1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
334 
335 #define IS_TSO_HEADER(txq, addr) \
336 	((addr >= txq->tso_hdrs_phys) && \
337 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338 
339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341 
342 enum {
343 	ETHTOOL_STAT_EEE_WAKEUP,
344 	ETHTOOL_STAT_SKB_ALLOC_ERR,
345 	ETHTOOL_STAT_REFILL_ERR,
346 	ETHTOOL_XDP_REDIRECT,
347 	ETHTOOL_XDP_PASS,
348 	ETHTOOL_XDP_DROP,
349 	ETHTOOL_XDP_TX,
350 	ETHTOOL_XDP_TX_ERR,
351 	ETHTOOL_XDP_XMIT,
352 	ETHTOOL_XDP_XMIT_ERR,
353 	ETHTOOL_MAX_STATS,
354 };
355 
356 struct mvneta_statistic {
357 	unsigned short offset;
358 	unsigned short type;
359 	const char name[ETH_GSTRING_LEN];
360 };
361 
362 #define T_REG_32	32
363 #define T_REG_64	64
364 #define T_SW		1
365 
366 #define MVNETA_XDP_PASS		0
367 #define MVNETA_XDP_DROPPED	BIT(0)
368 #define MVNETA_XDP_TX		BIT(1)
369 #define MVNETA_XDP_REDIR	BIT(2)
370 
371 static const struct mvneta_statistic mvneta_statistics[] = {
372 	{ 0x3000, T_REG_64, "good_octets_received", },
373 	{ 0x3010, T_REG_32, "good_frames_received", },
374 	{ 0x3008, T_REG_32, "bad_octets_received", },
375 	{ 0x3014, T_REG_32, "bad_frames_received", },
376 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
377 	{ 0x301c, T_REG_32, "multicast_frames_received", },
378 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
379 	{ 0x3058, T_REG_32, "good_fc_received", },
380 	{ 0x305c, T_REG_32, "bad_fc_received", },
381 	{ 0x3060, T_REG_32, "undersize_received", },
382 	{ 0x3064, T_REG_32, "fragments_received", },
383 	{ 0x3068, T_REG_32, "oversize_received", },
384 	{ 0x306c, T_REG_32, "jabber_received", },
385 	{ 0x3070, T_REG_32, "mac_receive_error", },
386 	{ 0x3074, T_REG_32, "bad_crc_event", },
387 	{ 0x3078, T_REG_32, "collision", },
388 	{ 0x307c, T_REG_32, "late_collision", },
389 	{ 0x2484, T_REG_32, "rx_discard", },
390 	{ 0x2488, T_REG_32, "rx_overrun", },
391 	{ 0x3020, T_REG_32, "frames_64_octets", },
392 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
393 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
394 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
395 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397 	{ 0x3038, T_REG_64, "good_octets_sent", },
398 	{ 0x3040, T_REG_32, "good_frames_sent", },
399 	{ 0x3044, T_REG_32, "excessive_collision", },
400 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
401 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
402 	{ 0x3054, T_REG_32, "fc_sent", },
403 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
404 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414 };
415 
416 struct mvneta_stats {
417 	u64	rx_packets;
418 	u64	rx_bytes;
419 	u64	tx_packets;
420 	u64	tx_bytes;
421 	/* xdp */
422 	u64	xdp_redirect;
423 	u64	xdp_pass;
424 	u64	xdp_drop;
425 	u64	xdp_xmit;
426 	u64	xdp_xmit_err;
427 	u64	xdp_tx;
428 	u64	xdp_tx_err;
429 };
430 
431 struct mvneta_ethtool_stats {
432 	struct mvneta_stats ps;
433 	u64	skb_alloc_error;
434 	u64	refill_error;
435 };
436 
437 struct mvneta_pcpu_stats {
438 	struct u64_stats_sync syncp;
439 
440 	struct mvneta_ethtool_stats es;
441 	u64	rx_dropped;
442 	u64	rx_errors;
443 };
444 
445 struct mvneta_pcpu_port {
446 	/* Pointer to the shared port */
447 	struct mvneta_port	*pp;
448 
449 	/* Pointer to the CPU-local NAPI struct */
450 	struct napi_struct	napi;
451 
452 	/* Cause of the previous interrupt */
453 	u32			cause_rx_tx;
454 };
455 
456 enum {
457 	__MVNETA_DOWN,
458 };
459 
460 struct mvneta_port {
461 	u8 id;
462 	struct mvneta_pcpu_port __percpu	*ports;
463 	struct mvneta_pcpu_stats __percpu	*stats;
464 
465 	unsigned long state;
466 
467 	int pkt_size;
468 	void __iomem *base;
469 	struct mvneta_rx_queue *rxqs;
470 	struct mvneta_tx_queue *txqs;
471 	struct net_device *dev;
472 	struct hlist_node node_online;
473 	struct hlist_node node_dead;
474 	int rxq_def;
475 	/* Protect the access to the percpu interrupt registers,
476 	 * ensuring that the configuration remains coherent.
477 	 */
478 	spinlock_t lock;
479 	bool is_stopped;
480 
481 	u32 cause_rx_tx;
482 	struct napi_struct napi;
483 
484 	struct bpf_prog *xdp_prog;
485 
486 	/* Core clock */
487 	struct clk *clk;
488 	/* AXI clock */
489 	struct clk *clk_bus;
490 	u8 mcast_count[256];
491 	u16 tx_ring_size;
492 	u16 rx_ring_size;
493 
494 	phy_interface_t phy_interface;
495 	struct device_node *dn;
496 	unsigned int tx_csum_limit;
497 	struct phylink *phylink;
498 	struct phylink_config phylink_config;
499 	struct phy *comphy;
500 
501 	struct mvneta_bm *bm_priv;
502 	struct mvneta_bm_pool *pool_long;
503 	struct mvneta_bm_pool *pool_short;
504 	int bm_win_id;
505 
506 	bool eee_enabled;
507 	bool eee_active;
508 	bool tx_lpi_enabled;
509 
510 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511 
512 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513 
514 	/* Flags for special SoC configurations */
515 	bool neta_armada3700;
516 	u16 rx_offset_correction;
517 	const struct mbus_dram_target_info *dram_target_info;
518 };
519 
520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521  * layout of the transmit and reception DMA descriptors, and their
522  * layout is therefore defined by the hardware design
523  */
524 
525 #define MVNETA_TX_L3_OFF_SHIFT	0
526 #define MVNETA_TX_IP_HLEN_SHIFT	8
527 #define MVNETA_TX_L4_UDP	BIT(16)
528 #define MVNETA_TX_L3_IP6	BIT(17)
529 #define MVNETA_TXD_IP_CSUM	BIT(18)
530 #define MVNETA_TXD_Z_PAD	BIT(19)
531 #define MVNETA_TXD_L_DESC	BIT(20)
532 #define MVNETA_TXD_F_DESC	BIT(21)
533 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
534 				 MVNETA_TXD_L_DESC | \
535 				 MVNETA_TXD_F_DESC)
536 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
537 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
538 
539 #define MVNETA_RXD_ERR_CRC		0x0
540 #define MVNETA_RXD_BM_POOL_SHIFT	13
541 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
542 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
543 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
544 #define MVNETA_RXD_ERR_LEN		BIT(18)
545 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
546 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
547 #define MVNETA_RXD_L3_IP4		BIT(25)
548 #define MVNETA_RXD_LAST_DESC		BIT(26)
549 #define MVNETA_RXD_FIRST_DESC		BIT(27)
550 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
551 					 MVNETA_RXD_LAST_DESC)
552 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
553 
554 #if defined(__LITTLE_ENDIAN)
555 struct mvneta_tx_desc {
556 	u32  command;		/* Options used by HW for packet transmitting.*/
557 	u16  reserved1;		/* csum_l4 (for future use)		*/
558 	u16  data_size;		/* Data size of transmitted packet in bytes */
559 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
560 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
561 	u32  reserved3[4];	/* Reserved - (for future use)		*/
562 };
563 
564 struct mvneta_rx_desc {
565 	u32  status;		/* Info about received packet		*/
566 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
567 	u16  data_size;		/* Size of received packet in bytes	*/
568 
569 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
570 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
571 
572 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
573 	u16  reserved3;		/* prefetch_cmd, for future use		*/
574 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
575 
576 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
577 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
578 };
579 #else
580 struct mvneta_tx_desc {
581 	u16  data_size;		/* Data size of transmitted packet in bytes */
582 	u16  reserved1;		/* csum_l4 (for future use)		*/
583 	u32  command;		/* Options used by HW for packet transmitting.*/
584 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
585 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
586 	u32  reserved3[4];	/* Reserved - (for future use)		*/
587 };
588 
589 struct mvneta_rx_desc {
590 	u16  data_size;		/* Size of received packet in bytes	*/
591 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
592 	u32  status;		/* Info about received packet		*/
593 
594 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
595 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
596 
597 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
598 	u16  reserved3;		/* prefetch_cmd, for future use		*/
599 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
600 
601 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
602 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
603 };
604 #endif
605 
606 enum mvneta_tx_buf_type {
607 	MVNETA_TYPE_SKB,
608 	MVNETA_TYPE_XDP_TX,
609 	MVNETA_TYPE_XDP_NDO,
610 };
611 
612 struct mvneta_tx_buf {
613 	enum mvneta_tx_buf_type type;
614 	union {
615 		struct xdp_frame *xdpf;
616 		struct sk_buff *skb;
617 	};
618 };
619 
620 struct mvneta_tx_queue {
621 	/* Number of this TX queue, in the range 0-7 */
622 	u8 id;
623 
624 	/* Number of TX DMA descriptors in the descriptor ring */
625 	int size;
626 
627 	/* Number of currently used TX DMA descriptor in the
628 	 * descriptor ring
629 	 */
630 	int count;
631 	int pending;
632 	int tx_stop_threshold;
633 	int tx_wake_threshold;
634 
635 	/* Array of transmitted buffers */
636 	struct mvneta_tx_buf *buf;
637 
638 	/* Index of last TX DMA descriptor that was inserted */
639 	int txq_put_index;
640 
641 	/* Index of the TX DMA descriptor to be cleaned up */
642 	int txq_get_index;
643 
644 	u32 done_pkts_coal;
645 
646 	/* Virtual address of the TX DMA descriptors array */
647 	struct mvneta_tx_desc *descs;
648 
649 	/* DMA address of the TX DMA descriptors array */
650 	dma_addr_t descs_phys;
651 
652 	/* Index of the last TX DMA descriptor */
653 	int last_desc;
654 
655 	/* Index of the next TX DMA descriptor to process */
656 	int next_desc_to_proc;
657 
658 	/* DMA buffers for TSO headers */
659 	char *tso_hdrs;
660 
661 	/* DMA address of TSO headers */
662 	dma_addr_t tso_hdrs_phys;
663 
664 	/* Affinity mask for CPUs*/
665 	cpumask_t affinity_mask;
666 };
667 
668 struct mvneta_rx_queue {
669 	/* rx queue number, in the range 0-7 */
670 	u8 id;
671 
672 	/* num of rx descriptors in the rx descriptor ring */
673 	int size;
674 
675 	u32 pkts_coal;
676 	u32 time_coal;
677 
678 	/* page_pool */
679 	struct page_pool *page_pool;
680 	struct xdp_rxq_info xdp_rxq;
681 
682 	/* Virtual address of the RX buffer */
683 	void  **buf_virt_addr;
684 
685 	/* Virtual address of the RX DMA descriptors array */
686 	struct mvneta_rx_desc *descs;
687 
688 	/* DMA address of the RX DMA descriptors array */
689 	dma_addr_t descs_phys;
690 
691 	/* Index of the last RX DMA descriptor */
692 	int last_desc;
693 
694 	/* Index of the next RX DMA descriptor to process */
695 	int next_desc_to_proc;
696 
697 	/* Index of first RX DMA descriptor to refill */
698 	int first_to_refill;
699 	u32 refill_num;
700 };
701 
702 static enum cpuhp_state online_hpstate;
703 /* The hardware supports eight (8) rx queues, but we are only allowing
704  * the first one to be used. Therefore, let's just allocate one queue.
705  */
706 static int rxq_number = 8;
707 static int txq_number = 8;
708 
709 static int rxq_def;
710 
711 static int rx_copybreak __read_mostly = 256;
712 
713 /* HW BM need that each port be identify by a unique ID */
714 static int global_port_id;
715 
716 #define MVNETA_DRIVER_NAME "mvneta"
717 #define MVNETA_DRIVER_VERSION "1.0"
718 
719 /* Utility/helper methods */
720 
721 /* Write helper method */
722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723 {
724 	writel(data, pp->base + offset);
725 }
726 
727 /* Read helper method */
728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729 {
730 	return readl(pp->base + offset);
731 }
732 
733 /* Increment txq get counter */
734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735 {
736 	txq->txq_get_index++;
737 	if (txq->txq_get_index == txq->size)
738 		txq->txq_get_index = 0;
739 }
740 
741 /* Increment txq put counter */
742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743 {
744 	txq->txq_put_index++;
745 	if (txq->txq_put_index == txq->size)
746 		txq->txq_put_index = 0;
747 }
748 
749 
750 /* Clear all MIB counters */
751 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752 {
753 	int i;
754 
755 	/* Perform dummy reads from MIB counters */
756 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
757 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
758 	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
759 	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
760 }
761 
762 /* Get System Network Statistics */
763 static void
764 mvneta_get_stats64(struct net_device *dev,
765 		   struct rtnl_link_stats64 *stats)
766 {
767 	struct mvneta_port *pp = netdev_priv(dev);
768 	unsigned int start;
769 	int cpu;
770 
771 	for_each_possible_cpu(cpu) {
772 		struct mvneta_pcpu_stats *cpu_stats;
773 		u64 rx_packets;
774 		u64 rx_bytes;
775 		u64 rx_dropped;
776 		u64 rx_errors;
777 		u64 tx_packets;
778 		u64 tx_bytes;
779 
780 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
781 		do {
782 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
783 			rx_packets = cpu_stats->es.ps.rx_packets;
784 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
785 			rx_dropped = cpu_stats->rx_dropped;
786 			rx_errors  = cpu_stats->rx_errors;
787 			tx_packets = cpu_stats->es.ps.tx_packets;
788 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
789 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
790 
791 		stats->rx_packets += rx_packets;
792 		stats->rx_bytes   += rx_bytes;
793 		stats->rx_dropped += rx_dropped;
794 		stats->rx_errors  += rx_errors;
795 		stats->tx_packets += tx_packets;
796 		stats->tx_bytes   += tx_bytes;
797 	}
798 
799 	stats->tx_dropped	= dev->stats.tx_dropped;
800 }
801 
802 /* Rx descriptors helper methods */
803 
804 /* Checks whether the RX descriptor having this status is both the first
805  * and the last descriptor for the RX packet. Each RX packet is currently
806  * received through a single RX descriptor, so not having each RX
807  * descriptor with its first and last bits set is an error
808  */
809 static int mvneta_rxq_desc_is_first_last(u32 status)
810 {
811 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
812 		MVNETA_RXD_FIRST_LAST_DESC;
813 }
814 
815 /* Add number of descriptors ready to receive new packets */
816 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
817 					  struct mvneta_rx_queue *rxq,
818 					  int ndescs)
819 {
820 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
821 	 * be added at once
822 	 */
823 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
824 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
825 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
826 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
827 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
828 	}
829 
830 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
832 }
833 
834 /* Get number of RX descriptors occupied by received packets */
835 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
836 					struct mvneta_rx_queue *rxq)
837 {
838 	u32 val;
839 
840 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
841 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
842 }
843 
844 /* Update num of rx desc called upon return from rx path or
845  * from mvneta_rxq_drop_pkts().
846  */
847 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
848 				       struct mvneta_rx_queue *rxq,
849 				       int rx_done, int rx_filled)
850 {
851 	u32 val;
852 
853 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
854 		val = rx_done |
855 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
856 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
857 		return;
858 	}
859 
860 	/* Only 255 descriptors can be added at once */
861 	while ((rx_done > 0) || (rx_filled > 0)) {
862 		if (rx_done <= 0xff) {
863 			val = rx_done;
864 			rx_done = 0;
865 		} else {
866 			val = 0xff;
867 			rx_done -= 0xff;
868 		}
869 		if (rx_filled <= 0xff) {
870 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871 			rx_filled = 0;
872 		} else {
873 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 			rx_filled -= 0xff;
875 		}
876 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
877 	}
878 }
879 
880 /* Get pointer to next RX descriptor to be processed by SW */
881 static struct mvneta_rx_desc *
882 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
883 {
884 	int rx_desc = rxq->next_desc_to_proc;
885 
886 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
887 	prefetch(rxq->descs + rxq->next_desc_to_proc);
888 	return rxq->descs + rx_desc;
889 }
890 
891 /* Change maximum receive size of the port. */
892 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
893 {
894 	u32 val;
895 
896 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
897 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
898 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
899 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
900 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
901 }
902 
903 
904 /* Set rx queue offset */
905 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
906 				  struct mvneta_rx_queue *rxq,
907 				  int offset)
908 {
909 	u32 val;
910 
911 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
913 
914 	/* Offset is in */
915 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
916 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
917 }
918 
919 
920 /* Tx descriptors helper methods */
921 
922 /* Update HW with number of TX descriptors to be sent */
923 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
924 				     struct mvneta_tx_queue *txq,
925 				     int pend_desc)
926 {
927 	u32 val;
928 
929 	pend_desc += txq->pending;
930 
931 	/* Only 255 Tx descriptors can be added at once */
932 	do {
933 		val = min(pend_desc, 255);
934 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
935 		pend_desc -= val;
936 	} while (pend_desc > 0);
937 	txq->pending = 0;
938 }
939 
940 /* Get pointer to next TX descriptor to be processed (send) by HW */
941 static struct mvneta_tx_desc *
942 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
943 {
944 	int tx_desc = txq->next_desc_to_proc;
945 
946 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
947 	return txq->descs + tx_desc;
948 }
949 
950 /* Release the last allocated TX descriptor. Useful to handle DMA
951  * mapping failures in the TX path.
952  */
953 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
954 {
955 	if (txq->next_desc_to_proc == 0)
956 		txq->next_desc_to_proc = txq->last_desc - 1;
957 	else
958 		txq->next_desc_to_proc--;
959 }
960 
961 /* Set rxq buf size */
962 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
963 				    struct mvneta_rx_queue *rxq,
964 				    int buf_size)
965 {
966 	u32 val;
967 
968 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
969 
970 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
971 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
972 
973 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
974 }
975 
976 /* Disable buffer management (BM) */
977 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
978 				  struct mvneta_rx_queue *rxq)
979 {
980 	u32 val;
981 
982 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
983 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
984 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
985 }
986 
987 /* Enable buffer management (BM) */
988 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
989 				 struct mvneta_rx_queue *rxq)
990 {
991 	u32 val;
992 
993 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
994 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
995 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
996 }
997 
998 /* Notify HW about port's assignment of pool for bigger packets */
999 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000 				     struct mvneta_rx_queue *rxq)
1001 {
1002 	u32 val;
1003 
1004 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007 
1008 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009 }
1010 
1011 /* Notify HW about port's assignment of pool for smaller packets */
1012 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013 				      struct mvneta_rx_queue *rxq)
1014 {
1015 	u32 val;
1016 
1017 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020 
1021 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022 }
1023 
1024 /* Set port's receive buffer size for assigned BM pool */
1025 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026 					      int buf_size,
1027 					      u8 pool_id)
1028 {
1029 	u32 val;
1030 
1031 	if (!IS_ALIGNED(buf_size, 8)) {
1032 		dev_warn(pp->dev->dev.parent,
1033 			 "illegal buf_size value %d, round to %d\n",
1034 			 buf_size, ALIGN(buf_size, 8));
1035 		buf_size = ALIGN(buf_size, 8);
1036 	}
1037 
1038 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041 }
1042 
1043 /* Configure MBUS window in order to enable access BM internal SRAM */
1044 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045 				  u8 target, u8 attr)
1046 {
1047 	u32 win_enable, win_protect;
1048 	int i;
1049 
1050 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051 
1052 	if (pp->bm_win_id < 0) {
1053 		/* Find first not occupied window */
1054 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055 			if (win_enable & (1 << i)) {
1056 				pp->bm_win_id = i;
1057 				break;
1058 			}
1059 		}
1060 		if (i == MVNETA_MAX_DECODE_WIN)
1061 			return -ENOMEM;
1062 	} else {
1063 		i = pp->bm_win_id;
1064 	}
1065 
1066 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068 
1069 	if (i < 4)
1070 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071 
1072 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073 		    (attr << 8) | target);
1074 
1075 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076 
1077 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078 	win_protect |= 3 << (2 * i);
1079 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080 
1081 	win_enable &= ~(1 << i);
1082 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083 
1084 	return 0;
1085 }
1086 
1087 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088 {
1089 	u32 wsize;
1090 	u8 target, attr;
1091 	int err;
1092 
1093 	/* Get BM window information */
1094 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095 					 &target, &attr);
1096 	if (err < 0)
1097 		return err;
1098 
1099 	pp->bm_win_id = -1;
1100 
1101 	/* Open NETA -> BM window */
1102 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103 				     target, attr);
1104 	if (err < 0) {
1105 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106 		return err;
1107 	}
1108 	return 0;
1109 }
1110 
1111 /* Assign and initialize pools for port. In case of fail
1112  * buffer manager will remain disabled for current port.
1113  */
1114 static int mvneta_bm_port_init(struct platform_device *pdev,
1115 			       struct mvneta_port *pp)
1116 {
1117 	struct device_node *dn = pdev->dev.of_node;
1118 	u32 long_pool_id, short_pool_id;
1119 
1120 	if (!pp->neta_armada3700) {
1121 		int ret;
1122 
1123 		ret = mvneta_bm_port_mbus_init(pp);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129 		netdev_info(pp->dev, "missing long pool id\n");
1130 		return -EINVAL;
1131 	}
1132 
1133 	/* Create port's long pool depending on mtu */
1134 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135 					   MVNETA_BM_LONG, pp->id,
1136 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137 	if (!pp->pool_long) {
1138 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139 		return -ENOMEM;
1140 	}
1141 
1142 	pp->pool_long->port_map |= 1 << pp->id;
1143 
1144 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145 				   pp->pool_long->id);
1146 
1147 	/* If short pool id is not defined, assume using single pool */
1148 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149 		short_pool_id = long_pool_id;
1150 
1151 	/* Create port's short pool */
1152 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153 					    MVNETA_BM_SHORT, pp->id,
1154 					    MVNETA_BM_SHORT_PKT_SIZE);
1155 	if (!pp->pool_short) {
1156 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158 		return -ENOMEM;
1159 	}
1160 
1161 	if (short_pool_id != long_pool_id) {
1162 		pp->pool_short->port_map |= 1 << pp->id;
1163 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164 					   pp->pool_short->id);
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /* Update settings of a pool for bigger packets */
1171 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172 {
1173 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175 	int num;
1176 
1177 	/* Release all buffers from long pool */
1178 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179 	if (hwbm_pool->buf_num) {
1180 		WARN(1, "cannot free all buffers in pool %d\n",
1181 		     bm_pool->id);
1182 		goto bm_mtu_err;
1183 	}
1184 
1185 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189 
1190 	/* Fill entire long pool */
1191 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192 	if (num != hwbm_pool->size) {
1193 		WARN(1, "pool %d: %d of %d allocated\n",
1194 		     bm_pool->id, num, hwbm_pool->size);
1195 		goto bm_mtu_err;
1196 	}
1197 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198 
1199 	return;
1200 
1201 bm_mtu_err:
1202 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204 
1205 	pp->bm_priv = NULL;
1206 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209 }
1210 
1211 /* Start the Ethernet port RX and TX activity */
1212 static void mvneta_port_up(struct mvneta_port *pp)
1213 {
1214 	int queue;
1215 	u32 q_map;
1216 
1217 	/* Enable all initialized TXs. */
1218 	q_map = 0;
1219 	for (queue = 0; queue < txq_number; queue++) {
1220 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221 		if (txq->descs)
1222 			q_map |= (1 << queue);
1223 	}
1224 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225 
1226 	q_map = 0;
1227 	/* Enable all initialized RXQs. */
1228 	for (queue = 0; queue < rxq_number; queue++) {
1229 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230 
1231 		if (rxq->descs)
1232 			q_map |= (1 << queue);
1233 	}
1234 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235 }
1236 
1237 /* Stop the Ethernet port activity */
1238 static void mvneta_port_down(struct mvneta_port *pp)
1239 {
1240 	u32 val;
1241 	int count;
1242 
1243 	/* Stop Rx port activity. Check port Rx activity. */
1244 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245 
1246 	/* Issue stop command for active channels only */
1247 	if (val != 0)
1248 		mvreg_write(pp, MVNETA_RXQ_CMD,
1249 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1250 
1251 	/* Wait for all Rx activity to terminate. */
1252 	count = 0;
1253 	do {
1254 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255 			netdev_warn(pp->dev,
1256 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257 				    val);
1258 			break;
1259 		}
1260 		mdelay(1);
1261 
1262 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1264 
1265 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1266 	 * command for active channels only
1267 	 */
1268 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269 
1270 	if (val != 0)
1271 		mvreg_write(pp, MVNETA_TXQ_CMD,
1272 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1273 
1274 	/* Wait for all Tx activity to terminate. */
1275 	count = 0;
1276 	do {
1277 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278 			netdev_warn(pp->dev,
1279 				    "TIMEOUT for TX stopped status=0x%08x\n",
1280 				    val);
1281 			break;
1282 		}
1283 		mdelay(1);
1284 
1285 		/* Check TX Command reg that all Txqs are stopped */
1286 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287 
1288 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1289 
1290 	/* Double check to verify that TX FIFO is empty */
1291 	count = 0;
1292 	do {
1293 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294 			netdev_warn(pp->dev,
1295 				    "TX FIFO empty timeout status=0x%08x\n",
1296 				    val);
1297 			break;
1298 		}
1299 		mdelay(1);
1300 
1301 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303 		 (val & MVNETA_TX_IN_PRGRS));
1304 
1305 	udelay(200);
1306 }
1307 
1308 /* Enable the port by setting the port enable bit of the MAC control register */
1309 static void mvneta_port_enable(struct mvneta_port *pp)
1310 {
1311 	u32 val;
1312 
1313 	/* Enable port */
1314 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315 	val |= MVNETA_GMAC0_PORT_ENABLE;
1316 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317 }
1318 
1319 /* Disable the port and wait for about 200 usec before retuning */
1320 static void mvneta_port_disable(struct mvneta_port *pp)
1321 {
1322 	u32 val;
1323 
1324 	/* Reset the Enable bit in the Serial Control Register */
1325 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328 
1329 	udelay(200);
1330 }
1331 
1332 /* Multicast tables methods */
1333 
1334 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1335 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336 {
1337 	int offset;
1338 	u32 val;
1339 
1340 	if (queue == -1) {
1341 		val = 0;
1342 	} else {
1343 		val = 0x1 | (queue << 1);
1344 		val |= (val << 24) | (val << 16) | (val << 8);
1345 	}
1346 
1347 	for (offset = 0; offset <= 0xc; offset += 4)
1348 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349 }
1350 
1351 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1352 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353 {
1354 	int offset;
1355 	u32 val;
1356 
1357 	if (queue == -1) {
1358 		val = 0;
1359 	} else {
1360 		val = 0x1 | (queue << 1);
1361 		val |= (val << 24) | (val << 16) | (val << 8);
1362 	}
1363 
1364 	for (offset = 0; offset <= 0xfc; offset += 4)
1365 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366 
1367 }
1368 
1369 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1370 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371 {
1372 	int offset;
1373 	u32 val;
1374 
1375 	if (queue == -1) {
1376 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377 		val = 0;
1378 	} else {
1379 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380 		val = 0x1 | (queue << 1);
1381 		val |= (val << 24) | (val << 16) | (val << 8);
1382 	}
1383 
1384 	for (offset = 0; offset <= 0xfc; offset += 4)
1385 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386 }
1387 
1388 static void mvneta_percpu_unmask_interrupt(void *arg)
1389 {
1390 	struct mvneta_port *pp = arg;
1391 
1392 	/* All the queue are unmasked, but actually only the ones
1393 	 * mapped to this CPU will be unmasked
1394 	 */
1395 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396 		    MVNETA_RX_INTR_MASK_ALL |
1397 		    MVNETA_TX_INTR_MASK_ALL |
1398 		    MVNETA_MISCINTR_INTR_MASK);
1399 }
1400 
1401 static void mvneta_percpu_mask_interrupt(void *arg)
1402 {
1403 	struct mvneta_port *pp = arg;
1404 
1405 	/* All the queue are masked, but actually only the ones
1406 	 * mapped to this CPU will be masked
1407 	 */
1408 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411 }
1412 
1413 static void mvneta_percpu_clear_intr_cause(void *arg)
1414 {
1415 	struct mvneta_port *pp = arg;
1416 
1417 	/* All the queue are cleared, but actually only the ones
1418 	 * mapped to this CPU will be cleared
1419 	 */
1420 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423 }
1424 
1425 /* This method sets defaults to the NETA port:
1426  *	Clears interrupt Cause and Mask registers.
1427  *	Clears all MAC tables.
1428  *	Sets defaults to all registers.
1429  *	Resets RX and TX descriptor rings.
1430  *	Resets PHY.
1431  * This method can be called after mvneta_port_down() to return the port
1432  *	settings to defaults.
1433  */
1434 static void mvneta_defaults_set(struct mvneta_port *pp)
1435 {
1436 	int cpu;
1437 	int queue;
1438 	u32 val;
1439 	int max_cpu = num_present_cpus();
1440 
1441 	/* Clear all Cause registers */
1442 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443 
1444 	/* Mask all interrupts */
1445 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447 
1448 	/* Enable MBUS Retry bit16 */
1449 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450 
1451 	/* Set CPU queue access map. CPUs are assigned to the RX and
1452 	 * TX queues modulo their number. If there is only one TX
1453 	 * queue then it is assigned to the CPU associated to the
1454 	 * default RX queue.
1455 	 */
1456 	for_each_present_cpu(cpu) {
1457 		int rxq_map = 0, txq_map = 0;
1458 		int rxq, txq;
1459 		if (!pp->neta_armada3700) {
1460 			for (rxq = 0; rxq < rxq_number; rxq++)
1461 				if ((rxq % max_cpu) == cpu)
1462 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463 
1464 			for (txq = 0; txq < txq_number; txq++)
1465 				if ((txq % max_cpu) == cpu)
1466 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467 
1468 			/* With only one TX queue we configure a special case
1469 			 * which will allow to get all the irq on a single
1470 			 * CPU
1471 			 */
1472 			if (txq_number == 1)
1473 				txq_map = (cpu == pp->rxq_def) ?
1474 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1475 
1476 		} else {
1477 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479 		}
1480 
1481 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482 	}
1483 
1484 	/* Reset RX and TX DMAs */
1485 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487 
1488 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1489 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490 	for (queue = 0; queue < txq_number; queue++) {
1491 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493 	}
1494 
1495 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497 
1498 	/* Set Port Acceleration Mode */
1499 	if (pp->bm_priv)
1500 		/* HW buffer management + legacy parser */
1501 		val = MVNETA_ACC_MODE_EXT2;
1502 	else
1503 		/* SW buffer management + legacy parser */
1504 		val = MVNETA_ACC_MODE_EXT1;
1505 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1506 
1507 	if (pp->bm_priv)
1508 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509 
1510 	/* Update val of portCfg register accordingly with all RxQueue types */
1511 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513 
1514 	val = 0;
1515 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517 
1518 	/* Build PORT_SDMA_CONFIG_REG */
1519 	val = 0;
1520 
1521 	/* Default burst size */
1522 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525 
1526 #if defined(__BIG_ENDIAN)
1527 	val |= MVNETA_DESC_SWAP;
1528 #endif
1529 
1530 	/* Assign port SDMA configuration */
1531 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532 
1533 	/* Disable PHY polling in hardware, since we're using the
1534 	 * kernel phylib to do this.
1535 	 */
1536 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1538 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539 
1540 	mvneta_set_ucast_table(pp, -1);
1541 	mvneta_set_special_mcast_table(pp, -1);
1542 	mvneta_set_other_mcast_table(pp, -1);
1543 
1544 	/* Set port interrupt enable register - default enable all */
1545 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1546 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548 
1549 	mvneta_mib_counters_clear(pp);
1550 }
1551 
1552 /* Set max sizes for tx queues */
1553 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554 
1555 {
1556 	u32 val, size, mtu;
1557 	int queue;
1558 
1559 	mtu = max_tx_size * 8;
1560 	if (mtu > MVNETA_TX_MTU_MAX)
1561 		mtu = MVNETA_TX_MTU_MAX;
1562 
1563 	/* Set MTU */
1564 	val = mvreg_read(pp, MVNETA_TX_MTU);
1565 	val &= ~MVNETA_TX_MTU_MAX;
1566 	val |= mtu;
1567 	mvreg_write(pp, MVNETA_TX_MTU, val);
1568 
1569 	/* TX token size and all TXQs token size must be larger that MTU */
1570 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571 
1572 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573 	if (size < mtu) {
1574 		size = mtu;
1575 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576 		val |= size;
1577 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578 	}
1579 	for (queue = 0; queue < txq_number; queue++) {
1580 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581 
1582 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583 		if (size < mtu) {
1584 			size = mtu;
1585 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 			val |= size;
1587 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588 		}
1589 	}
1590 }
1591 
1592 /* Set unicast address */
1593 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594 				  int queue)
1595 {
1596 	unsigned int unicast_reg;
1597 	unsigned int tbl_offset;
1598 	unsigned int reg_offset;
1599 
1600 	/* Locate the Unicast table entry */
1601 	last_nibble = (0xf & last_nibble);
1602 
1603 	/* offset from unicast tbl base */
1604 	tbl_offset = (last_nibble / 4) * 4;
1605 
1606 	/* offset within the above reg  */
1607 	reg_offset = last_nibble % 4;
1608 
1609 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610 
1611 	if (queue == -1) {
1612 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1613 		unicast_reg &= ~(0xff << (8 * reg_offset));
1614 	} else {
1615 		unicast_reg &= ~(0xff << (8 * reg_offset));
1616 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617 	}
1618 
1619 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620 }
1621 
1622 /* Set mac address */
1623 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624 				int queue)
1625 {
1626 	unsigned int mac_h;
1627 	unsigned int mac_l;
1628 
1629 	if (queue != -1) {
1630 		mac_l = (addr[4] << 8) | (addr[5]);
1631 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632 			(addr[2] << 8) | (addr[3] << 0);
1633 
1634 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636 	}
1637 
1638 	/* Accept frames of this address */
1639 	mvneta_set_ucast_addr(pp, addr[5], queue);
1640 }
1641 
1642 /* Set the number of packets that will be received before RX interrupt
1643  * will be generated by HW.
1644  */
1645 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646 				    struct mvneta_rx_queue *rxq, u32 value)
1647 {
1648 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1650 }
1651 
1652 /* Set the time delay in usec before RX interrupt will be generated by
1653  * HW.
1654  */
1655 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656 				    struct mvneta_rx_queue *rxq, u32 value)
1657 {
1658 	u32 val;
1659 	unsigned long clk_rate;
1660 
1661 	clk_rate = clk_get_rate(pp->clk);
1662 	val = (clk_rate / 1000000) * value;
1663 
1664 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665 }
1666 
1667 /* Set threshold for TX_DONE pkts coalescing */
1668 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669 					 struct mvneta_tx_queue *txq, u32 value)
1670 {
1671 	u32 val;
1672 
1673 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674 
1675 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677 
1678 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679 }
1680 
1681 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1682 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683 				u32 phys_addr, void *virt_addr,
1684 				struct mvneta_rx_queue *rxq)
1685 {
1686 	int i;
1687 
1688 	rx_desc->buf_phys_addr = phys_addr;
1689 	i = rx_desc - rxq->descs;
1690 	rxq->buf_virt_addr[i] = virt_addr;
1691 }
1692 
1693 /* Decrement sent descriptors counter */
1694 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695 				     struct mvneta_tx_queue *txq,
1696 				     int sent_desc)
1697 {
1698 	u32 val;
1699 
1700 	/* Only 255 TX descriptors can be updated at once */
1701 	while (sent_desc > 0xff) {
1702 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704 		sent_desc = sent_desc - 0xff;
1705 	}
1706 
1707 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709 }
1710 
1711 /* Get number of TX descriptors already sent by HW */
1712 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713 					struct mvneta_tx_queue *txq)
1714 {
1715 	u32 val;
1716 	int sent_desc;
1717 
1718 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720 		MVNETA_TXQ_SENT_DESC_SHIFT;
1721 
1722 	return sent_desc;
1723 }
1724 
1725 /* Get number of sent descriptors and decrement counter.
1726  *  The number of sent descriptors is returned.
1727  */
1728 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729 				     struct mvneta_tx_queue *txq)
1730 {
1731 	int sent_desc;
1732 
1733 	/* Get number of sent descriptors */
1734 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735 
1736 	/* Decrement sent descriptors counter */
1737 	if (sent_desc)
1738 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739 
1740 	return sent_desc;
1741 }
1742 
1743 /* Set TXQ descriptors fields relevant for CSUM calculation */
1744 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745 				int ip_hdr_len, int l4_proto)
1746 {
1747 	u32 command;
1748 
1749 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750 	 * G_L4_chk, L4_type; required only for checksum
1751 	 * calculation
1752 	 */
1753 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1754 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755 
1756 	if (l3_proto == htons(ETH_P_IP))
1757 		command |= MVNETA_TXD_IP_CSUM;
1758 	else
1759 		command |= MVNETA_TX_L3_IP6;
1760 
1761 	if (l4_proto == IPPROTO_TCP)
1762 		command |=  MVNETA_TX_L4_CSUM_FULL;
1763 	else if (l4_proto == IPPROTO_UDP)
1764 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765 	else
1766 		command |= MVNETA_TX_L4_CSUM_NOT;
1767 
1768 	return command;
1769 }
1770 
1771 
1772 /* Display more error info */
1773 static void mvneta_rx_error(struct mvneta_port *pp,
1774 			    struct mvneta_rx_desc *rx_desc)
1775 {
1776 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777 	u32 status = rx_desc->status;
1778 
1779 	/* update per-cpu counter */
1780 	u64_stats_update_begin(&stats->syncp);
1781 	stats->rx_errors++;
1782 	u64_stats_update_end(&stats->syncp);
1783 
1784 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785 	case MVNETA_RXD_ERR_CRC:
1786 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787 			   status, rx_desc->data_size);
1788 		break;
1789 	case MVNETA_RXD_ERR_OVERRUN:
1790 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791 			   status, rx_desc->data_size);
1792 		break;
1793 	case MVNETA_RXD_ERR_LEN:
1794 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795 			   status, rx_desc->data_size);
1796 		break;
1797 	case MVNETA_RXD_ERR_RESOURCE:
1798 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799 			   status, rx_desc->data_size);
1800 		break;
1801 	}
1802 }
1803 
1804 /* Handle RX checksum offload based on the descriptor's status */
1805 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806 			   struct sk_buff *skb)
1807 {
1808 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809 	    (status & MVNETA_RXD_L3_IP4) &&
1810 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1811 		skb->csum = 0;
1812 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1813 		return;
1814 	}
1815 
1816 	skb->ip_summed = CHECKSUM_NONE;
1817 }
1818 
1819 /* Return tx queue pointer (find last set bit) according to <cause> returned
1820  * form tx_done reg. <cause> must not be null. The return value is always a
1821  * valid queue for matching the first one found in <cause>.
1822  */
1823 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824 						     u32 cause)
1825 {
1826 	int queue = fls(cause) - 1;
1827 
1828 	return &pp->txqs[queue];
1829 }
1830 
1831 /* Free tx queue skbuffs */
1832 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833 				 struct mvneta_tx_queue *txq, int num,
1834 				 struct netdev_queue *nq, bool napi)
1835 {
1836 	unsigned int bytes_compl = 0, pkts_compl = 0;
1837 	struct xdp_frame_bulk bq;
1838 	int i;
1839 
1840 	xdp_frame_bulk_init(&bq);
1841 
1842 	rcu_read_lock(); /* need for xdp_return_frame_bulk */
1843 
1844 	for (i = 0; i < num; i++) {
1845 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1846 		struct mvneta_tx_desc *tx_desc = txq->descs +
1847 			txq->txq_get_index;
1848 
1849 		mvneta_txq_inc_get(txq);
1850 
1851 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1852 		    buf->type != MVNETA_TYPE_XDP_TX)
1853 			dma_unmap_single(pp->dev->dev.parent,
1854 					 tx_desc->buf_phys_addr,
1855 					 tx_desc->data_size, DMA_TO_DEVICE);
1856 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1857 			bytes_compl += buf->skb->len;
1858 			pkts_compl++;
1859 			dev_kfree_skb_any(buf->skb);
1860 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1861 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1862 			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1863 				xdp_return_frame_rx_napi(buf->xdpf);
1864 			else
1865 				xdp_return_frame_bulk(buf->xdpf, &bq);
1866 		}
1867 	}
1868 	xdp_flush_frame_bulk(&bq);
1869 
1870 	rcu_read_unlock();
1871 
1872 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1873 }
1874 
1875 /* Handle end of transmission */
1876 static void mvneta_txq_done(struct mvneta_port *pp,
1877 			   struct mvneta_tx_queue *txq)
1878 {
1879 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1880 	int tx_done;
1881 
1882 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1883 	if (!tx_done)
1884 		return;
1885 
1886 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1887 
1888 	txq->count -= tx_done;
1889 
1890 	if (netif_tx_queue_stopped(nq)) {
1891 		if (txq->count <= txq->tx_wake_threshold)
1892 			netif_tx_wake_queue(nq);
1893 	}
1894 }
1895 
1896 /* Refill processing for SW buffer management */
1897 /* Allocate page per descriptor */
1898 static int mvneta_rx_refill(struct mvneta_port *pp,
1899 			    struct mvneta_rx_desc *rx_desc,
1900 			    struct mvneta_rx_queue *rxq,
1901 			    gfp_t gfp_mask)
1902 {
1903 	dma_addr_t phys_addr;
1904 	struct page *page;
1905 
1906 	page = page_pool_alloc_pages(rxq->page_pool,
1907 				     gfp_mask | __GFP_NOWARN);
1908 	if (!page)
1909 		return -ENOMEM;
1910 
1911 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1912 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1913 
1914 	return 0;
1915 }
1916 
1917 /* Handle tx checksum */
1918 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1919 {
1920 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1921 		int ip_hdr_len = 0;
1922 		__be16 l3_proto = vlan_get_protocol(skb);
1923 		u8 l4_proto;
1924 
1925 		if (l3_proto == htons(ETH_P_IP)) {
1926 			struct iphdr *ip4h = ip_hdr(skb);
1927 
1928 			/* Calculate IPv4 checksum and L4 checksum */
1929 			ip_hdr_len = ip4h->ihl;
1930 			l4_proto = ip4h->protocol;
1931 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1932 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1933 
1934 			/* Read l4_protocol from one of IPv6 extra headers */
1935 			if (skb_network_header_len(skb) > 0)
1936 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1937 			l4_proto = ip6h->nexthdr;
1938 		} else
1939 			return MVNETA_TX_L4_CSUM_NOT;
1940 
1941 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1942 					    l3_proto, ip_hdr_len, l4_proto);
1943 	}
1944 
1945 	return MVNETA_TX_L4_CSUM_NOT;
1946 }
1947 
1948 /* Drop packets received by the RXQ and free buffers */
1949 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1950 				 struct mvneta_rx_queue *rxq)
1951 {
1952 	int rx_done, i;
1953 
1954 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1955 	if (rx_done)
1956 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1957 
1958 	if (pp->bm_priv) {
1959 		for (i = 0; i < rx_done; i++) {
1960 			struct mvneta_rx_desc *rx_desc =
1961 						  mvneta_rxq_next_desc_get(rxq);
1962 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1963 			struct mvneta_bm_pool *bm_pool;
1964 
1965 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1966 			/* Return dropped buffer to the pool */
1967 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1968 					      rx_desc->buf_phys_addr);
1969 		}
1970 		return;
1971 	}
1972 
1973 	for (i = 0; i < rxq->size; i++) {
1974 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1975 		void *data = rxq->buf_virt_addr[i];
1976 		if (!data || !(rx_desc->buf_phys_addr))
1977 			continue;
1978 
1979 		page_pool_put_full_page(rxq->page_pool, data, false);
1980 	}
1981 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1982 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1983 	page_pool_destroy(rxq->page_pool);
1984 	rxq->page_pool = NULL;
1985 }
1986 
1987 static void
1988 mvneta_update_stats(struct mvneta_port *pp,
1989 		    struct mvneta_stats *ps)
1990 {
1991 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1992 
1993 	u64_stats_update_begin(&stats->syncp);
1994 	stats->es.ps.rx_packets += ps->rx_packets;
1995 	stats->es.ps.rx_bytes += ps->rx_bytes;
1996 	/* xdp */
1997 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1998 	stats->es.ps.xdp_pass += ps->xdp_pass;
1999 	stats->es.ps.xdp_drop += ps->xdp_drop;
2000 	u64_stats_update_end(&stats->syncp);
2001 }
2002 
2003 static inline
2004 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2005 {
2006 	struct mvneta_rx_desc *rx_desc;
2007 	int curr_desc = rxq->first_to_refill;
2008 	int i;
2009 
2010 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2011 		rx_desc = rxq->descs + curr_desc;
2012 		if (!(rx_desc->buf_phys_addr)) {
2013 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2014 				struct mvneta_pcpu_stats *stats;
2015 
2016 				pr_err("Can't refill queue %d. Done %d from %d\n",
2017 				       rxq->id, i, rxq->refill_num);
2018 
2019 				stats = this_cpu_ptr(pp->stats);
2020 				u64_stats_update_begin(&stats->syncp);
2021 				stats->es.refill_error++;
2022 				u64_stats_update_end(&stats->syncp);
2023 				break;
2024 			}
2025 		}
2026 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2027 	}
2028 	rxq->refill_num -= i;
2029 	rxq->first_to_refill = curr_desc;
2030 
2031 	return i;
2032 }
2033 
2034 static void
2035 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2036 		    struct xdp_buff *xdp, struct skb_shared_info *sinfo,
2037 		    int sync_len)
2038 {
2039 	int i;
2040 
2041 	for (i = 0; i < sinfo->nr_frags; i++)
2042 		page_pool_put_full_page(rxq->page_pool,
2043 					skb_frag_page(&sinfo->frags[i]), true);
2044 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2045 			   sync_len, true);
2046 }
2047 
2048 static int
2049 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2050 			struct xdp_frame *xdpf, bool dma_map)
2051 {
2052 	struct mvneta_tx_desc *tx_desc;
2053 	struct mvneta_tx_buf *buf;
2054 	dma_addr_t dma_addr;
2055 
2056 	if (txq->count >= txq->tx_stop_threshold)
2057 		return MVNETA_XDP_DROPPED;
2058 
2059 	tx_desc = mvneta_txq_next_desc_get(txq);
2060 
2061 	buf = &txq->buf[txq->txq_put_index];
2062 	if (dma_map) {
2063 		/* ndo_xdp_xmit */
2064 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2065 					  xdpf->len, DMA_TO_DEVICE);
2066 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2067 			mvneta_txq_desc_put(txq);
2068 			return MVNETA_XDP_DROPPED;
2069 		}
2070 		buf->type = MVNETA_TYPE_XDP_NDO;
2071 	} else {
2072 		struct page *page = virt_to_page(xdpf->data);
2073 
2074 		dma_addr = page_pool_get_dma_addr(page) +
2075 			   sizeof(*xdpf) + xdpf->headroom;
2076 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2077 					   xdpf->len, DMA_BIDIRECTIONAL);
2078 		buf->type = MVNETA_TYPE_XDP_TX;
2079 	}
2080 	buf->xdpf = xdpf;
2081 
2082 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2083 	tx_desc->buf_phys_addr = dma_addr;
2084 	tx_desc->data_size = xdpf->len;
2085 
2086 	mvneta_txq_inc_put(txq);
2087 	txq->pending++;
2088 	txq->count++;
2089 
2090 	return MVNETA_XDP_TX;
2091 }
2092 
2093 static int
2094 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2095 {
2096 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2097 	struct mvneta_tx_queue *txq;
2098 	struct netdev_queue *nq;
2099 	struct xdp_frame *xdpf;
2100 	int cpu;
2101 	u32 ret;
2102 
2103 	xdpf = xdp_convert_buff_to_frame(xdp);
2104 	if (unlikely(!xdpf))
2105 		return MVNETA_XDP_DROPPED;
2106 
2107 	cpu = smp_processor_id();
2108 	txq = &pp->txqs[cpu % txq_number];
2109 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2110 
2111 	__netif_tx_lock(nq, cpu);
2112 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2113 	if (ret == MVNETA_XDP_TX) {
2114 		u64_stats_update_begin(&stats->syncp);
2115 		stats->es.ps.tx_bytes += xdpf->len;
2116 		stats->es.ps.tx_packets++;
2117 		stats->es.ps.xdp_tx++;
2118 		u64_stats_update_end(&stats->syncp);
2119 
2120 		mvneta_txq_pend_desc_add(pp, txq, 0);
2121 	} else {
2122 		u64_stats_update_begin(&stats->syncp);
2123 		stats->es.ps.xdp_tx_err++;
2124 		u64_stats_update_end(&stats->syncp);
2125 	}
2126 	__netif_tx_unlock(nq);
2127 
2128 	return ret;
2129 }
2130 
2131 static int
2132 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2133 		struct xdp_frame **frames, u32 flags)
2134 {
2135 	struct mvneta_port *pp = netdev_priv(dev);
2136 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2137 	int i, nxmit_byte = 0, nxmit = num_frame;
2138 	int cpu = smp_processor_id();
2139 	struct mvneta_tx_queue *txq;
2140 	struct netdev_queue *nq;
2141 	u32 ret;
2142 
2143 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2144 		return -ENETDOWN;
2145 
2146 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2147 		return -EINVAL;
2148 
2149 	txq = &pp->txqs[cpu % txq_number];
2150 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2151 
2152 	__netif_tx_lock(nq, cpu);
2153 	for (i = 0; i < num_frame; i++) {
2154 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2155 		if (ret == MVNETA_XDP_TX) {
2156 			nxmit_byte += frames[i]->len;
2157 		} else {
2158 			xdp_return_frame_rx_napi(frames[i]);
2159 			nxmit--;
2160 		}
2161 	}
2162 
2163 	if (unlikely(flags & XDP_XMIT_FLUSH))
2164 		mvneta_txq_pend_desc_add(pp, txq, 0);
2165 	__netif_tx_unlock(nq);
2166 
2167 	u64_stats_update_begin(&stats->syncp);
2168 	stats->es.ps.tx_bytes += nxmit_byte;
2169 	stats->es.ps.tx_packets += nxmit;
2170 	stats->es.ps.xdp_xmit += nxmit;
2171 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2172 	u64_stats_update_end(&stats->syncp);
2173 
2174 	return nxmit;
2175 }
2176 
2177 static int
2178 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2179 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2180 	       u32 frame_sz, struct mvneta_stats *stats)
2181 {
2182 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2183 	unsigned int len, data_len, sync;
2184 	u32 ret, act;
2185 
2186 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2187 	data_len = xdp->data_end - xdp->data;
2188 	act = bpf_prog_run_xdp(prog, xdp);
2189 
2190 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2191 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2192 	sync = max(sync, len);
2193 
2194 	switch (act) {
2195 	case XDP_PASS:
2196 		stats->xdp_pass++;
2197 		return MVNETA_XDP_PASS;
2198 	case XDP_REDIRECT: {
2199 		int err;
2200 
2201 		err = xdp_do_redirect(pp->dev, xdp, prog);
2202 		if (unlikely(err)) {
2203 			mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2204 			ret = MVNETA_XDP_DROPPED;
2205 		} else {
2206 			ret = MVNETA_XDP_REDIR;
2207 			stats->xdp_redirect++;
2208 		}
2209 		break;
2210 	}
2211 	case XDP_TX:
2212 		ret = mvneta_xdp_xmit_back(pp, xdp);
2213 		if (ret != MVNETA_XDP_TX)
2214 			mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2215 		break;
2216 	default:
2217 		bpf_warn_invalid_xdp_action(act);
2218 		fallthrough;
2219 	case XDP_ABORTED:
2220 		trace_xdp_exception(pp->dev, prog, act);
2221 		fallthrough;
2222 	case XDP_DROP:
2223 		mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2224 		ret = MVNETA_XDP_DROPPED;
2225 		stats->xdp_drop++;
2226 		break;
2227 	}
2228 
2229 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2230 	stats->rx_packets++;
2231 
2232 	return ret;
2233 }
2234 
2235 static void
2236 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2237 		     struct mvneta_rx_desc *rx_desc,
2238 		     struct mvneta_rx_queue *rxq,
2239 		     struct xdp_buff *xdp, int *size,
2240 		     struct page *page)
2241 {
2242 	unsigned char *data = page_address(page);
2243 	int data_len = -MVNETA_MH_SIZE, len;
2244 	struct net_device *dev = pp->dev;
2245 	enum dma_data_direction dma_dir;
2246 	struct skb_shared_info *sinfo;
2247 
2248 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2249 		len = MVNETA_MAX_RX_BUF_SIZE;
2250 		data_len += len;
2251 	} else {
2252 		len = *size;
2253 		data_len += len - ETH_FCS_LEN;
2254 	}
2255 	*size = *size - len;
2256 
2257 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2258 	dma_sync_single_for_cpu(dev->dev.parent,
2259 				rx_desc->buf_phys_addr,
2260 				len, dma_dir);
2261 
2262 	rx_desc->buf_phys_addr = 0;
2263 
2264 	/* Prefetch header */
2265 	prefetch(data);
2266 
2267 	xdp->data_hard_start = data;
2268 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2269 	xdp->data_end = xdp->data + data_len;
2270 	xdp_set_data_meta_invalid(xdp);
2271 
2272 	sinfo = xdp_get_shared_info_from_buff(xdp);
2273 	sinfo->nr_frags = 0;
2274 }
2275 
2276 static void
2277 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2278 			    struct mvneta_rx_desc *rx_desc,
2279 			    struct mvneta_rx_queue *rxq,
2280 			    struct xdp_buff *xdp, int *size,
2281 			    struct skb_shared_info *xdp_sinfo,
2282 			    struct page *page)
2283 {
2284 	struct net_device *dev = pp->dev;
2285 	enum dma_data_direction dma_dir;
2286 	int data_len, len;
2287 
2288 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2289 		len = MVNETA_MAX_RX_BUF_SIZE;
2290 		data_len = len;
2291 	} else {
2292 		len = *size;
2293 		data_len = len - ETH_FCS_LEN;
2294 	}
2295 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2296 	dma_sync_single_for_cpu(dev->dev.parent,
2297 				rx_desc->buf_phys_addr,
2298 				len, dma_dir);
2299 	rx_desc->buf_phys_addr = 0;
2300 
2301 	if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) {
2302 		skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++];
2303 
2304 		skb_frag_off_set(frag, pp->rx_offset_correction);
2305 		skb_frag_size_set(frag, data_len);
2306 		__skb_frag_set_page(frag, page);
2307 
2308 		/* last fragment */
2309 		if (len == *size) {
2310 			struct skb_shared_info *sinfo;
2311 
2312 			sinfo = xdp_get_shared_info_from_buff(xdp);
2313 			sinfo->nr_frags = xdp_sinfo->nr_frags;
2314 			memcpy(sinfo->frags, xdp_sinfo->frags,
2315 			       sinfo->nr_frags * sizeof(skb_frag_t));
2316 		}
2317 	} else {
2318 		page_pool_put_full_page(rxq->page_pool, page, true);
2319 	}
2320 	*size -= len;
2321 }
2322 
2323 static struct sk_buff *
2324 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2325 		      struct xdp_buff *xdp, u32 desc_status)
2326 {
2327 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2328 	int i, num_frags = sinfo->nr_frags;
2329 	struct sk_buff *skb;
2330 
2331 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2332 	if (!skb)
2333 		return ERR_PTR(-ENOMEM);
2334 
2335 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2336 
2337 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2338 	skb_put(skb, xdp->data_end - xdp->data);
2339 	mvneta_rx_csum(pp, desc_status, skb);
2340 
2341 	for (i = 0; i < num_frags; i++) {
2342 		skb_frag_t *frag = &sinfo->frags[i];
2343 
2344 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2345 				skb_frag_page(frag), skb_frag_off(frag),
2346 				skb_frag_size(frag), PAGE_SIZE);
2347 		page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2348 	}
2349 
2350 	return skb;
2351 }
2352 
2353 /* Main rx processing when using software buffer management */
2354 static int mvneta_rx_swbm(struct napi_struct *napi,
2355 			  struct mvneta_port *pp, int budget,
2356 			  struct mvneta_rx_queue *rxq)
2357 {
2358 	int rx_proc = 0, rx_todo, refill, size = 0;
2359 	struct net_device *dev = pp->dev;
2360 	struct skb_shared_info sinfo;
2361 	struct mvneta_stats ps = {};
2362 	struct bpf_prog *xdp_prog;
2363 	u32 desc_status, frame_sz;
2364 	struct xdp_buff xdp_buf;
2365 
2366 	xdp_buf.data_hard_start = NULL;
2367 	xdp_buf.frame_sz = PAGE_SIZE;
2368 	xdp_buf.rxq = &rxq->xdp_rxq;
2369 
2370 	sinfo.nr_frags = 0;
2371 
2372 	/* Get number of received packets */
2373 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2374 
2375 	rcu_read_lock();
2376 	xdp_prog = READ_ONCE(pp->xdp_prog);
2377 
2378 	/* Fairness NAPI loop */
2379 	while (rx_proc < budget && rx_proc < rx_todo) {
2380 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2381 		u32 rx_status, index;
2382 		struct sk_buff *skb;
2383 		struct page *page;
2384 
2385 		index = rx_desc - rxq->descs;
2386 		page = (struct page *)rxq->buf_virt_addr[index];
2387 
2388 		rx_status = rx_desc->status;
2389 		rx_proc++;
2390 		rxq->refill_num++;
2391 
2392 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2393 			/* Check errors only for FIRST descriptor */
2394 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2395 				mvneta_rx_error(pp, rx_desc);
2396 				goto next;
2397 			}
2398 
2399 			size = rx_desc->data_size;
2400 			frame_sz = size - ETH_FCS_LEN;
2401 			desc_status = rx_status;
2402 
2403 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2404 					     &size, page);
2405 		} else {
2406 			if (unlikely(!xdp_buf.data_hard_start)) {
2407 				rx_desc->buf_phys_addr = 0;
2408 				page_pool_put_full_page(rxq->page_pool, page,
2409 							true);
2410 				goto next;
2411 			}
2412 
2413 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2414 						    &size, &sinfo, page);
2415 		} /* Middle or Last descriptor */
2416 
2417 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2418 			/* no last descriptor this time */
2419 			continue;
2420 
2421 		if (size) {
2422 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2423 			goto next;
2424 		}
2425 
2426 		if (xdp_prog &&
2427 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2428 			goto next;
2429 
2430 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2431 		if (IS_ERR(skb)) {
2432 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2433 
2434 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2435 
2436 			u64_stats_update_begin(&stats->syncp);
2437 			stats->es.skb_alloc_error++;
2438 			stats->rx_dropped++;
2439 			u64_stats_update_end(&stats->syncp);
2440 
2441 			goto next;
2442 		}
2443 
2444 		ps.rx_bytes += skb->len;
2445 		ps.rx_packets++;
2446 
2447 		skb->protocol = eth_type_trans(skb, dev);
2448 		napi_gro_receive(napi, skb);
2449 next:
2450 		xdp_buf.data_hard_start = NULL;
2451 		sinfo.nr_frags = 0;
2452 	}
2453 	rcu_read_unlock();
2454 
2455 	if (xdp_buf.data_hard_start)
2456 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2457 
2458 	if (ps.xdp_redirect)
2459 		xdp_do_flush_map();
2460 
2461 	if (ps.rx_packets)
2462 		mvneta_update_stats(pp, &ps);
2463 
2464 	/* return some buffers to hardware queue, one at a time is too slow */
2465 	refill = mvneta_rx_refill_queue(pp, rxq);
2466 
2467 	/* Update rxq management counters */
2468 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2469 
2470 	return ps.rx_packets;
2471 }
2472 
2473 /* Main rx processing when using hardware buffer management */
2474 static int mvneta_rx_hwbm(struct napi_struct *napi,
2475 			  struct mvneta_port *pp, int rx_todo,
2476 			  struct mvneta_rx_queue *rxq)
2477 {
2478 	struct net_device *dev = pp->dev;
2479 	int rx_done;
2480 	u32 rcvd_pkts = 0;
2481 	u32 rcvd_bytes = 0;
2482 
2483 	/* Get number of received packets */
2484 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2485 
2486 	if (rx_todo > rx_done)
2487 		rx_todo = rx_done;
2488 
2489 	rx_done = 0;
2490 
2491 	/* Fairness NAPI loop */
2492 	while (rx_done < rx_todo) {
2493 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2494 		struct mvneta_bm_pool *bm_pool = NULL;
2495 		struct sk_buff *skb;
2496 		unsigned char *data;
2497 		dma_addr_t phys_addr;
2498 		u32 rx_status, frag_size;
2499 		int rx_bytes, err;
2500 		u8 pool_id;
2501 
2502 		rx_done++;
2503 		rx_status = rx_desc->status;
2504 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2505 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2506 		phys_addr = rx_desc->buf_phys_addr;
2507 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2508 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2509 
2510 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2511 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2512 err_drop_frame_ret_pool:
2513 			/* Return the buffer to the pool */
2514 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2515 					      rx_desc->buf_phys_addr);
2516 err_drop_frame:
2517 			mvneta_rx_error(pp, rx_desc);
2518 			/* leave the descriptor untouched */
2519 			continue;
2520 		}
2521 
2522 		if (rx_bytes <= rx_copybreak) {
2523 			/* better copy a small frame and not unmap the DMA region */
2524 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2525 			if (unlikely(!skb))
2526 				goto err_drop_frame_ret_pool;
2527 
2528 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2529 			                              rx_desc->buf_phys_addr,
2530 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2531 			                              rx_bytes,
2532 			                              DMA_FROM_DEVICE);
2533 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2534 				     rx_bytes);
2535 
2536 			skb->protocol = eth_type_trans(skb, dev);
2537 			mvneta_rx_csum(pp, rx_status, skb);
2538 			napi_gro_receive(napi, skb);
2539 
2540 			rcvd_pkts++;
2541 			rcvd_bytes += rx_bytes;
2542 
2543 			/* Return the buffer to the pool */
2544 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2545 					      rx_desc->buf_phys_addr);
2546 
2547 			/* leave the descriptor and buffer untouched */
2548 			continue;
2549 		}
2550 
2551 		/* Refill processing */
2552 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2553 		if (err) {
2554 			struct mvneta_pcpu_stats *stats;
2555 
2556 			netdev_err(dev, "Linux processing - Can't refill\n");
2557 
2558 			stats = this_cpu_ptr(pp->stats);
2559 			u64_stats_update_begin(&stats->syncp);
2560 			stats->es.refill_error++;
2561 			u64_stats_update_end(&stats->syncp);
2562 
2563 			goto err_drop_frame_ret_pool;
2564 		}
2565 
2566 		frag_size = bm_pool->hwbm_pool.frag_size;
2567 
2568 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2569 
2570 		/* After refill old buffer has to be unmapped regardless
2571 		 * the skb is successfully built or not.
2572 		 */
2573 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2574 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2575 		if (!skb)
2576 			goto err_drop_frame;
2577 
2578 		rcvd_pkts++;
2579 		rcvd_bytes += rx_bytes;
2580 
2581 		/* Linux processing */
2582 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2583 		skb_put(skb, rx_bytes);
2584 
2585 		skb->protocol = eth_type_trans(skb, dev);
2586 
2587 		mvneta_rx_csum(pp, rx_status, skb);
2588 
2589 		napi_gro_receive(napi, skb);
2590 	}
2591 
2592 	if (rcvd_pkts) {
2593 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2594 
2595 		u64_stats_update_begin(&stats->syncp);
2596 		stats->es.ps.rx_packets += rcvd_pkts;
2597 		stats->es.ps.rx_bytes += rcvd_bytes;
2598 		u64_stats_update_end(&stats->syncp);
2599 	}
2600 
2601 	/* Update rxq management counters */
2602 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2603 
2604 	return rx_done;
2605 }
2606 
2607 static inline void
2608 mvneta_tso_put_hdr(struct sk_buff *skb,
2609 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2610 {
2611 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2612 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2613 	struct mvneta_tx_desc *tx_desc;
2614 
2615 	tx_desc = mvneta_txq_next_desc_get(txq);
2616 	tx_desc->data_size = hdr_len;
2617 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2618 	tx_desc->command |= MVNETA_TXD_F_DESC;
2619 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2620 				 txq->txq_put_index * TSO_HEADER_SIZE;
2621 	buf->type = MVNETA_TYPE_SKB;
2622 	buf->skb = NULL;
2623 
2624 	mvneta_txq_inc_put(txq);
2625 }
2626 
2627 static inline int
2628 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2629 		    struct sk_buff *skb, char *data, int size,
2630 		    bool last_tcp, bool is_last)
2631 {
2632 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2633 	struct mvneta_tx_desc *tx_desc;
2634 
2635 	tx_desc = mvneta_txq_next_desc_get(txq);
2636 	tx_desc->data_size = size;
2637 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2638 						size, DMA_TO_DEVICE);
2639 	if (unlikely(dma_mapping_error(dev->dev.parent,
2640 		     tx_desc->buf_phys_addr))) {
2641 		mvneta_txq_desc_put(txq);
2642 		return -ENOMEM;
2643 	}
2644 
2645 	tx_desc->command = 0;
2646 	buf->type = MVNETA_TYPE_SKB;
2647 	buf->skb = NULL;
2648 
2649 	if (last_tcp) {
2650 		/* last descriptor in the TCP packet */
2651 		tx_desc->command = MVNETA_TXD_L_DESC;
2652 
2653 		/* last descriptor in SKB */
2654 		if (is_last)
2655 			buf->skb = skb;
2656 	}
2657 	mvneta_txq_inc_put(txq);
2658 	return 0;
2659 }
2660 
2661 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2662 			 struct mvneta_tx_queue *txq)
2663 {
2664 	int hdr_len, total_len, data_left;
2665 	int desc_count = 0;
2666 	struct mvneta_port *pp = netdev_priv(dev);
2667 	struct tso_t tso;
2668 	int i;
2669 
2670 	/* Count needed descriptors */
2671 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2672 		return 0;
2673 
2674 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2675 		pr_info("*** Is this even  possible???!?!?\n");
2676 		return 0;
2677 	}
2678 
2679 	/* Initialize the TSO handler, and prepare the first payload */
2680 	hdr_len = tso_start(skb, &tso);
2681 
2682 	total_len = skb->len - hdr_len;
2683 	while (total_len > 0) {
2684 		char *hdr;
2685 
2686 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2687 		total_len -= data_left;
2688 		desc_count++;
2689 
2690 		/* prepare packet headers: MAC + IP + TCP */
2691 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2692 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2693 
2694 		mvneta_tso_put_hdr(skb, pp, txq);
2695 
2696 		while (data_left > 0) {
2697 			int size;
2698 			desc_count++;
2699 
2700 			size = min_t(int, tso.size, data_left);
2701 
2702 			if (mvneta_tso_put_data(dev, txq, skb,
2703 						 tso.data, size,
2704 						 size == data_left,
2705 						 total_len == 0))
2706 				goto err_release;
2707 			data_left -= size;
2708 
2709 			tso_build_data(skb, &tso, size);
2710 		}
2711 	}
2712 
2713 	return desc_count;
2714 
2715 err_release:
2716 	/* Release all used data descriptors; header descriptors must not
2717 	 * be DMA-unmapped.
2718 	 */
2719 	for (i = desc_count - 1; i >= 0; i--) {
2720 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2721 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2722 			dma_unmap_single(pp->dev->dev.parent,
2723 					 tx_desc->buf_phys_addr,
2724 					 tx_desc->data_size,
2725 					 DMA_TO_DEVICE);
2726 		mvneta_txq_desc_put(txq);
2727 	}
2728 	return 0;
2729 }
2730 
2731 /* Handle tx fragmentation processing */
2732 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2733 				  struct mvneta_tx_queue *txq)
2734 {
2735 	struct mvneta_tx_desc *tx_desc;
2736 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2737 
2738 	for (i = 0; i < nr_frags; i++) {
2739 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2740 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2741 		void *addr = skb_frag_address(frag);
2742 
2743 		tx_desc = mvneta_txq_next_desc_get(txq);
2744 		tx_desc->data_size = skb_frag_size(frag);
2745 
2746 		tx_desc->buf_phys_addr =
2747 			dma_map_single(pp->dev->dev.parent, addr,
2748 				       tx_desc->data_size, DMA_TO_DEVICE);
2749 
2750 		if (dma_mapping_error(pp->dev->dev.parent,
2751 				      tx_desc->buf_phys_addr)) {
2752 			mvneta_txq_desc_put(txq);
2753 			goto error;
2754 		}
2755 
2756 		if (i == nr_frags - 1) {
2757 			/* Last descriptor */
2758 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2759 			buf->skb = skb;
2760 		} else {
2761 			/* Descriptor in the middle: Not First, Not Last */
2762 			tx_desc->command = 0;
2763 			buf->skb = NULL;
2764 		}
2765 		buf->type = MVNETA_TYPE_SKB;
2766 		mvneta_txq_inc_put(txq);
2767 	}
2768 
2769 	return 0;
2770 
2771 error:
2772 	/* Release all descriptors that were used to map fragments of
2773 	 * this packet, as well as the corresponding DMA mappings
2774 	 */
2775 	for (i = i - 1; i >= 0; i--) {
2776 		tx_desc = txq->descs + i;
2777 		dma_unmap_single(pp->dev->dev.parent,
2778 				 tx_desc->buf_phys_addr,
2779 				 tx_desc->data_size,
2780 				 DMA_TO_DEVICE);
2781 		mvneta_txq_desc_put(txq);
2782 	}
2783 
2784 	return -ENOMEM;
2785 }
2786 
2787 /* Main tx processing */
2788 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2789 {
2790 	struct mvneta_port *pp = netdev_priv(dev);
2791 	u16 txq_id = skb_get_queue_mapping(skb);
2792 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2793 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2794 	struct mvneta_tx_desc *tx_desc;
2795 	int len = skb->len;
2796 	int frags = 0;
2797 	u32 tx_cmd;
2798 
2799 	if (!netif_running(dev))
2800 		goto out;
2801 
2802 	if (skb_is_gso(skb)) {
2803 		frags = mvneta_tx_tso(skb, dev, txq);
2804 		goto out;
2805 	}
2806 
2807 	frags = skb_shinfo(skb)->nr_frags + 1;
2808 
2809 	/* Get a descriptor for the first part of the packet */
2810 	tx_desc = mvneta_txq_next_desc_get(txq);
2811 
2812 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2813 
2814 	tx_desc->data_size = skb_headlen(skb);
2815 
2816 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2817 						tx_desc->data_size,
2818 						DMA_TO_DEVICE);
2819 	if (unlikely(dma_mapping_error(dev->dev.parent,
2820 				       tx_desc->buf_phys_addr))) {
2821 		mvneta_txq_desc_put(txq);
2822 		frags = 0;
2823 		goto out;
2824 	}
2825 
2826 	buf->type = MVNETA_TYPE_SKB;
2827 	if (frags == 1) {
2828 		/* First and Last descriptor */
2829 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2830 		tx_desc->command = tx_cmd;
2831 		buf->skb = skb;
2832 		mvneta_txq_inc_put(txq);
2833 	} else {
2834 		/* First but not Last */
2835 		tx_cmd |= MVNETA_TXD_F_DESC;
2836 		buf->skb = NULL;
2837 		mvneta_txq_inc_put(txq);
2838 		tx_desc->command = tx_cmd;
2839 		/* Continue with other skb fragments */
2840 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2841 			dma_unmap_single(dev->dev.parent,
2842 					 tx_desc->buf_phys_addr,
2843 					 tx_desc->data_size,
2844 					 DMA_TO_DEVICE);
2845 			mvneta_txq_desc_put(txq);
2846 			frags = 0;
2847 			goto out;
2848 		}
2849 	}
2850 
2851 out:
2852 	if (frags > 0) {
2853 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2854 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2855 
2856 		netdev_tx_sent_queue(nq, len);
2857 
2858 		txq->count += frags;
2859 		if (txq->count >= txq->tx_stop_threshold)
2860 			netif_tx_stop_queue(nq);
2861 
2862 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2863 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2864 			mvneta_txq_pend_desc_add(pp, txq, frags);
2865 		else
2866 			txq->pending += frags;
2867 
2868 		u64_stats_update_begin(&stats->syncp);
2869 		stats->es.ps.tx_bytes += len;
2870 		stats->es.ps.tx_packets++;
2871 		u64_stats_update_end(&stats->syncp);
2872 	} else {
2873 		dev->stats.tx_dropped++;
2874 		dev_kfree_skb_any(skb);
2875 	}
2876 
2877 	return NETDEV_TX_OK;
2878 }
2879 
2880 
2881 /* Free tx resources, when resetting a port */
2882 static void mvneta_txq_done_force(struct mvneta_port *pp,
2883 				  struct mvneta_tx_queue *txq)
2884 
2885 {
2886 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2887 	int tx_done = txq->count;
2888 
2889 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2890 
2891 	/* reset txq */
2892 	txq->count = 0;
2893 	txq->txq_put_index = 0;
2894 	txq->txq_get_index = 0;
2895 }
2896 
2897 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2898  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2899  */
2900 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2901 {
2902 	struct mvneta_tx_queue *txq;
2903 	struct netdev_queue *nq;
2904 	int cpu = smp_processor_id();
2905 
2906 	while (cause_tx_done) {
2907 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2908 
2909 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2910 		__netif_tx_lock(nq, cpu);
2911 
2912 		if (txq->count)
2913 			mvneta_txq_done(pp, txq);
2914 
2915 		__netif_tx_unlock(nq);
2916 		cause_tx_done &= ~((1 << txq->id));
2917 	}
2918 }
2919 
2920 /* Compute crc8 of the specified address, using a unique algorithm ,
2921  * according to hw spec, different than generic crc8 algorithm
2922  */
2923 static int mvneta_addr_crc(unsigned char *addr)
2924 {
2925 	int crc = 0;
2926 	int i;
2927 
2928 	for (i = 0; i < ETH_ALEN; i++) {
2929 		int j;
2930 
2931 		crc = (crc ^ addr[i]) << 8;
2932 		for (j = 7; j >= 0; j--) {
2933 			if (crc & (0x100 << j))
2934 				crc ^= 0x107 << j;
2935 		}
2936 	}
2937 
2938 	return crc;
2939 }
2940 
2941 /* This method controls the net device special MAC multicast support.
2942  * The Special Multicast Table for MAC addresses supports MAC of the form
2943  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2944  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2945  * Table entries in the DA-Filter table. This method set the Special
2946  * Multicast Table appropriate entry.
2947  */
2948 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2949 					  unsigned char last_byte,
2950 					  int queue)
2951 {
2952 	unsigned int smc_table_reg;
2953 	unsigned int tbl_offset;
2954 	unsigned int reg_offset;
2955 
2956 	/* Register offset from SMC table base    */
2957 	tbl_offset = (last_byte / 4);
2958 	/* Entry offset within the above reg */
2959 	reg_offset = last_byte % 4;
2960 
2961 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2962 					+ tbl_offset * 4));
2963 
2964 	if (queue == -1)
2965 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2966 	else {
2967 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2968 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2969 	}
2970 
2971 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2972 		    smc_table_reg);
2973 }
2974 
2975 /* This method controls the network device Other MAC multicast support.
2976  * The Other Multicast Table is used for multicast of another type.
2977  * A CRC-8 is used as an index to the Other Multicast Table entries
2978  * in the DA-Filter table.
2979  * The method gets the CRC-8 value from the calling routine and
2980  * sets the Other Multicast Table appropriate entry according to the
2981  * specified CRC-8 .
2982  */
2983 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2984 					unsigned char crc8,
2985 					int queue)
2986 {
2987 	unsigned int omc_table_reg;
2988 	unsigned int tbl_offset;
2989 	unsigned int reg_offset;
2990 
2991 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2992 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2993 
2994 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2995 
2996 	if (queue == -1) {
2997 		/* Clear accepts frame bit at specified Other DA table entry */
2998 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2999 	} else {
3000 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3001 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3002 	}
3003 
3004 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3005 }
3006 
3007 /* The network device supports multicast using two tables:
3008  *    1) Special Multicast Table for MAC addresses of the form
3009  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3010  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3011  *       Table entries in the DA-Filter table.
3012  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3013  *       is used as an index to the Other Multicast Table entries in the
3014  *       DA-Filter table.
3015  */
3016 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3017 				 int queue)
3018 {
3019 	unsigned char crc_result = 0;
3020 
3021 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3022 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3023 		return 0;
3024 	}
3025 
3026 	crc_result = mvneta_addr_crc(p_addr);
3027 	if (queue == -1) {
3028 		if (pp->mcast_count[crc_result] == 0) {
3029 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3030 				    crc_result);
3031 			return -EINVAL;
3032 		}
3033 
3034 		pp->mcast_count[crc_result]--;
3035 		if (pp->mcast_count[crc_result] != 0) {
3036 			netdev_info(pp->dev,
3037 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3038 				    pp->mcast_count[crc_result], crc_result);
3039 			return -EINVAL;
3040 		}
3041 	} else
3042 		pp->mcast_count[crc_result]++;
3043 
3044 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3045 
3046 	return 0;
3047 }
3048 
3049 /* Configure Fitering mode of Ethernet port */
3050 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3051 					  int is_promisc)
3052 {
3053 	u32 port_cfg_reg, val;
3054 
3055 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3056 
3057 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3058 
3059 	/* Set / Clear UPM bit in port configuration register */
3060 	if (is_promisc) {
3061 		/* Accept all Unicast addresses */
3062 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3063 		val |= MVNETA_FORCE_UNI;
3064 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3065 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3066 	} else {
3067 		/* Reject all Unicast addresses */
3068 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3069 		val &= ~MVNETA_FORCE_UNI;
3070 	}
3071 
3072 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3073 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3074 }
3075 
3076 /* register unicast and multicast addresses */
3077 static void mvneta_set_rx_mode(struct net_device *dev)
3078 {
3079 	struct mvneta_port *pp = netdev_priv(dev);
3080 	struct netdev_hw_addr *ha;
3081 
3082 	if (dev->flags & IFF_PROMISC) {
3083 		/* Accept all: Multicast + Unicast */
3084 		mvneta_rx_unicast_promisc_set(pp, 1);
3085 		mvneta_set_ucast_table(pp, pp->rxq_def);
3086 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3087 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3088 	} else {
3089 		/* Accept single Unicast */
3090 		mvneta_rx_unicast_promisc_set(pp, 0);
3091 		mvneta_set_ucast_table(pp, -1);
3092 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3093 
3094 		if (dev->flags & IFF_ALLMULTI) {
3095 			/* Accept all multicast */
3096 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3097 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3098 		} else {
3099 			/* Accept only initialized multicast */
3100 			mvneta_set_special_mcast_table(pp, -1);
3101 			mvneta_set_other_mcast_table(pp, -1);
3102 
3103 			if (!netdev_mc_empty(dev)) {
3104 				netdev_for_each_mc_addr(ha, dev) {
3105 					mvneta_mcast_addr_set(pp, ha->addr,
3106 							      pp->rxq_def);
3107 				}
3108 			}
3109 		}
3110 	}
3111 }
3112 
3113 /* Interrupt handling - the callback for request_irq() */
3114 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3115 {
3116 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3117 
3118 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3119 	napi_schedule(&pp->napi);
3120 
3121 	return IRQ_HANDLED;
3122 }
3123 
3124 /* Interrupt handling - the callback for request_percpu_irq() */
3125 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3126 {
3127 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3128 
3129 	disable_percpu_irq(port->pp->dev->irq);
3130 	napi_schedule(&port->napi);
3131 
3132 	return IRQ_HANDLED;
3133 }
3134 
3135 static void mvneta_link_change(struct mvneta_port *pp)
3136 {
3137 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3138 
3139 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3140 }
3141 
3142 /* NAPI handler
3143  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3144  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3145  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3146  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3147  * Each CPU has its own causeRxTx register
3148  */
3149 static int mvneta_poll(struct napi_struct *napi, int budget)
3150 {
3151 	int rx_done = 0;
3152 	u32 cause_rx_tx;
3153 	int rx_queue;
3154 	struct mvneta_port *pp = netdev_priv(napi->dev);
3155 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3156 
3157 	if (!netif_running(pp->dev)) {
3158 		napi_complete(napi);
3159 		return rx_done;
3160 	}
3161 
3162 	/* Read cause register */
3163 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3164 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3165 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3166 
3167 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3168 
3169 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3170 				  MVNETA_CAUSE_LINK_CHANGE))
3171 			mvneta_link_change(pp);
3172 	}
3173 
3174 	/* Release Tx descriptors */
3175 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3176 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3177 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3178 	}
3179 
3180 	/* For the case where the last mvneta_poll did not process all
3181 	 * RX packets
3182 	 */
3183 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3184 		port->cause_rx_tx;
3185 
3186 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3187 	if (rx_queue) {
3188 		rx_queue = rx_queue - 1;
3189 		if (pp->bm_priv)
3190 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3191 						 &pp->rxqs[rx_queue]);
3192 		else
3193 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3194 						 &pp->rxqs[rx_queue]);
3195 	}
3196 
3197 	if (rx_done < budget) {
3198 		cause_rx_tx = 0;
3199 		napi_complete_done(napi, rx_done);
3200 
3201 		if (pp->neta_armada3700) {
3202 			unsigned long flags;
3203 
3204 			local_irq_save(flags);
3205 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3206 				    MVNETA_RX_INTR_MASK(rxq_number) |
3207 				    MVNETA_TX_INTR_MASK(txq_number) |
3208 				    MVNETA_MISCINTR_INTR_MASK);
3209 			local_irq_restore(flags);
3210 		} else {
3211 			enable_percpu_irq(pp->dev->irq, 0);
3212 		}
3213 	}
3214 
3215 	if (pp->neta_armada3700)
3216 		pp->cause_rx_tx = cause_rx_tx;
3217 	else
3218 		port->cause_rx_tx = cause_rx_tx;
3219 
3220 	return rx_done;
3221 }
3222 
3223 static int mvneta_create_page_pool(struct mvneta_port *pp,
3224 				   struct mvneta_rx_queue *rxq, int size)
3225 {
3226 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3227 	struct page_pool_params pp_params = {
3228 		.order = 0,
3229 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3230 		.pool_size = size,
3231 		.nid = NUMA_NO_NODE,
3232 		.dev = pp->dev->dev.parent,
3233 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3234 		.offset = pp->rx_offset_correction,
3235 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3236 	};
3237 	int err;
3238 
3239 	rxq->page_pool = page_pool_create(&pp_params);
3240 	if (IS_ERR(rxq->page_pool)) {
3241 		err = PTR_ERR(rxq->page_pool);
3242 		rxq->page_pool = NULL;
3243 		return err;
3244 	}
3245 
3246 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0);
3247 	if (err < 0)
3248 		goto err_free_pp;
3249 
3250 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3251 					 rxq->page_pool);
3252 	if (err)
3253 		goto err_unregister_rxq;
3254 
3255 	return 0;
3256 
3257 err_unregister_rxq:
3258 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3259 err_free_pp:
3260 	page_pool_destroy(rxq->page_pool);
3261 	rxq->page_pool = NULL;
3262 	return err;
3263 }
3264 
3265 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3266 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3267 			   int num)
3268 {
3269 	int i, err;
3270 
3271 	err = mvneta_create_page_pool(pp, rxq, num);
3272 	if (err < 0)
3273 		return err;
3274 
3275 	for (i = 0; i < num; i++) {
3276 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3277 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3278 				     GFP_KERNEL) != 0) {
3279 			netdev_err(pp->dev,
3280 				   "%s:rxq %d, %d of %d buffs  filled\n",
3281 				   __func__, rxq->id, i, num);
3282 			break;
3283 		}
3284 	}
3285 
3286 	/* Add this number of RX descriptors as non occupied (ready to
3287 	 * get packets)
3288 	 */
3289 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3290 
3291 	return i;
3292 }
3293 
3294 /* Free all packets pending transmit from all TXQs and reset TX port */
3295 static void mvneta_tx_reset(struct mvneta_port *pp)
3296 {
3297 	int queue;
3298 
3299 	/* free the skb's in the tx ring */
3300 	for (queue = 0; queue < txq_number; queue++)
3301 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3302 
3303 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3304 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3305 }
3306 
3307 static void mvneta_rx_reset(struct mvneta_port *pp)
3308 {
3309 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3310 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3311 }
3312 
3313 /* Rx/Tx queue initialization/cleanup methods */
3314 
3315 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3316 			      struct mvneta_rx_queue *rxq)
3317 {
3318 	rxq->size = pp->rx_ring_size;
3319 
3320 	/* Allocate memory for RX descriptors */
3321 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3322 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3323 					&rxq->descs_phys, GFP_KERNEL);
3324 	if (!rxq->descs)
3325 		return -ENOMEM;
3326 
3327 	rxq->last_desc = rxq->size - 1;
3328 
3329 	return 0;
3330 }
3331 
3332 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3333 			       struct mvneta_rx_queue *rxq)
3334 {
3335 	/* Set Rx descriptors queue starting address */
3336 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3337 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3338 
3339 	/* Set coalescing pkts and time */
3340 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3341 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3342 
3343 	if (!pp->bm_priv) {
3344 		/* Set Offset */
3345 		mvneta_rxq_offset_set(pp, rxq, 0);
3346 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3347 					MVNETA_MAX_RX_BUF_SIZE :
3348 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3349 		mvneta_rxq_bm_disable(pp, rxq);
3350 		mvneta_rxq_fill(pp, rxq, rxq->size);
3351 	} else {
3352 		/* Set Offset */
3353 		mvneta_rxq_offset_set(pp, rxq,
3354 				      NET_SKB_PAD - pp->rx_offset_correction);
3355 
3356 		mvneta_rxq_bm_enable(pp, rxq);
3357 		/* Fill RXQ with buffers from RX pool */
3358 		mvneta_rxq_long_pool_set(pp, rxq);
3359 		mvneta_rxq_short_pool_set(pp, rxq);
3360 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3361 	}
3362 }
3363 
3364 /* Create a specified RX queue */
3365 static int mvneta_rxq_init(struct mvneta_port *pp,
3366 			   struct mvneta_rx_queue *rxq)
3367 
3368 {
3369 	int ret;
3370 
3371 	ret = mvneta_rxq_sw_init(pp, rxq);
3372 	if (ret < 0)
3373 		return ret;
3374 
3375 	mvneta_rxq_hw_init(pp, rxq);
3376 
3377 	return 0;
3378 }
3379 
3380 /* Cleanup Rx queue */
3381 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3382 			      struct mvneta_rx_queue *rxq)
3383 {
3384 	mvneta_rxq_drop_pkts(pp, rxq);
3385 
3386 	if (rxq->descs)
3387 		dma_free_coherent(pp->dev->dev.parent,
3388 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3389 				  rxq->descs,
3390 				  rxq->descs_phys);
3391 
3392 	rxq->descs             = NULL;
3393 	rxq->last_desc         = 0;
3394 	rxq->next_desc_to_proc = 0;
3395 	rxq->descs_phys        = 0;
3396 	rxq->first_to_refill   = 0;
3397 	rxq->refill_num        = 0;
3398 }
3399 
3400 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3401 			      struct mvneta_tx_queue *txq)
3402 {
3403 	int cpu;
3404 
3405 	txq->size = pp->tx_ring_size;
3406 
3407 	/* A queue must always have room for at least one skb.
3408 	 * Therefore, stop the queue when the free entries reaches
3409 	 * the maximum number of descriptors per skb.
3410 	 */
3411 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3412 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3413 
3414 	/* Allocate memory for TX descriptors */
3415 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3416 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3417 					&txq->descs_phys, GFP_KERNEL);
3418 	if (!txq->descs)
3419 		return -ENOMEM;
3420 
3421 	txq->last_desc = txq->size - 1;
3422 
3423 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3424 	if (!txq->buf)
3425 		return -ENOMEM;
3426 
3427 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3428 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3429 					   txq->size * TSO_HEADER_SIZE,
3430 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3431 	if (!txq->tso_hdrs)
3432 		return -ENOMEM;
3433 
3434 	/* Setup XPS mapping */
3435 	if (txq_number > 1)
3436 		cpu = txq->id % num_present_cpus();
3437 	else
3438 		cpu = pp->rxq_def % num_present_cpus();
3439 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3440 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3441 
3442 	return 0;
3443 }
3444 
3445 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3446 			       struct mvneta_tx_queue *txq)
3447 {
3448 	/* Set maximum bandwidth for enabled TXQs */
3449 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3450 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3451 
3452 	/* Set Tx descriptors queue starting address */
3453 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3454 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3455 
3456 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3457 }
3458 
3459 /* Create and initialize a tx queue */
3460 static int mvneta_txq_init(struct mvneta_port *pp,
3461 			   struct mvneta_tx_queue *txq)
3462 {
3463 	int ret;
3464 
3465 	ret = mvneta_txq_sw_init(pp, txq);
3466 	if (ret < 0)
3467 		return ret;
3468 
3469 	mvneta_txq_hw_init(pp, txq);
3470 
3471 	return 0;
3472 }
3473 
3474 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3475 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3476 				 struct mvneta_tx_queue *txq)
3477 {
3478 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3479 
3480 	kfree(txq->buf);
3481 
3482 	if (txq->tso_hdrs)
3483 		dma_free_coherent(pp->dev->dev.parent,
3484 				  txq->size * TSO_HEADER_SIZE,
3485 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3486 	if (txq->descs)
3487 		dma_free_coherent(pp->dev->dev.parent,
3488 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3489 				  txq->descs, txq->descs_phys);
3490 
3491 	netdev_tx_reset_queue(nq);
3492 
3493 	txq->descs             = NULL;
3494 	txq->last_desc         = 0;
3495 	txq->next_desc_to_proc = 0;
3496 	txq->descs_phys        = 0;
3497 }
3498 
3499 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3500 				 struct mvneta_tx_queue *txq)
3501 {
3502 	/* Set minimum bandwidth for disabled TXQs */
3503 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3504 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3505 
3506 	/* Set Tx descriptors queue starting address and size */
3507 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3508 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3509 }
3510 
3511 static void mvneta_txq_deinit(struct mvneta_port *pp,
3512 			      struct mvneta_tx_queue *txq)
3513 {
3514 	mvneta_txq_sw_deinit(pp, txq);
3515 	mvneta_txq_hw_deinit(pp, txq);
3516 }
3517 
3518 /* Cleanup all Tx queues */
3519 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3520 {
3521 	int queue;
3522 
3523 	for (queue = 0; queue < txq_number; queue++)
3524 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3525 }
3526 
3527 /* Cleanup all Rx queues */
3528 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3529 {
3530 	int queue;
3531 
3532 	for (queue = 0; queue < rxq_number; queue++)
3533 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3534 }
3535 
3536 
3537 /* Init all Rx queues */
3538 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3539 {
3540 	int queue;
3541 
3542 	for (queue = 0; queue < rxq_number; queue++) {
3543 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3544 
3545 		if (err) {
3546 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3547 				   __func__, queue);
3548 			mvneta_cleanup_rxqs(pp);
3549 			return err;
3550 		}
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 /* Init all tx queues */
3557 static int mvneta_setup_txqs(struct mvneta_port *pp)
3558 {
3559 	int queue;
3560 
3561 	for (queue = 0; queue < txq_number; queue++) {
3562 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3563 		if (err) {
3564 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3565 				   __func__, queue);
3566 			mvneta_cleanup_txqs(pp);
3567 			return err;
3568 		}
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3575 {
3576 	int ret;
3577 
3578 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3579 	if (ret)
3580 		return ret;
3581 
3582 	return phy_power_on(pp->comphy);
3583 }
3584 
3585 static int mvneta_config_interface(struct mvneta_port *pp,
3586 				   phy_interface_t interface)
3587 {
3588 	int ret = 0;
3589 
3590 	if (pp->comphy) {
3591 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3592 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3593 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3594 			ret = mvneta_comphy_init(pp, interface);
3595 		}
3596 	} else {
3597 		switch (interface) {
3598 		case PHY_INTERFACE_MODE_QSGMII:
3599 			mvreg_write(pp, MVNETA_SERDES_CFG,
3600 				    MVNETA_QSGMII_SERDES_PROTO);
3601 			break;
3602 
3603 		case PHY_INTERFACE_MODE_SGMII:
3604 		case PHY_INTERFACE_MODE_1000BASEX:
3605 			mvreg_write(pp, MVNETA_SERDES_CFG,
3606 				    MVNETA_SGMII_SERDES_PROTO);
3607 			break;
3608 
3609 		case PHY_INTERFACE_MODE_2500BASEX:
3610 			mvreg_write(pp, MVNETA_SERDES_CFG,
3611 				    MVNETA_HSGMII_SERDES_PROTO);
3612 			break;
3613 		default:
3614 			break;
3615 		}
3616 	}
3617 
3618 	pp->phy_interface = interface;
3619 
3620 	return ret;
3621 }
3622 
3623 static void mvneta_start_dev(struct mvneta_port *pp)
3624 {
3625 	int cpu;
3626 
3627 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3628 
3629 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3630 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3631 
3632 	/* start the Rx/Tx activity */
3633 	mvneta_port_enable(pp);
3634 
3635 	if (!pp->neta_armada3700) {
3636 		/* Enable polling on the port */
3637 		for_each_online_cpu(cpu) {
3638 			struct mvneta_pcpu_port *port =
3639 				per_cpu_ptr(pp->ports, cpu);
3640 
3641 			napi_enable(&port->napi);
3642 		}
3643 	} else {
3644 		napi_enable(&pp->napi);
3645 	}
3646 
3647 	/* Unmask interrupts. It has to be done from each CPU */
3648 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3649 
3650 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3651 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3652 		    MVNETA_CAUSE_LINK_CHANGE);
3653 
3654 	phylink_start(pp->phylink);
3655 
3656 	/* We may have called phylink_speed_down before */
3657 	phylink_speed_up(pp->phylink);
3658 
3659 	netif_tx_start_all_queues(pp->dev);
3660 
3661 	clear_bit(__MVNETA_DOWN, &pp->state);
3662 }
3663 
3664 static void mvneta_stop_dev(struct mvneta_port *pp)
3665 {
3666 	unsigned int cpu;
3667 
3668 	set_bit(__MVNETA_DOWN, &pp->state);
3669 
3670 	if (device_may_wakeup(&pp->dev->dev))
3671 		phylink_speed_down(pp->phylink, false);
3672 
3673 	phylink_stop(pp->phylink);
3674 
3675 	if (!pp->neta_armada3700) {
3676 		for_each_online_cpu(cpu) {
3677 			struct mvneta_pcpu_port *port =
3678 				per_cpu_ptr(pp->ports, cpu);
3679 
3680 			napi_disable(&port->napi);
3681 		}
3682 	} else {
3683 		napi_disable(&pp->napi);
3684 	}
3685 
3686 	netif_carrier_off(pp->dev);
3687 
3688 	mvneta_port_down(pp);
3689 	netif_tx_stop_all_queues(pp->dev);
3690 
3691 	/* Stop the port activity */
3692 	mvneta_port_disable(pp);
3693 
3694 	/* Clear all ethernet port interrupts */
3695 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3696 
3697 	/* Mask all ethernet port interrupts */
3698 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3699 
3700 	mvneta_tx_reset(pp);
3701 	mvneta_rx_reset(pp);
3702 
3703 	WARN_ON(phy_power_off(pp->comphy));
3704 }
3705 
3706 static void mvneta_percpu_enable(void *arg)
3707 {
3708 	struct mvneta_port *pp = arg;
3709 
3710 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3711 }
3712 
3713 static void mvneta_percpu_disable(void *arg)
3714 {
3715 	struct mvneta_port *pp = arg;
3716 
3717 	disable_percpu_irq(pp->dev->irq);
3718 }
3719 
3720 /* Change the device mtu */
3721 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3722 {
3723 	struct mvneta_port *pp = netdev_priv(dev);
3724 	int ret;
3725 
3726 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3727 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3728 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3729 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3730 	}
3731 
3732 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3733 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3734 		return -EINVAL;
3735 	}
3736 
3737 	dev->mtu = mtu;
3738 
3739 	if (!netif_running(dev)) {
3740 		if (pp->bm_priv)
3741 			mvneta_bm_update_mtu(pp, mtu);
3742 
3743 		netdev_update_features(dev);
3744 		return 0;
3745 	}
3746 
3747 	/* The interface is running, so we have to force a
3748 	 * reallocation of the queues
3749 	 */
3750 	mvneta_stop_dev(pp);
3751 	on_each_cpu(mvneta_percpu_disable, pp, true);
3752 
3753 	mvneta_cleanup_txqs(pp);
3754 	mvneta_cleanup_rxqs(pp);
3755 
3756 	if (pp->bm_priv)
3757 		mvneta_bm_update_mtu(pp, mtu);
3758 
3759 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3760 
3761 	ret = mvneta_setup_rxqs(pp);
3762 	if (ret) {
3763 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3764 		return ret;
3765 	}
3766 
3767 	ret = mvneta_setup_txqs(pp);
3768 	if (ret) {
3769 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3770 		return ret;
3771 	}
3772 
3773 	on_each_cpu(mvneta_percpu_enable, pp, true);
3774 	mvneta_start_dev(pp);
3775 
3776 	netdev_update_features(dev);
3777 
3778 	return 0;
3779 }
3780 
3781 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3782 					     netdev_features_t features)
3783 {
3784 	struct mvneta_port *pp = netdev_priv(dev);
3785 
3786 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3787 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3788 		netdev_info(dev,
3789 			    "Disable IP checksum for MTU greater than %dB\n",
3790 			    pp->tx_csum_limit);
3791 	}
3792 
3793 	return features;
3794 }
3795 
3796 /* Get mac address */
3797 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3798 {
3799 	u32 mac_addr_l, mac_addr_h;
3800 
3801 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3802 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3803 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3804 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3805 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3806 	addr[3] = mac_addr_h & 0xFF;
3807 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3808 	addr[5] = mac_addr_l & 0xFF;
3809 }
3810 
3811 /* Handle setting mac address */
3812 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3813 {
3814 	struct mvneta_port *pp = netdev_priv(dev);
3815 	struct sockaddr *sockaddr = addr;
3816 	int ret;
3817 
3818 	ret = eth_prepare_mac_addr_change(dev, addr);
3819 	if (ret < 0)
3820 		return ret;
3821 	/* Remove previous address table entry */
3822 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3823 
3824 	/* Set new addr in hw */
3825 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3826 
3827 	eth_commit_mac_addr_change(dev, addr);
3828 	return 0;
3829 }
3830 
3831 static void mvneta_validate(struct phylink_config *config,
3832 			    unsigned long *supported,
3833 			    struct phylink_link_state *state)
3834 {
3835 	struct net_device *ndev = to_net_dev(config->dev);
3836 	struct mvneta_port *pp = netdev_priv(ndev);
3837 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3838 
3839 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3840 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3841 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3842 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3843 	    !phy_interface_mode_is_8023z(state->interface) &&
3844 	    !phy_interface_mode_is_rgmii(state->interface)) {
3845 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3846 		return;
3847 	}
3848 
3849 	/* Allow all the expected bits */
3850 	phylink_set(mask, Autoneg);
3851 	phylink_set_port_modes(mask);
3852 
3853 	/* Asymmetric pause is unsupported */
3854 	phylink_set(mask, Pause);
3855 
3856 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3857 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3858 		phylink_set(mask, 1000baseT_Full);
3859 		phylink_set(mask, 1000baseX_Full);
3860 	}
3861 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3862 		phylink_set(mask, 2500baseT_Full);
3863 		phylink_set(mask, 2500baseX_Full);
3864 	}
3865 
3866 	if (!phy_interface_mode_is_8023z(state->interface)) {
3867 		/* 10M and 100M are only supported in non-802.3z mode */
3868 		phylink_set(mask, 10baseT_Half);
3869 		phylink_set(mask, 10baseT_Full);
3870 		phylink_set(mask, 100baseT_Half);
3871 		phylink_set(mask, 100baseT_Full);
3872 	}
3873 
3874 	bitmap_and(supported, supported, mask,
3875 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3876 	bitmap_and(state->advertising, state->advertising, mask,
3877 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3878 
3879 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3880 	 * to advertise both, only report advertising at 2500BaseX.
3881 	 */
3882 	phylink_helper_basex_speed(state);
3883 }
3884 
3885 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3886 				     struct phylink_link_state *state)
3887 {
3888 	struct net_device *ndev = to_net_dev(config->dev);
3889 	struct mvneta_port *pp = netdev_priv(ndev);
3890 	u32 gmac_stat;
3891 
3892 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3893 
3894 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3895 		state->speed =
3896 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3897 			SPEED_2500 : SPEED_1000;
3898 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3899 		state->speed = SPEED_100;
3900 	else
3901 		state->speed = SPEED_10;
3902 
3903 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3904 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3905 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3906 
3907 	state->pause = 0;
3908 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3909 		state->pause |= MLO_PAUSE_RX;
3910 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3911 		state->pause |= MLO_PAUSE_TX;
3912 }
3913 
3914 static void mvneta_mac_an_restart(struct phylink_config *config)
3915 {
3916 	struct net_device *ndev = to_net_dev(config->dev);
3917 	struct mvneta_port *pp = netdev_priv(ndev);
3918 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3919 
3920 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3921 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3922 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3923 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3924 }
3925 
3926 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3927 			      const struct phylink_link_state *state)
3928 {
3929 	struct net_device *ndev = to_net_dev(config->dev);
3930 	struct mvneta_port *pp = netdev_priv(ndev);
3931 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3932 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3933 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3934 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3935 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3936 
3937 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3938 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3939 				   MVNETA_GMAC2_PORT_RESET);
3940 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3941 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3942 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3943 			     MVNETA_GMAC_INBAND_RESTART_AN |
3944 			     MVNETA_GMAC_AN_SPEED_EN |
3945 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3946 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3947 			     MVNETA_GMAC_AN_DUPLEX_EN);
3948 
3949 	/* Even though it might look weird, when we're configured in
3950 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3951 	 */
3952 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3953 
3954 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3955 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3956 	    phy_interface_mode_is_8023z(state->interface))
3957 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3958 
3959 	if (phylink_test(state->advertising, Pause))
3960 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3961 
3962 	if (!phylink_autoneg_inband(mode)) {
3963 		/* Phy or fixed speed - nothing to do, leave the
3964 		 * configured speed, duplex and flow control as-is.
3965 		 */
3966 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3967 		/* SGMII mode receives the state from the PHY */
3968 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3969 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3970 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3971 				     MVNETA_GMAC_FORCE_LINK_PASS |
3972 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3973 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3974 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3975 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3976 			 MVNETA_GMAC_AN_SPEED_EN |
3977 			 MVNETA_GMAC_AN_DUPLEX_EN;
3978 	} else {
3979 		/* 802.3z negotiation - only 1000base-X */
3980 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3981 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3982 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3983 				     MVNETA_GMAC_FORCE_LINK_PASS |
3984 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3985 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3986 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3987 			 /* The MAC only supports FD mode */
3988 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3989 
3990 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3991 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3992 	}
3993 
3994 	/* Armada 370 documentation says we can only change the port mode
3995 	 * and in-band enable when the link is down, so force it down
3996 	 * while making these changes. We also do this for GMAC_CTRL2 */
3997 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3998 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3999 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
4000 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4001 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
4002 			    MVNETA_GMAC_FORCE_LINK_DOWN);
4003 	}
4004 
4005 
4006 	/* When at 2.5G, the link partner can send frames with shortened
4007 	 * preambles.
4008 	 */
4009 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4010 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4011 
4012 	if (pp->phy_interface != state->interface) {
4013 		if (pp->comphy)
4014 			WARN_ON(phy_power_off(pp->comphy));
4015 		WARN_ON(mvneta_config_interface(pp, state->interface));
4016 	}
4017 
4018 	if (new_ctrl0 != gmac_ctrl0)
4019 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4020 	if (new_ctrl2 != gmac_ctrl2)
4021 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4022 	if (new_ctrl4 != gmac_ctrl4)
4023 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4024 	if (new_clk != gmac_clk)
4025 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4026 	if (new_an != gmac_an)
4027 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4028 
4029 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4030 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4031 			MVNETA_GMAC2_PORT_RESET) != 0)
4032 			continue;
4033 	}
4034 }
4035 
4036 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4037 {
4038 	u32 lpi_ctl1;
4039 
4040 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4041 	if (enable)
4042 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4043 	else
4044 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4045 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4046 }
4047 
4048 static void mvneta_mac_link_down(struct phylink_config *config,
4049 				 unsigned int mode, phy_interface_t interface)
4050 {
4051 	struct net_device *ndev = to_net_dev(config->dev);
4052 	struct mvneta_port *pp = netdev_priv(ndev);
4053 	u32 val;
4054 
4055 	mvneta_port_down(pp);
4056 
4057 	if (!phylink_autoneg_inband(mode)) {
4058 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4059 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4060 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4061 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4062 	}
4063 
4064 	pp->eee_active = false;
4065 	mvneta_set_eee(pp, false);
4066 }
4067 
4068 static void mvneta_mac_link_up(struct phylink_config *config,
4069 			       struct phy_device *phy,
4070 			       unsigned int mode, phy_interface_t interface,
4071 			       int speed, int duplex,
4072 			       bool tx_pause, bool rx_pause)
4073 {
4074 	struct net_device *ndev = to_net_dev(config->dev);
4075 	struct mvneta_port *pp = netdev_priv(ndev);
4076 	u32 val;
4077 
4078 	if (!phylink_autoneg_inband(mode)) {
4079 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4080 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4081 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4082 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4083 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4084 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4085 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4086 
4087 		if (speed == SPEED_1000 || speed == SPEED_2500)
4088 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4089 		else if (speed == SPEED_100)
4090 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4091 
4092 		if (duplex == DUPLEX_FULL)
4093 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4094 
4095 		if (tx_pause || rx_pause)
4096 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4097 
4098 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4099 	} else {
4100 		/* When inband doesn't cover flow control or flow control is
4101 		 * disabled, we need to manually configure it. This bit will
4102 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4103 		 */
4104 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4105 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4106 
4107 		if (tx_pause || rx_pause)
4108 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4109 
4110 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4111 	}
4112 
4113 	mvneta_port_up(pp);
4114 
4115 	if (phy && pp->eee_enabled) {
4116 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4117 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4118 	}
4119 }
4120 
4121 static const struct phylink_mac_ops mvneta_phylink_ops = {
4122 	.validate = mvneta_validate,
4123 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4124 	.mac_an_restart = mvneta_mac_an_restart,
4125 	.mac_config = mvneta_mac_config,
4126 	.mac_link_down = mvneta_mac_link_down,
4127 	.mac_link_up = mvneta_mac_link_up,
4128 };
4129 
4130 static int mvneta_mdio_probe(struct mvneta_port *pp)
4131 {
4132 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4133 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4134 
4135 	if (err)
4136 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4137 
4138 	phylink_ethtool_get_wol(pp->phylink, &wol);
4139 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4140 
4141 	/* PHY WoL may be enabled but device wakeup disabled */
4142 	if (wol.supported)
4143 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4144 
4145 	return err;
4146 }
4147 
4148 static void mvneta_mdio_remove(struct mvneta_port *pp)
4149 {
4150 	phylink_disconnect_phy(pp->phylink);
4151 }
4152 
4153 /* Electing a CPU must be done in an atomic way: it should be done
4154  * after or before the removal/insertion of a CPU and this function is
4155  * not reentrant.
4156  */
4157 static void mvneta_percpu_elect(struct mvneta_port *pp)
4158 {
4159 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4160 
4161 	/* Use the cpu associated to the rxq when it is online, in all
4162 	 * the other cases, use the cpu 0 which can't be offline.
4163 	 */
4164 	if (cpu_online(pp->rxq_def))
4165 		elected_cpu = pp->rxq_def;
4166 
4167 	max_cpu = num_present_cpus();
4168 
4169 	for_each_online_cpu(cpu) {
4170 		int rxq_map = 0, txq_map = 0;
4171 		int rxq;
4172 
4173 		for (rxq = 0; rxq < rxq_number; rxq++)
4174 			if ((rxq % max_cpu) == cpu)
4175 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4176 
4177 		if (cpu == elected_cpu)
4178 			/* Map the default receive queue queue to the
4179 			 * elected CPU
4180 			 */
4181 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4182 
4183 		/* We update the TX queue map only if we have one
4184 		 * queue. In this case we associate the TX queue to
4185 		 * the CPU bound to the default RX queue
4186 		 */
4187 		if (txq_number == 1)
4188 			txq_map = (cpu == elected_cpu) ?
4189 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4190 		else
4191 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4192 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4193 
4194 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4195 
4196 		/* Update the interrupt mask on each CPU according the
4197 		 * new mapping
4198 		 */
4199 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4200 					 pp, true);
4201 		i++;
4202 
4203 	}
4204 };
4205 
4206 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4207 {
4208 	int other_cpu;
4209 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4210 						  node_online);
4211 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4212 
4213 
4214 	spin_lock(&pp->lock);
4215 	/*
4216 	 * Configuring the driver for a new CPU while the driver is
4217 	 * stopping is racy, so just avoid it.
4218 	 */
4219 	if (pp->is_stopped) {
4220 		spin_unlock(&pp->lock);
4221 		return 0;
4222 	}
4223 	netif_tx_stop_all_queues(pp->dev);
4224 
4225 	/*
4226 	 * We have to synchronise on tha napi of each CPU except the one
4227 	 * just being woken up
4228 	 */
4229 	for_each_online_cpu(other_cpu) {
4230 		if (other_cpu != cpu) {
4231 			struct mvneta_pcpu_port *other_port =
4232 				per_cpu_ptr(pp->ports, other_cpu);
4233 
4234 			napi_synchronize(&other_port->napi);
4235 		}
4236 	}
4237 
4238 	/* Mask all ethernet port interrupts */
4239 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4240 	napi_enable(&port->napi);
4241 
4242 	/*
4243 	 * Enable per-CPU interrupts on the CPU that is
4244 	 * brought up.
4245 	 */
4246 	mvneta_percpu_enable(pp);
4247 
4248 	/*
4249 	 * Enable per-CPU interrupt on the one CPU we care
4250 	 * about.
4251 	 */
4252 	mvneta_percpu_elect(pp);
4253 
4254 	/* Unmask all ethernet port interrupts */
4255 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4256 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4257 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4258 		    MVNETA_CAUSE_LINK_CHANGE);
4259 	netif_tx_start_all_queues(pp->dev);
4260 	spin_unlock(&pp->lock);
4261 	return 0;
4262 }
4263 
4264 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4265 {
4266 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4267 						  node_online);
4268 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4269 
4270 	/*
4271 	 * Thanks to this lock we are sure that any pending cpu election is
4272 	 * done.
4273 	 */
4274 	spin_lock(&pp->lock);
4275 	/* Mask all ethernet port interrupts */
4276 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4277 	spin_unlock(&pp->lock);
4278 
4279 	napi_synchronize(&port->napi);
4280 	napi_disable(&port->napi);
4281 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4282 	mvneta_percpu_disable(pp);
4283 	return 0;
4284 }
4285 
4286 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4287 {
4288 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4289 						  node_dead);
4290 
4291 	/* Check if a new CPU must be elected now this on is down */
4292 	spin_lock(&pp->lock);
4293 	mvneta_percpu_elect(pp);
4294 	spin_unlock(&pp->lock);
4295 	/* Unmask all ethernet port interrupts */
4296 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4297 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4298 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4299 		    MVNETA_CAUSE_LINK_CHANGE);
4300 	netif_tx_start_all_queues(pp->dev);
4301 	return 0;
4302 }
4303 
4304 static int mvneta_open(struct net_device *dev)
4305 {
4306 	struct mvneta_port *pp = netdev_priv(dev);
4307 	int ret;
4308 
4309 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4310 
4311 	ret = mvneta_setup_rxqs(pp);
4312 	if (ret)
4313 		return ret;
4314 
4315 	ret = mvneta_setup_txqs(pp);
4316 	if (ret)
4317 		goto err_cleanup_rxqs;
4318 
4319 	/* Connect to port interrupt line */
4320 	if (pp->neta_armada3700)
4321 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4322 				  dev->name, pp);
4323 	else
4324 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4325 					 dev->name, pp->ports);
4326 	if (ret) {
4327 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4328 		goto err_cleanup_txqs;
4329 	}
4330 
4331 	if (!pp->neta_armada3700) {
4332 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4333 		 * queue interrupts
4334 		 */
4335 		on_each_cpu(mvneta_percpu_enable, pp, true);
4336 
4337 		pp->is_stopped = false;
4338 		/* Register a CPU notifier to handle the case where our CPU
4339 		 * might be taken offline.
4340 		 */
4341 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4342 						       &pp->node_online);
4343 		if (ret)
4344 			goto err_free_irq;
4345 
4346 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4347 						       &pp->node_dead);
4348 		if (ret)
4349 			goto err_free_online_hp;
4350 	}
4351 
4352 	ret = mvneta_mdio_probe(pp);
4353 	if (ret < 0) {
4354 		netdev_err(dev, "cannot probe MDIO bus\n");
4355 		goto err_free_dead_hp;
4356 	}
4357 
4358 	mvneta_start_dev(pp);
4359 
4360 	return 0;
4361 
4362 err_free_dead_hp:
4363 	if (!pp->neta_armada3700)
4364 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4365 						    &pp->node_dead);
4366 err_free_online_hp:
4367 	if (!pp->neta_armada3700)
4368 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4369 						    &pp->node_online);
4370 err_free_irq:
4371 	if (pp->neta_armada3700) {
4372 		free_irq(pp->dev->irq, pp);
4373 	} else {
4374 		on_each_cpu(mvneta_percpu_disable, pp, true);
4375 		free_percpu_irq(pp->dev->irq, pp->ports);
4376 	}
4377 err_cleanup_txqs:
4378 	mvneta_cleanup_txqs(pp);
4379 err_cleanup_rxqs:
4380 	mvneta_cleanup_rxqs(pp);
4381 	return ret;
4382 }
4383 
4384 /* Stop the port, free port interrupt line */
4385 static int mvneta_stop(struct net_device *dev)
4386 {
4387 	struct mvneta_port *pp = netdev_priv(dev);
4388 
4389 	if (!pp->neta_armada3700) {
4390 		/* Inform that we are stopping so we don't want to setup the
4391 		 * driver for new CPUs in the notifiers. The code of the
4392 		 * notifier for CPU online is protected by the same spinlock,
4393 		 * so when we get the lock, the notifer work is done.
4394 		 */
4395 		spin_lock(&pp->lock);
4396 		pp->is_stopped = true;
4397 		spin_unlock(&pp->lock);
4398 
4399 		mvneta_stop_dev(pp);
4400 		mvneta_mdio_remove(pp);
4401 
4402 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4403 						    &pp->node_online);
4404 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4405 						    &pp->node_dead);
4406 		on_each_cpu(mvneta_percpu_disable, pp, true);
4407 		free_percpu_irq(dev->irq, pp->ports);
4408 	} else {
4409 		mvneta_stop_dev(pp);
4410 		mvneta_mdio_remove(pp);
4411 		free_irq(dev->irq, pp);
4412 	}
4413 
4414 	mvneta_cleanup_rxqs(pp);
4415 	mvneta_cleanup_txqs(pp);
4416 
4417 	return 0;
4418 }
4419 
4420 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4421 {
4422 	struct mvneta_port *pp = netdev_priv(dev);
4423 
4424 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4425 }
4426 
4427 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4428 			    struct netlink_ext_ack *extack)
4429 {
4430 	bool need_update, running = netif_running(dev);
4431 	struct mvneta_port *pp = netdev_priv(dev);
4432 	struct bpf_prog *old_prog;
4433 
4434 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4435 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4436 		return -EOPNOTSUPP;
4437 	}
4438 
4439 	if (pp->bm_priv) {
4440 		NL_SET_ERR_MSG_MOD(extack,
4441 				   "Hardware Buffer Management not supported on XDP");
4442 		return -EOPNOTSUPP;
4443 	}
4444 
4445 	need_update = !!pp->xdp_prog != !!prog;
4446 	if (running && need_update)
4447 		mvneta_stop(dev);
4448 
4449 	old_prog = xchg(&pp->xdp_prog, prog);
4450 	if (old_prog)
4451 		bpf_prog_put(old_prog);
4452 
4453 	if (running && need_update)
4454 		return mvneta_open(dev);
4455 
4456 	return 0;
4457 }
4458 
4459 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4460 {
4461 	switch (xdp->command) {
4462 	case XDP_SETUP_PROG:
4463 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4464 	default:
4465 		return -EINVAL;
4466 	}
4467 }
4468 
4469 /* Ethtool methods */
4470 
4471 /* Set link ksettings (phy address, speed) for ethtools */
4472 static int
4473 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4474 				  const struct ethtool_link_ksettings *cmd)
4475 {
4476 	struct mvneta_port *pp = netdev_priv(ndev);
4477 
4478 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4479 }
4480 
4481 /* Get link ksettings for ethtools */
4482 static int
4483 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4484 				  struct ethtool_link_ksettings *cmd)
4485 {
4486 	struct mvneta_port *pp = netdev_priv(ndev);
4487 
4488 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4489 }
4490 
4491 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4492 {
4493 	struct mvneta_port *pp = netdev_priv(dev);
4494 
4495 	return phylink_ethtool_nway_reset(pp->phylink);
4496 }
4497 
4498 /* Set interrupt coalescing for ethtools */
4499 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4500 				       struct ethtool_coalesce *c)
4501 {
4502 	struct mvneta_port *pp = netdev_priv(dev);
4503 	int queue;
4504 
4505 	for (queue = 0; queue < rxq_number; queue++) {
4506 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4507 		rxq->time_coal = c->rx_coalesce_usecs;
4508 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4509 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4510 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4511 	}
4512 
4513 	for (queue = 0; queue < txq_number; queue++) {
4514 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4515 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4516 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4517 	}
4518 
4519 	return 0;
4520 }
4521 
4522 /* get coalescing for ethtools */
4523 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4524 				       struct ethtool_coalesce *c)
4525 {
4526 	struct mvneta_port *pp = netdev_priv(dev);
4527 
4528 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4529 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4530 
4531 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4532 	return 0;
4533 }
4534 
4535 
4536 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4537 				    struct ethtool_drvinfo *drvinfo)
4538 {
4539 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4540 		sizeof(drvinfo->driver));
4541 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4542 		sizeof(drvinfo->version));
4543 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4544 		sizeof(drvinfo->bus_info));
4545 }
4546 
4547 
4548 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4549 					 struct ethtool_ringparam *ring)
4550 {
4551 	struct mvneta_port *pp = netdev_priv(netdev);
4552 
4553 	ring->rx_max_pending = MVNETA_MAX_RXD;
4554 	ring->tx_max_pending = MVNETA_MAX_TXD;
4555 	ring->rx_pending = pp->rx_ring_size;
4556 	ring->tx_pending = pp->tx_ring_size;
4557 }
4558 
4559 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4560 					struct ethtool_ringparam *ring)
4561 {
4562 	struct mvneta_port *pp = netdev_priv(dev);
4563 
4564 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4565 		return -EINVAL;
4566 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4567 		ring->rx_pending : MVNETA_MAX_RXD;
4568 
4569 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4570 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4571 	if (pp->tx_ring_size != ring->tx_pending)
4572 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4573 			    pp->tx_ring_size, ring->tx_pending);
4574 
4575 	if (netif_running(dev)) {
4576 		mvneta_stop(dev);
4577 		if (mvneta_open(dev)) {
4578 			netdev_err(dev,
4579 				   "error on opening device after ring param change\n");
4580 			return -ENOMEM;
4581 		}
4582 	}
4583 
4584 	return 0;
4585 }
4586 
4587 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4588 					  struct ethtool_pauseparam *pause)
4589 {
4590 	struct mvneta_port *pp = netdev_priv(dev);
4591 
4592 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4593 }
4594 
4595 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4596 					 struct ethtool_pauseparam *pause)
4597 {
4598 	struct mvneta_port *pp = netdev_priv(dev);
4599 
4600 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4601 }
4602 
4603 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4604 				       u8 *data)
4605 {
4606 	if (sset == ETH_SS_STATS) {
4607 		int i;
4608 
4609 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4610 			memcpy(data + i * ETH_GSTRING_LEN,
4611 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4612 	}
4613 }
4614 
4615 static void
4616 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4617 				 struct mvneta_ethtool_stats *es)
4618 {
4619 	unsigned int start;
4620 	int cpu;
4621 
4622 	for_each_possible_cpu(cpu) {
4623 		struct mvneta_pcpu_stats *stats;
4624 		u64 skb_alloc_error;
4625 		u64 refill_error;
4626 		u64 xdp_redirect;
4627 		u64 xdp_xmit_err;
4628 		u64 xdp_tx_err;
4629 		u64 xdp_pass;
4630 		u64 xdp_drop;
4631 		u64 xdp_xmit;
4632 		u64 xdp_tx;
4633 
4634 		stats = per_cpu_ptr(pp->stats, cpu);
4635 		do {
4636 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4637 			skb_alloc_error = stats->es.skb_alloc_error;
4638 			refill_error = stats->es.refill_error;
4639 			xdp_redirect = stats->es.ps.xdp_redirect;
4640 			xdp_pass = stats->es.ps.xdp_pass;
4641 			xdp_drop = stats->es.ps.xdp_drop;
4642 			xdp_xmit = stats->es.ps.xdp_xmit;
4643 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4644 			xdp_tx = stats->es.ps.xdp_tx;
4645 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4646 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4647 
4648 		es->skb_alloc_error += skb_alloc_error;
4649 		es->refill_error += refill_error;
4650 		es->ps.xdp_redirect += xdp_redirect;
4651 		es->ps.xdp_pass += xdp_pass;
4652 		es->ps.xdp_drop += xdp_drop;
4653 		es->ps.xdp_xmit += xdp_xmit;
4654 		es->ps.xdp_xmit_err += xdp_xmit_err;
4655 		es->ps.xdp_tx += xdp_tx;
4656 		es->ps.xdp_tx_err += xdp_tx_err;
4657 	}
4658 }
4659 
4660 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4661 {
4662 	struct mvneta_ethtool_stats stats = {};
4663 	const struct mvneta_statistic *s;
4664 	void __iomem *base = pp->base;
4665 	u32 high, low;
4666 	u64 val;
4667 	int i;
4668 
4669 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4670 	for (i = 0, s = mvneta_statistics;
4671 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4672 	     s++, i++) {
4673 		switch (s->type) {
4674 		case T_REG_32:
4675 			val = readl_relaxed(base + s->offset);
4676 			pp->ethtool_stats[i] += val;
4677 			break;
4678 		case T_REG_64:
4679 			/* Docs say to read low 32-bit then high */
4680 			low = readl_relaxed(base + s->offset);
4681 			high = readl_relaxed(base + s->offset + 4);
4682 			val = (u64)high << 32 | low;
4683 			pp->ethtool_stats[i] += val;
4684 			break;
4685 		case T_SW:
4686 			switch (s->offset) {
4687 			case ETHTOOL_STAT_EEE_WAKEUP:
4688 				val = phylink_get_eee_err(pp->phylink);
4689 				pp->ethtool_stats[i] += val;
4690 				break;
4691 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4692 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4693 				break;
4694 			case ETHTOOL_STAT_REFILL_ERR:
4695 				pp->ethtool_stats[i] = stats.refill_error;
4696 				break;
4697 			case ETHTOOL_XDP_REDIRECT:
4698 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4699 				break;
4700 			case ETHTOOL_XDP_PASS:
4701 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4702 				break;
4703 			case ETHTOOL_XDP_DROP:
4704 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4705 				break;
4706 			case ETHTOOL_XDP_TX:
4707 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4708 				break;
4709 			case ETHTOOL_XDP_TX_ERR:
4710 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4711 				break;
4712 			case ETHTOOL_XDP_XMIT:
4713 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4714 				break;
4715 			case ETHTOOL_XDP_XMIT_ERR:
4716 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4717 				break;
4718 			}
4719 			break;
4720 		}
4721 	}
4722 }
4723 
4724 static void mvneta_ethtool_get_stats(struct net_device *dev,
4725 				     struct ethtool_stats *stats, u64 *data)
4726 {
4727 	struct mvneta_port *pp = netdev_priv(dev);
4728 	int i;
4729 
4730 	mvneta_ethtool_update_stats(pp);
4731 
4732 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4733 		*data++ = pp->ethtool_stats[i];
4734 }
4735 
4736 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4737 {
4738 	if (sset == ETH_SS_STATS)
4739 		return ARRAY_SIZE(mvneta_statistics);
4740 	return -EOPNOTSUPP;
4741 }
4742 
4743 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4744 {
4745 	return MVNETA_RSS_LU_TABLE_SIZE;
4746 }
4747 
4748 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4749 				    struct ethtool_rxnfc *info,
4750 				    u32 *rules __always_unused)
4751 {
4752 	switch (info->cmd) {
4753 	case ETHTOOL_GRXRINGS:
4754 		info->data =  rxq_number;
4755 		return 0;
4756 	case ETHTOOL_GRXFH:
4757 		return -EOPNOTSUPP;
4758 	default:
4759 		return -EOPNOTSUPP;
4760 	}
4761 }
4762 
4763 static int  mvneta_config_rss(struct mvneta_port *pp)
4764 {
4765 	int cpu;
4766 	u32 val;
4767 
4768 	netif_tx_stop_all_queues(pp->dev);
4769 
4770 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4771 
4772 	if (!pp->neta_armada3700) {
4773 		/* We have to synchronise on the napi of each CPU */
4774 		for_each_online_cpu(cpu) {
4775 			struct mvneta_pcpu_port *pcpu_port =
4776 				per_cpu_ptr(pp->ports, cpu);
4777 
4778 			napi_synchronize(&pcpu_port->napi);
4779 			napi_disable(&pcpu_port->napi);
4780 		}
4781 	} else {
4782 		napi_synchronize(&pp->napi);
4783 		napi_disable(&pp->napi);
4784 	}
4785 
4786 	pp->rxq_def = pp->indir[0];
4787 
4788 	/* Update unicast mapping */
4789 	mvneta_set_rx_mode(pp->dev);
4790 
4791 	/* Update val of portCfg register accordingly with all RxQueue types */
4792 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4793 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4794 
4795 	/* Update the elected CPU matching the new rxq_def */
4796 	spin_lock(&pp->lock);
4797 	mvneta_percpu_elect(pp);
4798 	spin_unlock(&pp->lock);
4799 
4800 	if (!pp->neta_armada3700) {
4801 		/* We have to synchronise on the napi of each CPU */
4802 		for_each_online_cpu(cpu) {
4803 			struct mvneta_pcpu_port *pcpu_port =
4804 				per_cpu_ptr(pp->ports, cpu);
4805 
4806 			napi_enable(&pcpu_port->napi);
4807 		}
4808 	} else {
4809 		napi_enable(&pp->napi);
4810 	}
4811 
4812 	netif_tx_start_all_queues(pp->dev);
4813 
4814 	return 0;
4815 }
4816 
4817 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4818 				   const u8 *key, const u8 hfunc)
4819 {
4820 	struct mvneta_port *pp = netdev_priv(dev);
4821 
4822 	/* Current code for Armada 3700 doesn't support RSS features yet */
4823 	if (pp->neta_armada3700)
4824 		return -EOPNOTSUPP;
4825 
4826 	/* We require at least one supported parameter to be changed
4827 	 * and no change in any of the unsupported parameters
4828 	 */
4829 	if (key ||
4830 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4831 		return -EOPNOTSUPP;
4832 
4833 	if (!indir)
4834 		return 0;
4835 
4836 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4837 
4838 	return mvneta_config_rss(pp);
4839 }
4840 
4841 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4842 				   u8 *hfunc)
4843 {
4844 	struct mvneta_port *pp = netdev_priv(dev);
4845 
4846 	/* Current code for Armada 3700 doesn't support RSS features yet */
4847 	if (pp->neta_armada3700)
4848 		return -EOPNOTSUPP;
4849 
4850 	if (hfunc)
4851 		*hfunc = ETH_RSS_HASH_TOP;
4852 
4853 	if (!indir)
4854 		return 0;
4855 
4856 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4857 
4858 	return 0;
4859 }
4860 
4861 static void mvneta_ethtool_get_wol(struct net_device *dev,
4862 				   struct ethtool_wolinfo *wol)
4863 {
4864 	struct mvneta_port *pp = netdev_priv(dev);
4865 
4866 	phylink_ethtool_get_wol(pp->phylink, wol);
4867 }
4868 
4869 static int mvneta_ethtool_set_wol(struct net_device *dev,
4870 				  struct ethtool_wolinfo *wol)
4871 {
4872 	struct mvneta_port *pp = netdev_priv(dev);
4873 	int ret;
4874 
4875 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4876 	if (!ret)
4877 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4878 
4879 	return ret;
4880 }
4881 
4882 static int mvneta_ethtool_get_eee(struct net_device *dev,
4883 				  struct ethtool_eee *eee)
4884 {
4885 	struct mvneta_port *pp = netdev_priv(dev);
4886 	u32 lpi_ctl0;
4887 
4888 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4889 
4890 	eee->eee_enabled = pp->eee_enabled;
4891 	eee->eee_active = pp->eee_active;
4892 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4893 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4894 
4895 	return phylink_ethtool_get_eee(pp->phylink, eee);
4896 }
4897 
4898 static int mvneta_ethtool_set_eee(struct net_device *dev,
4899 				  struct ethtool_eee *eee)
4900 {
4901 	struct mvneta_port *pp = netdev_priv(dev);
4902 	u32 lpi_ctl0;
4903 
4904 	/* The Armada 37x documents do not give limits for this other than
4905 	 * it being an 8-bit register. */
4906 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4907 		return -EINVAL;
4908 
4909 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4910 	lpi_ctl0 &= ~(0xff << 8);
4911 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4912 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4913 
4914 	pp->eee_enabled = eee->eee_enabled;
4915 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4916 
4917 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4918 
4919 	return phylink_ethtool_set_eee(pp->phylink, eee);
4920 }
4921 
4922 static const struct net_device_ops mvneta_netdev_ops = {
4923 	.ndo_open            = mvneta_open,
4924 	.ndo_stop            = mvneta_stop,
4925 	.ndo_start_xmit      = mvneta_tx,
4926 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4927 	.ndo_set_mac_address = mvneta_set_mac_addr,
4928 	.ndo_change_mtu      = mvneta_change_mtu,
4929 	.ndo_fix_features    = mvneta_fix_features,
4930 	.ndo_get_stats64     = mvneta_get_stats64,
4931 	.ndo_do_ioctl        = mvneta_ioctl,
4932 	.ndo_bpf	     = mvneta_xdp,
4933 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4934 };
4935 
4936 static const struct ethtool_ops mvneta_eth_tool_ops = {
4937 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4938 				     ETHTOOL_COALESCE_MAX_FRAMES,
4939 	.nway_reset	= mvneta_ethtool_nway_reset,
4940 	.get_link       = ethtool_op_get_link,
4941 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4942 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4943 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4944 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4945 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4946 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4947 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4948 	.get_strings	= mvneta_ethtool_get_strings,
4949 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4950 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4951 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4952 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4953 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4954 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4955 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4956 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4957 	.get_wol        = mvneta_ethtool_get_wol,
4958 	.set_wol        = mvneta_ethtool_set_wol,
4959 	.get_eee	= mvneta_ethtool_get_eee,
4960 	.set_eee	= mvneta_ethtool_set_eee,
4961 };
4962 
4963 /* Initialize hw */
4964 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4965 {
4966 	int queue;
4967 
4968 	/* Disable port */
4969 	mvneta_port_disable(pp);
4970 
4971 	/* Set port default values */
4972 	mvneta_defaults_set(pp);
4973 
4974 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4975 	if (!pp->txqs)
4976 		return -ENOMEM;
4977 
4978 	/* Initialize TX descriptor rings */
4979 	for (queue = 0; queue < txq_number; queue++) {
4980 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4981 		txq->id = queue;
4982 		txq->size = pp->tx_ring_size;
4983 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4984 	}
4985 
4986 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4987 	if (!pp->rxqs)
4988 		return -ENOMEM;
4989 
4990 	/* Create Rx descriptor rings */
4991 	for (queue = 0; queue < rxq_number; queue++) {
4992 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4993 		rxq->id = queue;
4994 		rxq->size = pp->rx_ring_size;
4995 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4996 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4997 		rxq->buf_virt_addr
4998 			= devm_kmalloc_array(pp->dev->dev.parent,
4999 					     rxq->size,
5000 					     sizeof(*rxq->buf_virt_addr),
5001 					     GFP_KERNEL);
5002 		if (!rxq->buf_virt_addr)
5003 			return -ENOMEM;
5004 	}
5005 
5006 	return 0;
5007 }
5008 
5009 /* platform glue : initialize decoding windows */
5010 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5011 				     const struct mbus_dram_target_info *dram)
5012 {
5013 	u32 win_enable;
5014 	u32 win_protect;
5015 	int i;
5016 
5017 	for (i = 0; i < 6; i++) {
5018 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5019 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5020 
5021 		if (i < 4)
5022 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5023 	}
5024 
5025 	win_enable = 0x3f;
5026 	win_protect = 0;
5027 
5028 	if (dram) {
5029 		for (i = 0; i < dram->num_cs; i++) {
5030 			const struct mbus_dram_window *cs = dram->cs + i;
5031 
5032 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5033 				    (cs->base & 0xffff0000) |
5034 				    (cs->mbus_attr << 8) |
5035 				    dram->mbus_dram_target_id);
5036 
5037 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5038 				    (cs->size - 1) & 0xffff0000);
5039 
5040 			win_enable &= ~(1 << i);
5041 			win_protect |= 3 << (2 * i);
5042 		}
5043 	} else {
5044 		/* For Armada3700 open default 4GB Mbus window, leaving
5045 		 * arbitration of target/attribute to a different layer
5046 		 * of configuration.
5047 		 */
5048 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5049 		win_enable &= ~BIT(0);
5050 		win_protect = 3;
5051 	}
5052 
5053 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5054 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5055 }
5056 
5057 /* Power up the port */
5058 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5059 {
5060 	/* MAC Cause register should be cleared */
5061 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5062 
5063 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5064 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5065 	    !phy_interface_mode_is_8023z(phy_mode) &&
5066 	    !phy_interface_mode_is_rgmii(phy_mode))
5067 		return -EINVAL;
5068 
5069 	return 0;
5070 }
5071 
5072 /* Device initialization routine */
5073 static int mvneta_probe(struct platform_device *pdev)
5074 {
5075 	struct device_node *dn = pdev->dev.of_node;
5076 	struct device_node *bm_node;
5077 	struct mvneta_port *pp;
5078 	struct net_device *dev;
5079 	struct phylink *phylink;
5080 	struct phy *comphy;
5081 	const char *dt_mac_addr;
5082 	char hw_mac_addr[ETH_ALEN];
5083 	phy_interface_t phy_mode;
5084 	const char *mac_from;
5085 	int tx_csum_limit;
5086 	int err;
5087 	int cpu;
5088 
5089 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5090 				      txq_number, rxq_number);
5091 	if (!dev)
5092 		return -ENOMEM;
5093 
5094 	dev->irq = irq_of_parse_and_map(dn, 0);
5095 	if (dev->irq == 0)
5096 		return -EINVAL;
5097 
5098 	err = of_get_phy_mode(dn, &phy_mode);
5099 	if (err) {
5100 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5101 		goto err_free_irq;
5102 	}
5103 
5104 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5105 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5106 		err = -EPROBE_DEFER;
5107 		goto err_free_irq;
5108 	} else if (IS_ERR(comphy)) {
5109 		comphy = NULL;
5110 	}
5111 
5112 	pp = netdev_priv(dev);
5113 	spin_lock_init(&pp->lock);
5114 
5115 	pp->phylink_config.dev = &dev->dev;
5116 	pp->phylink_config.type = PHYLINK_NETDEV;
5117 
5118 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5119 				 phy_mode, &mvneta_phylink_ops);
5120 	if (IS_ERR(phylink)) {
5121 		err = PTR_ERR(phylink);
5122 		goto err_free_irq;
5123 	}
5124 
5125 	dev->tx_queue_len = MVNETA_MAX_TXD;
5126 	dev->watchdog_timeo = 5 * HZ;
5127 	dev->netdev_ops = &mvneta_netdev_ops;
5128 
5129 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5130 
5131 	pp->phylink = phylink;
5132 	pp->comphy = comphy;
5133 	pp->phy_interface = phy_mode;
5134 	pp->dn = dn;
5135 
5136 	pp->rxq_def = rxq_def;
5137 	pp->indir[0] = rxq_def;
5138 
5139 	/* Get special SoC configurations */
5140 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5141 		pp->neta_armada3700 = true;
5142 
5143 	pp->clk = devm_clk_get(&pdev->dev, "core");
5144 	if (IS_ERR(pp->clk))
5145 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5146 	if (IS_ERR(pp->clk)) {
5147 		err = PTR_ERR(pp->clk);
5148 		goto err_free_phylink;
5149 	}
5150 
5151 	clk_prepare_enable(pp->clk);
5152 
5153 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5154 	if (!IS_ERR(pp->clk_bus))
5155 		clk_prepare_enable(pp->clk_bus);
5156 
5157 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5158 	if (IS_ERR(pp->base)) {
5159 		err = PTR_ERR(pp->base);
5160 		goto err_clk;
5161 	}
5162 
5163 	/* Alloc per-cpu port structure */
5164 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5165 	if (!pp->ports) {
5166 		err = -ENOMEM;
5167 		goto err_clk;
5168 	}
5169 
5170 	/* Alloc per-cpu stats */
5171 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5172 	if (!pp->stats) {
5173 		err = -ENOMEM;
5174 		goto err_free_ports;
5175 	}
5176 
5177 	dt_mac_addr = of_get_mac_address(dn);
5178 	if (!IS_ERR(dt_mac_addr)) {
5179 		mac_from = "device tree";
5180 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5181 	} else {
5182 		mvneta_get_mac_addr(pp, hw_mac_addr);
5183 		if (is_valid_ether_addr(hw_mac_addr)) {
5184 			mac_from = "hardware";
5185 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5186 		} else {
5187 			mac_from = "random";
5188 			eth_hw_addr_random(dev);
5189 		}
5190 	}
5191 
5192 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5193 		if (tx_csum_limit < 0 ||
5194 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5195 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5196 			dev_info(&pdev->dev,
5197 				 "Wrong TX csum limit in DT, set to %dB\n",
5198 				 MVNETA_TX_CSUM_DEF_SIZE);
5199 		}
5200 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5201 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5202 	} else {
5203 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5204 	}
5205 
5206 	pp->tx_csum_limit = tx_csum_limit;
5207 
5208 	pp->dram_target_info = mv_mbus_dram_info();
5209 	/* Armada3700 requires setting default configuration of Mbus
5210 	 * windows, however without using filled mbus_dram_target_info
5211 	 * structure.
5212 	 */
5213 	if (pp->dram_target_info || pp->neta_armada3700)
5214 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5215 
5216 	pp->tx_ring_size = MVNETA_MAX_TXD;
5217 	pp->rx_ring_size = MVNETA_MAX_RXD;
5218 
5219 	pp->dev = dev;
5220 	SET_NETDEV_DEV(dev, &pdev->dev);
5221 
5222 	pp->id = global_port_id++;
5223 
5224 	/* Obtain access to BM resources if enabled and already initialized */
5225 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5226 	if (bm_node) {
5227 		pp->bm_priv = mvneta_bm_get(bm_node);
5228 		if (pp->bm_priv) {
5229 			err = mvneta_bm_port_init(pdev, pp);
5230 			if (err < 0) {
5231 				dev_info(&pdev->dev,
5232 					 "use SW buffer management\n");
5233 				mvneta_bm_put(pp->bm_priv);
5234 				pp->bm_priv = NULL;
5235 			}
5236 		}
5237 		/* Set RX packet offset correction for platforms, whose
5238 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5239 		 * platforms and 0B for 32-bit ones.
5240 		 */
5241 		pp->rx_offset_correction = max(0,
5242 					       NET_SKB_PAD -
5243 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5244 	}
5245 	of_node_put(bm_node);
5246 
5247 	/* sw buffer management */
5248 	if (!pp->bm_priv)
5249 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5250 
5251 	err = mvneta_init(&pdev->dev, pp);
5252 	if (err < 0)
5253 		goto err_netdev;
5254 
5255 	err = mvneta_port_power_up(pp, pp->phy_interface);
5256 	if (err < 0) {
5257 		dev_err(&pdev->dev, "can't power up port\n");
5258 		return err;
5259 	}
5260 
5261 	/* Armada3700 network controller does not support per-cpu
5262 	 * operation, so only single NAPI should be initialized.
5263 	 */
5264 	if (pp->neta_armada3700) {
5265 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5266 	} else {
5267 		for_each_present_cpu(cpu) {
5268 			struct mvneta_pcpu_port *port =
5269 				per_cpu_ptr(pp->ports, cpu);
5270 
5271 			netif_napi_add(dev, &port->napi, mvneta_poll,
5272 				       NAPI_POLL_WEIGHT);
5273 			port->pp = pp;
5274 		}
5275 	}
5276 
5277 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5278 			NETIF_F_TSO | NETIF_F_RXCSUM;
5279 	dev->hw_features |= dev->features;
5280 	dev->vlan_features |= dev->features;
5281 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5282 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5283 
5284 	/* MTU range: 68 - 9676 */
5285 	dev->min_mtu = ETH_MIN_MTU;
5286 	/* 9676 == 9700 - 20 and rounding to 8 */
5287 	dev->max_mtu = 9676;
5288 
5289 	err = register_netdev(dev);
5290 	if (err < 0) {
5291 		dev_err(&pdev->dev, "failed to register\n");
5292 		goto err_netdev;
5293 	}
5294 
5295 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5296 		    dev->dev_addr);
5297 
5298 	platform_set_drvdata(pdev, pp->dev);
5299 
5300 	return 0;
5301 
5302 err_netdev:
5303 	if (pp->bm_priv) {
5304 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5305 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5306 				       1 << pp->id);
5307 		mvneta_bm_put(pp->bm_priv);
5308 	}
5309 	free_percpu(pp->stats);
5310 err_free_ports:
5311 	free_percpu(pp->ports);
5312 err_clk:
5313 	clk_disable_unprepare(pp->clk_bus);
5314 	clk_disable_unprepare(pp->clk);
5315 err_free_phylink:
5316 	if (pp->phylink)
5317 		phylink_destroy(pp->phylink);
5318 err_free_irq:
5319 	irq_dispose_mapping(dev->irq);
5320 	return err;
5321 }
5322 
5323 /* Device removal routine */
5324 static int mvneta_remove(struct platform_device *pdev)
5325 {
5326 	struct net_device  *dev = platform_get_drvdata(pdev);
5327 	struct mvneta_port *pp = netdev_priv(dev);
5328 
5329 	unregister_netdev(dev);
5330 	clk_disable_unprepare(pp->clk_bus);
5331 	clk_disable_unprepare(pp->clk);
5332 	free_percpu(pp->ports);
5333 	free_percpu(pp->stats);
5334 	irq_dispose_mapping(dev->irq);
5335 	phylink_destroy(pp->phylink);
5336 
5337 	if (pp->bm_priv) {
5338 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5339 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5340 				       1 << pp->id);
5341 		mvneta_bm_put(pp->bm_priv);
5342 	}
5343 
5344 	return 0;
5345 }
5346 
5347 #ifdef CONFIG_PM_SLEEP
5348 static int mvneta_suspend(struct device *device)
5349 {
5350 	int queue;
5351 	struct net_device *dev = dev_get_drvdata(device);
5352 	struct mvneta_port *pp = netdev_priv(dev);
5353 
5354 	if (!netif_running(dev))
5355 		goto clean_exit;
5356 
5357 	if (!pp->neta_armada3700) {
5358 		spin_lock(&pp->lock);
5359 		pp->is_stopped = true;
5360 		spin_unlock(&pp->lock);
5361 
5362 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5363 						    &pp->node_online);
5364 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5365 						    &pp->node_dead);
5366 	}
5367 
5368 	rtnl_lock();
5369 	mvneta_stop_dev(pp);
5370 	rtnl_unlock();
5371 
5372 	for (queue = 0; queue < rxq_number; queue++) {
5373 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5374 
5375 		mvneta_rxq_drop_pkts(pp, rxq);
5376 	}
5377 
5378 	for (queue = 0; queue < txq_number; queue++) {
5379 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5380 
5381 		mvneta_txq_hw_deinit(pp, txq);
5382 	}
5383 
5384 clean_exit:
5385 	netif_device_detach(dev);
5386 	clk_disable_unprepare(pp->clk_bus);
5387 	clk_disable_unprepare(pp->clk);
5388 
5389 	return 0;
5390 }
5391 
5392 static int mvneta_resume(struct device *device)
5393 {
5394 	struct platform_device *pdev = to_platform_device(device);
5395 	struct net_device *dev = dev_get_drvdata(device);
5396 	struct mvneta_port *pp = netdev_priv(dev);
5397 	int err, queue;
5398 
5399 	clk_prepare_enable(pp->clk);
5400 	if (!IS_ERR(pp->clk_bus))
5401 		clk_prepare_enable(pp->clk_bus);
5402 	if (pp->dram_target_info || pp->neta_armada3700)
5403 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5404 	if (pp->bm_priv) {
5405 		err = mvneta_bm_port_init(pdev, pp);
5406 		if (err < 0) {
5407 			dev_info(&pdev->dev, "use SW buffer management\n");
5408 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5409 			pp->bm_priv = NULL;
5410 		}
5411 	}
5412 	mvneta_defaults_set(pp);
5413 	err = mvneta_port_power_up(pp, pp->phy_interface);
5414 	if (err < 0) {
5415 		dev_err(device, "can't power up port\n");
5416 		return err;
5417 	}
5418 
5419 	netif_device_attach(dev);
5420 
5421 	if (!netif_running(dev))
5422 		return 0;
5423 
5424 	for (queue = 0; queue < rxq_number; queue++) {
5425 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5426 
5427 		rxq->next_desc_to_proc = 0;
5428 		mvneta_rxq_hw_init(pp, rxq);
5429 	}
5430 
5431 	for (queue = 0; queue < txq_number; queue++) {
5432 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5433 
5434 		txq->next_desc_to_proc = 0;
5435 		mvneta_txq_hw_init(pp, txq);
5436 	}
5437 
5438 	if (!pp->neta_armada3700) {
5439 		spin_lock(&pp->lock);
5440 		pp->is_stopped = false;
5441 		spin_unlock(&pp->lock);
5442 		cpuhp_state_add_instance_nocalls(online_hpstate,
5443 						 &pp->node_online);
5444 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5445 						 &pp->node_dead);
5446 	}
5447 
5448 	rtnl_lock();
5449 	mvneta_start_dev(pp);
5450 	rtnl_unlock();
5451 	mvneta_set_rx_mode(dev);
5452 
5453 	return 0;
5454 }
5455 #endif
5456 
5457 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5458 
5459 static const struct of_device_id mvneta_match[] = {
5460 	{ .compatible = "marvell,armada-370-neta" },
5461 	{ .compatible = "marvell,armada-xp-neta" },
5462 	{ .compatible = "marvell,armada-3700-neta" },
5463 	{ }
5464 };
5465 MODULE_DEVICE_TABLE(of, mvneta_match);
5466 
5467 static struct platform_driver mvneta_driver = {
5468 	.probe = mvneta_probe,
5469 	.remove = mvneta_remove,
5470 	.driver = {
5471 		.name = MVNETA_DRIVER_NAME,
5472 		.of_match_table = mvneta_match,
5473 		.pm = &mvneta_pm_ops,
5474 	},
5475 };
5476 
5477 static int __init mvneta_driver_init(void)
5478 {
5479 	int ret;
5480 
5481 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5482 				      mvneta_cpu_online,
5483 				      mvneta_cpu_down_prepare);
5484 	if (ret < 0)
5485 		goto out;
5486 	online_hpstate = ret;
5487 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5488 				      NULL, mvneta_cpu_dead);
5489 	if (ret)
5490 		goto err_dead;
5491 
5492 	ret = platform_driver_register(&mvneta_driver);
5493 	if (ret)
5494 		goto err;
5495 	return 0;
5496 
5497 err:
5498 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5499 err_dead:
5500 	cpuhp_remove_multi_state(online_hpstate);
5501 out:
5502 	return ret;
5503 }
5504 module_init(mvneta_driver_init);
5505 
5506 static void __exit mvneta_driver_exit(void)
5507 {
5508 	platform_driver_unregister(&mvneta_driver);
5509 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5510 	cpuhp_remove_multi_state(online_hpstate);
5511 }
5512 module_exit(mvneta_driver_exit);
5513 
5514 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5515 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5516 MODULE_LICENSE("GPL");
5517 
5518 module_param(rxq_number, int, 0444);
5519 module_param(txq_number, int, 0444);
5520 
5521 module_param(rxq_def, int, 0444);
5522 module_param(rx_copybreak, int, 0644);
5523