1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/io.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_address.h>
31 #include <linux/phy.h>
32 #include <linux/clk.h>
33 
34 /* Registers */
35 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
36 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
37 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
38 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
39 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
40 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
41 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
42 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
43 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
44 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
45 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
46 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
47 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
49 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
50 #define MVNETA_PORT_RX_RESET                    0x1cc0
51 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
52 #define MVNETA_PHY_ADDR                         0x2000
53 #define      MVNETA_PHY_ADDR_MASK               0x1f
54 #define MVNETA_MBUS_RETRY                       0x2010
55 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
56 #define MVNETA_UNIT_CONTROL                     0x20B0
57 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
58 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
59 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
60 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
61 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
62 #define MVNETA_PORT_CONFIG                      0x2400
63 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
64 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
65 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
66 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
67 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
68 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
69 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
70 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
71 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
72 						 MVNETA_DEF_RXQ_ARP(q)	 | \
73 						 MVNETA_DEF_RXQ_TCP(q)	 | \
74 						 MVNETA_DEF_RXQ_UDP(q)	 | \
75 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
76 						 MVNETA_TX_UNSET_ERR_SUM | \
77 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
78 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
79 #define MVNETA_MAC_ADDR_LOW                      0x2414
80 #define MVNETA_MAC_ADDR_HIGH                     0x2418
81 #define MVNETA_SDMA_CONFIG                       0x241c
82 #define      MVNETA_SDMA_BRST_SIZE_16            4
83 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
84 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
85 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
86 #define      MVNETA_DESC_SWAP                    BIT(6)
87 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
88 #define MVNETA_PORT_STATUS                       0x2444
89 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
90 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
91 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
92 #define MVNETA_SERDES_CFG			 0x24A0
93 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
94 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
95 #define MVNETA_TYPE_PRIO                         0x24bc
96 #define      MVNETA_FORCE_UNI                    BIT(21)
97 #define MVNETA_TXQ_CMD_1                         0x24e4
98 #define MVNETA_TXQ_CMD                           0x2448
99 #define      MVNETA_TXQ_DISABLE_SHIFT            8
100 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
101 #define MVNETA_ACC_MODE                          0x2500
102 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
103 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
104 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
105 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
106 
107 /* Exception Interrupt Port/Queue Cause register */
108 
109 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
110 #define MVNETA_INTR_NEW_MASK                     0x25a4
111 
112 /* bits  0..7  = TXQ SENT, one bit per queue.
113  * bits  8..15 = RXQ OCCUP, one bit per queue.
114  * bits 16..23 = RXQ FREE, one bit per queue.
115  * bit  29 = OLD_REG_SUM, see old reg ?
116  * bit  30 = TX_ERR_SUM, one bit for 4 ports
117  * bit  31 = MISC_SUM,   one bit for 4 ports
118  */
119 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
120 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
121 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
122 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
123 
124 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
125 #define MVNETA_INTR_OLD_MASK                     0x25ac
126 
127 /* Data Path Port/Queue Cause Register */
128 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
129 #define MVNETA_INTR_MISC_MASK                    0x25b4
130 
131 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
132 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
133 #define      MVNETA_CAUSE_PTP                    BIT(4)
134 
135 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
136 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
137 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
138 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
139 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
140 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
141 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
142 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
143 
144 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
145 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
146 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
147 
148 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
149 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
150 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
151 
152 #define MVNETA_INTR_ENABLE                       0x25b8
153 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
154 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
155 
156 #define MVNETA_RXQ_CMD                           0x2680
157 #define      MVNETA_RXQ_DISABLE_SHIFT            8
158 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
159 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
160 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
161 #define MVNETA_GMAC_CTRL_0                       0x2c00
162 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
163 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
164 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
165 #define MVNETA_GMAC_CTRL_2                       0x2c08
166 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
167 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
168 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
169 #define MVNETA_GMAC_STATUS                       0x2c10
170 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
171 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
172 #define      MVNETA_GMAC_SPEED_100               BIT(2)
173 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
174 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
175 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
176 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
177 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
178 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
179 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
180 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
181 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
182 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
183 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
184 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
185 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
186 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
187 #define      MVNETA_MIB_LATE_COLLISION           0x7c
188 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
189 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
190 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
191 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
192 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
193 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
194 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
195 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
196 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
197 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
198 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
199 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
200 #define MVNETA_PORT_TX_RESET                     0x3cf0
201 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
202 #define MVNETA_TX_MTU                            0x3e0c
203 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
204 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
205 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
206 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
207 
208 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
209 
210 /* Descriptor ring Macros */
211 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
212 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
213 
214 /* Various constants */
215 
216 /* Coalescing */
217 #define MVNETA_TXDONE_COAL_PKTS		16
218 #define MVNETA_RX_COAL_PKTS		32
219 #define MVNETA_RX_COAL_USEC		100
220 
221 /* Napi polling weight */
222 #define MVNETA_RX_POLL_WEIGHT		64
223 
224 /* The two bytes Marvell header. Either contains a special value used
225  * by Marvell switches when a specific hardware mode is enabled (not
226  * supported by this driver) or is filled automatically by zeroes on
227  * the RX side. Those two bytes being at the front of the Ethernet
228  * header, they allow to have the IP header aligned on a 4 bytes
229  * boundary automatically: the hardware skips those two bytes on its
230  * own.
231  */
232 #define MVNETA_MH_SIZE			2
233 
234 #define MVNETA_VLAN_TAG_LEN             4
235 
236 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
237 #define MVNETA_TX_CSUM_MAX_SIZE		9800
238 #define MVNETA_ACC_MODE_EXT		1
239 
240 /* Timeout constants */
241 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
242 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
243 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
244 
245 #define MVNETA_TX_MTU_MAX		0x3ffff
246 
247 /* Max number of Rx descriptors */
248 #define MVNETA_MAX_RXD 128
249 
250 /* Max number of Tx descriptors */
251 #define MVNETA_MAX_TXD 532
252 
253 /* descriptor aligned size */
254 #define MVNETA_DESC_ALIGNED_SIZE	32
255 
256 #define MVNETA_RX_PKT_SIZE(mtu) \
257 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
258 	      ETH_HLEN + ETH_FCS_LEN,			     \
259 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
260 
261 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
262 
263 struct mvneta_pcpu_stats {
264 	struct	u64_stats_sync syncp;
265 	u64	rx_packets;
266 	u64	rx_bytes;
267 	u64	tx_packets;
268 	u64	tx_bytes;
269 };
270 
271 struct mvneta_port {
272 	int pkt_size;
273 	unsigned int frag_size;
274 	void __iomem *base;
275 	struct mvneta_rx_queue *rxqs;
276 	struct mvneta_tx_queue *txqs;
277 	struct net_device *dev;
278 
279 	u32 cause_rx_tx;
280 	struct napi_struct napi;
281 
282 	/* Napi weight */
283 	int weight;
284 
285 	/* Core clock */
286 	struct clk *clk;
287 	u8 mcast_count[256];
288 	u16 tx_ring_size;
289 	u16 rx_ring_size;
290 	struct mvneta_pcpu_stats *stats;
291 
292 	struct mii_bus *mii_bus;
293 	struct phy_device *phy_dev;
294 	phy_interface_t phy_interface;
295 	struct device_node *phy_node;
296 	unsigned int link;
297 	unsigned int duplex;
298 	unsigned int speed;
299 };
300 
301 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
302  * layout of the transmit and reception DMA descriptors, and their
303  * layout is therefore defined by the hardware design
304  */
305 
306 #define MVNETA_TX_L3_OFF_SHIFT	0
307 #define MVNETA_TX_IP_HLEN_SHIFT	8
308 #define MVNETA_TX_L4_UDP	BIT(16)
309 #define MVNETA_TX_L3_IP6	BIT(17)
310 #define MVNETA_TXD_IP_CSUM	BIT(18)
311 #define MVNETA_TXD_Z_PAD	BIT(19)
312 #define MVNETA_TXD_L_DESC	BIT(20)
313 #define MVNETA_TXD_F_DESC	BIT(21)
314 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
315 				 MVNETA_TXD_L_DESC | \
316 				 MVNETA_TXD_F_DESC)
317 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
318 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
319 
320 #define MVNETA_RXD_ERR_CRC		0x0
321 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
322 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
323 #define MVNETA_RXD_ERR_LEN		BIT(18)
324 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
325 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
326 #define MVNETA_RXD_L3_IP4		BIT(25)
327 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
328 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
329 
330 #if defined(__LITTLE_ENDIAN)
331 struct mvneta_tx_desc {
332 	u32  command;		/* Options used by HW for packet transmitting.*/
333 	u16  reserverd1;	/* csum_l4 (for future use)		*/
334 	u16  data_size;		/* Data size of transmitted packet in bytes */
335 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
336 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
337 	u32  reserved3[4];	/* Reserved - (for future use)		*/
338 };
339 
340 struct mvneta_rx_desc {
341 	u32  status;		/* Info about received packet		*/
342 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
343 	u16  data_size;		/* Size of received packet in bytes	*/
344 
345 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
346 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
347 
348 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
349 	u16  reserved3;		/* prefetch_cmd, for future use		*/
350 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
351 
352 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
353 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
354 };
355 #else
356 struct mvneta_tx_desc {
357 	u16  data_size;		/* Data size of transmitted packet in bytes */
358 	u16  reserverd1;	/* csum_l4 (for future use)		*/
359 	u32  command;		/* Options used by HW for packet transmitting.*/
360 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
361 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
362 	u32  reserved3[4];	/* Reserved - (for future use)		*/
363 };
364 
365 struct mvneta_rx_desc {
366 	u16  data_size;		/* Size of received packet in bytes	*/
367 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
368 	u32  status;		/* Info about received packet		*/
369 
370 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
371 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
372 
373 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
374 	u16  reserved3;		/* prefetch_cmd, for future use		*/
375 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
376 
377 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
378 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
379 };
380 #endif
381 
382 struct mvneta_tx_queue {
383 	/* Number of this TX queue, in the range 0-7 */
384 	u8 id;
385 
386 	/* Number of TX DMA descriptors in the descriptor ring */
387 	int size;
388 
389 	/* Number of currently used TX DMA descriptor in the
390 	 * descriptor ring
391 	 */
392 	int count;
393 
394 	/* Array of transmitted skb */
395 	struct sk_buff **tx_skb;
396 
397 	/* Index of last TX DMA descriptor that was inserted */
398 	int txq_put_index;
399 
400 	/* Index of the TX DMA descriptor to be cleaned up */
401 	int txq_get_index;
402 
403 	u32 done_pkts_coal;
404 
405 	/* Virtual address of the TX DMA descriptors array */
406 	struct mvneta_tx_desc *descs;
407 
408 	/* DMA address of the TX DMA descriptors array */
409 	dma_addr_t descs_phys;
410 
411 	/* Index of the last TX DMA descriptor */
412 	int last_desc;
413 
414 	/* Index of the next TX DMA descriptor to process */
415 	int next_desc_to_proc;
416 };
417 
418 struct mvneta_rx_queue {
419 	/* rx queue number, in the range 0-7 */
420 	u8 id;
421 
422 	/* num of rx descriptors in the rx descriptor ring */
423 	int size;
424 
425 	/* counter of times when mvneta_refill() failed */
426 	int missed;
427 
428 	u32 pkts_coal;
429 	u32 time_coal;
430 
431 	/* Virtual address of the RX DMA descriptors array */
432 	struct mvneta_rx_desc *descs;
433 
434 	/* DMA address of the RX DMA descriptors array */
435 	dma_addr_t descs_phys;
436 
437 	/* Index of the last RX DMA descriptor */
438 	int last_desc;
439 
440 	/* Index of the next RX DMA descriptor to process */
441 	int next_desc_to_proc;
442 };
443 
444 static int rxq_number = 8;
445 static int txq_number = 8;
446 
447 static int rxq_def;
448 
449 static int rx_copybreak __read_mostly = 256;
450 
451 #define MVNETA_DRIVER_NAME "mvneta"
452 #define MVNETA_DRIVER_VERSION "1.0"
453 
454 /* Utility/helper methods */
455 
456 /* Write helper method */
457 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
458 {
459 	writel(data, pp->base + offset);
460 }
461 
462 /* Read helper method */
463 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
464 {
465 	return readl(pp->base + offset);
466 }
467 
468 /* Increment txq get counter */
469 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
470 {
471 	txq->txq_get_index++;
472 	if (txq->txq_get_index == txq->size)
473 		txq->txq_get_index = 0;
474 }
475 
476 /* Increment txq put counter */
477 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
478 {
479 	txq->txq_put_index++;
480 	if (txq->txq_put_index == txq->size)
481 		txq->txq_put_index = 0;
482 }
483 
484 
485 /* Clear all MIB counters */
486 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
487 {
488 	int i;
489 	u32 dummy;
490 
491 	/* Perform dummy reads from MIB counters */
492 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
493 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
494 }
495 
496 /* Get System Network Statistics */
497 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
498 					     struct rtnl_link_stats64 *stats)
499 {
500 	struct mvneta_port *pp = netdev_priv(dev);
501 	unsigned int start;
502 	int cpu;
503 
504 	for_each_possible_cpu(cpu) {
505 		struct mvneta_pcpu_stats *cpu_stats;
506 		u64 rx_packets;
507 		u64 rx_bytes;
508 		u64 tx_packets;
509 		u64 tx_bytes;
510 
511 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
512 		do {
513 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
514 			rx_packets = cpu_stats->rx_packets;
515 			rx_bytes   = cpu_stats->rx_bytes;
516 			tx_packets = cpu_stats->tx_packets;
517 			tx_bytes   = cpu_stats->tx_bytes;
518 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
519 
520 		stats->rx_packets += rx_packets;
521 		stats->rx_bytes   += rx_bytes;
522 		stats->tx_packets += tx_packets;
523 		stats->tx_bytes   += tx_bytes;
524 	}
525 
526 	stats->rx_errors	= dev->stats.rx_errors;
527 	stats->rx_dropped	= dev->stats.rx_dropped;
528 
529 	stats->tx_dropped	= dev->stats.tx_dropped;
530 
531 	return stats;
532 }
533 
534 /* Rx descriptors helper methods */
535 
536 /* Checks whether the RX descriptor having this status is both the first
537  * and the last descriptor for the RX packet. Each RX packet is currently
538  * received through a single RX descriptor, so not having each RX
539  * descriptor with its first and last bits set is an error
540  */
541 static int mvneta_rxq_desc_is_first_last(u32 status)
542 {
543 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
544 		MVNETA_RXD_FIRST_LAST_DESC;
545 }
546 
547 /* Add number of descriptors ready to receive new packets */
548 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
549 					  struct mvneta_rx_queue *rxq,
550 					  int ndescs)
551 {
552 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
553 	 * be added at once
554 	 */
555 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
556 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
557 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
558 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
559 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
560 	}
561 
562 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
563 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
564 }
565 
566 /* Get number of RX descriptors occupied by received packets */
567 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
568 					struct mvneta_rx_queue *rxq)
569 {
570 	u32 val;
571 
572 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
573 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
574 }
575 
576 /* Update num of rx desc called upon return from rx path or
577  * from mvneta_rxq_drop_pkts().
578  */
579 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
580 				       struct mvneta_rx_queue *rxq,
581 				       int rx_done, int rx_filled)
582 {
583 	u32 val;
584 
585 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
586 		val = rx_done |
587 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
588 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
589 		return;
590 	}
591 
592 	/* Only 255 descriptors can be added at once */
593 	while ((rx_done > 0) || (rx_filled > 0)) {
594 		if (rx_done <= 0xff) {
595 			val = rx_done;
596 			rx_done = 0;
597 		} else {
598 			val = 0xff;
599 			rx_done -= 0xff;
600 		}
601 		if (rx_filled <= 0xff) {
602 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
603 			rx_filled = 0;
604 		} else {
605 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
606 			rx_filled -= 0xff;
607 		}
608 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
609 	}
610 }
611 
612 /* Get pointer to next RX descriptor to be processed by SW */
613 static struct mvneta_rx_desc *
614 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
615 {
616 	int rx_desc = rxq->next_desc_to_proc;
617 
618 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
619 	prefetch(rxq->descs + rxq->next_desc_to_proc);
620 	return rxq->descs + rx_desc;
621 }
622 
623 /* Change maximum receive size of the port. */
624 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
625 {
626 	u32 val;
627 
628 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
629 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
630 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
631 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
632 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
633 }
634 
635 
636 /* Set rx queue offset */
637 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
638 				  struct mvneta_rx_queue *rxq,
639 				  int offset)
640 {
641 	u32 val;
642 
643 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
644 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
645 
646 	/* Offset is in */
647 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
648 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
649 }
650 
651 
652 /* Tx descriptors helper methods */
653 
654 /* Update HW with number of TX descriptors to be sent */
655 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
656 				     struct mvneta_tx_queue *txq,
657 				     int pend_desc)
658 {
659 	u32 val;
660 
661 	/* Only 255 descriptors can be added at once ; Assume caller
662 	 * process TX desriptors in quanta less than 256
663 	 */
664 	val = pend_desc;
665 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
666 }
667 
668 /* Get pointer to next TX descriptor to be processed (send) by HW */
669 static struct mvneta_tx_desc *
670 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
671 {
672 	int tx_desc = txq->next_desc_to_proc;
673 
674 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
675 	return txq->descs + tx_desc;
676 }
677 
678 /* Release the last allocated TX descriptor. Useful to handle DMA
679  * mapping failures in the TX path.
680  */
681 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
682 {
683 	if (txq->next_desc_to_proc == 0)
684 		txq->next_desc_to_proc = txq->last_desc - 1;
685 	else
686 		txq->next_desc_to_proc--;
687 }
688 
689 /* Set rxq buf size */
690 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
691 				    struct mvneta_rx_queue *rxq,
692 				    int buf_size)
693 {
694 	u32 val;
695 
696 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
697 
698 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
699 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
700 
701 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
702 }
703 
704 /* Disable buffer management (BM) */
705 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
706 				  struct mvneta_rx_queue *rxq)
707 {
708 	u32 val;
709 
710 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
711 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
712 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
713 }
714 
715 /* Start the Ethernet port RX and TX activity */
716 static void mvneta_port_up(struct mvneta_port *pp)
717 {
718 	int queue;
719 	u32 q_map;
720 
721 	/* Enable all initialized TXs. */
722 	mvneta_mib_counters_clear(pp);
723 	q_map = 0;
724 	for (queue = 0; queue < txq_number; queue++) {
725 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
726 		if (txq->descs != NULL)
727 			q_map |= (1 << queue);
728 	}
729 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
730 
731 	/* Enable all initialized RXQs. */
732 	q_map = 0;
733 	for (queue = 0; queue < rxq_number; queue++) {
734 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
735 		if (rxq->descs != NULL)
736 			q_map |= (1 << queue);
737 	}
738 
739 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
740 }
741 
742 /* Stop the Ethernet port activity */
743 static void mvneta_port_down(struct mvneta_port *pp)
744 {
745 	u32 val;
746 	int count;
747 
748 	/* Stop Rx port activity. Check port Rx activity. */
749 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
750 
751 	/* Issue stop command for active channels only */
752 	if (val != 0)
753 		mvreg_write(pp, MVNETA_RXQ_CMD,
754 			    val << MVNETA_RXQ_DISABLE_SHIFT);
755 
756 	/* Wait for all Rx activity to terminate. */
757 	count = 0;
758 	do {
759 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
760 			netdev_warn(pp->dev,
761 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
762 				    val);
763 			break;
764 		}
765 		mdelay(1);
766 
767 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
768 	} while (val & 0xff);
769 
770 	/* Stop Tx port activity. Check port Tx activity. Issue stop
771 	 * command for active channels only
772 	 */
773 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
774 
775 	if (val != 0)
776 		mvreg_write(pp, MVNETA_TXQ_CMD,
777 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
778 
779 	/* Wait for all Tx activity to terminate. */
780 	count = 0;
781 	do {
782 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
783 			netdev_warn(pp->dev,
784 				    "TIMEOUT for TX stopped status=0x%08x\n",
785 				    val);
786 			break;
787 		}
788 		mdelay(1);
789 
790 		/* Check TX Command reg that all Txqs are stopped */
791 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
792 
793 	} while (val & 0xff);
794 
795 	/* Double check to verify that TX FIFO is empty */
796 	count = 0;
797 	do {
798 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
799 			netdev_warn(pp->dev,
800 				    "TX FIFO empty timeout status=0x08%x\n",
801 				    val);
802 			break;
803 		}
804 		mdelay(1);
805 
806 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
807 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
808 		 (val & MVNETA_TX_IN_PRGRS));
809 
810 	udelay(200);
811 }
812 
813 /* Enable the port by setting the port enable bit of the MAC control register */
814 static void mvneta_port_enable(struct mvneta_port *pp)
815 {
816 	u32 val;
817 
818 	/* Enable port */
819 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
820 	val |= MVNETA_GMAC0_PORT_ENABLE;
821 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
822 }
823 
824 /* Disable the port and wait for about 200 usec before retuning */
825 static void mvneta_port_disable(struct mvneta_port *pp)
826 {
827 	u32 val;
828 
829 	/* Reset the Enable bit in the Serial Control Register */
830 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
831 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
832 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
833 
834 	udelay(200);
835 }
836 
837 /* Multicast tables methods */
838 
839 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
840 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
841 {
842 	int offset;
843 	u32 val;
844 
845 	if (queue == -1) {
846 		val = 0;
847 	} else {
848 		val = 0x1 | (queue << 1);
849 		val |= (val << 24) | (val << 16) | (val << 8);
850 	}
851 
852 	for (offset = 0; offset <= 0xc; offset += 4)
853 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
854 }
855 
856 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
857 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
858 {
859 	int offset;
860 	u32 val;
861 
862 	if (queue == -1) {
863 		val = 0;
864 	} else {
865 		val = 0x1 | (queue << 1);
866 		val |= (val << 24) | (val << 16) | (val << 8);
867 	}
868 
869 	for (offset = 0; offset <= 0xfc; offset += 4)
870 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
871 
872 }
873 
874 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
875 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
876 {
877 	int offset;
878 	u32 val;
879 
880 	if (queue == -1) {
881 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
882 		val = 0;
883 	} else {
884 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
885 		val = 0x1 | (queue << 1);
886 		val |= (val << 24) | (val << 16) | (val << 8);
887 	}
888 
889 	for (offset = 0; offset <= 0xfc; offset += 4)
890 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
891 }
892 
893 /* This method sets defaults to the NETA port:
894  *	Clears interrupt Cause and Mask registers.
895  *	Clears all MAC tables.
896  *	Sets defaults to all registers.
897  *	Resets RX and TX descriptor rings.
898  *	Resets PHY.
899  * This method can be called after mvneta_port_down() to return the port
900  *	settings to defaults.
901  */
902 static void mvneta_defaults_set(struct mvneta_port *pp)
903 {
904 	int cpu;
905 	int queue;
906 	u32 val;
907 
908 	/* Clear all Cause registers */
909 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
910 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
911 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
912 
913 	/* Mask all interrupts */
914 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
915 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
916 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
917 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
918 
919 	/* Enable MBUS Retry bit16 */
920 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
921 
922 	/* Set CPU queue access map - all CPUs have access to all RX
923 	 * queues and to all TX queues
924 	 */
925 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
926 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
927 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
928 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
929 
930 	/* Reset RX and TX DMAs */
931 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
932 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
933 
934 	/* Disable Legacy WRR, Disable EJP, Release from reset */
935 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
936 	for (queue = 0; queue < txq_number; queue++) {
937 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
938 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
939 	}
940 
941 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
942 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
943 
944 	/* Set Port Acceleration Mode */
945 	val = MVNETA_ACC_MODE_EXT;
946 	mvreg_write(pp, MVNETA_ACC_MODE, val);
947 
948 	/* Update val of portCfg register accordingly with all RxQueue types */
949 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
950 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
951 
952 	val = 0;
953 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
954 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
955 
956 	/* Build PORT_SDMA_CONFIG_REG */
957 	val = 0;
958 
959 	/* Default burst size */
960 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
961 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
962 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
963 
964 #if defined(__BIG_ENDIAN)
965 	val |= MVNETA_DESC_SWAP;
966 #endif
967 
968 	/* Assign port SDMA configuration */
969 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
970 
971 	/* Disable PHY polling in hardware, since we're using the
972 	 * kernel phylib to do this.
973 	 */
974 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
975 	val &= ~MVNETA_PHY_POLLING_ENABLE;
976 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
977 
978 	mvneta_set_ucast_table(pp, -1);
979 	mvneta_set_special_mcast_table(pp, -1);
980 	mvneta_set_other_mcast_table(pp, -1);
981 
982 	/* Set port interrupt enable register - default enable all */
983 	mvreg_write(pp, MVNETA_INTR_ENABLE,
984 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
985 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
986 }
987 
988 /* Set max sizes for tx queues */
989 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
990 
991 {
992 	u32 val, size, mtu;
993 	int queue;
994 
995 	mtu = max_tx_size * 8;
996 	if (mtu > MVNETA_TX_MTU_MAX)
997 		mtu = MVNETA_TX_MTU_MAX;
998 
999 	/* Set MTU */
1000 	val = mvreg_read(pp, MVNETA_TX_MTU);
1001 	val &= ~MVNETA_TX_MTU_MAX;
1002 	val |= mtu;
1003 	mvreg_write(pp, MVNETA_TX_MTU, val);
1004 
1005 	/* TX token size and all TXQs token size must be larger that MTU */
1006 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1007 
1008 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1009 	if (size < mtu) {
1010 		size = mtu;
1011 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1012 		val |= size;
1013 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1014 	}
1015 	for (queue = 0; queue < txq_number; queue++) {
1016 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1017 
1018 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1019 		if (size < mtu) {
1020 			size = mtu;
1021 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1022 			val |= size;
1023 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1024 		}
1025 	}
1026 }
1027 
1028 /* Set unicast address */
1029 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1030 				  int queue)
1031 {
1032 	unsigned int unicast_reg;
1033 	unsigned int tbl_offset;
1034 	unsigned int reg_offset;
1035 
1036 	/* Locate the Unicast table entry */
1037 	last_nibble = (0xf & last_nibble);
1038 
1039 	/* offset from unicast tbl base */
1040 	tbl_offset = (last_nibble / 4) * 4;
1041 
1042 	/* offset within the above reg  */
1043 	reg_offset = last_nibble % 4;
1044 
1045 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1046 
1047 	if (queue == -1) {
1048 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1049 		unicast_reg &= ~(0xff << (8 * reg_offset));
1050 	} else {
1051 		unicast_reg &= ~(0xff << (8 * reg_offset));
1052 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1053 	}
1054 
1055 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1056 }
1057 
1058 /* Set mac address */
1059 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1060 				int queue)
1061 {
1062 	unsigned int mac_h;
1063 	unsigned int mac_l;
1064 
1065 	if (queue != -1) {
1066 		mac_l = (addr[4] << 8) | (addr[5]);
1067 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1068 			(addr[2] << 8) | (addr[3] << 0);
1069 
1070 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1071 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1072 	}
1073 
1074 	/* Accept frames of this address */
1075 	mvneta_set_ucast_addr(pp, addr[5], queue);
1076 }
1077 
1078 /* Set the number of packets that will be received before RX interrupt
1079  * will be generated by HW.
1080  */
1081 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1082 				    struct mvneta_rx_queue *rxq, u32 value)
1083 {
1084 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1085 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1086 	rxq->pkts_coal = value;
1087 }
1088 
1089 /* Set the time delay in usec before RX interrupt will be generated by
1090  * HW.
1091  */
1092 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1093 				    struct mvneta_rx_queue *rxq, u32 value)
1094 {
1095 	u32 val;
1096 	unsigned long clk_rate;
1097 
1098 	clk_rate = clk_get_rate(pp->clk);
1099 	val = (clk_rate / 1000000) * value;
1100 
1101 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1102 	rxq->time_coal = value;
1103 }
1104 
1105 /* Set threshold for TX_DONE pkts coalescing */
1106 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1107 					 struct mvneta_tx_queue *txq, u32 value)
1108 {
1109 	u32 val;
1110 
1111 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1112 
1113 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1114 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1115 
1116 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1117 
1118 	txq->done_pkts_coal = value;
1119 }
1120 
1121 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1122 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1123 				u32 phys_addr, u32 cookie)
1124 {
1125 	rx_desc->buf_cookie = cookie;
1126 	rx_desc->buf_phys_addr = phys_addr;
1127 }
1128 
1129 /* Decrement sent descriptors counter */
1130 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1131 				     struct mvneta_tx_queue *txq,
1132 				     int sent_desc)
1133 {
1134 	u32 val;
1135 
1136 	/* Only 255 TX descriptors can be updated at once */
1137 	while (sent_desc > 0xff) {
1138 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1139 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1140 		sent_desc = sent_desc - 0xff;
1141 	}
1142 
1143 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1144 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1145 }
1146 
1147 /* Get number of TX descriptors already sent by HW */
1148 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1149 					struct mvneta_tx_queue *txq)
1150 {
1151 	u32 val;
1152 	int sent_desc;
1153 
1154 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1155 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1156 		MVNETA_TXQ_SENT_DESC_SHIFT;
1157 
1158 	return sent_desc;
1159 }
1160 
1161 /* Get number of sent descriptors and decrement counter.
1162  *  The number of sent descriptors is returned.
1163  */
1164 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1165 				     struct mvneta_tx_queue *txq)
1166 {
1167 	int sent_desc;
1168 
1169 	/* Get number of sent descriptors */
1170 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1171 
1172 	/* Decrement sent descriptors counter */
1173 	if (sent_desc)
1174 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1175 
1176 	return sent_desc;
1177 }
1178 
1179 /* Set TXQ descriptors fields relevant for CSUM calculation */
1180 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1181 				int ip_hdr_len, int l4_proto)
1182 {
1183 	u32 command;
1184 
1185 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1186 	 * G_L4_chk, L4_type; required only for checksum
1187 	 * calculation
1188 	 */
1189 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1190 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1191 
1192 	if (l3_proto == swab16(ETH_P_IP))
1193 		command |= MVNETA_TXD_IP_CSUM;
1194 	else
1195 		command |= MVNETA_TX_L3_IP6;
1196 
1197 	if (l4_proto == IPPROTO_TCP)
1198 		command |=  MVNETA_TX_L4_CSUM_FULL;
1199 	else if (l4_proto == IPPROTO_UDP)
1200 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1201 	else
1202 		command |= MVNETA_TX_L4_CSUM_NOT;
1203 
1204 	return command;
1205 }
1206 
1207 
1208 /* Display more error info */
1209 static void mvneta_rx_error(struct mvneta_port *pp,
1210 			    struct mvneta_rx_desc *rx_desc)
1211 {
1212 	u32 status = rx_desc->status;
1213 
1214 	if (!mvneta_rxq_desc_is_first_last(status)) {
1215 		netdev_err(pp->dev,
1216 			   "bad rx status %08x (buffer oversize), size=%d\n",
1217 			   status, rx_desc->data_size);
1218 		return;
1219 	}
1220 
1221 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1222 	case MVNETA_RXD_ERR_CRC:
1223 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1224 			   status, rx_desc->data_size);
1225 		break;
1226 	case MVNETA_RXD_ERR_OVERRUN:
1227 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1228 			   status, rx_desc->data_size);
1229 		break;
1230 	case MVNETA_RXD_ERR_LEN:
1231 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1232 			   status, rx_desc->data_size);
1233 		break;
1234 	case MVNETA_RXD_ERR_RESOURCE:
1235 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1236 			   status, rx_desc->data_size);
1237 		break;
1238 	}
1239 }
1240 
1241 /* Handle RX checksum offload based on the descriptor's status */
1242 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1243 			   struct sk_buff *skb)
1244 {
1245 	if ((status & MVNETA_RXD_L3_IP4) &&
1246 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1247 		skb->csum = 0;
1248 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1249 		return;
1250 	}
1251 
1252 	skb->ip_summed = CHECKSUM_NONE;
1253 }
1254 
1255 /* Return tx queue pointer (find last set bit) according to <cause> returned
1256  * form tx_done reg. <cause> must not be null. The return value is always a
1257  * valid queue for matching the first one found in <cause>.
1258  */
1259 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1260 						     u32 cause)
1261 {
1262 	int queue = fls(cause) - 1;
1263 
1264 	return &pp->txqs[queue];
1265 }
1266 
1267 /* Free tx queue skbuffs */
1268 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1269 				 struct mvneta_tx_queue *txq, int num)
1270 {
1271 	int i;
1272 
1273 	for (i = 0; i < num; i++) {
1274 		struct mvneta_tx_desc *tx_desc = txq->descs +
1275 			txq->txq_get_index;
1276 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1277 
1278 		mvneta_txq_inc_get(txq);
1279 
1280 		if (!skb)
1281 			continue;
1282 
1283 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1284 				 tx_desc->data_size, DMA_TO_DEVICE);
1285 		dev_kfree_skb_any(skb);
1286 	}
1287 }
1288 
1289 /* Handle end of transmission */
1290 static void mvneta_txq_done(struct mvneta_port *pp,
1291 			   struct mvneta_tx_queue *txq)
1292 {
1293 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1294 	int tx_done;
1295 
1296 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1297 	if (!tx_done)
1298 		return;
1299 
1300 	mvneta_txq_bufs_free(pp, txq, tx_done);
1301 
1302 	txq->count -= tx_done;
1303 
1304 	if (netif_tx_queue_stopped(nq)) {
1305 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1306 			netif_tx_wake_queue(nq);
1307 	}
1308 }
1309 
1310 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1311 {
1312 	if (likely(pp->frag_size <= PAGE_SIZE))
1313 		return netdev_alloc_frag(pp->frag_size);
1314 	else
1315 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1316 }
1317 
1318 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1319 {
1320 	if (likely(pp->frag_size <= PAGE_SIZE))
1321 		put_page(virt_to_head_page(data));
1322 	else
1323 		kfree(data);
1324 }
1325 
1326 /* Refill processing */
1327 static int mvneta_rx_refill(struct mvneta_port *pp,
1328 			    struct mvneta_rx_desc *rx_desc)
1329 
1330 {
1331 	dma_addr_t phys_addr;
1332 	void *data;
1333 
1334 	data = mvneta_frag_alloc(pp);
1335 	if (!data)
1336 		return -ENOMEM;
1337 
1338 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1339 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1340 				   DMA_FROM_DEVICE);
1341 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1342 		mvneta_frag_free(pp, data);
1343 		return -ENOMEM;
1344 	}
1345 
1346 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1347 	return 0;
1348 }
1349 
1350 /* Handle tx checksum */
1351 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1352 {
1353 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1354 		int ip_hdr_len = 0;
1355 		u8 l4_proto;
1356 
1357 		if (skb->protocol == htons(ETH_P_IP)) {
1358 			struct iphdr *ip4h = ip_hdr(skb);
1359 
1360 			/* Calculate IPv4 checksum and L4 checksum */
1361 			ip_hdr_len = ip4h->ihl;
1362 			l4_proto = ip4h->protocol;
1363 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1364 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1365 
1366 			/* Read l4_protocol from one of IPv6 extra headers */
1367 			if (skb_network_header_len(skb) > 0)
1368 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1369 			l4_proto = ip6h->nexthdr;
1370 		} else
1371 			return MVNETA_TX_L4_CSUM_NOT;
1372 
1373 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1374 				skb->protocol, ip_hdr_len, l4_proto);
1375 	}
1376 
1377 	return MVNETA_TX_L4_CSUM_NOT;
1378 }
1379 
1380 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1381  * value
1382  */
1383 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1384 						u32 cause)
1385 {
1386 	int queue = fls(cause >> 8) - 1;
1387 
1388 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1389 }
1390 
1391 /* Drop packets received by the RXQ and free buffers */
1392 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1393 				 struct mvneta_rx_queue *rxq)
1394 {
1395 	int rx_done, i;
1396 
1397 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1398 	for (i = 0; i < rxq->size; i++) {
1399 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1400 		void *data = (void *)rx_desc->buf_cookie;
1401 
1402 		mvneta_frag_free(pp, data);
1403 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1404 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1405 	}
1406 
1407 	if (rx_done)
1408 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1409 }
1410 
1411 /* Main rx processing */
1412 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1413 		     struct mvneta_rx_queue *rxq)
1414 {
1415 	struct net_device *dev = pp->dev;
1416 	int rx_done, rx_filled;
1417 	u32 rcvd_pkts = 0;
1418 	u32 rcvd_bytes = 0;
1419 
1420 	/* Get number of received packets */
1421 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1422 
1423 	if (rx_todo > rx_done)
1424 		rx_todo = rx_done;
1425 
1426 	rx_done = 0;
1427 	rx_filled = 0;
1428 
1429 	/* Fairness NAPI loop */
1430 	while (rx_done < rx_todo) {
1431 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1432 		struct sk_buff *skb;
1433 		unsigned char *data;
1434 		u32 rx_status;
1435 		int rx_bytes, err;
1436 
1437 		rx_done++;
1438 		rx_filled++;
1439 		rx_status = rx_desc->status;
1440 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1441 		data = (unsigned char *)rx_desc->buf_cookie;
1442 
1443 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1444 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1445 		err_drop_frame:
1446 			dev->stats.rx_errors++;
1447 			mvneta_rx_error(pp, rx_desc);
1448 			/* leave the descriptor untouched */
1449 			continue;
1450 		}
1451 
1452 		if (rx_bytes <= rx_copybreak) {
1453 			/* better copy a small frame and not unmap the DMA region */
1454 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1455 			if (unlikely(!skb))
1456 				goto err_drop_frame;
1457 
1458 			dma_sync_single_range_for_cpu(dev->dev.parent,
1459 			                              rx_desc->buf_phys_addr,
1460 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1461 			                              rx_bytes,
1462 			                              DMA_FROM_DEVICE);
1463 			memcpy(skb_put(skb, rx_bytes),
1464 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1465 			       rx_bytes);
1466 
1467 			skb->protocol = eth_type_trans(skb, dev);
1468 			mvneta_rx_csum(pp, rx_status, skb);
1469 			napi_gro_receive(&pp->napi, skb);
1470 
1471 			rcvd_pkts++;
1472 			rcvd_bytes += rx_bytes;
1473 
1474 			/* leave the descriptor and buffer untouched */
1475 			continue;
1476 		}
1477 
1478 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1479 		if (!skb)
1480 			goto err_drop_frame;
1481 
1482 		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1483 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1484 
1485 		rcvd_pkts++;
1486 		rcvd_bytes += rx_bytes;
1487 
1488 		/* Linux processing */
1489 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1490 		skb_put(skb, rx_bytes);
1491 
1492 		skb->protocol = eth_type_trans(skb, dev);
1493 
1494 		mvneta_rx_csum(pp, rx_status, skb);
1495 
1496 		napi_gro_receive(&pp->napi, skb);
1497 
1498 		/* Refill processing */
1499 		err = mvneta_rx_refill(pp, rx_desc);
1500 		if (err) {
1501 			netdev_err(dev, "Linux processing - Can't refill\n");
1502 			rxq->missed++;
1503 			rx_filled--;
1504 		}
1505 	}
1506 
1507 	if (rcvd_pkts) {
1508 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1509 
1510 		u64_stats_update_begin(&stats->syncp);
1511 		stats->rx_packets += rcvd_pkts;
1512 		stats->rx_bytes   += rcvd_bytes;
1513 		u64_stats_update_end(&stats->syncp);
1514 	}
1515 
1516 	/* Update rxq management counters */
1517 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1518 
1519 	return rx_done;
1520 }
1521 
1522 /* Handle tx fragmentation processing */
1523 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1524 				  struct mvneta_tx_queue *txq)
1525 {
1526 	struct mvneta_tx_desc *tx_desc;
1527 	int i;
1528 
1529 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1530 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1531 		void *addr = page_address(frag->page.p) + frag->page_offset;
1532 
1533 		tx_desc = mvneta_txq_next_desc_get(txq);
1534 		tx_desc->data_size = frag->size;
1535 
1536 		tx_desc->buf_phys_addr =
1537 			dma_map_single(pp->dev->dev.parent, addr,
1538 				       tx_desc->data_size, DMA_TO_DEVICE);
1539 
1540 		if (dma_mapping_error(pp->dev->dev.parent,
1541 				      tx_desc->buf_phys_addr)) {
1542 			mvneta_txq_desc_put(txq);
1543 			goto error;
1544 		}
1545 
1546 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1547 			/* Last descriptor */
1548 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1549 
1550 			txq->tx_skb[txq->txq_put_index] = skb;
1551 
1552 			mvneta_txq_inc_put(txq);
1553 		} else {
1554 			/* Descriptor in the middle: Not First, Not Last */
1555 			tx_desc->command = 0;
1556 
1557 			txq->tx_skb[txq->txq_put_index] = NULL;
1558 			mvneta_txq_inc_put(txq);
1559 		}
1560 	}
1561 
1562 	return 0;
1563 
1564 error:
1565 	/* Release all descriptors that were used to map fragments of
1566 	 * this packet, as well as the corresponding DMA mappings
1567 	 */
1568 	for (i = i - 1; i >= 0; i--) {
1569 		tx_desc = txq->descs + i;
1570 		dma_unmap_single(pp->dev->dev.parent,
1571 				 tx_desc->buf_phys_addr,
1572 				 tx_desc->data_size,
1573 				 DMA_TO_DEVICE);
1574 		mvneta_txq_desc_put(txq);
1575 	}
1576 
1577 	return -ENOMEM;
1578 }
1579 
1580 /* Main tx processing */
1581 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1582 {
1583 	struct mvneta_port *pp = netdev_priv(dev);
1584 	u16 txq_id = skb_get_queue_mapping(skb);
1585 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1586 	struct mvneta_tx_desc *tx_desc;
1587 	struct netdev_queue *nq;
1588 	int frags = 0;
1589 	u32 tx_cmd;
1590 
1591 	if (!netif_running(dev))
1592 		goto out;
1593 
1594 	frags = skb_shinfo(skb)->nr_frags + 1;
1595 	nq    = netdev_get_tx_queue(dev, txq_id);
1596 
1597 	/* Get a descriptor for the first part of the packet */
1598 	tx_desc = mvneta_txq_next_desc_get(txq);
1599 
1600 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1601 
1602 	tx_desc->data_size = skb_headlen(skb);
1603 
1604 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1605 						tx_desc->data_size,
1606 						DMA_TO_DEVICE);
1607 	if (unlikely(dma_mapping_error(dev->dev.parent,
1608 				       tx_desc->buf_phys_addr))) {
1609 		mvneta_txq_desc_put(txq);
1610 		frags = 0;
1611 		goto out;
1612 	}
1613 
1614 	if (frags == 1) {
1615 		/* First and Last descriptor */
1616 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1617 		tx_desc->command = tx_cmd;
1618 		txq->tx_skb[txq->txq_put_index] = skb;
1619 		mvneta_txq_inc_put(txq);
1620 	} else {
1621 		/* First but not Last */
1622 		tx_cmd |= MVNETA_TXD_F_DESC;
1623 		txq->tx_skb[txq->txq_put_index] = NULL;
1624 		mvneta_txq_inc_put(txq);
1625 		tx_desc->command = tx_cmd;
1626 		/* Continue with other skb fragments */
1627 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1628 			dma_unmap_single(dev->dev.parent,
1629 					 tx_desc->buf_phys_addr,
1630 					 tx_desc->data_size,
1631 					 DMA_TO_DEVICE);
1632 			mvneta_txq_desc_put(txq);
1633 			frags = 0;
1634 			goto out;
1635 		}
1636 	}
1637 
1638 	txq->count += frags;
1639 	mvneta_txq_pend_desc_add(pp, txq, frags);
1640 
1641 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1642 		netif_tx_stop_queue(nq);
1643 
1644 out:
1645 	if (frags > 0) {
1646 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1647 
1648 		u64_stats_update_begin(&stats->syncp);
1649 		stats->tx_packets++;
1650 		stats->tx_bytes  += skb->len;
1651 		u64_stats_update_end(&stats->syncp);
1652 	} else {
1653 		dev->stats.tx_dropped++;
1654 		dev_kfree_skb_any(skb);
1655 	}
1656 
1657 	return NETDEV_TX_OK;
1658 }
1659 
1660 
1661 /* Free tx resources, when resetting a port */
1662 static void mvneta_txq_done_force(struct mvneta_port *pp,
1663 				  struct mvneta_tx_queue *txq)
1664 
1665 {
1666 	int tx_done = txq->count;
1667 
1668 	mvneta_txq_bufs_free(pp, txq, tx_done);
1669 
1670 	/* reset txq */
1671 	txq->count = 0;
1672 	txq->txq_put_index = 0;
1673 	txq->txq_get_index = 0;
1674 }
1675 
1676 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1677  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1678  */
1679 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1680 {
1681 	struct mvneta_tx_queue *txq;
1682 	struct netdev_queue *nq;
1683 
1684 	while (cause_tx_done) {
1685 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1686 
1687 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1688 		__netif_tx_lock(nq, smp_processor_id());
1689 
1690 		if (txq->count)
1691 			mvneta_txq_done(pp, txq);
1692 
1693 		__netif_tx_unlock(nq);
1694 		cause_tx_done &= ~((1 << txq->id));
1695 	}
1696 }
1697 
1698 /* Compute crc8 of the specified address, using a unique algorithm ,
1699  * according to hw spec, different than generic crc8 algorithm
1700  */
1701 static int mvneta_addr_crc(unsigned char *addr)
1702 {
1703 	int crc = 0;
1704 	int i;
1705 
1706 	for (i = 0; i < ETH_ALEN; i++) {
1707 		int j;
1708 
1709 		crc = (crc ^ addr[i]) << 8;
1710 		for (j = 7; j >= 0; j--) {
1711 			if (crc & (0x100 << j))
1712 				crc ^= 0x107 << j;
1713 		}
1714 	}
1715 
1716 	return crc;
1717 }
1718 
1719 /* This method controls the net device special MAC multicast support.
1720  * The Special Multicast Table for MAC addresses supports MAC of the form
1721  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1722  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1723  * Table entries in the DA-Filter table. This method set the Special
1724  * Multicast Table appropriate entry.
1725  */
1726 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1727 					  unsigned char last_byte,
1728 					  int queue)
1729 {
1730 	unsigned int smc_table_reg;
1731 	unsigned int tbl_offset;
1732 	unsigned int reg_offset;
1733 
1734 	/* Register offset from SMC table base    */
1735 	tbl_offset = (last_byte / 4);
1736 	/* Entry offset within the above reg */
1737 	reg_offset = last_byte % 4;
1738 
1739 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1740 					+ tbl_offset * 4));
1741 
1742 	if (queue == -1)
1743 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1744 	else {
1745 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1746 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1747 	}
1748 
1749 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1750 		    smc_table_reg);
1751 }
1752 
1753 /* This method controls the network device Other MAC multicast support.
1754  * The Other Multicast Table is used for multicast of another type.
1755  * A CRC-8 is used as an index to the Other Multicast Table entries
1756  * in the DA-Filter table.
1757  * The method gets the CRC-8 value from the calling routine and
1758  * sets the Other Multicast Table appropriate entry according to the
1759  * specified CRC-8 .
1760  */
1761 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1762 					unsigned char crc8,
1763 					int queue)
1764 {
1765 	unsigned int omc_table_reg;
1766 	unsigned int tbl_offset;
1767 	unsigned int reg_offset;
1768 
1769 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1770 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1771 
1772 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1773 
1774 	if (queue == -1) {
1775 		/* Clear accepts frame bit at specified Other DA table entry */
1776 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1777 	} else {
1778 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1779 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1780 	}
1781 
1782 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1783 }
1784 
1785 /* The network device supports multicast using two tables:
1786  *    1) Special Multicast Table for MAC addresses of the form
1787  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1788  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1789  *       Table entries in the DA-Filter table.
1790  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1791  *       is used as an index to the Other Multicast Table entries in the
1792  *       DA-Filter table.
1793  */
1794 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1795 				 int queue)
1796 {
1797 	unsigned char crc_result = 0;
1798 
1799 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1800 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1801 		return 0;
1802 	}
1803 
1804 	crc_result = mvneta_addr_crc(p_addr);
1805 	if (queue == -1) {
1806 		if (pp->mcast_count[crc_result] == 0) {
1807 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1808 				    crc_result);
1809 			return -EINVAL;
1810 		}
1811 
1812 		pp->mcast_count[crc_result]--;
1813 		if (pp->mcast_count[crc_result] != 0) {
1814 			netdev_info(pp->dev,
1815 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1816 				    pp->mcast_count[crc_result], crc_result);
1817 			return -EINVAL;
1818 		}
1819 	} else
1820 		pp->mcast_count[crc_result]++;
1821 
1822 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1823 
1824 	return 0;
1825 }
1826 
1827 /* Configure Fitering mode of Ethernet port */
1828 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1829 					  int is_promisc)
1830 {
1831 	u32 port_cfg_reg, val;
1832 
1833 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1834 
1835 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1836 
1837 	/* Set / Clear UPM bit in port configuration register */
1838 	if (is_promisc) {
1839 		/* Accept all Unicast addresses */
1840 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1841 		val |= MVNETA_FORCE_UNI;
1842 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1843 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1844 	} else {
1845 		/* Reject all Unicast addresses */
1846 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1847 		val &= ~MVNETA_FORCE_UNI;
1848 	}
1849 
1850 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1851 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1852 }
1853 
1854 /* register unicast and multicast addresses */
1855 static void mvneta_set_rx_mode(struct net_device *dev)
1856 {
1857 	struct mvneta_port *pp = netdev_priv(dev);
1858 	struct netdev_hw_addr *ha;
1859 
1860 	if (dev->flags & IFF_PROMISC) {
1861 		/* Accept all: Multicast + Unicast */
1862 		mvneta_rx_unicast_promisc_set(pp, 1);
1863 		mvneta_set_ucast_table(pp, rxq_def);
1864 		mvneta_set_special_mcast_table(pp, rxq_def);
1865 		mvneta_set_other_mcast_table(pp, rxq_def);
1866 	} else {
1867 		/* Accept single Unicast */
1868 		mvneta_rx_unicast_promisc_set(pp, 0);
1869 		mvneta_set_ucast_table(pp, -1);
1870 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1871 
1872 		if (dev->flags & IFF_ALLMULTI) {
1873 			/* Accept all multicast */
1874 			mvneta_set_special_mcast_table(pp, rxq_def);
1875 			mvneta_set_other_mcast_table(pp, rxq_def);
1876 		} else {
1877 			/* Accept only initialized multicast */
1878 			mvneta_set_special_mcast_table(pp, -1);
1879 			mvneta_set_other_mcast_table(pp, -1);
1880 
1881 			if (!netdev_mc_empty(dev)) {
1882 				netdev_for_each_mc_addr(ha, dev) {
1883 					mvneta_mcast_addr_set(pp, ha->addr,
1884 							      rxq_def);
1885 				}
1886 			}
1887 		}
1888 	}
1889 }
1890 
1891 /* Interrupt handling - the callback for request_irq() */
1892 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1893 {
1894 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1895 
1896 	/* Mask all interrupts */
1897 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1898 
1899 	napi_schedule(&pp->napi);
1900 
1901 	return IRQ_HANDLED;
1902 }
1903 
1904 /* NAPI handler
1905  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1906  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1907  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1908  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1909  * Each CPU has its own causeRxTx register
1910  */
1911 static int mvneta_poll(struct napi_struct *napi, int budget)
1912 {
1913 	int rx_done = 0;
1914 	u32 cause_rx_tx;
1915 	unsigned long flags;
1916 	struct mvneta_port *pp = netdev_priv(napi->dev);
1917 
1918 	if (!netif_running(pp->dev)) {
1919 		napi_complete(napi);
1920 		return rx_done;
1921 	}
1922 
1923 	/* Read cause register */
1924 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1925 		(MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1926 
1927 	/* Release Tx descriptors */
1928 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
1929 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
1930 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
1931 	}
1932 
1933 	/* For the case where the last mvneta_poll did not process all
1934 	 * RX packets
1935 	 */
1936 	cause_rx_tx |= pp->cause_rx_tx;
1937 	if (rxq_number > 1) {
1938 		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
1939 			int count;
1940 			struct mvneta_rx_queue *rxq;
1941 			/* get rx queue number from cause_rx_tx */
1942 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1943 			if (!rxq)
1944 				break;
1945 
1946 			/* process the packet in that rx queue */
1947 			count = mvneta_rx(pp, budget, rxq);
1948 			rx_done += count;
1949 			budget -= count;
1950 			if (budget > 0) {
1951 				/* set off the rx bit of the
1952 				 * corresponding bit in the cause rx
1953 				 * tx register, so that next iteration
1954 				 * will find the next rx queue where
1955 				 * packets are received on
1956 				 */
1957 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1958 			}
1959 		}
1960 	} else {
1961 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1962 		budget -= rx_done;
1963 	}
1964 
1965 	if (budget > 0) {
1966 		cause_rx_tx = 0;
1967 		napi_complete(napi);
1968 		local_irq_save(flags);
1969 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1970 			    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1971 		local_irq_restore(flags);
1972 	}
1973 
1974 	pp->cause_rx_tx = cause_rx_tx;
1975 	return rx_done;
1976 }
1977 
1978 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1979 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1980 			   int num)
1981 {
1982 	int i;
1983 
1984 	for (i = 0; i < num; i++) {
1985 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
1986 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
1987 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
1988 				__func__, rxq->id, i, num);
1989 			break;
1990 		}
1991 	}
1992 
1993 	/* Add this number of RX descriptors as non occupied (ready to
1994 	 * get packets)
1995 	 */
1996 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1997 
1998 	return i;
1999 }
2000 
2001 /* Free all packets pending transmit from all TXQs and reset TX port */
2002 static void mvneta_tx_reset(struct mvneta_port *pp)
2003 {
2004 	int queue;
2005 
2006 	/* free the skb's in the hal tx ring */
2007 	for (queue = 0; queue < txq_number; queue++)
2008 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2009 
2010 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2011 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2012 }
2013 
2014 static void mvneta_rx_reset(struct mvneta_port *pp)
2015 {
2016 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2017 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2018 }
2019 
2020 /* Rx/Tx queue initialization/cleanup methods */
2021 
2022 /* Create a specified RX queue */
2023 static int mvneta_rxq_init(struct mvneta_port *pp,
2024 			   struct mvneta_rx_queue *rxq)
2025 
2026 {
2027 	rxq->size = pp->rx_ring_size;
2028 
2029 	/* Allocate memory for RX descriptors */
2030 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2031 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2032 					&rxq->descs_phys, GFP_KERNEL);
2033 	if (rxq->descs == NULL)
2034 		return -ENOMEM;
2035 
2036 	BUG_ON(rxq->descs !=
2037 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2038 
2039 	rxq->last_desc = rxq->size - 1;
2040 
2041 	/* Set Rx descriptors queue starting address */
2042 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2043 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2044 
2045 	/* Set Offset */
2046 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2047 
2048 	/* Set coalescing pkts and time */
2049 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2050 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2051 
2052 	/* Fill RXQ with buffers from RX pool */
2053 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2054 	mvneta_rxq_bm_disable(pp, rxq);
2055 	mvneta_rxq_fill(pp, rxq, rxq->size);
2056 
2057 	return 0;
2058 }
2059 
2060 /* Cleanup Rx queue */
2061 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2062 			      struct mvneta_rx_queue *rxq)
2063 {
2064 	mvneta_rxq_drop_pkts(pp, rxq);
2065 
2066 	if (rxq->descs)
2067 		dma_free_coherent(pp->dev->dev.parent,
2068 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2069 				  rxq->descs,
2070 				  rxq->descs_phys);
2071 
2072 	rxq->descs             = NULL;
2073 	rxq->last_desc         = 0;
2074 	rxq->next_desc_to_proc = 0;
2075 	rxq->descs_phys        = 0;
2076 }
2077 
2078 /* Create and initialize a tx queue */
2079 static int mvneta_txq_init(struct mvneta_port *pp,
2080 			   struct mvneta_tx_queue *txq)
2081 {
2082 	txq->size = pp->tx_ring_size;
2083 
2084 	/* Allocate memory for TX descriptors */
2085 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2086 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2087 					&txq->descs_phys, GFP_KERNEL);
2088 	if (txq->descs == NULL)
2089 		return -ENOMEM;
2090 
2091 	/* Make sure descriptor address is cache line size aligned  */
2092 	BUG_ON(txq->descs !=
2093 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2094 
2095 	txq->last_desc = txq->size - 1;
2096 
2097 	/* Set maximum bandwidth for enabled TXQs */
2098 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2099 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2100 
2101 	/* Set Tx descriptors queue starting address */
2102 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2103 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2104 
2105 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2106 	if (txq->tx_skb == NULL) {
2107 		dma_free_coherent(pp->dev->dev.parent,
2108 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2109 				  txq->descs, txq->descs_phys);
2110 		return -ENOMEM;
2111 	}
2112 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2113 
2114 	return 0;
2115 }
2116 
2117 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2118 static void mvneta_txq_deinit(struct mvneta_port *pp,
2119 			      struct mvneta_tx_queue *txq)
2120 {
2121 	kfree(txq->tx_skb);
2122 
2123 	if (txq->descs)
2124 		dma_free_coherent(pp->dev->dev.parent,
2125 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2126 				  txq->descs, txq->descs_phys);
2127 
2128 	txq->descs             = NULL;
2129 	txq->last_desc         = 0;
2130 	txq->next_desc_to_proc = 0;
2131 	txq->descs_phys        = 0;
2132 
2133 	/* Set minimum bandwidth for disabled TXQs */
2134 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2135 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2136 
2137 	/* Set Tx descriptors queue starting address and size */
2138 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2139 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2140 }
2141 
2142 /* Cleanup all Tx queues */
2143 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2144 {
2145 	int queue;
2146 
2147 	for (queue = 0; queue < txq_number; queue++)
2148 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2149 }
2150 
2151 /* Cleanup all Rx queues */
2152 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2153 {
2154 	int queue;
2155 
2156 	for (queue = 0; queue < rxq_number; queue++)
2157 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2158 }
2159 
2160 
2161 /* Init all Rx queues */
2162 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2163 {
2164 	int queue;
2165 
2166 	for (queue = 0; queue < rxq_number; queue++) {
2167 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2168 		if (err) {
2169 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2170 				   __func__, queue);
2171 			mvneta_cleanup_rxqs(pp);
2172 			return err;
2173 		}
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /* Init all tx queues */
2180 static int mvneta_setup_txqs(struct mvneta_port *pp)
2181 {
2182 	int queue;
2183 
2184 	for (queue = 0; queue < txq_number; queue++) {
2185 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2186 		if (err) {
2187 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2188 				   __func__, queue);
2189 			mvneta_cleanup_txqs(pp);
2190 			return err;
2191 		}
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static void mvneta_start_dev(struct mvneta_port *pp)
2198 {
2199 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2200 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2201 
2202 	/* start the Rx/Tx activity */
2203 	mvneta_port_enable(pp);
2204 
2205 	/* Enable polling on the port */
2206 	napi_enable(&pp->napi);
2207 
2208 	/* Unmask interrupts */
2209 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2210 		    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2211 
2212 	phy_start(pp->phy_dev);
2213 	netif_tx_start_all_queues(pp->dev);
2214 }
2215 
2216 static void mvneta_stop_dev(struct mvneta_port *pp)
2217 {
2218 	phy_stop(pp->phy_dev);
2219 
2220 	napi_disable(&pp->napi);
2221 
2222 	netif_carrier_off(pp->dev);
2223 
2224 	mvneta_port_down(pp);
2225 	netif_tx_stop_all_queues(pp->dev);
2226 
2227 	/* Stop the port activity */
2228 	mvneta_port_disable(pp);
2229 
2230 	/* Clear all ethernet port interrupts */
2231 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2232 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2233 
2234 	/* Mask all ethernet port interrupts */
2235 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2236 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2237 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2238 
2239 	mvneta_tx_reset(pp);
2240 	mvneta_rx_reset(pp);
2241 }
2242 
2243 /* Return positive if MTU is valid */
2244 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2245 {
2246 	if (mtu < 68) {
2247 		netdev_err(dev, "cannot change mtu to less than 68\n");
2248 		return -EINVAL;
2249 	}
2250 
2251 	/* 9676 == 9700 - 20 and rounding to 8 */
2252 	if (mtu > 9676) {
2253 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2254 		mtu = 9676;
2255 	}
2256 
2257 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2258 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2259 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2260 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2261 	}
2262 
2263 	return mtu;
2264 }
2265 
2266 /* Change the device mtu */
2267 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2268 {
2269 	struct mvneta_port *pp = netdev_priv(dev);
2270 	int ret;
2271 
2272 	mtu = mvneta_check_mtu_valid(dev, mtu);
2273 	if (mtu < 0)
2274 		return -EINVAL;
2275 
2276 	dev->mtu = mtu;
2277 
2278 	if (!netif_running(dev))
2279 		return 0;
2280 
2281 	/* The interface is running, so we have to force a
2282 	 * reallocation of the RXQs
2283 	 */
2284 	mvneta_stop_dev(pp);
2285 
2286 	mvneta_cleanup_txqs(pp);
2287 	mvneta_cleanup_rxqs(pp);
2288 
2289 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2290 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2291 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2292 
2293 	ret = mvneta_setup_rxqs(pp);
2294 	if (ret) {
2295 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2296 		return ret;
2297 	}
2298 
2299 	mvneta_setup_txqs(pp);
2300 
2301 	mvneta_start_dev(pp);
2302 	mvneta_port_up(pp);
2303 
2304 	return 0;
2305 }
2306 
2307 /* Get mac address */
2308 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2309 {
2310 	u32 mac_addr_l, mac_addr_h;
2311 
2312 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2313 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2314 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2315 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2316 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2317 	addr[3] = mac_addr_h & 0xFF;
2318 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2319 	addr[5] = mac_addr_l & 0xFF;
2320 }
2321 
2322 /* Handle setting mac address */
2323 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2324 {
2325 	struct mvneta_port *pp = netdev_priv(dev);
2326 	u8 *mac = addr + 2;
2327 	int i;
2328 
2329 	if (netif_running(dev))
2330 		return -EBUSY;
2331 
2332 	/* Remove previous address table entry */
2333 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2334 
2335 	/* Set new addr in hw */
2336 	mvneta_mac_addr_set(pp, mac, rxq_def);
2337 
2338 	/* Set addr in the device */
2339 	for (i = 0; i < ETH_ALEN; i++)
2340 		dev->dev_addr[i] = mac[i];
2341 
2342 	return 0;
2343 }
2344 
2345 static void mvneta_adjust_link(struct net_device *ndev)
2346 {
2347 	struct mvneta_port *pp = netdev_priv(ndev);
2348 	struct phy_device *phydev = pp->phy_dev;
2349 	int status_change = 0;
2350 
2351 	if (phydev->link) {
2352 		if ((pp->speed != phydev->speed) ||
2353 		    (pp->duplex != phydev->duplex)) {
2354 			u32 val;
2355 
2356 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2357 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2358 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2359 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2360 				 MVNETA_GMAC_AN_SPEED_EN |
2361 				 MVNETA_GMAC_AN_DUPLEX_EN);
2362 
2363 			if (phydev->duplex)
2364 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2365 
2366 			if (phydev->speed == SPEED_1000)
2367 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2368 			else
2369 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2370 
2371 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2372 
2373 			pp->duplex = phydev->duplex;
2374 			pp->speed  = phydev->speed;
2375 		}
2376 	}
2377 
2378 	if (phydev->link != pp->link) {
2379 		if (!phydev->link) {
2380 			pp->duplex = -1;
2381 			pp->speed = 0;
2382 		}
2383 
2384 		pp->link = phydev->link;
2385 		status_change = 1;
2386 	}
2387 
2388 	if (status_change) {
2389 		if (phydev->link) {
2390 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2391 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2392 				MVNETA_GMAC_FORCE_LINK_DOWN);
2393 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2394 			mvneta_port_up(pp);
2395 			netdev_info(pp->dev, "link up\n");
2396 		} else {
2397 			mvneta_port_down(pp);
2398 			netdev_info(pp->dev, "link down\n");
2399 		}
2400 	}
2401 }
2402 
2403 static int mvneta_mdio_probe(struct mvneta_port *pp)
2404 {
2405 	struct phy_device *phy_dev;
2406 
2407 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2408 				 pp->phy_interface);
2409 	if (!phy_dev) {
2410 		netdev_err(pp->dev, "could not find the PHY\n");
2411 		return -ENODEV;
2412 	}
2413 
2414 	phy_dev->supported &= PHY_GBIT_FEATURES;
2415 	phy_dev->advertising = phy_dev->supported;
2416 
2417 	pp->phy_dev = phy_dev;
2418 	pp->link    = 0;
2419 	pp->duplex  = 0;
2420 	pp->speed   = 0;
2421 
2422 	return 0;
2423 }
2424 
2425 static void mvneta_mdio_remove(struct mvneta_port *pp)
2426 {
2427 	phy_disconnect(pp->phy_dev);
2428 	pp->phy_dev = NULL;
2429 }
2430 
2431 static int mvneta_open(struct net_device *dev)
2432 {
2433 	struct mvneta_port *pp = netdev_priv(dev);
2434 	int ret;
2435 
2436 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2437 
2438 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2439 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2440 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2441 
2442 	ret = mvneta_setup_rxqs(pp);
2443 	if (ret)
2444 		return ret;
2445 
2446 	ret = mvneta_setup_txqs(pp);
2447 	if (ret)
2448 		goto err_cleanup_rxqs;
2449 
2450 	/* Connect to port interrupt line */
2451 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2452 			  MVNETA_DRIVER_NAME, pp);
2453 	if (ret) {
2454 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2455 		goto err_cleanup_txqs;
2456 	}
2457 
2458 	/* In default link is down */
2459 	netif_carrier_off(pp->dev);
2460 
2461 	ret = mvneta_mdio_probe(pp);
2462 	if (ret < 0) {
2463 		netdev_err(dev, "cannot probe MDIO bus\n");
2464 		goto err_free_irq;
2465 	}
2466 
2467 	mvneta_start_dev(pp);
2468 
2469 	return 0;
2470 
2471 err_free_irq:
2472 	free_irq(pp->dev->irq, pp);
2473 err_cleanup_txqs:
2474 	mvneta_cleanup_txqs(pp);
2475 err_cleanup_rxqs:
2476 	mvneta_cleanup_rxqs(pp);
2477 	return ret;
2478 }
2479 
2480 /* Stop the port, free port interrupt line */
2481 static int mvneta_stop(struct net_device *dev)
2482 {
2483 	struct mvneta_port *pp = netdev_priv(dev);
2484 
2485 	mvneta_stop_dev(pp);
2486 	mvneta_mdio_remove(pp);
2487 	free_irq(dev->irq, pp);
2488 	mvneta_cleanup_rxqs(pp);
2489 	mvneta_cleanup_txqs(pp);
2490 
2491 	return 0;
2492 }
2493 
2494 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2495 {
2496 	struct mvneta_port *pp = netdev_priv(dev);
2497 	int ret;
2498 
2499 	if (!pp->phy_dev)
2500 		return -ENOTSUPP;
2501 
2502 	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2503 	if (!ret)
2504 		mvneta_adjust_link(dev);
2505 
2506 	return ret;
2507 }
2508 
2509 /* Ethtool methods */
2510 
2511 /* Get settings (phy address, speed) for ethtools */
2512 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2513 {
2514 	struct mvneta_port *pp = netdev_priv(dev);
2515 
2516 	if (!pp->phy_dev)
2517 		return -ENODEV;
2518 
2519 	return phy_ethtool_gset(pp->phy_dev, cmd);
2520 }
2521 
2522 /* Set settings (phy address, speed) for ethtools */
2523 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2524 {
2525 	struct mvneta_port *pp = netdev_priv(dev);
2526 
2527 	if (!pp->phy_dev)
2528 		return -ENODEV;
2529 
2530 	return phy_ethtool_sset(pp->phy_dev, cmd);
2531 }
2532 
2533 /* Set interrupt coalescing for ethtools */
2534 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2535 				       struct ethtool_coalesce *c)
2536 {
2537 	struct mvneta_port *pp = netdev_priv(dev);
2538 	int queue;
2539 
2540 	for (queue = 0; queue < rxq_number; queue++) {
2541 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2542 		rxq->time_coal = c->rx_coalesce_usecs;
2543 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2544 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2545 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2546 	}
2547 
2548 	for (queue = 0; queue < txq_number; queue++) {
2549 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2550 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2551 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2552 	}
2553 
2554 	return 0;
2555 }
2556 
2557 /* get coalescing for ethtools */
2558 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2559 				       struct ethtool_coalesce *c)
2560 {
2561 	struct mvneta_port *pp = netdev_priv(dev);
2562 
2563 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2564 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2565 
2566 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2567 	return 0;
2568 }
2569 
2570 
2571 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2572 				    struct ethtool_drvinfo *drvinfo)
2573 {
2574 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2575 		sizeof(drvinfo->driver));
2576 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2577 		sizeof(drvinfo->version));
2578 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2579 		sizeof(drvinfo->bus_info));
2580 }
2581 
2582 
2583 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2584 					 struct ethtool_ringparam *ring)
2585 {
2586 	struct mvneta_port *pp = netdev_priv(netdev);
2587 
2588 	ring->rx_max_pending = MVNETA_MAX_RXD;
2589 	ring->tx_max_pending = MVNETA_MAX_TXD;
2590 	ring->rx_pending = pp->rx_ring_size;
2591 	ring->tx_pending = pp->tx_ring_size;
2592 }
2593 
2594 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2595 					struct ethtool_ringparam *ring)
2596 {
2597 	struct mvneta_port *pp = netdev_priv(dev);
2598 
2599 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2600 		return -EINVAL;
2601 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2602 		ring->rx_pending : MVNETA_MAX_RXD;
2603 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2604 		ring->tx_pending : MVNETA_MAX_TXD;
2605 
2606 	if (netif_running(dev)) {
2607 		mvneta_stop(dev);
2608 		if (mvneta_open(dev)) {
2609 			netdev_err(dev,
2610 				   "error on opening device after ring param change\n");
2611 			return -ENOMEM;
2612 		}
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 static const struct net_device_ops mvneta_netdev_ops = {
2619 	.ndo_open            = mvneta_open,
2620 	.ndo_stop            = mvneta_stop,
2621 	.ndo_start_xmit      = mvneta_tx,
2622 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2623 	.ndo_set_mac_address = mvneta_set_mac_addr,
2624 	.ndo_change_mtu      = mvneta_change_mtu,
2625 	.ndo_get_stats64     = mvneta_get_stats64,
2626 	.ndo_do_ioctl        = mvneta_ioctl,
2627 };
2628 
2629 const struct ethtool_ops mvneta_eth_tool_ops = {
2630 	.get_link       = ethtool_op_get_link,
2631 	.get_settings   = mvneta_ethtool_get_settings,
2632 	.set_settings   = mvneta_ethtool_set_settings,
2633 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2634 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2635 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2636 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2637 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2638 };
2639 
2640 /* Initialize hw */
2641 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2642 {
2643 	int queue;
2644 
2645 	/* Disable port */
2646 	mvneta_port_disable(pp);
2647 
2648 	/* Set port default values */
2649 	mvneta_defaults_set(pp);
2650 
2651 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2652 			   GFP_KERNEL);
2653 	if (!pp->txqs)
2654 		return -ENOMEM;
2655 
2656 	/* Initialize TX descriptor rings */
2657 	for (queue = 0; queue < txq_number; queue++) {
2658 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2659 		txq->id = queue;
2660 		txq->size = pp->tx_ring_size;
2661 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2662 	}
2663 
2664 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2665 			   GFP_KERNEL);
2666 	if (!pp->rxqs) {
2667 		kfree(pp->txqs);
2668 		return -ENOMEM;
2669 	}
2670 
2671 	/* Create Rx descriptor rings */
2672 	for (queue = 0; queue < rxq_number; queue++) {
2673 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2674 		rxq->id = queue;
2675 		rxq->size = pp->rx_ring_size;
2676 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2677 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2678 	}
2679 
2680 	return 0;
2681 }
2682 
2683 static void mvneta_deinit(struct mvneta_port *pp)
2684 {
2685 	kfree(pp->txqs);
2686 	kfree(pp->rxqs);
2687 }
2688 
2689 /* platform glue : initialize decoding windows */
2690 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2691 				     const struct mbus_dram_target_info *dram)
2692 {
2693 	u32 win_enable;
2694 	u32 win_protect;
2695 	int i;
2696 
2697 	for (i = 0; i < 6; i++) {
2698 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2699 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2700 
2701 		if (i < 4)
2702 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2703 	}
2704 
2705 	win_enable = 0x3f;
2706 	win_protect = 0;
2707 
2708 	for (i = 0; i < dram->num_cs; i++) {
2709 		const struct mbus_dram_window *cs = dram->cs + i;
2710 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2711 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2712 
2713 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2714 			    (cs->size - 1) & 0xffff0000);
2715 
2716 		win_enable &= ~(1 << i);
2717 		win_protect |= 3 << (2 * i);
2718 	}
2719 
2720 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2721 }
2722 
2723 /* Power up the port */
2724 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2725 {
2726 	u32 ctrl;
2727 
2728 	/* MAC Cause register should be cleared */
2729 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2730 
2731 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2732 
2733 	/* Even though it might look weird, when we're configured in
2734 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2735 	 */
2736 	switch(phy_mode) {
2737 	case PHY_INTERFACE_MODE_QSGMII:
2738 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2739 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2740 		break;
2741 	case PHY_INTERFACE_MODE_SGMII:
2742 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2743 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2744 		break;
2745 	case PHY_INTERFACE_MODE_RGMII:
2746 	case PHY_INTERFACE_MODE_RGMII_ID:
2747 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
2748 		break;
2749 	default:
2750 		return -EINVAL;
2751 	}
2752 
2753 	/* Cancel Port Reset */
2754 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2755 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2756 
2757 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2758 		MVNETA_GMAC2_PORT_RESET) != 0)
2759 		continue;
2760 
2761 	return 0;
2762 }
2763 
2764 /* Device initialization routine */
2765 static int mvneta_probe(struct platform_device *pdev)
2766 {
2767 	const struct mbus_dram_target_info *dram_target_info;
2768 	struct resource *res;
2769 	struct device_node *dn = pdev->dev.of_node;
2770 	struct device_node *phy_node;
2771 	u32 phy_addr;
2772 	struct mvneta_port *pp;
2773 	struct net_device *dev;
2774 	const char *dt_mac_addr;
2775 	char hw_mac_addr[ETH_ALEN];
2776 	const char *mac_from;
2777 	int phy_mode;
2778 	int err;
2779 
2780 	/* Our multiqueue support is not complete, so for now, only
2781 	 * allow the usage of the first RX queue
2782 	 */
2783 	if (rxq_def != 0) {
2784 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2785 		return -EINVAL;
2786 	}
2787 
2788 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2789 	if (!dev)
2790 		return -ENOMEM;
2791 
2792 	dev->irq = irq_of_parse_and_map(dn, 0);
2793 	if (dev->irq == 0) {
2794 		err = -EINVAL;
2795 		goto err_free_netdev;
2796 	}
2797 
2798 	phy_node = of_parse_phandle(dn, "phy", 0);
2799 	if (!phy_node) {
2800 		dev_err(&pdev->dev, "no associated PHY\n");
2801 		err = -ENODEV;
2802 		goto err_free_irq;
2803 	}
2804 
2805 	phy_mode = of_get_phy_mode(dn);
2806 	if (phy_mode < 0) {
2807 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2808 		err = -EINVAL;
2809 		goto err_free_irq;
2810 	}
2811 
2812 	dev->tx_queue_len = MVNETA_MAX_TXD;
2813 	dev->watchdog_timeo = 5 * HZ;
2814 	dev->netdev_ops = &mvneta_netdev_ops;
2815 
2816 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2817 
2818 	pp = netdev_priv(dev);
2819 
2820 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2821 	pp->phy_node = phy_node;
2822 	pp->phy_interface = phy_mode;
2823 
2824 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2825 	if (IS_ERR(pp->clk)) {
2826 		err = PTR_ERR(pp->clk);
2827 		goto err_free_irq;
2828 	}
2829 
2830 	clk_prepare_enable(pp->clk);
2831 
2832 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2833 	pp->base = devm_ioremap_resource(&pdev->dev, res);
2834 	if (IS_ERR(pp->base)) {
2835 		err = PTR_ERR(pp->base);
2836 		goto err_clk;
2837 	}
2838 
2839 	/* Alloc per-cpu stats */
2840 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
2841 	if (!pp->stats) {
2842 		err = -ENOMEM;
2843 		goto err_clk;
2844 	}
2845 
2846 	dt_mac_addr = of_get_mac_address(dn);
2847 	if (dt_mac_addr) {
2848 		mac_from = "device tree";
2849 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2850 	} else {
2851 		mvneta_get_mac_addr(pp, hw_mac_addr);
2852 		if (is_valid_ether_addr(hw_mac_addr)) {
2853 			mac_from = "hardware";
2854 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2855 		} else {
2856 			mac_from = "random";
2857 			eth_hw_addr_random(dev);
2858 		}
2859 	}
2860 
2861 	pp->tx_ring_size = MVNETA_MAX_TXD;
2862 	pp->rx_ring_size = MVNETA_MAX_RXD;
2863 
2864 	pp->dev = dev;
2865 	SET_NETDEV_DEV(dev, &pdev->dev);
2866 
2867 	err = mvneta_init(pp, phy_addr);
2868 	if (err < 0) {
2869 		dev_err(&pdev->dev, "can't init eth hal\n");
2870 		goto err_free_stats;
2871 	}
2872 
2873 	err = mvneta_port_power_up(pp, phy_mode);
2874 	if (err < 0) {
2875 		dev_err(&pdev->dev, "can't power up port\n");
2876 		goto err_deinit;
2877 	}
2878 
2879 	dram_target_info = mv_mbus_dram_info();
2880 	if (dram_target_info)
2881 		mvneta_conf_mbus_windows(pp, dram_target_info);
2882 
2883 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2884 
2885 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2886 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2887 	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2888 	dev->priv_flags |= IFF_UNICAST_FLT;
2889 
2890 	err = register_netdev(dev);
2891 	if (err < 0) {
2892 		dev_err(&pdev->dev, "failed to register\n");
2893 		goto err_deinit;
2894 	}
2895 
2896 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2897 		    dev->dev_addr);
2898 
2899 	platform_set_drvdata(pdev, pp->dev);
2900 
2901 	return 0;
2902 
2903 err_deinit:
2904 	mvneta_deinit(pp);
2905 err_free_stats:
2906 	free_percpu(pp->stats);
2907 err_clk:
2908 	clk_disable_unprepare(pp->clk);
2909 err_free_irq:
2910 	irq_dispose_mapping(dev->irq);
2911 err_free_netdev:
2912 	free_netdev(dev);
2913 	return err;
2914 }
2915 
2916 /* Device removal routine */
2917 static int mvneta_remove(struct platform_device *pdev)
2918 {
2919 	struct net_device  *dev = platform_get_drvdata(pdev);
2920 	struct mvneta_port *pp = netdev_priv(dev);
2921 
2922 	unregister_netdev(dev);
2923 	mvneta_deinit(pp);
2924 	clk_disable_unprepare(pp->clk);
2925 	free_percpu(pp->stats);
2926 	irq_dispose_mapping(dev->irq);
2927 	free_netdev(dev);
2928 
2929 	return 0;
2930 }
2931 
2932 static const struct of_device_id mvneta_match[] = {
2933 	{ .compatible = "marvell,armada-370-neta" },
2934 	{ }
2935 };
2936 MODULE_DEVICE_TABLE(of, mvneta_match);
2937 
2938 static struct platform_driver mvneta_driver = {
2939 	.probe = mvneta_probe,
2940 	.remove = mvneta_remove,
2941 	.driver = {
2942 		.name = MVNETA_DRIVER_NAME,
2943 		.of_match_table = mvneta_match,
2944 	},
2945 };
2946 
2947 module_platform_driver(mvneta_driver);
2948 
2949 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2950 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2951 MODULE_LICENSE("GPL");
2952 
2953 module_param(rxq_number, int, S_IRUGO);
2954 module_param(txq_number, int, S_IRUGO);
2955 
2956 module_param(rxq_def, int, S_IRUGO);
2957 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
2958