xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 #define MVNETA_SERDES_CFG			 0x24A0
110 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
111 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
112 #define MVNETA_TYPE_PRIO                         0x24bc
113 #define      MVNETA_FORCE_UNI                    BIT(21)
114 #define MVNETA_TXQ_CMD_1                         0x24e4
115 #define MVNETA_TXQ_CMD                           0x2448
116 #define      MVNETA_TXQ_DISABLE_SHIFT            8
117 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
118 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
119 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
120 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
121 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
122 #define MVNETA_ACC_MODE                          0x2500
123 #define MVNETA_BM_ADDRESS                        0x2504
124 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
125 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
126 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
127 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
128 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
129 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
130 
131 /* Exception Interrupt Port/Queue Cause register
132  *
133  * Their behavior depend of the mapping done using the PCPX2Q
134  * registers. For a given CPU if the bit associated to a queue is not
135  * set, then for the register a read from this CPU will always return
136  * 0 and a write won't do anything
137  */
138 
139 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
140 #define MVNETA_INTR_NEW_MASK                     0x25a4
141 
142 /* bits  0..7  = TXQ SENT, one bit per queue.
143  * bits  8..15 = RXQ OCCUP, one bit per queue.
144  * bits 16..23 = RXQ FREE, one bit per queue.
145  * bit  29 = OLD_REG_SUM, see old reg ?
146  * bit  30 = TX_ERR_SUM, one bit for 4 ports
147  * bit  31 = MISC_SUM,   one bit for 4 ports
148  */
149 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
150 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
151 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
152 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
153 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
154 
155 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
156 #define MVNETA_INTR_OLD_MASK                     0x25ac
157 
158 /* Data Path Port/Queue Cause Register */
159 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
160 #define MVNETA_INTR_MISC_MASK                    0x25b4
161 
162 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
163 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
164 #define      MVNETA_CAUSE_PTP                    BIT(4)
165 
166 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
167 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
168 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
169 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
170 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
171 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
172 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
173 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
174 
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
176 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
178 
179 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
180 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
181 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
182 
183 #define MVNETA_INTR_ENABLE                       0x25b8
184 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
185 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
186 
187 #define MVNETA_RXQ_CMD                           0x2680
188 #define      MVNETA_RXQ_DISABLE_SHIFT            8
189 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
190 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
191 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
192 #define MVNETA_GMAC_CTRL_0                       0x2c00
193 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
194 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
195 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
196 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
197 #define MVNETA_GMAC_CTRL_2                       0x2c08
198 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
199 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
200 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
201 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
202 #define MVNETA_GMAC_STATUS                       0x2c10
203 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
204 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
205 #define      MVNETA_GMAC_SPEED_100               BIT(2)
206 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
211 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
212 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
213 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
214 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
215 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
216 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
217 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
218 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
219 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
220 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
221 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
222 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
223 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
224 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
225 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
226 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
227 #define MVNETA_GMAC_CTRL_4                       0x2c90
228 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
229 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
230 #define      MVNETA_MIB_LATE_COLLISION           0x7c
231 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
232 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
233 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
234 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
235 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
236 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
237 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
238 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
239 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
240 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
241 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
242 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
243 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
244 #define MVNETA_PORT_TX_RESET                     0x3cf0
245 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
246 #define MVNETA_TX_MTU                            0x3e0c
247 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
248 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
250 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
251 
252 #define MVNETA_LPI_CTRL_0                        0x2cc0
253 #define MVNETA_LPI_CTRL_1                        0x2cc4
254 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
255 #define MVNETA_LPI_CTRL_2                        0x2cc8
256 #define MVNETA_LPI_STATUS                        0x2ccc
257 
258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
259 
260 /* Descriptor ring Macros */
261 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
262 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
263 
264 /* Various constants */
265 
266 /* Coalescing */
267 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
268 #define MVNETA_RX_COAL_PKTS		32
269 #define MVNETA_RX_COAL_USEC		100
270 
271 /* The two bytes Marvell header. Either contains a special value used
272  * by Marvell switches when a specific hardware mode is enabled (not
273  * supported by this driver) or is filled automatically by zeroes on
274  * the RX side. Those two bytes being at the front of the Ethernet
275  * header, they allow to have the IP header aligned on a 4 bytes
276  * boundary automatically: the hardware skips those two bytes on its
277  * own.
278  */
279 #define MVNETA_MH_SIZE			2
280 
281 #define MVNETA_VLAN_TAG_LEN             4
282 
283 #define MVNETA_TX_CSUM_DEF_SIZE		1600
284 #define MVNETA_TX_CSUM_MAX_SIZE		9800
285 #define MVNETA_ACC_MODE_EXT1		1
286 #define MVNETA_ACC_MODE_EXT2		2
287 
288 #define MVNETA_MAX_DECODE_WIN		6
289 
290 /* Timeout constants */
291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
294 
295 #define MVNETA_TX_MTU_MAX		0x3ffff
296 
297 /* The RSS lookup table actually has 256 entries but we do not use
298  * them yet
299  */
300 #define MVNETA_RSS_LU_TABLE_SIZE	1
301 
302 /* Max number of Rx descriptors */
303 #define MVNETA_MAX_RXD 512
304 
305 /* Max number of Tx descriptors */
306 #define MVNETA_MAX_TXD 1024
307 
308 /* Max number of allowed TCP segments for software TSO */
309 #define MVNETA_MAX_TSO_SEGS 100
310 
311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
312 
313 /* descriptor aligned size */
314 #define MVNETA_DESC_ALIGNED_SIZE	32
315 
316 /* Number of bytes to be taken into account by HW when putting incoming data
317  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
318  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
319  */
320 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
321 
322 #define MVNETA_RX_PKT_SIZE(mtu) \
323 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
324 	      ETH_HLEN + ETH_FCS_LEN,			     \
325 	      cache_line_size())
326 
327 #define MVNETA_SKB_HEADROOM	(max(XDP_PACKET_HEADROOM, NET_SKB_PAD) + \
328 				 NET_IP_ALIGN)
329 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
330 			 MVNETA_SKB_HEADROOM))
331 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
332 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
333 
334 #define IS_TSO_HEADER(txq, addr) \
335 	((addr >= txq->tso_hdrs_phys) && \
336 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
337 
338 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
339 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
340 
341 enum {
342 	ETHTOOL_STAT_EEE_WAKEUP,
343 	ETHTOOL_STAT_SKB_ALLOC_ERR,
344 	ETHTOOL_STAT_REFILL_ERR,
345 	ETHTOOL_MAX_STATS,
346 };
347 
348 struct mvneta_statistic {
349 	unsigned short offset;
350 	unsigned short type;
351 	const char name[ETH_GSTRING_LEN];
352 };
353 
354 #define T_REG_32	32
355 #define T_REG_64	64
356 #define T_SW		1
357 
358 #define MVNETA_XDP_PASS		BIT(0)
359 #define MVNETA_XDP_DROPPED	BIT(1)
360 #define MVNETA_XDP_TX		BIT(2)
361 #define MVNETA_XDP_REDIR	BIT(3)
362 
363 static const struct mvneta_statistic mvneta_statistics[] = {
364 	{ 0x3000, T_REG_64, "good_octets_received", },
365 	{ 0x3010, T_REG_32, "good_frames_received", },
366 	{ 0x3008, T_REG_32, "bad_octets_received", },
367 	{ 0x3014, T_REG_32, "bad_frames_received", },
368 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
369 	{ 0x301c, T_REG_32, "multicast_frames_received", },
370 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
371 	{ 0x3058, T_REG_32, "good_fc_received", },
372 	{ 0x305c, T_REG_32, "bad_fc_received", },
373 	{ 0x3060, T_REG_32, "undersize_received", },
374 	{ 0x3064, T_REG_32, "fragments_received", },
375 	{ 0x3068, T_REG_32, "oversize_received", },
376 	{ 0x306c, T_REG_32, "jabber_received", },
377 	{ 0x3070, T_REG_32, "mac_receive_error", },
378 	{ 0x3074, T_REG_32, "bad_crc_event", },
379 	{ 0x3078, T_REG_32, "collision", },
380 	{ 0x307c, T_REG_32, "late_collision", },
381 	{ 0x2484, T_REG_32, "rx_discard", },
382 	{ 0x2488, T_REG_32, "rx_overrun", },
383 	{ 0x3020, T_REG_32, "frames_64_octets", },
384 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
385 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
386 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
387 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
388 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
389 	{ 0x3038, T_REG_64, "good_octets_sent", },
390 	{ 0x3040, T_REG_32, "good_frames_sent", },
391 	{ 0x3044, T_REG_32, "excessive_collision", },
392 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
393 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
394 	{ 0x3054, T_REG_32, "fc_sent", },
395 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
396 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
397 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
398 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
399 };
400 
401 struct mvneta_pcpu_stats {
402 	struct	u64_stats_sync syncp;
403 	u64	rx_packets;
404 	u64	rx_bytes;
405 	u64	tx_packets;
406 	u64	tx_bytes;
407 };
408 
409 struct mvneta_pcpu_port {
410 	/* Pointer to the shared port */
411 	struct mvneta_port	*pp;
412 
413 	/* Pointer to the CPU-local NAPI struct */
414 	struct napi_struct	napi;
415 
416 	/* Cause of the previous interrupt */
417 	u32			cause_rx_tx;
418 };
419 
420 struct mvneta_port {
421 	u8 id;
422 	struct mvneta_pcpu_port __percpu	*ports;
423 	struct mvneta_pcpu_stats __percpu	*stats;
424 
425 	int pkt_size;
426 	void __iomem *base;
427 	struct mvneta_rx_queue *rxqs;
428 	struct mvneta_tx_queue *txqs;
429 	struct net_device *dev;
430 	struct hlist_node node_online;
431 	struct hlist_node node_dead;
432 	int rxq_def;
433 	/* Protect the access to the percpu interrupt registers,
434 	 * ensuring that the configuration remains coherent.
435 	 */
436 	spinlock_t lock;
437 	bool is_stopped;
438 
439 	u32 cause_rx_tx;
440 	struct napi_struct napi;
441 
442 	struct bpf_prog *xdp_prog;
443 
444 	/* Core clock */
445 	struct clk *clk;
446 	/* AXI clock */
447 	struct clk *clk_bus;
448 	u8 mcast_count[256];
449 	u16 tx_ring_size;
450 	u16 rx_ring_size;
451 
452 	phy_interface_t phy_interface;
453 	struct device_node *dn;
454 	unsigned int tx_csum_limit;
455 	struct phylink *phylink;
456 	struct phylink_config phylink_config;
457 	struct phy *comphy;
458 
459 	struct mvneta_bm *bm_priv;
460 	struct mvneta_bm_pool *pool_long;
461 	struct mvneta_bm_pool *pool_short;
462 	int bm_win_id;
463 
464 	bool eee_enabled;
465 	bool eee_active;
466 	bool tx_lpi_enabled;
467 
468 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
469 
470 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
471 
472 	/* Flags for special SoC configurations */
473 	bool neta_armada3700;
474 	u16 rx_offset_correction;
475 	const struct mbus_dram_target_info *dram_target_info;
476 };
477 
478 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
479  * layout of the transmit and reception DMA descriptors, and their
480  * layout is therefore defined by the hardware design
481  */
482 
483 #define MVNETA_TX_L3_OFF_SHIFT	0
484 #define MVNETA_TX_IP_HLEN_SHIFT	8
485 #define MVNETA_TX_L4_UDP	BIT(16)
486 #define MVNETA_TX_L3_IP6	BIT(17)
487 #define MVNETA_TXD_IP_CSUM	BIT(18)
488 #define MVNETA_TXD_Z_PAD	BIT(19)
489 #define MVNETA_TXD_L_DESC	BIT(20)
490 #define MVNETA_TXD_F_DESC	BIT(21)
491 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
492 				 MVNETA_TXD_L_DESC | \
493 				 MVNETA_TXD_F_DESC)
494 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
495 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
496 
497 #define MVNETA_RXD_ERR_CRC		0x0
498 #define MVNETA_RXD_BM_POOL_SHIFT	13
499 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
500 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
501 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
502 #define MVNETA_RXD_ERR_LEN		BIT(18)
503 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
504 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
505 #define MVNETA_RXD_L3_IP4		BIT(25)
506 #define MVNETA_RXD_LAST_DESC		BIT(26)
507 #define MVNETA_RXD_FIRST_DESC		BIT(27)
508 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
509 					 MVNETA_RXD_LAST_DESC)
510 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
511 
512 #if defined(__LITTLE_ENDIAN)
513 struct mvneta_tx_desc {
514 	u32  command;		/* Options used by HW for packet transmitting.*/
515 	u16  reserved1;		/* csum_l4 (for future use)		*/
516 	u16  data_size;		/* Data size of transmitted packet in bytes */
517 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
518 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
519 	u32  reserved3[4];	/* Reserved - (for future use)		*/
520 };
521 
522 struct mvneta_rx_desc {
523 	u32  status;		/* Info about received packet		*/
524 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
525 	u16  data_size;		/* Size of received packet in bytes	*/
526 
527 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
528 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
529 
530 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
531 	u16  reserved3;		/* prefetch_cmd, for future use		*/
532 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
533 
534 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
535 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
536 };
537 #else
538 struct mvneta_tx_desc {
539 	u16  data_size;		/* Data size of transmitted packet in bytes */
540 	u16  reserved1;		/* csum_l4 (for future use)		*/
541 	u32  command;		/* Options used by HW for packet transmitting.*/
542 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
543 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
544 	u32  reserved3[4];	/* Reserved - (for future use)		*/
545 };
546 
547 struct mvneta_rx_desc {
548 	u16  data_size;		/* Size of received packet in bytes	*/
549 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
550 	u32  status;		/* Info about received packet		*/
551 
552 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
553 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
554 
555 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
556 	u16  reserved3;		/* prefetch_cmd, for future use		*/
557 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
558 
559 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
560 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
561 };
562 #endif
563 
564 enum mvneta_tx_buf_type {
565 	MVNETA_TYPE_SKB,
566 	MVNETA_TYPE_XDP_TX,
567 	MVNETA_TYPE_XDP_NDO,
568 };
569 
570 struct mvneta_tx_buf {
571 	enum mvneta_tx_buf_type type;
572 	union {
573 		struct xdp_frame *xdpf;
574 		struct sk_buff *skb;
575 	};
576 };
577 
578 struct mvneta_tx_queue {
579 	/* Number of this TX queue, in the range 0-7 */
580 	u8 id;
581 
582 	/* Number of TX DMA descriptors in the descriptor ring */
583 	int size;
584 
585 	/* Number of currently used TX DMA descriptor in the
586 	 * descriptor ring
587 	 */
588 	int count;
589 	int pending;
590 	int tx_stop_threshold;
591 	int tx_wake_threshold;
592 
593 	/* Array of transmitted buffers */
594 	struct mvneta_tx_buf *buf;
595 
596 	/* Index of last TX DMA descriptor that was inserted */
597 	int txq_put_index;
598 
599 	/* Index of the TX DMA descriptor to be cleaned up */
600 	int txq_get_index;
601 
602 	u32 done_pkts_coal;
603 
604 	/* Virtual address of the TX DMA descriptors array */
605 	struct mvneta_tx_desc *descs;
606 
607 	/* DMA address of the TX DMA descriptors array */
608 	dma_addr_t descs_phys;
609 
610 	/* Index of the last TX DMA descriptor */
611 	int last_desc;
612 
613 	/* Index of the next TX DMA descriptor to process */
614 	int next_desc_to_proc;
615 
616 	/* DMA buffers for TSO headers */
617 	char *tso_hdrs;
618 
619 	/* DMA address of TSO headers */
620 	dma_addr_t tso_hdrs_phys;
621 
622 	/* Affinity mask for CPUs*/
623 	cpumask_t affinity_mask;
624 };
625 
626 struct mvneta_rx_queue {
627 	/* rx queue number, in the range 0-7 */
628 	u8 id;
629 
630 	/* num of rx descriptors in the rx descriptor ring */
631 	int size;
632 
633 	u32 pkts_coal;
634 	u32 time_coal;
635 
636 	/* page_pool */
637 	struct page_pool *page_pool;
638 	struct xdp_rxq_info xdp_rxq;
639 
640 	/* Virtual address of the RX buffer */
641 	void  **buf_virt_addr;
642 
643 	/* Virtual address of the RX DMA descriptors array */
644 	struct mvneta_rx_desc *descs;
645 
646 	/* DMA address of the RX DMA descriptors array */
647 	dma_addr_t descs_phys;
648 
649 	/* Index of the last RX DMA descriptor */
650 	int last_desc;
651 
652 	/* Index of the next RX DMA descriptor to process */
653 	int next_desc_to_proc;
654 
655 	/* Index of first RX DMA descriptor to refill */
656 	int first_to_refill;
657 	u32 refill_num;
658 
659 	/* pointer to uncomplete skb buffer */
660 	struct sk_buff *skb;
661 	int left_size;
662 
663 	/* error counters */
664 	u32 skb_alloc_err;
665 	u32 refill_err;
666 };
667 
668 static enum cpuhp_state online_hpstate;
669 /* The hardware supports eight (8) rx queues, but we are only allowing
670  * the first one to be used. Therefore, let's just allocate one queue.
671  */
672 static int rxq_number = 8;
673 static int txq_number = 8;
674 
675 static int rxq_def;
676 
677 static int rx_copybreak __read_mostly = 256;
678 
679 /* HW BM need that each port be identify by a unique ID */
680 static int global_port_id;
681 
682 #define MVNETA_DRIVER_NAME "mvneta"
683 #define MVNETA_DRIVER_VERSION "1.0"
684 
685 /* Utility/helper methods */
686 
687 /* Write helper method */
688 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
689 {
690 	writel(data, pp->base + offset);
691 }
692 
693 /* Read helper method */
694 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
695 {
696 	return readl(pp->base + offset);
697 }
698 
699 /* Increment txq get counter */
700 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
701 {
702 	txq->txq_get_index++;
703 	if (txq->txq_get_index == txq->size)
704 		txq->txq_get_index = 0;
705 }
706 
707 /* Increment txq put counter */
708 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
709 {
710 	txq->txq_put_index++;
711 	if (txq->txq_put_index == txq->size)
712 		txq->txq_put_index = 0;
713 }
714 
715 
716 /* Clear all MIB counters */
717 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
718 {
719 	int i;
720 	u32 dummy;
721 
722 	/* Perform dummy reads from MIB counters */
723 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
724 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
725 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
726 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
727 }
728 
729 /* Get System Network Statistics */
730 static void
731 mvneta_get_stats64(struct net_device *dev,
732 		   struct rtnl_link_stats64 *stats)
733 {
734 	struct mvneta_port *pp = netdev_priv(dev);
735 	unsigned int start;
736 	int cpu;
737 
738 	for_each_possible_cpu(cpu) {
739 		struct mvneta_pcpu_stats *cpu_stats;
740 		u64 rx_packets;
741 		u64 rx_bytes;
742 		u64 tx_packets;
743 		u64 tx_bytes;
744 
745 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
746 		do {
747 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
748 			rx_packets = cpu_stats->rx_packets;
749 			rx_bytes   = cpu_stats->rx_bytes;
750 			tx_packets = cpu_stats->tx_packets;
751 			tx_bytes   = cpu_stats->tx_bytes;
752 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
753 
754 		stats->rx_packets += rx_packets;
755 		stats->rx_bytes   += rx_bytes;
756 		stats->tx_packets += tx_packets;
757 		stats->tx_bytes   += tx_bytes;
758 	}
759 
760 	stats->rx_errors	= dev->stats.rx_errors;
761 	stats->rx_dropped	= dev->stats.rx_dropped;
762 
763 	stats->tx_dropped	= dev->stats.tx_dropped;
764 }
765 
766 /* Rx descriptors helper methods */
767 
768 /* Checks whether the RX descriptor having this status is both the first
769  * and the last descriptor for the RX packet. Each RX packet is currently
770  * received through a single RX descriptor, so not having each RX
771  * descriptor with its first and last bits set is an error
772  */
773 static int mvneta_rxq_desc_is_first_last(u32 status)
774 {
775 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
776 		MVNETA_RXD_FIRST_LAST_DESC;
777 }
778 
779 /* Add number of descriptors ready to receive new packets */
780 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
781 					  struct mvneta_rx_queue *rxq,
782 					  int ndescs)
783 {
784 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
785 	 * be added at once
786 	 */
787 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
788 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
789 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
790 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
791 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
792 	}
793 
794 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
795 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
796 }
797 
798 /* Get number of RX descriptors occupied by received packets */
799 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
800 					struct mvneta_rx_queue *rxq)
801 {
802 	u32 val;
803 
804 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
805 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
806 }
807 
808 /* Update num of rx desc called upon return from rx path or
809  * from mvneta_rxq_drop_pkts().
810  */
811 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
812 				       struct mvneta_rx_queue *rxq,
813 				       int rx_done, int rx_filled)
814 {
815 	u32 val;
816 
817 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
818 		val = rx_done |
819 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
820 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
821 		return;
822 	}
823 
824 	/* Only 255 descriptors can be added at once */
825 	while ((rx_done > 0) || (rx_filled > 0)) {
826 		if (rx_done <= 0xff) {
827 			val = rx_done;
828 			rx_done = 0;
829 		} else {
830 			val = 0xff;
831 			rx_done -= 0xff;
832 		}
833 		if (rx_filled <= 0xff) {
834 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
835 			rx_filled = 0;
836 		} else {
837 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
838 			rx_filled -= 0xff;
839 		}
840 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
841 	}
842 }
843 
844 /* Get pointer to next RX descriptor to be processed by SW */
845 static struct mvneta_rx_desc *
846 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
847 {
848 	int rx_desc = rxq->next_desc_to_proc;
849 
850 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
851 	prefetch(rxq->descs + rxq->next_desc_to_proc);
852 	return rxq->descs + rx_desc;
853 }
854 
855 /* Change maximum receive size of the port. */
856 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
857 {
858 	u32 val;
859 
860 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
861 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
862 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
863 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
864 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
865 }
866 
867 
868 /* Set rx queue offset */
869 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
870 				  struct mvneta_rx_queue *rxq,
871 				  int offset)
872 {
873 	u32 val;
874 
875 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
876 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
877 
878 	/* Offset is in */
879 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
880 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
881 }
882 
883 
884 /* Tx descriptors helper methods */
885 
886 /* Update HW with number of TX descriptors to be sent */
887 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
888 				     struct mvneta_tx_queue *txq,
889 				     int pend_desc)
890 {
891 	u32 val;
892 
893 	pend_desc += txq->pending;
894 
895 	/* Only 255 Tx descriptors can be added at once */
896 	do {
897 		val = min(pend_desc, 255);
898 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
899 		pend_desc -= val;
900 	} while (pend_desc > 0);
901 	txq->pending = 0;
902 }
903 
904 /* Get pointer to next TX descriptor to be processed (send) by HW */
905 static struct mvneta_tx_desc *
906 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
907 {
908 	int tx_desc = txq->next_desc_to_proc;
909 
910 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
911 	return txq->descs + tx_desc;
912 }
913 
914 /* Release the last allocated TX descriptor. Useful to handle DMA
915  * mapping failures in the TX path.
916  */
917 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
918 {
919 	if (txq->next_desc_to_proc == 0)
920 		txq->next_desc_to_proc = txq->last_desc - 1;
921 	else
922 		txq->next_desc_to_proc--;
923 }
924 
925 /* Set rxq buf size */
926 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
927 				    struct mvneta_rx_queue *rxq,
928 				    int buf_size)
929 {
930 	u32 val;
931 
932 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
933 
934 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
935 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
936 
937 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
938 }
939 
940 /* Disable buffer management (BM) */
941 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
942 				  struct mvneta_rx_queue *rxq)
943 {
944 	u32 val;
945 
946 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
947 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
948 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
949 }
950 
951 /* Enable buffer management (BM) */
952 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
953 				 struct mvneta_rx_queue *rxq)
954 {
955 	u32 val;
956 
957 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
958 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
959 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
960 }
961 
962 /* Notify HW about port's assignment of pool for bigger packets */
963 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
964 				     struct mvneta_rx_queue *rxq)
965 {
966 	u32 val;
967 
968 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
969 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
970 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
971 
972 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
973 }
974 
975 /* Notify HW about port's assignment of pool for smaller packets */
976 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
977 				      struct mvneta_rx_queue *rxq)
978 {
979 	u32 val;
980 
981 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
982 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
983 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
984 
985 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
986 }
987 
988 /* Set port's receive buffer size for assigned BM pool */
989 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
990 					      int buf_size,
991 					      u8 pool_id)
992 {
993 	u32 val;
994 
995 	if (!IS_ALIGNED(buf_size, 8)) {
996 		dev_warn(pp->dev->dev.parent,
997 			 "illegal buf_size value %d, round to %d\n",
998 			 buf_size, ALIGN(buf_size, 8));
999 		buf_size = ALIGN(buf_size, 8);
1000 	}
1001 
1002 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1003 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1004 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1005 }
1006 
1007 /* Configure MBUS window in order to enable access BM internal SRAM */
1008 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1009 				  u8 target, u8 attr)
1010 {
1011 	u32 win_enable, win_protect;
1012 	int i;
1013 
1014 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1015 
1016 	if (pp->bm_win_id < 0) {
1017 		/* Find first not occupied window */
1018 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1019 			if (win_enable & (1 << i)) {
1020 				pp->bm_win_id = i;
1021 				break;
1022 			}
1023 		}
1024 		if (i == MVNETA_MAX_DECODE_WIN)
1025 			return -ENOMEM;
1026 	} else {
1027 		i = pp->bm_win_id;
1028 	}
1029 
1030 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1031 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1032 
1033 	if (i < 4)
1034 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1035 
1036 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1037 		    (attr << 8) | target);
1038 
1039 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1040 
1041 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1042 	win_protect |= 3 << (2 * i);
1043 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1044 
1045 	win_enable &= ~(1 << i);
1046 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1047 
1048 	return 0;
1049 }
1050 
1051 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1052 {
1053 	u32 wsize;
1054 	u8 target, attr;
1055 	int err;
1056 
1057 	/* Get BM window information */
1058 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1059 					 &target, &attr);
1060 	if (err < 0)
1061 		return err;
1062 
1063 	pp->bm_win_id = -1;
1064 
1065 	/* Open NETA -> BM window */
1066 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1067 				     target, attr);
1068 	if (err < 0) {
1069 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1070 		return err;
1071 	}
1072 	return 0;
1073 }
1074 
1075 /* Assign and initialize pools for port. In case of fail
1076  * buffer manager will remain disabled for current port.
1077  */
1078 static int mvneta_bm_port_init(struct platform_device *pdev,
1079 			       struct mvneta_port *pp)
1080 {
1081 	struct device_node *dn = pdev->dev.of_node;
1082 	u32 long_pool_id, short_pool_id;
1083 
1084 	if (!pp->neta_armada3700) {
1085 		int ret;
1086 
1087 		ret = mvneta_bm_port_mbus_init(pp);
1088 		if (ret)
1089 			return ret;
1090 	}
1091 
1092 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1093 		netdev_info(pp->dev, "missing long pool id\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	/* Create port's long pool depending on mtu */
1098 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1099 					   MVNETA_BM_LONG, pp->id,
1100 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1101 	if (!pp->pool_long) {
1102 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1103 		return -ENOMEM;
1104 	}
1105 
1106 	pp->pool_long->port_map |= 1 << pp->id;
1107 
1108 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1109 				   pp->pool_long->id);
1110 
1111 	/* If short pool id is not defined, assume using single pool */
1112 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1113 		short_pool_id = long_pool_id;
1114 
1115 	/* Create port's short pool */
1116 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1117 					    MVNETA_BM_SHORT, pp->id,
1118 					    MVNETA_BM_SHORT_PKT_SIZE);
1119 	if (!pp->pool_short) {
1120 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1121 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1122 		return -ENOMEM;
1123 	}
1124 
1125 	if (short_pool_id != long_pool_id) {
1126 		pp->pool_short->port_map |= 1 << pp->id;
1127 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1128 					   pp->pool_short->id);
1129 	}
1130 
1131 	return 0;
1132 }
1133 
1134 /* Update settings of a pool for bigger packets */
1135 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1136 {
1137 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1138 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1139 	int num;
1140 
1141 	/* Release all buffers from long pool */
1142 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1143 	if (hwbm_pool->buf_num) {
1144 		WARN(1, "cannot free all buffers in pool %d\n",
1145 		     bm_pool->id);
1146 		goto bm_mtu_err;
1147 	}
1148 
1149 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1150 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1151 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1152 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1153 
1154 	/* Fill entire long pool */
1155 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1156 	if (num != hwbm_pool->size) {
1157 		WARN(1, "pool %d: %d of %d allocated\n",
1158 		     bm_pool->id, num, hwbm_pool->size);
1159 		goto bm_mtu_err;
1160 	}
1161 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1162 
1163 	return;
1164 
1165 bm_mtu_err:
1166 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1167 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1168 
1169 	pp->bm_priv = NULL;
1170 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1171 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1172 }
1173 
1174 /* Start the Ethernet port RX and TX activity */
1175 static void mvneta_port_up(struct mvneta_port *pp)
1176 {
1177 	int queue;
1178 	u32 q_map;
1179 
1180 	/* Enable all initialized TXs. */
1181 	q_map = 0;
1182 	for (queue = 0; queue < txq_number; queue++) {
1183 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1184 		if (txq->descs)
1185 			q_map |= (1 << queue);
1186 	}
1187 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1188 
1189 	q_map = 0;
1190 	/* Enable all initialized RXQs. */
1191 	for (queue = 0; queue < rxq_number; queue++) {
1192 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1193 
1194 		if (rxq->descs)
1195 			q_map |= (1 << queue);
1196 	}
1197 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1198 }
1199 
1200 /* Stop the Ethernet port activity */
1201 static void mvneta_port_down(struct mvneta_port *pp)
1202 {
1203 	u32 val;
1204 	int count;
1205 
1206 	/* Stop Rx port activity. Check port Rx activity. */
1207 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1208 
1209 	/* Issue stop command for active channels only */
1210 	if (val != 0)
1211 		mvreg_write(pp, MVNETA_RXQ_CMD,
1212 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1213 
1214 	/* Wait for all Rx activity to terminate. */
1215 	count = 0;
1216 	do {
1217 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1218 			netdev_warn(pp->dev,
1219 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1220 				    val);
1221 			break;
1222 		}
1223 		mdelay(1);
1224 
1225 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1226 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1227 
1228 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1229 	 * command for active channels only
1230 	 */
1231 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1232 
1233 	if (val != 0)
1234 		mvreg_write(pp, MVNETA_TXQ_CMD,
1235 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1236 
1237 	/* Wait for all Tx activity to terminate. */
1238 	count = 0;
1239 	do {
1240 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1241 			netdev_warn(pp->dev,
1242 				    "TIMEOUT for TX stopped status=0x%08x\n",
1243 				    val);
1244 			break;
1245 		}
1246 		mdelay(1);
1247 
1248 		/* Check TX Command reg that all Txqs are stopped */
1249 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1250 
1251 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1252 
1253 	/* Double check to verify that TX FIFO is empty */
1254 	count = 0;
1255 	do {
1256 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1257 			netdev_warn(pp->dev,
1258 				    "TX FIFO empty timeout status=0x%08x\n",
1259 				    val);
1260 			break;
1261 		}
1262 		mdelay(1);
1263 
1264 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1265 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1266 		 (val & MVNETA_TX_IN_PRGRS));
1267 
1268 	udelay(200);
1269 }
1270 
1271 /* Enable the port by setting the port enable bit of the MAC control register */
1272 static void mvneta_port_enable(struct mvneta_port *pp)
1273 {
1274 	u32 val;
1275 
1276 	/* Enable port */
1277 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1278 	val |= MVNETA_GMAC0_PORT_ENABLE;
1279 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1280 }
1281 
1282 /* Disable the port and wait for about 200 usec before retuning */
1283 static void mvneta_port_disable(struct mvneta_port *pp)
1284 {
1285 	u32 val;
1286 
1287 	/* Reset the Enable bit in the Serial Control Register */
1288 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1289 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1290 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1291 
1292 	udelay(200);
1293 }
1294 
1295 /* Multicast tables methods */
1296 
1297 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1298 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1299 {
1300 	int offset;
1301 	u32 val;
1302 
1303 	if (queue == -1) {
1304 		val = 0;
1305 	} else {
1306 		val = 0x1 | (queue << 1);
1307 		val |= (val << 24) | (val << 16) | (val << 8);
1308 	}
1309 
1310 	for (offset = 0; offset <= 0xc; offset += 4)
1311 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1312 }
1313 
1314 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1315 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1316 {
1317 	int offset;
1318 	u32 val;
1319 
1320 	if (queue == -1) {
1321 		val = 0;
1322 	} else {
1323 		val = 0x1 | (queue << 1);
1324 		val |= (val << 24) | (val << 16) | (val << 8);
1325 	}
1326 
1327 	for (offset = 0; offset <= 0xfc; offset += 4)
1328 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1329 
1330 }
1331 
1332 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1333 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1334 {
1335 	int offset;
1336 	u32 val;
1337 
1338 	if (queue == -1) {
1339 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1340 		val = 0;
1341 	} else {
1342 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1343 		val = 0x1 | (queue << 1);
1344 		val |= (val << 24) | (val << 16) | (val << 8);
1345 	}
1346 
1347 	for (offset = 0; offset <= 0xfc; offset += 4)
1348 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1349 }
1350 
1351 static void mvneta_percpu_unmask_interrupt(void *arg)
1352 {
1353 	struct mvneta_port *pp = arg;
1354 
1355 	/* All the queue are unmasked, but actually only the ones
1356 	 * mapped to this CPU will be unmasked
1357 	 */
1358 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1359 		    MVNETA_RX_INTR_MASK_ALL |
1360 		    MVNETA_TX_INTR_MASK_ALL |
1361 		    MVNETA_MISCINTR_INTR_MASK);
1362 }
1363 
1364 static void mvneta_percpu_mask_interrupt(void *arg)
1365 {
1366 	struct mvneta_port *pp = arg;
1367 
1368 	/* All the queue are masked, but actually only the ones
1369 	 * mapped to this CPU will be masked
1370 	 */
1371 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1372 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1373 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1374 }
1375 
1376 static void mvneta_percpu_clear_intr_cause(void *arg)
1377 {
1378 	struct mvneta_port *pp = arg;
1379 
1380 	/* All the queue are cleared, but actually only the ones
1381 	 * mapped to this CPU will be cleared
1382 	 */
1383 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1384 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1385 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1386 }
1387 
1388 /* This method sets defaults to the NETA port:
1389  *	Clears interrupt Cause and Mask registers.
1390  *	Clears all MAC tables.
1391  *	Sets defaults to all registers.
1392  *	Resets RX and TX descriptor rings.
1393  *	Resets PHY.
1394  * This method can be called after mvneta_port_down() to return the port
1395  *	settings to defaults.
1396  */
1397 static void mvneta_defaults_set(struct mvneta_port *pp)
1398 {
1399 	int cpu;
1400 	int queue;
1401 	u32 val;
1402 	int max_cpu = num_present_cpus();
1403 
1404 	/* Clear all Cause registers */
1405 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1406 
1407 	/* Mask all interrupts */
1408 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1409 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1410 
1411 	/* Enable MBUS Retry bit16 */
1412 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1413 
1414 	/* Set CPU queue access map. CPUs are assigned to the RX and
1415 	 * TX queues modulo their number. If there is only one TX
1416 	 * queue then it is assigned to the CPU associated to the
1417 	 * default RX queue.
1418 	 */
1419 	for_each_present_cpu(cpu) {
1420 		int rxq_map = 0, txq_map = 0;
1421 		int rxq, txq;
1422 		if (!pp->neta_armada3700) {
1423 			for (rxq = 0; rxq < rxq_number; rxq++)
1424 				if ((rxq % max_cpu) == cpu)
1425 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1426 
1427 			for (txq = 0; txq < txq_number; txq++)
1428 				if ((txq % max_cpu) == cpu)
1429 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1430 
1431 			/* With only one TX queue we configure a special case
1432 			 * which will allow to get all the irq on a single
1433 			 * CPU
1434 			 */
1435 			if (txq_number == 1)
1436 				txq_map = (cpu == pp->rxq_def) ?
1437 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1438 
1439 		} else {
1440 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1441 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1442 		}
1443 
1444 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1445 	}
1446 
1447 	/* Reset RX and TX DMAs */
1448 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1449 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1450 
1451 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1452 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1453 	for (queue = 0; queue < txq_number; queue++) {
1454 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1455 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1456 	}
1457 
1458 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1459 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1460 
1461 	/* Set Port Acceleration Mode */
1462 	if (pp->bm_priv)
1463 		/* HW buffer management + legacy parser */
1464 		val = MVNETA_ACC_MODE_EXT2;
1465 	else
1466 		/* SW buffer management + legacy parser */
1467 		val = MVNETA_ACC_MODE_EXT1;
1468 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1469 
1470 	if (pp->bm_priv)
1471 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1472 
1473 	/* Update val of portCfg register accordingly with all RxQueue types */
1474 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1475 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1476 
1477 	val = 0;
1478 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1479 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1480 
1481 	/* Build PORT_SDMA_CONFIG_REG */
1482 	val = 0;
1483 
1484 	/* Default burst size */
1485 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1486 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1487 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1488 
1489 #if defined(__BIG_ENDIAN)
1490 	val |= MVNETA_DESC_SWAP;
1491 #endif
1492 
1493 	/* Assign port SDMA configuration */
1494 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1495 
1496 	/* Disable PHY polling in hardware, since we're using the
1497 	 * kernel phylib to do this.
1498 	 */
1499 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1500 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1501 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1502 
1503 	mvneta_set_ucast_table(pp, -1);
1504 	mvneta_set_special_mcast_table(pp, -1);
1505 	mvneta_set_other_mcast_table(pp, -1);
1506 
1507 	/* Set port interrupt enable register - default enable all */
1508 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1509 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1510 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1511 
1512 	mvneta_mib_counters_clear(pp);
1513 }
1514 
1515 /* Set max sizes for tx queues */
1516 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1517 
1518 {
1519 	u32 val, size, mtu;
1520 	int queue;
1521 
1522 	mtu = max_tx_size * 8;
1523 	if (mtu > MVNETA_TX_MTU_MAX)
1524 		mtu = MVNETA_TX_MTU_MAX;
1525 
1526 	/* Set MTU */
1527 	val = mvreg_read(pp, MVNETA_TX_MTU);
1528 	val &= ~MVNETA_TX_MTU_MAX;
1529 	val |= mtu;
1530 	mvreg_write(pp, MVNETA_TX_MTU, val);
1531 
1532 	/* TX token size and all TXQs token size must be larger that MTU */
1533 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1534 
1535 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1536 	if (size < mtu) {
1537 		size = mtu;
1538 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1539 		val |= size;
1540 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1541 	}
1542 	for (queue = 0; queue < txq_number; queue++) {
1543 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1544 
1545 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1546 		if (size < mtu) {
1547 			size = mtu;
1548 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1549 			val |= size;
1550 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1551 		}
1552 	}
1553 }
1554 
1555 /* Set unicast address */
1556 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1557 				  int queue)
1558 {
1559 	unsigned int unicast_reg;
1560 	unsigned int tbl_offset;
1561 	unsigned int reg_offset;
1562 
1563 	/* Locate the Unicast table entry */
1564 	last_nibble = (0xf & last_nibble);
1565 
1566 	/* offset from unicast tbl base */
1567 	tbl_offset = (last_nibble / 4) * 4;
1568 
1569 	/* offset within the above reg  */
1570 	reg_offset = last_nibble % 4;
1571 
1572 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1573 
1574 	if (queue == -1) {
1575 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1576 		unicast_reg &= ~(0xff << (8 * reg_offset));
1577 	} else {
1578 		unicast_reg &= ~(0xff << (8 * reg_offset));
1579 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1580 	}
1581 
1582 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1583 }
1584 
1585 /* Set mac address */
1586 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1587 				int queue)
1588 {
1589 	unsigned int mac_h;
1590 	unsigned int mac_l;
1591 
1592 	if (queue != -1) {
1593 		mac_l = (addr[4] << 8) | (addr[5]);
1594 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1595 			(addr[2] << 8) | (addr[3] << 0);
1596 
1597 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1598 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1599 	}
1600 
1601 	/* Accept frames of this address */
1602 	mvneta_set_ucast_addr(pp, addr[5], queue);
1603 }
1604 
1605 /* Set the number of packets that will be received before RX interrupt
1606  * will be generated by HW.
1607  */
1608 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1609 				    struct mvneta_rx_queue *rxq, u32 value)
1610 {
1611 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1612 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1613 }
1614 
1615 /* Set the time delay in usec before RX interrupt will be generated by
1616  * HW.
1617  */
1618 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1619 				    struct mvneta_rx_queue *rxq, u32 value)
1620 {
1621 	u32 val;
1622 	unsigned long clk_rate;
1623 
1624 	clk_rate = clk_get_rate(pp->clk);
1625 	val = (clk_rate / 1000000) * value;
1626 
1627 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1628 }
1629 
1630 /* Set threshold for TX_DONE pkts coalescing */
1631 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1632 					 struct mvneta_tx_queue *txq, u32 value)
1633 {
1634 	u32 val;
1635 
1636 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1637 
1638 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1639 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1640 
1641 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1642 }
1643 
1644 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1645 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1646 				u32 phys_addr, void *virt_addr,
1647 				struct mvneta_rx_queue *rxq)
1648 {
1649 	int i;
1650 
1651 	rx_desc->buf_phys_addr = phys_addr;
1652 	i = rx_desc - rxq->descs;
1653 	rxq->buf_virt_addr[i] = virt_addr;
1654 }
1655 
1656 /* Decrement sent descriptors counter */
1657 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1658 				     struct mvneta_tx_queue *txq,
1659 				     int sent_desc)
1660 {
1661 	u32 val;
1662 
1663 	/* Only 255 TX descriptors can be updated at once */
1664 	while (sent_desc > 0xff) {
1665 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1666 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1667 		sent_desc = sent_desc - 0xff;
1668 	}
1669 
1670 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1671 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1672 }
1673 
1674 /* Get number of TX descriptors already sent by HW */
1675 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1676 					struct mvneta_tx_queue *txq)
1677 {
1678 	u32 val;
1679 	int sent_desc;
1680 
1681 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1682 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1683 		MVNETA_TXQ_SENT_DESC_SHIFT;
1684 
1685 	return sent_desc;
1686 }
1687 
1688 /* Get number of sent descriptors and decrement counter.
1689  *  The number of sent descriptors is returned.
1690  */
1691 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1692 				     struct mvneta_tx_queue *txq)
1693 {
1694 	int sent_desc;
1695 
1696 	/* Get number of sent descriptors */
1697 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1698 
1699 	/* Decrement sent descriptors counter */
1700 	if (sent_desc)
1701 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1702 
1703 	return sent_desc;
1704 }
1705 
1706 /* Set TXQ descriptors fields relevant for CSUM calculation */
1707 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1708 				int ip_hdr_len, int l4_proto)
1709 {
1710 	u32 command;
1711 
1712 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1713 	 * G_L4_chk, L4_type; required only for checksum
1714 	 * calculation
1715 	 */
1716 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1717 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1718 
1719 	if (l3_proto == htons(ETH_P_IP))
1720 		command |= MVNETA_TXD_IP_CSUM;
1721 	else
1722 		command |= MVNETA_TX_L3_IP6;
1723 
1724 	if (l4_proto == IPPROTO_TCP)
1725 		command |=  MVNETA_TX_L4_CSUM_FULL;
1726 	else if (l4_proto == IPPROTO_UDP)
1727 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1728 	else
1729 		command |= MVNETA_TX_L4_CSUM_NOT;
1730 
1731 	return command;
1732 }
1733 
1734 
1735 /* Display more error info */
1736 static void mvneta_rx_error(struct mvneta_port *pp,
1737 			    struct mvneta_rx_desc *rx_desc)
1738 {
1739 	u32 status = rx_desc->status;
1740 
1741 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1742 	case MVNETA_RXD_ERR_CRC:
1743 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1744 			   status, rx_desc->data_size);
1745 		break;
1746 	case MVNETA_RXD_ERR_OVERRUN:
1747 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1748 			   status, rx_desc->data_size);
1749 		break;
1750 	case MVNETA_RXD_ERR_LEN:
1751 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1752 			   status, rx_desc->data_size);
1753 		break;
1754 	case MVNETA_RXD_ERR_RESOURCE:
1755 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1756 			   status, rx_desc->data_size);
1757 		break;
1758 	}
1759 }
1760 
1761 /* Handle RX checksum offload based on the descriptor's status */
1762 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1763 			   struct sk_buff *skb)
1764 {
1765 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1766 	    (status & MVNETA_RXD_L3_IP4) &&
1767 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1768 		skb->csum = 0;
1769 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1770 		return;
1771 	}
1772 
1773 	skb->ip_summed = CHECKSUM_NONE;
1774 }
1775 
1776 /* Return tx queue pointer (find last set bit) according to <cause> returned
1777  * form tx_done reg. <cause> must not be null. The return value is always a
1778  * valid queue for matching the first one found in <cause>.
1779  */
1780 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1781 						     u32 cause)
1782 {
1783 	int queue = fls(cause) - 1;
1784 
1785 	return &pp->txqs[queue];
1786 }
1787 
1788 /* Free tx queue skbuffs */
1789 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1790 				 struct mvneta_tx_queue *txq, int num,
1791 				 struct netdev_queue *nq)
1792 {
1793 	unsigned int bytes_compl = 0, pkts_compl = 0;
1794 	int i;
1795 
1796 	for (i = 0; i < num; i++) {
1797 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1798 		struct mvneta_tx_desc *tx_desc = txq->descs +
1799 			txq->txq_get_index;
1800 
1801 		mvneta_txq_inc_get(txq);
1802 
1803 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1804 		    buf->type != MVNETA_TYPE_XDP_TX)
1805 			dma_unmap_single(pp->dev->dev.parent,
1806 					 tx_desc->buf_phys_addr,
1807 					 tx_desc->data_size, DMA_TO_DEVICE);
1808 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1809 			bytes_compl += buf->skb->len;
1810 			pkts_compl++;
1811 			dev_kfree_skb_any(buf->skb);
1812 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1813 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1814 			xdp_return_frame(buf->xdpf);
1815 		}
1816 	}
1817 
1818 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1819 }
1820 
1821 /* Handle end of transmission */
1822 static void mvneta_txq_done(struct mvneta_port *pp,
1823 			   struct mvneta_tx_queue *txq)
1824 {
1825 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1826 	int tx_done;
1827 
1828 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1829 	if (!tx_done)
1830 		return;
1831 
1832 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1833 
1834 	txq->count -= tx_done;
1835 
1836 	if (netif_tx_queue_stopped(nq)) {
1837 		if (txq->count <= txq->tx_wake_threshold)
1838 			netif_tx_wake_queue(nq);
1839 	}
1840 }
1841 
1842 /* Refill processing for SW buffer management */
1843 /* Allocate page per descriptor */
1844 static int mvneta_rx_refill(struct mvneta_port *pp,
1845 			    struct mvneta_rx_desc *rx_desc,
1846 			    struct mvneta_rx_queue *rxq,
1847 			    gfp_t gfp_mask)
1848 {
1849 	dma_addr_t phys_addr;
1850 	struct page *page;
1851 
1852 	page = page_pool_alloc_pages(rxq->page_pool,
1853 				     gfp_mask | __GFP_NOWARN);
1854 	if (!page)
1855 		return -ENOMEM;
1856 
1857 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1858 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1859 
1860 	return 0;
1861 }
1862 
1863 /* Handle tx checksum */
1864 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1865 {
1866 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1867 		int ip_hdr_len = 0;
1868 		__be16 l3_proto = vlan_get_protocol(skb);
1869 		u8 l4_proto;
1870 
1871 		if (l3_proto == htons(ETH_P_IP)) {
1872 			struct iphdr *ip4h = ip_hdr(skb);
1873 
1874 			/* Calculate IPv4 checksum and L4 checksum */
1875 			ip_hdr_len = ip4h->ihl;
1876 			l4_proto = ip4h->protocol;
1877 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1878 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1879 
1880 			/* Read l4_protocol from one of IPv6 extra headers */
1881 			if (skb_network_header_len(skb) > 0)
1882 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1883 			l4_proto = ip6h->nexthdr;
1884 		} else
1885 			return MVNETA_TX_L4_CSUM_NOT;
1886 
1887 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1888 					    l3_proto, ip_hdr_len, l4_proto);
1889 	}
1890 
1891 	return MVNETA_TX_L4_CSUM_NOT;
1892 }
1893 
1894 /* Drop packets received by the RXQ and free buffers */
1895 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1896 				 struct mvneta_rx_queue *rxq)
1897 {
1898 	int rx_done, i;
1899 
1900 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1901 	if (rx_done)
1902 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1903 
1904 	if (pp->bm_priv) {
1905 		for (i = 0; i < rx_done; i++) {
1906 			struct mvneta_rx_desc *rx_desc =
1907 						  mvneta_rxq_next_desc_get(rxq);
1908 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1909 			struct mvneta_bm_pool *bm_pool;
1910 
1911 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1912 			/* Return dropped buffer to the pool */
1913 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1914 					      rx_desc->buf_phys_addr);
1915 		}
1916 		return;
1917 	}
1918 
1919 	for (i = 0; i < rxq->size; i++) {
1920 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1921 		void *data = rxq->buf_virt_addr[i];
1922 		if (!data || !(rx_desc->buf_phys_addr))
1923 			continue;
1924 
1925 		page_pool_put_page(rxq->page_pool, data, false);
1926 	}
1927 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1928 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1929 	page_pool_destroy(rxq->page_pool);
1930 	rxq->page_pool = NULL;
1931 }
1932 
1933 static void
1934 mvneta_update_stats(struct mvneta_port *pp, u32 pkts,
1935 		    u32 len, bool tx)
1936 {
1937 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1938 
1939 	u64_stats_update_begin(&stats->syncp);
1940 	if (tx) {
1941 		stats->tx_packets += pkts;
1942 		stats->tx_bytes += len;
1943 	} else {
1944 		stats->rx_packets += pkts;
1945 		stats->rx_bytes += len;
1946 	}
1947 	u64_stats_update_end(&stats->syncp);
1948 }
1949 
1950 static inline
1951 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1952 {
1953 	struct mvneta_rx_desc *rx_desc;
1954 	int curr_desc = rxq->first_to_refill;
1955 	int i;
1956 
1957 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1958 		rx_desc = rxq->descs + curr_desc;
1959 		if (!(rx_desc->buf_phys_addr)) {
1960 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1961 				pr_err("Can't refill queue %d. Done %d from %d\n",
1962 				       rxq->id, i, rxq->refill_num);
1963 				rxq->refill_err++;
1964 				break;
1965 			}
1966 		}
1967 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1968 	}
1969 	rxq->refill_num -= i;
1970 	rxq->first_to_refill = curr_desc;
1971 
1972 	return i;
1973 }
1974 
1975 static int
1976 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
1977 			struct xdp_frame *xdpf, bool dma_map)
1978 {
1979 	struct mvneta_tx_desc *tx_desc;
1980 	struct mvneta_tx_buf *buf;
1981 	dma_addr_t dma_addr;
1982 
1983 	if (txq->count >= txq->tx_stop_threshold)
1984 		return MVNETA_XDP_DROPPED;
1985 
1986 	tx_desc = mvneta_txq_next_desc_get(txq);
1987 
1988 	buf = &txq->buf[txq->txq_put_index];
1989 	if (dma_map) {
1990 		/* ndo_xdp_xmit */
1991 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
1992 					  xdpf->len, DMA_TO_DEVICE);
1993 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
1994 			mvneta_txq_desc_put(txq);
1995 			return MVNETA_XDP_DROPPED;
1996 		}
1997 		buf->type = MVNETA_TYPE_XDP_NDO;
1998 	} else {
1999 		struct page *page = virt_to_page(xdpf->data);
2000 
2001 		dma_addr = page_pool_get_dma_addr(page) +
2002 			   sizeof(*xdpf) + xdpf->headroom;
2003 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2004 					   xdpf->len, DMA_BIDIRECTIONAL);
2005 		buf->type = MVNETA_TYPE_XDP_TX;
2006 	}
2007 	buf->xdpf = xdpf;
2008 
2009 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2010 	tx_desc->buf_phys_addr = dma_addr;
2011 	tx_desc->data_size = xdpf->len;
2012 
2013 	mvneta_update_stats(pp, 1, xdpf->len, true);
2014 	mvneta_txq_inc_put(txq);
2015 	txq->pending++;
2016 	txq->count++;
2017 
2018 	return MVNETA_XDP_TX;
2019 }
2020 
2021 static int
2022 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2023 {
2024 	struct mvneta_tx_queue *txq;
2025 	struct netdev_queue *nq;
2026 	struct xdp_frame *xdpf;
2027 	int cpu;
2028 	u32 ret;
2029 
2030 	xdpf = convert_to_xdp_frame(xdp);
2031 	if (unlikely(!xdpf))
2032 		return MVNETA_XDP_DROPPED;
2033 
2034 	cpu = smp_processor_id();
2035 	txq = &pp->txqs[cpu % txq_number];
2036 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2037 
2038 	__netif_tx_lock(nq, cpu);
2039 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2040 	if (ret == MVNETA_XDP_TX)
2041 		mvneta_txq_pend_desc_add(pp, txq, 0);
2042 	__netif_tx_unlock(nq);
2043 
2044 	return ret;
2045 }
2046 
2047 static int
2048 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2049 		struct xdp_frame **frames, u32 flags)
2050 {
2051 	struct mvneta_port *pp = netdev_priv(dev);
2052 	int cpu = smp_processor_id();
2053 	struct mvneta_tx_queue *txq;
2054 	struct netdev_queue *nq;
2055 	int i, drops = 0;
2056 	u32 ret;
2057 
2058 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2059 		return -EINVAL;
2060 
2061 	txq = &pp->txqs[cpu % txq_number];
2062 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2063 
2064 	__netif_tx_lock(nq, cpu);
2065 	for (i = 0; i < num_frame; i++) {
2066 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2067 		if (ret != MVNETA_XDP_TX) {
2068 			xdp_return_frame_rx_napi(frames[i]);
2069 			drops++;
2070 		}
2071 	}
2072 
2073 	if (unlikely(flags & XDP_XMIT_FLUSH))
2074 		mvneta_txq_pend_desc_add(pp, txq, 0);
2075 	__netif_tx_unlock(nq);
2076 
2077 	return num_frame - drops;
2078 }
2079 
2080 static int
2081 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2082 	       struct bpf_prog *prog, struct xdp_buff *xdp)
2083 {
2084 	u32 ret, act = bpf_prog_run_xdp(prog, xdp);
2085 
2086 	switch (act) {
2087 	case XDP_PASS:
2088 		ret = MVNETA_XDP_PASS;
2089 		break;
2090 	case XDP_REDIRECT: {
2091 		int err;
2092 
2093 		err = xdp_do_redirect(pp->dev, xdp, prog);
2094 		if (err) {
2095 			ret = MVNETA_XDP_DROPPED;
2096 			__page_pool_put_page(rxq->page_pool,
2097 					virt_to_head_page(xdp->data),
2098 					xdp->data_end - xdp->data_hard_start,
2099 					true);
2100 		} else {
2101 			ret = MVNETA_XDP_REDIR;
2102 		}
2103 		break;
2104 	}
2105 	case XDP_TX:
2106 		ret = mvneta_xdp_xmit_back(pp, xdp);
2107 		if (ret != MVNETA_XDP_TX)
2108 			__page_pool_put_page(rxq->page_pool,
2109 					virt_to_head_page(xdp->data),
2110 					xdp->data_end - xdp->data_hard_start,
2111 					true);
2112 		break;
2113 	default:
2114 		bpf_warn_invalid_xdp_action(act);
2115 		/* fall through */
2116 	case XDP_ABORTED:
2117 		trace_xdp_exception(pp->dev, prog, act);
2118 		/* fall through */
2119 	case XDP_DROP:
2120 		__page_pool_put_page(rxq->page_pool,
2121 				     virt_to_head_page(xdp->data),
2122 				     xdp->data_end - xdp->data_hard_start,
2123 				     true);
2124 		ret = MVNETA_XDP_DROPPED;
2125 		break;
2126 	}
2127 
2128 	return ret;
2129 }
2130 
2131 static int
2132 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2133 		     struct mvneta_rx_desc *rx_desc,
2134 		     struct mvneta_rx_queue *rxq,
2135 		     struct xdp_buff *xdp,
2136 		     struct bpf_prog *xdp_prog,
2137 		     struct page *page, u32 *xdp_ret)
2138 {
2139 	unsigned char *data = page_address(page);
2140 	int data_len = -MVNETA_MH_SIZE, len;
2141 	struct net_device *dev = pp->dev;
2142 	enum dma_data_direction dma_dir;
2143 
2144 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2145 		len = MVNETA_MAX_RX_BUF_SIZE;
2146 		data_len += len;
2147 	} else {
2148 		len = rx_desc->data_size;
2149 		data_len += len - ETH_FCS_LEN;
2150 	}
2151 
2152 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2153 	dma_sync_single_for_cpu(dev->dev.parent,
2154 				rx_desc->buf_phys_addr,
2155 				len, dma_dir);
2156 
2157 	/* Prefetch header */
2158 	prefetch(data);
2159 
2160 	xdp->data_hard_start = data;
2161 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2162 	xdp->data_end = xdp->data + data_len;
2163 	xdp_set_data_meta_invalid(xdp);
2164 
2165 	if (xdp_prog) {
2166 		u32 ret;
2167 
2168 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp);
2169 		if (ret != MVNETA_XDP_PASS) {
2170 			mvneta_update_stats(pp, 1,
2171 					    xdp->data_end - xdp->data,
2172 					    false);
2173 			rx_desc->buf_phys_addr = 0;
2174 			*xdp_ret |= ret;
2175 			return ret;
2176 		}
2177 	}
2178 
2179 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2180 	if (unlikely(!rxq->skb)) {
2181 		netdev_err(dev,
2182 			   "Can't allocate skb on queue %d\n",
2183 			   rxq->id);
2184 		dev->stats.rx_dropped++;
2185 		rxq->skb_alloc_err++;
2186 		return -ENOMEM;
2187 	}
2188 	page_pool_release_page(rxq->page_pool, page);
2189 
2190 	skb_reserve(rxq->skb,
2191 		    xdp->data - xdp->data_hard_start);
2192 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2193 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2194 
2195 	rxq->left_size = rx_desc->data_size - len;
2196 	rx_desc->buf_phys_addr = 0;
2197 
2198 	return 0;
2199 }
2200 
2201 static void
2202 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2203 			    struct mvneta_rx_desc *rx_desc,
2204 			    struct mvneta_rx_queue *rxq,
2205 			    struct page *page)
2206 {
2207 	struct net_device *dev = pp->dev;
2208 	enum dma_data_direction dma_dir;
2209 	int data_len, len;
2210 
2211 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2212 		len = MVNETA_MAX_RX_BUF_SIZE;
2213 		data_len = len;
2214 	} else {
2215 		len = rxq->left_size;
2216 		data_len = len - ETH_FCS_LEN;
2217 	}
2218 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2219 	dma_sync_single_for_cpu(dev->dev.parent,
2220 				rx_desc->buf_phys_addr,
2221 				len, dma_dir);
2222 	if (data_len > 0) {
2223 		/* refill descriptor with new buffer later */
2224 		skb_add_rx_frag(rxq->skb,
2225 				skb_shinfo(rxq->skb)->nr_frags,
2226 				page, pp->rx_offset_correction, data_len,
2227 				PAGE_SIZE);
2228 	}
2229 	page_pool_release_page(rxq->page_pool, page);
2230 	rx_desc->buf_phys_addr = 0;
2231 	rxq->left_size -= len;
2232 }
2233 
2234 /* Main rx processing when using software buffer management */
2235 static int mvneta_rx_swbm(struct napi_struct *napi,
2236 			  struct mvneta_port *pp, int budget,
2237 			  struct mvneta_rx_queue *rxq)
2238 {
2239 	int rcvd_pkts = 0, rcvd_bytes = 0, rx_proc = 0;
2240 	struct net_device *dev = pp->dev;
2241 	struct bpf_prog *xdp_prog;
2242 	struct xdp_buff xdp_buf;
2243 	int rx_todo, refill;
2244 	u32 xdp_ret = 0;
2245 
2246 	/* Get number of received packets */
2247 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2248 
2249 	rcu_read_lock();
2250 	xdp_prog = READ_ONCE(pp->xdp_prog);
2251 	xdp_buf.rxq = &rxq->xdp_rxq;
2252 
2253 	/* Fairness NAPI loop */
2254 	while (rx_proc < budget && rx_proc < rx_todo) {
2255 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2256 		u32 rx_status, index;
2257 		struct page *page;
2258 
2259 		index = rx_desc - rxq->descs;
2260 		page = (struct page *)rxq->buf_virt_addr[index];
2261 
2262 		rx_status = rx_desc->status;
2263 		rx_proc++;
2264 		rxq->refill_num++;
2265 
2266 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2267 			int err;
2268 
2269 			/* Check errors only for FIRST descriptor */
2270 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2271 				mvneta_rx_error(pp, rx_desc);
2272 				dev->stats.rx_errors++;
2273 				/* leave the descriptor untouched */
2274 				continue;
2275 			}
2276 
2277 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2278 						   xdp_prog, page, &xdp_ret);
2279 			if (err)
2280 				continue;
2281 		} else {
2282 			if (unlikely(!rxq->skb)) {
2283 				pr_debug("no skb for rx_status 0x%x\n",
2284 					 rx_status);
2285 				continue;
2286 			}
2287 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2288 		} /* Middle or Last descriptor */
2289 
2290 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2291 			/* no last descriptor this time */
2292 			continue;
2293 
2294 		if (rxq->left_size) {
2295 			pr_err("get last desc, but left_size (%d) != 0\n",
2296 			       rxq->left_size);
2297 			dev_kfree_skb_any(rxq->skb);
2298 			rxq->left_size = 0;
2299 			rxq->skb = NULL;
2300 			continue;
2301 		}
2302 		rcvd_pkts++;
2303 		rcvd_bytes += rxq->skb->len;
2304 
2305 		/* Linux processing */
2306 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2307 
2308 		napi_gro_receive(napi, rxq->skb);
2309 
2310 		/* clean uncomplete skb pointer in queue */
2311 		rxq->skb = NULL;
2312 	}
2313 	rcu_read_unlock();
2314 
2315 	if (xdp_ret & MVNETA_XDP_REDIR)
2316 		xdp_do_flush_map();
2317 
2318 	if (rcvd_pkts)
2319 		mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false);
2320 
2321 	/* return some buffers to hardware queue, one at a time is too slow */
2322 	refill = mvneta_rx_refill_queue(pp, rxq);
2323 
2324 	/* Update rxq management counters */
2325 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2326 
2327 	return rcvd_pkts;
2328 }
2329 
2330 /* Main rx processing when using hardware buffer management */
2331 static int mvneta_rx_hwbm(struct napi_struct *napi,
2332 			  struct mvneta_port *pp, int rx_todo,
2333 			  struct mvneta_rx_queue *rxq)
2334 {
2335 	struct net_device *dev = pp->dev;
2336 	int rx_done;
2337 	u32 rcvd_pkts = 0;
2338 	u32 rcvd_bytes = 0;
2339 
2340 	/* Get number of received packets */
2341 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2342 
2343 	if (rx_todo > rx_done)
2344 		rx_todo = rx_done;
2345 
2346 	rx_done = 0;
2347 
2348 	/* Fairness NAPI loop */
2349 	while (rx_done < rx_todo) {
2350 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2351 		struct mvneta_bm_pool *bm_pool = NULL;
2352 		struct sk_buff *skb;
2353 		unsigned char *data;
2354 		dma_addr_t phys_addr;
2355 		u32 rx_status, frag_size;
2356 		int rx_bytes, err;
2357 		u8 pool_id;
2358 
2359 		rx_done++;
2360 		rx_status = rx_desc->status;
2361 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2362 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2363 		phys_addr = rx_desc->buf_phys_addr;
2364 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2365 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2366 
2367 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2368 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2369 err_drop_frame_ret_pool:
2370 			/* Return the buffer to the pool */
2371 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2372 					      rx_desc->buf_phys_addr);
2373 err_drop_frame:
2374 			dev->stats.rx_errors++;
2375 			mvneta_rx_error(pp, rx_desc);
2376 			/* leave the descriptor untouched */
2377 			continue;
2378 		}
2379 
2380 		if (rx_bytes <= rx_copybreak) {
2381 			/* better copy a small frame and not unmap the DMA region */
2382 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2383 			if (unlikely(!skb))
2384 				goto err_drop_frame_ret_pool;
2385 
2386 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2387 			                              rx_desc->buf_phys_addr,
2388 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2389 			                              rx_bytes,
2390 			                              DMA_FROM_DEVICE);
2391 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2392 				     rx_bytes);
2393 
2394 			skb->protocol = eth_type_trans(skb, dev);
2395 			mvneta_rx_csum(pp, rx_status, skb);
2396 			napi_gro_receive(napi, skb);
2397 
2398 			rcvd_pkts++;
2399 			rcvd_bytes += rx_bytes;
2400 
2401 			/* Return the buffer to the pool */
2402 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2403 					      rx_desc->buf_phys_addr);
2404 
2405 			/* leave the descriptor and buffer untouched */
2406 			continue;
2407 		}
2408 
2409 		/* Refill processing */
2410 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2411 		if (err) {
2412 			netdev_err(dev, "Linux processing - Can't refill\n");
2413 			rxq->refill_err++;
2414 			goto err_drop_frame_ret_pool;
2415 		}
2416 
2417 		frag_size = bm_pool->hwbm_pool.frag_size;
2418 
2419 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2420 
2421 		/* After refill old buffer has to be unmapped regardless
2422 		 * the skb is successfully built or not.
2423 		 */
2424 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2425 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2426 		if (!skb)
2427 			goto err_drop_frame;
2428 
2429 		rcvd_pkts++;
2430 		rcvd_bytes += rx_bytes;
2431 
2432 		/* Linux processing */
2433 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2434 		skb_put(skb, rx_bytes);
2435 
2436 		skb->protocol = eth_type_trans(skb, dev);
2437 
2438 		mvneta_rx_csum(pp, rx_status, skb);
2439 
2440 		napi_gro_receive(napi, skb);
2441 	}
2442 
2443 	if (rcvd_pkts)
2444 		mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false);
2445 
2446 	/* Update rxq management counters */
2447 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2448 
2449 	return rx_done;
2450 }
2451 
2452 static inline void
2453 mvneta_tso_put_hdr(struct sk_buff *skb,
2454 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2455 {
2456 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2457 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2458 	struct mvneta_tx_desc *tx_desc;
2459 
2460 	tx_desc = mvneta_txq_next_desc_get(txq);
2461 	tx_desc->data_size = hdr_len;
2462 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2463 	tx_desc->command |= MVNETA_TXD_F_DESC;
2464 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2465 				 txq->txq_put_index * TSO_HEADER_SIZE;
2466 	buf->type = MVNETA_TYPE_SKB;
2467 	buf->skb = NULL;
2468 
2469 	mvneta_txq_inc_put(txq);
2470 }
2471 
2472 static inline int
2473 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2474 		    struct sk_buff *skb, char *data, int size,
2475 		    bool last_tcp, bool is_last)
2476 {
2477 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2478 	struct mvneta_tx_desc *tx_desc;
2479 
2480 	tx_desc = mvneta_txq_next_desc_get(txq);
2481 	tx_desc->data_size = size;
2482 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2483 						size, DMA_TO_DEVICE);
2484 	if (unlikely(dma_mapping_error(dev->dev.parent,
2485 		     tx_desc->buf_phys_addr))) {
2486 		mvneta_txq_desc_put(txq);
2487 		return -ENOMEM;
2488 	}
2489 
2490 	tx_desc->command = 0;
2491 	buf->type = MVNETA_TYPE_SKB;
2492 	buf->skb = NULL;
2493 
2494 	if (last_tcp) {
2495 		/* last descriptor in the TCP packet */
2496 		tx_desc->command = MVNETA_TXD_L_DESC;
2497 
2498 		/* last descriptor in SKB */
2499 		if (is_last)
2500 			buf->skb = skb;
2501 	}
2502 	mvneta_txq_inc_put(txq);
2503 	return 0;
2504 }
2505 
2506 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2507 			 struct mvneta_tx_queue *txq)
2508 {
2509 	int total_len, data_left;
2510 	int desc_count = 0;
2511 	struct mvneta_port *pp = netdev_priv(dev);
2512 	struct tso_t tso;
2513 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2514 	int i;
2515 
2516 	/* Count needed descriptors */
2517 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2518 		return 0;
2519 
2520 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2521 		pr_info("*** Is this even  possible???!?!?\n");
2522 		return 0;
2523 	}
2524 
2525 	/* Initialize the TSO handler, and prepare the first payload */
2526 	tso_start(skb, &tso);
2527 
2528 	total_len = skb->len - hdr_len;
2529 	while (total_len > 0) {
2530 		char *hdr;
2531 
2532 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2533 		total_len -= data_left;
2534 		desc_count++;
2535 
2536 		/* prepare packet headers: MAC + IP + TCP */
2537 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2538 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2539 
2540 		mvneta_tso_put_hdr(skb, pp, txq);
2541 
2542 		while (data_left > 0) {
2543 			int size;
2544 			desc_count++;
2545 
2546 			size = min_t(int, tso.size, data_left);
2547 
2548 			if (mvneta_tso_put_data(dev, txq, skb,
2549 						 tso.data, size,
2550 						 size == data_left,
2551 						 total_len == 0))
2552 				goto err_release;
2553 			data_left -= size;
2554 
2555 			tso_build_data(skb, &tso, size);
2556 		}
2557 	}
2558 
2559 	return desc_count;
2560 
2561 err_release:
2562 	/* Release all used data descriptors; header descriptors must not
2563 	 * be DMA-unmapped.
2564 	 */
2565 	for (i = desc_count - 1; i >= 0; i--) {
2566 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2567 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2568 			dma_unmap_single(pp->dev->dev.parent,
2569 					 tx_desc->buf_phys_addr,
2570 					 tx_desc->data_size,
2571 					 DMA_TO_DEVICE);
2572 		mvneta_txq_desc_put(txq);
2573 	}
2574 	return 0;
2575 }
2576 
2577 /* Handle tx fragmentation processing */
2578 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2579 				  struct mvneta_tx_queue *txq)
2580 {
2581 	struct mvneta_tx_desc *tx_desc;
2582 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2583 
2584 	for (i = 0; i < nr_frags; i++) {
2585 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2586 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2587 		void *addr = skb_frag_address(frag);
2588 
2589 		tx_desc = mvneta_txq_next_desc_get(txq);
2590 		tx_desc->data_size = skb_frag_size(frag);
2591 
2592 		tx_desc->buf_phys_addr =
2593 			dma_map_single(pp->dev->dev.parent, addr,
2594 				       tx_desc->data_size, DMA_TO_DEVICE);
2595 
2596 		if (dma_mapping_error(pp->dev->dev.parent,
2597 				      tx_desc->buf_phys_addr)) {
2598 			mvneta_txq_desc_put(txq);
2599 			goto error;
2600 		}
2601 
2602 		if (i == nr_frags - 1) {
2603 			/* Last descriptor */
2604 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2605 			buf->skb = skb;
2606 		} else {
2607 			/* Descriptor in the middle: Not First, Not Last */
2608 			tx_desc->command = 0;
2609 			buf->skb = NULL;
2610 		}
2611 		buf->type = MVNETA_TYPE_SKB;
2612 		mvneta_txq_inc_put(txq);
2613 	}
2614 
2615 	return 0;
2616 
2617 error:
2618 	/* Release all descriptors that were used to map fragments of
2619 	 * this packet, as well as the corresponding DMA mappings
2620 	 */
2621 	for (i = i - 1; i >= 0; i--) {
2622 		tx_desc = txq->descs + i;
2623 		dma_unmap_single(pp->dev->dev.parent,
2624 				 tx_desc->buf_phys_addr,
2625 				 tx_desc->data_size,
2626 				 DMA_TO_DEVICE);
2627 		mvneta_txq_desc_put(txq);
2628 	}
2629 
2630 	return -ENOMEM;
2631 }
2632 
2633 /* Main tx processing */
2634 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2635 {
2636 	struct mvneta_port *pp = netdev_priv(dev);
2637 	u16 txq_id = skb_get_queue_mapping(skb);
2638 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2639 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2640 	struct mvneta_tx_desc *tx_desc;
2641 	int len = skb->len;
2642 	int frags = 0;
2643 	u32 tx_cmd;
2644 
2645 	if (!netif_running(dev))
2646 		goto out;
2647 
2648 	if (skb_is_gso(skb)) {
2649 		frags = mvneta_tx_tso(skb, dev, txq);
2650 		goto out;
2651 	}
2652 
2653 	frags = skb_shinfo(skb)->nr_frags + 1;
2654 
2655 	/* Get a descriptor for the first part of the packet */
2656 	tx_desc = mvneta_txq_next_desc_get(txq);
2657 
2658 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2659 
2660 	tx_desc->data_size = skb_headlen(skb);
2661 
2662 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2663 						tx_desc->data_size,
2664 						DMA_TO_DEVICE);
2665 	if (unlikely(dma_mapping_error(dev->dev.parent,
2666 				       tx_desc->buf_phys_addr))) {
2667 		mvneta_txq_desc_put(txq);
2668 		frags = 0;
2669 		goto out;
2670 	}
2671 
2672 	buf->type = MVNETA_TYPE_SKB;
2673 	if (frags == 1) {
2674 		/* First and Last descriptor */
2675 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2676 		tx_desc->command = tx_cmd;
2677 		buf->skb = skb;
2678 		mvneta_txq_inc_put(txq);
2679 	} else {
2680 		/* First but not Last */
2681 		tx_cmd |= MVNETA_TXD_F_DESC;
2682 		buf->skb = NULL;
2683 		mvneta_txq_inc_put(txq);
2684 		tx_desc->command = tx_cmd;
2685 		/* Continue with other skb fragments */
2686 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2687 			dma_unmap_single(dev->dev.parent,
2688 					 tx_desc->buf_phys_addr,
2689 					 tx_desc->data_size,
2690 					 DMA_TO_DEVICE);
2691 			mvneta_txq_desc_put(txq);
2692 			frags = 0;
2693 			goto out;
2694 		}
2695 	}
2696 
2697 out:
2698 	if (frags > 0) {
2699 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2700 
2701 		netdev_tx_sent_queue(nq, len);
2702 
2703 		txq->count += frags;
2704 		if (txq->count >= txq->tx_stop_threshold)
2705 			netif_tx_stop_queue(nq);
2706 
2707 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2708 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2709 			mvneta_txq_pend_desc_add(pp, txq, frags);
2710 		else
2711 			txq->pending += frags;
2712 
2713 		mvneta_update_stats(pp, 1, len, true);
2714 	} else {
2715 		dev->stats.tx_dropped++;
2716 		dev_kfree_skb_any(skb);
2717 	}
2718 
2719 	return NETDEV_TX_OK;
2720 }
2721 
2722 
2723 /* Free tx resources, when resetting a port */
2724 static void mvneta_txq_done_force(struct mvneta_port *pp,
2725 				  struct mvneta_tx_queue *txq)
2726 
2727 {
2728 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2729 	int tx_done = txq->count;
2730 
2731 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2732 
2733 	/* reset txq */
2734 	txq->count = 0;
2735 	txq->txq_put_index = 0;
2736 	txq->txq_get_index = 0;
2737 }
2738 
2739 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2740  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2741  */
2742 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2743 {
2744 	struct mvneta_tx_queue *txq;
2745 	struct netdev_queue *nq;
2746 	int cpu = smp_processor_id();
2747 
2748 	while (cause_tx_done) {
2749 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2750 
2751 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2752 		__netif_tx_lock(nq, cpu);
2753 
2754 		if (txq->count)
2755 			mvneta_txq_done(pp, txq);
2756 
2757 		__netif_tx_unlock(nq);
2758 		cause_tx_done &= ~((1 << txq->id));
2759 	}
2760 }
2761 
2762 /* Compute crc8 of the specified address, using a unique algorithm ,
2763  * according to hw spec, different than generic crc8 algorithm
2764  */
2765 static int mvneta_addr_crc(unsigned char *addr)
2766 {
2767 	int crc = 0;
2768 	int i;
2769 
2770 	for (i = 0; i < ETH_ALEN; i++) {
2771 		int j;
2772 
2773 		crc = (crc ^ addr[i]) << 8;
2774 		for (j = 7; j >= 0; j--) {
2775 			if (crc & (0x100 << j))
2776 				crc ^= 0x107 << j;
2777 		}
2778 	}
2779 
2780 	return crc;
2781 }
2782 
2783 /* This method controls the net device special MAC multicast support.
2784  * The Special Multicast Table for MAC addresses supports MAC of the form
2785  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2786  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2787  * Table entries in the DA-Filter table. This method set the Special
2788  * Multicast Table appropriate entry.
2789  */
2790 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2791 					  unsigned char last_byte,
2792 					  int queue)
2793 {
2794 	unsigned int smc_table_reg;
2795 	unsigned int tbl_offset;
2796 	unsigned int reg_offset;
2797 
2798 	/* Register offset from SMC table base    */
2799 	tbl_offset = (last_byte / 4);
2800 	/* Entry offset within the above reg */
2801 	reg_offset = last_byte % 4;
2802 
2803 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2804 					+ tbl_offset * 4));
2805 
2806 	if (queue == -1)
2807 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2808 	else {
2809 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2810 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2811 	}
2812 
2813 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2814 		    smc_table_reg);
2815 }
2816 
2817 /* This method controls the network device Other MAC multicast support.
2818  * The Other Multicast Table is used for multicast of another type.
2819  * A CRC-8 is used as an index to the Other Multicast Table entries
2820  * in the DA-Filter table.
2821  * The method gets the CRC-8 value from the calling routine and
2822  * sets the Other Multicast Table appropriate entry according to the
2823  * specified CRC-8 .
2824  */
2825 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2826 					unsigned char crc8,
2827 					int queue)
2828 {
2829 	unsigned int omc_table_reg;
2830 	unsigned int tbl_offset;
2831 	unsigned int reg_offset;
2832 
2833 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2834 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2835 
2836 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2837 
2838 	if (queue == -1) {
2839 		/* Clear accepts frame bit at specified Other DA table entry */
2840 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2841 	} else {
2842 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2843 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2844 	}
2845 
2846 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2847 }
2848 
2849 /* The network device supports multicast using two tables:
2850  *    1) Special Multicast Table for MAC addresses of the form
2851  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2852  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2853  *       Table entries in the DA-Filter table.
2854  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2855  *       is used as an index to the Other Multicast Table entries in the
2856  *       DA-Filter table.
2857  */
2858 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2859 				 int queue)
2860 {
2861 	unsigned char crc_result = 0;
2862 
2863 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2864 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2865 		return 0;
2866 	}
2867 
2868 	crc_result = mvneta_addr_crc(p_addr);
2869 	if (queue == -1) {
2870 		if (pp->mcast_count[crc_result] == 0) {
2871 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2872 				    crc_result);
2873 			return -EINVAL;
2874 		}
2875 
2876 		pp->mcast_count[crc_result]--;
2877 		if (pp->mcast_count[crc_result] != 0) {
2878 			netdev_info(pp->dev,
2879 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2880 				    pp->mcast_count[crc_result], crc_result);
2881 			return -EINVAL;
2882 		}
2883 	} else
2884 		pp->mcast_count[crc_result]++;
2885 
2886 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2887 
2888 	return 0;
2889 }
2890 
2891 /* Configure Fitering mode of Ethernet port */
2892 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2893 					  int is_promisc)
2894 {
2895 	u32 port_cfg_reg, val;
2896 
2897 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2898 
2899 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2900 
2901 	/* Set / Clear UPM bit in port configuration register */
2902 	if (is_promisc) {
2903 		/* Accept all Unicast addresses */
2904 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2905 		val |= MVNETA_FORCE_UNI;
2906 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2907 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2908 	} else {
2909 		/* Reject all Unicast addresses */
2910 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2911 		val &= ~MVNETA_FORCE_UNI;
2912 	}
2913 
2914 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2915 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2916 }
2917 
2918 /* register unicast and multicast addresses */
2919 static void mvneta_set_rx_mode(struct net_device *dev)
2920 {
2921 	struct mvneta_port *pp = netdev_priv(dev);
2922 	struct netdev_hw_addr *ha;
2923 
2924 	if (dev->flags & IFF_PROMISC) {
2925 		/* Accept all: Multicast + Unicast */
2926 		mvneta_rx_unicast_promisc_set(pp, 1);
2927 		mvneta_set_ucast_table(pp, pp->rxq_def);
2928 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2929 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2930 	} else {
2931 		/* Accept single Unicast */
2932 		mvneta_rx_unicast_promisc_set(pp, 0);
2933 		mvneta_set_ucast_table(pp, -1);
2934 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2935 
2936 		if (dev->flags & IFF_ALLMULTI) {
2937 			/* Accept all multicast */
2938 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2939 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2940 		} else {
2941 			/* Accept only initialized multicast */
2942 			mvneta_set_special_mcast_table(pp, -1);
2943 			mvneta_set_other_mcast_table(pp, -1);
2944 
2945 			if (!netdev_mc_empty(dev)) {
2946 				netdev_for_each_mc_addr(ha, dev) {
2947 					mvneta_mcast_addr_set(pp, ha->addr,
2948 							      pp->rxq_def);
2949 				}
2950 			}
2951 		}
2952 	}
2953 }
2954 
2955 /* Interrupt handling - the callback for request_irq() */
2956 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2957 {
2958 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2959 
2960 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2961 	napi_schedule(&pp->napi);
2962 
2963 	return IRQ_HANDLED;
2964 }
2965 
2966 /* Interrupt handling - the callback for request_percpu_irq() */
2967 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2968 {
2969 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2970 
2971 	disable_percpu_irq(port->pp->dev->irq);
2972 	napi_schedule(&port->napi);
2973 
2974 	return IRQ_HANDLED;
2975 }
2976 
2977 static void mvneta_link_change(struct mvneta_port *pp)
2978 {
2979 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2980 
2981 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2982 }
2983 
2984 /* NAPI handler
2985  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2986  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2987  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2988  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2989  * Each CPU has its own causeRxTx register
2990  */
2991 static int mvneta_poll(struct napi_struct *napi, int budget)
2992 {
2993 	int rx_done = 0;
2994 	u32 cause_rx_tx;
2995 	int rx_queue;
2996 	struct mvneta_port *pp = netdev_priv(napi->dev);
2997 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2998 
2999 	if (!netif_running(pp->dev)) {
3000 		napi_complete(napi);
3001 		return rx_done;
3002 	}
3003 
3004 	/* Read cause register */
3005 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3006 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3007 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3008 
3009 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3010 
3011 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3012 				  MVNETA_CAUSE_LINK_CHANGE))
3013 			mvneta_link_change(pp);
3014 	}
3015 
3016 	/* Release Tx descriptors */
3017 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3018 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3019 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3020 	}
3021 
3022 	/* For the case where the last mvneta_poll did not process all
3023 	 * RX packets
3024 	 */
3025 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3026 
3027 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3028 		port->cause_rx_tx;
3029 
3030 	if (rx_queue) {
3031 		rx_queue = rx_queue - 1;
3032 		if (pp->bm_priv)
3033 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3034 						 &pp->rxqs[rx_queue]);
3035 		else
3036 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3037 						 &pp->rxqs[rx_queue]);
3038 	}
3039 
3040 	if (rx_done < budget) {
3041 		cause_rx_tx = 0;
3042 		napi_complete_done(napi, rx_done);
3043 
3044 		if (pp->neta_armada3700) {
3045 			unsigned long flags;
3046 
3047 			local_irq_save(flags);
3048 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3049 				    MVNETA_RX_INTR_MASK(rxq_number) |
3050 				    MVNETA_TX_INTR_MASK(txq_number) |
3051 				    MVNETA_MISCINTR_INTR_MASK);
3052 			local_irq_restore(flags);
3053 		} else {
3054 			enable_percpu_irq(pp->dev->irq, 0);
3055 		}
3056 	}
3057 
3058 	if (pp->neta_armada3700)
3059 		pp->cause_rx_tx = cause_rx_tx;
3060 	else
3061 		port->cause_rx_tx = cause_rx_tx;
3062 
3063 	return rx_done;
3064 }
3065 
3066 static int mvneta_create_page_pool(struct mvneta_port *pp,
3067 				   struct mvneta_rx_queue *rxq, int size)
3068 {
3069 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3070 	struct page_pool_params pp_params = {
3071 		.order = 0,
3072 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3073 		.pool_size = size,
3074 		.nid = cpu_to_node(0),
3075 		.dev = pp->dev->dev.parent,
3076 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3077 		.offset = pp->rx_offset_correction,
3078 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3079 	};
3080 	int err;
3081 
3082 	rxq->page_pool = page_pool_create(&pp_params);
3083 	if (IS_ERR(rxq->page_pool)) {
3084 		err = PTR_ERR(rxq->page_pool);
3085 		rxq->page_pool = NULL;
3086 		return err;
3087 	}
3088 
3089 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3090 	if (err < 0)
3091 		goto err_free_pp;
3092 
3093 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3094 					 rxq->page_pool);
3095 	if (err)
3096 		goto err_unregister_rxq;
3097 
3098 	return 0;
3099 
3100 err_unregister_rxq:
3101 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3102 err_free_pp:
3103 	page_pool_destroy(rxq->page_pool);
3104 	rxq->page_pool = NULL;
3105 	return err;
3106 }
3107 
3108 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3109 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3110 			   int num)
3111 {
3112 	int i, err;
3113 
3114 	err = mvneta_create_page_pool(pp, rxq, num);
3115 	if (err < 0)
3116 		return err;
3117 
3118 	for (i = 0; i < num; i++) {
3119 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3120 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3121 				     GFP_KERNEL) != 0) {
3122 			netdev_err(pp->dev,
3123 				   "%s:rxq %d, %d of %d buffs  filled\n",
3124 				   __func__, rxq->id, i, num);
3125 			break;
3126 		}
3127 	}
3128 
3129 	/* Add this number of RX descriptors as non occupied (ready to
3130 	 * get packets)
3131 	 */
3132 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3133 
3134 	return i;
3135 }
3136 
3137 /* Free all packets pending transmit from all TXQs and reset TX port */
3138 static void mvneta_tx_reset(struct mvneta_port *pp)
3139 {
3140 	int queue;
3141 
3142 	/* free the skb's in the tx ring */
3143 	for (queue = 0; queue < txq_number; queue++)
3144 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3145 
3146 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3147 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3148 }
3149 
3150 static void mvneta_rx_reset(struct mvneta_port *pp)
3151 {
3152 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3153 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3154 }
3155 
3156 /* Rx/Tx queue initialization/cleanup methods */
3157 
3158 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3159 			      struct mvneta_rx_queue *rxq)
3160 {
3161 	rxq->size = pp->rx_ring_size;
3162 
3163 	/* Allocate memory for RX descriptors */
3164 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3165 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3166 					&rxq->descs_phys, GFP_KERNEL);
3167 	if (!rxq->descs)
3168 		return -ENOMEM;
3169 
3170 	rxq->last_desc = rxq->size - 1;
3171 
3172 	return 0;
3173 }
3174 
3175 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3176 			       struct mvneta_rx_queue *rxq)
3177 {
3178 	/* Set Rx descriptors queue starting address */
3179 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3180 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3181 
3182 	/* Set coalescing pkts and time */
3183 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3184 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3185 
3186 	if (!pp->bm_priv) {
3187 		/* Set Offset */
3188 		mvneta_rxq_offset_set(pp, rxq, 0);
3189 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3190 					MVNETA_MAX_RX_BUF_SIZE :
3191 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3192 		mvneta_rxq_bm_disable(pp, rxq);
3193 		mvneta_rxq_fill(pp, rxq, rxq->size);
3194 	} else {
3195 		/* Set Offset */
3196 		mvneta_rxq_offset_set(pp, rxq,
3197 				      NET_SKB_PAD - pp->rx_offset_correction);
3198 
3199 		mvneta_rxq_bm_enable(pp, rxq);
3200 		/* Fill RXQ with buffers from RX pool */
3201 		mvneta_rxq_long_pool_set(pp, rxq);
3202 		mvneta_rxq_short_pool_set(pp, rxq);
3203 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3204 	}
3205 }
3206 
3207 /* Create a specified RX queue */
3208 static int mvneta_rxq_init(struct mvneta_port *pp,
3209 			   struct mvneta_rx_queue *rxq)
3210 
3211 {
3212 	int ret;
3213 
3214 	ret = mvneta_rxq_sw_init(pp, rxq);
3215 	if (ret < 0)
3216 		return ret;
3217 
3218 	mvneta_rxq_hw_init(pp, rxq);
3219 
3220 	return 0;
3221 }
3222 
3223 /* Cleanup Rx queue */
3224 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3225 			      struct mvneta_rx_queue *rxq)
3226 {
3227 	mvneta_rxq_drop_pkts(pp, rxq);
3228 
3229 	if (rxq->skb)
3230 		dev_kfree_skb_any(rxq->skb);
3231 
3232 	if (rxq->descs)
3233 		dma_free_coherent(pp->dev->dev.parent,
3234 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3235 				  rxq->descs,
3236 				  rxq->descs_phys);
3237 
3238 	rxq->descs             = NULL;
3239 	rxq->last_desc         = 0;
3240 	rxq->next_desc_to_proc = 0;
3241 	rxq->descs_phys        = 0;
3242 	rxq->first_to_refill   = 0;
3243 	rxq->refill_num        = 0;
3244 	rxq->skb               = NULL;
3245 	rxq->left_size         = 0;
3246 }
3247 
3248 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3249 			      struct mvneta_tx_queue *txq)
3250 {
3251 	int cpu;
3252 
3253 	txq->size = pp->tx_ring_size;
3254 
3255 	/* A queue must always have room for at least one skb.
3256 	 * Therefore, stop the queue when the free entries reaches
3257 	 * the maximum number of descriptors per skb.
3258 	 */
3259 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3260 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3261 
3262 	/* Allocate memory for TX descriptors */
3263 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3264 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3265 					&txq->descs_phys, GFP_KERNEL);
3266 	if (!txq->descs)
3267 		return -ENOMEM;
3268 
3269 	txq->last_desc = txq->size - 1;
3270 
3271 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3272 	if (!txq->buf) {
3273 		dma_free_coherent(pp->dev->dev.parent,
3274 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3275 				  txq->descs, txq->descs_phys);
3276 		return -ENOMEM;
3277 	}
3278 
3279 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3280 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3281 					   txq->size * TSO_HEADER_SIZE,
3282 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3283 	if (!txq->tso_hdrs) {
3284 		kfree(txq->buf);
3285 		dma_free_coherent(pp->dev->dev.parent,
3286 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3287 				  txq->descs, txq->descs_phys);
3288 		return -ENOMEM;
3289 	}
3290 
3291 	/* Setup XPS mapping */
3292 	if (txq_number > 1)
3293 		cpu = txq->id % num_present_cpus();
3294 	else
3295 		cpu = pp->rxq_def % num_present_cpus();
3296 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3297 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3298 
3299 	return 0;
3300 }
3301 
3302 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3303 			       struct mvneta_tx_queue *txq)
3304 {
3305 	/* Set maximum bandwidth for enabled TXQs */
3306 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3307 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3308 
3309 	/* Set Tx descriptors queue starting address */
3310 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3311 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3312 
3313 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3314 }
3315 
3316 /* Create and initialize a tx queue */
3317 static int mvneta_txq_init(struct mvneta_port *pp,
3318 			   struct mvneta_tx_queue *txq)
3319 {
3320 	int ret;
3321 
3322 	ret = mvneta_txq_sw_init(pp, txq);
3323 	if (ret < 0)
3324 		return ret;
3325 
3326 	mvneta_txq_hw_init(pp, txq);
3327 
3328 	return 0;
3329 }
3330 
3331 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3332 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3333 				 struct mvneta_tx_queue *txq)
3334 {
3335 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3336 
3337 	kfree(txq->buf);
3338 
3339 	if (txq->tso_hdrs)
3340 		dma_free_coherent(pp->dev->dev.parent,
3341 				  txq->size * TSO_HEADER_SIZE,
3342 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3343 	if (txq->descs)
3344 		dma_free_coherent(pp->dev->dev.parent,
3345 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3346 				  txq->descs, txq->descs_phys);
3347 
3348 	netdev_tx_reset_queue(nq);
3349 
3350 	txq->descs             = NULL;
3351 	txq->last_desc         = 0;
3352 	txq->next_desc_to_proc = 0;
3353 	txq->descs_phys        = 0;
3354 }
3355 
3356 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3357 				 struct mvneta_tx_queue *txq)
3358 {
3359 	/* Set minimum bandwidth for disabled TXQs */
3360 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3361 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3362 
3363 	/* Set Tx descriptors queue starting address and size */
3364 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3365 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3366 }
3367 
3368 static void mvneta_txq_deinit(struct mvneta_port *pp,
3369 			      struct mvneta_tx_queue *txq)
3370 {
3371 	mvneta_txq_sw_deinit(pp, txq);
3372 	mvneta_txq_hw_deinit(pp, txq);
3373 }
3374 
3375 /* Cleanup all Tx queues */
3376 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3377 {
3378 	int queue;
3379 
3380 	for (queue = 0; queue < txq_number; queue++)
3381 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3382 }
3383 
3384 /* Cleanup all Rx queues */
3385 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3386 {
3387 	int queue;
3388 
3389 	for (queue = 0; queue < rxq_number; queue++)
3390 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3391 }
3392 
3393 
3394 /* Init all Rx queues */
3395 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3396 {
3397 	int queue;
3398 
3399 	for (queue = 0; queue < rxq_number; queue++) {
3400 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3401 
3402 		if (err) {
3403 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3404 				   __func__, queue);
3405 			mvneta_cleanup_rxqs(pp);
3406 			return err;
3407 		}
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 /* Init all tx queues */
3414 static int mvneta_setup_txqs(struct mvneta_port *pp)
3415 {
3416 	int queue;
3417 
3418 	for (queue = 0; queue < txq_number; queue++) {
3419 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3420 		if (err) {
3421 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3422 				   __func__, queue);
3423 			mvneta_cleanup_txqs(pp);
3424 			return err;
3425 		}
3426 	}
3427 
3428 	return 0;
3429 }
3430 
3431 static int mvneta_comphy_init(struct mvneta_port *pp)
3432 {
3433 	int ret;
3434 
3435 	if (!pp->comphy)
3436 		return 0;
3437 
3438 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3439 			       pp->phy_interface);
3440 	if (ret)
3441 		return ret;
3442 
3443 	return phy_power_on(pp->comphy);
3444 }
3445 
3446 static void mvneta_start_dev(struct mvneta_port *pp)
3447 {
3448 	int cpu;
3449 
3450 	WARN_ON(mvneta_comphy_init(pp));
3451 
3452 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3453 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3454 
3455 	/* start the Rx/Tx activity */
3456 	mvneta_port_enable(pp);
3457 
3458 	if (!pp->neta_armada3700) {
3459 		/* Enable polling on the port */
3460 		for_each_online_cpu(cpu) {
3461 			struct mvneta_pcpu_port *port =
3462 				per_cpu_ptr(pp->ports, cpu);
3463 
3464 			napi_enable(&port->napi);
3465 		}
3466 	} else {
3467 		napi_enable(&pp->napi);
3468 	}
3469 
3470 	/* Unmask interrupts. It has to be done from each CPU */
3471 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3472 
3473 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3474 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3475 		    MVNETA_CAUSE_LINK_CHANGE);
3476 
3477 	phylink_start(pp->phylink);
3478 	netif_tx_start_all_queues(pp->dev);
3479 }
3480 
3481 static void mvneta_stop_dev(struct mvneta_port *pp)
3482 {
3483 	unsigned int cpu;
3484 
3485 	phylink_stop(pp->phylink);
3486 
3487 	if (!pp->neta_armada3700) {
3488 		for_each_online_cpu(cpu) {
3489 			struct mvneta_pcpu_port *port =
3490 				per_cpu_ptr(pp->ports, cpu);
3491 
3492 			napi_disable(&port->napi);
3493 		}
3494 	} else {
3495 		napi_disable(&pp->napi);
3496 	}
3497 
3498 	netif_carrier_off(pp->dev);
3499 
3500 	mvneta_port_down(pp);
3501 	netif_tx_stop_all_queues(pp->dev);
3502 
3503 	/* Stop the port activity */
3504 	mvneta_port_disable(pp);
3505 
3506 	/* Clear all ethernet port interrupts */
3507 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3508 
3509 	/* Mask all ethernet port interrupts */
3510 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3511 
3512 	mvneta_tx_reset(pp);
3513 	mvneta_rx_reset(pp);
3514 
3515 	WARN_ON(phy_power_off(pp->comphy));
3516 }
3517 
3518 static void mvneta_percpu_enable(void *arg)
3519 {
3520 	struct mvneta_port *pp = arg;
3521 
3522 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3523 }
3524 
3525 static void mvneta_percpu_disable(void *arg)
3526 {
3527 	struct mvneta_port *pp = arg;
3528 
3529 	disable_percpu_irq(pp->dev->irq);
3530 }
3531 
3532 /* Change the device mtu */
3533 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3534 {
3535 	struct mvneta_port *pp = netdev_priv(dev);
3536 	int ret;
3537 
3538 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3539 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3540 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3541 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3542 	}
3543 
3544 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3545 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3546 		return -EINVAL;
3547 	}
3548 
3549 	dev->mtu = mtu;
3550 
3551 	if (!netif_running(dev)) {
3552 		if (pp->bm_priv)
3553 			mvneta_bm_update_mtu(pp, mtu);
3554 
3555 		netdev_update_features(dev);
3556 		return 0;
3557 	}
3558 
3559 	/* The interface is running, so we have to force a
3560 	 * reallocation of the queues
3561 	 */
3562 	mvneta_stop_dev(pp);
3563 	on_each_cpu(mvneta_percpu_disable, pp, true);
3564 
3565 	mvneta_cleanup_txqs(pp);
3566 	mvneta_cleanup_rxqs(pp);
3567 
3568 	if (pp->bm_priv)
3569 		mvneta_bm_update_mtu(pp, mtu);
3570 
3571 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3572 
3573 	ret = mvneta_setup_rxqs(pp);
3574 	if (ret) {
3575 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3576 		return ret;
3577 	}
3578 
3579 	ret = mvneta_setup_txqs(pp);
3580 	if (ret) {
3581 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3582 		return ret;
3583 	}
3584 
3585 	on_each_cpu(mvneta_percpu_enable, pp, true);
3586 	mvneta_start_dev(pp);
3587 
3588 	netdev_update_features(dev);
3589 
3590 	return 0;
3591 }
3592 
3593 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3594 					     netdev_features_t features)
3595 {
3596 	struct mvneta_port *pp = netdev_priv(dev);
3597 
3598 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3599 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3600 		netdev_info(dev,
3601 			    "Disable IP checksum for MTU greater than %dB\n",
3602 			    pp->tx_csum_limit);
3603 	}
3604 
3605 	return features;
3606 }
3607 
3608 /* Get mac address */
3609 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3610 {
3611 	u32 mac_addr_l, mac_addr_h;
3612 
3613 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3614 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3615 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3616 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3617 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3618 	addr[3] = mac_addr_h & 0xFF;
3619 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3620 	addr[5] = mac_addr_l & 0xFF;
3621 }
3622 
3623 /* Handle setting mac address */
3624 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3625 {
3626 	struct mvneta_port *pp = netdev_priv(dev);
3627 	struct sockaddr *sockaddr = addr;
3628 	int ret;
3629 
3630 	ret = eth_prepare_mac_addr_change(dev, addr);
3631 	if (ret < 0)
3632 		return ret;
3633 	/* Remove previous address table entry */
3634 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3635 
3636 	/* Set new addr in hw */
3637 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3638 
3639 	eth_commit_mac_addr_change(dev, addr);
3640 	return 0;
3641 }
3642 
3643 static void mvneta_validate(struct phylink_config *config,
3644 			    unsigned long *supported,
3645 			    struct phylink_link_state *state)
3646 {
3647 	struct net_device *ndev = to_net_dev(config->dev);
3648 	struct mvneta_port *pp = netdev_priv(ndev);
3649 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3650 
3651 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3652 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3653 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3654 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3655 	    !phy_interface_mode_is_8023z(state->interface) &&
3656 	    !phy_interface_mode_is_rgmii(state->interface)) {
3657 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3658 		return;
3659 	}
3660 
3661 	/* Allow all the expected bits */
3662 	phylink_set(mask, Autoneg);
3663 	phylink_set_port_modes(mask);
3664 
3665 	/* Asymmetric pause is unsupported */
3666 	phylink_set(mask, Pause);
3667 
3668 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3669 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3670 		phylink_set(mask, 1000baseT_Full);
3671 		phylink_set(mask, 1000baseX_Full);
3672 	}
3673 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3674 		phylink_set(mask, 2500baseT_Full);
3675 		phylink_set(mask, 2500baseX_Full);
3676 	}
3677 
3678 	if (!phy_interface_mode_is_8023z(state->interface)) {
3679 		/* 10M and 100M are only supported in non-802.3z mode */
3680 		phylink_set(mask, 10baseT_Half);
3681 		phylink_set(mask, 10baseT_Full);
3682 		phylink_set(mask, 100baseT_Half);
3683 		phylink_set(mask, 100baseT_Full);
3684 	}
3685 
3686 	bitmap_and(supported, supported, mask,
3687 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3688 	bitmap_and(state->advertising, state->advertising, mask,
3689 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3690 
3691 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3692 	 * to advertise both, only report advertising at 2500BaseX.
3693 	 */
3694 	phylink_helper_basex_speed(state);
3695 }
3696 
3697 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3698 				     struct phylink_link_state *state)
3699 {
3700 	struct net_device *ndev = to_net_dev(config->dev);
3701 	struct mvneta_port *pp = netdev_priv(ndev);
3702 	u32 gmac_stat;
3703 
3704 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3705 
3706 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3707 		state->speed =
3708 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3709 			SPEED_2500 : SPEED_1000;
3710 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3711 		state->speed = SPEED_100;
3712 	else
3713 		state->speed = SPEED_10;
3714 
3715 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3716 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3717 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3718 
3719 	state->pause = 0;
3720 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3721 		state->pause |= MLO_PAUSE_RX;
3722 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3723 		state->pause |= MLO_PAUSE_TX;
3724 }
3725 
3726 static void mvneta_mac_an_restart(struct phylink_config *config)
3727 {
3728 	struct net_device *ndev = to_net_dev(config->dev);
3729 	struct mvneta_port *pp = netdev_priv(ndev);
3730 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3731 
3732 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3733 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3734 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3735 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3736 }
3737 
3738 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3739 			      const struct phylink_link_state *state)
3740 {
3741 	struct net_device *ndev = to_net_dev(config->dev);
3742 	struct mvneta_port *pp = netdev_priv(ndev);
3743 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3744 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3745 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3746 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3747 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3748 
3749 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3750 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3751 				   MVNETA_GMAC2_PORT_RESET);
3752 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3753 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3754 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3755 			     MVNETA_GMAC_INBAND_RESTART_AN |
3756 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3757 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3758 			     MVNETA_GMAC_AN_SPEED_EN |
3759 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3760 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3761 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3762 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3763 			     MVNETA_GMAC_AN_DUPLEX_EN);
3764 
3765 	/* Even though it might look weird, when we're configured in
3766 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3767 	 */
3768 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3769 
3770 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3771 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3772 	    phy_interface_mode_is_8023z(state->interface))
3773 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3774 
3775 	if (phylink_test(state->advertising, Pause))
3776 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3777 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3778 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3779 
3780 	if (!phylink_autoneg_inband(mode)) {
3781 		/* Phy or fixed speed */
3782 		if (state->duplex)
3783 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3784 
3785 		if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3786 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3787 		else if (state->speed == SPEED_100)
3788 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3789 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3790 		/* SGMII mode receives the state from the PHY */
3791 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3792 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3793 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3794 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3795 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3796 			 MVNETA_GMAC_AN_SPEED_EN |
3797 			 MVNETA_GMAC_AN_DUPLEX_EN;
3798 	} else {
3799 		/* 802.3z negotiation - only 1000base-X */
3800 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3801 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3802 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3803 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3804 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3805 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3806 			 /* The MAC only supports FD mode */
3807 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3808 
3809 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3810 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3811 	}
3812 
3813 	/* Armada 370 documentation says we can only change the port mode
3814 	 * and in-band enable when the link is down, so force it down
3815 	 * while making these changes. We also do this for GMAC_CTRL2 */
3816 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3817 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3818 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3819 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3820 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3821 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3822 	}
3823 
3824 
3825 	/* When at 2.5G, the link partner can send frames with shortened
3826 	 * preambles.
3827 	 */
3828 	if (state->speed == SPEED_2500)
3829 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3830 
3831 	if (pp->comphy && pp->phy_interface != state->interface &&
3832 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3833 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3834 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3835 		pp->phy_interface = state->interface;
3836 
3837 		WARN_ON(phy_power_off(pp->comphy));
3838 		WARN_ON(mvneta_comphy_init(pp));
3839 	}
3840 
3841 	if (new_ctrl0 != gmac_ctrl0)
3842 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3843 	if (new_ctrl2 != gmac_ctrl2)
3844 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3845 	if (new_ctrl4 != gmac_ctrl4)
3846 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3847 	if (new_clk != gmac_clk)
3848 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3849 	if (new_an != gmac_an)
3850 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3851 
3852 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3853 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3854 			MVNETA_GMAC2_PORT_RESET) != 0)
3855 			continue;
3856 	}
3857 }
3858 
3859 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3860 {
3861 	u32 lpi_ctl1;
3862 
3863 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3864 	if (enable)
3865 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3866 	else
3867 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3868 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3869 }
3870 
3871 static void mvneta_mac_link_down(struct phylink_config *config,
3872 				 unsigned int mode, phy_interface_t interface)
3873 {
3874 	struct net_device *ndev = to_net_dev(config->dev);
3875 	struct mvneta_port *pp = netdev_priv(ndev);
3876 	u32 val;
3877 
3878 	mvneta_port_down(pp);
3879 
3880 	if (!phylink_autoneg_inband(mode)) {
3881 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3882 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3883 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3884 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3885 	}
3886 
3887 	pp->eee_active = false;
3888 	mvneta_set_eee(pp, false);
3889 }
3890 
3891 static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode,
3892 			       phy_interface_t interface,
3893 			       struct phy_device *phy)
3894 {
3895 	struct net_device *ndev = to_net_dev(config->dev);
3896 	struct mvneta_port *pp = netdev_priv(ndev);
3897 	u32 val;
3898 
3899 	if (!phylink_autoneg_inband(mode)) {
3900 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3901 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3902 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3903 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3904 	}
3905 
3906 	mvneta_port_up(pp);
3907 
3908 	if (phy && pp->eee_enabled) {
3909 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3910 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3911 	}
3912 }
3913 
3914 static const struct phylink_mac_ops mvneta_phylink_ops = {
3915 	.validate = mvneta_validate,
3916 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
3917 	.mac_an_restart = mvneta_mac_an_restart,
3918 	.mac_config = mvneta_mac_config,
3919 	.mac_link_down = mvneta_mac_link_down,
3920 	.mac_link_up = mvneta_mac_link_up,
3921 };
3922 
3923 static int mvneta_mdio_probe(struct mvneta_port *pp)
3924 {
3925 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3926 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3927 
3928 	if (err)
3929 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3930 
3931 	phylink_ethtool_get_wol(pp->phylink, &wol);
3932 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3933 
3934 	return err;
3935 }
3936 
3937 static void mvneta_mdio_remove(struct mvneta_port *pp)
3938 {
3939 	phylink_disconnect_phy(pp->phylink);
3940 }
3941 
3942 /* Electing a CPU must be done in an atomic way: it should be done
3943  * after or before the removal/insertion of a CPU and this function is
3944  * not reentrant.
3945  */
3946 static void mvneta_percpu_elect(struct mvneta_port *pp)
3947 {
3948 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3949 
3950 	/* Use the cpu associated to the rxq when it is online, in all
3951 	 * the other cases, use the cpu 0 which can't be offline.
3952 	 */
3953 	if (cpu_online(pp->rxq_def))
3954 		elected_cpu = pp->rxq_def;
3955 
3956 	max_cpu = num_present_cpus();
3957 
3958 	for_each_online_cpu(cpu) {
3959 		int rxq_map = 0, txq_map = 0;
3960 		int rxq;
3961 
3962 		for (rxq = 0; rxq < rxq_number; rxq++)
3963 			if ((rxq % max_cpu) == cpu)
3964 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3965 
3966 		if (cpu == elected_cpu)
3967 			/* Map the default receive queue queue to the
3968 			 * elected CPU
3969 			 */
3970 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3971 
3972 		/* We update the TX queue map only if we have one
3973 		 * queue. In this case we associate the TX queue to
3974 		 * the CPU bound to the default RX queue
3975 		 */
3976 		if (txq_number == 1)
3977 			txq_map = (cpu == elected_cpu) ?
3978 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3979 		else
3980 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3981 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3982 
3983 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3984 
3985 		/* Update the interrupt mask on each CPU according the
3986 		 * new mapping
3987 		 */
3988 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3989 					 pp, true);
3990 		i++;
3991 
3992 	}
3993 };
3994 
3995 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3996 {
3997 	int other_cpu;
3998 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3999 						  node_online);
4000 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4001 
4002 
4003 	spin_lock(&pp->lock);
4004 	/*
4005 	 * Configuring the driver for a new CPU while the driver is
4006 	 * stopping is racy, so just avoid it.
4007 	 */
4008 	if (pp->is_stopped) {
4009 		spin_unlock(&pp->lock);
4010 		return 0;
4011 	}
4012 	netif_tx_stop_all_queues(pp->dev);
4013 
4014 	/*
4015 	 * We have to synchronise on tha napi of each CPU except the one
4016 	 * just being woken up
4017 	 */
4018 	for_each_online_cpu(other_cpu) {
4019 		if (other_cpu != cpu) {
4020 			struct mvneta_pcpu_port *other_port =
4021 				per_cpu_ptr(pp->ports, other_cpu);
4022 
4023 			napi_synchronize(&other_port->napi);
4024 		}
4025 	}
4026 
4027 	/* Mask all ethernet port interrupts */
4028 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4029 	napi_enable(&port->napi);
4030 
4031 	/*
4032 	 * Enable per-CPU interrupts on the CPU that is
4033 	 * brought up.
4034 	 */
4035 	mvneta_percpu_enable(pp);
4036 
4037 	/*
4038 	 * Enable per-CPU interrupt on the one CPU we care
4039 	 * about.
4040 	 */
4041 	mvneta_percpu_elect(pp);
4042 
4043 	/* Unmask all ethernet port interrupts */
4044 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4045 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4046 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4047 		    MVNETA_CAUSE_LINK_CHANGE);
4048 	netif_tx_start_all_queues(pp->dev);
4049 	spin_unlock(&pp->lock);
4050 	return 0;
4051 }
4052 
4053 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4054 {
4055 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4056 						  node_online);
4057 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4058 
4059 	/*
4060 	 * Thanks to this lock we are sure that any pending cpu election is
4061 	 * done.
4062 	 */
4063 	spin_lock(&pp->lock);
4064 	/* Mask all ethernet port interrupts */
4065 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4066 	spin_unlock(&pp->lock);
4067 
4068 	napi_synchronize(&port->napi);
4069 	napi_disable(&port->napi);
4070 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4071 	mvneta_percpu_disable(pp);
4072 	return 0;
4073 }
4074 
4075 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4076 {
4077 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4078 						  node_dead);
4079 
4080 	/* Check if a new CPU must be elected now this on is down */
4081 	spin_lock(&pp->lock);
4082 	mvneta_percpu_elect(pp);
4083 	spin_unlock(&pp->lock);
4084 	/* Unmask all ethernet port interrupts */
4085 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4086 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4087 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4088 		    MVNETA_CAUSE_LINK_CHANGE);
4089 	netif_tx_start_all_queues(pp->dev);
4090 	return 0;
4091 }
4092 
4093 static int mvneta_open(struct net_device *dev)
4094 {
4095 	struct mvneta_port *pp = netdev_priv(dev);
4096 	int ret;
4097 
4098 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4099 
4100 	ret = mvneta_setup_rxqs(pp);
4101 	if (ret)
4102 		return ret;
4103 
4104 	ret = mvneta_setup_txqs(pp);
4105 	if (ret)
4106 		goto err_cleanup_rxqs;
4107 
4108 	/* Connect to port interrupt line */
4109 	if (pp->neta_armada3700)
4110 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4111 				  dev->name, pp);
4112 	else
4113 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4114 					 dev->name, pp->ports);
4115 	if (ret) {
4116 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4117 		goto err_cleanup_txqs;
4118 	}
4119 
4120 	if (!pp->neta_armada3700) {
4121 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4122 		 * queue interrupts
4123 		 */
4124 		on_each_cpu(mvneta_percpu_enable, pp, true);
4125 
4126 		pp->is_stopped = false;
4127 		/* Register a CPU notifier to handle the case where our CPU
4128 		 * might be taken offline.
4129 		 */
4130 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4131 						       &pp->node_online);
4132 		if (ret)
4133 			goto err_free_irq;
4134 
4135 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4136 						       &pp->node_dead);
4137 		if (ret)
4138 			goto err_free_online_hp;
4139 	}
4140 
4141 	ret = mvneta_mdio_probe(pp);
4142 	if (ret < 0) {
4143 		netdev_err(dev, "cannot probe MDIO bus\n");
4144 		goto err_free_dead_hp;
4145 	}
4146 
4147 	mvneta_start_dev(pp);
4148 
4149 	return 0;
4150 
4151 err_free_dead_hp:
4152 	if (!pp->neta_armada3700)
4153 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4154 						    &pp->node_dead);
4155 err_free_online_hp:
4156 	if (!pp->neta_armada3700)
4157 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4158 						    &pp->node_online);
4159 err_free_irq:
4160 	if (pp->neta_armada3700) {
4161 		free_irq(pp->dev->irq, pp);
4162 	} else {
4163 		on_each_cpu(mvneta_percpu_disable, pp, true);
4164 		free_percpu_irq(pp->dev->irq, pp->ports);
4165 	}
4166 err_cleanup_txqs:
4167 	mvneta_cleanup_txqs(pp);
4168 err_cleanup_rxqs:
4169 	mvneta_cleanup_rxqs(pp);
4170 	return ret;
4171 }
4172 
4173 /* Stop the port, free port interrupt line */
4174 static int mvneta_stop(struct net_device *dev)
4175 {
4176 	struct mvneta_port *pp = netdev_priv(dev);
4177 
4178 	if (!pp->neta_armada3700) {
4179 		/* Inform that we are stopping so we don't want to setup the
4180 		 * driver for new CPUs in the notifiers. The code of the
4181 		 * notifier for CPU online is protected by the same spinlock,
4182 		 * so when we get the lock, the notifer work is done.
4183 		 */
4184 		spin_lock(&pp->lock);
4185 		pp->is_stopped = true;
4186 		spin_unlock(&pp->lock);
4187 
4188 		mvneta_stop_dev(pp);
4189 		mvneta_mdio_remove(pp);
4190 
4191 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4192 						    &pp->node_online);
4193 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4194 						    &pp->node_dead);
4195 		on_each_cpu(mvneta_percpu_disable, pp, true);
4196 		free_percpu_irq(dev->irq, pp->ports);
4197 	} else {
4198 		mvneta_stop_dev(pp);
4199 		mvneta_mdio_remove(pp);
4200 		free_irq(dev->irq, pp);
4201 	}
4202 
4203 	mvneta_cleanup_rxqs(pp);
4204 	mvneta_cleanup_txqs(pp);
4205 
4206 	return 0;
4207 }
4208 
4209 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4210 {
4211 	struct mvneta_port *pp = netdev_priv(dev);
4212 
4213 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4214 }
4215 
4216 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4217 			    struct netlink_ext_ack *extack)
4218 {
4219 	bool need_update, running = netif_running(dev);
4220 	struct mvneta_port *pp = netdev_priv(dev);
4221 	struct bpf_prog *old_prog;
4222 
4223 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4224 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4225 		return -EOPNOTSUPP;
4226 	}
4227 
4228 	need_update = !!pp->xdp_prog != !!prog;
4229 	if (running && need_update)
4230 		mvneta_stop(dev);
4231 
4232 	old_prog = xchg(&pp->xdp_prog, prog);
4233 	if (old_prog)
4234 		bpf_prog_put(old_prog);
4235 
4236 	if (running && need_update)
4237 		return mvneta_open(dev);
4238 
4239 	return 0;
4240 }
4241 
4242 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4243 {
4244 	struct mvneta_port *pp = netdev_priv(dev);
4245 
4246 	switch (xdp->command) {
4247 	case XDP_SETUP_PROG:
4248 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4249 	case XDP_QUERY_PROG:
4250 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4251 		return 0;
4252 	default:
4253 		return -EINVAL;
4254 	}
4255 }
4256 
4257 /* Ethtool methods */
4258 
4259 /* Set link ksettings (phy address, speed) for ethtools */
4260 static int
4261 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4262 				  const struct ethtool_link_ksettings *cmd)
4263 {
4264 	struct mvneta_port *pp = netdev_priv(ndev);
4265 
4266 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4267 }
4268 
4269 /* Get link ksettings for ethtools */
4270 static int
4271 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4272 				  struct ethtool_link_ksettings *cmd)
4273 {
4274 	struct mvneta_port *pp = netdev_priv(ndev);
4275 
4276 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4277 }
4278 
4279 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4280 {
4281 	struct mvneta_port *pp = netdev_priv(dev);
4282 
4283 	return phylink_ethtool_nway_reset(pp->phylink);
4284 }
4285 
4286 /* Set interrupt coalescing for ethtools */
4287 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4288 				       struct ethtool_coalesce *c)
4289 {
4290 	struct mvneta_port *pp = netdev_priv(dev);
4291 	int queue;
4292 
4293 	for (queue = 0; queue < rxq_number; queue++) {
4294 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4295 		rxq->time_coal = c->rx_coalesce_usecs;
4296 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4297 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4298 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4299 	}
4300 
4301 	for (queue = 0; queue < txq_number; queue++) {
4302 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4303 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4304 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 /* get coalescing for ethtools */
4311 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4312 				       struct ethtool_coalesce *c)
4313 {
4314 	struct mvneta_port *pp = netdev_priv(dev);
4315 
4316 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4317 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4318 
4319 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4320 	return 0;
4321 }
4322 
4323 
4324 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4325 				    struct ethtool_drvinfo *drvinfo)
4326 {
4327 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4328 		sizeof(drvinfo->driver));
4329 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4330 		sizeof(drvinfo->version));
4331 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4332 		sizeof(drvinfo->bus_info));
4333 }
4334 
4335 
4336 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4337 					 struct ethtool_ringparam *ring)
4338 {
4339 	struct mvneta_port *pp = netdev_priv(netdev);
4340 
4341 	ring->rx_max_pending = MVNETA_MAX_RXD;
4342 	ring->tx_max_pending = MVNETA_MAX_TXD;
4343 	ring->rx_pending = pp->rx_ring_size;
4344 	ring->tx_pending = pp->tx_ring_size;
4345 }
4346 
4347 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4348 					struct ethtool_ringparam *ring)
4349 {
4350 	struct mvneta_port *pp = netdev_priv(dev);
4351 
4352 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4353 		return -EINVAL;
4354 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4355 		ring->rx_pending : MVNETA_MAX_RXD;
4356 
4357 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4358 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4359 	if (pp->tx_ring_size != ring->tx_pending)
4360 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4361 			    pp->tx_ring_size, ring->tx_pending);
4362 
4363 	if (netif_running(dev)) {
4364 		mvneta_stop(dev);
4365 		if (mvneta_open(dev)) {
4366 			netdev_err(dev,
4367 				   "error on opening device after ring param change\n");
4368 			return -ENOMEM;
4369 		}
4370 	}
4371 
4372 	return 0;
4373 }
4374 
4375 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4376 					  struct ethtool_pauseparam *pause)
4377 {
4378 	struct mvneta_port *pp = netdev_priv(dev);
4379 
4380 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4381 }
4382 
4383 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4384 					 struct ethtool_pauseparam *pause)
4385 {
4386 	struct mvneta_port *pp = netdev_priv(dev);
4387 
4388 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4389 }
4390 
4391 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4392 				       u8 *data)
4393 {
4394 	if (sset == ETH_SS_STATS) {
4395 		int i;
4396 
4397 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4398 			memcpy(data + i * ETH_GSTRING_LEN,
4399 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4400 	}
4401 }
4402 
4403 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4404 {
4405 	const struct mvneta_statistic *s;
4406 	void __iomem *base = pp->base;
4407 	u32 high, low;
4408 	u64 val;
4409 	int i;
4410 
4411 	for (i = 0, s = mvneta_statistics;
4412 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4413 	     s++, i++) {
4414 		val = 0;
4415 
4416 		switch (s->type) {
4417 		case T_REG_32:
4418 			val = readl_relaxed(base + s->offset);
4419 			break;
4420 		case T_REG_64:
4421 			/* Docs say to read low 32-bit then high */
4422 			low = readl_relaxed(base + s->offset);
4423 			high = readl_relaxed(base + s->offset + 4);
4424 			val = (u64)high << 32 | low;
4425 			break;
4426 		case T_SW:
4427 			switch (s->offset) {
4428 			case ETHTOOL_STAT_EEE_WAKEUP:
4429 				val = phylink_get_eee_err(pp->phylink);
4430 				break;
4431 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4432 				val = pp->rxqs[0].skb_alloc_err;
4433 				break;
4434 			case ETHTOOL_STAT_REFILL_ERR:
4435 				val = pp->rxqs[0].refill_err;
4436 				break;
4437 			}
4438 			break;
4439 		}
4440 
4441 		pp->ethtool_stats[i] += val;
4442 	}
4443 }
4444 
4445 static void mvneta_ethtool_get_stats(struct net_device *dev,
4446 				     struct ethtool_stats *stats, u64 *data)
4447 {
4448 	struct mvneta_port *pp = netdev_priv(dev);
4449 	int i;
4450 
4451 	mvneta_ethtool_update_stats(pp);
4452 
4453 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4454 		*data++ = pp->ethtool_stats[i];
4455 }
4456 
4457 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4458 {
4459 	if (sset == ETH_SS_STATS)
4460 		return ARRAY_SIZE(mvneta_statistics);
4461 	return -EOPNOTSUPP;
4462 }
4463 
4464 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4465 {
4466 	return MVNETA_RSS_LU_TABLE_SIZE;
4467 }
4468 
4469 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4470 				    struct ethtool_rxnfc *info,
4471 				    u32 *rules __always_unused)
4472 {
4473 	switch (info->cmd) {
4474 	case ETHTOOL_GRXRINGS:
4475 		info->data =  rxq_number;
4476 		return 0;
4477 	case ETHTOOL_GRXFH:
4478 		return -EOPNOTSUPP;
4479 	default:
4480 		return -EOPNOTSUPP;
4481 	}
4482 }
4483 
4484 static int  mvneta_config_rss(struct mvneta_port *pp)
4485 {
4486 	int cpu;
4487 	u32 val;
4488 
4489 	netif_tx_stop_all_queues(pp->dev);
4490 
4491 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4492 
4493 	if (!pp->neta_armada3700) {
4494 		/* We have to synchronise on the napi of each CPU */
4495 		for_each_online_cpu(cpu) {
4496 			struct mvneta_pcpu_port *pcpu_port =
4497 				per_cpu_ptr(pp->ports, cpu);
4498 
4499 			napi_synchronize(&pcpu_port->napi);
4500 			napi_disable(&pcpu_port->napi);
4501 		}
4502 	} else {
4503 		napi_synchronize(&pp->napi);
4504 		napi_disable(&pp->napi);
4505 	}
4506 
4507 	pp->rxq_def = pp->indir[0];
4508 
4509 	/* Update unicast mapping */
4510 	mvneta_set_rx_mode(pp->dev);
4511 
4512 	/* Update val of portCfg register accordingly with all RxQueue types */
4513 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4514 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4515 
4516 	/* Update the elected CPU matching the new rxq_def */
4517 	spin_lock(&pp->lock);
4518 	mvneta_percpu_elect(pp);
4519 	spin_unlock(&pp->lock);
4520 
4521 	if (!pp->neta_armada3700) {
4522 		/* We have to synchronise on the napi of each CPU */
4523 		for_each_online_cpu(cpu) {
4524 			struct mvneta_pcpu_port *pcpu_port =
4525 				per_cpu_ptr(pp->ports, cpu);
4526 
4527 			napi_enable(&pcpu_port->napi);
4528 		}
4529 	} else {
4530 		napi_enable(&pp->napi);
4531 	}
4532 
4533 	netif_tx_start_all_queues(pp->dev);
4534 
4535 	return 0;
4536 }
4537 
4538 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4539 				   const u8 *key, const u8 hfunc)
4540 {
4541 	struct mvneta_port *pp = netdev_priv(dev);
4542 
4543 	/* Current code for Armada 3700 doesn't support RSS features yet */
4544 	if (pp->neta_armada3700)
4545 		return -EOPNOTSUPP;
4546 
4547 	/* We require at least one supported parameter to be changed
4548 	 * and no change in any of the unsupported parameters
4549 	 */
4550 	if (key ||
4551 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4552 		return -EOPNOTSUPP;
4553 
4554 	if (!indir)
4555 		return 0;
4556 
4557 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4558 
4559 	return mvneta_config_rss(pp);
4560 }
4561 
4562 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4563 				   u8 *hfunc)
4564 {
4565 	struct mvneta_port *pp = netdev_priv(dev);
4566 
4567 	/* Current code for Armada 3700 doesn't support RSS features yet */
4568 	if (pp->neta_armada3700)
4569 		return -EOPNOTSUPP;
4570 
4571 	if (hfunc)
4572 		*hfunc = ETH_RSS_HASH_TOP;
4573 
4574 	if (!indir)
4575 		return 0;
4576 
4577 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4578 
4579 	return 0;
4580 }
4581 
4582 static void mvneta_ethtool_get_wol(struct net_device *dev,
4583 				   struct ethtool_wolinfo *wol)
4584 {
4585 	struct mvneta_port *pp = netdev_priv(dev);
4586 
4587 	phylink_ethtool_get_wol(pp->phylink, wol);
4588 }
4589 
4590 static int mvneta_ethtool_set_wol(struct net_device *dev,
4591 				  struct ethtool_wolinfo *wol)
4592 {
4593 	struct mvneta_port *pp = netdev_priv(dev);
4594 	int ret;
4595 
4596 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4597 	if (!ret)
4598 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4599 
4600 	return ret;
4601 }
4602 
4603 static int mvneta_ethtool_get_eee(struct net_device *dev,
4604 				  struct ethtool_eee *eee)
4605 {
4606 	struct mvneta_port *pp = netdev_priv(dev);
4607 	u32 lpi_ctl0;
4608 
4609 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4610 
4611 	eee->eee_enabled = pp->eee_enabled;
4612 	eee->eee_active = pp->eee_active;
4613 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4614 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4615 
4616 	return phylink_ethtool_get_eee(pp->phylink, eee);
4617 }
4618 
4619 static int mvneta_ethtool_set_eee(struct net_device *dev,
4620 				  struct ethtool_eee *eee)
4621 {
4622 	struct mvneta_port *pp = netdev_priv(dev);
4623 	u32 lpi_ctl0;
4624 
4625 	/* The Armada 37x documents do not give limits for this other than
4626 	 * it being an 8-bit register. */
4627 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4628 		return -EINVAL;
4629 
4630 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4631 	lpi_ctl0 &= ~(0xff << 8);
4632 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4633 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4634 
4635 	pp->eee_enabled = eee->eee_enabled;
4636 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4637 
4638 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4639 
4640 	return phylink_ethtool_set_eee(pp->phylink, eee);
4641 }
4642 
4643 static const struct net_device_ops mvneta_netdev_ops = {
4644 	.ndo_open            = mvneta_open,
4645 	.ndo_stop            = mvneta_stop,
4646 	.ndo_start_xmit      = mvneta_tx,
4647 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4648 	.ndo_set_mac_address = mvneta_set_mac_addr,
4649 	.ndo_change_mtu      = mvneta_change_mtu,
4650 	.ndo_fix_features    = mvneta_fix_features,
4651 	.ndo_get_stats64     = mvneta_get_stats64,
4652 	.ndo_do_ioctl        = mvneta_ioctl,
4653 	.ndo_bpf	     = mvneta_xdp,
4654 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4655 };
4656 
4657 static const struct ethtool_ops mvneta_eth_tool_ops = {
4658 	.nway_reset	= mvneta_ethtool_nway_reset,
4659 	.get_link       = ethtool_op_get_link,
4660 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4661 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4662 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4663 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4664 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4665 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4666 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4667 	.get_strings	= mvneta_ethtool_get_strings,
4668 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4669 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4670 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4671 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4672 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4673 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4674 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4675 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4676 	.get_wol        = mvneta_ethtool_get_wol,
4677 	.set_wol        = mvneta_ethtool_set_wol,
4678 	.get_eee	= mvneta_ethtool_get_eee,
4679 	.set_eee	= mvneta_ethtool_set_eee,
4680 };
4681 
4682 /* Initialize hw */
4683 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4684 {
4685 	int queue;
4686 
4687 	/* Disable port */
4688 	mvneta_port_disable(pp);
4689 
4690 	/* Set port default values */
4691 	mvneta_defaults_set(pp);
4692 
4693 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4694 	if (!pp->txqs)
4695 		return -ENOMEM;
4696 
4697 	/* Initialize TX descriptor rings */
4698 	for (queue = 0; queue < txq_number; queue++) {
4699 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4700 		txq->id = queue;
4701 		txq->size = pp->tx_ring_size;
4702 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4703 	}
4704 
4705 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4706 	if (!pp->rxqs)
4707 		return -ENOMEM;
4708 
4709 	/* Create Rx descriptor rings */
4710 	for (queue = 0; queue < rxq_number; queue++) {
4711 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4712 		rxq->id = queue;
4713 		rxq->size = pp->rx_ring_size;
4714 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4715 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4716 		rxq->buf_virt_addr
4717 			= devm_kmalloc_array(pp->dev->dev.parent,
4718 					     rxq->size,
4719 					     sizeof(*rxq->buf_virt_addr),
4720 					     GFP_KERNEL);
4721 		if (!rxq->buf_virt_addr)
4722 			return -ENOMEM;
4723 	}
4724 
4725 	return 0;
4726 }
4727 
4728 /* platform glue : initialize decoding windows */
4729 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4730 				     const struct mbus_dram_target_info *dram)
4731 {
4732 	u32 win_enable;
4733 	u32 win_protect;
4734 	int i;
4735 
4736 	for (i = 0; i < 6; i++) {
4737 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4738 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4739 
4740 		if (i < 4)
4741 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4742 	}
4743 
4744 	win_enable = 0x3f;
4745 	win_protect = 0;
4746 
4747 	if (dram) {
4748 		for (i = 0; i < dram->num_cs; i++) {
4749 			const struct mbus_dram_window *cs = dram->cs + i;
4750 
4751 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4752 				    (cs->base & 0xffff0000) |
4753 				    (cs->mbus_attr << 8) |
4754 				    dram->mbus_dram_target_id);
4755 
4756 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4757 				    (cs->size - 1) & 0xffff0000);
4758 
4759 			win_enable &= ~(1 << i);
4760 			win_protect |= 3 << (2 * i);
4761 		}
4762 	} else {
4763 		/* For Armada3700 open default 4GB Mbus window, leaving
4764 		 * arbitration of target/attribute to a different layer
4765 		 * of configuration.
4766 		 */
4767 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4768 		win_enable &= ~BIT(0);
4769 		win_protect = 3;
4770 	}
4771 
4772 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4773 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4774 }
4775 
4776 /* Power up the port */
4777 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4778 {
4779 	/* MAC Cause register should be cleared */
4780 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4781 
4782 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4783 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4784 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4785 		 phy_interface_mode_is_8023z(phy_mode))
4786 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4787 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4788 		return -EINVAL;
4789 
4790 	return 0;
4791 }
4792 
4793 /* Device initialization routine */
4794 static int mvneta_probe(struct platform_device *pdev)
4795 {
4796 	struct device_node *dn = pdev->dev.of_node;
4797 	struct device_node *bm_node;
4798 	struct mvneta_port *pp;
4799 	struct net_device *dev;
4800 	struct phylink *phylink;
4801 	struct phy *comphy;
4802 	const char *dt_mac_addr;
4803 	char hw_mac_addr[ETH_ALEN];
4804 	phy_interface_t phy_mode;
4805 	const char *mac_from;
4806 	int tx_csum_limit;
4807 	int err;
4808 	int cpu;
4809 
4810 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4811 				      txq_number, rxq_number);
4812 	if (!dev)
4813 		return -ENOMEM;
4814 
4815 	dev->irq = irq_of_parse_and_map(dn, 0);
4816 	if (dev->irq == 0)
4817 		return -EINVAL;
4818 
4819 	err = of_get_phy_mode(dn, &phy_mode);
4820 	if (err) {
4821 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4822 		goto err_free_irq;
4823 	}
4824 
4825 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4826 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4827 		err = -EPROBE_DEFER;
4828 		goto err_free_irq;
4829 	} else if (IS_ERR(comphy)) {
4830 		comphy = NULL;
4831 	}
4832 
4833 	pp = netdev_priv(dev);
4834 	spin_lock_init(&pp->lock);
4835 
4836 	pp->phylink_config.dev = &dev->dev;
4837 	pp->phylink_config.type = PHYLINK_NETDEV;
4838 
4839 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
4840 				 phy_mode, &mvneta_phylink_ops);
4841 	if (IS_ERR(phylink)) {
4842 		err = PTR_ERR(phylink);
4843 		goto err_free_irq;
4844 	}
4845 
4846 	dev->tx_queue_len = MVNETA_MAX_TXD;
4847 	dev->watchdog_timeo = 5 * HZ;
4848 	dev->netdev_ops = &mvneta_netdev_ops;
4849 
4850 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4851 
4852 	pp->phylink = phylink;
4853 	pp->comphy = comphy;
4854 	pp->phy_interface = phy_mode;
4855 	pp->dn = dn;
4856 
4857 	pp->rxq_def = rxq_def;
4858 	pp->indir[0] = rxq_def;
4859 
4860 	/* Get special SoC configurations */
4861 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4862 		pp->neta_armada3700 = true;
4863 
4864 	pp->clk = devm_clk_get(&pdev->dev, "core");
4865 	if (IS_ERR(pp->clk))
4866 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4867 	if (IS_ERR(pp->clk)) {
4868 		err = PTR_ERR(pp->clk);
4869 		goto err_free_phylink;
4870 	}
4871 
4872 	clk_prepare_enable(pp->clk);
4873 
4874 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4875 	if (!IS_ERR(pp->clk_bus))
4876 		clk_prepare_enable(pp->clk_bus);
4877 
4878 	pp->base = devm_platform_ioremap_resource(pdev, 0);
4879 	if (IS_ERR(pp->base)) {
4880 		err = PTR_ERR(pp->base);
4881 		goto err_clk;
4882 	}
4883 
4884 	/* Alloc per-cpu port structure */
4885 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4886 	if (!pp->ports) {
4887 		err = -ENOMEM;
4888 		goto err_clk;
4889 	}
4890 
4891 	/* Alloc per-cpu stats */
4892 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4893 	if (!pp->stats) {
4894 		err = -ENOMEM;
4895 		goto err_free_ports;
4896 	}
4897 
4898 	dt_mac_addr = of_get_mac_address(dn);
4899 	if (!IS_ERR(dt_mac_addr)) {
4900 		mac_from = "device tree";
4901 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
4902 	} else {
4903 		mvneta_get_mac_addr(pp, hw_mac_addr);
4904 		if (is_valid_ether_addr(hw_mac_addr)) {
4905 			mac_from = "hardware";
4906 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4907 		} else {
4908 			mac_from = "random";
4909 			eth_hw_addr_random(dev);
4910 		}
4911 	}
4912 
4913 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4914 		if (tx_csum_limit < 0 ||
4915 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4916 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4917 			dev_info(&pdev->dev,
4918 				 "Wrong TX csum limit in DT, set to %dB\n",
4919 				 MVNETA_TX_CSUM_DEF_SIZE);
4920 		}
4921 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4922 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4923 	} else {
4924 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4925 	}
4926 
4927 	pp->tx_csum_limit = tx_csum_limit;
4928 
4929 	pp->dram_target_info = mv_mbus_dram_info();
4930 	/* Armada3700 requires setting default configuration of Mbus
4931 	 * windows, however without using filled mbus_dram_target_info
4932 	 * structure.
4933 	 */
4934 	if (pp->dram_target_info || pp->neta_armada3700)
4935 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4936 
4937 	pp->tx_ring_size = MVNETA_MAX_TXD;
4938 	pp->rx_ring_size = MVNETA_MAX_RXD;
4939 
4940 	pp->dev = dev;
4941 	SET_NETDEV_DEV(dev, &pdev->dev);
4942 
4943 	pp->id = global_port_id++;
4944 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
4945 
4946 	/* Obtain access to BM resources if enabled and already initialized */
4947 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4948 	if (bm_node) {
4949 		pp->bm_priv = mvneta_bm_get(bm_node);
4950 		if (pp->bm_priv) {
4951 			err = mvneta_bm_port_init(pdev, pp);
4952 			if (err < 0) {
4953 				dev_info(&pdev->dev,
4954 					 "use SW buffer management\n");
4955 				mvneta_bm_put(pp->bm_priv);
4956 				pp->bm_priv = NULL;
4957 			}
4958 		}
4959 		/* Set RX packet offset correction for platforms, whose
4960 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4961 		 * platforms and 0B for 32-bit ones.
4962 		 */
4963 		pp->rx_offset_correction = max(0,
4964 					       NET_SKB_PAD -
4965 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4966 	}
4967 	of_node_put(bm_node);
4968 
4969 	err = mvneta_init(&pdev->dev, pp);
4970 	if (err < 0)
4971 		goto err_netdev;
4972 
4973 	err = mvneta_port_power_up(pp, phy_mode);
4974 	if (err < 0) {
4975 		dev_err(&pdev->dev, "can't power up port\n");
4976 		goto err_netdev;
4977 	}
4978 
4979 	/* Armada3700 network controller does not support per-cpu
4980 	 * operation, so only single NAPI should be initialized.
4981 	 */
4982 	if (pp->neta_armada3700) {
4983 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4984 	} else {
4985 		for_each_present_cpu(cpu) {
4986 			struct mvneta_pcpu_port *port =
4987 				per_cpu_ptr(pp->ports, cpu);
4988 
4989 			netif_napi_add(dev, &port->napi, mvneta_poll,
4990 				       NAPI_POLL_WEIGHT);
4991 			port->pp = pp;
4992 		}
4993 	}
4994 
4995 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4996 			NETIF_F_TSO | NETIF_F_RXCSUM;
4997 	dev->hw_features |= dev->features;
4998 	dev->vlan_features |= dev->features;
4999 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5000 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5001 
5002 	/* MTU range: 68 - 9676 */
5003 	dev->min_mtu = ETH_MIN_MTU;
5004 	/* 9676 == 9700 - 20 and rounding to 8 */
5005 	dev->max_mtu = 9676;
5006 
5007 	err = register_netdev(dev);
5008 	if (err < 0) {
5009 		dev_err(&pdev->dev, "failed to register\n");
5010 		goto err_netdev;
5011 	}
5012 
5013 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5014 		    dev->dev_addr);
5015 
5016 	platform_set_drvdata(pdev, pp->dev);
5017 
5018 	return 0;
5019 
5020 err_netdev:
5021 	if (pp->bm_priv) {
5022 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5023 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5024 				       1 << pp->id);
5025 		mvneta_bm_put(pp->bm_priv);
5026 	}
5027 	free_percpu(pp->stats);
5028 err_free_ports:
5029 	free_percpu(pp->ports);
5030 err_clk:
5031 	clk_disable_unprepare(pp->clk_bus);
5032 	clk_disable_unprepare(pp->clk);
5033 err_free_phylink:
5034 	if (pp->phylink)
5035 		phylink_destroy(pp->phylink);
5036 err_free_irq:
5037 	irq_dispose_mapping(dev->irq);
5038 	return err;
5039 }
5040 
5041 /* Device removal routine */
5042 static int mvneta_remove(struct platform_device *pdev)
5043 {
5044 	struct net_device  *dev = platform_get_drvdata(pdev);
5045 	struct mvneta_port *pp = netdev_priv(dev);
5046 
5047 	unregister_netdev(dev);
5048 	clk_disable_unprepare(pp->clk_bus);
5049 	clk_disable_unprepare(pp->clk);
5050 	free_percpu(pp->ports);
5051 	free_percpu(pp->stats);
5052 	irq_dispose_mapping(dev->irq);
5053 	phylink_destroy(pp->phylink);
5054 
5055 	if (pp->bm_priv) {
5056 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5057 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5058 				       1 << pp->id);
5059 		mvneta_bm_put(pp->bm_priv);
5060 	}
5061 
5062 	return 0;
5063 }
5064 
5065 #ifdef CONFIG_PM_SLEEP
5066 static int mvneta_suspend(struct device *device)
5067 {
5068 	int queue;
5069 	struct net_device *dev = dev_get_drvdata(device);
5070 	struct mvneta_port *pp = netdev_priv(dev);
5071 
5072 	if (!netif_running(dev))
5073 		goto clean_exit;
5074 
5075 	if (!pp->neta_armada3700) {
5076 		spin_lock(&pp->lock);
5077 		pp->is_stopped = true;
5078 		spin_unlock(&pp->lock);
5079 
5080 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5081 						    &pp->node_online);
5082 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5083 						    &pp->node_dead);
5084 	}
5085 
5086 	rtnl_lock();
5087 	mvneta_stop_dev(pp);
5088 	rtnl_unlock();
5089 
5090 	for (queue = 0; queue < rxq_number; queue++) {
5091 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5092 
5093 		mvneta_rxq_drop_pkts(pp, rxq);
5094 	}
5095 
5096 	for (queue = 0; queue < txq_number; queue++) {
5097 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5098 
5099 		mvneta_txq_hw_deinit(pp, txq);
5100 	}
5101 
5102 clean_exit:
5103 	netif_device_detach(dev);
5104 	clk_disable_unprepare(pp->clk_bus);
5105 	clk_disable_unprepare(pp->clk);
5106 
5107 	return 0;
5108 }
5109 
5110 static int mvneta_resume(struct device *device)
5111 {
5112 	struct platform_device *pdev = to_platform_device(device);
5113 	struct net_device *dev = dev_get_drvdata(device);
5114 	struct mvneta_port *pp = netdev_priv(dev);
5115 	int err, queue;
5116 
5117 	clk_prepare_enable(pp->clk);
5118 	if (!IS_ERR(pp->clk_bus))
5119 		clk_prepare_enable(pp->clk_bus);
5120 	if (pp->dram_target_info || pp->neta_armada3700)
5121 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5122 	if (pp->bm_priv) {
5123 		err = mvneta_bm_port_init(pdev, pp);
5124 		if (err < 0) {
5125 			dev_info(&pdev->dev, "use SW buffer management\n");
5126 			pp->bm_priv = NULL;
5127 		}
5128 	}
5129 	mvneta_defaults_set(pp);
5130 	err = mvneta_port_power_up(pp, pp->phy_interface);
5131 	if (err < 0) {
5132 		dev_err(device, "can't power up port\n");
5133 		return err;
5134 	}
5135 
5136 	netif_device_attach(dev);
5137 
5138 	if (!netif_running(dev))
5139 		return 0;
5140 
5141 	for (queue = 0; queue < rxq_number; queue++) {
5142 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5143 
5144 		rxq->next_desc_to_proc = 0;
5145 		mvneta_rxq_hw_init(pp, rxq);
5146 	}
5147 
5148 	for (queue = 0; queue < txq_number; queue++) {
5149 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5150 
5151 		txq->next_desc_to_proc = 0;
5152 		mvneta_txq_hw_init(pp, txq);
5153 	}
5154 
5155 	if (!pp->neta_armada3700) {
5156 		spin_lock(&pp->lock);
5157 		pp->is_stopped = false;
5158 		spin_unlock(&pp->lock);
5159 		cpuhp_state_add_instance_nocalls(online_hpstate,
5160 						 &pp->node_online);
5161 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5162 						 &pp->node_dead);
5163 	}
5164 
5165 	rtnl_lock();
5166 	mvneta_start_dev(pp);
5167 	rtnl_unlock();
5168 	mvneta_set_rx_mode(dev);
5169 
5170 	return 0;
5171 }
5172 #endif
5173 
5174 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5175 
5176 static const struct of_device_id mvneta_match[] = {
5177 	{ .compatible = "marvell,armada-370-neta" },
5178 	{ .compatible = "marvell,armada-xp-neta" },
5179 	{ .compatible = "marvell,armada-3700-neta" },
5180 	{ }
5181 };
5182 MODULE_DEVICE_TABLE(of, mvneta_match);
5183 
5184 static struct platform_driver mvneta_driver = {
5185 	.probe = mvneta_probe,
5186 	.remove = mvneta_remove,
5187 	.driver = {
5188 		.name = MVNETA_DRIVER_NAME,
5189 		.of_match_table = mvneta_match,
5190 		.pm = &mvneta_pm_ops,
5191 	},
5192 };
5193 
5194 static int __init mvneta_driver_init(void)
5195 {
5196 	int ret;
5197 
5198 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
5199 				      mvneta_cpu_online,
5200 				      mvneta_cpu_down_prepare);
5201 	if (ret < 0)
5202 		goto out;
5203 	online_hpstate = ret;
5204 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5205 				      NULL, mvneta_cpu_dead);
5206 	if (ret)
5207 		goto err_dead;
5208 
5209 	ret = platform_driver_register(&mvneta_driver);
5210 	if (ret)
5211 		goto err;
5212 	return 0;
5213 
5214 err:
5215 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5216 err_dead:
5217 	cpuhp_remove_multi_state(online_hpstate);
5218 out:
5219 	return ret;
5220 }
5221 module_init(mvneta_driver_init);
5222 
5223 static void __exit mvneta_driver_exit(void)
5224 {
5225 	platform_driver_unregister(&mvneta_driver);
5226 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5227 	cpuhp_remove_multi_state(online_hpstate);
5228 }
5229 module_exit(mvneta_driver_exit);
5230 
5231 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5232 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5233 MODULE_LICENSE("GPL");
5234 
5235 module_param(rxq_number, int, 0444);
5236 module_param(txq_number, int, 0444);
5237 
5238 module_param(rxq_def, int, 0444);
5239 module_param(rx_copybreak, int, 0644);
5240