1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
334 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
335 
336 #define IS_TSO_HEADER(txq, addr) \
337 	((addr >= txq->tso_hdrs_phys) && \
338 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
339 
340 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
341 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
342 
343 enum {
344 	ETHTOOL_STAT_EEE_WAKEUP,
345 	ETHTOOL_STAT_SKB_ALLOC_ERR,
346 	ETHTOOL_STAT_REFILL_ERR,
347 	ETHTOOL_XDP_REDIRECT,
348 	ETHTOOL_XDP_PASS,
349 	ETHTOOL_XDP_DROP,
350 	ETHTOOL_XDP_TX,
351 	ETHTOOL_XDP_TX_ERR,
352 	ETHTOOL_XDP_XMIT,
353 	ETHTOOL_XDP_XMIT_ERR,
354 	ETHTOOL_MAX_STATS,
355 };
356 
357 struct mvneta_statistic {
358 	unsigned short offset;
359 	unsigned short type;
360 	const char name[ETH_GSTRING_LEN];
361 };
362 
363 #define T_REG_32	32
364 #define T_REG_64	64
365 #define T_SW		1
366 
367 #define MVNETA_XDP_PASS		0
368 #define MVNETA_XDP_DROPPED	BIT(0)
369 #define MVNETA_XDP_TX		BIT(1)
370 #define MVNETA_XDP_REDIR	BIT(2)
371 
372 static const struct mvneta_statistic mvneta_statistics[] = {
373 	{ 0x3000, T_REG_64, "good_octets_received", },
374 	{ 0x3010, T_REG_32, "good_frames_received", },
375 	{ 0x3008, T_REG_32, "bad_octets_received", },
376 	{ 0x3014, T_REG_32, "bad_frames_received", },
377 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
378 	{ 0x301c, T_REG_32, "multicast_frames_received", },
379 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
380 	{ 0x3058, T_REG_32, "good_fc_received", },
381 	{ 0x305c, T_REG_32, "bad_fc_received", },
382 	{ 0x3060, T_REG_32, "undersize_received", },
383 	{ 0x3064, T_REG_32, "fragments_received", },
384 	{ 0x3068, T_REG_32, "oversize_received", },
385 	{ 0x306c, T_REG_32, "jabber_received", },
386 	{ 0x3070, T_REG_32, "mac_receive_error", },
387 	{ 0x3074, T_REG_32, "bad_crc_event", },
388 	{ 0x3078, T_REG_32, "collision", },
389 	{ 0x307c, T_REG_32, "late_collision", },
390 	{ 0x2484, T_REG_32, "rx_discard", },
391 	{ 0x2488, T_REG_32, "rx_overrun", },
392 	{ 0x3020, T_REG_32, "frames_64_octets", },
393 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
394 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
395 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
396 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
397 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
398 	{ 0x3038, T_REG_64, "good_octets_sent", },
399 	{ 0x3040, T_REG_32, "good_frames_sent", },
400 	{ 0x3044, T_REG_32, "excessive_collision", },
401 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
402 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
403 	{ 0x3054, T_REG_32, "fc_sent", },
404 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
405 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
406 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
407 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
408 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
409 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
410 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
411 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
412 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
413 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
414 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
415 };
416 
417 struct mvneta_stats {
418 	u64	rx_packets;
419 	u64	rx_bytes;
420 	u64	tx_packets;
421 	u64	tx_bytes;
422 	/* xdp */
423 	u64	xdp_redirect;
424 	u64	xdp_pass;
425 	u64	xdp_drop;
426 	u64	xdp_xmit;
427 	u64	xdp_xmit_err;
428 	u64	xdp_tx;
429 	u64	xdp_tx_err;
430 };
431 
432 struct mvneta_ethtool_stats {
433 	struct mvneta_stats ps;
434 	u64	skb_alloc_error;
435 	u64	refill_error;
436 };
437 
438 struct mvneta_pcpu_stats {
439 	struct u64_stats_sync syncp;
440 
441 	struct mvneta_ethtool_stats es;
442 	u64	rx_dropped;
443 	u64	rx_errors;
444 };
445 
446 struct mvneta_pcpu_port {
447 	/* Pointer to the shared port */
448 	struct mvneta_port	*pp;
449 
450 	/* Pointer to the CPU-local NAPI struct */
451 	struct napi_struct	napi;
452 
453 	/* Cause of the previous interrupt */
454 	u32			cause_rx_tx;
455 };
456 
457 enum {
458 	__MVNETA_DOWN,
459 };
460 
461 struct mvneta_port {
462 	u8 id;
463 	struct mvneta_pcpu_port __percpu	*ports;
464 	struct mvneta_pcpu_stats __percpu	*stats;
465 
466 	unsigned long state;
467 
468 	int pkt_size;
469 	void __iomem *base;
470 	struct mvneta_rx_queue *rxqs;
471 	struct mvneta_tx_queue *txqs;
472 	struct net_device *dev;
473 	struct hlist_node node_online;
474 	struct hlist_node node_dead;
475 	int rxq_def;
476 	/* Protect the access to the percpu interrupt registers,
477 	 * ensuring that the configuration remains coherent.
478 	 */
479 	spinlock_t lock;
480 	bool is_stopped;
481 
482 	u32 cause_rx_tx;
483 	struct napi_struct napi;
484 
485 	struct bpf_prog *xdp_prog;
486 
487 	/* Core clock */
488 	struct clk *clk;
489 	/* AXI clock */
490 	struct clk *clk_bus;
491 	u8 mcast_count[256];
492 	u16 tx_ring_size;
493 	u16 rx_ring_size;
494 
495 	phy_interface_t phy_interface;
496 	struct device_node *dn;
497 	unsigned int tx_csum_limit;
498 	struct phylink *phylink;
499 	struct phylink_config phylink_config;
500 	struct phy *comphy;
501 
502 	struct mvneta_bm *bm_priv;
503 	struct mvneta_bm_pool *pool_long;
504 	struct mvneta_bm_pool *pool_short;
505 	int bm_win_id;
506 
507 	bool eee_enabled;
508 	bool eee_active;
509 	bool tx_lpi_enabled;
510 
511 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
512 
513 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
514 
515 	/* Flags for special SoC configurations */
516 	bool neta_armada3700;
517 	u16 rx_offset_correction;
518 	const struct mbus_dram_target_info *dram_target_info;
519 };
520 
521 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
522  * layout of the transmit and reception DMA descriptors, and their
523  * layout is therefore defined by the hardware design
524  */
525 
526 #define MVNETA_TX_L3_OFF_SHIFT	0
527 #define MVNETA_TX_IP_HLEN_SHIFT	8
528 #define MVNETA_TX_L4_UDP	BIT(16)
529 #define MVNETA_TX_L3_IP6	BIT(17)
530 #define MVNETA_TXD_IP_CSUM	BIT(18)
531 #define MVNETA_TXD_Z_PAD	BIT(19)
532 #define MVNETA_TXD_L_DESC	BIT(20)
533 #define MVNETA_TXD_F_DESC	BIT(21)
534 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
535 				 MVNETA_TXD_L_DESC | \
536 				 MVNETA_TXD_F_DESC)
537 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
538 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
539 
540 #define MVNETA_RXD_ERR_CRC		0x0
541 #define MVNETA_RXD_BM_POOL_SHIFT	13
542 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
543 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
544 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
545 #define MVNETA_RXD_ERR_LEN		BIT(18)
546 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
547 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
548 #define MVNETA_RXD_L3_IP4		BIT(25)
549 #define MVNETA_RXD_LAST_DESC		BIT(26)
550 #define MVNETA_RXD_FIRST_DESC		BIT(27)
551 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
552 					 MVNETA_RXD_LAST_DESC)
553 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
554 
555 #if defined(__LITTLE_ENDIAN)
556 struct mvneta_tx_desc {
557 	u32  command;		/* Options used by HW for packet transmitting.*/
558 	u16  reserved1;		/* csum_l4 (for future use)		*/
559 	u16  data_size;		/* Data size of transmitted packet in bytes */
560 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
561 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
562 	u32  reserved3[4];	/* Reserved - (for future use)		*/
563 };
564 
565 struct mvneta_rx_desc {
566 	u32  status;		/* Info about received packet		*/
567 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
568 	u16  data_size;		/* Size of received packet in bytes	*/
569 
570 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
571 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
572 
573 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
574 	u16  reserved3;		/* prefetch_cmd, for future use		*/
575 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
576 
577 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
578 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
579 };
580 #else
581 struct mvneta_tx_desc {
582 	u16  data_size;		/* Data size of transmitted packet in bytes */
583 	u16  reserved1;		/* csum_l4 (for future use)		*/
584 	u32  command;		/* Options used by HW for packet transmitting.*/
585 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
586 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
587 	u32  reserved3[4];	/* Reserved - (for future use)		*/
588 };
589 
590 struct mvneta_rx_desc {
591 	u16  data_size;		/* Size of received packet in bytes	*/
592 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
593 	u32  status;		/* Info about received packet		*/
594 
595 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
596 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
597 
598 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
599 	u16  reserved3;		/* prefetch_cmd, for future use		*/
600 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
601 
602 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
603 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
604 };
605 #endif
606 
607 enum mvneta_tx_buf_type {
608 	MVNETA_TYPE_SKB,
609 	MVNETA_TYPE_XDP_TX,
610 	MVNETA_TYPE_XDP_NDO,
611 };
612 
613 struct mvneta_tx_buf {
614 	enum mvneta_tx_buf_type type;
615 	union {
616 		struct xdp_frame *xdpf;
617 		struct sk_buff *skb;
618 	};
619 };
620 
621 struct mvneta_tx_queue {
622 	/* Number of this TX queue, in the range 0-7 */
623 	u8 id;
624 
625 	/* Number of TX DMA descriptors in the descriptor ring */
626 	int size;
627 
628 	/* Number of currently used TX DMA descriptor in the
629 	 * descriptor ring
630 	 */
631 	int count;
632 	int pending;
633 	int tx_stop_threshold;
634 	int tx_wake_threshold;
635 
636 	/* Array of transmitted buffers */
637 	struct mvneta_tx_buf *buf;
638 
639 	/* Index of last TX DMA descriptor that was inserted */
640 	int txq_put_index;
641 
642 	/* Index of the TX DMA descriptor to be cleaned up */
643 	int txq_get_index;
644 
645 	u32 done_pkts_coal;
646 
647 	/* Virtual address of the TX DMA descriptors array */
648 	struct mvneta_tx_desc *descs;
649 
650 	/* DMA address of the TX DMA descriptors array */
651 	dma_addr_t descs_phys;
652 
653 	/* Index of the last TX DMA descriptor */
654 	int last_desc;
655 
656 	/* Index of the next TX DMA descriptor to process */
657 	int next_desc_to_proc;
658 
659 	/* DMA buffers for TSO headers */
660 	char *tso_hdrs;
661 
662 	/* DMA address of TSO headers */
663 	dma_addr_t tso_hdrs_phys;
664 
665 	/* Affinity mask for CPUs*/
666 	cpumask_t affinity_mask;
667 };
668 
669 struct mvneta_rx_queue {
670 	/* rx queue number, in the range 0-7 */
671 	u8 id;
672 
673 	/* num of rx descriptors in the rx descriptor ring */
674 	int size;
675 
676 	u32 pkts_coal;
677 	u32 time_coal;
678 
679 	/* page_pool */
680 	struct page_pool *page_pool;
681 	struct xdp_rxq_info xdp_rxq;
682 
683 	/* Virtual address of the RX buffer */
684 	void  **buf_virt_addr;
685 
686 	/* Virtual address of the RX DMA descriptors array */
687 	struct mvneta_rx_desc *descs;
688 
689 	/* DMA address of the RX DMA descriptors array */
690 	dma_addr_t descs_phys;
691 
692 	/* Index of the last RX DMA descriptor */
693 	int last_desc;
694 
695 	/* Index of the next RX DMA descriptor to process */
696 	int next_desc_to_proc;
697 
698 	/* Index of first RX DMA descriptor to refill */
699 	int first_to_refill;
700 	u32 refill_num;
701 };
702 
703 static enum cpuhp_state online_hpstate;
704 /* The hardware supports eight (8) rx queues, but we are only allowing
705  * the first one to be used. Therefore, let's just allocate one queue.
706  */
707 static int rxq_number = 8;
708 static int txq_number = 8;
709 
710 static int rxq_def;
711 
712 static int rx_copybreak __read_mostly = 256;
713 
714 /* HW BM need that each port be identify by a unique ID */
715 static int global_port_id;
716 
717 #define MVNETA_DRIVER_NAME "mvneta"
718 #define MVNETA_DRIVER_VERSION "1.0"
719 
720 /* Utility/helper methods */
721 
722 /* Write helper method */
723 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
724 {
725 	writel(data, pp->base + offset);
726 }
727 
728 /* Read helper method */
729 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
730 {
731 	return readl(pp->base + offset);
732 }
733 
734 /* Increment txq get counter */
735 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
736 {
737 	txq->txq_get_index++;
738 	if (txq->txq_get_index == txq->size)
739 		txq->txq_get_index = 0;
740 }
741 
742 /* Increment txq put counter */
743 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
744 {
745 	txq->txq_put_index++;
746 	if (txq->txq_put_index == txq->size)
747 		txq->txq_put_index = 0;
748 }
749 
750 
751 /* Clear all MIB counters */
752 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
753 {
754 	int i;
755 	u32 dummy;
756 
757 	/* Perform dummy reads from MIB counters */
758 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
759 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
760 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
761 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
762 }
763 
764 /* Get System Network Statistics */
765 static void
766 mvneta_get_stats64(struct net_device *dev,
767 		   struct rtnl_link_stats64 *stats)
768 {
769 	struct mvneta_port *pp = netdev_priv(dev);
770 	unsigned int start;
771 	int cpu;
772 
773 	for_each_possible_cpu(cpu) {
774 		struct mvneta_pcpu_stats *cpu_stats;
775 		u64 rx_packets;
776 		u64 rx_bytes;
777 		u64 rx_dropped;
778 		u64 rx_errors;
779 		u64 tx_packets;
780 		u64 tx_bytes;
781 
782 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
783 		do {
784 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
785 			rx_packets = cpu_stats->es.ps.rx_packets;
786 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
787 			rx_dropped = cpu_stats->rx_dropped;
788 			rx_errors  = cpu_stats->rx_errors;
789 			tx_packets = cpu_stats->es.ps.tx_packets;
790 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
791 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
792 
793 		stats->rx_packets += rx_packets;
794 		stats->rx_bytes   += rx_bytes;
795 		stats->rx_dropped += rx_dropped;
796 		stats->rx_errors  += rx_errors;
797 		stats->tx_packets += tx_packets;
798 		stats->tx_bytes   += tx_bytes;
799 	}
800 
801 	stats->tx_dropped	= dev->stats.tx_dropped;
802 }
803 
804 /* Rx descriptors helper methods */
805 
806 /* Checks whether the RX descriptor having this status is both the first
807  * and the last descriptor for the RX packet. Each RX packet is currently
808  * received through a single RX descriptor, so not having each RX
809  * descriptor with its first and last bits set is an error
810  */
811 static int mvneta_rxq_desc_is_first_last(u32 status)
812 {
813 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
814 		MVNETA_RXD_FIRST_LAST_DESC;
815 }
816 
817 /* Add number of descriptors ready to receive new packets */
818 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
819 					  struct mvneta_rx_queue *rxq,
820 					  int ndescs)
821 {
822 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
823 	 * be added at once
824 	 */
825 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
826 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
827 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
828 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
829 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
830 	}
831 
832 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
833 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
834 }
835 
836 /* Get number of RX descriptors occupied by received packets */
837 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
838 					struct mvneta_rx_queue *rxq)
839 {
840 	u32 val;
841 
842 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
843 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
844 }
845 
846 /* Update num of rx desc called upon return from rx path or
847  * from mvneta_rxq_drop_pkts().
848  */
849 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
850 				       struct mvneta_rx_queue *rxq,
851 				       int rx_done, int rx_filled)
852 {
853 	u32 val;
854 
855 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
856 		val = rx_done |
857 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
858 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
859 		return;
860 	}
861 
862 	/* Only 255 descriptors can be added at once */
863 	while ((rx_done > 0) || (rx_filled > 0)) {
864 		if (rx_done <= 0xff) {
865 			val = rx_done;
866 			rx_done = 0;
867 		} else {
868 			val = 0xff;
869 			rx_done -= 0xff;
870 		}
871 		if (rx_filled <= 0xff) {
872 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
873 			rx_filled = 0;
874 		} else {
875 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
876 			rx_filled -= 0xff;
877 		}
878 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
879 	}
880 }
881 
882 /* Get pointer to next RX descriptor to be processed by SW */
883 static struct mvneta_rx_desc *
884 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
885 {
886 	int rx_desc = rxq->next_desc_to_proc;
887 
888 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
889 	prefetch(rxq->descs + rxq->next_desc_to_proc);
890 	return rxq->descs + rx_desc;
891 }
892 
893 /* Change maximum receive size of the port. */
894 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
895 {
896 	u32 val;
897 
898 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
899 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
900 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
901 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
902 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
903 }
904 
905 
906 /* Set rx queue offset */
907 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
908 				  struct mvneta_rx_queue *rxq,
909 				  int offset)
910 {
911 	u32 val;
912 
913 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
914 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
915 
916 	/* Offset is in */
917 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
918 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
919 }
920 
921 
922 /* Tx descriptors helper methods */
923 
924 /* Update HW with number of TX descriptors to be sent */
925 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
926 				     struct mvneta_tx_queue *txq,
927 				     int pend_desc)
928 {
929 	u32 val;
930 
931 	pend_desc += txq->pending;
932 
933 	/* Only 255 Tx descriptors can be added at once */
934 	do {
935 		val = min(pend_desc, 255);
936 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
937 		pend_desc -= val;
938 	} while (pend_desc > 0);
939 	txq->pending = 0;
940 }
941 
942 /* Get pointer to next TX descriptor to be processed (send) by HW */
943 static struct mvneta_tx_desc *
944 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
945 {
946 	int tx_desc = txq->next_desc_to_proc;
947 
948 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
949 	return txq->descs + tx_desc;
950 }
951 
952 /* Release the last allocated TX descriptor. Useful to handle DMA
953  * mapping failures in the TX path.
954  */
955 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
956 {
957 	if (txq->next_desc_to_proc == 0)
958 		txq->next_desc_to_proc = txq->last_desc - 1;
959 	else
960 		txq->next_desc_to_proc--;
961 }
962 
963 /* Set rxq buf size */
964 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
965 				    struct mvneta_rx_queue *rxq,
966 				    int buf_size)
967 {
968 	u32 val;
969 
970 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
971 
972 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
973 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
974 
975 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
976 }
977 
978 /* Disable buffer management (BM) */
979 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
980 				  struct mvneta_rx_queue *rxq)
981 {
982 	u32 val;
983 
984 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
985 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
986 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
987 }
988 
989 /* Enable buffer management (BM) */
990 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
991 				 struct mvneta_rx_queue *rxq)
992 {
993 	u32 val;
994 
995 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
996 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
997 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
998 }
999 
1000 /* Notify HW about port's assignment of pool for bigger packets */
1001 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1002 				     struct mvneta_rx_queue *rxq)
1003 {
1004 	u32 val;
1005 
1006 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1007 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1008 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1009 
1010 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1011 }
1012 
1013 /* Notify HW about port's assignment of pool for smaller packets */
1014 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1015 				      struct mvneta_rx_queue *rxq)
1016 {
1017 	u32 val;
1018 
1019 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1020 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1021 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1022 
1023 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1024 }
1025 
1026 /* Set port's receive buffer size for assigned BM pool */
1027 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1028 					      int buf_size,
1029 					      u8 pool_id)
1030 {
1031 	u32 val;
1032 
1033 	if (!IS_ALIGNED(buf_size, 8)) {
1034 		dev_warn(pp->dev->dev.parent,
1035 			 "illegal buf_size value %d, round to %d\n",
1036 			 buf_size, ALIGN(buf_size, 8));
1037 		buf_size = ALIGN(buf_size, 8);
1038 	}
1039 
1040 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1041 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1042 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1043 }
1044 
1045 /* Configure MBUS window in order to enable access BM internal SRAM */
1046 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1047 				  u8 target, u8 attr)
1048 {
1049 	u32 win_enable, win_protect;
1050 	int i;
1051 
1052 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1053 
1054 	if (pp->bm_win_id < 0) {
1055 		/* Find first not occupied window */
1056 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1057 			if (win_enable & (1 << i)) {
1058 				pp->bm_win_id = i;
1059 				break;
1060 			}
1061 		}
1062 		if (i == MVNETA_MAX_DECODE_WIN)
1063 			return -ENOMEM;
1064 	} else {
1065 		i = pp->bm_win_id;
1066 	}
1067 
1068 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1069 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1070 
1071 	if (i < 4)
1072 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1073 
1074 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1075 		    (attr << 8) | target);
1076 
1077 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1078 
1079 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1080 	win_protect |= 3 << (2 * i);
1081 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1082 
1083 	win_enable &= ~(1 << i);
1084 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1085 
1086 	return 0;
1087 }
1088 
1089 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1090 {
1091 	u32 wsize;
1092 	u8 target, attr;
1093 	int err;
1094 
1095 	/* Get BM window information */
1096 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1097 					 &target, &attr);
1098 	if (err < 0)
1099 		return err;
1100 
1101 	pp->bm_win_id = -1;
1102 
1103 	/* Open NETA -> BM window */
1104 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1105 				     target, attr);
1106 	if (err < 0) {
1107 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1108 		return err;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /* Assign and initialize pools for port. In case of fail
1114  * buffer manager will remain disabled for current port.
1115  */
1116 static int mvneta_bm_port_init(struct platform_device *pdev,
1117 			       struct mvneta_port *pp)
1118 {
1119 	struct device_node *dn = pdev->dev.of_node;
1120 	u32 long_pool_id, short_pool_id;
1121 
1122 	if (!pp->neta_armada3700) {
1123 		int ret;
1124 
1125 		ret = mvneta_bm_port_mbus_init(pp);
1126 		if (ret)
1127 			return ret;
1128 	}
1129 
1130 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1131 		netdev_info(pp->dev, "missing long pool id\n");
1132 		return -EINVAL;
1133 	}
1134 
1135 	/* Create port's long pool depending on mtu */
1136 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1137 					   MVNETA_BM_LONG, pp->id,
1138 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1139 	if (!pp->pool_long) {
1140 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1141 		return -ENOMEM;
1142 	}
1143 
1144 	pp->pool_long->port_map |= 1 << pp->id;
1145 
1146 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1147 				   pp->pool_long->id);
1148 
1149 	/* If short pool id is not defined, assume using single pool */
1150 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1151 		short_pool_id = long_pool_id;
1152 
1153 	/* Create port's short pool */
1154 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1155 					    MVNETA_BM_SHORT, pp->id,
1156 					    MVNETA_BM_SHORT_PKT_SIZE);
1157 	if (!pp->pool_short) {
1158 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1159 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1160 		return -ENOMEM;
1161 	}
1162 
1163 	if (short_pool_id != long_pool_id) {
1164 		pp->pool_short->port_map |= 1 << pp->id;
1165 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1166 					   pp->pool_short->id);
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /* Update settings of a pool for bigger packets */
1173 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1174 {
1175 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1176 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1177 	int num;
1178 
1179 	/* Release all buffers from long pool */
1180 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1181 	if (hwbm_pool->buf_num) {
1182 		WARN(1, "cannot free all buffers in pool %d\n",
1183 		     bm_pool->id);
1184 		goto bm_mtu_err;
1185 	}
1186 
1187 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1188 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1189 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1190 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1191 
1192 	/* Fill entire long pool */
1193 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1194 	if (num != hwbm_pool->size) {
1195 		WARN(1, "pool %d: %d of %d allocated\n",
1196 		     bm_pool->id, num, hwbm_pool->size);
1197 		goto bm_mtu_err;
1198 	}
1199 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1200 
1201 	return;
1202 
1203 bm_mtu_err:
1204 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1205 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1206 
1207 	pp->bm_priv = NULL;
1208 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1209 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1210 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1211 }
1212 
1213 /* Start the Ethernet port RX and TX activity */
1214 static void mvneta_port_up(struct mvneta_port *pp)
1215 {
1216 	int queue;
1217 	u32 q_map;
1218 
1219 	/* Enable all initialized TXs. */
1220 	q_map = 0;
1221 	for (queue = 0; queue < txq_number; queue++) {
1222 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1223 		if (txq->descs)
1224 			q_map |= (1 << queue);
1225 	}
1226 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1227 
1228 	q_map = 0;
1229 	/* Enable all initialized RXQs. */
1230 	for (queue = 0; queue < rxq_number; queue++) {
1231 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1232 
1233 		if (rxq->descs)
1234 			q_map |= (1 << queue);
1235 	}
1236 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1237 }
1238 
1239 /* Stop the Ethernet port activity */
1240 static void mvneta_port_down(struct mvneta_port *pp)
1241 {
1242 	u32 val;
1243 	int count;
1244 
1245 	/* Stop Rx port activity. Check port Rx activity. */
1246 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1247 
1248 	/* Issue stop command for active channels only */
1249 	if (val != 0)
1250 		mvreg_write(pp, MVNETA_RXQ_CMD,
1251 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1252 
1253 	/* Wait for all Rx activity to terminate. */
1254 	count = 0;
1255 	do {
1256 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1257 			netdev_warn(pp->dev,
1258 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1259 				    val);
1260 			break;
1261 		}
1262 		mdelay(1);
1263 
1264 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1265 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1266 
1267 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1268 	 * command for active channels only
1269 	 */
1270 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1271 
1272 	if (val != 0)
1273 		mvreg_write(pp, MVNETA_TXQ_CMD,
1274 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1275 
1276 	/* Wait for all Tx activity to terminate. */
1277 	count = 0;
1278 	do {
1279 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1280 			netdev_warn(pp->dev,
1281 				    "TIMEOUT for TX stopped status=0x%08x\n",
1282 				    val);
1283 			break;
1284 		}
1285 		mdelay(1);
1286 
1287 		/* Check TX Command reg that all Txqs are stopped */
1288 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1289 
1290 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1291 
1292 	/* Double check to verify that TX FIFO is empty */
1293 	count = 0;
1294 	do {
1295 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1296 			netdev_warn(pp->dev,
1297 				    "TX FIFO empty timeout status=0x%08x\n",
1298 				    val);
1299 			break;
1300 		}
1301 		mdelay(1);
1302 
1303 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1304 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1305 		 (val & MVNETA_TX_IN_PRGRS));
1306 
1307 	udelay(200);
1308 }
1309 
1310 /* Enable the port by setting the port enable bit of the MAC control register */
1311 static void mvneta_port_enable(struct mvneta_port *pp)
1312 {
1313 	u32 val;
1314 
1315 	/* Enable port */
1316 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1317 	val |= MVNETA_GMAC0_PORT_ENABLE;
1318 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1319 }
1320 
1321 /* Disable the port and wait for about 200 usec before retuning */
1322 static void mvneta_port_disable(struct mvneta_port *pp)
1323 {
1324 	u32 val;
1325 
1326 	/* Reset the Enable bit in the Serial Control Register */
1327 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1328 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1329 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1330 
1331 	udelay(200);
1332 }
1333 
1334 /* Multicast tables methods */
1335 
1336 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1337 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1338 {
1339 	int offset;
1340 	u32 val;
1341 
1342 	if (queue == -1) {
1343 		val = 0;
1344 	} else {
1345 		val = 0x1 | (queue << 1);
1346 		val |= (val << 24) | (val << 16) | (val << 8);
1347 	}
1348 
1349 	for (offset = 0; offset <= 0xc; offset += 4)
1350 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1351 }
1352 
1353 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1354 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1355 {
1356 	int offset;
1357 	u32 val;
1358 
1359 	if (queue == -1) {
1360 		val = 0;
1361 	} else {
1362 		val = 0x1 | (queue << 1);
1363 		val |= (val << 24) | (val << 16) | (val << 8);
1364 	}
1365 
1366 	for (offset = 0; offset <= 0xfc; offset += 4)
1367 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1368 
1369 }
1370 
1371 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1372 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1373 {
1374 	int offset;
1375 	u32 val;
1376 
1377 	if (queue == -1) {
1378 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1379 		val = 0;
1380 	} else {
1381 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1382 		val = 0x1 | (queue << 1);
1383 		val |= (val << 24) | (val << 16) | (val << 8);
1384 	}
1385 
1386 	for (offset = 0; offset <= 0xfc; offset += 4)
1387 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1388 }
1389 
1390 static void mvneta_percpu_unmask_interrupt(void *arg)
1391 {
1392 	struct mvneta_port *pp = arg;
1393 
1394 	/* All the queue are unmasked, but actually only the ones
1395 	 * mapped to this CPU will be unmasked
1396 	 */
1397 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1398 		    MVNETA_RX_INTR_MASK_ALL |
1399 		    MVNETA_TX_INTR_MASK_ALL |
1400 		    MVNETA_MISCINTR_INTR_MASK);
1401 }
1402 
1403 static void mvneta_percpu_mask_interrupt(void *arg)
1404 {
1405 	struct mvneta_port *pp = arg;
1406 
1407 	/* All the queue are masked, but actually only the ones
1408 	 * mapped to this CPU will be masked
1409 	 */
1410 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1411 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1412 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1413 }
1414 
1415 static void mvneta_percpu_clear_intr_cause(void *arg)
1416 {
1417 	struct mvneta_port *pp = arg;
1418 
1419 	/* All the queue are cleared, but actually only the ones
1420 	 * mapped to this CPU will be cleared
1421 	 */
1422 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1423 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1424 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1425 }
1426 
1427 /* This method sets defaults to the NETA port:
1428  *	Clears interrupt Cause and Mask registers.
1429  *	Clears all MAC tables.
1430  *	Sets defaults to all registers.
1431  *	Resets RX and TX descriptor rings.
1432  *	Resets PHY.
1433  * This method can be called after mvneta_port_down() to return the port
1434  *	settings to defaults.
1435  */
1436 static void mvneta_defaults_set(struct mvneta_port *pp)
1437 {
1438 	int cpu;
1439 	int queue;
1440 	u32 val;
1441 	int max_cpu = num_present_cpus();
1442 
1443 	/* Clear all Cause registers */
1444 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1445 
1446 	/* Mask all interrupts */
1447 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1448 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1449 
1450 	/* Enable MBUS Retry bit16 */
1451 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1452 
1453 	/* Set CPU queue access map. CPUs are assigned to the RX and
1454 	 * TX queues modulo their number. If there is only one TX
1455 	 * queue then it is assigned to the CPU associated to the
1456 	 * default RX queue.
1457 	 */
1458 	for_each_present_cpu(cpu) {
1459 		int rxq_map = 0, txq_map = 0;
1460 		int rxq, txq;
1461 		if (!pp->neta_armada3700) {
1462 			for (rxq = 0; rxq < rxq_number; rxq++)
1463 				if ((rxq % max_cpu) == cpu)
1464 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1465 
1466 			for (txq = 0; txq < txq_number; txq++)
1467 				if ((txq % max_cpu) == cpu)
1468 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1469 
1470 			/* With only one TX queue we configure a special case
1471 			 * which will allow to get all the irq on a single
1472 			 * CPU
1473 			 */
1474 			if (txq_number == 1)
1475 				txq_map = (cpu == pp->rxq_def) ?
1476 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1477 
1478 		} else {
1479 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1480 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1481 		}
1482 
1483 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1484 	}
1485 
1486 	/* Reset RX and TX DMAs */
1487 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1488 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1489 
1490 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1491 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1492 	for (queue = 0; queue < txq_number; queue++) {
1493 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1494 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1495 	}
1496 
1497 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1498 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1499 
1500 	/* Set Port Acceleration Mode */
1501 	if (pp->bm_priv)
1502 		/* HW buffer management + legacy parser */
1503 		val = MVNETA_ACC_MODE_EXT2;
1504 	else
1505 		/* SW buffer management + legacy parser */
1506 		val = MVNETA_ACC_MODE_EXT1;
1507 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1508 
1509 	if (pp->bm_priv)
1510 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1511 
1512 	/* Update val of portCfg register accordingly with all RxQueue types */
1513 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1514 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1515 
1516 	val = 0;
1517 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1518 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1519 
1520 	/* Build PORT_SDMA_CONFIG_REG */
1521 	val = 0;
1522 
1523 	/* Default burst size */
1524 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1525 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1526 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1527 
1528 #if defined(__BIG_ENDIAN)
1529 	val |= MVNETA_DESC_SWAP;
1530 #endif
1531 
1532 	/* Assign port SDMA configuration */
1533 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1534 
1535 	/* Disable PHY polling in hardware, since we're using the
1536 	 * kernel phylib to do this.
1537 	 */
1538 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1539 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1540 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1541 
1542 	mvneta_set_ucast_table(pp, -1);
1543 	mvneta_set_special_mcast_table(pp, -1);
1544 	mvneta_set_other_mcast_table(pp, -1);
1545 
1546 	/* Set port interrupt enable register - default enable all */
1547 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1548 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1549 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1550 
1551 	mvneta_mib_counters_clear(pp);
1552 }
1553 
1554 /* Set max sizes for tx queues */
1555 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1556 
1557 {
1558 	u32 val, size, mtu;
1559 	int queue;
1560 
1561 	mtu = max_tx_size * 8;
1562 	if (mtu > MVNETA_TX_MTU_MAX)
1563 		mtu = MVNETA_TX_MTU_MAX;
1564 
1565 	/* Set MTU */
1566 	val = mvreg_read(pp, MVNETA_TX_MTU);
1567 	val &= ~MVNETA_TX_MTU_MAX;
1568 	val |= mtu;
1569 	mvreg_write(pp, MVNETA_TX_MTU, val);
1570 
1571 	/* TX token size and all TXQs token size must be larger that MTU */
1572 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1573 
1574 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1575 	if (size < mtu) {
1576 		size = mtu;
1577 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1578 		val |= size;
1579 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1580 	}
1581 	for (queue = 0; queue < txq_number; queue++) {
1582 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1583 
1584 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1585 		if (size < mtu) {
1586 			size = mtu;
1587 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1588 			val |= size;
1589 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1590 		}
1591 	}
1592 }
1593 
1594 /* Set unicast address */
1595 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1596 				  int queue)
1597 {
1598 	unsigned int unicast_reg;
1599 	unsigned int tbl_offset;
1600 	unsigned int reg_offset;
1601 
1602 	/* Locate the Unicast table entry */
1603 	last_nibble = (0xf & last_nibble);
1604 
1605 	/* offset from unicast tbl base */
1606 	tbl_offset = (last_nibble / 4) * 4;
1607 
1608 	/* offset within the above reg  */
1609 	reg_offset = last_nibble % 4;
1610 
1611 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1612 
1613 	if (queue == -1) {
1614 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1615 		unicast_reg &= ~(0xff << (8 * reg_offset));
1616 	} else {
1617 		unicast_reg &= ~(0xff << (8 * reg_offset));
1618 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1619 	}
1620 
1621 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1622 }
1623 
1624 /* Set mac address */
1625 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1626 				int queue)
1627 {
1628 	unsigned int mac_h;
1629 	unsigned int mac_l;
1630 
1631 	if (queue != -1) {
1632 		mac_l = (addr[4] << 8) | (addr[5]);
1633 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1634 			(addr[2] << 8) | (addr[3] << 0);
1635 
1636 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1637 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1638 	}
1639 
1640 	/* Accept frames of this address */
1641 	mvneta_set_ucast_addr(pp, addr[5], queue);
1642 }
1643 
1644 /* Set the number of packets that will be received before RX interrupt
1645  * will be generated by HW.
1646  */
1647 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1648 				    struct mvneta_rx_queue *rxq, u32 value)
1649 {
1650 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1651 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1652 }
1653 
1654 /* Set the time delay in usec before RX interrupt will be generated by
1655  * HW.
1656  */
1657 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1658 				    struct mvneta_rx_queue *rxq, u32 value)
1659 {
1660 	u32 val;
1661 	unsigned long clk_rate;
1662 
1663 	clk_rate = clk_get_rate(pp->clk);
1664 	val = (clk_rate / 1000000) * value;
1665 
1666 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1667 }
1668 
1669 /* Set threshold for TX_DONE pkts coalescing */
1670 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1671 					 struct mvneta_tx_queue *txq, u32 value)
1672 {
1673 	u32 val;
1674 
1675 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1676 
1677 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1678 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1679 
1680 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1681 }
1682 
1683 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1684 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1685 				u32 phys_addr, void *virt_addr,
1686 				struct mvneta_rx_queue *rxq)
1687 {
1688 	int i;
1689 
1690 	rx_desc->buf_phys_addr = phys_addr;
1691 	i = rx_desc - rxq->descs;
1692 	rxq->buf_virt_addr[i] = virt_addr;
1693 }
1694 
1695 /* Decrement sent descriptors counter */
1696 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1697 				     struct mvneta_tx_queue *txq,
1698 				     int sent_desc)
1699 {
1700 	u32 val;
1701 
1702 	/* Only 255 TX descriptors can be updated at once */
1703 	while (sent_desc > 0xff) {
1704 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1705 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1706 		sent_desc = sent_desc - 0xff;
1707 	}
1708 
1709 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1710 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1711 }
1712 
1713 /* Get number of TX descriptors already sent by HW */
1714 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1715 					struct mvneta_tx_queue *txq)
1716 {
1717 	u32 val;
1718 	int sent_desc;
1719 
1720 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1721 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1722 		MVNETA_TXQ_SENT_DESC_SHIFT;
1723 
1724 	return sent_desc;
1725 }
1726 
1727 /* Get number of sent descriptors and decrement counter.
1728  *  The number of sent descriptors is returned.
1729  */
1730 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1731 				     struct mvneta_tx_queue *txq)
1732 {
1733 	int sent_desc;
1734 
1735 	/* Get number of sent descriptors */
1736 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1737 
1738 	/* Decrement sent descriptors counter */
1739 	if (sent_desc)
1740 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1741 
1742 	return sent_desc;
1743 }
1744 
1745 /* Set TXQ descriptors fields relevant for CSUM calculation */
1746 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1747 				int ip_hdr_len, int l4_proto)
1748 {
1749 	u32 command;
1750 
1751 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1752 	 * G_L4_chk, L4_type; required only for checksum
1753 	 * calculation
1754 	 */
1755 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1756 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1757 
1758 	if (l3_proto == htons(ETH_P_IP))
1759 		command |= MVNETA_TXD_IP_CSUM;
1760 	else
1761 		command |= MVNETA_TX_L3_IP6;
1762 
1763 	if (l4_proto == IPPROTO_TCP)
1764 		command |=  MVNETA_TX_L4_CSUM_FULL;
1765 	else if (l4_proto == IPPROTO_UDP)
1766 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1767 	else
1768 		command |= MVNETA_TX_L4_CSUM_NOT;
1769 
1770 	return command;
1771 }
1772 
1773 
1774 /* Display more error info */
1775 static void mvneta_rx_error(struct mvneta_port *pp,
1776 			    struct mvneta_rx_desc *rx_desc)
1777 {
1778 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1779 	u32 status = rx_desc->status;
1780 
1781 	/* update per-cpu counter */
1782 	u64_stats_update_begin(&stats->syncp);
1783 	stats->rx_errors++;
1784 	u64_stats_update_end(&stats->syncp);
1785 
1786 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1787 	case MVNETA_RXD_ERR_CRC:
1788 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1789 			   status, rx_desc->data_size);
1790 		break;
1791 	case MVNETA_RXD_ERR_OVERRUN:
1792 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1793 			   status, rx_desc->data_size);
1794 		break;
1795 	case MVNETA_RXD_ERR_LEN:
1796 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1797 			   status, rx_desc->data_size);
1798 		break;
1799 	case MVNETA_RXD_ERR_RESOURCE:
1800 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1801 			   status, rx_desc->data_size);
1802 		break;
1803 	}
1804 }
1805 
1806 /* Handle RX checksum offload based on the descriptor's status */
1807 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1808 			   struct sk_buff *skb)
1809 {
1810 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1811 	    (status & MVNETA_RXD_L3_IP4) &&
1812 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1813 		skb->csum = 0;
1814 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1815 		return;
1816 	}
1817 
1818 	skb->ip_summed = CHECKSUM_NONE;
1819 }
1820 
1821 /* Return tx queue pointer (find last set bit) according to <cause> returned
1822  * form tx_done reg. <cause> must not be null. The return value is always a
1823  * valid queue for matching the first one found in <cause>.
1824  */
1825 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1826 						     u32 cause)
1827 {
1828 	int queue = fls(cause) - 1;
1829 
1830 	return &pp->txqs[queue];
1831 }
1832 
1833 /* Free tx queue skbuffs */
1834 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1835 				 struct mvneta_tx_queue *txq, int num,
1836 				 struct netdev_queue *nq)
1837 {
1838 	unsigned int bytes_compl = 0, pkts_compl = 0;
1839 	int i;
1840 
1841 	for (i = 0; i < num; i++) {
1842 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1843 		struct mvneta_tx_desc *tx_desc = txq->descs +
1844 			txq->txq_get_index;
1845 
1846 		mvneta_txq_inc_get(txq);
1847 
1848 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1849 		    buf->type != MVNETA_TYPE_XDP_TX)
1850 			dma_unmap_single(pp->dev->dev.parent,
1851 					 tx_desc->buf_phys_addr,
1852 					 tx_desc->data_size, DMA_TO_DEVICE);
1853 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1854 			bytes_compl += buf->skb->len;
1855 			pkts_compl++;
1856 			dev_kfree_skb_any(buf->skb);
1857 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1858 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1859 			xdp_return_frame(buf->xdpf);
1860 		}
1861 	}
1862 
1863 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1864 }
1865 
1866 /* Handle end of transmission */
1867 static void mvneta_txq_done(struct mvneta_port *pp,
1868 			   struct mvneta_tx_queue *txq)
1869 {
1870 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1871 	int tx_done;
1872 
1873 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1874 	if (!tx_done)
1875 		return;
1876 
1877 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1878 
1879 	txq->count -= tx_done;
1880 
1881 	if (netif_tx_queue_stopped(nq)) {
1882 		if (txq->count <= txq->tx_wake_threshold)
1883 			netif_tx_wake_queue(nq);
1884 	}
1885 }
1886 
1887 /* Refill processing for SW buffer management */
1888 /* Allocate page per descriptor */
1889 static int mvneta_rx_refill(struct mvneta_port *pp,
1890 			    struct mvneta_rx_desc *rx_desc,
1891 			    struct mvneta_rx_queue *rxq,
1892 			    gfp_t gfp_mask)
1893 {
1894 	dma_addr_t phys_addr;
1895 	struct page *page;
1896 
1897 	page = page_pool_alloc_pages(rxq->page_pool,
1898 				     gfp_mask | __GFP_NOWARN);
1899 	if (!page)
1900 		return -ENOMEM;
1901 
1902 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1903 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1904 
1905 	return 0;
1906 }
1907 
1908 /* Handle tx checksum */
1909 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1910 {
1911 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1912 		int ip_hdr_len = 0;
1913 		__be16 l3_proto = vlan_get_protocol(skb);
1914 		u8 l4_proto;
1915 
1916 		if (l3_proto == htons(ETH_P_IP)) {
1917 			struct iphdr *ip4h = ip_hdr(skb);
1918 
1919 			/* Calculate IPv4 checksum and L4 checksum */
1920 			ip_hdr_len = ip4h->ihl;
1921 			l4_proto = ip4h->protocol;
1922 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1923 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1924 
1925 			/* Read l4_protocol from one of IPv6 extra headers */
1926 			if (skb_network_header_len(skb) > 0)
1927 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1928 			l4_proto = ip6h->nexthdr;
1929 		} else
1930 			return MVNETA_TX_L4_CSUM_NOT;
1931 
1932 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1933 					    l3_proto, ip_hdr_len, l4_proto);
1934 	}
1935 
1936 	return MVNETA_TX_L4_CSUM_NOT;
1937 }
1938 
1939 /* Drop packets received by the RXQ and free buffers */
1940 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1941 				 struct mvneta_rx_queue *rxq)
1942 {
1943 	int rx_done, i;
1944 
1945 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1946 	if (rx_done)
1947 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1948 
1949 	if (pp->bm_priv) {
1950 		for (i = 0; i < rx_done; i++) {
1951 			struct mvneta_rx_desc *rx_desc =
1952 						  mvneta_rxq_next_desc_get(rxq);
1953 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1954 			struct mvneta_bm_pool *bm_pool;
1955 
1956 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1957 			/* Return dropped buffer to the pool */
1958 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1959 					      rx_desc->buf_phys_addr);
1960 		}
1961 		return;
1962 	}
1963 
1964 	for (i = 0; i < rxq->size; i++) {
1965 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1966 		void *data = rxq->buf_virt_addr[i];
1967 		if (!data || !(rx_desc->buf_phys_addr))
1968 			continue;
1969 
1970 		page_pool_put_full_page(rxq->page_pool, data, false);
1971 	}
1972 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1973 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1974 	page_pool_destroy(rxq->page_pool);
1975 	rxq->page_pool = NULL;
1976 }
1977 
1978 static void
1979 mvneta_update_stats(struct mvneta_port *pp,
1980 		    struct mvneta_stats *ps)
1981 {
1982 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1983 
1984 	u64_stats_update_begin(&stats->syncp);
1985 	stats->es.ps.rx_packets += ps->rx_packets;
1986 	stats->es.ps.rx_bytes += ps->rx_bytes;
1987 	/* xdp */
1988 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1989 	stats->es.ps.xdp_pass += ps->xdp_pass;
1990 	stats->es.ps.xdp_drop += ps->xdp_drop;
1991 	u64_stats_update_end(&stats->syncp);
1992 }
1993 
1994 static inline
1995 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1996 {
1997 	struct mvneta_rx_desc *rx_desc;
1998 	int curr_desc = rxq->first_to_refill;
1999 	int i;
2000 
2001 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2002 		rx_desc = rxq->descs + curr_desc;
2003 		if (!(rx_desc->buf_phys_addr)) {
2004 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2005 				struct mvneta_pcpu_stats *stats;
2006 
2007 				pr_err("Can't refill queue %d. Done %d from %d\n",
2008 				       rxq->id, i, rxq->refill_num);
2009 
2010 				stats = this_cpu_ptr(pp->stats);
2011 				u64_stats_update_begin(&stats->syncp);
2012 				stats->es.refill_error++;
2013 				u64_stats_update_end(&stats->syncp);
2014 				break;
2015 			}
2016 		}
2017 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2018 	}
2019 	rxq->refill_num -= i;
2020 	rxq->first_to_refill = curr_desc;
2021 
2022 	return i;
2023 }
2024 
2025 static void
2026 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2027 		    struct xdp_buff *xdp, int sync_len, bool napi)
2028 {
2029 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2030 	int i;
2031 
2032 	for (i = 0; i < sinfo->nr_frags; i++)
2033 		page_pool_put_full_page(rxq->page_pool,
2034 					skb_frag_page(&sinfo->frags[i]), napi);
2035 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2036 			   sync_len, napi);
2037 }
2038 
2039 static int
2040 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2041 			struct xdp_frame *xdpf, bool dma_map)
2042 {
2043 	struct mvneta_tx_desc *tx_desc;
2044 	struct mvneta_tx_buf *buf;
2045 	dma_addr_t dma_addr;
2046 
2047 	if (txq->count >= txq->tx_stop_threshold)
2048 		return MVNETA_XDP_DROPPED;
2049 
2050 	tx_desc = mvneta_txq_next_desc_get(txq);
2051 
2052 	buf = &txq->buf[txq->txq_put_index];
2053 	if (dma_map) {
2054 		/* ndo_xdp_xmit */
2055 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2056 					  xdpf->len, DMA_TO_DEVICE);
2057 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2058 			mvneta_txq_desc_put(txq);
2059 			return MVNETA_XDP_DROPPED;
2060 		}
2061 		buf->type = MVNETA_TYPE_XDP_NDO;
2062 	} else {
2063 		struct page *page = virt_to_page(xdpf->data);
2064 
2065 		dma_addr = page_pool_get_dma_addr(page) +
2066 			   sizeof(*xdpf) + xdpf->headroom;
2067 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2068 					   xdpf->len, DMA_BIDIRECTIONAL);
2069 		buf->type = MVNETA_TYPE_XDP_TX;
2070 	}
2071 	buf->xdpf = xdpf;
2072 
2073 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2074 	tx_desc->buf_phys_addr = dma_addr;
2075 	tx_desc->data_size = xdpf->len;
2076 
2077 	mvneta_txq_inc_put(txq);
2078 	txq->pending++;
2079 	txq->count++;
2080 
2081 	return MVNETA_XDP_TX;
2082 }
2083 
2084 static int
2085 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2086 {
2087 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2088 	struct mvneta_tx_queue *txq;
2089 	struct netdev_queue *nq;
2090 	struct xdp_frame *xdpf;
2091 	int cpu;
2092 	u32 ret;
2093 
2094 	xdpf = xdp_convert_buff_to_frame(xdp);
2095 	if (unlikely(!xdpf))
2096 		return MVNETA_XDP_DROPPED;
2097 
2098 	cpu = smp_processor_id();
2099 	txq = &pp->txqs[cpu % txq_number];
2100 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2101 
2102 	__netif_tx_lock(nq, cpu);
2103 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2104 	if (ret == MVNETA_XDP_TX) {
2105 		u64_stats_update_begin(&stats->syncp);
2106 		stats->es.ps.tx_bytes += xdpf->len;
2107 		stats->es.ps.tx_packets++;
2108 		stats->es.ps.xdp_tx++;
2109 		u64_stats_update_end(&stats->syncp);
2110 
2111 		mvneta_txq_pend_desc_add(pp, txq, 0);
2112 	} else {
2113 		u64_stats_update_begin(&stats->syncp);
2114 		stats->es.ps.xdp_tx_err++;
2115 		u64_stats_update_end(&stats->syncp);
2116 	}
2117 	__netif_tx_unlock(nq);
2118 
2119 	return ret;
2120 }
2121 
2122 static int
2123 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2124 		struct xdp_frame **frames, u32 flags)
2125 {
2126 	struct mvneta_port *pp = netdev_priv(dev);
2127 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2128 	int i, nxmit_byte = 0, nxmit = num_frame;
2129 	int cpu = smp_processor_id();
2130 	struct mvneta_tx_queue *txq;
2131 	struct netdev_queue *nq;
2132 	u32 ret;
2133 
2134 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2135 		return -ENETDOWN;
2136 
2137 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2138 		return -EINVAL;
2139 
2140 	txq = &pp->txqs[cpu % txq_number];
2141 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2142 
2143 	__netif_tx_lock(nq, cpu);
2144 	for (i = 0; i < num_frame; i++) {
2145 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2146 		if (ret == MVNETA_XDP_TX) {
2147 			nxmit_byte += frames[i]->len;
2148 		} else {
2149 			xdp_return_frame_rx_napi(frames[i]);
2150 			nxmit--;
2151 		}
2152 	}
2153 
2154 	if (unlikely(flags & XDP_XMIT_FLUSH))
2155 		mvneta_txq_pend_desc_add(pp, txq, 0);
2156 	__netif_tx_unlock(nq);
2157 
2158 	u64_stats_update_begin(&stats->syncp);
2159 	stats->es.ps.tx_bytes += nxmit_byte;
2160 	stats->es.ps.tx_packets += nxmit;
2161 	stats->es.ps.xdp_xmit += nxmit;
2162 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2163 	u64_stats_update_end(&stats->syncp);
2164 
2165 	return nxmit;
2166 }
2167 
2168 static int
2169 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2170 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2171 	       u32 frame_sz, struct mvneta_stats *stats)
2172 {
2173 	unsigned int len, data_len, sync;
2174 	u32 ret, act;
2175 
2176 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2177 	data_len = xdp->data_end - xdp->data;
2178 	act = bpf_prog_run_xdp(prog, xdp);
2179 
2180 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2181 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2182 	sync = max(sync, len);
2183 
2184 	switch (act) {
2185 	case XDP_PASS:
2186 		stats->xdp_pass++;
2187 		return MVNETA_XDP_PASS;
2188 	case XDP_REDIRECT: {
2189 		int err;
2190 
2191 		err = xdp_do_redirect(pp->dev, xdp, prog);
2192 		if (unlikely(err)) {
2193 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2194 			ret = MVNETA_XDP_DROPPED;
2195 		} else {
2196 			ret = MVNETA_XDP_REDIR;
2197 			stats->xdp_redirect++;
2198 		}
2199 		break;
2200 	}
2201 	case XDP_TX:
2202 		ret = mvneta_xdp_xmit_back(pp, xdp);
2203 		if (ret != MVNETA_XDP_TX)
2204 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2205 		break;
2206 	default:
2207 		bpf_warn_invalid_xdp_action(act);
2208 		fallthrough;
2209 	case XDP_ABORTED:
2210 		trace_xdp_exception(pp->dev, prog, act);
2211 		fallthrough;
2212 	case XDP_DROP:
2213 		mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2214 		ret = MVNETA_XDP_DROPPED;
2215 		stats->xdp_drop++;
2216 		break;
2217 	}
2218 
2219 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2220 	stats->rx_packets++;
2221 
2222 	return ret;
2223 }
2224 
2225 static void
2226 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2227 		     struct mvneta_rx_desc *rx_desc,
2228 		     struct mvneta_rx_queue *rxq,
2229 		     struct xdp_buff *xdp, int *size,
2230 		     struct page *page,
2231 		     struct mvneta_stats *stats)
2232 {
2233 	unsigned char *data = page_address(page);
2234 	int data_len = -MVNETA_MH_SIZE, len;
2235 	struct net_device *dev = pp->dev;
2236 	enum dma_data_direction dma_dir;
2237 	struct skb_shared_info *sinfo;
2238 
2239 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2240 		len = MVNETA_MAX_RX_BUF_SIZE;
2241 		data_len += len;
2242 	} else {
2243 		len = rx_desc->data_size;
2244 		data_len += len - ETH_FCS_LEN;
2245 	}
2246 
2247 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2248 	dma_sync_single_for_cpu(dev->dev.parent,
2249 				rx_desc->buf_phys_addr,
2250 				len, dma_dir);
2251 
2252 	/* Prefetch header */
2253 	prefetch(data);
2254 
2255 	xdp->data_hard_start = data;
2256 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2257 	xdp->data_end = xdp->data + data_len;
2258 	xdp_set_data_meta_invalid(xdp);
2259 
2260 	sinfo = xdp_get_shared_info_from_buff(xdp);
2261 	sinfo->nr_frags = 0;
2262 
2263 	*size = rx_desc->data_size - len;
2264 	rx_desc->buf_phys_addr = 0;
2265 }
2266 
2267 static void
2268 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2269 			    struct mvneta_rx_desc *rx_desc,
2270 			    struct mvneta_rx_queue *rxq,
2271 			    struct xdp_buff *xdp, int *size,
2272 			    struct page *page)
2273 {
2274 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2275 	struct net_device *dev = pp->dev;
2276 	enum dma_data_direction dma_dir;
2277 	int data_len, len;
2278 
2279 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2280 		len = MVNETA_MAX_RX_BUF_SIZE;
2281 		data_len = len;
2282 	} else {
2283 		len = *size;
2284 		data_len = len - ETH_FCS_LEN;
2285 	}
2286 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2287 	dma_sync_single_for_cpu(dev->dev.parent,
2288 				rx_desc->buf_phys_addr,
2289 				len, dma_dir);
2290 
2291 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2292 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2293 
2294 		skb_frag_off_set(frag, pp->rx_offset_correction);
2295 		skb_frag_size_set(frag, data_len);
2296 		__skb_frag_set_page(frag, page);
2297 		sinfo->nr_frags++;
2298 
2299 		rx_desc->buf_phys_addr = 0;
2300 	}
2301 	*size -= len;
2302 }
2303 
2304 static struct sk_buff *
2305 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2306 		      struct xdp_buff *xdp, u32 desc_status)
2307 {
2308 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2309 	int i, num_frags = sinfo->nr_frags;
2310 	skb_frag_t frags[MAX_SKB_FRAGS];
2311 	struct sk_buff *skb;
2312 
2313 	memcpy(frags, sinfo->frags, sizeof(skb_frag_t) * num_frags);
2314 
2315 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2316 	if (!skb)
2317 		return ERR_PTR(-ENOMEM);
2318 
2319 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2320 
2321 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2322 	skb_put(skb, xdp->data_end - xdp->data);
2323 	mvneta_rx_csum(pp, desc_status, skb);
2324 
2325 	for (i = 0; i < num_frags; i++) {
2326 		struct page *page = skb_frag_page(&frags[i]);
2327 
2328 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2329 				page, skb_frag_off(&frags[i]),
2330 				skb_frag_size(&frags[i]), PAGE_SIZE);
2331 		page_pool_release_page(rxq->page_pool, page);
2332 	}
2333 
2334 	return skb;
2335 }
2336 
2337 /* Main rx processing when using software buffer management */
2338 static int mvneta_rx_swbm(struct napi_struct *napi,
2339 			  struct mvneta_port *pp, int budget,
2340 			  struct mvneta_rx_queue *rxq)
2341 {
2342 	int rx_proc = 0, rx_todo, refill, size = 0;
2343 	struct net_device *dev = pp->dev;
2344 	struct xdp_buff xdp_buf = {
2345 		.frame_sz = PAGE_SIZE,
2346 		.rxq = &rxq->xdp_rxq,
2347 	};
2348 	struct mvneta_stats ps = {};
2349 	struct bpf_prog *xdp_prog;
2350 	u32 desc_status, frame_sz;
2351 
2352 	/* Get number of received packets */
2353 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2354 
2355 	rcu_read_lock();
2356 	xdp_prog = READ_ONCE(pp->xdp_prog);
2357 
2358 	/* Fairness NAPI loop */
2359 	while (rx_proc < budget && rx_proc < rx_todo) {
2360 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2361 		u32 rx_status, index;
2362 		struct sk_buff *skb;
2363 		struct page *page;
2364 
2365 		index = rx_desc - rxq->descs;
2366 		page = (struct page *)rxq->buf_virt_addr[index];
2367 
2368 		rx_status = rx_desc->status;
2369 		rx_proc++;
2370 		rxq->refill_num++;
2371 
2372 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2373 			/* Check errors only for FIRST descriptor */
2374 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2375 				mvneta_rx_error(pp, rx_desc);
2376 				goto next;
2377 			}
2378 
2379 			size = rx_desc->data_size;
2380 			frame_sz = size - ETH_FCS_LEN;
2381 			desc_status = rx_desc->status;
2382 
2383 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2384 					     &size, page, &ps);
2385 		} else {
2386 			if (unlikely(!xdp_buf.data_hard_start)) {
2387 				rx_desc->buf_phys_addr = 0;
2388 				page_pool_put_full_page(rxq->page_pool, page,
2389 							true);
2390 				continue;
2391 			}
2392 
2393 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2394 						    &size, page);
2395 		} /* Middle or Last descriptor */
2396 
2397 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2398 			/* no last descriptor this time */
2399 			continue;
2400 
2401 		if (size) {
2402 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2403 			goto next;
2404 		}
2405 
2406 		if (xdp_prog &&
2407 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2408 			goto next;
2409 
2410 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2411 		if (IS_ERR(skb)) {
2412 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2413 
2414 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2415 
2416 			u64_stats_update_begin(&stats->syncp);
2417 			stats->es.skb_alloc_error++;
2418 			stats->rx_dropped++;
2419 			u64_stats_update_end(&stats->syncp);
2420 
2421 			goto next;
2422 		}
2423 
2424 		ps.rx_bytes += skb->len;
2425 		ps.rx_packets++;
2426 
2427 		skb->protocol = eth_type_trans(skb, dev);
2428 		napi_gro_receive(napi, skb);
2429 next:
2430 		xdp_buf.data_hard_start = NULL;
2431 	}
2432 	rcu_read_unlock();
2433 
2434 	if (xdp_buf.data_hard_start)
2435 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2436 
2437 	if (ps.xdp_redirect)
2438 		xdp_do_flush_map();
2439 
2440 	if (ps.rx_packets)
2441 		mvneta_update_stats(pp, &ps);
2442 
2443 	/* return some buffers to hardware queue, one at a time is too slow */
2444 	refill = mvneta_rx_refill_queue(pp, rxq);
2445 
2446 	/* Update rxq management counters */
2447 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2448 
2449 	return ps.rx_packets;
2450 }
2451 
2452 /* Main rx processing when using hardware buffer management */
2453 static int mvneta_rx_hwbm(struct napi_struct *napi,
2454 			  struct mvneta_port *pp, int rx_todo,
2455 			  struct mvneta_rx_queue *rxq)
2456 {
2457 	struct net_device *dev = pp->dev;
2458 	int rx_done;
2459 	u32 rcvd_pkts = 0;
2460 	u32 rcvd_bytes = 0;
2461 
2462 	/* Get number of received packets */
2463 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2464 
2465 	if (rx_todo > rx_done)
2466 		rx_todo = rx_done;
2467 
2468 	rx_done = 0;
2469 
2470 	/* Fairness NAPI loop */
2471 	while (rx_done < rx_todo) {
2472 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2473 		struct mvneta_bm_pool *bm_pool = NULL;
2474 		struct sk_buff *skb;
2475 		unsigned char *data;
2476 		dma_addr_t phys_addr;
2477 		u32 rx_status, frag_size;
2478 		int rx_bytes, err;
2479 		u8 pool_id;
2480 
2481 		rx_done++;
2482 		rx_status = rx_desc->status;
2483 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2484 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2485 		phys_addr = rx_desc->buf_phys_addr;
2486 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2487 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2488 
2489 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2490 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2491 err_drop_frame_ret_pool:
2492 			/* Return the buffer to the pool */
2493 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2494 					      rx_desc->buf_phys_addr);
2495 err_drop_frame:
2496 			mvneta_rx_error(pp, rx_desc);
2497 			/* leave the descriptor untouched */
2498 			continue;
2499 		}
2500 
2501 		if (rx_bytes <= rx_copybreak) {
2502 			/* better copy a small frame and not unmap the DMA region */
2503 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2504 			if (unlikely(!skb))
2505 				goto err_drop_frame_ret_pool;
2506 
2507 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2508 			                              rx_desc->buf_phys_addr,
2509 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2510 			                              rx_bytes,
2511 			                              DMA_FROM_DEVICE);
2512 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2513 				     rx_bytes);
2514 
2515 			skb->protocol = eth_type_trans(skb, dev);
2516 			mvneta_rx_csum(pp, rx_status, skb);
2517 			napi_gro_receive(napi, skb);
2518 
2519 			rcvd_pkts++;
2520 			rcvd_bytes += rx_bytes;
2521 
2522 			/* Return the buffer to the pool */
2523 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2524 					      rx_desc->buf_phys_addr);
2525 
2526 			/* leave the descriptor and buffer untouched */
2527 			continue;
2528 		}
2529 
2530 		/* Refill processing */
2531 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2532 		if (err) {
2533 			struct mvneta_pcpu_stats *stats;
2534 
2535 			netdev_err(dev, "Linux processing - Can't refill\n");
2536 
2537 			stats = this_cpu_ptr(pp->stats);
2538 			u64_stats_update_begin(&stats->syncp);
2539 			stats->es.refill_error++;
2540 			u64_stats_update_end(&stats->syncp);
2541 
2542 			goto err_drop_frame_ret_pool;
2543 		}
2544 
2545 		frag_size = bm_pool->hwbm_pool.frag_size;
2546 
2547 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2548 
2549 		/* After refill old buffer has to be unmapped regardless
2550 		 * the skb is successfully built or not.
2551 		 */
2552 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2553 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2554 		if (!skb)
2555 			goto err_drop_frame;
2556 
2557 		rcvd_pkts++;
2558 		rcvd_bytes += rx_bytes;
2559 
2560 		/* Linux processing */
2561 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2562 		skb_put(skb, rx_bytes);
2563 
2564 		skb->protocol = eth_type_trans(skb, dev);
2565 
2566 		mvneta_rx_csum(pp, rx_status, skb);
2567 
2568 		napi_gro_receive(napi, skb);
2569 	}
2570 
2571 	if (rcvd_pkts) {
2572 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2573 
2574 		u64_stats_update_begin(&stats->syncp);
2575 		stats->es.ps.rx_packets += rcvd_pkts;
2576 		stats->es.ps.rx_bytes += rcvd_bytes;
2577 		u64_stats_update_end(&stats->syncp);
2578 	}
2579 
2580 	/* Update rxq management counters */
2581 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2582 
2583 	return rx_done;
2584 }
2585 
2586 static inline void
2587 mvneta_tso_put_hdr(struct sk_buff *skb,
2588 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2589 {
2590 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2591 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2592 	struct mvneta_tx_desc *tx_desc;
2593 
2594 	tx_desc = mvneta_txq_next_desc_get(txq);
2595 	tx_desc->data_size = hdr_len;
2596 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2597 	tx_desc->command |= MVNETA_TXD_F_DESC;
2598 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2599 				 txq->txq_put_index * TSO_HEADER_SIZE;
2600 	buf->type = MVNETA_TYPE_SKB;
2601 	buf->skb = NULL;
2602 
2603 	mvneta_txq_inc_put(txq);
2604 }
2605 
2606 static inline int
2607 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2608 		    struct sk_buff *skb, char *data, int size,
2609 		    bool last_tcp, bool is_last)
2610 {
2611 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2612 	struct mvneta_tx_desc *tx_desc;
2613 
2614 	tx_desc = mvneta_txq_next_desc_get(txq);
2615 	tx_desc->data_size = size;
2616 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2617 						size, DMA_TO_DEVICE);
2618 	if (unlikely(dma_mapping_error(dev->dev.parent,
2619 		     tx_desc->buf_phys_addr))) {
2620 		mvneta_txq_desc_put(txq);
2621 		return -ENOMEM;
2622 	}
2623 
2624 	tx_desc->command = 0;
2625 	buf->type = MVNETA_TYPE_SKB;
2626 	buf->skb = NULL;
2627 
2628 	if (last_tcp) {
2629 		/* last descriptor in the TCP packet */
2630 		tx_desc->command = MVNETA_TXD_L_DESC;
2631 
2632 		/* last descriptor in SKB */
2633 		if (is_last)
2634 			buf->skb = skb;
2635 	}
2636 	mvneta_txq_inc_put(txq);
2637 	return 0;
2638 }
2639 
2640 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2641 			 struct mvneta_tx_queue *txq)
2642 {
2643 	int hdr_len, total_len, data_left;
2644 	int desc_count = 0;
2645 	struct mvneta_port *pp = netdev_priv(dev);
2646 	struct tso_t tso;
2647 	int i;
2648 
2649 	/* Count needed descriptors */
2650 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2651 		return 0;
2652 
2653 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2654 		pr_info("*** Is this even  possible???!?!?\n");
2655 		return 0;
2656 	}
2657 
2658 	/* Initialize the TSO handler, and prepare the first payload */
2659 	hdr_len = tso_start(skb, &tso);
2660 
2661 	total_len = skb->len - hdr_len;
2662 	while (total_len > 0) {
2663 		char *hdr;
2664 
2665 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2666 		total_len -= data_left;
2667 		desc_count++;
2668 
2669 		/* prepare packet headers: MAC + IP + TCP */
2670 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2671 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2672 
2673 		mvneta_tso_put_hdr(skb, pp, txq);
2674 
2675 		while (data_left > 0) {
2676 			int size;
2677 			desc_count++;
2678 
2679 			size = min_t(int, tso.size, data_left);
2680 
2681 			if (mvneta_tso_put_data(dev, txq, skb,
2682 						 tso.data, size,
2683 						 size == data_left,
2684 						 total_len == 0))
2685 				goto err_release;
2686 			data_left -= size;
2687 
2688 			tso_build_data(skb, &tso, size);
2689 		}
2690 	}
2691 
2692 	return desc_count;
2693 
2694 err_release:
2695 	/* Release all used data descriptors; header descriptors must not
2696 	 * be DMA-unmapped.
2697 	 */
2698 	for (i = desc_count - 1; i >= 0; i--) {
2699 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2700 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2701 			dma_unmap_single(pp->dev->dev.parent,
2702 					 tx_desc->buf_phys_addr,
2703 					 tx_desc->data_size,
2704 					 DMA_TO_DEVICE);
2705 		mvneta_txq_desc_put(txq);
2706 	}
2707 	return 0;
2708 }
2709 
2710 /* Handle tx fragmentation processing */
2711 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2712 				  struct mvneta_tx_queue *txq)
2713 {
2714 	struct mvneta_tx_desc *tx_desc;
2715 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2716 
2717 	for (i = 0; i < nr_frags; i++) {
2718 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2719 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2720 		void *addr = skb_frag_address(frag);
2721 
2722 		tx_desc = mvneta_txq_next_desc_get(txq);
2723 		tx_desc->data_size = skb_frag_size(frag);
2724 
2725 		tx_desc->buf_phys_addr =
2726 			dma_map_single(pp->dev->dev.parent, addr,
2727 				       tx_desc->data_size, DMA_TO_DEVICE);
2728 
2729 		if (dma_mapping_error(pp->dev->dev.parent,
2730 				      tx_desc->buf_phys_addr)) {
2731 			mvneta_txq_desc_put(txq);
2732 			goto error;
2733 		}
2734 
2735 		if (i == nr_frags - 1) {
2736 			/* Last descriptor */
2737 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2738 			buf->skb = skb;
2739 		} else {
2740 			/* Descriptor in the middle: Not First, Not Last */
2741 			tx_desc->command = 0;
2742 			buf->skb = NULL;
2743 		}
2744 		buf->type = MVNETA_TYPE_SKB;
2745 		mvneta_txq_inc_put(txq);
2746 	}
2747 
2748 	return 0;
2749 
2750 error:
2751 	/* Release all descriptors that were used to map fragments of
2752 	 * this packet, as well as the corresponding DMA mappings
2753 	 */
2754 	for (i = i - 1; i >= 0; i--) {
2755 		tx_desc = txq->descs + i;
2756 		dma_unmap_single(pp->dev->dev.parent,
2757 				 tx_desc->buf_phys_addr,
2758 				 tx_desc->data_size,
2759 				 DMA_TO_DEVICE);
2760 		mvneta_txq_desc_put(txq);
2761 	}
2762 
2763 	return -ENOMEM;
2764 }
2765 
2766 /* Main tx processing */
2767 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2768 {
2769 	struct mvneta_port *pp = netdev_priv(dev);
2770 	u16 txq_id = skb_get_queue_mapping(skb);
2771 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2772 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2773 	struct mvneta_tx_desc *tx_desc;
2774 	int len = skb->len;
2775 	int frags = 0;
2776 	u32 tx_cmd;
2777 
2778 	if (!netif_running(dev))
2779 		goto out;
2780 
2781 	if (skb_is_gso(skb)) {
2782 		frags = mvneta_tx_tso(skb, dev, txq);
2783 		goto out;
2784 	}
2785 
2786 	frags = skb_shinfo(skb)->nr_frags + 1;
2787 
2788 	/* Get a descriptor for the first part of the packet */
2789 	tx_desc = mvneta_txq_next_desc_get(txq);
2790 
2791 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2792 
2793 	tx_desc->data_size = skb_headlen(skb);
2794 
2795 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2796 						tx_desc->data_size,
2797 						DMA_TO_DEVICE);
2798 	if (unlikely(dma_mapping_error(dev->dev.parent,
2799 				       tx_desc->buf_phys_addr))) {
2800 		mvneta_txq_desc_put(txq);
2801 		frags = 0;
2802 		goto out;
2803 	}
2804 
2805 	buf->type = MVNETA_TYPE_SKB;
2806 	if (frags == 1) {
2807 		/* First and Last descriptor */
2808 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2809 		tx_desc->command = tx_cmd;
2810 		buf->skb = skb;
2811 		mvneta_txq_inc_put(txq);
2812 	} else {
2813 		/* First but not Last */
2814 		tx_cmd |= MVNETA_TXD_F_DESC;
2815 		buf->skb = NULL;
2816 		mvneta_txq_inc_put(txq);
2817 		tx_desc->command = tx_cmd;
2818 		/* Continue with other skb fragments */
2819 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2820 			dma_unmap_single(dev->dev.parent,
2821 					 tx_desc->buf_phys_addr,
2822 					 tx_desc->data_size,
2823 					 DMA_TO_DEVICE);
2824 			mvneta_txq_desc_put(txq);
2825 			frags = 0;
2826 			goto out;
2827 		}
2828 	}
2829 
2830 out:
2831 	if (frags > 0) {
2832 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2833 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2834 
2835 		netdev_tx_sent_queue(nq, len);
2836 
2837 		txq->count += frags;
2838 		if (txq->count >= txq->tx_stop_threshold)
2839 			netif_tx_stop_queue(nq);
2840 
2841 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2842 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2843 			mvneta_txq_pend_desc_add(pp, txq, frags);
2844 		else
2845 			txq->pending += frags;
2846 
2847 		u64_stats_update_begin(&stats->syncp);
2848 		stats->es.ps.tx_bytes += len;
2849 		stats->es.ps.tx_packets++;
2850 		u64_stats_update_end(&stats->syncp);
2851 	} else {
2852 		dev->stats.tx_dropped++;
2853 		dev_kfree_skb_any(skb);
2854 	}
2855 
2856 	return NETDEV_TX_OK;
2857 }
2858 
2859 
2860 /* Free tx resources, when resetting a port */
2861 static void mvneta_txq_done_force(struct mvneta_port *pp,
2862 				  struct mvneta_tx_queue *txq)
2863 
2864 {
2865 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2866 	int tx_done = txq->count;
2867 
2868 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2869 
2870 	/* reset txq */
2871 	txq->count = 0;
2872 	txq->txq_put_index = 0;
2873 	txq->txq_get_index = 0;
2874 }
2875 
2876 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2877  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2878  */
2879 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2880 {
2881 	struct mvneta_tx_queue *txq;
2882 	struct netdev_queue *nq;
2883 	int cpu = smp_processor_id();
2884 
2885 	while (cause_tx_done) {
2886 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2887 
2888 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2889 		__netif_tx_lock(nq, cpu);
2890 
2891 		if (txq->count)
2892 			mvneta_txq_done(pp, txq);
2893 
2894 		__netif_tx_unlock(nq);
2895 		cause_tx_done &= ~((1 << txq->id));
2896 	}
2897 }
2898 
2899 /* Compute crc8 of the specified address, using a unique algorithm ,
2900  * according to hw spec, different than generic crc8 algorithm
2901  */
2902 static int mvneta_addr_crc(unsigned char *addr)
2903 {
2904 	int crc = 0;
2905 	int i;
2906 
2907 	for (i = 0; i < ETH_ALEN; i++) {
2908 		int j;
2909 
2910 		crc = (crc ^ addr[i]) << 8;
2911 		for (j = 7; j >= 0; j--) {
2912 			if (crc & (0x100 << j))
2913 				crc ^= 0x107 << j;
2914 		}
2915 	}
2916 
2917 	return crc;
2918 }
2919 
2920 /* This method controls the net device special MAC multicast support.
2921  * The Special Multicast Table for MAC addresses supports MAC of the form
2922  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2923  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2924  * Table entries in the DA-Filter table. This method set the Special
2925  * Multicast Table appropriate entry.
2926  */
2927 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2928 					  unsigned char last_byte,
2929 					  int queue)
2930 {
2931 	unsigned int smc_table_reg;
2932 	unsigned int tbl_offset;
2933 	unsigned int reg_offset;
2934 
2935 	/* Register offset from SMC table base    */
2936 	tbl_offset = (last_byte / 4);
2937 	/* Entry offset within the above reg */
2938 	reg_offset = last_byte % 4;
2939 
2940 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2941 					+ tbl_offset * 4));
2942 
2943 	if (queue == -1)
2944 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2945 	else {
2946 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2947 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2948 	}
2949 
2950 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2951 		    smc_table_reg);
2952 }
2953 
2954 /* This method controls the network device Other MAC multicast support.
2955  * The Other Multicast Table is used for multicast of another type.
2956  * A CRC-8 is used as an index to the Other Multicast Table entries
2957  * in the DA-Filter table.
2958  * The method gets the CRC-8 value from the calling routine and
2959  * sets the Other Multicast Table appropriate entry according to the
2960  * specified CRC-8 .
2961  */
2962 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2963 					unsigned char crc8,
2964 					int queue)
2965 {
2966 	unsigned int omc_table_reg;
2967 	unsigned int tbl_offset;
2968 	unsigned int reg_offset;
2969 
2970 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2971 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2972 
2973 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2974 
2975 	if (queue == -1) {
2976 		/* Clear accepts frame bit at specified Other DA table entry */
2977 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2978 	} else {
2979 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2980 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2981 	}
2982 
2983 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2984 }
2985 
2986 /* The network device supports multicast using two tables:
2987  *    1) Special Multicast Table for MAC addresses of the form
2988  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2989  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2990  *       Table entries in the DA-Filter table.
2991  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2992  *       is used as an index to the Other Multicast Table entries in the
2993  *       DA-Filter table.
2994  */
2995 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2996 				 int queue)
2997 {
2998 	unsigned char crc_result = 0;
2999 
3000 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3001 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3002 		return 0;
3003 	}
3004 
3005 	crc_result = mvneta_addr_crc(p_addr);
3006 	if (queue == -1) {
3007 		if (pp->mcast_count[crc_result] == 0) {
3008 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3009 				    crc_result);
3010 			return -EINVAL;
3011 		}
3012 
3013 		pp->mcast_count[crc_result]--;
3014 		if (pp->mcast_count[crc_result] != 0) {
3015 			netdev_info(pp->dev,
3016 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3017 				    pp->mcast_count[crc_result], crc_result);
3018 			return -EINVAL;
3019 		}
3020 	} else
3021 		pp->mcast_count[crc_result]++;
3022 
3023 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3024 
3025 	return 0;
3026 }
3027 
3028 /* Configure Fitering mode of Ethernet port */
3029 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3030 					  int is_promisc)
3031 {
3032 	u32 port_cfg_reg, val;
3033 
3034 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3035 
3036 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3037 
3038 	/* Set / Clear UPM bit in port configuration register */
3039 	if (is_promisc) {
3040 		/* Accept all Unicast addresses */
3041 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3042 		val |= MVNETA_FORCE_UNI;
3043 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3044 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3045 	} else {
3046 		/* Reject all Unicast addresses */
3047 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3048 		val &= ~MVNETA_FORCE_UNI;
3049 	}
3050 
3051 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3052 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3053 }
3054 
3055 /* register unicast and multicast addresses */
3056 static void mvneta_set_rx_mode(struct net_device *dev)
3057 {
3058 	struct mvneta_port *pp = netdev_priv(dev);
3059 	struct netdev_hw_addr *ha;
3060 
3061 	if (dev->flags & IFF_PROMISC) {
3062 		/* Accept all: Multicast + Unicast */
3063 		mvneta_rx_unicast_promisc_set(pp, 1);
3064 		mvneta_set_ucast_table(pp, pp->rxq_def);
3065 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3066 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3067 	} else {
3068 		/* Accept single Unicast */
3069 		mvneta_rx_unicast_promisc_set(pp, 0);
3070 		mvneta_set_ucast_table(pp, -1);
3071 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3072 
3073 		if (dev->flags & IFF_ALLMULTI) {
3074 			/* Accept all multicast */
3075 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3076 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3077 		} else {
3078 			/* Accept only initialized multicast */
3079 			mvneta_set_special_mcast_table(pp, -1);
3080 			mvneta_set_other_mcast_table(pp, -1);
3081 
3082 			if (!netdev_mc_empty(dev)) {
3083 				netdev_for_each_mc_addr(ha, dev) {
3084 					mvneta_mcast_addr_set(pp, ha->addr,
3085 							      pp->rxq_def);
3086 				}
3087 			}
3088 		}
3089 	}
3090 }
3091 
3092 /* Interrupt handling - the callback for request_irq() */
3093 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3094 {
3095 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3096 
3097 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3098 	napi_schedule(&pp->napi);
3099 
3100 	return IRQ_HANDLED;
3101 }
3102 
3103 /* Interrupt handling - the callback for request_percpu_irq() */
3104 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3105 {
3106 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3107 
3108 	disable_percpu_irq(port->pp->dev->irq);
3109 	napi_schedule(&port->napi);
3110 
3111 	return IRQ_HANDLED;
3112 }
3113 
3114 static void mvneta_link_change(struct mvneta_port *pp)
3115 {
3116 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3117 
3118 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3119 }
3120 
3121 /* NAPI handler
3122  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3123  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3124  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3125  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3126  * Each CPU has its own causeRxTx register
3127  */
3128 static int mvneta_poll(struct napi_struct *napi, int budget)
3129 {
3130 	int rx_done = 0;
3131 	u32 cause_rx_tx;
3132 	int rx_queue;
3133 	struct mvneta_port *pp = netdev_priv(napi->dev);
3134 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3135 
3136 	if (!netif_running(pp->dev)) {
3137 		napi_complete(napi);
3138 		return rx_done;
3139 	}
3140 
3141 	/* Read cause register */
3142 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3143 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3144 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3145 
3146 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3147 
3148 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3149 				  MVNETA_CAUSE_LINK_CHANGE))
3150 			mvneta_link_change(pp);
3151 	}
3152 
3153 	/* Release Tx descriptors */
3154 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3155 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3156 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3157 	}
3158 
3159 	/* For the case where the last mvneta_poll did not process all
3160 	 * RX packets
3161 	 */
3162 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3163 		port->cause_rx_tx;
3164 
3165 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3166 	if (rx_queue) {
3167 		rx_queue = rx_queue - 1;
3168 		if (pp->bm_priv)
3169 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3170 						 &pp->rxqs[rx_queue]);
3171 		else
3172 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3173 						 &pp->rxqs[rx_queue]);
3174 	}
3175 
3176 	if (rx_done < budget) {
3177 		cause_rx_tx = 0;
3178 		napi_complete_done(napi, rx_done);
3179 
3180 		if (pp->neta_armada3700) {
3181 			unsigned long flags;
3182 
3183 			local_irq_save(flags);
3184 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3185 				    MVNETA_RX_INTR_MASK(rxq_number) |
3186 				    MVNETA_TX_INTR_MASK(txq_number) |
3187 				    MVNETA_MISCINTR_INTR_MASK);
3188 			local_irq_restore(flags);
3189 		} else {
3190 			enable_percpu_irq(pp->dev->irq, 0);
3191 		}
3192 	}
3193 
3194 	if (pp->neta_armada3700)
3195 		pp->cause_rx_tx = cause_rx_tx;
3196 	else
3197 		port->cause_rx_tx = cause_rx_tx;
3198 
3199 	return rx_done;
3200 }
3201 
3202 static int mvneta_create_page_pool(struct mvneta_port *pp,
3203 				   struct mvneta_rx_queue *rxq, int size)
3204 {
3205 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3206 	struct page_pool_params pp_params = {
3207 		.order = 0,
3208 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3209 		.pool_size = size,
3210 		.nid = NUMA_NO_NODE,
3211 		.dev = pp->dev->dev.parent,
3212 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3213 		.offset = pp->rx_offset_correction,
3214 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3215 	};
3216 	int err;
3217 
3218 	rxq->page_pool = page_pool_create(&pp_params);
3219 	if (IS_ERR(rxq->page_pool)) {
3220 		err = PTR_ERR(rxq->page_pool);
3221 		rxq->page_pool = NULL;
3222 		return err;
3223 	}
3224 
3225 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3226 	if (err < 0)
3227 		goto err_free_pp;
3228 
3229 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3230 					 rxq->page_pool);
3231 	if (err)
3232 		goto err_unregister_rxq;
3233 
3234 	return 0;
3235 
3236 err_unregister_rxq:
3237 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3238 err_free_pp:
3239 	page_pool_destroy(rxq->page_pool);
3240 	rxq->page_pool = NULL;
3241 	return err;
3242 }
3243 
3244 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3245 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3246 			   int num)
3247 {
3248 	int i, err;
3249 
3250 	err = mvneta_create_page_pool(pp, rxq, num);
3251 	if (err < 0)
3252 		return err;
3253 
3254 	for (i = 0; i < num; i++) {
3255 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3256 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3257 				     GFP_KERNEL) != 0) {
3258 			netdev_err(pp->dev,
3259 				   "%s:rxq %d, %d of %d buffs  filled\n",
3260 				   __func__, rxq->id, i, num);
3261 			break;
3262 		}
3263 	}
3264 
3265 	/* Add this number of RX descriptors as non occupied (ready to
3266 	 * get packets)
3267 	 */
3268 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3269 
3270 	return i;
3271 }
3272 
3273 /* Free all packets pending transmit from all TXQs and reset TX port */
3274 static void mvneta_tx_reset(struct mvneta_port *pp)
3275 {
3276 	int queue;
3277 
3278 	/* free the skb's in the tx ring */
3279 	for (queue = 0; queue < txq_number; queue++)
3280 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3281 
3282 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3283 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3284 }
3285 
3286 static void mvneta_rx_reset(struct mvneta_port *pp)
3287 {
3288 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3289 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3290 }
3291 
3292 /* Rx/Tx queue initialization/cleanup methods */
3293 
3294 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3295 			      struct mvneta_rx_queue *rxq)
3296 {
3297 	rxq->size = pp->rx_ring_size;
3298 
3299 	/* Allocate memory for RX descriptors */
3300 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3301 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3302 					&rxq->descs_phys, GFP_KERNEL);
3303 	if (!rxq->descs)
3304 		return -ENOMEM;
3305 
3306 	rxq->last_desc = rxq->size - 1;
3307 
3308 	return 0;
3309 }
3310 
3311 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3312 			       struct mvneta_rx_queue *rxq)
3313 {
3314 	/* Set Rx descriptors queue starting address */
3315 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3316 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3317 
3318 	/* Set coalescing pkts and time */
3319 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3320 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3321 
3322 	if (!pp->bm_priv) {
3323 		/* Set Offset */
3324 		mvneta_rxq_offset_set(pp, rxq, 0);
3325 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3326 					MVNETA_MAX_RX_BUF_SIZE :
3327 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3328 		mvneta_rxq_bm_disable(pp, rxq);
3329 		mvneta_rxq_fill(pp, rxq, rxq->size);
3330 	} else {
3331 		/* Set Offset */
3332 		mvneta_rxq_offset_set(pp, rxq,
3333 				      NET_SKB_PAD - pp->rx_offset_correction);
3334 
3335 		mvneta_rxq_bm_enable(pp, rxq);
3336 		/* Fill RXQ with buffers from RX pool */
3337 		mvneta_rxq_long_pool_set(pp, rxq);
3338 		mvneta_rxq_short_pool_set(pp, rxq);
3339 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3340 	}
3341 }
3342 
3343 /* Create a specified RX queue */
3344 static int mvneta_rxq_init(struct mvneta_port *pp,
3345 			   struct mvneta_rx_queue *rxq)
3346 
3347 {
3348 	int ret;
3349 
3350 	ret = mvneta_rxq_sw_init(pp, rxq);
3351 	if (ret < 0)
3352 		return ret;
3353 
3354 	mvneta_rxq_hw_init(pp, rxq);
3355 
3356 	return 0;
3357 }
3358 
3359 /* Cleanup Rx queue */
3360 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3361 			      struct mvneta_rx_queue *rxq)
3362 {
3363 	mvneta_rxq_drop_pkts(pp, rxq);
3364 
3365 	if (rxq->descs)
3366 		dma_free_coherent(pp->dev->dev.parent,
3367 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3368 				  rxq->descs,
3369 				  rxq->descs_phys);
3370 
3371 	rxq->descs             = NULL;
3372 	rxq->last_desc         = 0;
3373 	rxq->next_desc_to_proc = 0;
3374 	rxq->descs_phys        = 0;
3375 	rxq->first_to_refill   = 0;
3376 	rxq->refill_num        = 0;
3377 }
3378 
3379 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3380 			      struct mvneta_tx_queue *txq)
3381 {
3382 	int cpu;
3383 
3384 	txq->size = pp->tx_ring_size;
3385 
3386 	/* A queue must always have room for at least one skb.
3387 	 * Therefore, stop the queue when the free entries reaches
3388 	 * the maximum number of descriptors per skb.
3389 	 */
3390 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3391 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3392 
3393 	/* Allocate memory for TX descriptors */
3394 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3395 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3396 					&txq->descs_phys, GFP_KERNEL);
3397 	if (!txq->descs)
3398 		return -ENOMEM;
3399 
3400 	txq->last_desc = txq->size - 1;
3401 
3402 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3403 	if (!txq->buf)
3404 		return -ENOMEM;
3405 
3406 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3407 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3408 					   txq->size * TSO_HEADER_SIZE,
3409 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3410 	if (!txq->tso_hdrs)
3411 		return -ENOMEM;
3412 
3413 	/* Setup XPS mapping */
3414 	if (txq_number > 1)
3415 		cpu = txq->id % num_present_cpus();
3416 	else
3417 		cpu = pp->rxq_def % num_present_cpus();
3418 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3419 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3420 
3421 	return 0;
3422 }
3423 
3424 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3425 			       struct mvneta_tx_queue *txq)
3426 {
3427 	/* Set maximum bandwidth for enabled TXQs */
3428 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3429 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3430 
3431 	/* Set Tx descriptors queue starting address */
3432 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3433 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3434 
3435 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3436 }
3437 
3438 /* Create and initialize a tx queue */
3439 static int mvneta_txq_init(struct mvneta_port *pp,
3440 			   struct mvneta_tx_queue *txq)
3441 {
3442 	int ret;
3443 
3444 	ret = mvneta_txq_sw_init(pp, txq);
3445 	if (ret < 0)
3446 		return ret;
3447 
3448 	mvneta_txq_hw_init(pp, txq);
3449 
3450 	return 0;
3451 }
3452 
3453 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3454 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3455 				 struct mvneta_tx_queue *txq)
3456 {
3457 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3458 
3459 	kfree(txq->buf);
3460 
3461 	if (txq->tso_hdrs)
3462 		dma_free_coherent(pp->dev->dev.parent,
3463 				  txq->size * TSO_HEADER_SIZE,
3464 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3465 	if (txq->descs)
3466 		dma_free_coherent(pp->dev->dev.parent,
3467 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3468 				  txq->descs, txq->descs_phys);
3469 
3470 	netdev_tx_reset_queue(nq);
3471 
3472 	txq->descs             = NULL;
3473 	txq->last_desc         = 0;
3474 	txq->next_desc_to_proc = 0;
3475 	txq->descs_phys        = 0;
3476 }
3477 
3478 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3479 				 struct mvneta_tx_queue *txq)
3480 {
3481 	/* Set minimum bandwidth for disabled TXQs */
3482 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3483 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3484 
3485 	/* Set Tx descriptors queue starting address and size */
3486 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3487 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3488 }
3489 
3490 static void mvneta_txq_deinit(struct mvneta_port *pp,
3491 			      struct mvneta_tx_queue *txq)
3492 {
3493 	mvneta_txq_sw_deinit(pp, txq);
3494 	mvneta_txq_hw_deinit(pp, txq);
3495 }
3496 
3497 /* Cleanup all Tx queues */
3498 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3499 {
3500 	int queue;
3501 
3502 	for (queue = 0; queue < txq_number; queue++)
3503 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3504 }
3505 
3506 /* Cleanup all Rx queues */
3507 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3508 {
3509 	int queue;
3510 
3511 	for (queue = 0; queue < rxq_number; queue++)
3512 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3513 }
3514 
3515 
3516 /* Init all Rx queues */
3517 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3518 {
3519 	int queue;
3520 
3521 	for (queue = 0; queue < rxq_number; queue++) {
3522 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3523 
3524 		if (err) {
3525 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3526 				   __func__, queue);
3527 			mvneta_cleanup_rxqs(pp);
3528 			return err;
3529 		}
3530 	}
3531 
3532 	return 0;
3533 }
3534 
3535 /* Init all tx queues */
3536 static int mvneta_setup_txqs(struct mvneta_port *pp)
3537 {
3538 	int queue;
3539 
3540 	for (queue = 0; queue < txq_number; queue++) {
3541 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3542 		if (err) {
3543 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3544 				   __func__, queue);
3545 			mvneta_cleanup_txqs(pp);
3546 			return err;
3547 		}
3548 	}
3549 
3550 	return 0;
3551 }
3552 
3553 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3554 {
3555 	int ret;
3556 
3557 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3558 	if (ret)
3559 		return ret;
3560 
3561 	return phy_power_on(pp->comphy);
3562 }
3563 
3564 static int mvneta_config_interface(struct mvneta_port *pp,
3565 				   phy_interface_t interface)
3566 {
3567 	int ret = 0;
3568 
3569 	if (pp->comphy) {
3570 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3571 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3572 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3573 			ret = mvneta_comphy_init(pp, interface);
3574 		}
3575 	} else {
3576 		switch (interface) {
3577 		case PHY_INTERFACE_MODE_QSGMII:
3578 			mvreg_write(pp, MVNETA_SERDES_CFG,
3579 				    MVNETA_QSGMII_SERDES_PROTO);
3580 			break;
3581 
3582 		case PHY_INTERFACE_MODE_SGMII:
3583 		case PHY_INTERFACE_MODE_1000BASEX:
3584 			mvreg_write(pp, MVNETA_SERDES_CFG,
3585 				    MVNETA_SGMII_SERDES_PROTO);
3586 			break;
3587 
3588 		case PHY_INTERFACE_MODE_2500BASEX:
3589 			mvreg_write(pp, MVNETA_SERDES_CFG,
3590 				    MVNETA_HSGMII_SERDES_PROTO);
3591 			break;
3592 		default:
3593 			break;
3594 		}
3595 	}
3596 
3597 	pp->phy_interface = interface;
3598 
3599 	return ret;
3600 }
3601 
3602 static void mvneta_start_dev(struct mvneta_port *pp)
3603 {
3604 	int cpu;
3605 
3606 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3607 
3608 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3609 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3610 
3611 	/* start the Rx/Tx activity */
3612 	mvneta_port_enable(pp);
3613 
3614 	if (!pp->neta_armada3700) {
3615 		/* Enable polling on the port */
3616 		for_each_online_cpu(cpu) {
3617 			struct mvneta_pcpu_port *port =
3618 				per_cpu_ptr(pp->ports, cpu);
3619 
3620 			napi_enable(&port->napi);
3621 		}
3622 	} else {
3623 		napi_enable(&pp->napi);
3624 	}
3625 
3626 	/* Unmask interrupts. It has to be done from each CPU */
3627 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3628 
3629 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3630 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3631 		    MVNETA_CAUSE_LINK_CHANGE);
3632 
3633 	phylink_start(pp->phylink);
3634 
3635 	/* We may have called phylink_speed_down before */
3636 	phylink_speed_up(pp->phylink);
3637 
3638 	netif_tx_start_all_queues(pp->dev);
3639 
3640 	clear_bit(__MVNETA_DOWN, &pp->state);
3641 }
3642 
3643 static void mvneta_stop_dev(struct mvneta_port *pp)
3644 {
3645 	unsigned int cpu;
3646 
3647 	set_bit(__MVNETA_DOWN, &pp->state);
3648 
3649 	if (device_may_wakeup(&pp->dev->dev))
3650 		phylink_speed_down(pp->phylink, false);
3651 
3652 	phylink_stop(pp->phylink);
3653 
3654 	if (!pp->neta_armada3700) {
3655 		for_each_online_cpu(cpu) {
3656 			struct mvneta_pcpu_port *port =
3657 				per_cpu_ptr(pp->ports, cpu);
3658 
3659 			napi_disable(&port->napi);
3660 		}
3661 	} else {
3662 		napi_disable(&pp->napi);
3663 	}
3664 
3665 	netif_carrier_off(pp->dev);
3666 
3667 	mvneta_port_down(pp);
3668 	netif_tx_stop_all_queues(pp->dev);
3669 
3670 	/* Stop the port activity */
3671 	mvneta_port_disable(pp);
3672 
3673 	/* Clear all ethernet port interrupts */
3674 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3675 
3676 	/* Mask all ethernet port interrupts */
3677 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3678 
3679 	mvneta_tx_reset(pp);
3680 	mvneta_rx_reset(pp);
3681 
3682 	WARN_ON(phy_power_off(pp->comphy));
3683 }
3684 
3685 static void mvneta_percpu_enable(void *arg)
3686 {
3687 	struct mvneta_port *pp = arg;
3688 
3689 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3690 }
3691 
3692 static void mvneta_percpu_disable(void *arg)
3693 {
3694 	struct mvneta_port *pp = arg;
3695 
3696 	disable_percpu_irq(pp->dev->irq);
3697 }
3698 
3699 /* Change the device mtu */
3700 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3701 {
3702 	struct mvneta_port *pp = netdev_priv(dev);
3703 	int ret;
3704 
3705 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3706 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3707 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3708 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3709 	}
3710 
3711 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3712 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3713 		return -EINVAL;
3714 	}
3715 
3716 	dev->mtu = mtu;
3717 
3718 	if (!netif_running(dev)) {
3719 		if (pp->bm_priv)
3720 			mvneta_bm_update_mtu(pp, mtu);
3721 
3722 		netdev_update_features(dev);
3723 		return 0;
3724 	}
3725 
3726 	/* The interface is running, so we have to force a
3727 	 * reallocation of the queues
3728 	 */
3729 	mvneta_stop_dev(pp);
3730 	on_each_cpu(mvneta_percpu_disable, pp, true);
3731 
3732 	mvneta_cleanup_txqs(pp);
3733 	mvneta_cleanup_rxqs(pp);
3734 
3735 	if (pp->bm_priv)
3736 		mvneta_bm_update_mtu(pp, mtu);
3737 
3738 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3739 
3740 	ret = mvneta_setup_rxqs(pp);
3741 	if (ret) {
3742 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3743 		return ret;
3744 	}
3745 
3746 	ret = mvneta_setup_txqs(pp);
3747 	if (ret) {
3748 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3749 		return ret;
3750 	}
3751 
3752 	on_each_cpu(mvneta_percpu_enable, pp, true);
3753 	mvneta_start_dev(pp);
3754 
3755 	netdev_update_features(dev);
3756 
3757 	return 0;
3758 }
3759 
3760 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3761 					     netdev_features_t features)
3762 {
3763 	struct mvneta_port *pp = netdev_priv(dev);
3764 
3765 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3766 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3767 		netdev_info(dev,
3768 			    "Disable IP checksum for MTU greater than %dB\n",
3769 			    pp->tx_csum_limit);
3770 	}
3771 
3772 	return features;
3773 }
3774 
3775 /* Get mac address */
3776 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3777 {
3778 	u32 mac_addr_l, mac_addr_h;
3779 
3780 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3781 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3782 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3783 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3784 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3785 	addr[3] = mac_addr_h & 0xFF;
3786 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3787 	addr[5] = mac_addr_l & 0xFF;
3788 }
3789 
3790 /* Handle setting mac address */
3791 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3792 {
3793 	struct mvneta_port *pp = netdev_priv(dev);
3794 	struct sockaddr *sockaddr = addr;
3795 	int ret;
3796 
3797 	ret = eth_prepare_mac_addr_change(dev, addr);
3798 	if (ret < 0)
3799 		return ret;
3800 	/* Remove previous address table entry */
3801 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3802 
3803 	/* Set new addr in hw */
3804 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3805 
3806 	eth_commit_mac_addr_change(dev, addr);
3807 	return 0;
3808 }
3809 
3810 static void mvneta_validate(struct phylink_config *config,
3811 			    unsigned long *supported,
3812 			    struct phylink_link_state *state)
3813 {
3814 	struct net_device *ndev = to_net_dev(config->dev);
3815 	struct mvneta_port *pp = netdev_priv(ndev);
3816 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3817 
3818 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3819 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3820 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3821 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3822 	    !phy_interface_mode_is_8023z(state->interface) &&
3823 	    !phy_interface_mode_is_rgmii(state->interface)) {
3824 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3825 		return;
3826 	}
3827 
3828 	/* Allow all the expected bits */
3829 	phylink_set(mask, Autoneg);
3830 	phylink_set_port_modes(mask);
3831 
3832 	/* Asymmetric pause is unsupported */
3833 	phylink_set(mask, Pause);
3834 
3835 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3836 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3837 		phylink_set(mask, 1000baseT_Full);
3838 		phylink_set(mask, 1000baseX_Full);
3839 	}
3840 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3841 		phylink_set(mask, 2500baseT_Full);
3842 		phylink_set(mask, 2500baseX_Full);
3843 	}
3844 
3845 	if (!phy_interface_mode_is_8023z(state->interface)) {
3846 		/* 10M and 100M are only supported in non-802.3z mode */
3847 		phylink_set(mask, 10baseT_Half);
3848 		phylink_set(mask, 10baseT_Full);
3849 		phylink_set(mask, 100baseT_Half);
3850 		phylink_set(mask, 100baseT_Full);
3851 	}
3852 
3853 	bitmap_and(supported, supported, mask,
3854 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3855 	bitmap_and(state->advertising, state->advertising, mask,
3856 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3857 
3858 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3859 	 * to advertise both, only report advertising at 2500BaseX.
3860 	 */
3861 	phylink_helper_basex_speed(state);
3862 }
3863 
3864 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3865 				     struct phylink_link_state *state)
3866 {
3867 	struct net_device *ndev = to_net_dev(config->dev);
3868 	struct mvneta_port *pp = netdev_priv(ndev);
3869 	u32 gmac_stat;
3870 
3871 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3872 
3873 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3874 		state->speed =
3875 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3876 			SPEED_2500 : SPEED_1000;
3877 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3878 		state->speed = SPEED_100;
3879 	else
3880 		state->speed = SPEED_10;
3881 
3882 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3883 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3884 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3885 
3886 	state->pause = 0;
3887 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3888 		state->pause |= MLO_PAUSE_RX;
3889 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3890 		state->pause |= MLO_PAUSE_TX;
3891 }
3892 
3893 static void mvneta_mac_an_restart(struct phylink_config *config)
3894 {
3895 	struct net_device *ndev = to_net_dev(config->dev);
3896 	struct mvneta_port *pp = netdev_priv(ndev);
3897 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3898 
3899 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3900 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3901 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3902 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3903 }
3904 
3905 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3906 			      const struct phylink_link_state *state)
3907 {
3908 	struct net_device *ndev = to_net_dev(config->dev);
3909 	struct mvneta_port *pp = netdev_priv(ndev);
3910 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3911 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3912 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3913 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3914 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3915 
3916 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3917 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3918 				   MVNETA_GMAC2_PORT_RESET);
3919 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3920 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3921 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3922 			     MVNETA_GMAC_INBAND_RESTART_AN |
3923 			     MVNETA_GMAC_AN_SPEED_EN |
3924 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3925 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3926 			     MVNETA_GMAC_AN_DUPLEX_EN);
3927 
3928 	/* Even though it might look weird, when we're configured in
3929 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3930 	 */
3931 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3932 
3933 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3934 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3935 	    phy_interface_mode_is_8023z(state->interface))
3936 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3937 
3938 	if (phylink_test(state->advertising, Pause))
3939 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3940 
3941 	if (!phylink_autoneg_inband(mode)) {
3942 		/* Phy or fixed speed - nothing to do, leave the
3943 		 * configured speed, duplex and flow control as-is.
3944 		 */
3945 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3946 		/* SGMII mode receives the state from the PHY */
3947 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3948 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3949 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3950 				     MVNETA_GMAC_FORCE_LINK_PASS |
3951 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3952 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3953 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3954 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3955 			 MVNETA_GMAC_AN_SPEED_EN |
3956 			 MVNETA_GMAC_AN_DUPLEX_EN;
3957 	} else {
3958 		/* 802.3z negotiation - only 1000base-X */
3959 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3960 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3961 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3962 				     MVNETA_GMAC_FORCE_LINK_PASS |
3963 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3964 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3965 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3966 			 /* The MAC only supports FD mode */
3967 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3968 
3969 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3970 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3971 	}
3972 
3973 	/* Armada 370 documentation says we can only change the port mode
3974 	 * and in-band enable when the link is down, so force it down
3975 	 * while making these changes. We also do this for GMAC_CTRL2 */
3976 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3977 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3978 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3979 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3980 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3981 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3982 	}
3983 
3984 
3985 	/* When at 2.5G, the link partner can send frames with shortened
3986 	 * preambles.
3987 	 */
3988 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3989 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3990 
3991 	if (pp->phy_interface != state->interface) {
3992 		if (pp->comphy)
3993 			WARN_ON(phy_power_off(pp->comphy));
3994 		WARN_ON(mvneta_config_interface(pp, state->interface));
3995 	}
3996 
3997 	if (new_ctrl0 != gmac_ctrl0)
3998 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3999 	if (new_ctrl2 != gmac_ctrl2)
4000 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4001 	if (new_ctrl4 != gmac_ctrl4)
4002 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4003 	if (new_clk != gmac_clk)
4004 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4005 	if (new_an != gmac_an)
4006 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4007 
4008 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4009 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4010 			MVNETA_GMAC2_PORT_RESET) != 0)
4011 			continue;
4012 	}
4013 }
4014 
4015 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4016 {
4017 	u32 lpi_ctl1;
4018 
4019 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4020 	if (enable)
4021 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4022 	else
4023 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4024 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4025 }
4026 
4027 static void mvneta_mac_link_down(struct phylink_config *config,
4028 				 unsigned int mode, phy_interface_t interface)
4029 {
4030 	struct net_device *ndev = to_net_dev(config->dev);
4031 	struct mvneta_port *pp = netdev_priv(ndev);
4032 	u32 val;
4033 
4034 	mvneta_port_down(pp);
4035 
4036 	if (!phylink_autoneg_inband(mode)) {
4037 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4038 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4039 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4040 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4041 	}
4042 
4043 	pp->eee_active = false;
4044 	mvneta_set_eee(pp, false);
4045 }
4046 
4047 static void mvneta_mac_link_up(struct phylink_config *config,
4048 			       struct phy_device *phy,
4049 			       unsigned int mode, phy_interface_t interface,
4050 			       int speed, int duplex,
4051 			       bool tx_pause, bool rx_pause)
4052 {
4053 	struct net_device *ndev = to_net_dev(config->dev);
4054 	struct mvneta_port *pp = netdev_priv(ndev);
4055 	u32 val;
4056 
4057 	if (!phylink_autoneg_inband(mode)) {
4058 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4059 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4060 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4061 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4062 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4063 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4064 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4065 
4066 		if (speed == SPEED_1000 || speed == SPEED_2500)
4067 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4068 		else if (speed == SPEED_100)
4069 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4070 
4071 		if (duplex == DUPLEX_FULL)
4072 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4073 
4074 		if (tx_pause || rx_pause)
4075 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4076 
4077 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4078 	} else {
4079 		/* When inband doesn't cover flow control or flow control is
4080 		 * disabled, we need to manually configure it. This bit will
4081 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4082 		 */
4083 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4084 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4085 
4086 		if (tx_pause || rx_pause)
4087 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4088 
4089 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4090 	}
4091 
4092 	mvneta_port_up(pp);
4093 
4094 	if (phy && pp->eee_enabled) {
4095 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4096 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4097 	}
4098 }
4099 
4100 static const struct phylink_mac_ops mvneta_phylink_ops = {
4101 	.validate = mvneta_validate,
4102 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4103 	.mac_an_restart = mvneta_mac_an_restart,
4104 	.mac_config = mvneta_mac_config,
4105 	.mac_link_down = mvneta_mac_link_down,
4106 	.mac_link_up = mvneta_mac_link_up,
4107 };
4108 
4109 static int mvneta_mdio_probe(struct mvneta_port *pp)
4110 {
4111 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4112 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4113 
4114 	if (err)
4115 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4116 
4117 	phylink_ethtool_get_wol(pp->phylink, &wol);
4118 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4119 
4120 	/* PHY WoL may be enabled but device wakeup disabled */
4121 	if (wol.supported)
4122 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4123 
4124 	return err;
4125 }
4126 
4127 static void mvneta_mdio_remove(struct mvneta_port *pp)
4128 {
4129 	phylink_disconnect_phy(pp->phylink);
4130 }
4131 
4132 /* Electing a CPU must be done in an atomic way: it should be done
4133  * after or before the removal/insertion of a CPU and this function is
4134  * not reentrant.
4135  */
4136 static void mvneta_percpu_elect(struct mvneta_port *pp)
4137 {
4138 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4139 
4140 	/* Use the cpu associated to the rxq when it is online, in all
4141 	 * the other cases, use the cpu 0 which can't be offline.
4142 	 */
4143 	if (cpu_online(pp->rxq_def))
4144 		elected_cpu = pp->rxq_def;
4145 
4146 	max_cpu = num_present_cpus();
4147 
4148 	for_each_online_cpu(cpu) {
4149 		int rxq_map = 0, txq_map = 0;
4150 		int rxq;
4151 
4152 		for (rxq = 0; rxq < rxq_number; rxq++)
4153 			if ((rxq % max_cpu) == cpu)
4154 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4155 
4156 		if (cpu == elected_cpu)
4157 			/* Map the default receive queue queue to the
4158 			 * elected CPU
4159 			 */
4160 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4161 
4162 		/* We update the TX queue map only if we have one
4163 		 * queue. In this case we associate the TX queue to
4164 		 * the CPU bound to the default RX queue
4165 		 */
4166 		if (txq_number == 1)
4167 			txq_map = (cpu == elected_cpu) ?
4168 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4169 		else
4170 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4171 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4172 
4173 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4174 
4175 		/* Update the interrupt mask on each CPU according the
4176 		 * new mapping
4177 		 */
4178 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4179 					 pp, true);
4180 		i++;
4181 
4182 	}
4183 };
4184 
4185 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4186 {
4187 	int other_cpu;
4188 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4189 						  node_online);
4190 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4191 
4192 
4193 	spin_lock(&pp->lock);
4194 	/*
4195 	 * Configuring the driver for a new CPU while the driver is
4196 	 * stopping is racy, so just avoid it.
4197 	 */
4198 	if (pp->is_stopped) {
4199 		spin_unlock(&pp->lock);
4200 		return 0;
4201 	}
4202 	netif_tx_stop_all_queues(pp->dev);
4203 
4204 	/*
4205 	 * We have to synchronise on tha napi of each CPU except the one
4206 	 * just being woken up
4207 	 */
4208 	for_each_online_cpu(other_cpu) {
4209 		if (other_cpu != cpu) {
4210 			struct mvneta_pcpu_port *other_port =
4211 				per_cpu_ptr(pp->ports, other_cpu);
4212 
4213 			napi_synchronize(&other_port->napi);
4214 		}
4215 	}
4216 
4217 	/* Mask all ethernet port interrupts */
4218 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4219 	napi_enable(&port->napi);
4220 
4221 	/*
4222 	 * Enable per-CPU interrupts on the CPU that is
4223 	 * brought up.
4224 	 */
4225 	mvneta_percpu_enable(pp);
4226 
4227 	/*
4228 	 * Enable per-CPU interrupt on the one CPU we care
4229 	 * about.
4230 	 */
4231 	mvneta_percpu_elect(pp);
4232 
4233 	/* Unmask all ethernet port interrupts */
4234 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4235 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4236 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4237 		    MVNETA_CAUSE_LINK_CHANGE);
4238 	netif_tx_start_all_queues(pp->dev);
4239 	spin_unlock(&pp->lock);
4240 	return 0;
4241 }
4242 
4243 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4244 {
4245 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4246 						  node_online);
4247 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4248 
4249 	/*
4250 	 * Thanks to this lock we are sure that any pending cpu election is
4251 	 * done.
4252 	 */
4253 	spin_lock(&pp->lock);
4254 	/* Mask all ethernet port interrupts */
4255 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4256 	spin_unlock(&pp->lock);
4257 
4258 	napi_synchronize(&port->napi);
4259 	napi_disable(&port->napi);
4260 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4261 	mvneta_percpu_disable(pp);
4262 	return 0;
4263 }
4264 
4265 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4266 {
4267 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4268 						  node_dead);
4269 
4270 	/* Check if a new CPU must be elected now this on is down */
4271 	spin_lock(&pp->lock);
4272 	mvneta_percpu_elect(pp);
4273 	spin_unlock(&pp->lock);
4274 	/* Unmask all ethernet port interrupts */
4275 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4276 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4277 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4278 		    MVNETA_CAUSE_LINK_CHANGE);
4279 	netif_tx_start_all_queues(pp->dev);
4280 	return 0;
4281 }
4282 
4283 static int mvneta_open(struct net_device *dev)
4284 {
4285 	struct mvneta_port *pp = netdev_priv(dev);
4286 	int ret;
4287 
4288 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4289 
4290 	ret = mvneta_setup_rxqs(pp);
4291 	if (ret)
4292 		return ret;
4293 
4294 	ret = mvneta_setup_txqs(pp);
4295 	if (ret)
4296 		goto err_cleanup_rxqs;
4297 
4298 	/* Connect to port interrupt line */
4299 	if (pp->neta_armada3700)
4300 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4301 				  dev->name, pp);
4302 	else
4303 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4304 					 dev->name, pp->ports);
4305 	if (ret) {
4306 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4307 		goto err_cleanup_txqs;
4308 	}
4309 
4310 	if (!pp->neta_armada3700) {
4311 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4312 		 * queue interrupts
4313 		 */
4314 		on_each_cpu(mvneta_percpu_enable, pp, true);
4315 
4316 		pp->is_stopped = false;
4317 		/* Register a CPU notifier to handle the case where our CPU
4318 		 * might be taken offline.
4319 		 */
4320 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4321 						       &pp->node_online);
4322 		if (ret)
4323 			goto err_free_irq;
4324 
4325 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4326 						       &pp->node_dead);
4327 		if (ret)
4328 			goto err_free_online_hp;
4329 	}
4330 
4331 	ret = mvneta_mdio_probe(pp);
4332 	if (ret < 0) {
4333 		netdev_err(dev, "cannot probe MDIO bus\n");
4334 		goto err_free_dead_hp;
4335 	}
4336 
4337 	mvneta_start_dev(pp);
4338 
4339 	return 0;
4340 
4341 err_free_dead_hp:
4342 	if (!pp->neta_armada3700)
4343 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4344 						    &pp->node_dead);
4345 err_free_online_hp:
4346 	if (!pp->neta_armada3700)
4347 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4348 						    &pp->node_online);
4349 err_free_irq:
4350 	if (pp->neta_armada3700) {
4351 		free_irq(pp->dev->irq, pp);
4352 	} else {
4353 		on_each_cpu(mvneta_percpu_disable, pp, true);
4354 		free_percpu_irq(pp->dev->irq, pp->ports);
4355 	}
4356 err_cleanup_txqs:
4357 	mvneta_cleanup_txqs(pp);
4358 err_cleanup_rxqs:
4359 	mvneta_cleanup_rxqs(pp);
4360 	return ret;
4361 }
4362 
4363 /* Stop the port, free port interrupt line */
4364 static int mvneta_stop(struct net_device *dev)
4365 {
4366 	struct mvneta_port *pp = netdev_priv(dev);
4367 
4368 	if (!pp->neta_armada3700) {
4369 		/* Inform that we are stopping so we don't want to setup the
4370 		 * driver for new CPUs in the notifiers. The code of the
4371 		 * notifier for CPU online is protected by the same spinlock,
4372 		 * so when we get the lock, the notifer work is done.
4373 		 */
4374 		spin_lock(&pp->lock);
4375 		pp->is_stopped = true;
4376 		spin_unlock(&pp->lock);
4377 
4378 		mvneta_stop_dev(pp);
4379 		mvneta_mdio_remove(pp);
4380 
4381 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4382 						    &pp->node_online);
4383 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4384 						    &pp->node_dead);
4385 		on_each_cpu(mvneta_percpu_disable, pp, true);
4386 		free_percpu_irq(dev->irq, pp->ports);
4387 	} else {
4388 		mvneta_stop_dev(pp);
4389 		mvneta_mdio_remove(pp);
4390 		free_irq(dev->irq, pp);
4391 	}
4392 
4393 	mvneta_cleanup_rxqs(pp);
4394 	mvneta_cleanup_txqs(pp);
4395 
4396 	return 0;
4397 }
4398 
4399 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4400 {
4401 	struct mvneta_port *pp = netdev_priv(dev);
4402 
4403 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4404 }
4405 
4406 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4407 			    struct netlink_ext_ack *extack)
4408 {
4409 	bool need_update, running = netif_running(dev);
4410 	struct mvneta_port *pp = netdev_priv(dev);
4411 	struct bpf_prog *old_prog;
4412 
4413 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4414 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4415 		return -EOPNOTSUPP;
4416 	}
4417 
4418 	if (pp->bm_priv) {
4419 		NL_SET_ERR_MSG_MOD(extack,
4420 				   "Hardware Buffer Management not supported on XDP");
4421 		return -EOPNOTSUPP;
4422 	}
4423 
4424 	need_update = !!pp->xdp_prog != !!prog;
4425 	if (running && need_update)
4426 		mvneta_stop(dev);
4427 
4428 	old_prog = xchg(&pp->xdp_prog, prog);
4429 	if (old_prog)
4430 		bpf_prog_put(old_prog);
4431 
4432 	if (running && need_update)
4433 		return mvneta_open(dev);
4434 
4435 	return 0;
4436 }
4437 
4438 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4439 {
4440 	switch (xdp->command) {
4441 	case XDP_SETUP_PROG:
4442 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4443 	default:
4444 		return -EINVAL;
4445 	}
4446 }
4447 
4448 /* Ethtool methods */
4449 
4450 /* Set link ksettings (phy address, speed) for ethtools */
4451 static int
4452 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4453 				  const struct ethtool_link_ksettings *cmd)
4454 {
4455 	struct mvneta_port *pp = netdev_priv(ndev);
4456 
4457 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4458 }
4459 
4460 /* Get link ksettings for ethtools */
4461 static int
4462 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4463 				  struct ethtool_link_ksettings *cmd)
4464 {
4465 	struct mvneta_port *pp = netdev_priv(ndev);
4466 
4467 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4468 }
4469 
4470 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4471 {
4472 	struct mvneta_port *pp = netdev_priv(dev);
4473 
4474 	return phylink_ethtool_nway_reset(pp->phylink);
4475 }
4476 
4477 /* Set interrupt coalescing for ethtools */
4478 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4479 				       struct ethtool_coalesce *c)
4480 {
4481 	struct mvneta_port *pp = netdev_priv(dev);
4482 	int queue;
4483 
4484 	for (queue = 0; queue < rxq_number; queue++) {
4485 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4486 		rxq->time_coal = c->rx_coalesce_usecs;
4487 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4488 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4489 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4490 	}
4491 
4492 	for (queue = 0; queue < txq_number; queue++) {
4493 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4494 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4495 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4496 	}
4497 
4498 	return 0;
4499 }
4500 
4501 /* get coalescing for ethtools */
4502 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4503 				       struct ethtool_coalesce *c)
4504 {
4505 	struct mvneta_port *pp = netdev_priv(dev);
4506 
4507 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4508 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4509 
4510 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4511 	return 0;
4512 }
4513 
4514 
4515 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4516 				    struct ethtool_drvinfo *drvinfo)
4517 {
4518 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4519 		sizeof(drvinfo->driver));
4520 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4521 		sizeof(drvinfo->version));
4522 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4523 		sizeof(drvinfo->bus_info));
4524 }
4525 
4526 
4527 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4528 					 struct ethtool_ringparam *ring)
4529 {
4530 	struct mvneta_port *pp = netdev_priv(netdev);
4531 
4532 	ring->rx_max_pending = MVNETA_MAX_RXD;
4533 	ring->tx_max_pending = MVNETA_MAX_TXD;
4534 	ring->rx_pending = pp->rx_ring_size;
4535 	ring->tx_pending = pp->tx_ring_size;
4536 }
4537 
4538 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4539 					struct ethtool_ringparam *ring)
4540 {
4541 	struct mvneta_port *pp = netdev_priv(dev);
4542 
4543 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4544 		return -EINVAL;
4545 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4546 		ring->rx_pending : MVNETA_MAX_RXD;
4547 
4548 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4549 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4550 	if (pp->tx_ring_size != ring->tx_pending)
4551 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4552 			    pp->tx_ring_size, ring->tx_pending);
4553 
4554 	if (netif_running(dev)) {
4555 		mvneta_stop(dev);
4556 		if (mvneta_open(dev)) {
4557 			netdev_err(dev,
4558 				   "error on opening device after ring param change\n");
4559 			return -ENOMEM;
4560 		}
4561 	}
4562 
4563 	return 0;
4564 }
4565 
4566 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4567 					  struct ethtool_pauseparam *pause)
4568 {
4569 	struct mvneta_port *pp = netdev_priv(dev);
4570 
4571 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4572 }
4573 
4574 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4575 					 struct ethtool_pauseparam *pause)
4576 {
4577 	struct mvneta_port *pp = netdev_priv(dev);
4578 
4579 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4580 }
4581 
4582 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4583 				       u8 *data)
4584 {
4585 	if (sset == ETH_SS_STATS) {
4586 		int i;
4587 
4588 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4589 			memcpy(data + i * ETH_GSTRING_LEN,
4590 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4591 	}
4592 }
4593 
4594 static void
4595 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4596 				 struct mvneta_ethtool_stats *es)
4597 {
4598 	unsigned int start;
4599 	int cpu;
4600 
4601 	for_each_possible_cpu(cpu) {
4602 		struct mvneta_pcpu_stats *stats;
4603 		u64 skb_alloc_error;
4604 		u64 refill_error;
4605 		u64 xdp_redirect;
4606 		u64 xdp_xmit_err;
4607 		u64 xdp_tx_err;
4608 		u64 xdp_pass;
4609 		u64 xdp_drop;
4610 		u64 xdp_xmit;
4611 		u64 xdp_tx;
4612 
4613 		stats = per_cpu_ptr(pp->stats, cpu);
4614 		do {
4615 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4616 			skb_alloc_error = stats->es.skb_alloc_error;
4617 			refill_error = stats->es.refill_error;
4618 			xdp_redirect = stats->es.ps.xdp_redirect;
4619 			xdp_pass = stats->es.ps.xdp_pass;
4620 			xdp_drop = stats->es.ps.xdp_drop;
4621 			xdp_xmit = stats->es.ps.xdp_xmit;
4622 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4623 			xdp_tx = stats->es.ps.xdp_tx;
4624 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4625 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4626 
4627 		es->skb_alloc_error += skb_alloc_error;
4628 		es->refill_error += refill_error;
4629 		es->ps.xdp_redirect += xdp_redirect;
4630 		es->ps.xdp_pass += xdp_pass;
4631 		es->ps.xdp_drop += xdp_drop;
4632 		es->ps.xdp_xmit += xdp_xmit;
4633 		es->ps.xdp_xmit_err += xdp_xmit_err;
4634 		es->ps.xdp_tx += xdp_tx;
4635 		es->ps.xdp_tx_err += xdp_tx_err;
4636 	}
4637 }
4638 
4639 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4640 {
4641 	struct mvneta_ethtool_stats stats = {};
4642 	const struct mvneta_statistic *s;
4643 	void __iomem *base = pp->base;
4644 	u32 high, low;
4645 	u64 val;
4646 	int i;
4647 
4648 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4649 	for (i = 0, s = mvneta_statistics;
4650 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4651 	     s++, i++) {
4652 		switch (s->type) {
4653 		case T_REG_32:
4654 			val = readl_relaxed(base + s->offset);
4655 			pp->ethtool_stats[i] += val;
4656 			break;
4657 		case T_REG_64:
4658 			/* Docs say to read low 32-bit then high */
4659 			low = readl_relaxed(base + s->offset);
4660 			high = readl_relaxed(base + s->offset + 4);
4661 			val = (u64)high << 32 | low;
4662 			pp->ethtool_stats[i] += val;
4663 			break;
4664 		case T_SW:
4665 			switch (s->offset) {
4666 			case ETHTOOL_STAT_EEE_WAKEUP:
4667 				val = phylink_get_eee_err(pp->phylink);
4668 				pp->ethtool_stats[i] += val;
4669 				break;
4670 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4671 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4672 				break;
4673 			case ETHTOOL_STAT_REFILL_ERR:
4674 				pp->ethtool_stats[i] = stats.refill_error;
4675 				break;
4676 			case ETHTOOL_XDP_REDIRECT:
4677 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4678 				break;
4679 			case ETHTOOL_XDP_PASS:
4680 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4681 				break;
4682 			case ETHTOOL_XDP_DROP:
4683 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4684 				break;
4685 			case ETHTOOL_XDP_TX:
4686 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4687 				break;
4688 			case ETHTOOL_XDP_TX_ERR:
4689 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4690 				break;
4691 			case ETHTOOL_XDP_XMIT:
4692 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4693 				break;
4694 			case ETHTOOL_XDP_XMIT_ERR:
4695 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4696 				break;
4697 			}
4698 			break;
4699 		}
4700 	}
4701 }
4702 
4703 static void mvneta_ethtool_get_stats(struct net_device *dev,
4704 				     struct ethtool_stats *stats, u64 *data)
4705 {
4706 	struct mvneta_port *pp = netdev_priv(dev);
4707 	int i;
4708 
4709 	mvneta_ethtool_update_stats(pp);
4710 
4711 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4712 		*data++ = pp->ethtool_stats[i];
4713 }
4714 
4715 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4716 {
4717 	if (sset == ETH_SS_STATS)
4718 		return ARRAY_SIZE(mvneta_statistics);
4719 	return -EOPNOTSUPP;
4720 }
4721 
4722 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4723 {
4724 	return MVNETA_RSS_LU_TABLE_SIZE;
4725 }
4726 
4727 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4728 				    struct ethtool_rxnfc *info,
4729 				    u32 *rules __always_unused)
4730 {
4731 	switch (info->cmd) {
4732 	case ETHTOOL_GRXRINGS:
4733 		info->data =  rxq_number;
4734 		return 0;
4735 	case ETHTOOL_GRXFH:
4736 		return -EOPNOTSUPP;
4737 	default:
4738 		return -EOPNOTSUPP;
4739 	}
4740 }
4741 
4742 static int  mvneta_config_rss(struct mvneta_port *pp)
4743 {
4744 	int cpu;
4745 	u32 val;
4746 
4747 	netif_tx_stop_all_queues(pp->dev);
4748 
4749 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4750 
4751 	if (!pp->neta_armada3700) {
4752 		/* We have to synchronise on the napi of each CPU */
4753 		for_each_online_cpu(cpu) {
4754 			struct mvneta_pcpu_port *pcpu_port =
4755 				per_cpu_ptr(pp->ports, cpu);
4756 
4757 			napi_synchronize(&pcpu_port->napi);
4758 			napi_disable(&pcpu_port->napi);
4759 		}
4760 	} else {
4761 		napi_synchronize(&pp->napi);
4762 		napi_disable(&pp->napi);
4763 	}
4764 
4765 	pp->rxq_def = pp->indir[0];
4766 
4767 	/* Update unicast mapping */
4768 	mvneta_set_rx_mode(pp->dev);
4769 
4770 	/* Update val of portCfg register accordingly with all RxQueue types */
4771 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4772 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4773 
4774 	/* Update the elected CPU matching the new rxq_def */
4775 	spin_lock(&pp->lock);
4776 	mvneta_percpu_elect(pp);
4777 	spin_unlock(&pp->lock);
4778 
4779 	if (!pp->neta_armada3700) {
4780 		/* We have to synchronise on the napi of each CPU */
4781 		for_each_online_cpu(cpu) {
4782 			struct mvneta_pcpu_port *pcpu_port =
4783 				per_cpu_ptr(pp->ports, cpu);
4784 
4785 			napi_enable(&pcpu_port->napi);
4786 		}
4787 	} else {
4788 		napi_enable(&pp->napi);
4789 	}
4790 
4791 	netif_tx_start_all_queues(pp->dev);
4792 
4793 	return 0;
4794 }
4795 
4796 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4797 				   const u8 *key, const u8 hfunc)
4798 {
4799 	struct mvneta_port *pp = netdev_priv(dev);
4800 
4801 	/* Current code for Armada 3700 doesn't support RSS features yet */
4802 	if (pp->neta_armada3700)
4803 		return -EOPNOTSUPP;
4804 
4805 	/* We require at least one supported parameter to be changed
4806 	 * and no change in any of the unsupported parameters
4807 	 */
4808 	if (key ||
4809 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4810 		return -EOPNOTSUPP;
4811 
4812 	if (!indir)
4813 		return 0;
4814 
4815 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4816 
4817 	return mvneta_config_rss(pp);
4818 }
4819 
4820 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4821 				   u8 *hfunc)
4822 {
4823 	struct mvneta_port *pp = netdev_priv(dev);
4824 
4825 	/* Current code for Armada 3700 doesn't support RSS features yet */
4826 	if (pp->neta_armada3700)
4827 		return -EOPNOTSUPP;
4828 
4829 	if (hfunc)
4830 		*hfunc = ETH_RSS_HASH_TOP;
4831 
4832 	if (!indir)
4833 		return 0;
4834 
4835 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4836 
4837 	return 0;
4838 }
4839 
4840 static void mvneta_ethtool_get_wol(struct net_device *dev,
4841 				   struct ethtool_wolinfo *wol)
4842 {
4843 	struct mvneta_port *pp = netdev_priv(dev);
4844 
4845 	phylink_ethtool_get_wol(pp->phylink, wol);
4846 }
4847 
4848 static int mvneta_ethtool_set_wol(struct net_device *dev,
4849 				  struct ethtool_wolinfo *wol)
4850 {
4851 	struct mvneta_port *pp = netdev_priv(dev);
4852 	int ret;
4853 
4854 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4855 	if (!ret)
4856 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4857 
4858 	return ret;
4859 }
4860 
4861 static int mvneta_ethtool_get_eee(struct net_device *dev,
4862 				  struct ethtool_eee *eee)
4863 {
4864 	struct mvneta_port *pp = netdev_priv(dev);
4865 	u32 lpi_ctl0;
4866 
4867 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4868 
4869 	eee->eee_enabled = pp->eee_enabled;
4870 	eee->eee_active = pp->eee_active;
4871 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4872 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4873 
4874 	return phylink_ethtool_get_eee(pp->phylink, eee);
4875 }
4876 
4877 static int mvneta_ethtool_set_eee(struct net_device *dev,
4878 				  struct ethtool_eee *eee)
4879 {
4880 	struct mvneta_port *pp = netdev_priv(dev);
4881 	u32 lpi_ctl0;
4882 
4883 	/* The Armada 37x documents do not give limits for this other than
4884 	 * it being an 8-bit register. */
4885 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4886 		return -EINVAL;
4887 
4888 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4889 	lpi_ctl0 &= ~(0xff << 8);
4890 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4891 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4892 
4893 	pp->eee_enabled = eee->eee_enabled;
4894 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4895 
4896 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4897 
4898 	return phylink_ethtool_set_eee(pp->phylink, eee);
4899 }
4900 
4901 static const struct net_device_ops mvneta_netdev_ops = {
4902 	.ndo_open            = mvneta_open,
4903 	.ndo_stop            = mvneta_stop,
4904 	.ndo_start_xmit      = mvneta_tx,
4905 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4906 	.ndo_set_mac_address = mvneta_set_mac_addr,
4907 	.ndo_change_mtu      = mvneta_change_mtu,
4908 	.ndo_fix_features    = mvneta_fix_features,
4909 	.ndo_get_stats64     = mvneta_get_stats64,
4910 	.ndo_do_ioctl        = mvneta_ioctl,
4911 	.ndo_bpf	     = mvneta_xdp,
4912 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4913 };
4914 
4915 static const struct ethtool_ops mvneta_eth_tool_ops = {
4916 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4917 				     ETHTOOL_COALESCE_MAX_FRAMES,
4918 	.nway_reset	= mvneta_ethtool_nway_reset,
4919 	.get_link       = ethtool_op_get_link,
4920 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4921 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4922 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4923 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4924 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4925 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4926 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4927 	.get_strings	= mvneta_ethtool_get_strings,
4928 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4929 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4930 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4931 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4932 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4933 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4934 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4935 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4936 	.get_wol        = mvneta_ethtool_get_wol,
4937 	.set_wol        = mvneta_ethtool_set_wol,
4938 	.get_eee	= mvneta_ethtool_get_eee,
4939 	.set_eee	= mvneta_ethtool_set_eee,
4940 };
4941 
4942 /* Initialize hw */
4943 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4944 {
4945 	int queue;
4946 
4947 	/* Disable port */
4948 	mvneta_port_disable(pp);
4949 
4950 	/* Set port default values */
4951 	mvneta_defaults_set(pp);
4952 
4953 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4954 	if (!pp->txqs)
4955 		return -ENOMEM;
4956 
4957 	/* Initialize TX descriptor rings */
4958 	for (queue = 0; queue < txq_number; queue++) {
4959 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4960 		txq->id = queue;
4961 		txq->size = pp->tx_ring_size;
4962 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4963 	}
4964 
4965 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4966 	if (!pp->rxqs)
4967 		return -ENOMEM;
4968 
4969 	/* Create Rx descriptor rings */
4970 	for (queue = 0; queue < rxq_number; queue++) {
4971 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4972 		rxq->id = queue;
4973 		rxq->size = pp->rx_ring_size;
4974 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4975 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4976 		rxq->buf_virt_addr
4977 			= devm_kmalloc_array(pp->dev->dev.parent,
4978 					     rxq->size,
4979 					     sizeof(*rxq->buf_virt_addr),
4980 					     GFP_KERNEL);
4981 		if (!rxq->buf_virt_addr)
4982 			return -ENOMEM;
4983 	}
4984 
4985 	return 0;
4986 }
4987 
4988 /* platform glue : initialize decoding windows */
4989 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4990 				     const struct mbus_dram_target_info *dram)
4991 {
4992 	u32 win_enable;
4993 	u32 win_protect;
4994 	int i;
4995 
4996 	for (i = 0; i < 6; i++) {
4997 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4998 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4999 
5000 		if (i < 4)
5001 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5002 	}
5003 
5004 	win_enable = 0x3f;
5005 	win_protect = 0;
5006 
5007 	if (dram) {
5008 		for (i = 0; i < dram->num_cs; i++) {
5009 			const struct mbus_dram_window *cs = dram->cs + i;
5010 
5011 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5012 				    (cs->base & 0xffff0000) |
5013 				    (cs->mbus_attr << 8) |
5014 				    dram->mbus_dram_target_id);
5015 
5016 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5017 				    (cs->size - 1) & 0xffff0000);
5018 
5019 			win_enable &= ~(1 << i);
5020 			win_protect |= 3 << (2 * i);
5021 		}
5022 	} else {
5023 		/* For Armada3700 open default 4GB Mbus window, leaving
5024 		 * arbitration of target/attribute to a different layer
5025 		 * of configuration.
5026 		 */
5027 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5028 		win_enable &= ~BIT(0);
5029 		win_protect = 3;
5030 	}
5031 
5032 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5033 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5034 }
5035 
5036 /* Power up the port */
5037 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5038 {
5039 	/* MAC Cause register should be cleared */
5040 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5041 
5042 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5043 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5044 	    !phy_interface_mode_is_8023z(phy_mode) &&
5045 	    !phy_interface_mode_is_rgmii(phy_mode))
5046 		return -EINVAL;
5047 
5048 	return 0;
5049 }
5050 
5051 /* Device initialization routine */
5052 static int mvneta_probe(struct platform_device *pdev)
5053 {
5054 	struct device_node *dn = pdev->dev.of_node;
5055 	struct device_node *bm_node;
5056 	struct mvneta_port *pp;
5057 	struct net_device *dev;
5058 	struct phylink *phylink;
5059 	struct phy *comphy;
5060 	const char *dt_mac_addr;
5061 	char hw_mac_addr[ETH_ALEN];
5062 	phy_interface_t phy_mode;
5063 	const char *mac_from;
5064 	int tx_csum_limit;
5065 	int err;
5066 	int cpu;
5067 
5068 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5069 				      txq_number, rxq_number);
5070 	if (!dev)
5071 		return -ENOMEM;
5072 
5073 	dev->irq = irq_of_parse_and_map(dn, 0);
5074 	if (dev->irq == 0)
5075 		return -EINVAL;
5076 
5077 	err = of_get_phy_mode(dn, &phy_mode);
5078 	if (err) {
5079 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5080 		goto err_free_irq;
5081 	}
5082 
5083 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5084 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5085 		err = -EPROBE_DEFER;
5086 		goto err_free_irq;
5087 	} else if (IS_ERR(comphy)) {
5088 		comphy = NULL;
5089 	}
5090 
5091 	pp = netdev_priv(dev);
5092 	spin_lock_init(&pp->lock);
5093 
5094 	pp->phylink_config.dev = &dev->dev;
5095 	pp->phylink_config.type = PHYLINK_NETDEV;
5096 
5097 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5098 				 phy_mode, &mvneta_phylink_ops);
5099 	if (IS_ERR(phylink)) {
5100 		err = PTR_ERR(phylink);
5101 		goto err_free_irq;
5102 	}
5103 
5104 	dev->tx_queue_len = MVNETA_MAX_TXD;
5105 	dev->watchdog_timeo = 5 * HZ;
5106 	dev->netdev_ops = &mvneta_netdev_ops;
5107 
5108 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5109 
5110 	pp->phylink = phylink;
5111 	pp->comphy = comphy;
5112 	pp->phy_interface = phy_mode;
5113 	pp->dn = dn;
5114 
5115 	pp->rxq_def = rxq_def;
5116 	pp->indir[0] = rxq_def;
5117 
5118 	/* Get special SoC configurations */
5119 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5120 		pp->neta_armada3700 = true;
5121 
5122 	pp->clk = devm_clk_get(&pdev->dev, "core");
5123 	if (IS_ERR(pp->clk))
5124 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5125 	if (IS_ERR(pp->clk)) {
5126 		err = PTR_ERR(pp->clk);
5127 		goto err_free_phylink;
5128 	}
5129 
5130 	clk_prepare_enable(pp->clk);
5131 
5132 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5133 	if (!IS_ERR(pp->clk_bus))
5134 		clk_prepare_enable(pp->clk_bus);
5135 
5136 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5137 	if (IS_ERR(pp->base)) {
5138 		err = PTR_ERR(pp->base);
5139 		goto err_clk;
5140 	}
5141 
5142 	/* Alloc per-cpu port structure */
5143 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5144 	if (!pp->ports) {
5145 		err = -ENOMEM;
5146 		goto err_clk;
5147 	}
5148 
5149 	/* Alloc per-cpu stats */
5150 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5151 	if (!pp->stats) {
5152 		err = -ENOMEM;
5153 		goto err_free_ports;
5154 	}
5155 
5156 	dt_mac_addr = of_get_mac_address(dn);
5157 	if (!IS_ERR(dt_mac_addr)) {
5158 		mac_from = "device tree";
5159 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5160 	} else {
5161 		mvneta_get_mac_addr(pp, hw_mac_addr);
5162 		if (is_valid_ether_addr(hw_mac_addr)) {
5163 			mac_from = "hardware";
5164 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5165 		} else {
5166 			mac_from = "random";
5167 			eth_hw_addr_random(dev);
5168 		}
5169 	}
5170 
5171 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5172 		if (tx_csum_limit < 0 ||
5173 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5174 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5175 			dev_info(&pdev->dev,
5176 				 "Wrong TX csum limit in DT, set to %dB\n",
5177 				 MVNETA_TX_CSUM_DEF_SIZE);
5178 		}
5179 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5180 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5181 	} else {
5182 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5183 	}
5184 
5185 	pp->tx_csum_limit = tx_csum_limit;
5186 
5187 	pp->dram_target_info = mv_mbus_dram_info();
5188 	/* Armada3700 requires setting default configuration of Mbus
5189 	 * windows, however without using filled mbus_dram_target_info
5190 	 * structure.
5191 	 */
5192 	if (pp->dram_target_info || pp->neta_armada3700)
5193 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5194 
5195 	pp->tx_ring_size = MVNETA_MAX_TXD;
5196 	pp->rx_ring_size = MVNETA_MAX_RXD;
5197 
5198 	pp->dev = dev;
5199 	SET_NETDEV_DEV(dev, &pdev->dev);
5200 
5201 	pp->id = global_port_id++;
5202 
5203 	/* Obtain access to BM resources if enabled and already initialized */
5204 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5205 	if (bm_node) {
5206 		pp->bm_priv = mvneta_bm_get(bm_node);
5207 		if (pp->bm_priv) {
5208 			err = mvneta_bm_port_init(pdev, pp);
5209 			if (err < 0) {
5210 				dev_info(&pdev->dev,
5211 					 "use SW buffer management\n");
5212 				mvneta_bm_put(pp->bm_priv);
5213 				pp->bm_priv = NULL;
5214 			}
5215 		}
5216 		/* Set RX packet offset correction for platforms, whose
5217 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5218 		 * platforms and 0B for 32-bit ones.
5219 		 */
5220 		pp->rx_offset_correction = max(0,
5221 					       NET_SKB_PAD -
5222 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5223 	}
5224 	of_node_put(bm_node);
5225 
5226 	/* sw buffer management */
5227 	if (!pp->bm_priv)
5228 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5229 
5230 	err = mvneta_init(&pdev->dev, pp);
5231 	if (err < 0)
5232 		goto err_netdev;
5233 
5234 	err = mvneta_port_power_up(pp, pp->phy_interface);
5235 	if (err < 0) {
5236 		dev_err(&pdev->dev, "can't power up port\n");
5237 		return err;
5238 	}
5239 
5240 	/* Armada3700 network controller does not support per-cpu
5241 	 * operation, so only single NAPI should be initialized.
5242 	 */
5243 	if (pp->neta_armada3700) {
5244 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5245 	} else {
5246 		for_each_present_cpu(cpu) {
5247 			struct mvneta_pcpu_port *port =
5248 				per_cpu_ptr(pp->ports, cpu);
5249 
5250 			netif_napi_add(dev, &port->napi, mvneta_poll,
5251 				       NAPI_POLL_WEIGHT);
5252 			port->pp = pp;
5253 		}
5254 	}
5255 
5256 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5257 			NETIF_F_TSO | NETIF_F_RXCSUM;
5258 	dev->hw_features |= dev->features;
5259 	dev->vlan_features |= dev->features;
5260 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5261 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5262 
5263 	/* MTU range: 68 - 9676 */
5264 	dev->min_mtu = ETH_MIN_MTU;
5265 	/* 9676 == 9700 - 20 and rounding to 8 */
5266 	dev->max_mtu = 9676;
5267 
5268 	err = register_netdev(dev);
5269 	if (err < 0) {
5270 		dev_err(&pdev->dev, "failed to register\n");
5271 		goto err_netdev;
5272 	}
5273 
5274 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5275 		    dev->dev_addr);
5276 
5277 	platform_set_drvdata(pdev, pp->dev);
5278 
5279 	return 0;
5280 
5281 err_netdev:
5282 	if (pp->bm_priv) {
5283 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5284 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5285 				       1 << pp->id);
5286 		mvneta_bm_put(pp->bm_priv);
5287 	}
5288 	free_percpu(pp->stats);
5289 err_free_ports:
5290 	free_percpu(pp->ports);
5291 err_clk:
5292 	clk_disable_unprepare(pp->clk_bus);
5293 	clk_disable_unprepare(pp->clk);
5294 err_free_phylink:
5295 	if (pp->phylink)
5296 		phylink_destroy(pp->phylink);
5297 err_free_irq:
5298 	irq_dispose_mapping(dev->irq);
5299 	return err;
5300 }
5301 
5302 /* Device removal routine */
5303 static int mvneta_remove(struct platform_device *pdev)
5304 {
5305 	struct net_device  *dev = platform_get_drvdata(pdev);
5306 	struct mvneta_port *pp = netdev_priv(dev);
5307 
5308 	unregister_netdev(dev);
5309 	clk_disable_unprepare(pp->clk_bus);
5310 	clk_disable_unprepare(pp->clk);
5311 	free_percpu(pp->ports);
5312 	free_percpu(pp->stats);
5313 	irq_dispose_mapping(dev->irq);
5314 	phylink_destroy(pp->phylink);
5315 
5316 	if (pp->bm_priv) {
5317 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5318 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5319 				       1 << pp->id);
5320 		mvneta_bm_put(pp->bm_priv);
5321 	}
5322 
5323 	return 0;
5324 }
5325 
5326 #ifdef CONFIG_PM_SLEEP
5327 static int mvneta_suspend(struct device *device)
5328 {
5329 	int queue;
5330 	struct net_device *dev = dev_get_drvdata(device);
5331 	struct mvneta_port *pp = netdev_priv(dev);
5332 
5333 	if (!netif_running(dev))
5334 		goto clean_exit;
5335 
5336 	if (!pp->neta_armada3700) {
5337 		spin_lock(&pp->lock);
5338 		pp->is_stopped = true;
5339 		spin_unlock(&pp->lock);
5340 
5341 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5342 						    &pp->node_online);
5343 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5344 						    &pp->node_dead);
5345 	}
5346 
5347 	rtnl_lock();
5348 	mvneta_stop_dev(pp);
5349 	rtnl_unlock();
5350 
5351 	for (queue = 0; queue < rxq_number; queue++) {
5352 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5353 
5354 		mvneta_rxq_drop_pkts(pp, rxq);
5355 	}
5356 
5357 	for (queue = 0; queue < txq_number; queue++) {
5358 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5359 
5360 		mvneta_txq_hw_deinit(pp, txq);
5361 	}
5362 
5363 clean_exit:
5364 	netif_device_detach(dev);
5365 	clk_disable_unprepare(pp->clk_bus);
5366 	clk_disable_unprepare(pp->clk);
5367 
5368 	return 0;
5369 }
5370 
5371 static int mvneta_resume(struct device *device)
5372 {
5373 	struct platform_device *pdev = to_platform_device(device);
5374 	struct net_device *dev = dev_get_drvdata(device);
5375 	struct mvneta_port *pp = netdev_priv(dev);
5376 	int err, queue;
5377 
5378 	clk_prepare_enable(pp->clk);
5379 	if (!IS_ERR(pp->clk_bus))
5380 		clk_prepare_enable(pp->clk_bus);
5381 	if (pp->dram_target_info || pp->neta_armada3700)
5382 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5383 	if (pp->bm_priv) {
5384 		err = mvneta_bm_port_init(pdev, pp);
5385 		if (err < 0) {
5386 			dev_info(&pdev->dev, "use SW buffer management\n");
5387 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5388 			pp->bm_priv = NULL;
5389 		}
5390 	}
5391 	mvneta_defaults_set(pp);
5392 	err = mvneta_port_power_up(pp, pp->phy_interface);
5393 	if (err < 0) {
5394 		dev_err(device, "can't power up port\n");
5395 		return err;
5396 	}
5397 
5398 	netif_device_attach(dev);
5399 
5400 	if (!netif_running(dev))
5401 		return 0;
5402 
5403 	for (queue = 0; queue < rxq_number; queue++) {
5404 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5405 
5406 		rxq->next_desc_to_proc = 0;
5407 		mvneta_rxq_hw_init(pp, rxq);
5408 	}
5409 
5410 	for (queue = 0; queue < txq_number; queue++) {
5411 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5412 
5413 		txq->next_desc_to_proc = 0;
5414 		mvneta_txq_hw_init(pp, txq);
5415 	}
5416 
5417 	if (!pp->neta_armada3700) {
5418 		spin_lock(&pp->lock);
5419 		pp->is_stopped = false;
5420 		spin_unlock(&pp->lock);
5421 		cpuhp_state_add_instance_nocalls(online_hpstate,
5422 						 &pp->node_online);
5423 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5424 						 &pp->node_dead);
5425 	}
5426 
5427 	rtnl_lock();
5428 	mvneta_start_dev(pp);
5429 	rtnl_unlock();
5430 	mvneta_set_rx_mode(dev);
5431 
5432 	return 0;
5433 }
5434 #endif
5435 
5436 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5437 
5438 static const struct of_device_id mvneta_match[] = {
5439 	{ .compatible = "marvell,armada-370-neta" },
5440 	{ .compatible = "marvell,armada-xp-neta" },
5441 	{ .compatible = "marvell,armada-3700-neta" },
5442 	{ }
5443 };
5444 MODULE_DEVICE_TABLE(of, mvneta_match);
5445 
5446 static struct platform_driver mvneta_driver = {
5447 	.probe = mvneta_probe,
5448 	.remove = mvneta_remove,
5449 	.driver = {
5450 		.name = MVNETA_DRIVER_NAME,
5451 		.of_match_table = mvneta_match,
5452 		.pm = &mvneta_pm_ops,
5453 	},
5454 };
5455 
5456 static int __init mvneta_driver_init(void)
5457 {
5458 	int ret;
5459 
5460 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5461 				      mvneta_cpu_online,
5462 				      mvneta_cpu_down_prepare);
5463 	if (ret < 0)
5464 		goto out;
5465 	online_hpstate = ret;
5466 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5467 				      NULL, mvneta_cpu_dead);
5468 	if (ret)
5469 		goto err_dead;
5470 
5471 	ret = platform_driver_register(&mvneta_driver);
5472 	if (ret)
5473 		goto err;
5474 	return 0;
5475 
5476 err:
5477 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5478 err_dead:
5479 	cpuhp_remove_multi_state(online_hpstate);
5480 out:
5481 	return ret;
5482 }
5483 module_init(mvneta_driver_init);
5484 
5485 static void __exit mvneta_driver_exit(void)
5486 {
5487 	platform_driver_unregister(&mvneta_driver);
5488 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5489 	cpuhp_remove_multi_state(online_hpstate);
5490 }
5491 module_exit(mvneta_driver_exit);
5492 
5493 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5494 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5495 MODULE_LICENSE("GPL");
5496 
5497 module_param(rxq_number, int, 0444);
5498 module_param(txq_number, int, 0444);
5499 
5500 module_param(rxq_def, int, 0444);
5501 module_param(rx_copybreak, int, 0644);
5502