1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 193 #define MVNETA_GMAC_CTRL_2 0x2c08 194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 196 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 197 #define MVNETA_GMAC2_PORT_RESET BIT(6) 198 #define MVNETA_GMAC_STATUS 0x2c10 199 #define MVNETA_GMAC_LINK_UP BIT(0) 200 #define MVNETA_GMAC_SPEED_1000 BIT(1) 201 #define MVNETA_GMAC_SPEED_100 BIT(2) 202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 217 #define MVNETA_MIB_COUNTERS_BASE 0x3000 218 #define MVNETA_MIB_LATE_COLLISION 0x7c 219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 232 #define MVNETA_PORT_TX_RESET 0x3cf0 233 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 234 #define MVNETA_TX_MTU 0x3e0c 235 #define MVNETA_TX_TOKEN_SIZE 0x3e14 236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 239 240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 241 242 /* Descriptor ring Macros */ 243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 244 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 245 246 /* Various constants */ 247 248 /* Coalescing */ 249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 250 #define MVNETA_RX_COAL_PKTS 32 251 #define MVNETA_RX_COAL_USEC 100 252 253 /* The two bytes Marvell header. Either contains a special value used 254 * by Marvell switches when a specific hardware mode is enabled (not 255 * supported by this driver) or is filled automatically by zeroes on 256 * the RX side. Those two bytes being at the front of the Ethernet 257 * header, they allow to have the IP header aligned on a 4 bytes 258 * boundary automatically: the hardware skips those two bytes on its 259 * own. 260 */ 261 #define MVNETA_MH_SIZE 2 262 263 #define MVNETA_VLAN_TAG_LEN 4 264 265 #define MVNETA_TX_CSUM_DEF_SIZE 1600 266 #define MVNETA_TX_CSUM_MAX_SIZE 9800 267 #define MVNETA_ACC_MODE_EXT1 1 268 #define MVNETA_ACC_MODE_EXT2 2 269 270 #define MVNETA_MAX_DECODE_WIN 6 271 272 /* Timeout constants */ 273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 276 277 #define MVNETA_TX_MTU_MAX 0x3ffff 278 279 /* The RSS lookup table actually has 256 entries but we do not use 280 * them yet 281 */ 282 #define MVNETA_RSS_LU_TABLE_SIZE 1 283 284 /* TSO header size */ 285 #define TSO_HEADER_SIZE 128 286 287 /* Max number of Rx descriptors */ 288 #define MVNETA_MAX_RXD 128 289 290 /* Max number of Tx descriptors */ 291 #define MVNETA_MAX_TXD 532 292 293 /* Max number of allowed TCP segments for software TSO */ 294 #define MVNETA_MAX_TSO_SEGS 100 295 296 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 297 298 /* descriptor aligned size */ 299 #define MVNETA_DESC_ALIGNED_SIZE 32 300 301 /* Number of bytes to be taken into account by HW when putting incoming data 302 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 303 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 304 */ 305 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 306 307 #define MVNETA_RX_PKT_SIZE(mtu) \ 308 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 309 ETH_HLEN + ETH_FCS_LEN, \ 310 cache_line_size()) 311 312 #define IS_TSO_HEADER(txq, addr) \ 313 ((addr >= txq->tso_hdrs_phys) && \ 314 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 315 316 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 317 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 318 319 struct mvneta_statistic { 320 unsigned short offset; 321 unsigned short type; 322 const char name[ETH_GSTRING_LEN]; 323 }; 324 325 #define T_REG_32 32 326 #define T_REG_64 64 327 328 static const struct mvneta_statistic mvneta_statistics[] = { 329 { 0x3000, T_REG_64, "good_octets_received", }, 330 { 0x3010, T_REG_32, "good_frames_received", }, 331 { 0x3008, T_REG_32, "bad_octets_received", }, 332 { 0x3014, T_REG_32, "bad_frames_received", }, 333 { 0x3018, T_REG_32, "broadcast_frames_received", }, 334 { 0x301c, T_REG_32, "multicast_frames_received", }, 335 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 336 { 0x3058, T_REG_32, "good_fc_received", }, 337 { 0x305c, T_REG_32, "bad_fc_received", }, 338 { 0x3060, T_REG_32, "undersize_received", }, 339 { 0x3064, T_REG_32, "fragments_received", }, 340 { 0x3068, T_REG_32, "oversize_received", }, 341 { 0x306c, T_REG_32, "jabber_received", }, 342 { 0x3070, T_REG_32, "mac_receive_error", }, 343 { 0x3074, T_REG_32, "bad_crc_event", }, 344 { 0x3078, T_REG_32, "collision", }, 345 { 0x307c, T_REG_32, "late_collision", }, 346 { 0x2484, T_REG_32, "rx_discard", }, 347 { 0x2488, T_REG_32, "rx_overrun", }, 348 { 0x3020, T_REG_32, "frames_64_octets", }, 349 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 350 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 351 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 352 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 353 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 354 { 0x3038, T_REG_64, "good_octets_sent", }, 355 { 0x3040, T_REG_32, "good_frames_sent", }, 356 { 0x3044, T_REG_32, "excessive_collision", }, 357 { 0x3048, T_REG_32, "multicast_frames_sent", }, 358 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 359 { 0x3054, T_REG_32, "fc_sent", }, 360 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 361 }; 362 363 struct mvneta_pcpu_stats { 364 struct u64_stats_sync syncp; 365 u64 rx_packets; 366 u64 rx_bytes; 367 u64 tx_packets; 368 u64 tx_bytes; 369 }; 370 371 struct mvneta_pcpu_port { 372 /* Pointer to the shared port */ 373 struct mvneta_port *pp; 374 375 /* Pointer to the CPU-local NAPI struct */ 376 struct napi_struct napi; 377 378 /* Cause of the previous interrupt */ 379 u32 cause_rx_tx; 380 }; 381 382 struct mvneta_port { 383 u8 id; 384 struct mvneta_pcpu_port __percpu *ports; 385 struct mvneta_pcpu_stats __percpu *stats; 386 387 int pkt_size; 388 unsigned int frag_size; 389 void __iomem *base; 390 struct mvneta_rx_queue *rxqs; 391 struct mvneta_tx_queue *txqs; 392 struct net_device *dev; 393 struct hlist_node node_online; 394 struct hlist_node node_dead; 395 int rxq_def; 396 /* Protect the access to the percpu interrupt registers, 397 * ensuring that the configuration remains coherent. 398 */ 399 spinlock_t lock; 400 bool is_stopped; 401 402 u32 cause_rx_tx; 403 struct napi_struct napi; 404 405 /* Core clock */ 406 struct clk *clk; 407 /* AXI clock */ 408 struct clk *clk_bus; 409 u8 mcast_count[256]; 410 u16 tx_ring_size; 411 u16 rx_ring_size; 412 413 struct mii_bus *mii_bus; 414 phy_interface_t phy_interface; 415 struct device_node *phy_node; 416 unsigned int link; 417 unsigned int duplex; 418 unsigned int speed; 419 unsigned int tx_csum_limit; 420 unsigned int use_inband_status:1; 421 422 struct mvneta_bm *bm_priv; 423 struct mvneta_bm_pool *pool_long; 424 struct mvneta_bm_pool *pool_short; 425 int bm_win_id; 426 427 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 428 429 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 430 431 /* Flags for special SoC configurations */ 432 bool neta_armada3700; 433 u16 rx_offset_correction; 434 }; 435 436 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 437 * layout of the transmit and reception DMA descriptors, and their 438 * layout is therefore defined by the hardware design 439 */ 440 441 #define MVNETA_TX_L3_OFF_SHIFT 0 442 #define MVNETA_TX_IP_HLEN_SHIFT 8 443 #define MVNETA_TX_L4_UDP BIT(16) 444 #define MVNETA_TX_L3_IP6 BIT(17) 445 #define MVNETA_TXD_IP_CSUM BIT(18) 446 #define MVNETA_TXD_Z_PAD BIT(19) 447 #define MVNETA_TXD_L_DESC BIT(20) 448 #define MVNETA_TXD_F_DESC BIT(21) 449 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 450 MVNETA_TXD_L_DESC | \ 451 MVNETA_TXD_F_DESC) 452 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 453 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 454 455 #define MVNETA_RXD_ERR_CRC 0x0 456 #define MVNETA_RXD_BM_POOL_SHIFT 13 457 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 458 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 459 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 460 #define MVNETA_RXD_ERR_LEN BIT(18) 461 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 462 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 463 #define MVNETA_RXD_L3_IP4 BIT(25) 464 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 465 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 466 467 #if defined(__LITTLE_ENDIAN) 468 struct mvneta_tx_desc { 469 u32 command; /* Options used by HW for packet transmitting.*/ 470 u16 reserverd1; /* csum_l4 (for future use) */ 471 u16 data_size; /* Data size of transmitted packet in bytes */ 472 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 473 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 474 u32 reserved3[4]; /* Reserved - (for future use) */ 475 }; 476 477 struct mvneta_rx_desc { 478 u32 status; /* Info about received packet */ 479 u16 reserved1; /* pnc_info - (for future use, PnC) */ 480 u16 data_size; /* Size of received packet in bytes */ 481 482 u32 buf_phys_addr; /* Physical address of the buffer */ 483 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 484 485 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 486 u16 reserved3; /* prefetch_cmd, for future use */ 487 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 488 489 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 490 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 491 }; 492 #else 493 struct mvneta_tx_desc { 494 u16 data_size; /* Data size of transmitted packet in bytes */ 495 u16 reserverd1; /* csum_l4 (for future use) */ 496 u32 command; /* Options used by HW for packet transmitting.*/ 497 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 498 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 499 u32 reserved3[4]; /* Reserved - (for future use) */ 500 }; 501 502 struct mvneta_rx_desc { 503 u16 data_size; /* Size of received packet in bytes */ 504 u16 reserved1; /* pnc_info - (for future use, PnC) */ 505 u32 status; /* Info about received packet */ 506 507 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 508 u32 buf_phys_addr; /* Physical address of the buffer */ 509 510 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 511 u16 reserved3; /* prefetch_cmd, for future use */ 512 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 513 514 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 515 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 516 }; 517 #endif 518 519 struct mvneta_tx_queue { 520 /* Number of this TX queue, in the range 0-7 */ 521 u8 id; 522 523 /* Number of TX DMA descriptors in the descriptor ring */ 524 int size; 525 526 /* Number of currently used TX DMA descriptor in the 527 * descriptor ring 528 */ 529 int count; 530 int pending; 531 int tx_stop_threshold; 532 int tx_wake_threshold; 533 534 /* Array of transmitted skb */ 535 struct sk_buff **tx_skb; 536 537 /* Index of last TX DMA descriptor that was inserted */ 538 int txq_put_index; 539 540 /* Index of the TX DMA descriptor to be cleaned up */ 541 int txq_get_index; 542 543 u32 done_pkts_coal; 544 545 /* Virtual address of the TX DMA descriptors array */ 546 struct mvneta_tx_desc *descs; 547 548 /* DMA address of the TX DMA descriptors array */ 549 dma_addr_t descs_phys; 550 551 /* Index of the last TX DMA descriptor */ 552 int last_desc; 553 554 /* Index of the next TX DMA descriptor to process */ 555 int next_desc_to_proc; 556 557 /* DMA buffers for TSO headers */ 558 char *tso_hdrs; 559 560 /* DMA address of TSO headers */ 561 dma_addr_t tso_hdrs_phys; 562 563 /* Affinity mask for CPUs*/ 564 cpumask_t affinity_mask; 565 }; 566 567 struct mvneta_rx_queue { 568 /* rx queue number, in the range 0-7 */ 569 u8 id; 570 571 /* num of rx descriptors in the rx descriptor ring */ 572 int size; 573 574 /* counter of times when mvneta_refill() failed */ 575 int missed; 576 577 u32 pkts_coal; 578 u32 time_coal; 579 580 /* Virtual address of the RX buffer */ 581 void **buf_virt_addr; 582 583 /* Virtual address of the RX DMA descriptors array */ 584 struct mvneta_rx_desc *descs; 585 586 /* DMA address of the RX DMA descriptors array */ 587 dma_addr_t descs_phys; 588 589 /* Index of the last RX DMA descriptor */ 590 int last_desc; 591 592 /* Index of the next RX DMA descriptor to process */ 593 int next_desc_to_proc; 594 }; 595 596 static enum cpuhp_state online_hpstate; 597 /* The hardware supports eight (8) rx queues, but we are only allowing 598 * the first one to be used. Therefore, let's just allocate one queue. 599 */ 600 static int rxq_number = 8; 601 static int txq_number = 8; 602 603 static int rxq_def; 604 605 static int rx_copybreak __read_mostly = 256; 606 607 /* HW BM need that each port be identify by a unique ID */ 608 static int global_port_id; 609 610 #define MVNETA_DRIVER_NAME "mvneta" 611 #define MVNETA_DRIVER_VERSION "1.0" 612 613 /* Utility/helper methods */ 614 615 /* Write helper method */ 616 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 617 { 618 writel(data, pp->base + offset); 619 } 620 621 /* Read helper method */ 622 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 623 { 624 return readl(pp->base + offset); 625 } 626 627 /* Increment txq get counter */ 628 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 629 { 630 txq->txq_get_index++; 631 if (txq->txq_get_index == txq->size) 632 txq->txq_get_index = 0; 633 } 634 635 /* Increment txq put counter */ 636 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 637 { 638 txq->txq_put_index++; 639 if (txq->txq_put_index == txq->size) 640 txq->txq_put_index = 0; 641 } 642 643 644 /* Clear all MIB counters */ 645 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 646 { 647 int i; 648 u32 dummy; 649 650 /* Perform dummy reads from MIB counters */ 651 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 652 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 653 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 654 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 655 } 656 657 /* Get System Network Statistics */ 658 static void 659 mvneta_get_stats64(struct net_device *dev, 660 struct rtnl_link_stats64 *stats) 661 { 662 struct mvneta_port *pp = netdev_priv(dev); 663 unsigned int start; 664 int cpu; 665 666 for_each_possible_cpu(cpu) { 667 struct mvneta_pcpu_stats *cpu_stats; 668 u64 rx_packets; 669 u64 rx_bytes; 670 u64 tx_packets; 671 u64 tx_bytes; 672 673 cpu_stats = per_cpu_ptr(pp->stats, cpu); 674 do { 675 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 676 rx_packets = cpu_stats->rx_packets; 677 rx_bytes = cpu_stats->rx_bytes; 678 tx_packets = cpu_stats->tx_packets; 679 tx_bytes = cpu_stats->tx_bytes; 680 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 681 682 stats->rx_packets += rx_packets; 683 stats->rx_bytes += rx_bytes; 684 stats->tx_packets += tx_packets; 685 stats->tx_bytes += tx_bytes; 686 } 687 688 stats->rx_errors = dev->stats.rx_errors; 689 stats->rx_dropped = dev->stats.rx_dropped; 690 691 stats->tx_dropped = dev->stats.tx_dropped; 692 } 693 694 /* Rx descriptors helper methods */ 695 696 /* Checks whether the RX descriptor having this status is both the first 697 * and the last descriptor for the RX packet. Each RX packet is currently 698 * received through a single RX descriptor, so not having each RX 699 * descriptor with its first and last bits set is an error 700 */ 701 static int mvneta_rxq_desc_is_first_last(u32 status) 702 { 703 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 704 MVNETA_RXD_FIRST_LAST_DESC; 705 } 706 707 /* Add number of descriptors ready to receive new packets */ 708 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 709 struct mvneta_rx_queue *rxq, 710 int ndescs) 711 { 712 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 713 * be added at once 714 */ 715 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 716 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 717 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 718 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 719 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 720 } 721 722 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 723 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 724 } 725 726 /* Get number of RX descriptors occupied by received packets */ 727 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 728 struct mvneta_rx_queue *rxq) 729 { 730 u32 val; 731 732 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 733 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 734 } 735 736 /* Update num of rx desc called upon return from rx path or 737 * from mvneta_rxq_drop_pkts(). 738 */ 739 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 740 struct mvneta_rx_queue *rxq, 741 int rx_done, int rx_filled) 742 { 743 u32 val; 744 745 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 746 val = rx_done | 747 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 748 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 749 return; 750 } 751 752 /* Only 255 descriptors can be added at once */ 753 while ((rx_done > 0) || (rx_filled > 0)) { 754 if (rx_done <= 0xff) { 755 val = rx_done; 756 rx_done = 0; 757 } else { 758 val = 0xff; 759 rx_done -= 0xff; 760 } 761 if (rx_filled <= 0xff) { 762 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 763 rx_filled = 0; 764 } else { 765 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 766 rx_filled -= 0xff; 767 } 768 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 769 } 770 } 771 772 /* Get pointer to next RX descriptor to be processed by SW */ 773 static struct mvneta_rx_desc * 774 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 775 { 776 int rx_desc = rxq->next_desc_to_proc; 777 778 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 779 prefetch(rxq->descs + rxq->next_desc_to_proc); 780 return rxq->descs + rx_desc; 781 } 782 783 /* Change maximum receive size of the port. */ 784 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 785 { 786 u32 val; 787 788 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 789 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 790 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 791 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 792 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 793 } 794 795 796 /* Set rx queue offset */ 797 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 798 struct mvneta_rx_queue *rxq, 799 int offset) 800 { 801 u32 val; 802 803 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 804 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 805 806 /* Offset is in */ 807 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 808 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 809 } 810 811 812 /* Tx descriptors helper methods */ 813 814 /* Update HW with number of TX descriptors to be sent */ 815 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 816 struct mvneta_tx_queue *txq, 817 int pend_desc) 818 { 819 u32 val; 820 821 /* Only 255 descriptors can be added at once ; Assume caller 822 * process TX desriptors in quanta less than 256 823 */ 824 val = pend_desc + txq->pending; 825 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 826 txq->pending = 0; 827 } 828 829 /* Get pointer to next TX descriptor to be processed (send) by HW */ 830 static struct mvneta_tx_desc * 831 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 832 { 833 int tx_desc = txq->next_desc_to_proc; 834 835 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 836 return txq->descs + tx_desc; 837 } 838 839 /* Release the last allocated TX descriptor. Useful to handle DMA 840 * mapping failures in the TX path. 841 */ 842 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 843 { 844 if (txq->next_desc_to_proc == 0) 845 txq->next_desc_to_proc = txq->last_desc - 1; 846 else 847 txq->next_desc_to_proc--; 848 } 849 850 /* Set rxq buf size */ 851 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 852 struct mvneta_rx_queue *rxq, 853 int buf_size) 854 { 855 u32 val; 856 857 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 858 859 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 860 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 861 862 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 863 } 864 865 /* Disable buffer management (BM) */ 866 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 867 struct mvneta_rx_queue *rxq) 868 { 869 u32 val; 870 871 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 872 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 873 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 874 } 875 876 /* Enable buffer management (BM) */ 877 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 878 struct mvneta_rx_queue *rxq) 879 { 880 u32 val; 881 882 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 883 val |= MVNETA_RXQ_HW_BUF_ALLOC; 884 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 885 } 886 887 /* Notify HW about port's assignment of pool for bigger packets */ 888 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 889 struct mvneta_rx_queue *rxq) 890 { 891 u32 val; 892 893 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 894 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 895 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 896 897 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 898 } 899 900 /* Notify HW about port's assignment of pool for smaller packets */ 901 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 902 struct mvneta_rx_queue *rxq) 903 { 904 u32 val; 905 906 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 907 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 908 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 909 910 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 911 } 912 913 /* Set port's receive buffer size for assigned BM pool */ 914 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 915 int buf_size, 916 u8 pool_id) 917 { 918 u32 val; 919 920 if (!IS_ALIGNED(buf_size, 8)) { 921 dev_warn(pp->dev->dev.parent, 922 "illegal buf_size value %d, round to %d\n", 923 buf_size, ALIGN(buf_size, 8)); 924 buf_size = ALIGN(buf_size, 8); 925 } 926 927 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 928 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 929 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 930 } 931 932 /* Configure MBUS window in order to enable access BM internal SRAM */ 933 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 934 u8 target, u8 attr) 935 { 936 u32 win_enable, win_protect; 937 int i; 938 939 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 940 941 if (pp->bm_win_id < 0) { 942 /* Find first not occupied window */ 943 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 944 if (win_enable & (1 << i)) { 945 pp->bm_win_id = i; 946 break; 947 } 948 } 949 if (i == MVNETA_MAX_DECODE_WIN) 950 return -ENOMEM; 951 } else { 952 i = pp->bm_win_id; 953 } 954 955 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 956 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 957 958 if (i < 4) 959 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 960 961 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 962 (attr << 8) | target); 963 964 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 965 966 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 967 win_protect |= 3 << (2 * i); 968 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 969 970 win_enable &= ~(1 << i); 971 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 972 973 return 0; 974 } 975 976 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 977 { 978 u32 wsize; 979 u8 target, attr; 980 int err; 981 982 /* Get BM window information */ 983 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 984 &target, &attr); 985 if (err < 0) 986 return err; 987 988 pp->bm_win_id = -1; 989 990 /* Open NETA -> BM window */ 991 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 992 target, attr); 993 if (err < 0) { 994 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 995 return err; 996 } 997 return 0; 998 } 999 1000 /* Assign and initialize pools for port. In case of fail 1001 * buffer manager will remain disabled for current port. 1002 */ 1003 static int mvneta_bm_port_init(struct platform_device *pdev, 1004 struct mvneta_port *pp) 1005 { 1006 struct device_node *dn = pdev->dev.of_node; 1007 u32 long_pool_id, short_pool_id; 1008 1009 if (!pp->neta_armada3700) { 1010 int ret; 1011 1012 ret = mvneta_bm_port_mbus_init(pp); 1013 if (ret) 1014 return ret; 1015 } 1016 1017 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1018 netdev_info(pp->dev, "missing long pool id\n"); 1019 return -EINVAL; 1020 } 1021 1022 /* Create port's long pool depending on mtu */ 1023 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1024 MVNETA_BM_LONG, pp->id, 1025 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1026 if (!pp->pool_long) { 1027 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1028 return -ENOMEM; 1029 } 1030 1031 pp->pool_long->port_map |= 1 << pp->id; 1032 1033 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1034 pp->pool_long->id); 1035 1036 /* If short pool id is not defined, assume using single pool */ 1037 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1038 short_pool_id = long_pool_id; 1039 1040 /* Create port's short pool */ 1041 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1042 MVNETA_BM_SHORT, pp->id, 1043 MVNETA_BM_SHORT_PKT_SIZE); 1044 if (!pp->pool_short) { 1045 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1046 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1047 return -ENOMEM; 1048 } 1049 1050 if (short_pool_id != long_pool_id) { 1051 pp->pool_short->port_map |= 1 << pp->id; 1052 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1053 pp->pool_short->id); 1054 } 1055 1056 return 0; 1057 } 1058 1059 /* Update settings of a pool for bigger packets */ 1060 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1061 { 1062 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1063 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1064 int num; 1065 1066 /* Release all buffers from long pool */ 1067 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1068 if (hwbm_pool->buf_num) { 1069 WARN(1, "cannot free all buffers in pool %d\n", 1070 bm_pool->id); 1071 goto bm_mtu_err; 1072 } 1073 1074 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1075 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1076 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1077 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1078 1079 /* Fill entire long pool */ 1080 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1081 if (num != hwbm_pool->size) { 1082 WARN(1, "pool %d: %d of %d allocated\n", 1083 bm_pool->id, num, hwbm_pool->size); 1084 goto bm_mtu_err; 1085 } 1086 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1087 1088 return; 1089 1090 bm_mtu_err: 1091 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1093 1094 pp->bm_priv = NULL; 1095 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1096 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1097 } 1098 1099 /* Start the Ethernet port RX and TX activity */ 1100 static void mvneta_port_up(struct mvneta_port *pp) 1101 { 1102 int queue; 1103 u32 q_map; 1104 1105 /* Enable all initialized TXs. */ 1106 q_map = 0; 1107 for (queue = 0; queue < txq_number; queue++) { 1108 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1109 if (txq->descs != NULL) 1110 q_map |= (1 << queue); 1111 } 1112 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1113 1114 /* Enable all initialized RXQs. */ 1115 for (queue = 0; queue < rxq_number; queue++) { 1116 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1117 1118 if (rxq->descs != NULL) 1119 q_map |= (1 << queue); 1120 } 1121 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1122 } 1123 1124 /* Stop the Ethernet port activity */ 1125 static void mvneta_port_down(struct mvneta_port *pp) 1126 { 1127 u32 val; 1128 int count; 1129 1130 /* Stop Rx port activity. Check port Rx activity. */ 1131 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1132 1133 /* Issue stop command for active channels only */ 1134 if (val != 0) 1135 mvreg_write(pp, MVNETA_RXQ_CMD, 1136 val << MVNETA_RXQ_DISABLE_SHIFT); 1137 1138 /* Wait for all Rx activity to terminate. */ 1139 count = 0; 1140 do { 1141 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1142 netdev_warn(pp->dev, 1143 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1144 val); 1145 break; 1146 } 1147 mdelay(1); 1148 1149 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1150 } while (val & MVNETA_RXQ_ENABLE_MASK); 1151 1152 /* Stop Tx port activity. Check port Tx activity. Issue stop 1153 * command for active channels only 1154 */ 1155 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1156 1157 if (val != 0) 1158 mvreg_write(pp, MVNETA_TXQ_CMD, 1159 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1160 1161 /* Wait for all Tx activity to terminate. */ 1162 count = 0; 1163 do { 1164 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1165 netdev_warn(pp->dev, 1166 "TIMEOUT for TX stopped status=0x%08x\n", 1167 val); 1168 break; 1169 } 1170 mdelay(1); 1171 1172 /* Check TX Command reg that all Txqs are stopped */ 1173 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1174 1175 } while (val & MVNETA_TXQ_ENABLE_MASK); 1176 1177 /* Double check to verify that TX FIFO is empty */ 1178 count = 0; 1179 do { 1180 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1181 netdev_warn(pp->dev, 1182 "TX FIFO empty timeout status=0x%08x\n", 1183 val); 1184 break; 1185 } 1186 mdelay(1); 1187 1188 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1189 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1190 (val & MVNETA_TX_IN_PRGRS)); 1191 1192 udelay(200); 1193 } 1194 1195 /* Enable the port by setting the port enable bit of the MAC control register */ 1196 static void mvneta_port_enable(struct mvneta_port *pp) 1197 { 1198 u32 val; 1199 1200 /* Enable port */ 1201 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1202 val |= MVNETA_GMAC0_PORT_ENABLE; 1203 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1204 } 1205 1206 /* Disable the port and wait for about 200 usec before retuning */ 1207 static void mvneta_port_disable(struct mvneta_port *pp) 1208 { 1209 u32 val; 1210 1211 /* Reset the Enable bit in the Serial Control Register */ 1212 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1213 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1214 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1215 1216 udelay(200); 1217 } 1218 1219 /* Multicast tables methods */ 1220 1221 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1222 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1223 { 1224 int offset; 1225 u32 val; 1226 1227 if (queue == -1) { 1228 val = 0; 1229 } else { 1230 val = 0x1 | (queue << 1); 1231 val |= (val << 24) | (val << 16) | (val << 8); 1232 } 1233 1234 for (offset = 0; offset <= 0xc; offset += 4) 1235 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1236 } 1237 1238 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1239 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1240 { 1241 int offset; 1242 u32 val; 1243 1244 if (queue == -1) { 1245 val = 0; 1246 } else { 1247 val = 0x1 | (queue << 1); 1248 val |= (val << 24) | (val << 16) | (val << 8); 1249 } 1250 1251 for (offset = 0; offset <= 0xfc; offset += 4) 1252 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1253 1254 } 1255 1256 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1257 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1258 { 1259 int offset; 1260 u32 val; 1261 1262 if (queue == -1) { 1263 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1264 val = 0; 1265 } else { 1266 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1267 val = 0x1 | (queue << 1); 1268 val |= (val << 24) | (val << 16) | (val << 8); 1269 } 1270 1271 for (offset = 0; offset <= 0xfc; offset += 4) 1272 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1273 } 1274 1275 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1276 { 1277 u32 val; 1278 1279 if (enable) { 1280 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1281 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1282 MVNETA_GMAC_FORCE_LINK_DOWN | 1283 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1284 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1285 MVNETA_GMAC_AN_SPEED_EN | 1286 MVNETA_GMAC_AN_DUPLEX_EN; 1287 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1288 1289 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1290 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1291 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1292 1293 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1294 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1295 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1296 } else { 1297 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1298 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1299 MVNETA_GMAC_AN_SPEED_EN | 1300 MVNETA_GMAC_AN_DUPLEX_EN); 1301 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1302 1303 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1304 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1305 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1306 1307 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1308 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1309 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1310 } 1311 } 1312 1313 static void mvneta_percpu_unmask_interrupt(void *arg) 1314 { 1315 struct mvneta_port *pp = arg; 1316 1317 /* All the queue are unmasked, but actually only the ones 1318 * mapped to this CPU will be unmasked 1319 */ 1320 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1321 MVNETA_RX_INTR_MASK_ALL | 1322 MVNETA_TX_INTR_MASK_ALL | 1323 MVNETA_MISCINTR_INTR_MASK); 1324 } 1325 1326 static void mvneta_percpu_mask_interrupt(void *arg) 1327 { 1328 struct mvneta_port *pp = arg; 1329 1330 /* All the queue are masked, but actually only the ones 1331 * mapped to this CPU will be masked 1332 */ 1333 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1334 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1335 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1336 } 1337 1338 static void mvneta_percpu_clear_intr_cause(void *arg) 1339 { 1340 struct mvneta_port *pp = arg; 1341 1342 /* All the queue are cleared, but actually only the ones 1343 * mapped to this CPU will be cleared 1344 */ 1345 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1346 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1347 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1348 } 1349 1350 /* This method sets defaults to the NETA port: 1351 * Clears interrupt Cause and Mask registers. 1352 * Clears all MAC tables. 1353 * Sets defaults to all registers. 1354 * Resets RX and TX descriptor rings. 1355 * Resets PHY. 1356 * This method can be called after mvneta_port_down() to return the port 1357 * settings to defaults. 1358 */ 1359 static void mvneta_defaults_set(struct mvneta_port *pp) 1360 { 1361 int cpu; 1362 int queue; 1363 u32 val; 1364 int max_cpu = num_present_cpus(); 1365 1366 /* Clear all Cause registers */ 1367 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1368 1369 /* Mask all interrupts */ 1370 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1371 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1372 1373 /* Enable MBUS Retry bit16 */ 1374 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1375 1376 /* Set CPU queue access map. CPUs are assigned to the RX and 1377 * TX queues modulo their number. If there is only one TX 1378 * queue then it is assigned to the CPU associated to the 1379 * default RX queue. 1380 */ 1381 for_each_present_cpu(cpu) { 1382 int rxq_map = 0, txq_map = 0; 1383 int rxq, txq; 1384 if (!pp->neta_armada3700) { 1385 for (rxq = 0; rxq < rxq_number; rxq++) 1386 if ((rxq % max_cpu) == cpu) 1387 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1388 1389 for (txq = 0; txq < txq_number; txq++) 1390 if ((txq % max_cpu) == cpu) 1391 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1392 1393 /* With only one TX queue we configure a special case 1394 * which will allow to get all the irq on a single 1395 * CPU 1396 */ 1397 if (txq_number == 1) 1398 txq_map = (cpu == pp->rxq_def) ? 1399 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1400 1401 } else { 1402 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1403 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1404 } 1405 1406 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1407 } 1408 1409 /* Reset RX and TX DMAs */ 1410 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1411 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1412 1413 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1414 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1415 for (queue = 0; queue < txq_number; queue++) { 1416 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1417 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1418 } 1419 1420 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1421 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1422 1423 /* Set Port Acceleration Mode */ 1424 if (pp->bm_priv) 1425 /* HW buffer management + legacy parser */ 1426 val = MVNETA_ACC_MODE_EXT2; 1427 else 1428 /* SW buffer management + legacy parser */ 1429 val = MVNETA_ACC_MODE_EXT1; 1430 mvreg_write(pp, MVNETA_ACC_MODE, val); 1431 1432 if (pp->bm_priv) 1433 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1434 1435 /* Update val of portCfg register accordingly with all RxQueue types */ 1436 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1437 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1438 1439 val = 0; 1440 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1441 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1442 1443 /* Build PORT_SDMA_CONFIG_REG */ 1444 val = 0; 1445 1446 /* Default burst size */ 1447 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1448 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1449 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1450 1451 #if defined(__BIG_ENDIAN) 1452 val |= MVNETA_DESC_SWAP; 1453 #endif 1454 1455 /* Assign port SDMA configuration */ 1456 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1457 1458 /* Disable PHY polling in hardware, since we're using the 1459 * kernel phylib to do this. 1460 */ 1461 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1462 val &= ~MVNETA_PHY_POLLING_ENABLE; 1463 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1464 1465 mvneta_set_autoneg(pp, pp->use_inband_status); 1466 mvneta_set_ucast_table(pp, -1); 1467 mvneta_set_special_mcast_table(pp, -1); 1468 mvneta_set_other_mcast_table(pp, -1); 1469 1470 /* Set port interrupt enable register - default enable all */ 1471 mvreg_write(pp, MVNETA_INTR_ENABLE, 1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1474 1475 mvneta_mib_counters_clear(pp); 1476 } 1477 1478 /* Set max sizes for tx queues */ 1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1480 1481 { 1482 u32 val, size, mtu; 1483 int queue; 1484 1485 mtu = max_tx_size * 8; 1486 if (mtu > MVNETA_TX_MTU_MAX) 1487 mtu = MVNETA_TX_MTU_MAX; 1488 1489 /* Set MTU */ 1490 val = mvreg_read(pp, MVNETA_TX_MTU); 1491 val &= ~MVNETA_TX_MTU_MAX; 1492 val |= mtu; 1493 mvreg_write(pp, MVNETA_TX_MTU, val); 1494 1495 /* TX token size and all TXQs token size must be larger that MTU */ 1496 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1497 1498 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1499 if (size < mtu) { 1500 size = mtu; 1501 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1502 val |= size; 1503 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1504 } 1505 for (queue = 0; queue < txq_number; queue++) { 1506 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1507 1508 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1509 if (size < mtu) { 1510 size = mtu; 1511 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1512 val |= size; 1513 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1514 } 1515 } 1516 } 1517 1518 /* Set unicast address */ 1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1520 int queue) 1521 { 1522 unsigned int unicast_reg; 1523 unsigned int tbl_offset; 1524 unsigned int reg_offset; 1525 1526 /* Locate the Unicast table entry */ 1527 last_nibble = (0xf & last_nibble); 1528 1529 /* offset from unicast tbl base */ 1530 tbl_offset = (last_nibble / 4) * 4; 1531 1532 /* offset within the above reg */ 1533 reg_offset = last_nibble % 4; 1534 1535 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1536 1537 if (queue == -1) { 1538 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1539 unicast_reg &= ~(0xff << (8 * reg_offset)); 1540 } else { 1541 unicast_reg &= ~(0xff << (8 * reg_offset)); 1542 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1543 } 1544 1545 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1546 } 1547 1548 /* Set mac address */ 1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1550 int queue) 1551 { 1552 unsigned int mac_h; 1553 unsigned int mac_l; 1554 1555 if (queue != -1) { 1556 mac_l = (addr[4] << 8) | (addr[5]); 1557 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1558 (addr[2] << 8) | (addr[3] << 0); 1559 1560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1562 } 1563 1564 /* Accept frames of this address */ 1565 mvneta_set_ucast_addr(pp, addr[5], queue); 1566 } 1567 1568 /* Set the number of packets that will be received before RX interrupt 1569 * will be generated by HW. 1570 */ 1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1572 struct mvneta_rx_queue *rxq, u32 value) 1573 { 1574 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1575 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1576 rxq->pkts_coal = value; 1577 } 1578 1579 /* Set the time delay in usec before RX interrupt will be generated by 1580 * HW. 1581 */ 1582 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1583 struct mvneta_rx_queue *rxq, u32 value) 1584 { 1585 u32 val; 1586 unsigned long clk_rate; 1587 1588 clk_rate = clk_get_rate(pp->clk); 1589 val = (clk_rate / 1000000) * value; 1590 1591 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1592 rxq->time_coal = value; 1593 } 1594 1595 /* Set threshold for TX_DONE pkts coalescing */ 1596 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1597 struct mvneta_tx_queue *txq, u32 value) 1598 { 1599 u32 val; 1600 1601 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1602 1603 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1604 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1605 1606 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1607 1608 txq->done_pkts_coal = value; 1609 } 1610 1611 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1612 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1613 u32 phys_addr, void *virt_addr, 1614 struct mvneta_rx_queue *rxq) 1615 { 1616 int i; 1617 1618 rx_desc->buf_phys_addr = phys_addr; 1619 i = rx_desc - rxq->descs; 1620 rxq->buf_virt_addr[i] = virt_addr; 1621 } 1622 1623 /* Decrement sent descriptors counter */ 1624 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1625 struct mvneta_tx_queue *txq, 1626 int sent_desc) 1627 { 1628 u32 val; 1629 1630 /* Only 255 TX descriptors can be updated at once */ 1631 while (sent_desc > 0xff) { 1632 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1633 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1634 sent_desc = sent_desc - 0xff; 1635 } 1636 1637 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1638 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1639 } 1640 1641 /* Get number of TX descriptors already sent by HW */ 1642 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1643 struct mvneta_tx_queue *txq) 1644 { 1645 u32 val; 1646 int sent_desc; 1647 1648 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1649 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1650 MVNETA_TXQ_SENT_DESC_SHIFT; 1651 1652 return sent_desc; 1653 } 1654 1655 /* Get number of sent descriptors and decrement counter. 1656 * The number of sent descriptors is returned. 1657 */ 1658 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1659 struct mvneta_tx_queue *txq) 1660 { 1661 int sent_desc; 1662 1663 /* Get number of sent descriptors */ 1664 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1665 1666 /* Decrement sent descriptors counter */ 1667 if (sent_desc) 1668 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1669 1670 return sent_desc; 1671 } 1672 1673 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1674 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1675 int ip_hdr_len, int l4_proto) 1676 { 1677 u32 command; 1678 1679 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1680 * G_L4_chk, L4_type; required only for checksum 1681 * calculation 1682 */ 1683 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1684 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1685 1686 if (l3_proto == htons(ETH_P_IP)) 1687 command |= MVNETA_TXD_IP_CSUM; 1688 else 1689 command |= MVNETA_TX_L3_IP6; 1690 1691 if (l4_proto == IPPROTO_TCP) 1692 command |= MVNETA_TX_L4_CSUM_FULL; 1693 else if (l4_proto == IPPROTO_UDP) 1694 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1695 else 1696 command |= MVNETA_TX_L4_CSUM_NOT; 1697 1698 return command; 1699 } 1700 1701 1702 /* Display more error info */ 1703 static void mvneta_rx_error(struct mvneta_port *pp, 1704 struct mvneta_rx_desc *rx_desc) 1705 { 1706 u32 status = rx_desc->status; 1707 1708 if (!mvneta_rxq_desc_is_first_last(status)) { 1709 netdev_err(pp->dev, 1710 "bad rx status %08x (buffer oversize), size=%d\n", 1711 status, rx_desc->data_size); 1712 return; 1713 } 1714 1715 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1716 case MVNETA_RXD_ERR_CRC: 1717 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1718 status, rx_desc->data_size); 1719 break; 1720 case MVNETA_RXD_ERR_OVERRUN: 1721 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1722 status, rx_desc->data_size); 1723 break; 1724 case MVNETA_RXD_ERR_LEN: 1725 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1726 status, rx_desc->data_size); 1727 break; 1728 case MVNETA_RXD_ERR_RESOURCE: 1729 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1730 status, rx_desc->data_size); 1731 break; 1732 } 1733 } 1734 1735 /* Handle RX checksum offload based on the descriptor's status */ 1736 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1737 struct sk_buff *skb) 1738 { 1739 if ((status & MVNETA_RXD_L3_IP4) && 1740 (status & MVNETA_RXD_L4_CSUM_OK)) { 1741 skb->csum = 0; 1742 skb->ip_summed = CHECKSUM_UNNECESSARY; 1743 return; 1744 } 1745 1746 skb->ip_summed = CHECKSUM_NONE; 1747 } 1748 1749 /* Return tx queue pointer (find last set bit) according to <cause> returned 1750 * form tx_done reg. <cause> must not be null. The return value is always a 1751 * valid queue for matching the first one found in <cause>. 1752 */ 1753 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1754 u32 cause) 1755 { 1756 int queue = fls(cause) - 1; 1757 1758 return &pp->txqs[queue]; 1759 } 1760 1761 /* Free tx queue skbuffs */ 1762 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1763 struct mvneta_tx_queue *txq, int num, 1764 struct netdev_queue *nq) 1765 { 1766 unsigned int bytes_compl = 0, pkts_compl = 0; 1767 int i; 1768 1769 for (i = 0; i < num; i++) { 1770 struct mvneta_tx_desc *tx_desc = txq->descs + 1771 txq->txq_get_index; 1772 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1773 1774 if (skb) { 1775 bytes_compl += skb->len; 1776 pkts_compl++; 1777 } 1778 1779 mvneta_txq_inc_get(txq); 1780 1781 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1782 dma_unmap_single(pp->dev->dev.parent, 1783 tx_desc->buf_phys_addr, 1784 tx_desc->data_size, DMA_TO_DEVICE); 1785 if (!skb) 1786 continue; 1787 dev_kfree_skb_any(skb); 1788 } 1789 1790 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1791 } 1792 1793 /* Handle end of transmission */ 1794 static void mvneta_txq_done(struct mvneta_port *pp, 1795 struct mvneta_tx_queue *txq) 1796 { 1797 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1798 int tx_done; 1799 1800 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1801 if (!tx_done) 1802 return; 1803 1804 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1805 1806 txq->count -= tx_done; 1807 1808 if (netif_tx_queue_stopped(nq)) { 1809 if (txq->count <= txq->tx_wake_threshold) 1810 netif_tx_wake_queue(nq); 1811 } 1812 } 1813 1814 void *mvneta_frag_alloc(unsigned int frag_size) 1815 { 1816 if (likely(frag_size <= PAGE_SIZE)) 1817 return netdev_alloc_frag(frag_size); 1818 else 1819 return kmalloc(frag_size, GFP_ATOMIC); 1820 } 1821 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1822 1823 void mvneta_frag_free(unsigned int frag_size, void *data) 1824 { 1825 if (likely(frag_size <= PAGE_SIZE)) 1826 skb_free_frag(data); 1827 else 1828 kfree(data); 1829 } 1830 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1831 1832 /* Refill processing for SW buffer management */ 1833 static int mvneta_rx_refill(struct mvneta_port *pp, 1834 struct mvneta_rx_desc *rx_desc, 1835 struct mvneta_rx_queue *rxq) 1836 1837 { 1838 dma_addr_t phys_addr; 1839 void *data; 1840 1841 data = mvneta_frag_alloc(pp->frag_size); 1842 if (!data) 1843 return -ENOMEM; 1844 1845 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1846 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1847 DMA_FROM_DEVICE); 1848 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1849 mvneta_frag_free(pp->frag_size, data); 1850 return -ENOMEM; 1851 } 1852 1853 phys_addr += pp->rx_offset_correction; 1854 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1855 return 0; 1856 } 1857 1858 /* Handle tx checksum */ 1859 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1860 { 1861 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1862 int ip_hdr_len = 0; 1863 __be16 l3_proto = vlan_get_protocol(skb); 1864 u8 l4_proto; 1865 1866 if (l3_proto == htons(ETH_P_IP)) { 1867 struct iphdr *ip4h = ip_hdr(skb); 1868 1869 /* Calculate IPv4 checksum and L4 checksum */ 1870 ip_hdr_len = ip4h->ihl; 1871 l4_proto = ip4h->protocol; 1872 } else if (l3_proto == htons(ETH_P_IPV6)) { 1873 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1874 1875 /* Read l4_protocol from one of IPv6 extra headers */ 1876 if (skb_network_header_len(skb) > 0) 1877 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1878 l4_proto = ip6h->nexthdr; 1879 } else 1880 return MVNETA_TX_L4_CSUM_NOT; 1881 1882 return mvneta_txq_desc_csum(skb_network_offset(skb), 1883 l3_proto, ip_hdr_len, l4_proto); 1884 } 1885 1886 return MVNETA_TX_L4_CSUM_NOT; 1887 } 1888 1889 /* Drop packets received by the RXQ and free buffers */ 1890 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1891 struct mvneta_rx_queue *rxq) 1892 { 1893 int rx_done, i; 1894 1895 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1896 if (rx_done) 1897 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1898 1899 if (pp->bm_priv) { 1900 for (i = 0; i < rx_done; i++) { 1901 struct mvneta_rx_desc *rx_desc = 1902 mvneta_rxq_next_desc_get(rxq); 1903 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1904 struct mvneta_bm_pool *bm_pool; 1905 1906 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1907 /* Return dropped buffer to the pool */ 1908 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1909 rx_desc->buf_phys_addr); 1910 } 1911 return; 1912 } 1913 1914 for (i = 0; i < rxq->size; i++) { 1915 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1916 void *data = rxq->buf_virt_addr[i]; 1917 1918 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1919 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1920 mvneta_frag_free(pp->frag_size, data); 1921 } 1922 } 1923 1924 /* Main rx processing when using software buffer management */ 1925 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1926 struct mvneta_rx_queue *rxq) 1927 { 1928 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1929 struct net_device *dev = pp->dev; 1930 int rx_done; 1931 u32 rcvd_pkts = 0; 1932 u32 rcvd_bytes = 0; 1933 1934 /* Get number of received packets */ 1935 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1936 1937 if (rx_todo > rx_done) 1938 rx_todo = rx_done; 1939 1940 rx_done = 0; 1941 1942 /* Fairness NAPI loop */ 1943 while (rx_done < rx_todo) { 1944 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1945 struct sk_buff *skb; 1946 unsigned char *data; 1947 dma_addr_t phys_addr; 1948 u32 rx_status, frag_size; 1949 int rx_bytes, err, index; 1950 1951 rx_done++; 1952 rx_status = rx_desc->status; 1953 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1954 index = rx_desc - rxq->descs; 1955 data = rxq->buf_virt_addr[index]; 1956 phys_addr = rx_desc->buf_phys_addr; 1957 1958 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1959 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1960 err_drop_frame: 1961 dev->stats.rx_errors++; 1962 mvneta_rx_error(pp, rx_desc); 1963 /* leave the descriptor untouched */ 1964 continue; 1965 } 1966 1967 if (rx_bytes <= rx_copybreak) { 1968 /* better copy a small frame and not unmap the DMA region */ 1969 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1970 if (unlikely(!skb)) 1971 goto err_drop_frame; 1972 1973 dma_sync_single_range_for_cpu(dev->dev.parent, 1974 phys_addr, 1975 MVNETA_MH_SIZE + NET_SKB_PAD, 1976 rx_bytes, 1977 DMA_FROM_DEVICE); 1978 memcpy(skb_put(skb, rx_bytes), 1979 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1980 rx_bytes); 1981 1982 skb->protocol = eth_type_trans(skb, dev); 1983 mvneta_rx_csum(pp, rx_status, skb); 1984 napi_gro_receive(&port->napi, skb); 1985 1986 rcvd_pkts++; 1987 rcvd_bytes += rx_bytes; 1988 1989 /* leave the descriptor and buffer untouched */ 1990 continue; 1991 } 1992 1993 /* Refill processing */ 1994 err = mvneta_rx_refill(pp, rx_desc, rxq); 1995 if (err) { 1996 netdev_err(dev, "Linux processing - Can't refill\n"); 1997 rxq->missed++; 1998 goto err_drop_frame; 1999 } 2000 2001 frag_size = pp->frag_size; 2002 2003 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2004 2005 /* After refill old buffer has to be unmapped regardless 2006 * the skb is successfully built or not. 2007 */ 2008 dma_unmap_single(dev->dev.parent, phys_addr, 2009 MVNETA_RX_BUF_SIZE(pp->pkt_size), 2010 DMA_FROM_DEVICE); 2011 2012 if (!skb) 2013 goto err_drop_frame; 2014 2015 rcvd_pkts++; 2016 rcvd_bytes += rx_bytes; 2017 2018 /* Linux processing */ 2019 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2020 skb_put(skb, rx_bytes); 2021 2022 skb->protocol = eth_type_trans(skb, dev); 2023 2024 mvneta_rx_csum(pp, rx_status, skb); 2025 2026 napi_gro_receive(&port->napi, skb); 2027 } 2028 2029 if (rcvd_pkts) { 2030 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2031 2032 u64_stats_update_begin(&stats->syncp); 2033 stats->rx_packets += rcvd_pkts; 2034 stats->rx_bytes += rcvd_bytes; 2035 u64_stats_update_end(&stats->syncp); 2036 } 2037 2038 /* Update rxq management counters */ 2039 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2040 2041 return rx_done; 2042 } 2043 2044 /* Main rx processing when using hardware buffer management */ 2045 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2046 struct mvneta_rx_queue *rxq) 2047 { 2048 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2049 struct net_device *dev = pp->dev; 2050 int rx_done; 2051 u32 rcvd_pkts = 0; 2052 u32 rcvd_bytes = 0; 2053 2054 /* Get number of received packets */ 2055 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2056 2057 if (rx_todo > rx_done) 2058 rx_todo = rx_done; 2059 2060 rx_done = 0; 2061 2062 /* Fairness NAPI loop */ 2063 while (rx_done < rx_todo) { 2064 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2065 struct mvneta_bm_pool *bm_pool = NULL; 2066 struct sk_buff *skb; 2067 unsigned char *data; 2068 dma_addr_t phys_addr; 2069 u32 rx_status, frag_size; 2070 int rx_bytes, err; 2071 u8 pool_id; 2072 2073 rx_done++; 2074 rx_status = rx_desc->status; 2075 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2076 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2077 phys_addr = rx_desc->buf_phys_addr; 2078 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2079 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2080 2081 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2082 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2083 err_drop_frame_ret_pool: 2084 /* Return the buffer to the pool */ 2085 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2086 rx_desc->buf_phys_addr); 2087 err_drop_frame: 2088 dev->stats.rx_errors++; 2089 mvneta_rx_error(pp, rx_desc); 2090 /* leave the descriptor untouched */ 2091 continue; 2092 } 2093 2094 if (rx_bytes <= rx_copybreak) { 2095 /* better copy a small frame and not unmap the DMA region */ 2096 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2097 if (unlikely(!skb)) 2098 goto err_drop_frame_ret_pool; 2099 2100 dma_sync_single_range_for_cpu(dev->dev.parent, 2101 rx_desc->buf_phys_addr, 2102 MVNETA_MH_SIZE + NET_SKB_PAD, 2103 rx_bytes, 2104 DMA_FROM_DEVICE); 2105 memcpy(skb_put(skb, rx_bytes), 2106 data + MVNETA_MH_SIZE + NET_SKB_PAD, 2107 rx_bytes); 2108 2109 skb->protocol = eth_type_trans(skb, dev); 2110 mvneta_rx_csum(pp, rx_status, skb); 2111 napi_gro_receive(&port->napi, skb); 2112 2113 rcvd_pkts++; 2114 rcvd_bytes += rx_bytes; 2115 2116 /* Return the buffer to the pool */ 2117 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2118 rx_desc->buf_phys_addr); 2119 2120 /* leave the descriptor and buffer untouched */ 2121 continue; 2122 } 2123 2124 /* Refill processing */ 2125 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2126 if (err) { 2127 netdev_err(dev, "Linux processing - Can't refill\n"); 2128 rxq->missed++; 2129 goto err_drop_frame_ret_pool; 2130 } 2131 2132 frag_size = bm_pool->hwbm_pool.frag_size; 2133 2134 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2135 2136 /* After refill old buffer has to be unmapped regardless 2137 * the skb is successfully built or not. 2138 */ 2139 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2140 bm_pool->buf_size, DMA_FROM_DEVICE); 2141 if (!skb) 2142 goto err_drop_frame; 2143 2144 rcvd_pkts++; 2145 rcvd_bytes += rx_bytes; 2146 2147 /* Linux processing */ 2148 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2149 skb_put(skb, rx_bytes); 2150 2151 skb->protocol = eth_type_trans(skb, dev); 2152 2153 mvneta_rx_csum(pp, rx_status, skb); 2154 2155 napi_gro_receive(&port->napi, skb); 2156 } 2157 2158 if (rcvd_pkts) { 2159 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2160 2161 u64_stats_update_begin(&stats->syncp); 2162 stats->rx_packets += rcvd_pkts; 2163 stats->rx_bytes += rcvd_bytes; 2164 u64_stats_update_end(&stats->syncp); 2165 } 2166 2167 /* Update rxq management counters */ 2168 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2169 2170 return rx_done; 2171 } 2172 2173 static inline void 2174 mvneta_tso_put_hdr(struct sk_buff *skb, 2175 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2176 { 2177 struct mvneta_tx_desc *tx_desc; 2178 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2179 2180 txq->tx_skb[txq->txq_put_index] = NULL; 2181 tx_desc = mvneta_txq_next_desc_get(txq); 2182 tx_desc->data_size = hdr_len; 2183 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2184 tx_desc->command |= MVNETA_TXD_F_DESC; 2185 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2186 txq->txq_put_index * TSO_HEADER_SIZE; 2187 mvneta_txq_inc_put(txq); 2188 } 2189 2190 static inline int 2191 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2192 struct sk_buff *skb, char *data, int size, 2193 bool last_tcp, bool is_last) 2194 { 2195 struct mvneta_tx_desc *tx_desc; 2196 2197 tx_desc = mvneta_txq_next_desc_get(txq); 2198 tx_desc->data_size = size; 2199 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2200 size, DMA_TO_DEVICE); 2201 if (unlikely(dma_mapping_error(dev->dev.parent, 2202 tx_desc->buf_phys_addr))) { 2203 mvneta_txq_desc_put(txq); 2204 return -ENOMEM; 2205 } 2206 2207 tx_desc->command = 0; 2208 txq->tx_skb[txq->txq_put_index] = NULL; 2209 2210 if (last_tcp) { 2211 /* last descriptor in the TCP packet */ 2212 tx_desc->command = MVNETA_TXD_L_DESC; 2213 2214 /* last descriptor in SKB */ 2215 if (is_last) 2216 txq->tx_skb[txq->txq_put_index] = skb; 2217 } 2218 mvneta_txq_inc_put(txq); 2219 return 0; 2220 } 2221 2222 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2223 struct mvneta_tx_queue *txq) 2224 { 2225 int total_len, data_left; 2226 int desc_count = 0; 2227 struct mvneta_port *pp = netdev_priv(dev); 2228 struct tso_t tso; 2229 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2230 int i; 2231 2232 /* Count needed descriptors */ 2233 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2234 return 0; 2235 2236 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2237 pr_info("*** Is this even possible???!?!?\n"); 2238 return 0; 2239 } 2240 2241 /* Initialize the TSO handler, and prepare the first payload */ 2242 tso_start(skb, &tso); 2243 2244 total_len = skb->len - hdr_len; 2245 while (total_len > 0) { 2246 char *hdr; 2247 2248 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2249 total_len -= data_left; 2250 desc_count++; 2251 2252 /* prepare packet headers: MAC + IP + TCP */ 2253 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2254 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2255 2256 mvneta_tso_put_hdr(skb, pp, txq); 2257 2258 while (data_left > 0) { 2259 int size; 2260 desc_count++; 2261 2262 size = min_t(int, tso.size, data_left); 2263 2264 if (mvneta_tso_put_data(dev, txq, skb, 2265 tso.data, size, 2266 size == data_left, 2267 total_len == 0)) 2268 goto err_release; 2269 data_left -= size; 2270 2271 tso_build_data(skb, &tso, size); 2272 } 2273 } 2274 2275 return desc_count; 2276 2277 err_release: 2278 /* Release all used data descriptors; header descriptors must not 2279 * be DMA-unmapped. 2280 */ 2281 for (i = desc_count - 1; i >= 0; i--) { 2282 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2283 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2284 dma_unmap_single(pp->dev->dev.parent, 2285 tx_desc->buf_phys_addr, 2286 tx_desc->data_size, 2287 DMA_TO_DEVICE); 2288 mvneta_txq_desc_put(txq); 2289 } 2290 return 0; 2291 } 2292 2293 /* Handle tx fragmentation processing */ 2294 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2295 struct mvneta_tx_queue *txq) 2296 { 2297 struct mvneta_tx_desc *tx_desc; 2298 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2299 2300 for (i = 0; i < nr_frags; i++) { 2301 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2302 void *addr = page_address(frag->page.p) + frag->page_offset; 2303 2304 tx_desc = mvneta_txq_next_desc_get(txq); 2305 tx_desc->data_size = frag->size; 2306 2307 tx_desc->buf_phys_addr = 2308 dma_map_single(pp->dev->dev.parent, addr, 2309 tx_desc->data_size, DMA_TO_DEVICE); 2310 2311 if (dma_mapping_error(pp->dev->dev.parent, 2312 tx_desc->buf_phys_addr)) { 2313 mvneta_txq_desc_put(txq); 2314 goto error; 2315 } 2316 2317 if (i == nr_frags - 1) { 2318 /* Last descriptor */ 2319 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2320 txq->tx_skb[txq->txq_put_index] = skb; 2321 } else { 2322 /* Descriptor in the middle: Not First, Not Last */ 2323 tx_desc->command = 0; 2324 txq->tx_skb[txq->txq_put_index] = NULL; 2325 } 2326 mvneta_txq_inc_put(txq); 2327 } 2328 2329 return 0; 2330 2331 error: 2332 /* Release all descriptors that were used to map fragments of 2333 * this packet, as well as the corresponding DMA mappings 2334 */ 2335 for (i = i - 1; i >= 0; i--) { 2336 tx_desc = txq->descs + i; 2337 dma_unmap_single(pp->dev->dev.parent, 2338 tx_desc->buf_phys_addr, 2339 tx_desc->data_size, 2340 DMA_TO_DEVICE); 2341 mvneta_txq_desc_put(txq); 2342 } 2343 2344 return -ENOMEM; 2345 } 2346 2347 /* Main tx processing */ 2348 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2349 { 2350 struct mvneta_port *pp = netdev_priv(dev); 2351 u16 txq_id = skb_get_queue_mapping(skb); 2352 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2353 struct mvneta_tx_desc *tx_desc; 2354 int len = skb->len; 2355 int frags = 0; 2356 u32 tx_cmd; 2357 2358 if (!netif_running(dev)) 2359 goto out; 2360 2361 if (skb_is_gso(skb)) { 2362 frags = mvneta_tx_tso(skb, dev, txq); 2363 goto out; 2364 } 2365 2366 frags = skb_shinfo(skb)->nr_frags + 1; 2367 2368 /* Get a descriptor for the first part of the packet */ 2369 tx_desc = mvneta_txq_next_desc_get(txq); 2370 2371 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2372 2373 tx_desc->data_size = skb_headlen(skb); 2374 2375 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2376 tx_desc->data_size, 2377 DMA_TO_DEVICE); 2378 if (unlikely(dma_mapping_error(dev->dev.parent, 2379 tx_desc->buf_phys_addr))) { 2380 mvneta_txq_desc_put(txq); 2381 frags = 0; 2382 goto out; 2383 } 2384 2385 if (frags == 1) { 2386 /* First and Last descriptor */ 2387 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2388 tx_desc->command = tx_cmd; 2389 txq->tx_skb[txq->txq_put_index] = skb; 2390 mvneta_txq_inc_put(txq); 2391 } else { 2392 /* First but not Last */ 2393 tx_cmd |= MVNETA_TXD_F_DESC; 2394 txq->tx_skb[txq->txq_put_index] = NULL; 2395 mvneta_txq_inc_put(txq); 2396 tx_desc->command = tx_cmd; 2397 /* Continue with other skb fragments */ 2398 if (mvneta_tx_frag_process(pp, skb, txq)) { 2399 dma_unmap_single(dev->dev.parent, 2400 tx_desc->buf_phys_addr, 2401 tx_desc->data_size, 2402 DMA_TO_DEVICE); 2403 mvneta_txq_desc_put(txq); 2404 frags = 0; 2405 goto out; 2406 } 2407 } 2408 2409 out: 2410 if (frags > 0) { 2411 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2412 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2413 2414 netdev_tx_sent_queue(nq, len); 2415 2416 txq->count += frags; 2417 if (txq->count >= txq->tx_stop_threshold) 2418 netif_tx_stop_queue(nq); 2419 2420 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2421 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2422 mvneta_txq_pend_desc_add(pp, txq, frags); 2423 else 2424 txq->pending += frags; 2425 2426 u64_stats_update_begin(&stats->syncp); 2427 stats->tx_packets++; 2428 stats->tx_bytes += len; 2429 u64_stats_update_end(&stats->syncp); 2430 } else { 2431 dev->stats.tx_dropped++; 2432 dev_kfree_skb_any(skb); 2433 } 2434 2435 return NETDEV_TX_OK; 2436 } 2437 2438 2439 /* Free tx resources, when resetting a port */ 2440 static void mvneta_txq_done_force(struct mvneta_port *pp, 2441 struct mvneta_tx_queue *txq) 2442 2443 { 2444 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2445 int tx_done = txq->count; 2446 2447 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2448 2449 /* reset txq */ 2450 txq->count = 0; 2451 txq->txq_put_index = 0; 2452 txq->txq_get_index = 0; 2453 } 2454 2455 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2456 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2457 */ 2458 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2459 { 2460 struct mvneta_tx_queue *txq; 2461 struct netdev_queue *nq; 2462 2463 while (cause_tx_done) { 2464 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2465 2466 nq = netdev_get_tx_queue(pp->dev, txq->id); 2467 __netif_tx_lock(nq, smp_processor_id()); 2468 2469 if (txq->count) 2470 mvneta_txq_done(pp, txq); 2471 2472 __netif_tx_unlock(nq); 2473 cause_tx_done &= ~((1 << txq->id)); 2474 } 2475 } 2476 2477 /* Compute crc8 of the specified address, using a unique algorithm , 2478 * according to hw spec, different than generic crc8 algorithm 2479 */ 2480 static int mvneta_addr_crc(unsigned char *addr) 2481 { 2482 int crc = 0; 2483 int i; 2484 2485 for (i = 0; i < ETH_ALEN; i++) { 2486 int j; 2487 2488 crc = (crc ^ addr[i]) << 8; 2489 for (j = 7; j >= 0; j--) { 2490 if (crc & (0x100 << j)) 2491 crc ^= 0x107 << j; 2492 } 2493 } 2494 2495 return crc; 2496 } 2497 2498 /* This method controls the net device special MAC multicast support. 2499 * The Special Multicast Table for MAC addresses supports MAC of the form 2500 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2501 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2502 * Table entries in the DA-Filter table. This method set the Special 2503 * Multicast Table appropriate entry. 2504 */ 2505 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2506 unsigned char last_byte, 2507 int queue) 2508 { 2509 unsigned int smc_table_reg; 2510 unsigned int tbl_offset; 2511 unsigned int reg_offset; 2512 2513 /* Register offset from SMC table base */ 2514 tbl_offset = (last_byte / 4); 2515 /* Entry offset within the above reg */ 2516 reg_offset = last_byte % 4; 2517 2518 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2519 + tbl_offset * 4)); 2520 2521 if (queue == -1) 2522 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2523 else { 2524 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2525 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2526 } 2527 2528 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2529 smc_table_reg); 2530 } 2531 2532 /* This method controls the network device Other MAC multicast support. 2533 * The Other Multicast Table is used for multicast of another type. 2534 * A CRC-8 is used as an index to the Other Multicast Table entries 2535 * in the DA-Filter table. 2536 * The method gets the CRC-8 value from the calling routine and 2537 * sets the Other Multicast Table appropriate entry according to the 2538 * specified CRC-8 . 2539 */ 2540 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2541 unsigned char crc8, 2542 int queue) 2543 { 2544 unsigned int omc_table_reg; 2545 unsigned int tbl_offset; 2546 unsigned int reg_offset; 2547 2548 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2549 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2550 2551 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2552 2553 if (queue == -1) { 2554 /* Clear accepts frame bit at specified Other DA table entry */ 2555 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2556 } else { 2557 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2558 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2559 } 2560 2561 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2562 } 2563 2564 /* The network device supports multicast using two tables: 2565 * 1) Special Multicast Table for MAC addresses of the form 2566 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2567 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2568 * Table entries in the DA-Filter table. 2569 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2570 * is used as an index to the Other Multicast Table entries in the 2571 * DA-Filter table. 2572 */ 2573 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2574 int queue) 2575 { 2576 unsigned char crc_result = 0; 2577 2578 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2579 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2580 return 0; 2581 } 2582 2583 crc_result = mvneta_addr_crc(p_addr); 2584 if (queue == -1) { 2585 if (pp->mcast_count[crc_result] == 0) { 2586 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2587 crc_result); 2588 return -EINVAL; 2589 } 2590 2591 pp->mcast_count[crc_result]--; 2592 if (pp->mcast_count[crc_result] != 0) { 2593 netdev_info(pp->dev, 2594 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2595 pp->mcast_count[crc_result], crc_result); 2596 return -EINVAL; 2597 } 2598 } else 2599 pp->mcast_count[crc_result]++; 2600 2601 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2602 2603 return 0; 2604 } 2605 2606 /* Configure Fitering mode of Ethernet port */ 2607 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2608 int is_promisc) 2609 { 2610 u32 port_cfg_reg, val; 2611 2612 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2613 2614 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2615 2616 /* Set / Clear UPM bit in port configuration register */ 2617 if (is_promisc) { 2618 /* Accept all Unicast addresses */ 2619 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2620 val |= MVNETA_FORCE_UNI; 2621 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2622 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2623 } else { 2624 /* Reject all Unicast addresses */ 2625 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2626 val &= ~MVNETA_FORCE_UNI; 2627 } 2628 2629 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2630 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2631 } 2632 2633 /* register unicast and multicast addresses */ 2634 static void mvneta_set_rx_mode(struct net_device *dev) 2635 { 2636 struct mvneta_port *pp = netdev_priv(dev); 2637 struct netdev_hw_addr *ha; 2638 2639 if (dev->flags & IFF_PROMISC) { 2640 /* Accept all: Multicast + Unicast */ 2641 mvneta_rx_unicast_promisc_set(pp, 1); 2642 mvneta_set_ucast_table(pp, pp->rxq_def); 2643 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2644 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2645 } else { 2646 /* Accept single Unicast */ 2647 mvneta_rx_unicast_promisc_set(pp, 0); 2648 mvneta_set_ucast_table(pp, -1); 2649 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2650 2651 if (dev->flags & IFF_ALLMULTI) { 2652 /* Accept all multicast */ 2653 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2654 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2655 } else { 2656 /* Accept only initialized multicast */ 2657 mvneta_set_special_mcast_table(pp, -1); 2658 mvneta_set_other_mcast_table(pp, -1); 2659 2660 if (!netdev_mc_empty(dev)) { 2661 netdev_for_each_mc_addr(ha, dev) { 2662 mvneta_mcast_addr_set(pp, ha->addr, 2663 pp->rxq_def); 2664 } 2665 } 2666 } 2667 } 2668 } 2669 2670 /* Interrupt handling - the callback for request_irq() */ 2671 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2672 { 2673 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2674 2675 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2676 napi_schedule(&pp->napi); 2677 2678 return IRQ_HANDLED; 2679 } 2680 2681 /* Interrupt handling - the callback for request_percpu_irq() */ 2682 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2683 { 2684 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2685 2686 disable_percpu_irq(port->pp->dev->irq); 2687 napi_schedule(&port->napi); 2688 2689 return IRQ_HANDLED; 2690 } 2691 2692 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2693 struct phy_device *phy) 2694 { 2695 struct fixed_phy_status status; 2696 struct fixed_phy_status changed = {}; 2697 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2698 2699 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2700 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2701 status.speed = SPEED_1000; 2702 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2703 status.speed = SPEED_100; 2704 else 2705 status.speed = SPEED_10; 2706 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2707 changed.link = 1; 2708 changed.speed = 1; 2709 changed.duplex = 1; 2710 fixed_phy_update_state(phy, &status, &changed); 2711 return 0; 2712 } 2713 2714 /* NAPI handler 2715 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2716 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2717 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2718 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2719 * Each CPU has its own causeRxTx register 2720 */ 2721 static int mvneta_poll(struct napi_struct *napi, int budget) 2722 { 2723 int rx_done = 0; 2724 u32 cause_rx_tx; 2725 int rx_queue; 2726 struct mvneta_port *pp = netdev_priv(napi->dev); 2727 struct net_device *ndev = pp->dev; 2728 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2729 2730 if (!netif_running(pp->dev)) { 2731 napi_complete(napi); 2732 return rx_done; 2733 } 2734 2735 /* Read cause register */ 2736 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2737 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2738 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2739 2740 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2741 if (pp->use_inband_status && (cause_misc & 2742 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2743 MVNETA_CAUSE_LINK_CHANGE | 2744 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2745 mvneta_fixed_link_update(pp, ndev->phydev); 2746 } 2747 } 2748 2749 /* Release Tx descriptors */ 2750 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2751 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2752 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2753 } 2754 2755 /* For the case where the last mvneta_poll did not process all 2756 * RX packets 2757 */ 2758 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2759 2760 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2761 port->cause_rx_tx; 2762 2763 if (rx_queue) { 2764 rx_queue = rx_queue - 1; 2765 if (pp->bm_priv) 2766 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2767 else 2768 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2769 } 2770 2771 if (rx_done < budget) { 2772 cause_rx_tx = 0; 2773 napi_complete_done(napi, rx_done); 2774 2775 if (pp->neta_armada3700) { 2776 unsigned long flags; 2777 2778 local_irq_save(flags); 2779 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2780 MVNETA_RX_INTR_MASK(rxq_number) | 2781 MVNETA_TX_INTR_MASK(txq_number) | 2782 MVNETA_MISCINTR_INTR_MASK); 2783 local_irq_restore(flags); 2784 } else { 2785 enable_percpu_irq(pp->dev->irq, 0); 2786 } 2787 } 2788 2789 if (pp->neta_armada3700) 2790 pp->cause_rx_tx = cause_rx_tx; 2791 else 2792 port->cause_rx_tx = cause_rx_tx; 2793 2794 return rx_done; 2795 } 2796 2797 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2798 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2799 int num) 2800 { 2801 int i; 2802 2803 for (i = 0; i < num; i++) { 2804 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2805 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2806 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2807 __func__, rxq->id, i, num); 2808 break; 2809 } 2810 } 2811 2812 /* Add this number of RX descriptors as non occupied (ready to 2813 * get packets) 2814 */ 2815 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2816 2817 return i; 2818 } 2819 2820 /* Free all packets pending transmit from all TXQs and reset TX port */ 2821 static void mvneta_tx_reset(struct mvneta_port *pp) 2822 { 2823 int queue; 2824 2825 /* free the skb's in the tx ring */ 2826 for (queue = 0; queue < txq_number; queue++) 2827 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2828 2829 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2830 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2831 } 2832 2833 static void mvneta_rx_reset(struct mvneta_port *pp) 2834 { 2835 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2836 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2837 } 2838 2839 /* Rx/Tx queue initialization/cleanup methods */ 2840 2841 /* Create a specified RX queue */ 2842 static int mvneta_rxq_init(struct mvneta_port *pp, 2843 struct mvneta_rx_queue *rxq) 2844 2845 { 2846 rxq->size = pp->rx_ring_size; 2847 2848 /* Allocate memory for RX descriptors */ 2849 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2850 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2851 &rxq->descs_phys, GFP_KERNEL); 2852 if (rxq->descs == NULL) 2853 return -ENOMEM; 2854 2855 rxq->last_desc = rxq->size - 1; 2856 2857 /* Set Rx descriptors queue starting address */ 2858 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2859 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2860 2861 /* Set Offset */ 2862 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2863 2864 /* Set coalescing pkts and time */ 2865 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2866 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2867 2868 if (!pp->bm_priv) { 2869 /* Fill RXQ with buffers from RX pool */ 2870 mvneta_rxq_buf_size_set(pp, rxq, 2871 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2872 mvneta_rxq_bm_disable(pp, rxq); 2873 mvneta_rxq_fill(pp, rxq, rxq->size); 2874 } else { 2875 mvneta_rxq_bm_enable(pp, rxq); 2876 mvneta_rxq_long_pool_set(pp, rxq); 2877 mvneta_rxq_short_pool_set(pp, rxq); 2878 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2879 } 2880 2881 return 0; 2882 } 2883 2884 /* Cleanup Rx queue */ 2885 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2886 struct mvneta_rx_queue *rxq) 2887 { 2888 mvneta_rxq_drop_pkts(pp, rxq); 2889 2890 if (rxq->descs) 2891 dma_free_coherent(pp->dev->dev.parent, 2892 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2893 rxq->descs, 2894 rxq->descs_phys); 2895 2896 rxq->descs = NULL; 2897 rxq->last_desc = 0; 2898 rxq->next_desc_to_proc = 0; 2899 rxq->descs_phys = 0; 2900 } 2901 2902 /* Create and initialize a tx queue */ 2903 static int mvneta_txq_init(struct mvneta_port *pp, 2904 struct mvneta_tx_queue *txq) 2905 { 2906 int cpu; 2907 2908 txq->size = pp->tx_ring_size; 2909 2910 /* A queue must always have room for at least one skb. 2911 * Therefore, stop the queue when the free entries reaches 2912 * the maximum number of descriptors per skb. 2913 */ 2914 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2915 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2916 2917 2918 /* Allocate memory for TX descriptors */ 2919 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2920 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2921 &txq->descs_phys, GFP_KERNEL); 2922 if (txq->descs == NULL) 2923 return -ENOMEM; 2924 2925 txq->last_desc = txq->size - 1; 2926 2927 /* Set maximum bandwidth for enabled TXQs */ 2928 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2929 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2930 2931 /* Set Tx descriptors queue starting address */ 2932 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2933 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2934 2935 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2936 if (txq->tx_skb == NULL) { 2937 dma_free_coherent(pp->dev->dev.parent, 2938 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2939 txq->descs, txq->descs_phys); 2940 return -ENOMEM; 2941 } 2942 2943 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2944 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2945 txq->size * TSO_HEADER_SIZE, 2946 &txq->tso_hdrs_phys, GFP_KERNEL); 2947 if (txq->tso_hdrs == NULL) { 2948 kfree(txq->tx_skb); 2949 dma_free_coherent(pp->dev->dev.parent, 2950 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2951 txq->descs, txq->descs_phys); 2952 return -ENOMEM; 2953 } 2954 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2955 2956 /* Setup XPS mapping */ 2957 if (txq_number > 1) 2958 cpu = txq->id % num_present_cpus(); 2959 else 2960 cpu = pp->rxq_def % num_present_cpus(); 2961 cpumask_set_cpu(cpu, &txq->affinity_mask); 2962 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2963 2964 return 0; 2965 } 2966 2967 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2968 static void mvneta_txq_deinit(struct mvneta_port *pp, 2969 struct mvneta_tx_queue *txq) 2970 { 2971 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2972 2973 kfree(txq->tx_skb); 2974 2975 if (txq->tso_hdrs) 2976 dma_free_coherent(pp->dev->dev.parent, 2977 txq->size * TSO_HEADER_SIZE, 2978 txq->tso_hdrs, txq->tso_hdrs_phys); 2979 if (txq->descs) 2980 dma_free_coherent(pp->dev->dev.parent, 2981 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2982 txq->descs, txq->descs_phys); 2983 2984 netdev_tx_reset_queue(nq); 2985 2986 txq->descs = NULL; 2987 txq->last_desc = 0; 2988 txq->next_desc_to_proc = 0; 2989 txq->descs_phys = 0; 2990 2991 /* Set minimum bandwidth for disabled TXQs */ 2992 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2993 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2994 2995 /* Set Tx descriptors queue starting address and size */ 2996 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2997 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2998 } 2999 3000 /* Cleanup all Tx queues */ 3001 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3002 { 3003 int queue; 3004 3005 for (queue = 0; queue < txq_number; queue++) 3006 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3007 } 3008 3009 /* Cleanup all Rx queues */ 3010 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3011 { 3012 int queue; 3013 3014 for (queue = 0; queue < txq_number; queue++) 3015 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3016 } 3017 3018 3019 /* Init all Rx queues */ 3020 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3021 { 3022 int queue; 3023 3024 for (queue = 0; queue < rxq_number; queue++) { 3025 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3026 3027 if (err) { 3028 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3029 __func__, queue); 3030 mvneta_cleanup_rxqs(pp); 3031 return err; 3032 } 3033 } 3034 3035 return 0; 3036 } 3037 3038 /* Init all tx queues */ 3039 static int mvneta_setup_txqs(struct mvneta_port *pp) 3040 { 3041 int queue; 3042 3043 for (queue = 0; queue < txq_number; queue++) { 3044 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3045 if (err) { 3046 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3047 __func__, queue); 3048 mvneta_cleanup_txqs(pp); 3049 return err; 3050 } 3051 } 3052 3053 return 0; 3054 } 3055 3056 static void mvneta_start_dev(struct mvneta_port *pp) 3057 { 3058 int cpu; 3059 struct net_device *ndev = pp->dev; 3060 3061 mvneta_max_rx_size_set(pp, pp->pkt_size); 3062 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3063 3064 /* start the Rx/Tx activity */ 3065 mvneta_port_enable(pp); 3066 3067 if (!pp->neta_armada3700) { 3068 /* Enable polling on the port */ 3069 for_each_online_cpu(cpu) { 3070 struct mvneta_pcpu_port *port = 3071 per_cpu_ptr(pp->ports, cpu); 3072 3073 napi_enable(&port->napi); 3074 } 3075 } else { 3076 napi_enable(&pp->napi); 3077 } 3078 3079 /* Unmask interrupts. It has to be done from each CPU */ 3080 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3081 3082 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3083 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3084 MVNETA_CAUSE_LINK_CHANGE | 3085 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3086 3087 phy_start(ndev->phydev); 3088 netif_tx_start_all_queues(pp->dev); 3089 } 3090 3091 static void mvneta_stop_dev(struct mvneta_port *pp) 3092 { 3093 unsigned int cpu; 3094 struct net_device *ndev = pp->dev; 3095 3096 phy_stop(ndev->phydev); 3097 3098 if (!pp->neta_armada3700) { 3099 for_each_online_cpu(cpu) { 3100 struct mvneta_pcpu_port *port = 3101 per_cpu_ptr(pp->ports, cpu); 3102 3103 napi_disable(&port->napi); 3104 } 3105 } else { 3106 napi_disable(&pp->napi); 3107 } 3108 3109 netif_carrier_off(pp->dev); 3110 3111 mvneta_port_down(pp); 3112 netif_tx_stop_all_queues(pp->dev); 3113 3114 /* Stop the port activity */ 3115 mvneta_port_disable(pp); 3116 3117 /* Clear all ethernet port interrupts */ 3118 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3119 3120 /* Mask all ethernet port interrupts */ 3121 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3122 3123 mvneta_tx_reset(pp); 3124 mvneta_rx_reset(pp); 3125 } 3126 3127 static void mvneta_percpu_enable(void *arg) 3128 { 3129 struct mvneta_port *pp = arg; 3130 3131 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3132 } 3133 3134 static void mvneta_percpu_disable(void *arg) 3135 { 3136 struct mvneta_port *pp = arg; 3137 3138 disable_percpu_irq(pp->dev->irq); 3139 } 3140 3141 /* Change the device mtu */ 3142 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3143 { 3144 struct mvneta_port *pp = netdev_priv(dev); 3145 int ret; 3146 3147 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3148 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3149 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3150 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3151 } 3152 3153 dev->mtu = mtu; 3154 3155 if (!netif_running(dev)) { 3156 if (pp->bm_priv) 3157 mvneta_bm_update_mtu(pp, mtu); 3158 3159 netdev_update_features(dev); 3160 return 0; 3161 } 3162 3163 /* The interface is running, so we have to force a 3164 * reallocation of the queues 3165 */ 3166 mvneta_stop_dev(pp); 3167 on_each_cpu(mvneta_percpu_disable, pp, true); 3168 3169 mvneta_cleanup_txqs(pp); 3170 mvneta_cleanup_rxqs(pp); 3171 3172 if (pp->bm_priv) 3173 mvneta_bm_update_mtu(pp, mtu); 3174 3175 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3176 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3177 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3178 3179 ret = mvneta_setup_rxqs(pp); 3180 if (ret) { 3181 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3182 return ret; 3183 } 3184 3185 ret = mvneta_setup_txqs(pp); 3186 if (ret) { 3187 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3188 return ret; 3189 } 3190 3191 on_each_cpu(mvneta_percpu_enable, pp, true); 3192 mvneta_start_dev(pp); 3193 mvneta_port_up(pp); 3194 3195 netdev_update_features(dev); 3196 3197 return 0; 3198 } 3199 3200 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3201 netdev_features_t features) 3202 { 3203 struct mvneta_port *pp = netdev_priv(dev); 3204 3205 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3206 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3207 netdev_info(dev, 3208 "Disable IP checksum for MTU greater than %dB\n", 3209 pp->tx_csum_limit); 3210 } 3211 3212 return features; 3213 } 3214 3215 /* Get mac address */ 3216 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3217 { 3218 u32 mac_addr_l, mac_addr_h; 3219 3220 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3221 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3222 addr[0] = (mac_addr_h >> 24) & 0xFF; 3223 addr[1] = (mac_addr_h >> 16) & 0xFF; 3224 addr[2] = (mac_addr_h >> 8) & 0xFF; 3225 addr[3] = mac_addr_h & 0xFF; 3226 addr[4] = (mac_addr_l >> 8) & 0xFF; 3227 addr[5] = mac_addr_l & 0xFF; 3228 } 3229 3230 /* Handle setting mac address */ 3231 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3232 { 3233 struct mvneta_port *pp = netdev_priv(dev); 3234 struct sockaddr *sockaddr = addr; 3235 int ret; 3236 3237 ret = eth_prepare_mac_addr_change(dev, addr); 3238 if (ret < 0) 3239 return ret; 3240 /* Remove previous address table entry */ 3241 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3242 3243 /* Set new addr in hw */ 3244 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3245 3246 eth_commit_mac_addr_change(dev, addr); 3247 return 0; 3248 } 3249 3250 static void mvneta_adjust_link(struct net_device *ndev) 3251 { 3252 struct mvneta_port *pp = netdev_priv(ndev); 3253 struct phy_device *phydev = ndev->phydev; 3254 int status_change = 0; 3255 3256 if (phydev->link) { 3257 if ((pp->speed != phydev->speed) || 3258 (pp->duplex != phydev->duplex)) { 3259 u32 val; 3260 3261 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3262 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3263 MVNETA_GMAC_CONFIG_GMII_SPEED | 3264 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3265 3266 if (phydev->duplex) 3267 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3268 3269 if (phydev->speed == SPEED_1000) 3270 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3271 else if (phydev->speed == SPEED_100) 3272 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3273 3274 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3275 3276 pp->duplex = phydev->duplex; 3277 pp->speed = phydev->speed; 3278 } 3279 } 3280 3281 if (phydev->link != pp->link) { 3282 if (!phydev->link) { 3283 pp->duplex = -1; 3284 pp->speed = 0; 3285 } 3286 3287 pp->link = phydev->link; 3288 status_change = 1; 3289 } 3290 3291 if (status_change) { 3292 if (phydev->link) { 3293 if (!pp->use_inband_status) { 3294 u32 val = mvreg_read(pp, 3295 MVNETA_GMAC_AUTONEG_CONFIG); 3296 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3297 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3298 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3299 val); 3300 } 3301 mvneta_port_up(pp); 3302 } else { 3303 if (!pp->use_inband_status) { 3304 u32 val = mvreg_read(pp, 3305 MVNETA_GMAC_AUTONEG_CONFIG); 3306 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3307 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3308 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3309 val); 3310 } 3311 mvneta_port_down(pp); 3312 } 3313 phy_print_status(phydev); 3314 } 3315 } 3316 3317 static int mvneta_mdio_probe(struct mvneta_port *pp) 3318 { 3319 struct phy_device *phy_dev; 3320 3321 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3322 pp->phy_interface); 3323 if (!phy_dev) { 3324 netdev_err(pp->dev, "could not find the PHY\n"); 3325 return -ENODEV; 3326 } 3327 3328 phy_dev->supported &= PHY_GBIT_FEATURES; 3329 phy_dev->advertising = phy_dev->supported; 3330 3331 pp->link = 0; 3332 pp->duplex = 0; 3333 pp->speed = 0; 3334 3335 return 0; 3336 } 3337 3338 static void mvneta_mdio_remove(struct mvneta_port *pp) 3339 { 3340 struct net_device *ndev = pp->dev; 3341 3342 phy_disconnect(ndev->phydev); 3343 } 3344 3345 /* Electing a CPU must be done in an atomic way: it should be done 3346 * after or before the removal/insertion of a CPU and this function is 3347 * not reentrant. 3348 */ 3349 static void mvneta_percpu_elect(struct mvneta_port *pp) 3350 { 3351 int elected_cpu = 0, max_cpu, cpu, i = 0; 3352 3353 /* Use the cpu associated to the rxq when it is online, in all 3354 * the other cases, use the cpu 0 which can't be offline. 3355 */ 3356 if (cpu_online(pp->rxq_def)) 3357 elected_cpu = pp->rxq_def; 3358 3359 max_cpu = num_present_cpus(); 3360 3361 for_each_online_cpu(cpu) { 3362 int rxq_map = 0, txq_map = 0; 3363 int rxq; 3364 3365 for (rxq = 0; rxq < rxq_number; rxq++) 3366 if ((rxq % max_cpu) == cpu) 3367 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3368 3369 if (cpu == elected_cpu) 3370 /* Map the default receive queue queue to the 3371 * elected CPU 3372 */ 3373 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3374 3375 /* We update the TX queue map only if we have one 3376 * queue. In this case we associate the TX queue to 3377 * the CPU bound to the default RX queue 3378 */ 3379 if (txq_number == 1) 3380 txq_map = (cpu == elected_cpu) ? 3381 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3382 else 3383 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3384 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3385 3386 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3387 3388 /* Update the interrupt mask on each CPU according the 3389 * new mapping 3390 */ 3391 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3392 pp, true); 3393 i++; 3394 3395 } 3396 }; 3397 3398 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3399 { 3400 int other_cpu; 3401 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3402 node_online); 3403 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3404 3405 3406 spin_lock(&pp->lock); 3407 /* 3408 * Configuring the driver for a new CPU while the driver is 3409 * stopping is racy, so just avoid it. 3410 */ 3411 if (pp->is_stopped) { 3412 spin_unlock(&pp->lock); 3413 return 0; 3414 } 3415 netif_tx_stop_all_queues(pp->dev); 3416 3417 /* 3418 * We have to synchronise on tha napi of each CPU except the one 3419 * just being woken up 3420 */ 3421 for_each_online_cpu(other_cpu) { 3422 if (other_cpu != cpu) { 3423 struct mvneta_pcpu_port *other_port = 3424 per_cpu_ptr(pp->ports, other_cpu); 3425 3426 napi_synchronize(&other_port->napi); 3427 } 3428 } 3429 3430 /* Mask all ethernet port interrupts */ 3431 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3432 napi_enable(&port->napi); 3433 3434 /* 3435 * Enable per-CPU interrupts on the CPU that is 3436 * brought up. 3437 */ 3438 mvneta_percpu_enable(pp); 3439 3440 /* 3441 * Enable per-CPU interrupt on the one CPU we care 3442 * about. 3443 */ 3444 mvneta_percpu_elect(pp); 3445 3446 /* Unmask all ethernet port interrupts */ 3447 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3448 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3449 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3450 MVNETA_CAUSE_LINK_CHANGE | 3451 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3452 netif_tx_start_all_queues(pp->dev); 3453 spin_unlock(&pp->lock); 3454 return 0; 3455 } 3456 3457 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3458 { 3459 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3460 node_online); 3461 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3462 3463 /* 3464 * Thanks to this lock we are sure that any pending cpu election is 3465 * done. 3466 */ 3467 spin_lock(&pp->lock); 3468 /* Mask all ethernet port interrupts */ 3469 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3470 spin_unlock(&pp->lock); 3471 3472 napi_synchronize(&port->napi); 3473 napi_disable(&port->napi); 3474 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3475 mvneta_percpu_disable(pp); 3476 return 0; 3477 } 3478 3479 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3480 { 3481 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3482 node_dead); 3483 3484 /* Check if a new CPU must be elected now this on is down */ 3485 spin_lock(&pp->lock); 3486 mvneta_percpu_elect(pp); 3487 spin_unlock(&pp->lock); 3488 /* Unmask all ethernet port interrupts */ 3489 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3490 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3491 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3492 MVNETA_CAUSE_LINK_CHANGE | 3493 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3494 netif_tx_start_all_queues(pp->dev); 3495 return 0; 3496 } 3497 3498 static int mvneta_open(struct net_device *dev) 3499 { 3500 struct mvneta_port *pp = netdev_priv(dev); 3501 int ret; 3502 3503 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3504 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3505 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3506 3507 ret = mvneta_setup_rxqs(pp); 3508 if (ret) 3509 return ret; 3510 3511 ret = mvneta_setup_txqs(pp); 3512 if (ret) 3513 goto err_cleanup_rxqs; 3514 3515 /* Connect to port interrupt line */ 3516 if (pp->neta_armada3700) 3517 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3518 dev->name, pp); 3519 else 3520 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3521 dev->name, pp->ports); 3522 if (ret) { 3523 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3524 goto err_cleanup_txqs; 3525 } 3526 3527 if (!pp->neta_armada3700) { 3528 /* Enable per-CPU interrupt on all the CPU to handle our RX 3529 * queue interrupts 3530 */ 3531 on_each_cpu(mvneta_percpu_enable, pp, true); 3532 3533 pp->is_stopped = false; 3534 /* Register a CPU notifier to handle the case where our CPU 3535 * might be taken offline. 3536 */ 3537 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3538 &pp->node_online); 3539 if (ret) 3540 goto err_free_irq; 3541 3542 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3543 &pp->node_dead); 3544 if (ret) 3545 goto err_free_online_hp; 3546 } 3547 3548 /* In default link is down */ 3549 netif_carrier_off(pp->dev); 3550 3551 ret = mvneta_mdio_probe(pp); 3552 if (ret < 0) { 3553 netdev_err(dev, "cannot probe MDIO bus\n"); 3554 goto err_free_dead_hp; 3555 } 3556 3557 mvneta_start_dev(pp); 3558 3559 return 0; 3560 3561 err_free_dead_hp: 3562 if (!pp->neta_armada3700) 3563 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3564 &pp->node_dead); 3565 err_free_online_hp: 3566 if (!pp->neta_armada3700) 3567 cpuhp_state_remove_instance_nocalls(online_hpstate, 3568 &pp->node_online); 3569 err_free_irq: 3570 if (pp->neta_armada3700) { 3571 free_irq(pp->dev->irq, pp); 3572 } else { 3573 on_each_cpu(mvneta_percpu_disable, pp, true); 3574 free_percpu_irq(pp->dev->irq, pp->ports); 3575 } 3576 err_cleanup_txqs: 3577 mvneta_cleanup_txqs(pp); 3578 err_cleanup_rxqs: 3579 mvneta_cleanup_rxqs(pp); 3580 return ret; 3581 } 3582 3583 /* Stop the port, free port interrupt line */ 3584 static int mvneta_stop(struct net_device *dev) 3585 { 3586 struct mvneta_port *pp = netdev_priv(dev); 3587 3588 if (!pp->neta_armada3700) { 3589 /* Inform that we are stopping so we don't want to setup the 3590 * driver for new CPUs in the notifiers. The code of the 3591 * notifier for CPU online is protected by the same spinlock, 3592 * so when we get the lock, the notifer work is done. 3593 */ 3594 spin_lock(&pp->lock); 3595 pp->is_stopped = true; 3596 spin_unlock(&pp->lock); 3597 3598 mvneta_stop_dev(pp); 3599 mvneta_mdio_remove(pp); 3600 3601 cpuhp_state_remove_instance_nocalls(online_hpstate, 3602 &pp->node_online); 3603 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3604 &pp->node_dead); 3605 on_each_cpu(mvneta_percpu_disable, pp, true); 3606 free_percpu_irq(dev->irq, pp->ports); 3607 } else { 3608 mvneta_stop_dev(pp); 3609 mvneta_mdio_remove(pp); 3610 free_irq(dev->irq, pp); 3611 } 3612 3613 mvneta_cleanup_rxqs(pp); 3614 mvneta_cleanup_txqs(pp); 3615 3616 return 0; 3617 } 3618 3619 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3620 { 3621 if (!dev->phydev) 3622 return -ENOTSUPP; 3623 3624 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3625 } 3626 3627 /* Ethtool methods */ 3628 3629 /* Set link ksettings (phy address, speed) for ethtools */ 3630 static int 3631 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3632 const struct ethtool_link_ksettings *cmd) 3633 { 3634 struct mvneta_port *pp = netdev_priv(ndev); 3635 struct phy_device *phydev = ndev->phydev; 3636 3637 if (!phydev) 3638 return -ENODEV; 3639 3640 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3641 u32 val; 3642 3643 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3644 3645 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3646 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3647 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3648 MVNETA_GMAC_CONFIG_GMII_SPEED | 3649 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3650 3651 if (phydev->duplex) 3652 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3653 3654 if (phydev->speed == SPEED_1000) 3655 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3656 else if (phydev->speed == SPEED_100) 3657 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3658 3659 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3660 } 3661 3662 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3663 netdev_info(pp->dev, "autoneg status set to %i\n", 3664 pp->use_inband_status); 3665 3666 if (netif_running(ndev)) { 3667 mvneta_port_down(pp); 3668 mvneta_port_up(pp); 3669 } 3670 } 3671 3672 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3673 } 3674 3675 /* Set interrupt coalescing for ethtools */ 3676 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3677 struct ethtool_coalesce *c) 3678 { 3679 struct mvneta_port *pp = netdev_priv(dev); 3680 int queue; 3681 3682 for (queue = 0; queue < rxq_number; queue++) { 3683 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3684 rxq->time_coal = c->rx_coalesce_usecs; 3685 rxq->pkts_coal = c->rx_max_coalesced_frames; 3686 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3687 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3688 } 3689 3690 for (queue = 0; queue < txq_number; queue++) { 3691 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3692 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3693 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3694 } 3695 3696 return 0; 3697 } 3698 3699 /* get coalescing for ethtools */ 3700 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3701 struct ethtool_coalesce *c) 3702 { 3703 struct mvneta_port *pp = netdev_priv(dev); 3704 3705 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3706 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3707 3708 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3709 return 0; 3710 } 3711 3712 3713 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3714 struct ethtool_drvinfo *drvinfo) 3715 { 3716 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3717 sizeof(drvinfo->driver)); 3718 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3719 sizeof(drvinfo->version)); 3720 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3721 sizeof(drvinfo->bus_info)); 3722 } 3723 3724 3725 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3726 struct ethtool_ringparam *ring) 3727 { 3728 struct mvneta_port *pp = netdev_priv(netdev); 3729 3730 ring->rx_max_pending = MVNETA_MAX_RXD; 3731 ring->tx_max_pending = MVNETA_MAX_TXD; 3732 ring->rx_pending = pp->rx_ring_size; 3733 ring->tx_pending = pp->tx_ring_size; 3734 } 3735 3736 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3737 struct ethtool_ringparam *ring) 3738 { 3739 struct mvneta_port *pp = netdev_priv(dev); 3740 3741 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3742 return -EINVAL; 3743 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3744 ring->rx_pending : MVNETA_MAX_RXD; 3745 3746 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3747 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3748 if (pp->tx_ring_size != ring->tx_pending) 3749 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3750 pp->tx_ring_size, ring->tx_pending); 3751 3752 if (netif_running(dev)) { 3753 mvneta_stop(dev); 3754 if (mvneta_open(dev)) { 3755 netdev_err(dev, 3756 "error on opening device after ring param change\n"); 3757 return -ENOMEM; 3758 } 3759 } 3760 3761 return 0; 3762 } 3763 3764 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3765 u8 *data) 3766 { 3767 if (sset == ETH_SS_STATS) { 3768 int i; 3769 3770 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3771 memcpy(data + i * ETH_GSTRING_LEN, 3772 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3773 } 3774 } 3775 3776 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3777 { 3778 const struct mvneta_statistic *s; 3779 void __iomem *base = pp->base; 3780 u32 high, low, val; 3781 u64 val64; 3782 int i; 3783 3784 for (i = 0, s = mvneta_statistics; 3785 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3786 s++, i++) { 3787 switch (s->type) { 3788 case T_REG_32: 3789 val = readl_relaxed(base + s->offset); 3790 pp->ethtool_stats[i] += val; 3791 break; 3792 case T_REG_64: 3793 /* Docs say to read low 32-bit then high */ 3794 low = readl_relaxed(base + s->offset); 3795 high = readl_relaxed(base + s->offset + 4); 3796 val64 = (u64)high << 32 | low; 3797 pp->ethtool_stats[i] += val64; 3798 break; 3799 } 3800 } 3801 } 3802 3803 static void mvneta_ethtool_get_stats(struct net_device *dev, 3804 struct ethtool_stats *stats, u64 *data) 3805 { 3806 struct mvneta_port *pp = netdev_priv(dev); 3807 int i; 3808 3809 mvneta_ethtool_update_stats(pp); 3810 3811 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3812 *data++ = pp->ethtool_stats[i]; 3813 } 3814 3815 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3816 { 3817 if (sset == ETH_SS_STATS) 3818 return ARRAY_SIZE(mvneta_statistics); 3819 return -EOPNOTSUPP; 3820 } 3821 3822 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3823 { 3824 return MVNETA_RSS_LU_TABLE_SIZE; 3825 } 3826 3827 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3828 struct ethtool_rxnfc *info, 3829 u32 *rules __always_unused) 3830 { 3831 switch (info->cmd) { 3832 case ETHTOOL_GRXRINGS: 3833 info->data = rxq_number; 3834 return 0; 3835 case ETHTOOL_GRXFH: 3836 return -EOPNOTSUPP; 3837 default: 3838 return -EOPNOTSUPP; 3839 } 3840 } 3841 3842 static int mvneta_config_rss(struct mvneta_port *pp) 3843 { 3844 int cpu; 3845 u32 val; 3846 3847 netif_tx_stop_all_queues(pp->dev); 3848 3849 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3850 3851 /* We have to synchronise on the napi of each CPU */ 3852 for_each_online_cpu(cpu) { 3853 struct mvneta_pcpu_port *pcpu_port = 3854 per_cpu_ptr(pp->ports, cpu); 3855 3856 napi_synchronize(&pcpu_port->napi); 3857 napi_disable(&pcpu_port->napi); 3858 } 3859 3860 pp->rxq_def = pp->indir[0]; 3861 3862 /* Update unicast mapping */ 3863 mvneta_set_rx_mode(pp->dev); 3864 3865 /* Update val of portCfg register accordingly with all RxQueue types */ 3866 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3867 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3868 3869 /* Update the elected CPU matching the new rxq_def */ 3870 spin_lock(&pp->lock); 3871 mvneta_percpu_elect(pp); 3872 spin_unlock(&pp->lock); 3873 3874 /* We have to synchronise on the napi of each CPU */ 3875 for_each_online_cpu(cpu) { 3876 struct mvneta_pcpu_port *pcpu_port = 3877 per_cpu_ptr(pp->ports, cpu); 3878 3879 napi_enable(&pcpu_port->napi); 3880 } 3881 3882 netif_tx_start_all_queues(pp->dev); 3883 3884 return 0; 3885 } 3886 3887 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3888 const u8 *key, const u8 hfunc) 3889 { 3890 struct mvneta_port *pp = netdev_priv(dev); 3891 3892 /* Current code for Armada 3700 doesn't support RSS features yet */ 3893 if (pp->neta_armada3700) 3894 return -EOPNOTSUPP; 3895 3896 /* We require at least one supported parameter to be changed 3897 * and no change in any of the unsupported parameters 3898 */ 3899 if (key || 3900 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3901 return -EOPNOTSUPP; 3902 3903 if (!indir) 3904 return 0; 3905 3906 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3907 3908 return mvneta_config_rss(pp); 3909 } 3910 3911 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3912 u8 *hfunc) 3913 { 3914 struct mvneta_port *pp = netdev_priv(dev); 3915 3916 /* Current code for Armada 3700 doesn't support RSS features yet */ 3917 if (pp->neta_armada3700) 3918 return -EOPNOTSUPP; 3919 3920 if (hfunc) 3921 *hfunc = ETH_RSS_HASH_TOP; 3922 3923 if (!indir) 3924 return 0; 3925 3926 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3927 3928 return 0; 3929 } 3930 3931 static void mvneta_ethtool_get_wol(struct net_device *dev, 3932 struct ethtool_wolinfo *wol) 3933 { 3934 wol->supported = 0; 3935 wol->wolopts = 0; 3936 3937 if (dev->phydev) 3938 phy_ethtool_get_wol(dev->phydev, wol); 3939 } 3940 3941 static int mvneta_ethtool_set_wol(struct net_device *dev, 3942 struct ethtool_wolinfo *wol) 3943 { 3944 if (!dev->phydev) 3945 return -EOPNOTSUPP; 3946 3947 return phy_ethtool_set_wol(dev->phydev, wol); 3948 } 3949 3950 static const struct net_device_ops mvneta_netdev_ops = { 3951 .ndo_open = mvneta_open, 3952 .ndo_stop = mvneta_stop, 3953 .ndo_start_xmit = mvneta_tx, 3954 .ndo_set_rx_mode = mvneta_set_rx_mode, 3955 .ndo_set_mac_address = mvneta_set_mac_addr, 3956 .ndo_change_mtu = mvneta_change_mtu, 3957 .ndo_fix_features = mvneta_fix_features, 3958 .ndo_get_stats64 = mvneta_get_stats64, 3959 .ndo_do_ioctl = mvneta_ioctl, 3960 }; 3961 3962 static const struct ethtool_ops mvneta_eth_tool_ops = { 3963 .nway_reset = phy_ethtool_nway_reset, 3964 .get_link = ethtool_op_get_link, 3965 .set_coalesce = mvneta_ethtool_set_coalesce, 3966 .get_coalesce = mvneta_ethtool_get_coalesce, 3967 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3968 .get_ringparam = mvneta_ethtool_get_ringparam, 3969 .set_ringparam = mvneta_ethtool_set_ringparam, 3970 .get_strings = mvneta_ethtool_get_strings, 3971 .get_ethtool_stats = mvneta_ethtool_get_stats, 3972 .get_sset_count = mvneta_ethtool_get_sset_count, 3973 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3974 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3975 .get_rxfh = mvneta_ethtool_get_rxfh, 3976 .set_rxfh = mvneta_ethtool_set_rxfh, 3977 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3978 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3979 .get_wol = mvneta_ethtool_get_wol, 3980 .set_wol = mvneta_ethtool_set_wol, 3981 }; 3982 3983 /* Initialize hw */ 3984 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3985 { 3986 int queue; 3987 3988 /* Disable port */ 3989 mvneta_port_disable(pp); 3990 3991 /* Set port default values */ 3992 mvneta_defaults_set(pp); 3993 3994 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3995 GFP_KERNEL); 3996 if (!pp->txqs) 3997 return -ENOMEM; 3998 3999 /* Initialize TX descriptor rings */ 4000 for (queue = 0; queue < txq_number; queue++) { 4001 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4002 txq->id = queue; 4003 txq->size = pp->tx_ring_size; 4004 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4005 } 4006 4007 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 4008 GFP_KERNEL); 4009 if (!pp->rxqs) 4010 return -ENOMEM; 4011 4012 /* Create Rx descriptor rings */ 4013 for (queue = 0; queue < rxq_number; queue++) { 4014 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4015 rxq->id = queue; 4016 rxq->size = pp->rx_ring_size; 4017 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4018 rxq->time_coal = MVNETA_RX_COAL_USEC; 4019 rxq->buf_virt_addr = devm_kmalloc(pp->dev->dev.parent, 4020 rxq->size * sizeof(void *), 4021 GFP_KERNEL); 4022 if (!rxq->buf_virt_addr) 4023 return -ENOMEM; 4024 } 4025 4026 return 0; 4027 } 4028 4029 /* platform glue : initialize decoding windows */ 4030 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4031 const struct mbus_dram_target_info *dram) 4032 { 4033 u32 win_enable; 4034 u32 win_protect; 4035 int i; 4036 4037 for (i = 0; i < 6; i++) { 4038 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4039 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4040 4041 if (i < 4) 4042 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4043 } 4044 4045 win_enable = 0x3f; 4046 win_protect = 0; 4047 4048 if (dram) { 4049 for (i = 0; i < dram->num_cs; i++) { 4050 const struct mbus_dram_window *cs = dram->cs + i; 4051 4052 mvreg_write(pp, MVNETA_WIN_BASE(i), 4053 (cs->base & 0xffff0000) | 4054 (cs->mbus_attr << 8) | 4055 dram->mbus_dram_target_id); 4056 4057 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4058 (cs->size - 1) & 0xffff0000); 4059 4060 win_enable &= ~(1 << i); 4061 win_protect |= 3 << (2 * i); 4062 } 4063 } else { 4064 /* For Armada3700 open default 4GB Mbus window, leaving 4065 * arbitration of target/attribute to a different layer 4066 * of configuration. 4067 */ 4068 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4069 win_enable &= ~BIT(0); 4070 win_protect = 3; 4071 } 4072 4073 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4074 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4075 } 4076 4077 /* Power up the port */ 4078 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4079 { 4080 u32 ctrl; 4081 4082 /* MAC Cause register should be cleared */ 4083 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4084 4085 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4086 4087 /* Even though it might look weird, when we're configured in 4088 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4089 */ 4090 switch(phy_mode) { 4091 case PHY_INTERFACE_MODE_QSGMII: 4092 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4093 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4094 break; 4095 case PHY_INTERFACE_MODE_SGMII: 4096 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4097 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4098 break; 4099 case PHY_INTERFACE_MODE_RGMII: 4100 case PHY_INTERFACE_MODE_RGMII_ID: 4101 ctrl |= MVNETA_GMAC2_PORT_RGMII; 4102 break; 4103 default: 4104 return -EINVAL; 4105 } 4106 4107 /* Cancel Port Reset */ 4108 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 4109 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 4110 4111 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4112 MVNETA_GMAC2_PORT_RESET) != 0) 4113 continue; 4114 4115 return 0; 4116 } 4117 4118 /* Device initialization routine */ 4119 static int mvneta_probe(struct platform_device *pdev) 4120 { 4121 const struct mbus_dram_target_info *dram_target_info; 4122 struct resource *res; 4123 struct device_node *dn = pdev->dev.of_node; 4124 struct device_node *phy_node; 4125 struct device_node *bm_node; 4126 struct mvneta_port *pp; 4127 struct net_device *dev; 4128 const char *dt_mac_addr; 4129 char hw_mac_addr[ETH_ALEN]; 4130 const char *mac_from; 4131 const char *managed; 4132 int tx_csum_limit; 4133 int phy_mode; 4134 int err; 4135 int cpu; 4136 4137 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4138 if (!dev) 4139 return -ENOMEM; 4140 4141 dev->irq = irq_of_parse_and_map(dn, 0); 4142 if (dev->irq == 0) { 4143 err = -EINVAL; 4144 goto err_free_netdev; 4145 } 4146 4147 phy_node = of_parse_phandle(dn, "phy", 0); 4148 if (!phy_node) { 4149 if (!of_phy_is_fixed_link(dn)) { 4150 dev_err(&pdev->dev, "no PHY specified\n"); 4151 err = -ENODEV; 4152 goto err_free_irq; 4153 } 4154 4155 err = of_phy_register_fixed_link(dn); 4156 if (err < 0) { 4157 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4158 goto err_free_irq; 4159 } 4160 4161 /* In the case of a fixed PHY, the DT node associated 4162 * to the PHY is the Ethernet MAC DT node. 4163 */ 4164 phy_node = of_node_get(dn); 4165 } 4166 4167 phy_mode = of_get_phy_mode(dn); 4168 if (phy_mode < 0) { 4169 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4170 err = -EINVAL; 4171 goto err_put_phy_node; 4172 } 4173 4174 dev->tx_queue_len = MVNETA_MAX_TXD; 4175 dev->watchdog_timeo = 5 * HZ; 4176 dev->netdev_ops = &mvneta_netdev_ops; 4177 4178 dev->ethtool_ops = &mvneta_eth_tool_ops; 4179 4180 pp = netdev_priv(dev); 4181 spin_lock_init(&pp->lock); 4182 pp->phy_node = phy_node; 4183 pp->phy_interface = phy_mode; 4184 4185 err = of_property_read_string(dn, "managed", &managed); 4186 pp->use_inband_status = (err == 0 && 4187 strcmp(managed, "in-band-status") == 0); 4188 4189 pp->rxq_def = rxq_def; 4190 4191 /* Set RX packet offset correction for platforms, whose 4192 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4193 * platforms and 0B for 32-bit ones. 4194 */ 4195 pp->rx_offset_correction = 4196 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4197 4198 pp->indir[0] = rxq_def; 4199 4200 /* Get special SoC configurations */ 4201 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4202 pp->neta_armada3700 = true; 4203 4204 pp->clk = devm_clk_get(&pdev->dev, "core"); 4205 if (IS_ERR(pp->clk)) 4206 pp->clk = devm_clk_get(&pdev->dev, NULL); 4207 if (IS_ERR(pp->clk)) { 4208 err = PTR_ERR(pp->clk); 4209 goto err_put_phy_node; 4210 } 4211 4212 clk_prepare_enable(pp->clk); 4213 4214 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4215 if (!IS_ERR(pp->clk_bus)) 4216 clk_prepare_enable(pp->clk_bus); 4217 4218 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4219 pp->base = devm_ioremap_resource(&pdev->dev, res); 4220 if (IS_ERR(pp->base)) { 4221 err = PTR_ERR(pp->base); 4222 goto err_clk; 4223 } 4224 4225 /* Alloc per-cpu port structure */ 4226 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4227 if (!pp->ports) { 4228 err = -ENOMEM; 4229 goto err_clk; 4230 } 4231 4232 /* Alloc per-cpu stats */ 4233 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4234 if (!pp->stats) { 4235 err = -ENOMEM; 4236 goto err_free_ports; 4237 } 4238 4239 dt_mac_addr = of_get_mac_address(dn); 4240 if (dt_mac_addr) { 4241 mac_from = "device tree"; 4242 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4243 } else { 4244 mvneta_get_mac_addr(pp, hw_mac_addr); 4245 if (is_valid_ether_addr(hw_mac_addr)) { 4246 mac_from = "hardware"; 4247 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4248 } else { 4249 mac_from = "random"; 4250 eth_hw_addr_random(dev); 4251 } 4252 } 4253 4254 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4255 if (tx_csum_limit < 0 || 4256 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4257 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4258 dev_info(&pdev->dev, 4259 "Wrong TX csum limit in DT, set to %dB\n", 4260 MVNETA_TX_CSUM_DEF_SIZE); 4261 } 4262 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4263 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4264 } else { 4265 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4266 } 4267 4268 pp->tx_csum_limit = tx_csum_limit; 4269 4270 dram_target_info = mv_mbus_dram_info(); 4271 /* Armada3700 requires setting default configuration of Mbus 4272 * windows, however without using filled mbus_dram_target_info 4273 * structure. 4274 */ 4275 if (dram_target_info || pp->neta_armada3700) 4276 mvneta_conf_mbus_windows(pp, dram_target_info); 4277 4278 pp->tx_ring_size = MVNETA_MAX_TXD; 4279 pp->rx_ring_size = MVNETA_MAX_RXD; 4280 4281 pp->dev = dev; 4282 SET_NETDEV_DEV(dev, &pdev->dev); 4283 4284 pp->id = global_port_id++; 4285 4286 /* Obtain access to BM resources if enabled and already initialized */ 4287 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4288 if (bm_node && bm_node->data) { 4289 pp->bm_priv = bm_node->data; 4290 err = mvneta_bm_port_init(pdev, pp); 4291 if (err < 0) { 4292 dev_info(&pdev->dev, "use SW buffer management\n"); 4293 pp->bm_priv = NULL; 4294 } 4295 } 4296 of_node_put(bm_node); 4297 4298 err = mvneta_init(&pdev->dev, pp); 4299 if (err < 0) 4300 goto err_netdev; 4301 4302 err = mvneta_port_power_up(pp, phy_mode); 4303 if (err < 0) { 4304 dev_err(&pdev->dev, "can't power up port\n"); 4305 goto err_netdev; 4306 } 4307 4308 /* Armada3700 network controller does not support per-cpu 4309 * operation, so only single NAPI should be initialized. 4310 */ 4311 if (pp->neta_armada3700) { 4312 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4313 } else { 4314 for_each_present_cpu(cpu) { 4315 struct mvneta_pcpu_port *port = 4316 per_cpu_ptr(pp->ports, cpu); 4317 4318 netif_napi_add(dev, &port->napi, mvneta_poll, 4319 NAPI_POLL_WEIGHT); 4320 port->pp = pp; 4321 } 4322 } 4323 4324 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4325 dev->hw_features |= dev->features; 4326 dev->vlan_features |= dev->features; 4327 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4328 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4329 4330 /* MTU range: 68 - 9676 */ 4331 dev->min_mtu = ETH_MIN_MTU; 4332 /* 9676 == 9700 - 20 and rounding to 8 */ 4333 dev->max_mtu = 9676; 4334 4335 err = register_netdev(dev); 4336 if (err < 0) { 4337 dev_err(&pdev->dev, "failed to register\n"); 4338 goto err_free_stats; 4339 } 4340 4341 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4342 dev->dev_addr); 4343 4344 platform_set_drvdata(pdev, pp->dev); 4345 4346 if (pp->use_inband_status) { 4347 struct phy_device *phy = of_phy_find_device(dn); 4348 4349 mvneta_fixed_link_update(pp, phy); 4350 4351 put_device(&phy->mdio.dev); 4352 } 4353 4354 return 0; 4355 4356 err_netdev: 4357 unregister_netdev(dev); 4358 if (pp->bm_priv) { 4359 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4360 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4361 1 << pp->id); 4362 } 4363 err_free_stats: 4364 free_percpu(pp->stats); 4365 err_free_ports: 4366 free_percpu(pp->ports); 4367 err_clk: 4368 clk_disable_unprepare(pp->clk_bus); 4369 clk_disable_unprepare(pp->clk); 4370 err_put_phy_node: 4371 of_node_put(phy_node); 4372 if (of_phy_is_fixed_link(dn)) 4373 of_phy_deregister_fixed_link(dn); 4374 err_free_irq: 4375 irq_dispose_mapping(dev->irq); 4376 err_free_netdev: 4377 free_netdev(dev); 4378 return err; 4379 } 4380 4381 /* Device removal routine */ 4382 static int mvneta_remove(struct platform_device *pdev) 4383 { 4384 struct net_device *dev = platform_get_drvdata(pdev); 4385 struct device_node *dn = pdev->dev.of_node; 4386 struct mvneta_port *pp = netdev_priv(dev); 4387 4388 unregister_netdev(dev); 4389 clk_disable_unprepare(pp->clk_bus); 4390 clk_disable_unprepare(pp->clk); 4391 free_percpu(pp->ports); 4392 free_percpu(pp->stats); 4393 if (of_phy_is_fixed_link(dn)) 4394 of_phy_deregister_fixed_link(dn); 4395 irq_dispose_mapping(dev->irq); 4396 of_node_put(pp->phy_node); 4397 free_netdev(dev); 4398 4399 if (pp->bm_priv) { 4400 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4401 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4402 1 << pp->id); 4403 } 4404 4405 return 0; 4406 } 4407 4408 static const struct of_device_id mvneta_match[] = { 4409 { .compatible = "marvell,armada-370-neta" }, 4410 { .compatible = "marvell,armada-xp-neta" }, 4411 { .compatible = "marvell,armada-3700-neta" }, 4412 { } 4413 }; 4414 MODULE_DEVICE_TABLE(of, mvneta_match); 4415 4416 static struct platform_driver mvneta_driver = { 4417 .probe = mvneta_probe, 4418 .remove = mvneta_remove, 4419 .driver = { 4420 .name = MVNETA_DRIVER_NAME, 4421 .of_match_table = mvneta_match, 4422 }, 4423 }; 4424 4425 static int __init mvneta_driver_init(void) 4426 { 4427 int ret; 4428 4429 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4430 mvneta_cpu_online, 4431 mvneta_cpu_down_prepare); 4432 if (ret < 0) 4433 goto out; 4434 online_hpstate = ret; 4435 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4436 NULL, mvneta_cpu_dead); 4437 if (ret) 4438 goto err_dead; 4439 4440 ret = platform_driver_register(&mvneta_driver); 4441 if (ret) 4442 goto err; 4443 return 0; 4444 4445 err: 4446 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4447 err_dead: 4448 cpuhp_remove_multi_state(online_hpstate); 4449 out: 4450 return ret; 4451 } 4452 module_init(mvneta_driver_init); 4453 4454 static void __exit mvneta_driver_exit(void) 4455 { 4456 platform_driver_unregister(&mvneta_driver); 4457 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4458 cpuhp_remove_multi_state(online_hpstate); 4459 } 4460 module_exit(mvneta_driver_exit); 4461 4462 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4463 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4464 MODULE_LICENSE("GPL"); 4465 4466 module_param(rxq_number, int, S_IRUGO); 4467 module_param(txq_number, int, S_IRUGO); 4468 4469 module_param(rxq_def, int, S_IRUGO); 4470 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4471