4079 
4080 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4081 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4082 }
4083 
4084 /* Power up the port */
4085 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4086 {
4087 	u32 ctrl;
4088 
4089 	/* MAC Cause register should be cleared */
4090 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4091 
4092 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4093 
4094 	/* Even though it might look weird, when we're configured in
4095 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4096 	 */
4097 	switch(phy_mode) {
4098 	case PHY_INTERFACE_MODE_QSGMII:
4099 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4100 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4101 		break;
4102 	case PHY_INTERFACE_MODE_SGMII:
4103 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4104 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4105 		break;
4106 	case PHY_INTERFACE_MODE_RGMII:
4107 	case PHY_INTERFACE_MODE_RGMII_ID:
4108 	case PHY_INTERFACE_MODE_RGMII_RXID:
4109 	case PHY_INTERFACE_MODE_RGMII_TXID:
4110 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
4111 		break;
4112 	default:
4113 		return -EINVAL;
4114 	}
4115 
4116 	/* Cancel Port Reset */
4117 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4118 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4119 
4120 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4121 		MVNETA_GMAC2_PORT_RESET) != 0)
4122 		continue;
4123 
4124 	return 0;
4125 }
4126 
4127 /* Device initialization routine */
4128 static int mvneta_probe(struct platform_device *pdev)
4129 {
4130 	struct resource *res;
4131 	struct device_node *dn = pdev->dev.of_node;
4132 	struct device_node *phy_node;
4133 	struct device_node *bm_node;
4134 	struct mvneta_port *pp;
4135 	struct net_device *dev;
4136 	const char *dt_mac_addr;
4137 	char hw_mac_addr[ETH_ALEN];
4138 	const char *mac_from;
4139 	const char *managed;
4140 	int tx_csum_limit;
4141 	int phy_mode;
4142 	int err;
4143 	int cpu;
4144 
4145 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4146 	if (!dev)
4147 		return -ENOMEM;
4148 
4149 	dev->irq = irq_of_parse_and_map(dn, 0);
4150 	if (dev->irq == 0) {
4151 		err = -EINVAL;
4152 		goto err_free_netdev;
4153 	}
4154 
4155 	phy_node = of_parse_phandle(dn, "phy", 0);
4156 	if (!phy_node) {
4157 		if (!of_phy_is_fixed_link(dn)) {
4158 			dev_err(&pdev->dev, "no PHY specified\n");
4159 			err = -ENODEV;
4160 			goto err_free_irq;
4161 		}
4162 
4163 		err = of_phy_register_fixed_link(dn);
4164 		if (err < 0) {
4165 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
4166 			goto err_free_irq;
4167 		}
4168 
4169 		/* In the case of a fixed PHY, the DT node associated
4170 		 * to the PHY is the Ethernet MAC DT node.
4171 		 */
4172 		phy_node = of_node_get(dn);
4173 	}
4174 
4175 	phy_mode = of_get_phy_mode(dn);
4176 	if (phy_mode < 0) {
4177 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4178 		err = -EINVAL;
4179 		goto err_put_phy_node;
4180 	}
4181 
4182 	dev->tx_queue_len = MVNETA_MAX_TXD;
4183 	dev->watchdog_timeo = 5 * HZ;
4184 	dev->netdev_ops = &mvneta_netdev_ops;
4185 
4186 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4187 
4188 	pp = netdev_priv(dev);
4189 	spin_lock_init(&pp->lock);
4190 	pp->phy_node = phy_node;
4191 	pp->phy_interface = phy_mode;
4192 
4193 	err = of_property_read_string(dn, "managed", &managed);
4194 	pp->use_inband_status = (err == 0 &&
4195 				 strcmp(managed, "in-band-status") == 0);
4196 
4197 	pp->rxq_def = rxq_def;
4198 
4199 	/* Set RX packet offset correction for platforms, whose
4200 	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4201 	 * platforms and 0B for 32-bit ones.
4202 	 */
4203 	pp->rx_offset_correction =
4204 		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4205 
4206 	pp->indir[0] = rxq_def;
4207 
4208 	/* Get special SoC configurations */
4209 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4210 		pp->neta_armada3700 = true;
4211 
4212 	pp->clk = devm_clk_get(&pdev->dev, "core");
4213 	if (IS_ERR(pp->clk))
4214 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4215 	if (IS_ERR(pp->clk)) {
4216 		err = PTR_ERR(pp->clk);
4217 		goto err_put_phy_node;
4218 	}
4219 
4220 	clk_prepare_enable(pp->clk);
4221 
4222 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4223 	if (!IS_ERR(pp->clk_bus))
4224 		clk_prepare_enable(pp->clk_bus);
4225 
4226 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4227 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4228 	if (IS_ERR(pp->base)) {
4229 		err = PTR_ERR(pp->base);
4230 		goto err_clk;
4231 	}
4232 
4233 	/* Alloc per-cpu port structure */
4234 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4235 	if (!pp->ports) {
4236 		err = -ENOMEM;
4237 		goto err_clk;
4238 	}
4239 
4240 	/* Alloc per-cpu stats */
4241 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4242 	if (!pp->stats) {
4243 		err = -ENOMEM;
4244 		goto err_free_ports;
4245 	}
4246 
4247 	dt_mac_addr = of_get_mac_address(dn);
4248 	if (dt_mac_addr) {
4249 		mac_from = "device tree";
4250 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4251 	} else {
4252 		mvneta_get_mac_addr(pp, hw_mac_addr);
4253 		if (is_valid_ether_addr(hw_mac_addr)) {
4254 			mac_from = "hardware";
4255 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4256 		} else {
4257 			mac_from = "random";
4258 			eth_hw_addr_random(dev);
4259 		}
4260 	}
4261 
4262 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4263 		if (tx_csum_limit < 0 ||
4264 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4265 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4266 			dev_info(&pdev->dev,
4267 				 "Wrong TX csum limit in DT, set to %dB\n",
4268 				 MVNETA_TX_CSUM_DEF_SIZE);
4269 		}
4270 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4271 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4272 	} else {
4273 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4274 	}
4275 
4276 	pp->tx_csum_limit = tx_csum_limit;
4277 
4278 	pp->dram_target_info = mv_mbus_dram_info();
4279 	/* Armada3700 requires setting default configuration of Mbus
4280 	 * windows, however without using filled mbus_dram_target_info
4281 	 * structure.
4282 	 */
4283 	if (pp->dram_target_info || pp->neta_armada3700)
4284 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4285 
4286 	pp->tx_ring_size = MVNETA_MAX_TXD;
4287 	pp->rx_ring_size = MVNETA_MAX_RXD;
4288 
4289 	pp->dev = dev;
4290 	SET_NETDEV_DEV(dev, &pdev->dev);
4291 
4292 	pp->id = global_port_id++;
4293 
4294 	/* Obtain access to BM resources if enabled and already initialized */
4295 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4296 	if (bm_node && bm_node->data) {
4297 		pp->bm_priv = bm_node->data;
4298 		err = mvneta_bm_port_init(pdev, pp);
4299 		if (err < 0) {
4300 			dev_info(&pdev->dev, "use SW buffer management\n");
4301 			pp->bm_priv = NULL;
4302 		}
4303 	}
4304 	of_node_put(bm_node);
4305 
4306 	err = mvneta_init(&pdev->dev, pp);
4307 	if (err < 0)
4308 		goto err_netdev;
4309 
4310 	err = mvneta_port_power_up(pp, phy_mode);
4311 	if (err < 0) {
4312 		dev_err(&pdev->dev, "can't power up port\n");
4313 		goto err_netdev;
4314 	}
4315 
4316 	/* Armada3700 network controller does not support per-cpu
4317 	 * operation, so only single NAPI should be initialized.
4318 	 */
4319 	if (pp->neta_armada3700) {
4320 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4321 	} else {
4322 		for_each_present_cpu(cpu) {
4323 			struct mvneta_pcpu_port *port =
4324 				per_cpu_ptr(pp->ports, cpu);
4325 
4326 			netif_napi_add(dev, &port->napi, mvneta_poll,
4327 				       NAPI_POLL_WEIGHT);
4328 			port->pp = pp;
4329 		}
4330 	}
4331 
4332 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4333 	dev->hw_features |= dev->features;
4334 	dev->vlan_features |= dev->features;
4335 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4336 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4337 
4338 	/* MTU range: 68 - 9676 */
4339 	dev->min_mtu = ETH_MIN_MTU;
4340 	/* 9676 == 9700 - 20 and rounding to 8 */
4341 	dev->max_mtu = 9676;
4342 
4343 	err = register_netdev(dev);
4344 	if (err < 0) {
4345 		dev_err(&pdev->dev, "failed to register\n");
4346 		goto err_free_stats;
4347 	}
4348 
4349 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4350 		    dev->dev_addr);
4351 
4352 	platform_set_drvdata(pdev, pp->dev);
4353 
4354 	if (pp->use_inband_status) {
4355 		struct phy_device *phy = of_phy_find_device(dn);
4356 
4357 		mvneta_fixed_link_update(pp, phy);
4358 
4359 		put_device(&phy->mdio.dev);
4360 	}
4361 
4362 	return 0;
4363 
4364 err_netdev:
4365 	unregister_netdev(dev);
4366 	if (pp->bm_priv) {
4367 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4368 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4369 				       1 << pp->id);
4370 	}
4371 err_free_stats:
4372 	free_percpu(pp->stats);
4373 err_free_ports:
4374 	free_percpu(pp->ports);
4375 err_clk:
4376 	clk_disable_unprepare(pp->clk_bus);
4377 	clk_disable_unprepare(pp->clk);
4378 err_put_phy_node:
4379 	of_node_put(phy_node);
4380 	if (of_phy_is_fixed_link(dn))
4381 		of_phy_deregister_fixed_link(dn);
4382 err_free_irq:
4383 	irq_dispose_mapping(dev->irq);
4384 err_free_netdev:
4385 	free_netdev(dev);
4386 	return err;
4387 }
4388 
4389 /* Device removal routine */
4390 static int mvneta_remove(struct platform_device *pdev)
4391 {
4392 	struct net_device  *dev = platform_get_drvdata(pdev);
4393 	struct device_node *dn = pdev->dev.of_node;
4394 	struct mvneta_port *pp = netdev_priv(dev);
4395 
4396 	unregister_netdev(dev);
4397 	clk_disable_unprepare(pp->clk_bus);
4398 	clk_disable_unprepare(pp->clk);
4399 	free_percpu(pp->ports);
4400 	free_percpu(pp->stats);
4401 	if (of_phy_is_fixed_link(dn))
4402 		of_phy_deregister_fixed_link(dn);
4403 	irq_dispose_mapping(dev->irq);
4404 	of_node_put(pp->phy_node);
4405 	free_netdev(dev);
4406 
4407 	if (pp->bm_priv) {
4408 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4409 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4410 				       1 << pp->id);
4411 	}
4412 
4413 	return 0;
4414 }
4415 
4416 #ifdef CONFIG_PM_SLEEP
4417 static int mvneta_suspend(struct device *device)
4418 {
4419 	struct net_device *dev = dev_get_drvdata(device);
4420 	struct mvneta_port *pp = netdev_priv(dev);
4421 
4422 	if (netif_running(dev))
4423 		mvneta_stop(dev);
4424 	netif_device_detach(dev);
4425 	clk_disable_unprepare(pp->clk_bus);
4426 	clk_disable_unprepare(pp->clk);
4427 	return 0;
4428 }
4429 
4430 static int mvneta_resume(struct device *device)
4431 {
4432 	struct platform_device *pdev = to_platform_device(device);
4433 	struct net_device *dev = dev_get_drvdata(device);
4434 	struct mvneta_port *pp = netdev_priv(dev);
4435 	int err;
4436 
4437 	clk_prepare_enable(pp->clk);
4438 	if (!IS_ERR(pp->clk_bus))
4439 		clk_prepare_enable(pp->clk_bus);
4440 	if (pp->dram_target_info || pp->neta_armada3700)
4441 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4442 	if (pp->bm_priv) {
4443 		err = mvneta_bm_port_init(pdev, pp);
4444 		if (err < 0) {
4445 			dev_info(&pdev->dev, "use SW buffer management\n");
4446 			pp->bm_priv = NULL;
4447 		}
4448 	}
4449 	mvneta_defaults_set(pp);
4450 	err = mvneta_port_power_up(pp, pp->phy_interface);
4451 	if (err < 0) {
4452 		dev_err(device, "can't power up port\n");
4453 		return err;
4454 	}
4455 
4456 	if (pp->use_inband_status)
4457 		mvneta_fixed_link_update(pp, dev->phydev);
4458 
4459 	netif_device_attach(dev);
4460 	if (netif_running(dev)) {
4461 		mvneta_open(dev);
4462 		mvneta_set_rx_mode(dev);
4463 	}
4464 
4465 	return 0;
4466 }
4467 #endif
4468 
4469 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4470 
4471 static const struct of_device_id mvneta_match[] = {
4472 	{ .compatible = "marvell,armada-370-neta" },
4473 	{ .compatible = "marvell,armada-xp-neta" },
4474 	{ .compatible = "marvell,armada-3700-neta" },
4475 	{ }
4476 };
4477 MODULE_DEVICE_TABLE(of, mvneta_match);
4478 
4479 static struct platform_driver mvneta_driver = {
4480 	.probe = mvneta_probe,
4481 	.remove = mvneta_remove,
4482 	.driver = {
4483 		.name = MVNETA_DRIVER_NAME,
4484 		.of_match_table = mvneta_match,
4485 		.pm = &mvneta_pm_ops,
4486 	},
4487 };
4488 
4489 static int __init mvneta_driver_init(void)
4490 {
4491 	int ret;
4492 
4493 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4494 				      mvneta_cpu_online,
4495 				      mvneta_cpu_down_prepare);
4496 	if (ret < 0)
4497 		goto out;
4498 	online_hpstate = ret;
4499 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4500 				      NULL, mvneta_cpu_dead);
4501 	if (ret)
4502 		goto err_dead;
4503 
4504 	ret = platform_driver_register(&mvneta_driver);
4505 	if (ret)
4506 		goto err;
4507 	return 0;
4508 
4509 err:
4510 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4511 err_dead:
4512 	cpuhp_remove_multi_state(online_hpstate);
4513 out:
4514 	return ret;
4515 }
4516 module_init(mvneta_driver_init);
4517 
4518 static void __exit mvneta_driver_exit(void)
4519 {
4520 	platform_driver_unregister(&mvneta_driver);
4521 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4522 	cpuhp_remove_multi_state(online_hpstate);
4523 }
4524 module_exit(mvneta_driver_exit);
4525 
4526 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4527 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4528 MODULE_LICENSE("GPL");
4529 
4530 module_param(rxq_number, int, S_IRUGO);
4531 module_param(txq_number, int, S_IRUGO);
4532 
4533 module_param(rxq_def, int, S_IRUGO);
4534 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4535