1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 /* Driver assumes that the last 3 bits are 0 */ 328 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 329 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 330 MVNETA_SKB_HEADROOM)) 331 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 332 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 333 334 #define IS_TSO_HEADER(txq, addr) \ 335 ((addr >= txq->tso_hdrs_phys) && \ 336 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 337 338 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 339 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 340 341 enum { 342 ETHTOOL_STAT_EEE_WAKEUP, 343 ETHTOOL_STAT_SKB_ALLOC_ERR, 344 ETHTOOL_STAT_REFILL_ERR, 345 ETHTOOL_XDP_REDIRECT, 346 ETHTOOL_XDP_PASS, 347 ETHTOOL_XDP_DROP, 348 ETHTOOL_XDP_TX, 349 ETHTOOL_XDP_TX_ERR, 350 ETHTOOL_XDP_XMIT, 351 ETHTOOL_XDP_XMIT_ERR, 352 ETHTOOL_MAX_STATS, 353 }; 354 355 struct mvneta_statistic { 356 unsigned short offset; 357 unsigned short type; 358 const char name[ETH_GSTRING_LEN]; 359 }; 360 361 #define T_REG_32 32 362 #define T_REG_64 64 363 #define T_SW 1 364 365 #define MVNETA_XDP_PASS 0 366 #define MVNETA_XDP_DROPPED BIT(0) 367 #define MVNETA_XDP_TX BIT(1) 368 #define MVNETA_XDP_REDIR BIT(2) 369 370 static const struct mvneta_statistic mvneta_statistics[] = { 371 { 0x3000, T_REG_64, "good_octets_received", }, 372 { 0x3010, T_REG_32, "good_frames_received", }, 373 { 0x3008, T_REG_32, "bad_octets_received", }, 374 { 0x3014, T_REG_32, "bad_frames_received", }, 375 { 0x3018, T_REG_32, "broadcast_frames_received", }, 376 { 0x301c, T_REG_32, "multicast_frames_received", }, 377 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 378 { 0x3058, T_REG_32, "good_fc_received", }, 379 { 0x305c, T_REG_32, "bad_fc_received", }, 380 { 0x3060, T_REG_32, "undersize_received", }, 381 { 0x3064, T_REG_32, "fragments_received", }, 382 { 0x3068, T_REG_32, "oversize_received", }, 383 { 0x306c, T_REG_32, "jabber_received", }, 384 { 0x3070, T_REG_32, "mac_receive_error", }, 385 { 0x3074, T_REG_32, "bad_crc_event", }, 386 { 0x3078, T_REG_32, "collision", }, 387 { 0x307c, T_REG_32, "late_collision", }, 388 { 0x2484, T_REG_32, "rx_discard", }, 389 { 0x2488, T_REG_32, "rx_overrun", }, 390 { 0x3020, T_REG_32, "frames_64_octets", }, 391 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 392 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 393 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 394 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 395 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 396 { 0x3038, T_REG_64, "good_octets_sent", }, 397 { 0x3040, T_REG_32, "good_frames_sent", }, 398 { 0x3044, T_REG_32, "excessive_collision", }, 399 { 0x3048, T_REG_32, "multicast_frames_sent", }, 400 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 401 { 0x3054, T_REG_32, "fc_sent", }, 402 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 403 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 404 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 405 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 406 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 407 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 408 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 409 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 410 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 411 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 412 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 413 }; 414 415 struct mvneta_stats { 416 u64 rx_packets; 417 u64 rx_bytes; 418 u64 tx_packets; 419 u64 tx_bytes; 420 /* xdp */ 421 u64 xdp_redirect; 422 u64 xdp_pass; 423 u64 xdp_drop; 424 u64 xdp_xmit; 425 u64 xdp_xmit_err; 426 u64 xdp_tx; 427 u64 xdp_tx_err; 428 }; 429 430 struct mvneta_ethtool_stats { 431 struct mvneta_stats ps; 432 u64 skb_alloc_error; 433 u64 refill_error; 434 }; 435 436 struct mvneta_pcpu_stats { 437 struct u64_stats_sync syncp; 438 439 struct mvneta_ethtool_stats es; 440 u64 rx_dropped; 441 u64 rx_errors; 442 }; 443 444 struct mvneta_pcpu_port { 445 /* Pointer to the shared port */ 446 struct mvneta_port *pp; 447 448 /* Pointer to the CPU-local NAPI struct */ 449 struct napi_struct napi; 450 451 /* Cause of the previous interrupt */ 452 u32 cause_rx_tx; 453 }; 454 455 enum { 456 __MVNETA_DOWN, 457 }; 458 459 struct mvneta_port { 460 u8 id; 461 struct mvneta_pcpu_port __percpu *ports; 462 struct mvneta_pcpu_stats __percpu *stats; 463 464 unsigned long state; 465 466 int pkt_size; 467 void __iomem *base; 468 struct mvneta_rx_queue *rxqs; 469 struct mvneta_tx_queue *txqs; 470 struct net_device *dev; 471 struct hlist_node node_online; 472 struct hlist_node node_dead; 473 int rxq_def; 474 /* Protect the access to the percpu interrupt registers, 475 * ensuring that the configuration remains coherent. 476 */ 477 spinlock_t lock; 478 bool is_stopped; 479 480 u32 cause_rx_tx; 481 struct napi_struct napi; 482 483 struct bpf_prog *xdp_prog; 484 485 /* Core clock */ 486 struct clk *clk; 487 /* AXI clock */ 488 struct clk *clk_bus; 489 u8 mcast_count[256]; 490 u16 tx_ring_size; 491 u16 rx_ring_size; 492 493 phy_interface_t phy_interface; 494 struct device_node *dn; 495 unsigned int tx_csum_limit; 496 struct phylink *phylink; 497 struct phylink_config phylink_config; 498 struct phy *comphy; 499 500 struct mvneta_bm *bm_priv; 501 struct mvneta_bm_pool *pool_long; 502 struct mvneta_bm_pool *pool_short; 503 int bm_win_id; 504 505 bool eee_enabled; 506 bool eee_active; 507 bool tx_lpi_enabled; 508 509 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 510 511 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 512 513 /* Flags for special SoC configurations */ 514 bool neta_armada3700; 515 u16 rx_offset_correction; 516 const struct mbus_dram_target_info *dram_target_info; 517 }; 518 519 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 520 * layout of the transmit and reception DMA descriptors, and their 521 * layout is therefore defined by the hardware design 522 */ 523 524 #define MVNETA_TX_L3_OFF_SHIFT 0 525 #define MVNETA_TX_IP_HLEN_SHIFT 8 526 #define MVNETA_TX_L4_UDP BIT(16) 527 #define MVNETA_TX_L3_IP6 BIT(17) 528 #define MVNETA_TXD_IP_CSUM BIT(18) 529 #define MVNETA_TXD_Z_PAD BIT(19) 530 #define MVNETA_TXD_L_DESC BIT(20) 531 #define MVNETA_TXD_F_DESC BIT(21) 532 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 533 MVNETA_TXD_L_DESC | \ 534 MVNETA_TXD_F_DESC) 535 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 536 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 537 538 #define MVNETA_RXD_ERR_CRC 0x0 539 #define MVNETA_RXD_BM_POOL_SHIFT 13 540 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 541 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 542 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 543 #define MVNETA_RXD_ERR_LEN BIT(18) 544 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 545 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 546 #define MVNETA_RXD_L3_IP4 BIT(25) 547 #define MVNETA_RXD_LAST_DESC BIT(26) 548 #define MVNETA_RXD_FIRST_DESC BIT(27) 549 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 550 MVNETA_RXD_LAST_DESC) 551 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 552 553 #if defined(__LITTLE_ENDIAN) 554 struct mvneta_tx_desc { 555 u32 command; /* Options used by HW for packet transmitting.*/ 556 u16 reserved1; /* csum_l4 (for future use) */ 557 u16 data_size; /* Data size of transmitted packet in bytes */ 558 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 559 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 560 u32 reserved3[4]; /* Reserved - (for future use) */ 561 }; 562 563 struct mvneta_rx_desc { 564 u32 status; /* Info about received packet */ 565 u16 reserved1; /* pnc_info - (for future use, PnC) */ 566 u16 data_size; /* Size of received packet in bytes */ 567 568 u32 buf_phys_addr; /* Physical address of the buffer */ 569 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 570 571 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 572 u16 reserved3; /* prefetch_cmd, for future use */ 573 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 574 575 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 576 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 577 }; 578 #else 579 struct mvneta_tx_desc { 580 u16 data_size; /* Data size of transmitted packet in bytes */ 581 u16 reserved1; /* csum_l4 (for future use) */ 582 u32 command; /* Options used by HW for packet transmitting.*/ 583 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 584 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 585 u32 reserved3[4]; /* Reserved - (for future use) */ 586 }; 587 588 struct mvneta_rx_desc { 589 u16 data_size; /* Size of received packet in bytes */ 590 u16 reserved1; /* pnc_info - (for future use, PnC) */ 591 u32 status; /* Info about received packet */ 592 593 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 594 u32 buf_phys_addr; /* Physical address of the buffer */ 595 596 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 597 u16 reserved3; /* prefetch_cmd, for future use */ 598 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 599 600 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 601 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 602 }; 603 #endif 604 605 enum mvneta_tx_buf_type { 606 MVNETA_TYPE_SKB, 607 MVNETA_TYPE_XDP_TX, 608 MVNETA_TYPE_XDP_NDO, 609 }; 610 611 struct mvneta_tx_buf { 612 enum mvneta_tx_buf_type type; 613 union { 614 struct xdp_frame *xdpf; 615 struct sk_buff *skb; 616 }; 617 }; 618 619 struct mvneta_tx_queue { 620 /* Number of this TX queue, in the range 0-7 */ 621 u8 id; 622 623 /* Number of TX DMA descriptors in the descriptor ring */ 624 int size; 625 626 /* Number of currently used TX DMA descriptor in the 627 * descriptor ring 628 */ 629 int count; 630 int pending; 631 int tx_stop_threshold; 632 int tx_wake_threshold; 633 634 /* Array of transmitted buffers */ 635 struct mvneta_tx_buf *buf; 636 637 /* Index of last TX DMA descriptor that was inserted */ 638 int txq_put_index; 639 640 /* Index of the TX DMA descriptor to be cleaned up */ 641 int txq_get_index; 642 643 u32 done_pkts_coal; 644 645 /* Virtual address of the TX DMA descriptors array */ 646 struct mvneta_tx_desc *descs; 647 648 /* DMA address of the TX DMA descriptors array */ 649 dma_addr_t descs_phys; 650 651 /* Index of the last TX DMA descriptor */ 652 int last_desc; 653 654 /* Index of the next TX DMA descriptor to process */ 655 int next_desc_to_proc; 656 657 /* DMA buffers for TSO headers */ 658 char *tso_hdrs; 659 660 /* DMA address of TSO headers */ 661 dma_addr_t tso_hdrs_phys; 662 663 /* Affinity mask for CPUs*/ 664 cpumask_t affinity_mask; 665 }; 666 667 struct mvneta_rx_queue { 668 /* rx queue number, in the range 0-7 */ 669 u8 id; 670 671 /* num of rx descriptors in the rx descriptor ring */ 672 int size; 673 674 u32 pkts_coal; 675 u32 time_coal; 676 677 /* page_pool */ 678 struct page_pool *page_pool; 679 struct xdp_rxq_info xdp_rxq; 680 681 /* Virtual address of the RX buffer */ 682 void **buf_virt_addr; 683 684 /* Virtual address of the RX DMA descriptors array */ 685 struct mvneta_rx_desc *descs; 686 687 /* DMA address of the RX DMA descriptors array */ 688 dma_addr_t descs_phys; 689 690 /* Index of the last RX DMA descriptor */ 691 int last_desc; 692 693 /* Index of the next RX DMA descriptor to process */ 694 int next_desc_to_proc; 695 696 /* Index of first RX DMA descriptor to refill */ 697 int first_to_refill; 698 u32 refill_num; 699 700 /* pointer to uncomplete skb buffer */ 701 struct sk_buff *skb; 702 int left_size; 703 }; 704 705 static enum cpuhp_state online_hpstate; 706 /* The hardware supports eight (8) rx queues, but we are only allowing 707 * the first one to be used. Therefore, let's just allocate one queue. 708 */ 709 static int rxq_number = 8; 710 static int txq_number = 8; 711 712 static int rxq_def; 713 714 static int rx_copybreak __read_mostly = 256; 715 716 /* HW BM need that each port be identify by a unique ID */ 717 static int global_port_id; 718 719 #define MVNETA_DRIVER_NAME "mvneta" 720 #define MVNETA_DRIVER_VERSION "1.0" 721 722 /* Utility/helper methods */ 723 724 /* Write helper method */ 725 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 726 { 727 writel(data, pp->base + offset); 728 } 729 730 /* Read helper method */ 731 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 732 { 733 return readl(pp->base + offset); 734 } 735 736 /* Increment txq get counter */ 737 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 738 { 739 txq->txq_get_index++; 740 if (txq->txq_get_index == txq->size) 741 txq->txq_get_index = 0; 742 } 743 744 /* Increment txq put counter */ 745 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 746 { 747 txq->txq_put_index++; 748 if (txq->txq_put_index == txq->size) 749 txq->txq_put_index = 0; 750 } 751 752 753 /* Clear all MIB counters */ 754 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 755 { 756 int i; 757 u32 dummy; 758 759 /* Perform dummy reads from MIB counters */ 760 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 761 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 762 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 763 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 764 } 765 766 /* Get System Network Statistics */ 767 static void 768 mvneta_get_stats64(struct net_device *dev, 769 struct rtnl_link_stats64 *stats) 770 { 771 struct mvneta_port *pp = netdev_priv(dev); 772 unsigned int start; 773 int cpu; 774 775 for_each_possible_cpu(cpu) { 776 struct mvneta_pcpu_stats *cpu_stats; 777 u64 rx_packets; 778 u64 rx_bytes; 779 u64 rx_dropped; 780 u64 rx_errors; 781 u64 tx_packets; 782 u64 tx_bytes; 783 784 cpu_stats = per_cpu_ptr(pp->stats, cpu); 785 do { 786 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 787 rx_packets = cpu_stats->es.ps.rx_packets; 788 rx_bytes = cpu_stats->es.ps.rx_bytes; 789 rx_dropped = cpu_stats->rx_dropped; 790 rx_errors = cpu_stats->rx_errors; 791 tx_packets = cpu_stats->es.ps.tx_packets; 792 tx_bytes = cpu_stats->es.ps.tx_bytes; 793 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 794 795 stats->rx_packets += rx_packets; 796 stats->rx_bytes += rx_bytes; 797 stats->rx_dropped += rx_dropped; 798 stats->rx_errors += rx_errors; 799 stats->tx_packets += tx_packets; 800 stats->tx_bytes += tx_bytes; 801 } 802 803 stats->tx_dropped = dev->stats.tx_dropped; 804 } 805 806 /* Rx descriptors helper methods */ 807 808 /* Checks whether the RX descriptor having this status is both the first 809 * and the last descriptor for the RX packet. Each RX packet is currently 810 * received through a single RX descriptor, so not having each RX 811 * descriptor with its first and last bits set is an error 812 */ 813 static int mvneta_rxq_desc_is_first_last(u32 status) 814 { 815 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 816 MVNETA_RXD_FIRST_LAST_DESC; 817 } 818 819 /* Add number of descriptors ready to receive new packets */ 820 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 821 struct mvneta_rx_queue *rxq, 822 int ndescs) 823 { 824 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 825 * be added at once 826 */ 827 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 828 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 829 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 830 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 831 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 832 } 833 834 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 835 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 836 } 837 838 /* Get number of RX descriptors occupied by received packets */ 839 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 840 struct mvneta_rx_queue *rxq) 841 { 842 u32 val; 843 844 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 845 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 846 } 847 848 /* Update num of rx desc called upon return from rx path or 849 * from mvneta_rxq_drop_pkts(). 850 */ 851 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 852 struct mvneta_rx_queue *rxq, 853 int rx_done, int rx_filled) 854 { 855 u32 val; 856 857 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 858 val = rx_done | 859 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 860 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 861 return; 862 } 863 864 /* Only 255 descriptors can be added at once */ 865 while ((rx_done > 0) || (rx_filled > 0)) { 866 if (rx_done <= 0xff) { 867 val = rx_done; 868 rx_done = 0; 869 } else { 870 val = 0xff; 871 rx_done -= 0xff; 872 } 873 if (rx_filled <= 0xff) { 874 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 875 rx_filled = 0; 876 } else { 877 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 878 rx_filled -= 0xff; 879 } 880 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 881 } 882 } 883 884 /* Get pointer to next RX descriptor to be processed by SW */ 885 static struct mvneta_rx_desc * 886 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 887 { 888 int rx_desc = rxq->next_desc_to_proc; 889 890 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 891 prefetch(rxq->descs + rxq->next_desc_to_proc); 892 return rxq->descs + rx_desc; 893 } 894 895 /* Change maximum receive size of the port. */ 896 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 897 { 898 u32 val; 899 900 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 901 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 902 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 903 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 904 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 905 } 906 907 908 /* Set rx queue offset */ 909 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 910 struct mvneta_rx_queue *rxq, 911 int offset) 912 { 913 u32 val; 914 915 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 916 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 917 918 /* Offset is in */ 919 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 920 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 921 } 922 923 924 /* Tx descriptors helper methods */ 925 926 /* Update HW with number of TX descriptors to be sent */ 927 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 928 struct mvneta_tx_queue *txq, 929 int pend_desc) 930 { 931 u32 val; 932 933 pend_desc += txq->pending; 934 935 /* Only 255 Tx descriptors can be added at once */ 936 do { 937 val = min(pend_desc, 255); 938 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 939 pend_desc -= val; 940 } while (pend_desc > 0); 941 txq->pending = 0; 942 } 943 944 /* Get pointer to next TX descriptor to be processed (send) by HW */ 945 static struct mvneta_tx_desc * 946 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 947 { 948 int tx_desc = txq->next_desc_to_proc; 949 950 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 951 return txq->descs + tx_desc; 952 } 953 954 /* Release the last allocated TX descriptor. Useful to handle DMA 955 * mapping failures in the TX path. 956 */ 957 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 958 { 959 if (txq->next_desc_to_proc == 0) 960 txq->next_desc_to_proc = txq->last_desc - 1; 961 else 962 txq->next_desc_to_proc--; 963 } 964 965 /* Set rxq buf size */ 966 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 967 struct mvneta_rx_queue *rxq, 968 int buf_size) 969 { 970 u32 val; 971 972 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 973 974 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 975 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 976 977 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 978 } 979 980 /* Disable buffer management (BM) */ 981 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 982 struct mvneta_rx_queue *rxq) 983 { 984 u32 val; 985 986 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 987 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 988 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 989 } 990 991 /* Enable buffer management (BM) */ 992 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 993 struct mvneta_rx_queue *rxq) 994 { 995 u32 val; 996 997 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 998 val |= MVNETA_RXQ_HW_BUF_ALLOC; 999 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1000 } 1001 1002 /* Notify HW about port's assignment of pool for bigger packets */ 1003 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1004 struct mvneta_rx_queue *rxq) 1005 { 1006 u32 val; 1007 1008 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1009 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1010 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1011 1012 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1013 } 1014 1015 /* Notify HW about port's assignment of pool for smaller packets */ 1016 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1017 struct mvneta_rx_queue *rxq) 1018 { 1019 u32 val; 1020 1021 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1022 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1023 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1024 1025 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1026 } 1027 1028 /* Set port's receive buffer size for assigned BM pool */ 1029 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1030 int buf_size, 1031 u8 pool_id) 1032 { 1033 u32 val; 1034 1035 if (!IS_ALIGNED(buf_size, 8)) { 1036 dev_warn(pp->dev->dev.parent, 1037 "illegal buf_size value %d, round to %d\n", 1038 buf_size, ALIGN(buf_size, 8)); 1039 buf_size = ALIGN(buf_size, 8); 1040 } 1041 1042 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1043 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1044 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1045 } 1046 1047 /* Configure MBUS window in order to enable access BM internal SRAM */ 1048 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1049 u8 target, u8 attr) 1050 { 1051 u32 win_enable, win_protect; 1052 int i; 1053 1054 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1055 1056 if (pp->bm_win_id < 0) { 1057 /* Find first not occupied window */ 1058 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1059 if (win_enable & (1 << i)) { 1060 pp->bm_win_id = i; 1061 break; 1062 } 1063 } 1064 if (i == MVNETA_MAX_DECODE_WIN) 1065 return -ENOMEM; 1066 } else { 1067 i = pp->bm_win_id; 1068 } 1069 1070 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1071 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1072 1073 if (i < 4) 1074 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1075 1076 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1077 (attr << 8) | target); 1078 1079 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1080 1081 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1082 win_protect |= 3 << (2 * i); 1083 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1084 1085 win_enable &= ~(1 << i); 1086 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1087 1088 return 0; 1089 } 1090 1091 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1092 { 1093 u32 wsize; 1094 u8 target, attr; 1095 int err; 1096 1097 /* Get BM window information */ 1098 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1099 &target, &attr); 1100 if (err < 0) 1101 return err; 1102 1103 pp->bm_win_id = -1; 1104 1105 /* Open NETA -> BM window */ 1106 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1107 target, attr); 1108 if (err < 0) { 1109 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1110 return err; 1111 } 1112 return 0; 1113 } 1114 1115 /* Assign and initialize pools for port. In case of fail 1116 * buffer manager will remain disabled for current port. 1117 */ 1118 static int mvneta_bm_port_init(struct platform_device *pdev, 1119 struct mvneta_port *pp) 1120 { 1121 struct device_node *dn = pdev->dev.of_node; 1122 u32 long_pool_id, short_pool_id; 1123 1124 if (!pp->neta_armada3700) { 1125 int ret; 1126 1127 ret = mvneta_bm_port_mbus_init(pp); 1128 if (ret) 1129 return ret; 1130 } 1131 1132 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1133 netdev_info(pp->dev, "missing long pool id\n"); 1134 return -EINVAL; 1135 } 1136 1137 /* Create port's long pool depending on mtu */ 1138 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1139 MVNETA_BM_LONG, pp->id, 1140 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1141 if (!pp->pool_long) { 1142 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1143 return -ENOMEM; 1144 } 1145 1146 pp->pool_long->port_map |= 1 << pp->id; 1147 1148 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1149 pp->pool_long->id); 1150 1151 /* If short pool id is not defined, assume using single pool */ 1152 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1153 short_pool_id = long_pool_id; 1154 1155 /* Create port's short pool */ 1156 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1157 MVNETA_BM_SHORT, pp->id, 1158 MVNETA_BM_SHORT_PKT_SIZE); 1159 if (!pp->pool_short) { 1160 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1161 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1162 return -ENOMEM; 1163 } 1164 1165 if (short_pool_id != long_pool_id) { 1166 pp->pool_short->port_map |= 1 << pp->id; 1167 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1168 pp->pool_short->id); 1169 } 1170 1171 return 0; 1172 } 1173 1174 /* Update settings of a pool for bigger packets */ 1175 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1176 { 1177 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1178 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1179 int num; 1180 1181 /* Release all buffers from long pool */ 1182 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1183 if (hwbm_pool->buf_num) { 1184 WARN(1, "cannot free all buffers in pool %d\n", 1185 bm_pool->id); 1186 goto bm_mtu_err; 1187 } 1188 1189 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1190 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1191 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1192 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1193 1194 /* Fill entire long pool */ 1195 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1196 if (num != hwbm_pool->size) { 1197 WARN(1, "pool %d: %d of %d allocated\n", 1198 bm_pool->id, num, hwbm_pool->size); 1199 goto bm_mtu_err; 1200 } 1201 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1202 1203 return; 1204 1205 bm_mtu_err: 1206 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1207 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1208 1209 pp->bm_priv = NULL; 1210 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1211 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1212 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1213 } 1214 1215 /* Start the Ethernet port RX and TX activity */ 1216 static void mvneta_port_up(struct mvneta_port *pp) 1217 { 1218 int queue; 1219 u32 q_map; 1220 1221 /* Enable all initialized TXs. */ 1222 q_map = 0; 1223 for (queue = 0; queue < txq_number; queue++) { 1224 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1225 if (txq->descs) 1226 q_map |= (1 << queue); 1227 } 1228 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1229 1230 q_map = 0; 1231 /* Enable all initialized RXQs. */ 1232 for (queue = 0; queue < rxq_number; queue++) { 1233 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1234 1235 if (rxq->descs) 1236 q_map |= (1 << queue); 1237 } 1238 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1239 } 1240 1241 /* Stop the Ethernet port activity */ 1242 static void mvneta_port_down(struct mvneta_port *pp) 1243 { 1244 u32 val; 1245 int count; 1246 1247 /* Stop Rx port activity. Check port Rx activity. */ 1248 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1249 1250 /* Issue stop command for active channels only */ 1251 if (val != 0) 1252 mvreg_write(pp, MVNETA_RXQ_CMD, 1253 val << MVNETA_RXQ_DISABLE_SHIFT); 1254 1255 /* Wait for all Rx activity to terminate. */ 1256 count = 0; 1257 do { 1258 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1259 netdev_warn(pp->dev, 1260 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1261 val); 1262 break; 1263 } 1264 mdelay(1); 1265 1266 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1267 } while (val & MVNETA_RXQ_ENABLE_MASK); 1268 1269 /* Stop Tx port activity. Check port Tx activity. Issue stop 1270 * command for active channels only 1271 */ 1272 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1273 1274 if (val != 0) 1275 mvreg_write(pp, MVNETA_TXQ_CMD, 1276 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1277 1278 /* Wait for all Tx activity to terminate. */ 1279 count = 0; 1280 do { 1281 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1282 netdev_warn(pp->dev, 1283 "TIMEOUT for TX stopped status=0x%08x\n", 1284 val); 1285 break; 1286 } 1287 mdelay(1); 1288 1289 /* Check TX Command reg that all Txqs are stopped */ 1290 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1291 1292 } while (val & MVNETA_TXQ_ENABLE_MASK); 1293 1294 /* Double check to verify that TX FIFO is empty */ 1295 count = 0; 1296 do { 1297 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1298 netdev_warn(pp->dev, 1299 "TX FIFO empty timeout status=0x%08x\n", 1300 val); 1301 break; 1302 } 1303 mdelay(1); 1304 1305 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1306 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1307 (val & MVNETA_TX_IN_PRGRS)); 1308 1309 udelay(200); 1310 } 1311 1312 /* Enable the port by setting the port enable bit of the MAC control register */ 1313 static void mvneta_port_enable(struct mvneta_port *pp) 1314 { 1315 u32 val; 1316 1317 /* Enable port */ 1318 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1319 val |= MVNETA_GMAC0_PORT_ENABLE; 1320 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1321 } 1322 1323 /* Disable the port and wait for about 200 usec before retuning */ 1324 static void mvneta_port_disable(struct mvneta_port *pp) 1325 { 1326 u32 val; 1327 1328 /* Reset the Enable bit in the Serial Control Register */ 1329 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1330 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1331 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1332 1333 udelay(200); 1334 } 1335 1336 /* Multicast tables methods */ 1337 1338 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1339 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1340 { 1341 int offset; 1342 u32 val; 1343 1344 if (queue == -1) { 1345 val = 0; 1346 } else { 1347 val = 0x1 | (queue << 1); 1348 val |= (val << 24) | (val << 16) | (val << 8); 1349 } 1350 1351 for (offset = 0; offset <= 0xc; offset += 4) 1352 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1353 } 1354 1355 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1356 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1357 { 1358 int offset; 1359 u32 val; 1360 1361 if (queue == -1) { 1362 val = 0; 1363 } else { 1364 val = 0x1 | (queue << 1); 1365 val |= (val << 24) | (val << 16) | (val << 8); 1366 } 1367 1368 for (offset = 0; offset <= 0xfc; offset += 4) 1369 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1370 1371 } 1372 1373 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1374 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1375 { 1376 int offset; 1377 u32 val; 1378 1379 if (queue == -1) { 1380 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1381 val = 0; 1382 } else { 1383 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1384 val = 0x1 | (queue << 1); 1385 val |= (val << 24) | (val << 16) | (val << 8); 1386 } 1387 1388 for (offset = 0; offset <= 0xfc; offset += 4) 1389 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1390 } 1391 1392 static void mvneta_percpu_unmask_interrupt(void *arg) 1393 { 1394 struct mvneta_port *pp = arg; 1395 1396 /* All the queue are unmasked, but actually only the ones 1397 * mapped to this CPU will be unmasked 1398 */ 1399 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1400 MVNETA_RX_INTR_MASK_ALL | 1401 MVNETA_TX_INTR_MASK_ALL | 1402 MVNETA_MISCINTR_INTR_MASK); 1403 } 1404 1405 static void mvneta_percpu_mask_interrupt(void *arg) 1406 { 1407 struct mvneta_port *pp = arg; 1408 1409 /* All the queue are masked, but actually only the ones 1410 * mapped to this CPU will be masked 1411 */ 1412 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1413 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1414 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1415 } 1416 1417 static void mvneta_percpu_clear_intr_cause(void *arg) 1418 { 1419 struct mvneta_port *pp = arg; 1420 1421 /* All the queue are cleared, but actually only the ones 1422 * mapped to this CPU will be cleared 1423 */ 1424 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1425 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1426 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1427 } 1428 1429 /* This method sets defaults to the NETA port: 1430 * Clears interrupt Cause and Mask registers. 1431 * Clears all MAC tables. 1432 * Sets defaults to all registers. 1433 * Resets RX and TX descriptor rings. 1434 * Resets PHY. 1435 * This method can be called after mvneta_port_down() to return the port 1436 * settings to defaults. 1437 */ 1438 static void mvneta_defaults_set(struct mvneta_port *pp) 1439 { 1440 int cpu; 1441 int queue; 1442 u32 val; 1443 int max_cpu = num_present_cpus(); 1444 1445 /* Clear all Cause registers */ 1446 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1447 1448 /* Mask all interrupts */ 1449 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1450 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1451 1452 /* Enable MBUS Retry bit16 */ 1453 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1454 1455 /* Set CPU queue access map. CPUs are assigned to the RX and 1456 * TX queues modulo their number. If there is only one TX 1457 * queue then it is assigned to the CPU associated to the 1458 * default RX queue. 1459 */ 1460 for_each_present_cpu(cpu) { 1461 int rxq_map = 0, txq_map = 0; 1462 int rxq, txq; 1463 if (!pp->neta_armada3700) { 1464 for (rxq = 0; rxq < rxq_number; rxq++) 1465 if ((rxq % max_cpu) == cpu) 1466 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1467 1468 for (txq = 0; txq < txq_number; txq++) 1469 if ((txq % max_cpu) == cpu) 1470 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1471 1472 /* With only one TX queue we configure a special case 1473 * which will allow to get all the irq on a single 1474 * CPU 1475 */ 1476 if (txq_number == 1) 1477 txq_map = (cpu == pp->rxq_def) ? 1478 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1479 1480 } else { 1481 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1482 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1483 } 1484 1485 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1486 } 1487 1488 /* Reset RX and TX DMAs */ 1489 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1490 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1491 1492 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1493 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1494 for (queue = 0; queue < txq_number; queue++) { 1495 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1496 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1497 } 1498 1499 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1500 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1501 1502 /* Set Port Acceleration Mode */ 1503 if (pp->bm_priv) 1504 /* HW buffer management + legacy parser */ 1505 val = MVNETA_ACC_MODE_EXT2; 1506 else 1507 /* SW buffer management + legacy parser */ 1508 val = MVNETA_ACC_MODE_EXT1; 1509 mvreg_write(pp, MVNETA_ACC_MODE, val); 1510 1511 if (pp->bm_priv) 1512 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1513 1514 /* Update val of portCfg register accordingly with all RxQueue types */ 1515 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1516 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1517 1518 val = 0; 1519 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1520 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1521 1522 /* Build PORT_SDMA_CONFIG_REG */ 1523 val = 0; 1524 1525 /* Default burst size */ 1526 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1527 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1528 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1529 1530 #if defined(__BIG_ENDIAN) 1531 val |= MVNETA_DESC_SWAP; 1532 #endif 1533 1534 /* Assign port SDMA configuration */ 1535 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1536 1537 /* Disable PHY polling in hardware, since we're using the 1538 * kernel phylib to do this. 1539 */ 1540 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1541 val &= ~MVNETA_PHY_POLLING_ENABLE; 1542 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1543 1544 mvneta_set_ucast_table(pp, -1); 1545 mvneta_set_special_mcast_table(pp, -1); 1546 mvneta_set_other_mcast_table(pp, -1); 1547 1548 /* Set port interrupt enable register - default enable all */ 1549 mvreg_write(pp, MVNETA_INTR_ENABLE, 1550 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1551 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1552 1553 mvneta_mib_counters_clear(pp); 1554 } 1555 1556 /* Set max sizes for tx queues */ 1557 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1558 1559 { 1560 u32 val, size, mtu; 1561 int queue; 1562 1563 mtu = max_tx_size * 8; 1564 if (mtu > MVNETA_TX_MTU_MAX) 1565 mtu = MVNETA_TX_MTU_MAX; 1566 1567 /* Set MTU */ 1568 val = mvreg_read(pp, MVNETA_TX_MTU); 1569 val &= ~MVNETA_TX_MTU_MAX; 1570 val |= mtu; 1571 mvreg_write(pp, MVNETA_TX_MTU, val); 1572 1573 /* TX token size and all TXQs token size must be larger that MTU */ 1574 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1575 1576 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1577 if (size < mtu) { 1578 size = mtu; 1579 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1580 val |= size; 1581 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1582 } 1583 for (queue = 0; queue < txq_number; queue++) { 1584 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1585 1586 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1587 if (size < mtu) { 1588 size = mtu; 1589 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1590 val |= size; 1591 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1592 } 1593 } 1594 } 1595 1596 /* Set unicast address */ 1597 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1598 int queue) 1599 { 1600 unsigned int unicast_reg; 1601 unsigned int tbl_offset; 1602 unsigned int reg_offset; 1603 1604 /* Locate the Unicast table entry */ 1605 last_nibble = (0xf & last_nibble); 1606 1607 /* offset from unicast tbl base */ 1608 tbl_offset = (last_nibble / 4) * 4; 1609 1610 /* offset within the above reg */ 1611 reg_offset = last_nibble % 4; 1612 1613 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1614 1615 if (queue == -1) { 1616 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1617 unicast_reg &= ~(0xff << (8 * reg_offset)); 1618 } else { 1619 unicast_reg &= ~(0xff << (8 * reg_offset)); 1620 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1621 } 1622 1623 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1624 } 1625 1626 /* Set mac address */ 1627 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1628 int queue) 1629 { 1630 unsigned int mac_h; 1631 unsigned int mac_l; 1632 1633 if (queue != -1) { 1634 mac_l = (addr[4] << 8) | (addr[5]); 1635 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1636 (addr[2] << 8) | (addr[3] << 0); 1637 1638 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1639 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1640 } 1641 1642 /* Accept frames of this address */ 1643 mvneta_set_ucast_addr(pp, addr[5], queue); 1644 } 1645 1646 /* Set the number of packets that will be received before RX interrupt 1647 * will be generated by HW. 1648 */ 1649 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1650 struct mvneta_rx_queue *rxq, u32 value) 1651 { 1652 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1653 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1654 } 1655 1656 /* Set the time delay in usec before RX interrupt will be generated by 1657 * HW. 1658 */ 1659 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1660 struct mvneta_rx_queue *rxq, u32 value) 1661 { 1662 u32 val; 1663 unsigned long clk_rate; 1664 1665 clk_rate = clk_get_rate(pp->clk); 1666 val = (clk_rate / 1000000) * value; 1667 1668 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1669 } 1670 1671 /* Set threshold for TX_DONE pkts coalescing */ 1672 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1673 struct mvneta_tx_queue *txq, u32 value) 1674 { 1675 u32 val; 1676 1677 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1678 1679 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1680 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1681 1682 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1683 } 1684 1685 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1686 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1687 u32 phys_addr, void *virt_addr, 1688 struct mvneta_rx_queue *rxq) 1689 { 1690 int i; 1691 1692 rx_desc->buf_phys_addr = phys_addr; 1693 i = rx_desc - rxq->descs; 1694 rxq->buf_virt_addr[i] = virt_addr; 1695 } 1696 1697 /* Decrement sent descriptors counter */ 1698 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1699 struct mvneta_tx_queue *txq, 1700 int sent_desc) 1701 { 1702 u32 val; 1703 1704 /* Only 255 TX descriptors can be updated at once */ 1705 while (sent_desc > 0xff) { 1706 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1707 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1708 sent_desc = sent_desc - 0xff; 1709 } 1710 1711 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1712 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1713 } 1714 1715 /* Get number of TX descriptors already sent by HW */ 1716 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1717 struct mvneta_tx_queue *txq) 1718 { 1719 u32 val; 1720 int sent_desc; 1721 1722 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1723 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1724 MVNETA_TXQ_SENT_DESC_SHIFT; 1725 1726 return sent_desc; 1727 } 1728 1729 /* Get number of sent descriptors and decrement counter. 1730 * The number of sent descriptors is returned. 1731 */ 1732 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1733 struct mvneta_tx_queue *txq) 1734 { 1735 int sent_desc; 1736 1737 /* Get number of sent descriptors */ 1738 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1739 1740 /* Decrement sent descriptors counter */ 1741 if (sent_desc) 1742 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1743 1744 return sent_desc; 1745 } 1746 1747 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1748 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1749 int ip_hdr_len, int l4_proto) 1750 { 1751 u32 command; 1752 1753 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1754 * G_L4_chk, L4_type; required only for checksum 1755 * calculation 1756 */ 1757 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1758 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1759 1760 if (l3_proto == htons(ETH_P_IP)) 1761 command |= MVNETA_TXD_IP_CSUM; 1762 else 1763 command |= MVNETA_TX_L3_IP6; 1764 1765 if (l4_proto == IPPROTO_TCP) 1766 command |= MVNETA_TX_L4_CSUM_FULL; 1767 else if (l4_proto == IPPROTO_UDP) 1768 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1769 else 1770 command |= MVNETA_TX_L4_CSUM_NOT; 1771 1772 return command; 1773 } 1774 1775 1776 /* Display more error info */ 1777 static void mvneta_rx_error(struct mvneta_port *pp, 1778 struct mvneta_rx_desc *rx_desc) 1779 { 1780 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1781 u32 status = rx_desc->status; 1782 1783 /* update per-cpu counter */ 1784 u64_stats_update_begin(&stats->syncp); 1785 stats->rx_errors++; 1786 u64_stats_update_end(&stats->syncp); 1787 1788 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1789 case MVNETA_RXD_ERR_CRC: 1790 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1791 status, rx_desc->data_size); 1792 break; 1793 case MVNETA_RXD_ERR_OVERRUN: 1794 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1795 status, rx_desc->data_size); 1796 break; 1797 case MVNETA_RXD_ERR_LEN: 1798 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1799 status, rx_desc->data_size); 1800 break; 1801 case MVNETA_RXD_ERR_RESOURCE: 1802 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1803 status, rx_desc->data_size); 1804 break; 1805 } 1806 } 1807 1808 /* Handle RX checksum offload based on the descriptor's status */ 1809 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1810 struct sk_buff *skb) 1811 { 1812 if ((pp->dev->features & NETIF_F_RXCSUM) && 1813 (status & MVNETA_RXD_L3_IP4) && 1814 (status & MVNETA_RXD_L4_CSUM_OK)) { 1815 skb->csum = 0; 1816 skb->ip_summed = CHECKSUM_UNNECESSARY; 1817 return; 1818 } 1819 1820 skb->ip_summed = CHECKSUM_NONE; 1821 } 1822 1823 /* Return tx queue pointer (find last set bit) according to <cause> returned 1824 * form tx_done reg. <cause> must not be null. The return value is always a 1825 * valid queue for matching the first one found in <cause>. 1826 */ 1827 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1828 u32 cause) 1829 { 1830 int queue = fls(cause) - 1; 1831 1832 return &pp->txqs[queue]; 1833 } 1834 1835 /* Free tx queue skbuffs */ 1836 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1837 struct mvneta_tx_queue *txq, int num, 1838 struct netdev_queue *nq) 1839 { 1840 unsigned int bytes_compl = 0, pkts_compl = 0; 1841 int i; 1842 1843 for (i = 0; i < num; i++) { 1844 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1845 struct mvneta_tx_desc *tx_desc = txq->descs + 1846 txq->txq_get_index; 1847 1848 mvneta_txq_inc_get(txq); 1849 1850 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1851 buf->type != MVNETA_TYPE_XDP_TX) 1852 dma_unmap_single(pp->dev->dev.parent, 1853 tx_desc->buf_phys_addr, 1854 tx_desc->data_size, DMA_TO_DEVICE); 1855 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1856 bytes_compl += buf->skb->len; 1857 pkts_compl++; 1858 dev_kfree_skb_any(buf->skb); 1859 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1860 buf->type == MVNETA_TYPE_XDP_NDO) { 1861 xdp_return_frame(buf->xdpf); 1862 } 1863 } 1864 1865 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1866 } 1867 1868 /* Handle end of transmission */ 1869 static void mvneta_txq_done(struct mvneta_port *pp, 1870 struct mvneta_tx_queue *txq) 1871 { 1872 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1873 int tx_done; 1874 1875 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1876 if (!tx_done) 1877 return; 1878 1879 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1880 1881 txq->count -= tx_done; 1882 1883 if (netif_tx_queue_stopped(nq)) { 1884 if (txq->count <= txq->tx_wake_threshold) 1885 netif_tx_wake_queue(nq); 1886 } 1887 } 1888 1889 /* Refill processing for SW buffer management */ 1890 /* Allocate page per descriptor */ 1891 static int mvneta_rx_refill(struct mvneta_port *pp, 1892 struct mvneta_rx_desc *rx_desc, 1893 struct mvneta_rx_queue *rxq, 1894 gfp_t gfp_mask) 1895 { 1896 dma_addr_t phys_addr; 1897 struct page *page; 1898 1899 page = page_pool_alloc_pages(rxq->page_pool, 1900 gfp_mask | __GFP_NOWARN); 1901 if (!page) 1902 return -ENOMEM; 1903 1904 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1905 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1906 1907 return 0; 1908 } 1909 1910 /* Handle tx checksum */ 1911 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1912 { 1913 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1914 int ip_hdr_len = 0; 1915 __be16 l3_proto = vlan_get_protocol(skb); 1916 u8 l4_proto; 1917 1918 if (l3_proto == htons(ETH_P_IP)) { 1919 struct iphdr *ip4h = ip_hdr(skb); 1920 1921 /* Calculate IPv4 checksum and L4 checksum */ 1922 ip_hdr_len = ip4h->ihl; 1923 l4_proto = ip4h->protocol; 1924 } else if (l3_proto == htons(ETH_P_IPV6)) { 1925 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1926 1927 /* Read l4_protocol from one of IPv6 extra headers */ 1928 if (skb_network_header_len(skb) > 0) 1929 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1930 l4_proto = ip6h->nexthdr; 1931 } else 1932 return MVNETA_TX_L4_CSUM_NOT; 1933 1934 return mvneta_txq_desc_csum(skb_network_offset(skb), 1935 l3_proto, ip_hdr_len, l4_proto); 1936 } 1937 1938 return MVNETA_TX_L4_CSUM_NOT; 1939 } 1940 1941 /* Drop packets received by the RXQ and free buffers */ 1942 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1943 struct mvneta_rx_queue *rxq) 1944 { 1945 int rx_done, i; 1946 1947 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1948 if (rx_done) 1949 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1950 1951 if (pp->bm_priv) { 1952 for (i = 0; i < rx_done; i++) { 1953 struct mvneta_rx_desc *rx_desc = 1954 mvneta_rxq_next_desc_get(rxq); 1955 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1956 struct mvneta_bm_pool *bm_pool; 1957 1958 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1959 /* Return dropped buffer to the pool */ 1960 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1961 rx_desc->buf_phys_addr); 1962 } 1963 return; 1964 } 1965 1966 for (i = 0; i < rxq->size; i++) { 1967 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1968 void *data = rxq->buf_virt_addr[i]; 1969 if (!data || !(rx_desc->buf_phys_addr)) 1970 continue; 1971 1972 page_pool_put_full_page(rxq->page_pool, data, false); 1973 } 1974 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1975 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1976 page_pool_destroy(rxq->page_pool); 1977 rxq->page_pool = NULL; 1978 } 1979 1980 static void 1981 mvneta_update_stats(struct mvneta_port *pp, 1982 struct mvneta_stats *ps) 1983 { 1984 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1985 1986 u64_stats_update_begin(&stats->syncp); 1987 stats->es.ps.rx_packets += ps->rx_packets; 1988 stats->es.ps.rx_bytes += ps->rx_bytes; 1989 /* xdp */ 1990 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1991 stats->es.ps.xdp_pass += ps->xdp_pass; 1992 stats->es.ps.xdp_drop += ps->xdp_drop; 1993 u64_stats_update_end(&stats->syncp); 1994 } 1995 1996 static inline 1997 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1998 { 1999 struct mvneta_rx_desc *rx_desc; 2000 int curr_desc = rxq->first_to_refill; 2001 int i; 2002 2003 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2004 rx_desc = rxq->descs + curr_desc; 2005 if (!(rx_desc->buf_phys_addr)) { 2006 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2007 struct mvneta_pcpu_stats *stats; 2008 2009 pr_err("Can't refill queue %d. Done %d from %d\n", 2010 rxq->id, i, rxq->refill_num); 2011 2012 stats = this_cpu_ptr(pp->stats); 2013 u64_stats_update_begin(&stats->syncp); 2014 stats->es.refill_error++; 2015 u64_stats_update_end(&stats->syncp); 2016 break; 2017 } 2018 } 2019 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2020 } 2021 rxq->refill_num -= i; 2022 rxq->first_to_refill = curr_desc; 2023 2024 return i; 2025 } 2026 2027 static int 2028 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2029 struct xdp_frame *xdpf, bool dma_map) 2030 { 2031 struct mvneta_tx_desc *tx_desc; 2032 struct mvneta_tx_buf *buf; 2033 dma_addr_t dma_addr; 2034 2035 if (txq->count >= txq->tx_stop_threshold) 2036 return MVNETA_XDP_DROPPED; 2037 2038 tx_desc = mvneta_txq_next_desc_get(txq); 2039 2040 buf = &txq->buf[txq->txq_put_index]; 2041 if (dma_map) { 2042 /* ndo_xdp_xmit */ 2043 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2044 xdpf->len, DMA_TO_DEVICE); 2045 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2046 mvneta_txq_desc_put(txq); 2047 return MVNETA_XDP_DROPPED; 2048 } 2049 buf->type = MVNETA_TYPE_XDP_NDO; 2050 } else { 2051 struct page *page = virt_to_page(xdpf->data); 2052 2053 dma_addr = page_pool_get_dma_addr(page) + 2054 sizeof(*xdpf) + xdpf->headroom; 2055 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2056 xdpf->len, DMA_BIDIRECTIONAL); 2057 buf->type = MVNETA_TYPE_XDP_TX; 2058 } 2059 buf->xdpf = xdpf; 2060 2061 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2062 tx_desc->buf_phys_addr = dma_addr; 2063 tx_desc->data_size = xdpf->len; 2064 2065 mvneta_txq_inc_put(txq); 2066 txq->pending++; 2067 txq->count++; 2068 2069 return MVNETA_XDP_TX; 2070 } 2071 2072 static int 2073 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2074 { 2075 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2076 struct mvneta_tx_queue *txq; 2077 struct netdev_queue *nq; 2078 struct xdp_frame *xdpf; 2079 int cpu; 2080 u32 ret; 2081 2082 xdpf = xdp_convert_buff_to_frame(xdp); 2083 if (unlikely(!xdpf)) 2084 return MVNETA_XDP_DROPPED; 2085 2086 cpu = smp_processor_id(); 2087 txq = &pp->txqs[cpu % txq_number]; 2088 nq = netdev_get_tx_queue(pp->dev, txq->id); 2089 2090 __netif_tx_lock(nq, cpu); 2091 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2092 if (ret == MVNETA_XDP_TX) { 2093 u64_stats_update_begin(&stats->syncp); 2094 stats->es.ps.tx_bytes += xdpf->len; 2095 stats->es.ps.tx_packets++; 2096 stats->es.ps.xdp_tx++; 2097 u64_stats_update_end(&stats->syncp); 2098 2099 mvneta_txq_pend_desc_add(pp, txq, 0); 2100 } else { 2101 u64_stats_update_begin(&stats->syncp); 2102 stats->es.ps.xdp_tx_err++; 2103 u64_stats_update_end(&stats->syncp); 2104 } 2105 __netif_tx_unlock(nq); 2106 2107 return ret; 2108 } 2109 2110 static int 2111 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2112 struct xdp_frame **frames, u32 flags) 2113 { 2114 struct mvneta_port *pp = netdev_priv(dev); 2115 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2116 int i, nxmit_byte = 0, nxmit = num_frame; 2117 int cpu = smp_processor_id(); 2118 struct mvneta_tx_queue *txq; 2119 struct netdev_queue *nq; 2120 u32 ret; 2121 2122 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2123 return -ENETDOWN; 2124 2125 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2126 return -EINVAL; 2127 2128 txq = &pp->txqs[cpu % txq_number]; 2129 nq = netdev_get_tx_queue(pp->dev, txq->id); 2130 2131 __netif_tx_lock(nq, cpu); 2132 for (i = 0; i < num_frame; i++) { 2133 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2134 if (ret == MVNETA_XDP_TX) { 2135 nxmit_byte += frames[i]->len; 2136 } else { 2137 xdp_return_frame_rx_napi(frames[i]); 2138 nxmit--; 2139 } 2140 } 2141 2142 if (unlikely(flags & XDP_XMIT_FLUSH)) 2143 mvneta_txq_pend_desc_add(pp, txq, 0); 2144 __netif_tx_unlock(nq); 2145 2146 u64_stats_update_begin(&stats->syncp); 2147 stats->es.ps.tx_bytes += nxmit_byte; 2148 stats->es.ps.tx_packets += nxmit; 2149 stats->es.ps.xdp_xmit += nxmit; 2150 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2151 u64_stats_update_end(&stats->syncp); 2152 2153 return nxmit; 2154 } 2155 2156 static int 2157 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2158 struct bpf_prog *prog, struct xdp_buff *xdp, 2159 struct mvneta_stats *stats) 2160 { 2161 unsigned int len, sync; 2162 struct page *page; 2163 u32 ret, act; 2164 2165 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2166 act = bpf_prog_run_xdp(prog, xdp); 2167 2168 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2169 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2170 sync = max(sync, len); 2171 2172 switch (act) { 2173 case XDP_PASS: 2174 stats->xdp_pass++; 2175 return MVNETA_XDP_PASS; 2176 case XDP_REDIRECT: { 2177 int err; 2178 2179 err = xdp_do_redirect(pp->dev, xdp, prog); 2180 if (unlikely(err)) { 2181 ret = MVNETA_XDP_DROPPED; 2182 page = virt_to_head_page(xdp->data); 2183 page_pool_put_page(rxq->page_pool, page, sync, true); 2184 } else { 2185 ret = MVNETA_XDP_REDIR; 2186 stats->xdp_redirect++; 2187 } 2188 break; 2189 } 2190 case XDP_TX: 2191 ret = mvneta_xdp_xmit_back(pp, xdp); 2192 if (ret != MVNETA_XDP_TX) { 2193 page = virt_to_head_page(xdp->data); 2194 page_pool_put_page(rxq->page_pool, page, sync, true); 2195 } 2196 break; 2197 default: 2198 bpf_warn_invalid_xdp_action(act); 2199 /* fall through */ 2200 case XDP_ABORTED: 2201 trace_xdp_exception(pp->dev, prog, act); 2202 /* fall through */ 2203 case XDP_DROP: 2204 page = virt_to_head_page(xdp->data); 2205 page_pool_put_page(rxq->page_pool, page, sync, true); 2206 ret = MVNETA_XDP_DROPPED; 2207 stats->xdp_drop++; 2208 break; 2209 } 2210 2211 stats->rx_bytes += xdp->data_end - xdp->data; 2212 stats->rx_packets++; 2213 2214 return ret; 2215 } 2216 2217 static int 2218 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2219 struct mvneta_rx_desc *rx_desc, 2220 struct mvneta_rx_queue *rxq, 2221 struct xdp_buff *xdp, 2222 struct bpf_prog *xdp_prog, 2223 struct page *page, 2224 struct mvneta_stats *stats) 2225 { 2226 unsigned char *data = page_address(page); 2227 int data_len = -MVNETA_MH_SIZE, len; 2228 struct net_device *dev = pp->dev; 2229 enum dma_data_direction dma_dir; 2230 int ret = 0; 2231 2232 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2233 len = MVNETA_MAX_RX_BUF_SIZE; 2234 data_len += len; 2235 } else { 2236 len = rx_desc->data_size; 2237 data_len += len - ETH_FCS_LEN; 2238 } 2239 2240 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2241 dma_sync_single_for_cpu(dev->dev.parent, 2242 rx_desc->buf_phys_addr, 2243 len, dma_dir); 2244 2245 /* Prefetch header */ 2246 prefetch(data); 2247 2248 xdp->data_hard_start = data; 2249 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2250 xdp->data_end = xdp->data + data_len; 2251 xdp_set_data_meta_invalid(xdp); 2252 2253 if (xdp_prog) { 2254 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats); 2255 if (ret) 2256 goto out; 2257 } 2258 2259 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2260 if (unlikely(!rxq->skb)) { 2261 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2262 2263 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2264 2265 u64_stats_update_begin(&stats->syncp); 2266 stats->es.skb_alloc_error++; 2267 stats->rx_dropped++; 2268 u64_stats_update_end(&stats->syncp); 2269 2270 return -ENOMEM; 2271 } 2272 page_pool_release_page(rxq->page_pool, page); 2273 2274 skb_reserve(rxq->skb, 2275 xdp->data - xdp->data_hard_start); 2276 skb_put(rxq->skb, xdp->data_end - xdp->data); 2277 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2278 2279 rxq->left_size = rx_desc->data_size - len; 2280 2281 out: 2282 rx_desc->buf_phys_addr = 0; 2283 2284 return ret; 2285 } 2286 2287 static void 2288 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2289 struct mvneta_rx_desc *rx_desc, 2290 struct mvneta_rx_queue *rxq, 2291 struct page *page) 2292 { 2293 struct net_device *dev = pp->dev; 2294 enum dma_data_direction dma_dir; 2295 int data_len, len; 2296 2297 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2298 len = MVNETA_MAX_RX_BUF_SIZE; 2299 data_len = len; 2300 } else { 2301 len = rxq->left_size; 2302 data_len = len - ETH_FCS_LEN; 2303 } 2304 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2305 dma_sync_single_for_cpu(dev->dev.parent, 2306 rx_desc->buf_phys_addr, 2307 len, dma_dir); 2308 if (data_len > 0) { 2309 /* refill descriptor with new buffer later */ 2310 skb_add_rx_frag(rxq->skb, 2311 skb_shinfo(rxq->skb)->nr_frags, 2312 page, pp->rx_offset_correction, data_len, 2313 PAGE_SIZE); 2314 } 2315 page_pool_release_page(rxq->page_pool, page); 2316 rx_desc->buf_phys_addr = 0; 2317 rxq->left_size -= len; 2318 } 2319 2320 /* Main rx processing when using software buffer management */ 2321 static int mvneta_rx_swbm(struct napi_struct *napi, 2322 struct mvneta_port *pp, int budget, 2323 struct mvneta_rx_queue *rxq) 2324 { 2325 int rx_proc = 0, rx_todo, refill; 2326 struct net_device *dev = pp->dev; 2327 struct mvneta_stats ps = {}; 2328 struct bpf_prog *xdp_prog; 2329 struct xdp_buff xdp_buf; 2330 2331 /* Get number of received packets */ 2332 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2333 2334 rcu_read_lock(); 2335 xdp_prog = READ_ONCE(pp->xdp_prog); 2336 xdp_buf.rxq = &rxq->xdp_rxq; 2337 xdp_buf.frame_sz = PAGE_SIZE; 2338 2339 /* Fairness NAPI loop */ 2340 while (rx_proc < budget && rx_proc < rx_todo) { 2341 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2342 u32 rx_status, index; 2343 struct page *page; 2344 2345 index = rx_desc - rxq->descs; 2346 page = (struct page *)rxq->buf_virt_addr[index]; 2347 2348 rx_status = rx_desc->status; 2349 rx_proc++; 2350 rxq->refill_num++; 2351 2352 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2353 int err; 2354 2355 /* Check errors only for FIRST descriptor */ 2356 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2357 mvneta_rx_error(pp, rx_desc); 2358 /* leave the descriptor untouched */ 2359 continue; 2360 } 2361 2362 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2363 xdp_prog, page, &ps); 2364 if (err) 2365 continue; 2366 } else { 2367 if (unlikely(!rxq->skb)) { 2368 pr_debug("no skb for rx_status 0x%x\n", 2369 rx_status); 2370 continue; 2371 } 2372 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2373 } /* Middle or Last descriptor */ 2374 2375 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2376 /* no last descriptor this time */ 2377 continue; 2378 2379 if (rxq->left_size) { 2380 pr_err("get last desc, but left_size (%d) != 0\n", 2381 rxq->left_size); 2382 dev_kfree_skb_any(rxq->skb); 2383 rxq->left_size = 0; 2384 rxq->skb = NULL; 2385 continue; 2386 } 2387 2388 ps.rx_bytes += rxq->skb->len; 2389 ps.rx_packets++; 2390 2391 /* Linux processing */ 2392 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2393 2394 napi_gro_receive(napi, rxq->skb); 2395 2396 /* clean uncomplete skb pointer in queue */ 2397 rxq->skb = NULL; 2398 } 2399 rcu_read_unlock(); 2400 2401 if (ps.xdp_redirect) 2402 xdp_do_flush_map(); 2403 2404 if (ps.rx_packets) 2405 mvneta_update_stats(pp, &ps); 2406 2407 /* return some buffers to hardware queue, one at a time is too slow */ 2408 refill = mvneta_rx_refill_queue(pp, rxq); 2409 2410 /* Update rxq management counters */ 2411 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2412 2413 return ps.rx_packets; 2414 } 2415 2416 /* Main rx processing when using hardware buffer management */ 2417 static int mvneta_rx_hwbm(struct napi_struct *napi, 2418 struct mvneta_port *pp, int rx_todo, 2419 struct mvneta_rx_queue *rxq) 2420 { 2421 struct net_device *dev = pp->dev; 2422 int rx_done; 2423 u32 rcvd_pkts = 0; 2424 u32 rcvd_bytes = 0; 2425 2426 /* Get number of received packets */ 2427 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2428 2429 if (rx_todo > rx_done) 2430 rx_todo = rx_done; 2431 2432 rx_done = 0; 2433 2434 /* Fairness NAPI loop */ 2435 while (rx_done < rx_todo) { 2436 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2437 struct mvneta_bm_pool *bm_pool = NULL; 2438 struct sk_buff *skb; 2439 unsigned char *data; 2440 dma_addr_t phys_addr; 2441 u32 rx_status, frag_size; 2442 int rx_bytes, err; 2443 u8 pool_id; 2444 2445 rx_done++; 2446 rx_status = rx_desc->status; 2447 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2448 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2449 phys_addr = rx_desc->buf_phys_addr; 2450 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2451 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2452 2453 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2454 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2455 err_drop_frame_ret_pool: 2456 /* Return the buffer to the pool */ 2457 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2458 rx_desc->buf_phys_addr); 2459 err_drop_frame: 2460 mvneta_rx_error(pp, rx_desc); 2461 /* leave the descriptor untouched */ 2462 continue; 2463 } 2464 2465 if (rx_bytes <= rx_copybreak) { 2466 /* better copy a small frame and not unmap the DMA region */ 2467 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2468 if (unlikely(!skb)) 2469 goto err_drop_frame_ret_pool; 2470 2471 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2472 rx_desc->buf_phys_addr, 2473 MVNETA_MH_SIZE + NET_SKB_PAD, 2474 rx_bytes, 2475 DMA_FROM_DEVICE); 2476 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2477 rx_bytes); 2478 2479 skb->protocol = eth_type_trans(skb, dev); 2480 mvneta_rx_csum(pp, rx_status, skb); 2481 napi_gro_receive(napi, skb); 2482 2483 rcvd_pkts++; 2484 rcvd_bytes += rx_bytes; 2485 2486 /* Return the buffer to the pool */ 2487 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2488 rx_desc->buf_phys_addr); 2489 2490 /* leave the descriptor and buffer untouched */ 2491 continue; 2492 } 2493 2494 /* Refill processing */ 2495 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2496 if (err) { 2497 struct mvneta_pcpu_stats *stats; 2498 2499 netdev_err(dev, "Linux processing - Can't refill\n"); 2500 2501 stats = this_cpu_ptr(pp->stats); 2502 u64_stats_update_begin(&stats->syncp); 2503 stats->es.refill_error++; 2504 u64_stats_update_end(&stats->syncp); 2505 2506 goto err_drop_frame_ret_pool; 2507 } 2508 2509 frag_size = bm_pool->hwbm_pool.frag_size; 2510 2511 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2512 2513 /* After refill old buffer has to be unmapped regardless 2514 * the skb is successfully built or not. 2515 */ 2516 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2517 bm_pool->buf_size, DMA_FROM_DEVICE); 2518 if (!skb) 2519 goto err_drop_frame; 2520 2521 rcvd_pkts++; 2522 rcvd_bytes += rx_bytes; 2523 2524 /* Linux processing */ 2525 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2526 skb_put(skb, rx_bytes); 2527 2528 skb->protocol = eth_type_trans(skb, dev); 2529 2530 mvneta_rx_csum(pp, rx_status, skb); 2531 2532 napi_gro_receive(napi, skb); 2533 } 2534 2535 if (rcvd_pkts) { 2536 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2537 2538 u64_stats_update_begin(&stats->syncp); 2539 stats->es.ps.rx_packets += rcvd_pkts; 2540 stats->es.ps.rx_bytes += rcvd_bytes; 2541 u64_stats_update_end(&stats->syncp); 2542 } 2543 2544 /* Update rxq management counters */ 2545 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2546 2547 return rx_done; 2548 } 2549 2550 static inline void 2551 mvneta_tso_put_hdr(struct sk_buff *skb, 2552 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2553 { 2554 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2555 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2556 struct mvneta_tx_desc *tx_desc; 2557 2558 tx_desc = mvneta_txq_next_desc_get(txq); 2559 tx_desc->data_size = hdr_len; 2560 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2561 tx_desc->command |= MVNETA_TXD_F_DESC; 2562 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2563 txq->txq_put_index * TSO_HEADER_SIZE; 2564 buf->type = MVNETA_TYPE_SKB; 2565 buf->skb = NULL; 2566 2567 mvneta_txq_inc_put(txq); 2568 } 2569 2570 static inline int 2571 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2572 struct sk_buff *skb, char *data, int size, 2573 bool last_tcp, bool is_last) 2574 { 2575 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2576 struct mvneta_tx_desc *tx_desc; 2577 2578 tx_desc = mvneta_txq_next_desc_get(txq); 2579 tx_desc->data_size = size; 2580 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2581 size, DMA_TO_DEVICE); 2582 if (unlikely(dma_mapping_error(dev->dev.parent, 2583 tx_desc->buf_phys_addr))) { 2584 mvneta_txq_desc_put(txq); 2585 return -ENOMEM; 2586 } 2587 2588 tx_desc->command = 0; 2589 buf->type = MVNETA_TYPE_SKB; 2590 buf->skb = NULL; 2591 2592 if (last_tcp) { 2593 /* last descriptor in the TCP packet */ 2594 tx_desc->command = MVNETA_TXD_L_DESC; 2595 2596 /* last descriptor in SKB */ 2597 if (is_last) 2598 buf->skb = skb; 2599 } 2600 mvneta_txq_inc_put(txq); 2601 return 0; 2602 } 2603 2604 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2605 struct mvneta_tx_queue *txq) 2606 { 2607 int total_len, data_left; 2608 int desc_count = 0; 2609 struct mvneta_port *pp = netdev_priv(dev); 2610 struct tso_t tso; 2611 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2612 int i; 2613 2614 /* Count needed descriptors */ 2615 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2616 return 0; 2617 2618 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2619 pr_info("*** Is this even possible???!?!?\n"); 2620 return 0; 2621 } 2622 2623 /* Initialize the TSO handler, and prepare the first payload */ 2624 tso_start(skb, &tso); 2625 2626 total_len = skb->len - hdr_len; 2627 while (total_len > 0) { 2628 char *hdr; 2629 2630 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2631 total_len -= data_left; 2632 desc_count++; 2633 2634 /* prepare packet headers: MAC + IP + TCP */ 2635 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2636 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2637 2638 mvneta_tso_put_hdr(skb, pp, txq); 2639 2640 while (data_left > 0) { 2641 int size; 2642 desc_count++; 2643 2644 size = min_t(int, tso.size, data_left); 2645 2646 if (mvneta_tso_put_data(dev, txq, skb, 2647 tso.data, size, 2648 size == data_left, 2649 total_len == 0)) 2650 goto err_release; 2651 data_left -= size; 2652 2653 tso_build_data(skb, &tso, size); 2654 } 2655 } 2656 2657 return desc_count; 2658 2659 err_release: 2660 /* Release all used data descriptors; header descriptors must not 2661 * be DMA-unmapped. 2662 */ 2663 for (i = desc_count - 1; i >= 0; i--) { 2664 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2665 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2666 dma_unmap_single(pp->dev->dev.parent, 2667 tx_desc->buf_phys_addr, 2668 tx_desc->data_size, 2669 DMA_TO_DEVICE); 2670 mvneta_txq_desc_put(txq); 2671 } 2672 return 0; 2673 } 2674 2675 /* Handle tx fragmentation processing */ 2676 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2677 struct mvneta_tx_queue *txq) 2678 { 2679 struct mvneta_tx_desc *tx_desc; 2680 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2681 2682 for (i = 0; i < nr_frags; i++) { 2683 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2684 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2685 void *addr = skb_frag_address(frag); 2686 2687 tx_desc = mvneta_txq_next_desc_get(txq); 2688 tx_desc->data_size = skb_frag_size(frag); 2689 2690 tx_desc->buf_phys_addr = 2691 dma_map_single(pp->dev->dev.parent, addr, 2692 tx_desc->data_size, DMA_TO_DEVICE); 2693 2694 if (dma_mapping_error(pp->dev->dev.parent, 2695 tx_desc->buf_phys_addr)) { 2696 mvneta_txq_desc_put(txq); 2697 goto error; 2698 } 2699 2700 if (i == nr_frags - 1) { 2701 /* Last descriptor */ 2702 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2703 buf->skb = skb; 2704 } else { 2705 /* Descriptor in the middle: Not First, Not Last */ 2706 tx_desc->command = 0; 2707 buf->skb = NULL; 2708 } 2709 buf->type = MVNETA_TYPE_SKB; 2710 mvneta_txq_inc_put(txq); 2711 } 2712 2713 return 0; 2714 2715 error: 2716 /* Release all descriptors that were used to map fragments of 2717 * this packet, as well as the corresponding DMA mappings 2718 */ 2719 for (i = i - 1; i >= 0; i--) { 2720 tx_desc = txq->descs + i; 2721 dma_unmap_single(pp->dev->dev.parent, 2722 tx_desc->buf_phys_addr, 2723 tx_desc->data_size, 2724 DMA_TO_DEVICE); 2725 mvneta_txq_desc_put(txq); 2726 } 2727 2728 return -ENOMEM; 2729 } 2730 2731 /* Main tx processing */ 2732 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2733 { 2734 struct mvneta_port *pp = netdev_priv(dev); 2735 u16 txq_id = skb_get_queue_mapping(skb); 2736 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2737 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2738 struct mvneta_tx_desc *tx_desc; 2739 int len = skb->len; 2740 int frags = 0; 2741 u32 tx_cmd; 2742 2743 if (!netif_running(dev)) 2744 goto out; 2745 2746 if (skb_is_gso(skb)) { 2747 frags = mvneta_tx_tso(skb, dev, txq); 2748 goto out; 2749 } 2750 2751 frags = skb_shinfo(skb)->nr_frags + 1; 2752 2753 /* Get a descriptor for the first part of the packet */ 2754 tx_desc = mvneta_txq_next_desc_get(txq); 2755 2756 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2757 2758 tx_desc->data_size = skb_headlen(skb); 2759 2760 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2761 tx_desc->data_size, 2762 DMA_TO_DEVICE); 2763 if (unlikely(dma_mapping_error(dev->dev.parent, 2764 tx_desc->buf_phys_addr))) { 2765 mvneta_txq_desc_put(txq); 2766 frags = 0; 2767 goto out; 2768 } 2769 2770 buf->type = MVNETA_TYPE_SKB; 2771 if (frags == 1) { 2772 /* First and Last descriptor */ 2773 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2774 tx_desc->command = tx_cmd; 2775 buf->skb = skb; 2776 mvneta_txq_inc_put(txq); 2777 } else { 2778 /* First but not Last */ 2779 tx_cmd |= MVNETA_TXD_F_DESC; 2780 buf->skb = NULL; 2781 mvneta_txq_inc_put(txq); 2782 tx_desc->command = tx_cmd; 2783 /* Continue with other skb fragments */ 2784 if (mvneta_tx_frag_process(pp, skb, txq)) { 2785 dma_unmap_single(dev->dev.parent, 2786 tx_desc->buf_phys_addr, 2787 tx_desc->data_size, 2788 DMA_TO_DEVICE); 2789 mvneta_txq_desc_put(txq); 2790 frags = 0; 2791 goto out; 2792 } 2793 } 2794 2795 out: 2796 if (frags > 0) { 2797 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2798 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2799 2800 netdev_tx_sent_queue(nq, len); 2801 2802 txq->count += frags; 2803 if (txq->count >= txq->tx_stop_threshold) 2804 netif_tx_stop_queue(nq); 2805 2806 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2807 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2808 mvneta_txq_pend_desc_add(pp, txq, frags); 2809 else 2810 txq->pending += frags; 2811 2812 u64_stats_update_begin(&stats->syncp); 2813 stats->es.ps.tx_bytes += len; 2814 stats->es.ps.tx_packets++; 2815 u64_stats_update_end(&stats->syncp); 2816 } else { 2817 dev->stats.tx_dropped++; 2818 dev_kfree_skb_any(skb); 2819 } 2820 2821 return NETDEV_TX_OK; 2822 } 2823 2824 2825 /* Free tx resources, when resetting a port */ 2826 static void mvneta_txq_done_force(struct mvneta_port *pp, 2827 struct mvneta_tx_queue *txq) 2828 2829 { 2830 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2831 int tx_done = txq->count; 2832 2833 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2834 2835 /* reset txq */ 2836 txq->count = 0; 2837 txq->txq_put_index = 0; 2838 txq->txq_get_index = 0; 2839 } 2840 2841 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2842 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2843 */ 2844 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2845 { 2846 struct mvneta_tx_queue *txq; 2847 struct netdev_queue *nq; 2848 int cpu = smp_processor_id(); 2849 2850 while (cause_tx_done) { 2851 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2852 2853 nq = netdev_get_tx_queue(pp->dev, txq->id); 2854 __netif_tx_lock(nq, cpu); 2855 2856 if (txq->count) 2857 mvneta_txq_done(pp, txq); 2858 2859 __netif_tx_unlock(nq); 2860 cause_tx_done &= ~((1 << txq->id)); 2861 } 2862 } 2863 2864 /* Compute crc8 of the specified address, using a unique algorithm , 2865 * according to hw spec, different than generic crc8 algorithm 2866 */ 2867 static int mvneta_addr_crc(unsigned char *addr) 2868 { 2869 int crc = 0; 2870 int i; 2871 2872 for (i = 0; i < ETH_ALEN; i++) { 2873 int j; 2874 2875 crc = (crc ^ addr[i]) << 8; 2876 for (j = 7; j >= 0; j--) { 2877 if (crc & (0x100 << j)) 2878 crc ^= 0x107 << j; 2879 } 2880 } 2881 2882 return crc; 2883 } 2884 2885 /* This method controls the net device special MAC multicast support. 2886 * The Special Multicast Table for MAC addresses supports MAC of the form 2887 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2888 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2889 * Table entries in the DA-Filter table. This method set the Special 2890 * Multicast Table appropriate entry. 2891 */ 2892 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2893 unsigned char last_byte, 2894 int queue) 2895 { 2896 unsigned int smc_table_reg; 2897 unsigned int tbl_offset; 2898 unsigned int reg_offset; 2899 2900 /* Register offset from SMC table base */ 2901 tbl_offset = (last_byte / 4); 2902 /* Entry offset within the above reg */ 2903 reg_offset = last_byte % 4; 2904 2905 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2906 + tbl_offset * 4)); 2907 2908 if (queue == -1) 2909 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2910 else { 2911 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2912 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2913 } 2914 2915 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2916 smc_table_reg); 2917 } 2918 2919 /* This method controls the network device Other MAC multicast support. 2920 * The Other Multicast Table is used for multicast of another type. 2921 * A CRC-8 is used as an index to the Other Multicast Table entries 2922 * in the DA-Filter table. 2923 * The method gets the CRC-8 value from the calling routine and 2924 * sets the Other Multicast Table appropriate entry according to the 2925 * specified CRC-8 . 2926 */ 2927 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2928 unsigned char crc8, 2929 int queue) 2930 { 2931 unsigned int omc_table_reg; 2932 unsigned int tbl_offset; 2933 unsigned int reg_offset; 2934 2935 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2936 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2937 2938 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2939 2940 if (queue == -1) { 2941 /* Clear accepts frame bit at specified Other DA table entry */ 2942 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2943 } else { 2944 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2945 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2946 } 2947 2948 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2949 } 2950 2951 /* The network device supports multicast using two tables: 2952 * 1) Special Multicast Table for MAC addresses of the form 2953 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2954 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2955 * Table entries in the DA-Filter table. 2956 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2957 * is used as an index to the Other Multicast Table entries in the 2958 * DA-Filter table. 2959 */ 2960 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2961 int queue) 2962 { 2963 unsigned char crc_result = 0; 2964 2965 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2966 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2967 return 0; 2968 } 2969 2970 crc_result = mvneta_addr_crc(p_addr); 2971 if (queue == -1) { 2972 if (pp->mcast_count[crc_result] == 0) { 2973 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2974 crc_result); 2975 return -EINVAL; 2976 } 2977 2978 pp->mcast_count[crc_result]--; 2979 if (pp->mcast_count[crc_result] != 0) { 2980 netdev_info(pp->dev, 2981 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2982 pp->mcast_count[crc_result], crc_result); 2983 return -EINVAL; 2984 } 2985 } else 2986 pp->mcast_count[crc_result]++; 2987 2988 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2989 2990 return 0; 2991 } 2992 2993 /* Configure Fitering mode of Ethernet port */ 2994 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2995 int is_promisc) 2996 { 2997 u32 port_cfg_reg, val; 2998 2999 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3000 3001 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3002 3003 /* Set / Clear UPM bit in port configuration register */ 3004 if (is_promisc) { 3005 /* Accept all Unicast addresses */ 3006 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3007 val |= MVNETA_FORCE_UNI; 3008 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3009 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3010 } else { 3011 /* Reject all Unicast addresses */ 3012 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3013 val &= ~MVNETA_FORCE_UNI; 3014 } 3015 3016 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3017 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3018 } 3019 3020 /* register unicast and multicast addresses */ 3021 static void mvneta_set_rx_mode(struct net_device *dev) 3022 { 3023 struct mvneta_port *pp = netdev_priv(dev); 3024 struct netdev_hw_addr *ha; 3025 3026 if (dev->flags & IFF_PROMISC) { 3027 /* Accept all: Multicast + Unicast */ 3028 mvneta_rx_unicast_promisc_set(pp, 1); 3029 mvneta_set_ucast_table(pp, pp->rxq_def); 3030 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3031 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3032 } else { 3033 /* Accept single Unicast */ 3034 mvneta_rx_unicast_promisc_set(pp, 0); 3035 mvneta_set_ucast_table(pp, -1); 3036 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3037 3038 if (dev->flags & IFF_ALLMULTI) { 3039 /* Accept all multicast */ 3040 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3041 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3042 } else { 3043 /* Accept only initialized multicast */ 3044 mvneta_set_special_mcast_table(pp, -1); 3045 mvneta_set_other_mcast_table(pp, -1); 3046 3047 if (!netdev_mc_empty(dev)) { 3048 netdev_for_each_mc_addr(ha, dev) { 3049 mvneta_mcast_addr_set(pp, ha->addr, 3050 pp->rxq_def); 3051 } 3052 } 3053 } 3054 } 3055 } 3056 3057 /* Interrupt handling - the callback for request_irq() */ 3058 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3059 { 3060 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3061 3062 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3063 napi_schedule(&pp->napi); 3064 3065 return IRQ_HANDLED; 3066 } 3067 3068 /* Interrupt handling - the callback for request_percpu_irq() */ 3069 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3070 { 3071 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3072 3073 disable_percpu_irq(port->pp->dev->irq); 3074 napi_schedule(&port->napi); 3075 3076 return IRQ_HANDLED; 3077 } 3078 3079 static void mvneta_link_change(struct mvneta_port *pp) 3080 { 3081 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3082 3083 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3084 } 3085 3086 /* NAPI handler 3087 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3088 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3089 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3090 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3091 * Each CPU has its own causeRxTx register 3092 */ 3093 static int mvneta_poll(struct napi_struct *napi, int budget) 3094 { 3095 int rx_done = 0; 3096 u32 cause_rx_tx; 3097 int rx_queue; 3098 struct mvneta_port *pp = netdev_priv(napi->dev); 3099 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3100 3101 if (!netif_running(pp->dev)) { 3102 napi_complete(napi); 3103 return rx_done; 3104 } 3105 3106 /* Read cause register */ 3107 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3108 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3109 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3110 3111 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3112 3113 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3114 MVNETA_CAUSE_LINK_CHANGE)) 3115 mvneta_link_change(pp); 3116 } 3117 3118 /* Release Tx descriptors */ 3119 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3120 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3121 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3122 } 3123 3124 /* For the case where the last mvneta_poll did not process all 3125 * RX packets 3126 */ 3127 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3128 port->cause_rx_tx; 3129 3130 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3131 if (rx_queue) { 3132 rx_queue = rx_queue - 1; 3133 if (pp->bm_priv) 3134 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3135 &pp->rxqs[rx_queue]); 3136 else 3137 rx_done = mvneta_rx_swbm(napi, pp, budget, 3138 &pp->rxqs[rx_queue]); 3139 } 3140 3141 if (rx_done < budget) { 3142 cause_rx_tx = 0; 3143 napi_complete_done(napi, rx_done); 3144 3145 if (pp->neta_armada3700) { 3146 unsigned long flags; 3147 3148 local_irq_save(flags); 3149 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3150 MVNETA_RX_INTR_MASK(rxq_number) | 3151 MVNETA_TX_INTR_MASK(txq_number) | 3152 MVNETA_MISCINTR_INTR_MASK); 3153 local_irq_restore(flags); 3154 } else { 3155 enable_percpu_irq(pp->dev->irq, 0); 3156 } 3157 } 3158 3159 if (pp->neta_armada3700) 3160 pp->cause_rx_tx = cause_rx_tx; 3161 else 3162 port->cause_rx_tx = cause_rx_tx; 3163 3164 return rx_done; 3165 } 3166 3167 static int mvneta_create_page_pool(struct mvneta_port *pp, 3168 struct mvneta_rx_queue *rxq, int size) 3169 { 3170 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3171 struct page_pool_params pp_params = { 3172 .order = 0, 3173 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3174 .pool_size = size, 3175 .nid = NUMA_NO_NODE, 3176 .dev = pp->dev->dev.parent, 3177 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3178 .offset = pp->rx_offset_correction, 3179 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3180 }; 3181 int err; 3182 3183 rxq->page_pool = page_pool_create(&pp_params); 3184 if (IS_ERR(rxq->page_pool)) { 3185 err = PTR_ERR(rxq->page_pool); 3186 rxq->page_pool = NULL; 3187 return err; 3188 } 3189 3190 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3191 if (err < 0) 3192 goto err_free_pp; 3193 3194 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3195 rxq->page_pool); 3196 if (err) 3197 goto err_unregister_rxq; 3198 3199 return 0; 3200 3201 err_unregister_rxq: 3202 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3203 err_free_pp: 3204 page_pool_destroy(rxq->page_pool); 3205 rxq->page_pool = NULL; 3206 return err; 3207 } 3208 3209 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3210 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3211 int num) 3212 { 3213 int i, err; 3214 3215 err = mvneta_create_page_pool(pp, rxq, num); 3216 if (err < 0) 3217 return err; 3218 3219 for (i = 0; i < num; i++) { 3220 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3221 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3222 GFP_KERNEL) != 0) { 3223 netdev_err(pp->dev, 3224 "%s:rxq %d, %d of %d buffs filled\n", 3225 __func__, rxq->id, i, num); 3226 break; 3227 } 3228 } 3229 3230 /* Add this number of RX descriptors as non occupied (ready to 3231 * get packets) 3232 */ 3233 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3234 3235 return i; 3236 } 3237 3238 /* Free all packets pending transmit from all TXQs and reset TX port */ 3239 static void mvneta_tx_reset(struct mvneta_port *pp) 3240 { 3241 int queue; 3242 3243 /* free the skb's in the tx ring */ 3244 for (queue = 0; queue < txq_number; queue++) 3245 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3246 3247 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3248 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3249 } 3250 3251 static void mvneta_rx_reset(struct mvneta_port *pp) 3252 { 3253 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3254 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3255 } 3256 3257 /* Rx/Tx queue initialization/cleanup methods */ 3258 3259 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3260 struct mvneta_rx_queue *rxq) 3261 { 3262 rxq->size = pp->rx_ring_size; 3263 3264 /* Allocate memory for RX descriptors */ 3265 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3266 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3267 &rxq->descs_phys, GFP_KERNEL); 3268 if (!rxq->descs) 3269 return -ENOMEM; 3270 3271 rxq->last_desc = rxq->size - 1; 3272 3273 return 0; 3274 } 3275 3276 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3277 struct mvneta_rx_queue *rxq) 3278 { 3279 /* Set Rx descriptors queue starting address */ 3280 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3281 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3282 3283 /* Set coalescing pkts and time */ 3284 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3285 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3286 3287 if (!pp->bm_priv) { 3288 /* Set Offset */ 3289 mvneta_rxq_offset_set(pp, rxq, 0); 3290 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3291 MVNETA_MAX_RX_BUF_SIZE : 3292 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3293 mvneta_rxq_bm_disable(pp, rxq); 3294 mvneta_rxq_fill(pp, rxq, rxq->size); 3295 } else { 3296 /* Set Offset */ 3297 mvneta_rxq_offset_set(pp, rxq, 3298 NET_SKB_PAD - pp->rx_offset_correction); 3299 3300 mvneta_rxq_bm_enable(pp, rxq); 3301 /* Fill RXQ with buffers from RX pool */ 3302 mvneta_rxq_long_pool_set(pp, rxq); 3303 mvneta_rxq_short_pool_set(pp, rxq); 3304 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3305 } 3306 } 3307 3308 /* Create a specified RX queue */ 3309 static int mvneta_rxq_init(struct mvneta_port *pp, 3310 struct mvneta_rx_queue *rxq) 3311 3312 { 3313 int ret; 3314 3315 ret = mvneta_rxq_sw_init(pp, rxq); 3316 if (ret < 0) 3317 return ret; 3318 3319 mvneta_rxq_hw_init(pp, rxq); 3320 3321 return 0; 3322 } 3323 3324 /* Cleanup Rx queue */ 3325 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3326 struct mvneta_rx_queue *rxq) 3327 { 3328 mvneta_rxq_drop_pkts(pp, rxq); 3329 3330 if (rxq->skb) 3331 dev_kfree_skb_any(rxq->skb); 3332 3333 if (rxq->descs) 3334 dma_free_coherent(pp->dev->dev.parent, 3335 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3336 rxq->descs, 3337 rxq->descs_phys); 3338 3339 rxq->descs = NULL; 3340 rxq->last_desc = 0; 3341 rxq->next_desc_to_proc = 0; 3342 rxq->descs_phys = 0; 3343 rxq->first_to_refill = 0; 3344 rxq->refill_num = 0; 3345 rxq->skb = NULL; 3346 rxq->left_size = 0; 3347 } 3348 3349 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3350 struct mvneta_tx_queue *txq) 3351 { 3352 int cpu; 3353 3354 txq->size = pp->tx_ring_size; 3355 3356 /* A queue must always have room for at least one skb. 3357 * Therefore, stop the queue when the free entries reaches 3358 * the maximum number of descriptors per skb. 3359 */ 3360 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3361 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3362 3363 /* Allocate memory for TX descriptors */ 3364 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3365 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3366 &txq->descs_phys, GFP_KERNEL); 3367 if (!txq->descs) 3368 return -ENOMEM; 3369 3370 txq->last_desc = txq->size - 1; 3371 3372 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3373 if (!txq->buf) { 3374 dma_free_coherent(pp->dev->dev.parent, 3375 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3376 txq->descs, txq->descs_phys); 3377 return -ENOMEM; 3378 } 3379 3380 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3381 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3382 txq->size * TSO_HEADER_SIZE, 3383 &txq->tso_hdrs_phys, GFP_KERNEL); 3384 if (!txq->tso_hdrs) { 3385 kfree(txq->buf); 3386 dma_free_coherent(pp->dev->dev.parent, 3387 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3388 txq->descs, txq->descs_phys); 3389 return -ENOMEM; 3390 } 3391 3392 /* Setup XPS mapping */ 3393 if (txq_number > 1) 3394 cpu = txq->id % num_present_cpus(); 3395 else 3396 cpu = pp->rxq_def % num_present_cpus(); 3397 cpumask_set_cpu(cpu, &txq->affinity_mask); 3398 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3399 3400 return 0; 3401 } 3402 3403 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3404 struct mvneta_tx_queue *txq) 3405 { 3406 /* Set maximum bandwidth for enabled TXQs */ 3407 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3408 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3409 3410 /* Set Tx descriptors queue starting address */ 3411 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3412 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3413 3414 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3415 } 3416 3417 /* Create and initialize a tx queue */ 3418 static int mvneta_txq_init(struct mvneta_port *pp, 3419 struct mvneta_tx_queue *txq) 3420 { 3421 int ret; 3422 3423 ret = mvneta_txq_sw_init(pp, txq); 3424 if (ret < 0) 3425 return ret; 3426 3427 mvneta_txq_hw_init(pp, txq); 3428 3429 return 0; 3430 } 3431 3432 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3433 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3434 struct mvneta_tx_queue *txq) 3435 { 3436 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3437 3438 kfree(txq->buf); 3439 3440 if (txq->tso_hdrs) 3441 dma_free_coherent(pp->dev->dev.parent, 3442 txq->size * TSO_HEADER_SIZE, 3443 txq->tso_hdrs, txq->tso_hdrs_phys); 3444 if (txq->descs) 3445 dma_free_coherent(pp->dev->dev.parent, 3446 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3447 txq->descs, txq->descs_phys); 3448 3449 netdev_tx_reset_queue(nq); 3450 3451 txq->descs = NULL; 3452 txq->last_desc = 0; 3453 txq->next_desc_to_proc = 0; 3454 txq->descs_phys = 0; 3455 } 3456 3457 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3458 struct mvneta_tx_queue *txq) 3459 { 3460 /* Set minimum bandwidth for disabled TXQs */ 3461 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3462 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3463 3464 /* Set Tx descriptors queue starting address and size */ 3465 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3466 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3467 } 3468 3469 static void mvneta_txq_deinit(struct mvneta_port *pp, 3470 struct mvneta_tx_queue *txq) 3471 { 3472 mvneta_txq_sw_deinit(pp, txq); 3473 mvneta_txq_hw_deinit(pp, txq); 3474 } 3475 3476 /* Cleanup all Tx queues */ 3477 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3478 { 3479 int queue; 3480 3481 for (queue = 0; queue < txq_number; queue++) 3482 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3483 } 3484 3485 /* Cleanup all Rx queues */ 3486 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3487 { 3488 int queue; 3489 3490 for (queue = 0; queue < rxq_number; queue++) 3491 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3492 } 3493 3494 3495 /* Init all Rx queues */ 3496 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3497 { 3498 int queue; 3499 3500 for (queue = 0; queue < rxq_number; queue++) { 3501 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3502 3503 if (err) { 3504 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3505 __func__, queue); 3506 mvneta_cleanup_rxqs(pp); 3507 return err; 3508 } 3509 } 3510 3511 return 0; 3512 } 3513 3514 /* Init all tx queues */ 3515 static int mvneta_setup_txqs(struct mvneta_port *pp) 3516 { 3517 int queue; 3518 3519 for (queue = 0; queue < txq_number; queue++) { 3520 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3521 if (err) { 3522 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3523 __func__, queue); 3524 mvneta_cleanup_txqs(pp); 3525 return err; 3526 } 3527 } 3528 3529 return 0; 3530 } 3531 3532 static int mvneta_comphy_init(struct mvneta_port *pp) 3533 { 3534 int ret; 3535 3536 if (!pp->comphy) 3537 return 0; 3538 3539 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3540 pp->phy_interface); 3541 if (ret) 3542 return ret; 3543 3544 return phy_power_on(pp->comphy); 3545 } 3546 3547 static void mvneta_start_dev(struct mvneta_port *pp) 3548 { 3549 int cpu; 3550 3551 WARN_ON(mvneta_comphy_init(pp)); 3552 3553 mvneta_max_rx_size_set(pp, pp->pkt_size); 3554 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3555 3556 /* start the Rx/Tx activity */ 3557 mvneta_port_enable(pp); 3558 3559 if (!pp->neta_armada3700) { 3560 /* Enable polling on the port */ 3561 for_each_online_cpu(cpu) { 3562 struct mvneta_pcpu_port *port = 3563 per_cpu_ptr(pp->ports, cpu); 3564 3565 napi_enable(&port->napi); 3566 } 3567 } else { 3568 napi_enable(&pp->napi); 3569 } 3570 3571 /* Unmask interrupts. It has to be done from each CPU */ 3572 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3573 3574 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3575 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3576 MVNETA_CAUSE_LINK_CHANGE); 3577 3578 phylink_start(pp->phylink); 3579 netif_tx_start_all_queues(pp->dev); 3580 3581 clear_bit(__MVNETA_DOWN, &pp->state); 3582 } 3583 3584 static void mvneta_stop_dev(struct mvneta_port *pp) 3585 { 3586 unsigned int cpu; 3587 3588 set_bit(__MVNETA_DOWN, &pp->state); 3589 3590 phylink_stop(pp->phylink); 3591 3592 if (!pp->neta_armada3700) { 3593 for_each_online_cpu(cpu) { 3594 struct mvneta_pcpu_port *port = 3595 per_cpu_ptr(pp->ports, cpu); 3596 3597 napi_disable(&port->napi); 3598 } 3599 } else { 3600 napi_disable(&pp->napi); 3601 } 3602 3603 netif_carrier_off(pp->dev); 3604 3605 mvneta_port_down(pp); 3606 netif_tx_stop_all_queues(pp->dev); 3607 3608 /* Stop the port activity */ 3609 mvneta_port_disable(pp); 3610 3611 /* Clear all ethernet port interrupts */ 3612 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3613 3614 /* Mask all ethernet port interrupts */ 3615 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3616 3617 mvneta_tx_reset(pp); 3618 mvneta_rx_reset(pp); 3619 3620 WARN_ON(phy_power_off(pp->comphy)); 3621 } 3622 3623 static void mvneta_percpu_enable(void *arg) 3624 { 3625 struct mvneta_port *pp = arg; 3626 3627 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3628 } 3629 3630 static void mvneta_percpu_disable(void *arg) 3631 { 3632 struct mvneta_port *pp = arg; 3633 3634 disable_percpu_irq(pp->dev->irq); 3635 } 3636 3637 /* Change the device mtu */ 3638 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3639 { 3640 struct mvneta_port *pp = netdev_priv(dev); 3641 int ret; 3642 3643 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3644 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3645 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3646 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3647 } 3648 3649 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3650 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3651 return -EINVAL; 3652 } 3653 3654 dev->mtu = mtu; 3655 3656 if (!netif_running(dev)) { 3657 if (pp->bm_priv) 3658 mvneta_bm_update_mtu(pp, mtu); 3659 3660 netdev_update_features(dev); 3661 return 0; 3662 } 3663 3664 /* The interface is running, so we have to force a 3665 * reallocation of the queues 3666 */ 3667 mvneta_stop_dev(pp); 3668 on_each_cpu(mvneta_percpu_disable, pp, true); 3669 3670 mvneta_cleanup_txqs(pp); 3671 mvneta_cleanup_rxqs(pp); 3672 3673 if (pp->bm_priv) 3674 mvneta_bm_update_mtu(pp, mtu); 3675 3676 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3677 3678 ret = mvneta_setup_rxqs(pp); 3679 if (ret) { 3680 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3681 return ret; 3682 } 3683 3684 ret = mvneta_setup_txqs(pp); 3685 if (ret) { 3686 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3687 return ret; 3688 } 3689 3690 on_each_cpu(mvneta_percpu_enable, pp, true); 3691 mvneta_start_dev(pp); 3692 3693 netdev_update_features(dev); 3694 3695 return 0; 3696 } 3697 3698 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3699 netdev_features_t features) 3700 { 3701 struct mvneta_port *pp = netdev_priv(dev); 3702 3703 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3704 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3705 netdev_info(dev, 3706 "Disable IP checksum for MTU greater than %dB\n", 3707 pp->tx_csum_limit); 3708 } 3709 3710 return features; 3711 } 3712 3713 /* Get mac address */ 3714 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3715 { 3716 u32 mac_addr_l, mac_addr_h; 3717 3718 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3719 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3720 addr[0] = (mac_addr_h >> 24) & 0xFF; 3721 addr[1] = (mac_addr_h >> 16) & 0xFF; 3722 addr[2] = (mac_addr_h >> 8) & 0xFF; 3723 addr[3] = mac_addr_h & 0xFF; 3724 addr[4] = (mac_addr_l >> 8) & 0xFF; 3725 addr[5] = mac_addr_l & 0xFF; 3726 } 3727 3728 /* Handle setting mac address */ 3729 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3730 { 3731 struct mvneta_port *pp = netdev_priv(dev); 3732 struct sockaddr *sockaddr = addr; 3733 int ret; 3734 3735 ret = eth_prepare_mac_addr_change(dev, addr); 3736 if (ret < 0) 3737 return ret; 3738 /* Remove previous address table entry */ 3739 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3740 3741 /* Set new addr in hw */ 3742 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3743 3744 eth_commit_mac_addr_change(dev, addr); 3745 return 0; 3746 } 3747 3748 static void mvneta_validate(struct phylink_config *config, 3749 unsigned long *supported, 3750 struct phylink_link_state *state) 3751 { 3752 struct net_device *ndev = to_net_dev(config->dev); 3753 struct mvneta_port *pp = netdev_priv(ndev); 3754 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3755 3756 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3757 if (state->interface != PHY_INTERFACE_MODE_NA && 3758 state->interface != PHY_INTERFACE_MODE_QSGMII && 3759 state->interface != PHY_INTERFACE_MODE_SGMII && 3760 !phy_interface_mode_is_8023z(state->interface) && 3761 !phy_interface_mode_is_rgmii(state->interface)) { 3762 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3763 return; 3764 } 3765 3766 /* Allow all the expected bits */ 3767 phylink_set(mask, Autoneg); 3768 phylink_set_port_modes(mask); 3769 3770 /* Asymmetric pause is unsupported */ 3771 phylink_set(mask, Pause); 3772 3773 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3774 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3775 phylink_set(mask, 1000baseT_Full); 3776 phylink_set(mask, 1000baseX_Full); 3777 } 3778 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3779 phylink_set(mask, 2500baseT_Full); 3780 phylink_set(mask, 2500baseX_Full); 3781 } 3782 3783 if (!phy_interface_mode_is_8023z(state->interface)) { 3784 /* 10M and 100M are only supported in non-802.3z mode */ 3785 phylink_set(mask, 10baseT_Half); 3786 phylink_set(mask, 10baseT_Full); 3787 phylink_set(mask, 100baseT_Half); 3788 phylink_set(mask, 100baseT_Full); 3789 } 3790 3791 bitmap_and(supported, supported, mask, 3792 __ETHTOOL_LINK_MODE_MASK_NBITS); 3793 bitmap_and(state->advertising, state->advertising, mask, 3794 __ETHTOOL_LINK_MODE_MASK_NBITS); 3795 3796 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3797 * to advertise both, only report advertising at 2500BaseX. 3798 */ 3799 phylink_helper_basex_speed(state); 3800 } 3801 3802 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3803 struct phylink_link_state *state) 3804 { 3805 struct net_device *ndev = to_net_dev(config->dev); 3806 struct mvneta_port *pp = netdev_priv(ndev); 3807 u32 gmac_stat; 3808 3809 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3810 3811 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3812 state->speed = 3813 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3814 SPEED_2500 : SPEED_1000; 3815 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3816 state->speed = SPEED_100; 3817 else 3818 state->speed = SPEED_10; 3819 3820 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3821 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3822 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3823 3824 state->pause = 0; 3825 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3826 state->pause |= MLO_PAUSE_RX; 3827 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3828 state->pause |= MLO_PAUSE_TX; 3829 } 3830 3831 static void mvneta_mac_an_restart(struct phylink_config *config) 3832 { 3833 struct net_device *ndev = to_net_dev(config->dev); 3834 struct mvneta_port *pp = netdev_priv(ndev); 3835 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3836 3837 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3838 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3839 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3840 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3841 } 3842 3843 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3844 const struct phylink_link_state *state) 3845 { 3846 struct net_device *ndev = to_net_dev(config->dev); 3847 struct mvneta_port *pp = netdev_priv(ndev); 3848 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3849 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3850 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3851 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3852 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3853 3854 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3855 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3856 MVNETA_GMAC2_PORT_RESET); 3857 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3858 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3859 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3860 MVNETA_GMAC_INBAND_RESTART_AN | 3861 MVNETA_GMAC_AN_SPEED_EN | 3862 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3863 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3864 MVNETA_GMAC_AN_DUPLEX_EN); 3865 3866 /* Even though it might look weird, when we're configured in 3867 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3868 */ 3869 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3870 3871 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3872 state->interface == PHY_INTERFACE_MODE_SGMII || 3873 phy_interface_mode_is_8023z(state->interface)) 3874 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3875 3876 if (phylink_test(state->advertising, Pause)) 3877 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3878 3879 if (!phylink_autoneg_inband(mode)) { 3880 /* Phy or fixed speed - nothing to do, leave the 3881 * configured speed, duplex and flow control as-is. 3882 */ 3883 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3884 /* SGMII mode receives the state from the PHY */ 3885 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3886 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3887 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3888 MVNETA_GMAC_FORCE_LINK_PASS | 3889 MVNETA_GMAC_CONFIG_MII_SPEED | 3890 MVNETA_GMAC_CONFIG_GMII_SPEED | 3891 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3892 MVNETA_GMAC_INBAND_AN_ENABLE | 3893 MVNETA_GMAC_AN_SPEED_EN | 3894 MVNETA_GMAC_AN_DUPLEX_EN; 3895 } else { 3896 /* 802.3z negotiation - only 1000base-X */ 3897 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3898 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3899 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3900 MVNETA_GMAC_FORCE_LINK_PASS | 3901 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3902 MVNETA_GMAC_INBAND_AN_ENABLE | 3903 MVNETA_GMAC_CONFIG_GMII_SPEED | 3904 /* The MAC only supports FD mode */ 3905 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3906 3907 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3908 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3909 } 3910 3911 /* Armada 370 documentation says we can only change the port mode 3912 * and in-band enable when the link is down, so force it down 3913 * while making these changes. We also do this for GMAC_CTRL2 */ 3914 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3915 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3916 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3917 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3918 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3919 MVNETA_GMAC_FORCE_LINK_DOWN); 3920 } 3921 3922 3923 /* When at 2.5G, the link partner can send frames with shortened 3924 * preambles. 3925 */ 3926 if (state->speed == SPEED_2500) 3927 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3928 3929 if (pp->comphy && pp->phy_interface != state->interface && 3930 (state->interface == PHY_INTERFACE_MODE_SGMII || 3931 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3932 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3933 pp->phy_interface = state->interface; 3934 3935 WARN_ON(phy_power_off(pp->comphy)); 3936 WARN_ON(mvneta_comphy_init(pp)); 3937 } 3938 3939 if (new_ctrl0 != gmac_ctrl0) 3940 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3941 if (new_ctrl2 != gmac_ctrl2) 3942 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3943 if (new_ctrl4 != gmac_ctrl4) 3944 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3945 if (new_clk != gmac_clk) 3946 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3947 if (new_an != gmac_an) 3948 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3949 3950 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3951 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3952 MVNETA_GMAC2_PORT_RESET) != 0) 3953 continue; 3954 } 3955 } 3956 3957 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3958 { 3959 u32 lpi_ctl1; 3960 3961 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3962 if (enable) 3963 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3964 else 3965 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3966 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3967 } 3968 3969 static void mvneta_mac_link_down(struct phylink_config *config, 3970 unsigned int mode, phy_interface_t interface) 3971 { 3972 struct net_device *ndev = to_net_dev(config->dev); 3973 struct mvneta_port *pp = netdev_priv(ndev); 3974 u32 val; 3975 3976 mvneta_port_down(pp); 3977 3978 if (!phylink_autoneg_inband(mode)) { 3979 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3980 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3981 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3982 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3983 } 3984 3985 pp->eee_active = false; 3986 mvneta_set_eee(pp, false); 3987 } 3988 3989 static void mvneta_mac_link_up(struct phylink_config *config, 3990 struct phy_device *phy, 3991 unsigned int mode, phy_interface_t interface, 3992 int speed, int duplex, 3993 bool tx_pause, bool rx_pause) 3994 { 3995 struct net_device *ndev = to_net_dev(config->dev); 3996 struct mvneta_port *pp = netdev_priv(ndev); 3997 u32 val; 3998 3999 if (!phylink_autoneg_inband(mode)) { 4000 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4001 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4002 MVNETA_GMAC_CONFIG_MII_SPEED | 4003 MVNETA_GMAC_CONFIG_GMII_SPEED | 4004 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4005 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4006 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4007 4008 if (speed == SPEED_1000 || speed == SPEED_2500) 4009 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4010 else if (speed == SPEED_100) 4011 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4012 4013 if (duplex == DUPLEX_FULL) 4014 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4015 4016 if (tx_pause || rx_pause) 4017 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4018 4019 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4020 } else { 4021 /* When inband doesn't cover flow control or flow control is 4022 * disabled, we need to manually configure it. This bit will 4023 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4024 */ 4025 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4026 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4027 4028 if (tx_pause || rx_pause) 4029 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4030 4031 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4032 } 4033 4034 mvneta_port_up(pp); 4035 4036 if (phy && pp->eee_enabled) { 4037 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4038 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4039 } 4040 } 4041 4042 static const struct phylink_mac_ops mvneta_phylink_ops = { 4043 .validate = mvneta_validate, 4044 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4045 .mac_an_restart = mvneta_mac_an_restart, 4046 .mac_config = mvneta_mac_config, 4047 .mac_link_down = mvneta_mac_link_down, 4048 .mac_link_up = mvneta_mac_link_up, 4049 }; 4050 4051 static int mvneta_mdio_probe(struct mvneta_port *pp) 4052 { 4053 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4054 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4055 4056 if (err) 4057 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4058 4059 phylink_ethtool_get_wol(pp->phylink, &wol); 4060 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4061 4062 return err; 4063 } 4064 4065 static void mvneta_mdio_remove(struct mvneta_port *pp) 4066 { 4067 phylink_disconnect_phy(pp->phylink); 4068 } 4069 4070 /* Electing a CPU must be done in an atomic way: it should be done 4071 * after or before the removal/insertion of a CPU and this function is 4072 * not reentrant. 4073 */ 4074 static void mvneta_percpu_elect(struct mvneta_port *pp) 4075 { 4076 int elected_cpu = 0, max_cpu, cpu, i = 0; 4077 4078 /* Use the cpu associated to the rxq when it is online, in all 4079 * the other cases, use the cpu 0 which can't be offline. 4080 */ 4081 if (cpu_online(pp->rxq_def)) 4082 elected_cpu = pp->rxq_def; 4083 4084 max_cpu = num_present_cpus(); 4085 4086 for_each_online_cpu(cpu) { 4087 int rxq_map = 0, txq_map = 0; 4088 int rxq; 4089 4090 for (rxq = 0; rxq < rxq_number; rxq++) 4091 if ((rxq % max_cpu) == cpu) 4092 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4093 4094 if (cpu == elected_cpu) 4095 /* Map the default receive queue queue to the 4096 * elected CPU 4097 */ 4098 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4099 4100 /* We update the TX queue map only if we have one 4101 * queue. In this case we associate the TX queue to 4102 * the CPU bound to the default RX queue 4103 */ 4104 if (txq_number == 1) 4105 txq_map = (cpu == elected_cpu) ? 4106 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4107 else 4108 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4109 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4110 4111 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4112 4113 /* Update the interrupt mask on each CPU according the 4114 * new mapping 4115 */ 4116 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4117 pp, true); 4118 i++; 4119 4120 } 4121 }; 4122 4123 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4124 { 4125 int other_cpu; 4126 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4127 node_online); 4128 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4129 4130 4131 spin_lock(&pp->lock); 4132 /* 4133 * Configuring the driver for a new CPU while the driver is 4134 * stopping is racy, so just avoid it. 4135 */ 4136 if (pp->is_stopped) { 4137 spin_unlock(&pp->lock); 4138 return 0; 4139 } 4140 netif_tx_stop_all_queues(pp->dev); 4141 4142 /* 4143 * We have to synchronise on tha napi of each CPU except the one 4144 * just being woken up 4145 */ 4146 for_each_online_cpu(other_cpu) { 4147 if (other_cpu != cpu) { 4148 struct mvneta_pcpu_port *other_port = 4149 per_cpu_ptr(pp->ports, other_cpu); 4150 4151 napi_synchronize(&other_port->napi); 4152 } 4153 } 4154 4155 /* Mask all ethernet port interrupts */ 4156 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4157 napi_enable(&port->napi); 4158 4159 /* 4160 * Enable per-CPU interrupts on the CPU that is 4161 * brought up. 4162 */ 4163 mvneta_percpu_enable(pp); 4164 4165 /* 4166 * Enable per-CPU interrupt on the one CPU we care 4167 * about. 4168 */ 4169 mvneta_percpu_elect(pp); 4170 4171 /* Unmask all ethernet port interrupts */ 4172 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4173 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4174 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4175 MVNETA_CAUSE_LINK_CHANGE); 4176 netif_tx_start_all_queues(pp->dev); 4177 spin_unlock(&pp->lock); 4178 return 0; 4179 } 4180 4181 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4182 { 4183 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4184 node_online); 4185 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4186 4187 /* 4188 * Thanks to this lock we are sure that any pending cpu election is 4189 * done. 4190 */ 4191 spin_lock(&pp->lock); 4192 /* Mask all ethernet port interrupts */ 4193 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4194 spin_unlock(&pp->lock); 4195 4196 napi_synchronize(&port->napi); 4197 napi_disable(&port->napi); 4198 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4199 mvneta_percpu_disable(pp); 4200 return 0; 4201 } 4202 4203 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4204 { 4205 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4206 node_dead); 4207 4208 /* Check if a new CPU must be elected now this on is down */ 4209 spin_lock(&pp->lock); 4210 mvneta_percpu_elect(pp); 4211 spin_unlock(&pp->lock); 4212 /* Unmask all ethernet port interrupts */ 4213 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4214 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4215 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4216 MVNETA_CAUSE_LINK_CHANGE); 4217 netif_tx_start_all_queues(pp->dev); 4218 return 0; 4219 } 4220 4221 static int mvneta_open(struct net_device *dev) 4222 { 4223 struct mvneta_port *pp = netdev_priv(dev); 4224 int ret; 4225 4226 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4227 4228 ret = mvneta_setup_rxqs(pp); 4229 if (ret) 4230 return ret; 4231 4232 ret = mvneta_setup_txqs(pp); 4233 if (ret) 4234 goto err_cleanup_rxqs; 4235 4236 /* Connect to port interrupt line */ 4237 if (pp->neta_armada3700) 4238 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4239 dev->name, pp); 4240 else 4241 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4242 dev->name, pp->ports); 4243 if (ret) { 4244 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4245 goto err_cleanup_txqs; 4246 } 4247 4248 if (!pp->neta_armada3700) { 4249 /* Enable per-CPU interrupt on all the CPU to handle our RX 4250 * queue interrupts 4251 */ 4252 on_each_cpu(mvneta_percpu_enable, pp, true); 4253 4254 pp->is_stopped = false; 4255 /* Register a CPU notifier to handle the case where our CPU 4256 * might be taken offline. 4257 */ 4258 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4259 &pp->node_online); 4260 if (ret) 4261 goto err_free_irq; 4262 4263 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4264 &pp->node_dead); 4265 if (ret) 4266 goto err_free_online_hp; 4267 } 4268 4269 ret = mvneta_mdio_probe(pp); 4270 if (ret < 0) { 4271 netdev_err(dev, "cannot probe MDIO bus\n"); 4272 goto err_free_dead_hp; 4273 } 4274 4275 mvneta_start_dev(pp); 4276 4277 return 0; 4278 4279 err_free_dead_hp: 4280 if (!pp->neta_armada3700) 4281 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4282 &pp->node_dead); 4283 err_free_online_hp: 4284 if (!pp->neta_armada3700) 4285 cpuhp_state_remove_instance_nocalls(online_hpstate, 4286 &pp->node_online); 4287 err_free_irq: 4288 if (pp->neta_armada3700) { 4289 free_irq(pp->dev->irq, pp); 4290 } else { 4291 on_each_cpu(mvneta_percpu_disable, pp, true); 4292 free_percpu_irq(pp->dev->irq, pp->ports); 4293 } 4294 err_cleanup_txqs: 4295 mvneta_cleanup_txqs(pp); 4296 err_cleanup_rxqs: 4297 mvneta_cleanup_rxqs(pp); 4298 return ret; 4299 } 4300 4301 /* Stop the port, free port interrupt line */ 4302 static int mvneta_stop(struct net_device *dev) 4303 { 4304 struct mvneta_port *pp = netdev_priv(dev); 4305 4306 if (!pp->neta_armada3700) { 4307 /* Inform that we are stopping so we don't want to setup the 4308 * driver for new CPUs in the notifiers. The code of the 4309 * notifier for CPU online is protected by the same spinlock, 4310 * so when we get the lock, the notifer work is done. 4311 */ 4312 spin_lock(&pp->lock); 4313 pp->is_stopped = true; 4314 spin_unlock(&pp->lock); 4315 4316 mvneta_stop_dev(pp); 4317 mvneta_mdio_remove(pp); 4318 4319 cpuhp_state_remove_instance_nocalls(online_hpstate, 4320 &pp->node_online); 4321 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4322 &pp->node_dead); 4323 on_each_cpu(mvneta_percpu_disable, pp, true); 4324 free_percpu_irq(dev->irq, pp->ports); 4325 } else { 4326 mvneta_stop_dev(pp); 4327 mvneta_mdio_remove(pp); 4328 free_irq(dev->irq, pp); 4329 } 4330 4331 mvneta_cleanup_rxqs(pp); 4332 mvneta_cleanup_txqs(pp); 4333 4334 return 0; 4335 } 4336 4337 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4338 { 4339 struct mvneta_port *pp = netdev_priv(dev); 4340 4341 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4342 } 4343 4344 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4345 struct netlink_ext_ack *extack) 4346 { 4347 bool need_update, running = netif_running(dev); 4348 struct mvneta_port *pp = netdev_priv(dev); 4349 struct bpf_prog *old_prog; 4350 4351 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4352 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4353 return -EOPNOTSUPP; 4354 } 4355 4356 if (pp->bm_priv) { 4357 NL_SET_ERR_MSG_MOD(extack, 4358 "Hardware Buffer Management not supported on XDP"); 4359 return -EOPNOTSUPP; 4360 } 4361 4362 need_update = !!pp->xdp_prog != !!prog; 4363 if (running && need_update) 4364 mvneta_stop(dev); 4365 4366 old_prog = xchg(&pp->xdp_prog, prog); 4367 if (old_prog) 4368 bpf_prog_put(old_prog); 4369 4370 if (running && need_update) 4371 return mvneta_open(dev); 4372 4373 return 0; 4374 } 4375 4376 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4377 { 4378 struct mvneta_port *pp = netdev_priv(dev); 4379 4380 switch (xdp->command) { 4381 case XDP_SETUP_PROG: 4382 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4383 case XDP_QUERY_PROG: 4384 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4385 return 0; 4386 default: 4387 return -EINVAL; 4388 } 4389 } 4390 4391 /* Ethtool methods */ 4392 4393 /* Set link ksettings (phy address, speed) for ethtools */ 4394 static int 4395 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4396 const struct ethtool_link_ksettings *cmd) 4397 { 4398 struct mvneta_port *pp = netdev_priv(ndev); 4399 4400 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4401 } 4402 4403 /* Get link ksettings for ethtools */ 4404 static int 4405 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4406 struct ethtool_link_ksettings *cmd) 4407 { 4408 struct mvneta_port *pp = netdev_priv(ndev); 4409 4410 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4411 } 4412 4413 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4414 { 4415 struct mvneta_port *pp = netdev_priv(dev); 4416 4417 return phylink_ethtool_nway_reset(pp->phylink); 4418 } 4419 4420 /* Set interrupt coalescing for ethtools */ 4421 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4422 struct ethtool_coalesce *c) 4423 { 4424 struct mvneta_port *pp = netdev_priv(dev); 4425 int queue; 4426 4427 for (queue = 0; queue < rxq_number; queue++) { 4428 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4429 rxq->time_coal = c->rx_coalesce_usecs; 4430 rxq->pkts_coal = c->rx_max_coalesced_frames; 4431 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4432 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4433 } 4434 4435 for (queue = 0; queue < txq_number; queue++) { 4436 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4437 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4438 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4439 } 4440 4441 return 0; 4442 } 4443 4444 /* get coalescing for ethtools */ 4445 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4446 struct ethtool_coalesce *c) 4447 { 4448 struct mvneta_port *pp = netdev_priv(dev); 4449 4450 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4451 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4452 4453 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4454 return 0; 4455 } 4456 4457 4458 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4459 struct ethtool_drvinfo *drvinfo) 4460 { 4461 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4462 sizeof(drvinfo->driver)); 4463 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4464 sizeof(drvinfo->version)); 4465 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4466 sizeof(drvinfo->bus_info)); 4467 } 4468 4469 4470 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4471 struct ethtool_ringparam *ring) 4472 { 4473 struct mvneta_port *pp = netdev_priv(netdev); 4474 4475 ring->rx_max_pending = MVNETA_MAX_RXD; 4476 ring->tx_max_pending = MVNETA_MAX_TXD; 4477 ring->rx_pending = pp->rx_ring_size; 4478 ring->tx_pending = pp->tx_ring_size; 4479 } 4480 4481 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4482 struct ethtool_ringparam *ring) 4483 { 4484 struct mvneta_port *pp = netdev_priv(dev); 4485 4486 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4487 return -EINVAL; 4488 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4489 ring->rx_pending : MVNETA_MAX_RXD; 4490 4491 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4492 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4493 if (pp->tx_ring_size != ring->tx_pending) 4494 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4495 pp->tx_ring_size, ring->tx_pending); 4496 4497 if (netif_running(dev)) { 4498 mvneta_stop(dev); 4499 if (mvneta_open(dev)) { 4500 netdev_err(dev, 4501 "error on opening device after ring param change\n"); 4502 return -ENOMEM; 4503 } 4504 } 4505 4506 return 0; 4507 } 4508 4509 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4510 struct ethtool_pauseparam *pause) 4511 { 4512 struct mvneta_port *pp = netdev_priv(dev); 4513 4514 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4515 } 4516 4517 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4518 struct ethtool_pauseparam *pause) 4519 { 4520 struct mvneta_port *pp = netdev_priv(dev); 4521 4522 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4523 } 4524 4525 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4526 u8 *data) 4527 { 4528 if (sset == ETH_SS_STATS) { 4529 int i; 4530 4531 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4532 memcpy(data + i * ETH_GSTRING_LEN, 4533 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4534 } 4535 } 4536 4537 static void 4538 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4539 struct mvneta_ethtool_stats *es) 4540 { 4541 unsigned int start; 4542 int cpu; 4543 4544 for_each_possible_cpu(cpu) { 4545 struct mvneta_pcpu_stats *stats; 4546 u64 skb_alloc_error; 4547 u64 refill_error; 4548 u64 xdp_redirect; 4549 u64 xdp_xmit_err; 4550 u64 xdp_tx_err; 4551 u64 xdp_pass; 4552 u64 xdp_drop; 4553 u64 xdp_xmit; 4554 u64 xdp_tx; 4555 4556 stats = per_cpu_ptr(pp->stats, cpu); 4557 do { 4558 start = u64_stats_fetch_begin_irq(&stats->syncp); 4559 skb_alloc_error = stats->es.skb_alloc_error; 4560 refill_error = stats->es.refill_error; 4561 xdp_redirect = stats->es.ps.xdp_redirect; 4562 xdp_pass = stats->es.ps.xdp_pass; 4563 xdp_drop = stats->es.ps.xdp_drop; 4564 xdp_xmit = stats->es.ps.xdp_xmit; 4565 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4566 xdp_tx = stats->es.ps.xdp_tx; 4567 xdp_tx_err = stats->es.ps.xdp_tx_err; 4568 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4569 4570 es->skb_alloc_error += skb_alloc_error; 4571 es->refill_error += refill_error; 4572 es->ps.xdp_redirect += xdp_redirect; 4573 es->ps.xdp_pass += xdp_pass; 4574 es->ps.xdp_drop += xdp_drop; 4575 es->ps.xdp_xmit += xdp_xmit; 4576 es->ps.xdp_xmit_err += xdp_xmit_err; 4577 es->ps.xdp_tx += xdp_tx; 4578 es->ps.xdp_tx_err += xdp_tx_err; 4579 } 4580 } 4581 4582 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4583 { 4584 struct mvneta_ethtool_stats stats = {}; 4585 const struct mvneta_statistic *s; 4586 void __iomem *base = pp->base; 4587 u32 high, low; 4588 u64 val; 4589 int i; 4590 4591 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4592 for (i = 0, s = mvneta_statistics; 4593 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4594 s++, i++) { 4595 switch (s->type) { 4596 case T_REG_32: 4597 val = readl_relaxed(base + s->offset); 4598 pp->ethtool_stats[i] += val; 4599 break; 4600 case T_REG_64: 4601 /* Docs say to read low 32-bit then high */ 4602 low = readl_relaxed(base + s->offset); 4603 high = readl_relaxed(base + s->offset + 4); 4604 val = (u64)high << 32 | low; 4605 pp->ethtool_stats[i] += val; 4606 break; 4607 case T_SW: 4608 switch (s->offset) { 4609 case ETHTOOL_STAT_EEE_WAKEUP: 4610 val = phylink_get_eee_err(pp->phylink); 4611 pp->ethtool_stats[i] += val; 4612 break; 4613 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4614 pp->ethtool_stats[i] = stats.skb_alloc_error; 4615 break; 4616 case ETHTOOL_STAT_REFILL_ERR: 4617 pp->ethtool_stats[i] = stats.refill_error; 4618 break; 4619 case ETHTOOL_XDP_REDIRECT: 4620 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4621 break; 4622 case ETHTOOL_XDP_PASS: 4623 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4624 break; 4625 case ETHTOOL_XDP_DROP: 4626 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4627 break; 4628 case ETHTOOL_XDP_TX: 4629 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4630 break; 4631 case ETHTOOL_XDP_TX_ERR: 4632 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4633 break; 4634 case ETHTOOL_XDP_XMIT: 4635 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4636 break; 4637 case ETHTOOL_XDP_XMIT_ERR: 4638 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4639 break; 4640 } 4641 break; 4642 } 4643 } 4644 } 4645 4646 static void mvneta_ethtool_get_stats(struct net_device *dev, 4647 struct ethtool_stats *stats, u64 *data) 4648 { 4649 struct mvneta_port *pp = netdev_priv(dev); 4650 int i; 4651 4652 mvneta_ethtool_update_stats(pp); 4653 4654 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4655 *data++ = pp->ethtool_stats[i]; 4656 } 4657 4658 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4659 { 4660 if (sset == ETH_SS_STATS) 4661 return ARRAY_SIZE(mvneta_statistics); 4662 return -EOPNOTSUPP; 4663 } 4664 4665 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4666 { 4667 return MVNETA_RSS_LU_TABLE_SIZE; 4668 } 4669 4670 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4671 struct ethtool_rxnfc *info, 4672 u32 *rules __always_unused) 4673 { 4674 switch (info->cmd) { 4675 case ETHTOOL_GRXRINGS: 4676 info->data = rxq_number; 4677 return 0; 4678 case ETHTOOL_GRXFH: 4679 return -EOPNOTSUPP; 4680 default: 4681 return -EOPNOTSUPP; 4682 } 4683 } 4684 4685 static int mvneta_config_rss(struct mvneta_port *pp) 4686 { 4687 int cpu; 4688 u32 val; 4689 4690 netif_tx_stop_all_queues(pp->dev); 4691 4692 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4693 4694 if (!pp->neta_armada3700) { 4695 /* We have to synchronise on the napi of each CPU */ 4696 for_each_online_cpu(cpu) { 4697 struct mvneta_pcpu_port *pcpu_port = 4698 per_cpu_ptr(pp->ports, cpu); 4699 4700 napi_synchronize(&pcpu_port->napi); 4701 napi_disable(&pcpu_port->napi); 4702 } 4703 } else { 4704 napi_synchronize(&pp->napi); 4705 napi_disable(&pp->napi); 4706 } 4707 4708 pp->rxq_def = pp->indir[0]; 4709 4710 /* Update unicast mapping */ 4711 mvneta_set_rx_mode(pp->dev); 4712 4713 /* Update val of portCfg register accordingly with all RxQueue types */ 4714 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4715 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4716 4717 /* Update the elected CPU matching the new rxq_def */ 4718 spin_lock(&pp->lock); 4719 mvneta_percpu_elect(pp); 4720 spin_unlock(&pp->lock); 4721 4722 if (!pp->neta_armada3700) { 4723 /* We have to synchronise on the napi of each CPU */ 4724 for_each_online_cpu(cpu) { 4725 struct mvneta_pcpu_port *pcpu_port = 4726 per_cpu_ptr(pp->ports, cpu); 4727 4728 napi_enable(&pcpu_port->napi); 4729 } 4730 } else { 4731 napi_enable(&pp->napi); 4732 } 4733 4734 netif_tx_start_all_queues(pp->dev); 4735 4736 return 0; 4737 } 4738 4739 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4740 const u8 *key, const u8 hfunc) 4741 { 4742 struct mvneta_port *pp = netdev_priv(dev); 4743 4744 /* Current code for Armada 3700 doesn't support RSS features yet */ 4745 if (pp->neta_armada3700) 4746 return -EOPNOTSUPP; 4747 4748 /* We require at least one supported parameter to be changed 4749 * and no change in any of the unsupported parameters 4750 */ 4751 if (key || 4752 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4753 return -EOPNOTSUPP; 4754 4755 if (!indir) 4756 return 0; 4757 4758 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4759 4760 return mvneta_config_rss(pp); 4761 } 4762 4763 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4764 u8 *hfunc) 4765 { 4766 struct mvneta_port *pp = netdev_priv(dev); 4767 4768 /* Current code for Armada 3700 doesn't support RSS features yet */ 4769 if (pp->neta_armada3700) 4770 return -EOPNOTSUPP; 4771 4772 if (hfunc) 4773 *hfunc = ETH_RSS_HASH_TOP; 4774 4775 if (!indir) 4776 return 0; 4777 4778 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4779 4780 return 0; 4781 } 4782 4783 static void mvneta_ethtool_get_wol(struct net_device *dev, 4784 struct ethtool_wolinfo *wol) 4785 { 4786 struct mvneta_port *pp = netdev_priv(dev); 4787 4788 phylink_ethtool_get_wol(pp->phylink, wol); 4789 } 4790 4791 static int mvneta_ethtool_set_wol(struct net_device *dev, 4792 struct ethtool_wolinfo *wol) 4793 { 4794 struct mvneta_port *pp = netdev_priv(dev); 4795 int ret; 4796 4797 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4798 if (!ret) 4799 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4800 4801 return ret; 4802 } 4803 4804 static int mvneta_ethtool_get_eee(struct net_device *dev, 4805 struct ethtool_eee *eee) 4806 { 4807 struct mvneta_port *pp = netdev_priv(dev); 4808 u32 lpi_ctl0; 4809 4810 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4811 4812 eee->eee_enabled = pp->eee_enabled; 4813 eee->eee_active = pp->eee_active; 4814 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4815 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4816 4817 return phylink_ethtool_get_eee(pp->phylink, eee); 4818 } 4819 4820 static int mvneta_ethtool_set_eee(struct net_device *dev, 4821 struct ethtool_eee *eee) 4822 { 4823 struct mvneta_port *pp = netdev_priv(dev); 4824 u32 lpi_ctl0; 4825 4826 /* The Armada 37x documents do not give limits for this other than 4827 * it being an 8-bit register. */ 4828 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4829 return -EINVAL; 4830 4831 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4832 lpi_ctl0 &= ~(0xff << 8); 4833 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4834 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4835 4836 pp->eee_enabled = eee->eee_enabled; 4837 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4838 4839 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4840 4841 return phylink_ethtool_set_eee(pp->phylink, eee); 4842 } 4843 4844 static const struct net_device_ops mvneta_netdev_ops = { 4845 .ndo_open = mvneta_open, 4846 .ndo_stop = mvneta_stop, 4847 .ndo_start_xmit = mvneta_tx, 4848 .ndo_set_rx_mode = mvneta_set_rx_mode, 4849 .ndo_set_mac_address = mvneta_set_mac_addr, 4850 .ndo_change_mtu = mvneta_change_mtu, 4851 .ndo_fix_features = mvneta_fix_features, 4852 .ndo_get_stats64 = mvneta_get_stats64, 4853 .ndo_do_ioctl = mvneta_ioctl, 4854 .ndo_bpf = mvneta_xdp, 4855 .ndo_xdp_xmit = mvneta_xdp_xmit, 4856 }; 4857 4858 static const struct ethtool_ops mvneta_eth_tool_ops = { 4859 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 4860 ETHTOOL_COALESCE_MAX_FRAMES, 4861 .nway_reset = mvneta_ethtool_nway_reset, 4862 .get_link = ethtool_op_get_link, 4863 .set_coalesce = mvneta_ethtool_set_coalesce, 4864 .get_coalesce = mvneta_ethtool_get_coalesce, 4865 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4866 .get_ringparam = mvneta_ethtool_get_ringparam, 4867 .set_ringparam = mvneta_ethtool_set_ringparam, 4868 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4869 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4870 .get_strings = mvneta_ethtool_get_strings, 4871 .get_ethtool_stats = mvneta_ethtool_get_stats, 4872 .get_sset_count = mvneta_ethtool_get_sset_count, 4873 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4874 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4875 .get_rxfh = mvneta_ethtool_get_rxfh, 4876 .set_rxfh = mvneta_ethtool_set_rxfh, 4877 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4878 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4879 .get_wol = mvneta_ethtool_get_wol, 4880 .set_wol = mvneta_ethtool_set_wol, 4881 .get_eee = mvneta_ethtool_get_eee, 4882 .set_eee = mvneta_ethtool_set_eee, 4883 }; 4884 4885 /* Initialize hw */ 4886 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4887 { 4888 int queue; 4889 4890 /* Disable port */ 4891 mvneta_port_disable(pp); 4892 4893 /* Set port default values */ 4894 mvneta_defaults_set(pp); 4895 4896 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4897 if (!pp->txqs) 4898 return -ENOMEM; 4899 4900 /* Initialize TX descriptor rings */ 4901 for (queue = 0; queue < txq_number; queue++) { 4902 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4903 txq->id = queue; 4904 txq->size = pp->tx_ring_size; 4905 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4906 } 4907 4908 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4909 if (!pp->rxqs) 4910 return -ENOMEM; 4911 4912 /* Create Rx descriptor rings */ 4913 for (queue = 0; queue < rxq_number; queue++) { 4914 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4915 rxq->id = queue; 4916 rxq->size = pp->rx_ring_size; 4917 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4918 rxq->time_coal = MVNETA_RX_COAL_USEC; 4919 rxq->buf_virt_addr 4920 = devm_kmalloc_array(pp->dev->dev.parent, 4921 rxq->size, 4922 sizeof(*rxq->buf_virt_addr), 4923 GFP_KERNEL); 4924 if (!rxq->buf_virt_addr) 4925 return -ENOMEM; 4926 } 4927 4928 return 0; 4929 } 4930 4931 /* platform glue : initialize decoding windows */ 4932 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4933 const struct mbus_dram_target_info *dram) 4934 { 4935 u32 win_enable; 4936 u32 win_protect; 4937 int i; 4938 4939 for (i = 0; i < 6; i++) { 4940 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4941 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4942 4943 if (i < 4) 4944 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4945 } 4946 4947 win_enable = 0x3f; 4948 win_protect = 0; 4949 4950 if (dram) { 4951 for (i = 0; i < dram->num_cs; i++) { 4952 const struct mbus_dram_window *cs = dram->cs + i; 4953 4954 mvreg_write(pp, MVNETA_WIN_BASE(i), 4955 (cs->base & 0xffff0000) | 4956 (cs->mbus_attr << 8) | 4957 dram->mbus_dram_target_id); 4958 4959 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4960 (cs->size - 1) & 0xffff0000); 4961 4962 win_enable &= ~(1 << i); 4963 win_protect |= 3 << (2 * i); 4964 } 4965 } else { 4966 /* For Armada3700 open default 4GB Mbus window, leaving 4967 * arbitration of target/attribute to a different layer 4968 * of configuration. 4969 */ 4970 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4971 win_enable &= ~BIT(0); 4972 win_protect = 3; 4973 } 4974 4975 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4976 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4977 } 4978 4979 /* Power up the port */ 4980 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4981 { 4982 /* MAC Cause register should be cleared */ 4983 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4984 4985 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4986 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4987 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4988 phy_interface_mode_is_8023z(phy_mode)) 4989 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4990 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4991 return -EINVAL; 4992 4993 return 0; 4994 } 4995 4996 /* Device initialization routine */ 4997 static int mvneta_probe(struct platform_device *pdev) 4998 { 4999 struct device_node *dn = pdev->dev.of_node; 5000 struct device_node *bm_node; 5001 struct mvneta_port *pp; 5002 struct net_device *dev; 5003 struct phylink *phylink; 5004 struct phy *comphy; 5005 const char *dt_mac_addr; 5006 char hw_mac_addr[ETH_ALEN]; 5007 phy_interface_t phy_mode; 5008 const char *mac_from; 5009 int tx_csum_limit; 5010 int err; 5011 int cpu; 5012 5013 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5014 txq_number, rxq_number); 5015 if (!dev) 5016 return -ENOMEM; 5017 5018 dev->irq = irq_of_parse_and_map(dn, 0); 5019 if (dev->irq == 0) 5020 return -EINVAL; 5021 5022 err = of_get_phy_mode(dn, &phy_mode); 5023 if (err) { 5024 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5025 goto err_free_irq; 5026 } 5027 5028 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5029 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5030 err = -EPROBE_DEFER; 5031 goto err_free_irq; 5032 } else if (IS_ERR(comphy)) { 5033 comphy = NULL; 5034 } 5035 5036 pp = netdev_priv(dev); 5037 spin_lock_init(&pp->lock); 5038 5039 pp->phylink_config.dev = &dev->dev; 5040 pp->phylink_config.type = PHYLINK_NETDEV; 5041 5042 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5043 phy_mode, &mvneta_phylink_ops); 5044 if (IS_ERR(phylink)) { 5045 err = PTR_ERR(phylink); 5046 goto err_free_irq; 5047 } 5048 5049 dev->tx_queue_len = MVNETA_MAX_TXD; 5050 dev->watchdog_timeo = 5 * HZ; 5051 dev->netdev_ops = &mvneta_netdev_ops; 5052 5053 dev->ethtool_ops = &mvneta_eth_tool_ops; 5054 5055 pp->phylink = phylink; 5056 pp->comphy = comphy; 5057 pp->phy_interface = phy_mode; 5058 pp->dn = dn; 5059 5060 pp->rxq_def = rxq_def; 5061 pp->indir[0] = rxq_def; 5062 5063 /* Get special SoC configurations */ 5064 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5065 pp->neta_armada3700 = true; 5066 5067 pp->clk = devm_clk_get(&pdev->dev, "core"); 5068 if (IS_ERR(pp->clk)) 5069 pp->clk = devm_clk_get(&pdev->dev, NULL); 5070 if (IS_ERR(pp->clk)) { 5071 err = PTR_ERR(pp->clk); 5072 goto err_free_phylink; 5073 } 5074 5075 clk_prepare_enable(pp->clk); 5076 5077 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5078 if (!IS_ERR(pp->clk_bus)) 5079 clk_prepare_enable(pp->clk_bus); 5080 5081 pp->base = devm_platform_ioremap_resource(pdev, 0); 5082 if (IS_ERR(pp->base)) { 5083 err = PTR_ERR(pp->base); 5084 goto err_clk; 5085 } 5086 5087 /* Alloc per-cpu port structure */ 5088 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5089 if (!pp->ports) { 5090 err = -ENOMEM; 5091 goto err_clk; 5092 } 5093 5094 /* Alloc per-cpu stats */ 5095 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5096 if (!pp->stats) { 5097 err = -ENOMEM; 5098 goto err_free_ports; 5099 } 5100 5101 dt_mac_addr = of_get_mac_address(dn); 5102 if (!IS_ERR(dt_mac_addr)) { 5103 mac_from = "device tree"; 5104 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5105 } else { 5106 mvneta_get_mac_addr(pp, hw_mac_addr); 5107 if (is_valid_ether_addr(hw_mac_addr)) { 5108 mac_from = "hardware"; 5109 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5110 } else { 5111 mac_from = "random"; 5112 eth_hw_addr_random(dev); 5113 } 5114 } 5115 5116 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5117 if (tx_csum_limit < 0 || 5118 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5119 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5120 dev_info(&pdev->dev, 5121 "Wrong TX csum limit in DT, set to %dB\n", 5122 MVNETA_TX_CSUM_DEF_SIZE); 5123 } 5124 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5125 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5126 } else { 5127 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5128 } 5129 5130 pp->tx_csum_limit = tx_csum_limit; 5131 5132 pp->dram_target_info = mv_mbus_dram_info(); 5133 /* Armada3700 requires setting default configuration of Mbus 5134 * windows, however without using filled mbus_dram_target_info 5135 * structure. 5136 */ 5137 if (pp->dram_target_info || pp->neta_armada3700) 5138 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5139 5140 pp->tx_ring_size = MVNETA_MAX_TXD; 5141 pp->rx_ring_size = MVNETA_MAX_RXD; 5142 5143 pp->dev = dev; 5144 SET_NETDEV_DEV(dev, &pdev->dev); 5145 5146 pp->id = global_port_id++; 5147 5148 /* Obtain access to BM resources if enabled and already initialized */ 5149 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5150 if (bm_node) { 5151 pp->bm_priv = mvneta_bm_get(bm_node); 5152 if (pp->bm_priv) { 5153 err = mvneta_bm_port_init(pdev, pp); 5154 if (err < 0) { 5155 dev_info(&pdev->dev, 5156 "use SW buffer management\n"); 5157 mvneta_bm_put(pp->bm_priv); 5158 pp->bm_priv = NULL; 5159 } 5160 } 5161 /* Set RX packet offset correction for platforms, whose 5162 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5163 * platforms and 0B for 32-bit ones. 5164 */ 5165 pp->rx_offset_correction = max(0, 5166 NET_SKB_PAD - 5167 MVNETA_RX_PKT_OFFSET_CORRECTION); 5168 } 5169 of_node_put(bm_node); 5170 5171 /* sw buffer management */ 5172 if (!pp->bm_priv) 5173 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5174 5175 err = mvneta_init(&pdev->dev, pp); 5176 if (err < 0) 5177 goto err_netdev; 5178 5179 err = mvneta_port_power_up(pp, phy_mode); 5180 if (err < 0) { 5181 dev_err(&pdev->dev, "can't power up port\n"); 5182 goto err_netdev; 5183 } 5184 5185 /* Armada3700 network controller does not support per-cpu 5186 * operation, so only single NAPI should be initialized. 5187 */ 5188 if (pp->neta_armada3700) { 5189 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5190 } else { 5191 for_each_present_cpu(cpu) { 5192 struct mvneta_pcpu_port *port = 5193 per_cpu_ptr(pp->ports, cpu); 5194 5195 netif_napi_add(dev, &port->napi, mvneta_poll, 5196 NAPI_POLL_WEIGHT); 5197 port->pp = pp; 5198 } 5199 } 5200 5201 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5202 NETIF_F_TSO | NETIF_F_RXCSUM; 5203 dev->hw_features |= dev->features; 5204 dev->vlan_features |= dev->features; 5205 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5206 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5207 5208 /* MTU range: 68 - 9676 */ 5209 dev->min_mtu = ETH_MIN_MTU; 5210 /* 9676 == 9700 - 20 and rounding to 8 */ 5211 dev->max_mtu = 9676; 5212 5213 err = register_netdev(dev); 5214 if (err < 0) { 5215 dev_err(&pdev->dev, "failed to register\n"); 5216 goto err_netdev; 5217 } 5218 5219 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5220 dev->dev_addr); 5221 5222 platform_set_drvdata(pdev, pp->dev); 5223 5224 return 0; 5225 5226 err_netdev: 5227 if (pp->bm_priv) { 5228 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5229 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5230 1 << pp->id); 5231 mvneta_bm_put(pp->bm_priv); 5232 } 5233 free_percpu(pp->stats); 5234 err_free_ports: 5235 free_percpu(pp->ports); 5236 err_clk: 5237 clk_disable_unprepare(pp->clk_bus); 5238 clk_disable_unprepare(pp->clk); 5239 err_free_phylink: 5240 if (pp->phylink) 5241 phylink_destroy(pp->phylink); 5242 err_free_irq: 5243 irq_dispose_mapping(dev->irq); 5244 return err; 5245 } 5246 5247 /* Device removal routine */ 5248 static int mvneta_remove(struct platform_device *pdev) 5249 { 5250 struct net_device *dev = platform_get_drvdata(pdev); 5251 struct mvneta_port *pp = netdev_priv(dev); 5252 5253 unregister_netdev(dev); 5254 clk_disable_unprepare(pp->clk_bus); 5255 clk_disable_unprepare(pp->clk); 5256 free_percpu(pp->ports); 5257 free_percpu(pp->stats); 5258 irq_dispose_mapping(dev->irq); 5259 phylink_destroy(pp->phylink); 5260 5261 if (pp->bm_priv) { 5262 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5263 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5264 1 << pp->id); 5265 mvneta_bm_put(pp->bm_priv); 5266 } 5267 5268 return 0; 5269 } 5270 5271 #ifdef CONFIG_PM_SLEEP 5272 static int mvneta_suspend(struct device *device) 5273 { 5274 int queue; 5275 struct net_device *dev = dev_get_drvdata(device); 5276 struct mvneta_port *pp = netdev_priv(dev); 5277 5278 if (!netif_running(dev)) 5279 goto clean_exit; 5280 5281 if (!pp->neta_armada3700) { 5282 spin_lock(&pp->lock); 5283 pp->is_stopped = true; 5284 spin_unlock(&pp->lock); 5285 5286 cpuhp_state_remove_instance_nocalls(online_hpstate, 5287 &pp->node_online); 5288 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5289 &pp->node_dead); 5290 } 5291 5292 rtnl_lock(); 5293 mvneta_stop_dev(pp); 5294 rtnl_unlock(); 5295 5296 for (queue = 0; queue < rxq_number; queue++) { 5297 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5298 5299 mvneta_rxq_drop_pkts(pp, rxq); 5300 } 5301 5302 for (queue = 0; queue < txq_number; queue++) { 5303 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5304 5305 mvneta_txq_hw_deinit(pp, txq); 5306 } 5307 5308 clean_exit: 5309 netif_device_detach(dev); 5310 clk_disable_unprepare(pp->clk_bus); 5311 clk_disable_unprepare(pp->clk); 5312 5313 return 0; 5314 } 5315 5316 static int mvneta_resume(struct device *device) 5317 { 5318 struct platform_device *pdev = to_platform_device(device); 5319 struct net_device *dev = dev_get_drvdata(device); 5320 struct mvneta_port *pp = netdev_priv(dev); 5321 int err, queue; 5322 5323 clk_prepare_enable(pp->clk); 5324 if (!IS_ERR(pp->clk_bus)) 5325 clk_prepare_enable(pp->clk_bus); 5326 if (pp->dram_target_info || pp->neta_armada3700) 5327 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5328 if (pp->bm_priv) { 5329 err = mvneta_bm_port_init(pdev, pp); 5330 if (err < 0) { 5331 dev_info(&pdev->dev, "use SW buffer management\n"); 5332 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5333 pp->bm_priv = NULL; 5334 } 5335 } 5336 mvneta_defaults_set(pp); 5337 err = mvneta_port_power_up(pp, pp->phy_interface); 5338 if (err < 0) { 5339 dev_err(device, "can't power up port\n"); 5340 return err; 5341 } 5342 5343 netif_device_attach(dev); 5344 5345 if (!netif_running(dev)) 5346 return 0; 5347 5348 for (queue = 0; queue < rxq_number; queue++) { 5349 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5350 5351 rxq->next_desc_to_proc = 0; 5352 mvneta_rxq_hw_init(pp, rxq); 5353 } 5354 5355 for (queue = 0; queue < txq_number; queue++) { 5356 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5357 5358 txq->next_desc_to_proc = 0; 5359 mvneta_txq_hw_init(pp, txq); 5360 } 5361 5362 if (!pp->neta_armada3700) { 5363 spin_lock(&pp->lock); 5364 pp->is_stopped = false; 5365 spin_unlock(&pp->lock); 5366 cpuhp_state_add_instance_nocalls(online_hpstate, 5367 &pp->node_online); 5368 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5369 &pp->node_dead); 5370 } 5371 5372 rtnl_lock(); 5373 mvneta_start_dev(pp); 5374 rtnl_unlock(); 5375 mvneta_set_rx_mode(dev); 5376 5377 return 0; 5378 } 5379 #endif 5380 5381 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5382 5383 static const struct of_device_id mvneta_match[] = { 5384 { .compatible = "marvell,armada-370-neta" }, 5385 { .compatible = "marvell,armada-xp-neta" }, 5386 { .compatible = "marvell,armada-3700-neta" }, 5387 { } 5388 }; 5389 MODULE_DEVICE_TABLE(of, mvneta_match); 5390 5391 static struct platform_driver mvneta_driver = { 5392 .probe = mvneta_probe, 5393 .remove = mvneta_remove, 5394 .driver = { 5395 .name = MVNETA_DRIVER_NAME, 5396 .of_match_table = mvneta_match, 5397 .pm = &mvneta_pm_ops, 5398 }, 5399 }; 5400 5401 static int __init mvneta_driver_init(void) 5402 { 5403 int ret; 5404 5405 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5406 mvneta_cpu_online, 5407 mvneta_cpu_down_prepare); 5408 if (ret < 0) 5409 goto out; 5410 online_hpstate = ret; 5411 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5412 NULL, mvneta_cpu_dead); 5413 if (ret) 5414 goto err_dead; 5415 5416 ret = platform_driver_register(&mvneta_driver); 5417 if (ret) 5418 goto err; 5419 return 0; 5420 5421 err: 5422 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5423 err_dead: 5424 cpuhp_remove_multi_state(online_hpstate); 5425 out: 5426 return ret; 5427 } 5428 module_init(mvneta_driver_init); 5429 5430 static void __exit mvneta_driver_exit(void) 5431 { 5432 platform_driver_unregister(&mvneta_driver); 5433 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5434 cpuhp_remove_multi_state(online_hpstate); 5435 } 5436 module_exit(mvneta_driver_exit); 5437 5438 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5439 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5440 MODULE_LICENSE("GPL"); 5441 5442 module_param(rxq_number, int, 0444); 5443 module_param(txq_number, int, 0444); 5444 5445 module_param(rxq_def, int, 0444); 5446 module_param(rx_copybreak, int, 0644); 5447