1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/if_vlan.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/io.h> 27 #include <net/tso.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/of_address.h> 33 #include <linux/phy.h> 34 #include <linux/clk.h> 35 #include <linux/cpu.h> 36 37 /* Registers */ 38 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 39 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 40 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 41 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 42 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 43 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 44 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 45 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 46 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 47 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 48 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 49 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 52 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 53 #define MVNETA_PORT_RX_RESET 0x1cc0 54 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 55 #define MVNETA_PHY_ADDR 0x2000 56 #define MVNETA_PHY_ADDR_MASK 0x1f 57 #define MVNETA_MBUS_RETRY 0x2010 58 #define MVNETA_UNIT_INTR_CAUSE 0x2080 59 #define MVNETA_UNIT_CONTROL 0x20B0 60 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 61 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 62 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 63 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 64 #define MVNETA_BASE_ADDR_ENABLE 0x2290 65 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 66 #define MVNETA_PORT_CONFIG 0x2400 67 #define MVNETA_UNI_PROMISC_MODE BIT(0) 68 #define MVNETA_DEF_RXQ(q) ((q) << 1) 69 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 70 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 71 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 72 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 73 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 74 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 75 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 76 MVNETA_DEF_RXQ_ARP(q) | \ 77 MVNETA_DEF_RXQ_TCP(q) | \ 78 MVNETA_DEF_RXQ_UDP(q) | \ 79 MVNETA_DEF_RXQ_BPDU(q) | \ 80 MVNETA_TX_UNSET_ERR_SUM | \ 81 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 82 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 83 #define MVNETA_MAC_ADDR_LOW 0x2414 84 #define MVNETA_MAC_ADDR_HIGH 0x2418 85 #define MVNETA_SDMA_CONFIG 0x241c 86 #define MVNETA_SDMA_BRST_SIZE_16 4 87 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 88 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 89 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 90 #define MVNETA_DESC_SWAP BIT(6) 91 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 92 #define MVNETA_PORT_STATUS 0x2444 93 #define MVNETA_TX_IN_PRGRS BIT(1) 94 #define MVNETA_TX_FIFO_EMPTY BIT(8) 95 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 96 #define MVNETA_SERDES_CFG 0x24A0 97 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 98 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 99 #define MVNETA_TYPE_PRIO 0x24bc 100 #define MVNETA_FORCE_UNI BIT(21) 101 #define MVNETA_TXQ_CMD_1 0x24e4 102 #define MVNETA_TXQ_CMD 0x2448 103 #define MVNETA_TXQ_DISABLE_SHIFT 8 104 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 105 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 106 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 107 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 108 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 109 #define MVNETA_ACC_MODE 0x2500 110 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 111 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 112 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 113 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 114 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 115 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 116 117 /* Exception Interrupt Port/Queue Cause register 118 * 119 * Their behavior depend of the mapping done using the PCPX2Q 120 * registers. For a given CPU if the bit associated to a queue is not 121 * set, then for the register a read from this CPU will always return 122 * 0 and a write won't do anything 123 */ 124 125 #define MVNETA_INTR_NEW_CAUSE 0x25a0 126 #define MVNETA_INTR_NEW_MASK 0x25a4 127 128 /* bits 0..7 = TXQ SENT, one bit per queue. 129 * bits 8..15 = RXQ OCCUP, one bit per queue. 130 * bits 16..23 = RXQ FREE, one bit per queue. 131 * bit 29 = OLD_REG_SUM, see old reg ? 132 * bit 30 = TX_ERR_SUM, one bit for 4 ports 133 * bit 31 = MISC_SUM, one bit for 4 ports 134 */ 135 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 136 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 137 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 138 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 139 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 140 141 #define MVNETA_INTR_OLD_CAUSE 0x25a8 142 #define MVNETA_INTR_OLD_MASK 0x25ac 143 144 /* Data Path Port/Queue Cause Register */ 145 #define MVNETA_INTR_MISC_CAUSE 0x25b0 146 #define MVNETA_INTR_MISC_MASK 0x25b4 147 148 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 149 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 150 #define MVNETA_CAUSE_PTP BIT(4) 151 152 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 153 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 154 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 155 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 156 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 157 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 158 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 159 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 160 161 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 162 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 163 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 164 165 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 166 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 167 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 168 169 #define MVNETA_INTR_ENABLE 0x25b8 170 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 171 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 172 173 #define MVNETA_RXQ_CMD 0x2680 174 #define MVNETA_RXQ_DISABLE_SHIFT 8 175 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 176 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 177 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 178 #define MVNETA_GMAC_CTRL_0 0x2c00 179 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 180 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 181 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 182 #define MVNETA_GMAC_CTRL_2 0x2c08 183 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 184 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 185 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 186 #define MVNETA_GMAC2_PORT_RESET BIT(6) 187 #define MVNETA_GMAC_STATUS 0x2c10 188 #define MVNETA_GMAC_LINK_UP BIT(0) 189 #define MVNETA_GMAC_SPEED_1000 BIT(1) 190 #define MVNETA_GMAC_SPEED_100 BIT(2) 191 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 192 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 193 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 194 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 195 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 196 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 197 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 198 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 199 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 200 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 201 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 202 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 203 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 204 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 205 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 206 #define MVNETA_MIB_COUNTERS_BASE 0x3000 207 #define MVNETA_MIB_LATE_COLLISION 0x7c 208 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 209 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 210 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 211 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 212 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 213 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 214 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 215 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 216 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 217 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 218 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 219 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 220 #define MVNETA_PORT_TX_RESET 0x3cf0 221 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 222 #define MVNETA_TX_MTU 0x3e0c 223 #define MVNETA_TX_TOKEN_SIZE 0x3e14 224 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 226 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 227 228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 229 230 /* Descriptor ring Macros */ 231 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 232 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 233 234 /* Various constants */ 235 236 /* Coalescing */ 237 #define MVNETA_TXDONE_COAL_PKTS 1 238 #define MVNETA_RX_COAL_PKTS 32 239 #define MVNETA_RX_COAL_USEC 100 240 241 /* The two bytes Marvell header. Either contains a special value used 242 * by Marvell switches when a specific hardware mode is enabled (not 243 * supported by this driver) or is filled automatically by zeroes on 244 * the RX side. Those two bytes being at the front of the Ethernet 245 * header, they allow to have the IP header aligned on a 4 bytes 246 * boundary automatically: the hardware skips those two bytes on its 247 * own. 248 */ 249 #define MVNETA_MH_SIZE 2 250 251 #define MVNETA_VLAN_TAG_LEN 4 252 253 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 254 #define MVNETA_TX_CSUM_DEF_SIZE 1600 255 #define MVNETA_TX_CSUM_MAX_SIZE 9800 256 #define MVNETA_ACC_MODE_EXT 1 257 258 /* Timeout constants */ 259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 262 263 #define MVNETA_TX_MTU_MAX 0x3ffff 264 265 /* The RSS lookup table actually has 256 entries but we do not use 266 * them yet 267 */ 268 #define MVNETA_RSS_LU_TABLE_SIZE 1 269 270 /* TSO header size */ 271 #define TSO_HEADER_SIZE 128 272 273 /* Max number of Rx descriptors */ 274 #define MVNETA_MAX_RXD 128 275 276 /* Max number of Tx descriptors */ 277 #define MVNETA_MAX_TXD 532 278 279 /* Max number of allowed TCP segments for software TSO */ 280 #define MVNETA_MAX_TSO_SEGS 100 281 282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 283 284 /* descriptor aligned size */ 285 #define MVNETA_DESC_ALIGNED_SIZE 32 286 287 #define MVNETA_RX_PKT_SIZE(mtu) \ 288 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 289 ETH_HLEN + ETH_FCS_LEN, \ 290 MVNETA_CPU_D_CACHE_LINE_SIZE) 291 292 #define IS_TSO_HEADER(txq, addr) \ 293 ((addr >= txq->tso_hdrs_phys) && \ 294 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 295 296 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 297 298 struct mvneta_statistic { 299 unsigned short offset; 300 unsigned short type; 301 const char name[ETH_GSTRING_LEN]; 302 }; 303 304 #define T_REG_32 32 305 #define T_REG_64 64 306 307 static const struct mvneta_statistic mvneta_statistics[] = { 308 { 0x3000, T_REG_64, "good_octets_received", }, 309 { 0x3010, T_REG_32, "good_frames_received", }, 310 { 0x3008, T_REG_32, "bad_octets_received", }, 311 { 0x3014, T_REG_32, "bad_frames_received", }, 312 { 0x3018, T_REG_32, "broadcast_frames_received", }, 313 { 0x301c, T_REG_32, "multicast_frames_received", }, 314 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 315 { 0x3058, T_REG_32, "good_fc_received", }, 316 { 0x305c, T_REG_32, "bad_fc_received", }, 317 { 0x3060, T_REG_32, "undersize_received", }, 318 { 0x3064, T_REG_32, "fragments_received", }, 319 { 0x3068, T_REG_32, "oversize_received", }, 320 { 0x306c, T_REG_32, "jabber_received", }, 321 { 0x3070, T_REG_32, "mac_receive_error", }, 322 { 0x3074, T_REG_32, "bad_crc_event", }, 323 { 0x3078, T_REG_32, "collision", }, 324 { 0x307c, T_REG_32, "late_collision", }, 325 { 0x2484, T_REG_32, "rx_discard", }, 326 { 0x2488, T_REG_32, "rx_overrun", }, 327 { 0x3020, T_REG_32, "frames_64_octets", }, 328 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 329 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 330 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 331 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 332 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 333 { 0x3038, T_REG_64, "good_octets_sent", }, 334 { 0x3040, T_REG_32, "good_frames_sent", }, 335 { 0x3044, T_REG_32, "excessive_collision", }, 336 { 0x3048, T_REG_32, "multicast_frames_sent", }, 337 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 338 { 0x3054, T_REG_32, "fc_sent", }, 339 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 340 }; 341 342 struct mvneta_pcpu_stats { 343 struct u64_stats_sync syncp; 344 u64 rx_packets; 345 u64 rx_bytes; 346 u64 tx_packets; 347 u64 tx_bytes; 348 }; 349 350 struct mvneta_pcpu_port { 351 /* Pointer to the shared port */ 352 struct mvneta_port *pp; 353 354 /* Pointer to the CPU-local NAPI struct */ 355 struct napi_struct napi; 356 357 /* Cause of the previous interrupt */ 358 u32 cause_rx_tx; 359 }; 360 361 struct mvneta_port { 362 struct mvneta_pcpu_port __percpu *ports; 363 struct mvneta_pcpu_stats __percpu *stats; 364 365 int pkt_size; 366 unsigned int frag_size; 367 void __iomem *base; 368 struct mvneta_rx_queue *rxqs; 369 struct mvneta_tx_queue *txqs; 370 struct net_device *dev; 371 struct notifier_block cpu_notifier; 372 int rxq_def; 373 374 /* Core clock */ 375 struct clk *clk; 376 u8 mcast_count[256]; 377 u16 tx_ring_size; 378 u16 rx_ring_size; 379 380 struct mii_bus *mii_bus; 381 struct phy_device *phy_dev; 382 phy_interface_t phy_interface; 383 struct device_node *phy_node; 384 unsigned int link; 385 unsigned int duplex; 386 unsigned int speed; 387 unsigned int tx_csum_limit; 388 unsigned int use_inband_status:1; 389 390 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 391 392 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 393 }; 394 395 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 396 * layout of the transmit and reception DMA descriptors, and their 397 * layout is therefore defined by the hardware design 398 */ 399 400 #define MVNETA_TX_L3_OFF_SHIFT 0 401 #define MVNETA_TX_IP_HLEN_SHIFT 8 402 #define MVNETA_TX_L4_UDP BIT(16) 403 #define MVNETA_TX_L3_IP6 BIT(17) 404 #define MVNETA_TXD_IP_CSUM BIT(18) 405 #define MVNETA_TXD_Z_PAD BIT(19) 406 #define MVNETA_TXD_L_DESC BIT(20) 407 #define MVNETA_TXD_F_DESC BIT(21) 408 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 409 MVNETA_TXD_L_DESC | \ 410 MVNETA_TXD_F_DESC) 411 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 412 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 413 414 #define MVNETA_RXD_ERR_CRC 0x0 415 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 416 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 417 #define MVNETA_RXD_ERR_LEN BIT(18) 418 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 419 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 420 #define MVNETA_RXD_L3_IP4 BIT(25) 421 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 422 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 423 424 #if defined(__LITTLE_ENDIAN) 425 struct mvneta_tx_desc { 426 u32 command; /* Options used by HW for packet transmitting.*/ 427 u16 reserverd1; /* csum_l4 (for future use) */ 428 u16 data_size; /* Data size of transmitted packet in bytes */ 429 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 430 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 431 u32 reserved3[4]; /* Reserved - (for future use) */ 432 }; 433 434 struct mvneta_rx_desc { 435 u32 status; /* Info about received packet */ 436 u16 reserved1; /* pnc_info - (for future use, PnC) */ 437 u16 data_size; /* Size of received packet in bytes */ 438 439 u32 buf_phys_addr; /* Physical address of the buffer */ 440 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 441 442 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 443 u16 reserved3; /* prefetch_cmd, for future use */ 444 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 445 446 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 447 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 448 }; 449 #else 450 struct mvneta_tx_desc { 451 u16 data_size; /* Data size of transmitted packet in bytes */ 452 u16 reserverd1; /* csum_l4 (for future use) */ 453 u32 command; /* Options used by HW for packet transmitting.*/ 454 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 455 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 456 u32 reserved3[4]; /* Reserved - (for future use) */ 457 }; 458 459 struct mvneta_rx_desc { 460 u16 data_size; /* Size of received packet in bytes */ 461 u16 reserved1; /* pnc_info - (for future use, PnC) */ 462 u32 status; /* Info about received packet */ 463 464 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 465 u32 buf_phys_addr; /* Physical address of the buffer */ 466 467 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 468 u16 reserved3; /* prefetch_cmd, for future use */ 469 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 470 471 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 472 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 473 }; 474 #endif 475 476 struct mvneta_tx_queue { 477 /* Number of this TX queue, in the range 0-7 */ 478 u8 id; 479 480 /* Number of TX DMA descriptors in the descriptor ring */ 481 int size; 482 483 /* Number of currently used TX DMA descriptor in the 484 * descriptor ring 485 */ 486 int count; 487 int tx_stop_threshold; 488 int tx_wake_threshold; 489 490 /* Array of transmitted skb */ 491 struct sk_buff **tx_skb; 492 493 /* Index of last TX DMA descriptor that was inserted */ 494 int txq_put_index; 495 496 /* Index of the TX DMA descriptor to be cleaned up */ 497 int txq_get_index; 498 499 u32 done_pkts_coal; 500 501 /* Virtual address of the TX DMA descriptors array */ 502 struct mvneta_tx_desc *descs; 503 504 /* DMA address of the TX DMA descriptors array */ 505 dma_addr_t descs_phys; 506 507 /* Index of the last TX DMA descriptor */ 508 int last_desc; 509 510 /* Index of the next TX DMA descriptor to process */ 511 int next_desc_to_proc; 512 513 /* DMA buffers for TSO headers */ 514 char *tso_hdrs; 515 516 /* DMA address of TSO headers */ 517 dma_addr_t tso_hdrs_phys; 518 519 /* Affinity mask for CPUs*/ 520 cpumask_t affinity_mask; 521 }; 522 523 struct mvneta_rx_queue { 524 /* rx queue number, in the range 0-7 */ 525 u8 id; 526 527 /* num of rx descriptors in the rx descriptor ring */ 528 int size; 529 530 /* counter of times when mvneta_refill() failed */ 531 int missed; 532 533 u32 pkts_coal; 534 u32 time_coal; 535 536 /* Virtual address of the RX DMA descriptors array */ 537 struct mvneta_rx_desc *descs; 538 539 /* DMA address of the RX DMA descriptors array */ 540 dma_addr_t descs_phys; 541 542 /* Index of the last RX DMA descriptor */ 543 int last_desc; 544 545 /* Index of the next RX DMA descriptor to process */ 546 int next_desc_to_proc; 547 }; 548 549 /* The hardware supports eight (8) rx queues, but we are only allowing 550 * the first one to be used. Therefore, let's just allocate one queue. 551 */ 552 static int rxq_number = 8; 553 static int txq_number = 8; 554 555 static int rxq_def; 556 557 static int rx_copybreak __read_mostly = 256; 558 559 #define MVNETA_DRIVER_NAME "mvneta" 560 #define MVNETA_DRIVER_VERSION "1.0" 561 562 /* Utility/helper methods */ 563 564 /* Write helper method */ 565 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 566 { 567 writel(data, pp->base + offset); 568 } 569 570 /* Read helper method */ 571 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 572 { 573 return readl(pp->base + offset); 574 } 575 576 /* Increment txq get counter */ 577 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 578 { 579 txq->txq_get_index++; 580 if (txq->txq_get_index == txq->size) 581 txq->txq_get_index = 0; 582 } 583 584 /* Increment txq put counter */ 585 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 586 { 587 txq->txq_put_index++; 588 if (txq->txq_put_index == txq->size) 589 txq->txq_put_index = 0; 590 } 591 592 593 /* Clear all MIB counters */ 594 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 595 { 596 int i; 597 u32 dummy; 598 599 /* Perform dummy reads from MIB counters */ 600 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 601 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 602 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 603 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 604 } 605 606 /* Get System Network Statistics */ 607 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 608 struct rtnl_link_stats64 *stats) 609 { 610 struct mvneta_port *pp = netdev_priv(dev); 611 unsigned int start; 612 int cpu; 613 614 for_each_possible_cpu(cpu) { 615 struct mvneta_pcpu_stats *cpu_stats; 616 u64 rx_packets; 617 u64 rx_bytes; 618 u64 tx_packets; 619 u64 tx_bytes; 620 621 cpu_stats = per_cpu_ptr(pp->stats, cpu); 622 do { 623 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 624 rx_packets = cpu_stats->rx_packets; 625 rx_bytes = cpu_stats->rx_bytes; 626 tx_packets = cpu_stats->tx_packets; 627 tx_bytes = cpu_stats->tx_bytes; 628 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 629 630 stats->rx_packets += rx_packets; 631 stats->rx_bytes += rx_bytes; 632 stats->tx_packets += tx_packets; 633 stats->tx_bytes += tx_bytes; 634 } 635 636 stats->rx_errors = dev->stats.rx_errors; 637 stats->rx_dropped = dev->stats.rx_dropped; 638 639 stats->tx_dropped = dev->stats.tx_dropped; 640 641 return stats; 642 } 643 644 /* Rx descriptors helper methods */ 645 646 /* Checks whether the RX descriptor having this status is both the first 647 * and the last descriptor for the RX packet. Each RX packet is currently 648 * received through a single RX descriptor, so not having each RX 649 * descriptor with its first and last bits set is an error 650 */ 651 static int mvneta_rxq_desc_is_first_last(u32 status) 652 { 653 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 654 MVNETA_RXD_FIRST_LAST_DESC; 655 } 656 657 /* Add number of descriptors ready to receive new packets */ 658 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 659 struct mvneta_rx_queue *rxq, 660 int ndescs) 661 { 662 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 663 * be added at once 664 */ 665 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 666 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 667 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 668 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 669 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 670 } 671 672 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 673 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 674 } 675 676 /* Get number of RX descriptors occupied by received packets */ 677 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 678 struct mvneta_rx_queue *rxq) 679 { 680 u32 val; 681 682 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 683 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 684 } 685 686 /* Update num of rx desc called upon return from rx path or 687 * from mvneta_rxq_drop_pkts(). 688 */ 689 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 690 struct mvneta_rx_queue *rxq, 691 int rx_done, int rx_filled) 692 { 693 u32 val; 694 695 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 696 val = rx_done | 697 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 698 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 699 return; 700 } 701 702 /* Only 255 descriptors can be added at once */ 703 while ((rx_done > 0) || (rx_filled > 0)) { 704 if (rx_done <= 0xff) { 705 val = rx_done; 706 rx_done = 0; 707 } else { 708 val = 0xff; 709 rx_done -= 0xff; 710 } 711 if (rx_filled <= 0xff) { 712 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 713 rx_filled = 0; 714 } else { 715 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 716 rx_filled -= 0xff; 717 } 718 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 719 } 720 } 721 722 /* Get pointer to next RX descriptor to be processed by SW */ 723 static struct mvneta_rx_desc * 724 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 725 { 726 int rx_desc = rxq->next_desc_to_proc; 727 728 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 729 prefetch(rxq->descs + rxq->next_desc_to_proc); 730 return rxq->descs + rx_desc; 731 } 732 733 /* Change maximum receive size of the port. */ 734 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 735 { 736 u32 val; 737 738 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 739 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 740 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 741 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 742 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 743 } 744 745 746 /* Set rx queue offset */ 747 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 748 struct mvneta_rx_queue *rxq, 749 int offset) 750 { 751 u32 val; 752 753 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 754 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 755 756 /* Offset is in */ 757 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 758 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 759 } 760 761 762 /* Tx descriptors helper methods */ 763 764 /* Update HW with number of TX descriptors to be sent */ 765 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 766 struct mvneta_tx_queue *txq, 767 int pend_desc) 768 { 769 u32 val; 770 771 /* Only 255 descriptors can be added at once ; Assume caller 772 * process TX desriptors in quanta less than 256 773 */ 774 val = pend_desc; 775 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 776 } 777 778 /* Get pointer to next TX descriptor to be processed (send) by HW */ 779 static struct mvneta_tx_desc * 780 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 781 { 782 int tx_desc = txq->next_desc_to_proc; 783 784 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 785 return txq->descs + tx_desc; 786 } 787 788 /* Release the last allocated TX descriptor. Useful to handle DMA 789 * mapping failures in the TX path. 790 */ 791 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 792 { 793 if (txq->next_desc_to_proc == 0) 794 txq->next_desc_to_proc = txq->last_desc - 1; 795 else 796 txq->next_desc_to_proc--; 797 } 798 799 /* Set rxq buf size */ 800 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 801 struct mvneta_rx_queue *rxq, 802 int buf_size) 803 { 804 u32 val; 805 806 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 807 808 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 809 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 810 811 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 812 } 813 814 /* Disable buffer management (BM) */ 815 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 816 struct mvneta_rx_queue *rxq) 817 { 818 u32 val; 819 820 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 821 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 822 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 823 } 824 825 /* Start the Ethernet port RX and TX activity */ 826 static void mvneta_port_up(struct mvneta_port *pp) 827 { 828 int queue; 829 u32 q_map; 830 831 /* Enable all initialized TXs. */ 832 q_map = 0; 833 for (queue = 0; queue < txq_number; queue++) { 834 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 835 if (txq->descs != NULL) 836 q_map |= (1 << queue); 837 } 838 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 839 840 /* Enable all initialized RXQs. */ 841 for (queue = 0; queue < rxq_number; queue++) { 842 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 843 844 if (rxq->descs != NULL) 845 q_map |= (1 << queue); 846 } 847 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 848 } 849 850 /* Stop the Ethernet port activity */ 851 static void mvneta_port_down(struct mvneta_port *pp) 852 { 853 u32 val; 854 int count; 855 856 /* Stop Rx port activity. Check port Rx activity. */ 857 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 858 859 /* Issue stop command for active channels only */ 860 if (val != 0) 861 mvreg_write(pp, MVNETA_RXQ_CMD, 862 val << MVNETA_RXQ_DISABLE_SHIFT); 863 864 /* Wait for all Rx activity to terminate. */ 865 count = 0; 866 do { 867 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 868 netdev_warn(pp->dev, 869 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 870 val); 871 break; 872 } 873 mdelay(1); 874 875 val = mvreg_read(pp, MVNETA_RXQ_CMD); 876 } while (val & 0xff); 877 878 /* Stop Tx port activity. Check port Tx activity. Issue stop 879 * command for active channels only 880 */ 881 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 882 883 if (val != 0) 884 mvreg_write(pp, MVNETA_TXQ_CMD, 885 (val << MVNETA_TXQ_DISABLE_SHIFT)); 886 887 /* Wait for all Tx activity to terminate. */ 888 count = 0; 889 do { 890 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 891 netdev_warn(pp->dev, 892 "TIMEOUT for TX stopped status=0x%08x\n", 893 val); 894 break; 895 } 896 mdelay(1); 897 898 /* Check TX Command reg that all Txqs are stopped */ 899 val = mvreg_read(pp, MVNETA_TXQ_CMD); 900 901 } while (val & 0xff); 902 903 /* Double check to verify that TX FIFO is empty */ 904 count = 0; 905 do { 906 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 907 netdev_warn(pp->dev, 908 "TX FIFO empty timeout status=0x08%x\n", 909 val); 910 break; 911 } 912 mdelay(1); 913 914 val = mvreg_read(pp, MVNETA_PORT_STATUS); 915 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 916 (val & MVNETA_TX_IN_PRGRS)); 917 918 udelay(200); 919 } 920 921 /* Enable the port by setting the port enable bit of the MAC control register */ 922 static void mvneta_port_enable(struct mvneta_port *pp) 923 { 924 u32 val; 925 926 /* Enable port */ 927 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 928 val |= MVNETA_GMAC0_PORT_ENABLE; 929 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 930 } 931 932 /* Disable the port and wait for about 200 usec before retuning */ 933 static void mvneta_port_disable(struct mvneta_port *pp) 934 { 935 u32 val; 936 937 /* Reset the Enable bit in the Serial Control Register */ 938 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 939 val &= ~MVNETA_GMAC0_PORT_ENABLE; 940 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 941 942 udelay(200); 943 } 944 945 /* Multicast tables methods */ 946 947 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 948 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 949 { 950 int offset; 951 u32 val; 952 953 if (queue == -1) { 954 val = 0; 955 } else { 956 val = 0x1 | (queue << 1); 957 val |= (val << 24) | (val << 16) | (val << 8); 958 } 959 960 for (offset = 0; offset <= 0xc; offset += 4) 961 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 962 } 963 964 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 965 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 966 { 967 int offset; 968 u32 val; 969 970 if (queue == -1) { 971 val = 0; 972 } else { 973 val = 0x1 | (queue << 1); 974 val |= (val << 24) | (val << 16) | (val << 8); 975 } 976 977 for (offset = 0; offset <= 0xfc; offset += 4) 978 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 979 980 } 981 982 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 983 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 984 { 985 int offset; 986 u32 val; 987 988 if (queue == -1) { 989 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 990 val = 0; 991 } else { 992 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 993 val = 0x1 | (queue << 1); 994 val |= (val << 24) | (val << 16) | (val << 8); 995 } 996 997 for (offset = 0; offset <= 0xfc; offset += 4) 998 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 999 } 1000 1001 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1002 { 1003 u32 val; 1004 1005 if (enable) { 1006 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1007 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1008 MVNETA_GMAC_FORCE_LINK_DOWN | 1009 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1010 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1011 MVNETA_GMAC_AN_SPEED_EN | 1012 MVNETA_GMAC_AN_DUPLEX_EN; 1013 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1014 1015 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1016 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1017 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1018 1019 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1020 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1021 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1022 } else { 1023 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1024 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1025 MVNETA_GMAC_AN_SPEED_EN | 1026 MVNETA_GMAC_AN_DUPLEX_EN); 1027 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1028 1029 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1030 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1031 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1032 1033 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1034 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1035 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1036 } 1037 } 1038 1039 /* This method sets defaults to the NETA port: 1040 * Clears interrupt Cause and Mask registers. 1041 * Clears all MAC tables. 1042 * Sets defaults to all registers. 1043 * Resets RX and TX descriptor rings. 1044 * Resets PHY. 1045 * This method can be called after mvneta_port_down() to return the port 1046 * settings to defaults. 1047 */ 1048 static void mvneta_defaults_set(struct mvneta_port *pp) 1049 { 1050 int cpu; 1051 int queue; 1052 u32 val; 1053 int max_cpu = num_present_cpus(); 1054 1055 /* Clear all Cause registers */ 1056 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1057 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1058 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1059 1060 /* Mask all interrupts */ 1061 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1062 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1063 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1064 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1065 1066 /* Enable MBUS Retry bit16 */ 1067 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1068 1069 /* Set CPU queue access map. CPUs are assigned to the RX and 1070 * TX queues modulo their number. If there is only one TX 1071 * queue then it is assigned to the CPU associated to the 1072 * default RX queue. 1073 */ 1074 for_each_present_cpu(cpu) { 1075 int rxq_map = 0, txq_map = 0; 1076 int rxq, txq; 1077 1078 for (rxq = 0; rxq < rxq_number; rxq++) 1079 if ((rxq % max_cpu) == cpu) 1080 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1081 1082 for (txq = 0; txq < txq_number; txq++) 1083 if ((txq % max_cpu) == cpu) 1084 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1085 1086 /* With only one TX queue we configure a special case 1087 * which will allow to get all the irq on a single 1088 * CPU 1089 */ 1090 if (txq_number == 1) 1091 txq_map = (cpu == pp->rxq_def) ? 1092 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1093 1094 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1095 } 1096 1097 /* Reset RX and TX DMAs */ 1098 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1099 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1100 1101 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1102 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1103 for (queue = 0; queue < txq_number; queue++) { 1104 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1105 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1106 } 1107 1108 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1109 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1110 1111 /* Set Port Acceleration Mode */ 1112 val = MVNETA_ACC_MODE_EXT; 1113 mvreg_write(pp, MVNETA_ACC_MODE, val); 1114 1115 /* Update val of portCfg register accordingly with all RxQueue types */ 1116 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1117 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1118 1119 val = 0; 1120 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1121 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1122 1123 /* Build PORT_SDMA_CONFIG_REG */ 1124 val = 0; 1125 1126 /* Default burst size */ 1127 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1128 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1129 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1130 1131 #if defined(__BIG_ENDIAN) 1132 val |= MVNETA_DESC_SWAP; 1133 #endif 1134 1135 /* Assign port SDMA configuration */ 1136 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1137 1138 /* Disable PHY polling in hardware, since we're using the 1139 * kernel phylib to do this. 1140 */ 1141 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1142 val &= ~MVNETA_PHY_POLLING_ENABLE; 1143 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1144 1145 mvneta_set_autoneg(pp, pp->use_inband_status); 1146 mvneta_set_ucast_table(pp, -1); 1147 mvneta_set_special_mcast_table(pp, -1); 1148 mvneta_set_other_mcast_table(pp, -1); 1149 1150 /* Set port interrupt enable register - default enable all */ 1151 mvreg_write(pp, MVNETA_INTR_ENABLE, 1152 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1153 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1154 1155 mvneta_mib_counters_clear(pp); 1156 } 1157 1158 /* Set max sizes for tx queues */ 1159 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1160 1161 { 1162 u32 val, size, mtu; 1163 int queue; 1164 1165 mtu = max_tx_size * 8; 1166 if (mtu > MVNETA_TX_MTU_MAX) 1167 mtu = MVNETA_TX_MTU_MAX; 1168 1169 /* Set MTU */ 1170 val = mvreg_read(pp, MVNETA_TX_MTU); 1171 val &= ~MVNETA_TX_MTU_MAX; 1172 val |= mtu; 1173 mvreg_write(pp, MVNETA_TX_MTU, val); 1174 1175 /* TX token size and all TXQs token size must be larger that MTU */ 1176 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1177 1178 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1179 if (size < mtu) { 1180 size = mtu; 1181 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1182 val |= size; 1183 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1184 } 1185 for (queue = 0; queue < txq_number; queue++) { 1186 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1187 1188 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1189 if (size < mtu) { 1190 size = mtu; 1191 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1192 val |= size; 1193 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1194 } 1195 } 1196 } 1197 1198 /* Set unicast address */ 1199 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1200 int queue) 1201 { 1202 unsigned int unicast_reg; 1203 unsigned int tbl_offset; 1204 unsigned int reg_offset; 1205 1206 /* Locate the Unicast table entry */ 1207 last_nibble = (0xf & last_nibble); 1208 1209 /* offset from unicast tbl base */ 1210 tbl_offset = (last_nibble / 4) * 4; 1211 1212 /* offset within the above reg */ 1213 reg_offset = last_nibble % 4; 1214 1215 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1216 1217 if (queue == -1) { 1218 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1219 unicast_reg &= ~(0xff << (8 * reg_offset)); 1220 } else { 1221 unicast_reg &= ~(0xff << (8 * reg_offset)); 1222 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1223 } 1224 1225 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1226 } 1227 1228 /* Set mac address */ 1229 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1230 int queue) 1231 { 1232 unsigned int mac_h; 1233 unsigned int mac_l; 1234 1235 if (queue != -1) { 1236 mac_l = (addr[4] << 8) | (addr[5]); 1237 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1238 (addr[2] << 8) | (addr[3] << 0); 1239 1240 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1241 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1242 } 1243 1244 /* Accept frames of this address */ 1245 mvneta_set_ucast_addr(pp, addr[5], queue); 1246 } 1247 1248 /* Set the number of packets that will be received before RX interrupt 1249 * will be generated by HW. 1250 */ 1251 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1252 struct mvneta_rx_queue *rxq, u32 value) 1253 { 1254 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1255 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1256 rxq->pkts_coal = value; 1257 } 1258 1259 /* Set the time delay in usec before RX interrupt will be generated by 1260 * HW. 1261 */ 1262 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1263 struct mvneta_rx_queue *rxq, u32 value) 1264 { 1265 u32 val; 1266 unsigned long clk_rate; 1267 1268 clk_rate = clk_get_rate(pp->clk); 1269 val = (clk_rate / 1000000) * value; 1270 1271 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1272 rxq->time_coal = value; 1273 } 1274 1275 /* Set threshold for TX_DONE pkts coalescing */ 1276 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1277 struct mvneta_tx_queue *txq, u32 value) 1278 { 1279 u32 val; 1280 1281 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1282 1283 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1284 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1285 1286 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1287 1288 txq->done_pkts_coal = value; 1289 } 1290 1291 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1292 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1293 u32 phys_addr, u32 cookie) 1294 { 1295 rx_desc->buf_cookie = cookie; 1296 rx_desc->buf_phys_addr = phys_addr; 1297 } 1298 1299 /* Decrement sent descriptors counter */ 1300 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1301 struct mvneta_tx_queue *txq, 1302 int sent_desc) 1303 { 1304 u32 val; 1305 1306 /* Only 255 TX descriptors can be updated at once */ 1307 while (sent_desc > 0xff) { 1308 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1309 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1310 sent_desc = sent_desc - 0xff; 1311 } 1312 1313 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1314 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1315 } 1316 1317 /* Get number of TX descriptors already sent by HW */ 1318 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1319 struct mvneta_tx_queue *txq) 1320 { 1321 u32 val; 1322 int sent_desc; 1323 1324 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1325 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1326 MVNETA_TXQ_SENT_DESC_SHIFT; 1327 1328 return sent_desc; 1329 } 1330 1331 /* Get number of sent descriptors and decrement counter. 1332 * The number of sent descriptors is returned. 1333 */ 1334 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1335 struct mvneta_tx_queue *txq) 1336 { 1337 int sent_desc; 1338 1339 /* Get number of sent descriptors */ 1340 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1341 1342 /* Decrement sent descriptors counter */ 1343 if (sent_desc) 1344 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1345 1346 return sent_desc; 1347 } 1348 1349 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1350 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1351 int ip_hdr_len, int l4_proto) 1352 { 1353 u32 command; 1354 1355 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1356 * G_L4_chk, L4_type; required only for checksum 1357 * calculation 1358 */ 1359 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1360 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1361 1362 if (l3_proto == htons(ETH_P_IP)) 1363 command |= MVNETA_TXD_IP_CSUM; 1364 else 1365 command |= MVNETA_TX_L3_IP6; 1366 1367 if (l4_proto == IPPROTO_TCP) 1368 command |= MVNETA_TX_L4_CSUM_FULL; 1369 else if (l4_proto == IPPROTO_UDP) 1370 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1371 else 1372 command |= MVNETA_TX_L4_CSUM_NOT; 1373 1374 return command; 1375 } 1376 1377 1378 /* Display more error info */ 1379 static void mvneta_rx_error(struct mvneta_port *pp, 1380 struct mvneta_rx_desc *rx_desc) 1381 { 1382 u32 status = rx_desc->status; 1383 1384 if (!mvneta_rxq_desc_is_first_last(status)) { 1385 netdev_err(pp->dev, 1386 "bad rx status %08x (buffer oversize), size=%d\n", 1387 status, rx_desc->data_size); 1388 return; 1389 } 1390 1391 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1392 case MVNETA_RXD_ERR_CRC: 1393 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1394 status, rx_desc->data_size); 1395 break; 1396 case MVNETA_RXD_ERR_OVERRUN: 1397 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1398 status, rx_desc->data_size); 1399 break; 1400 case MVNETA_RXD_ERR_LEN: 1401 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1402 status, rx_desc->data_size); 1403 break; 1404 case MVNETA_RXD_ERR_RESOURCE: 1405 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1406 status, rx_desc->data_size); 1407 break; 1408 } 1409 } 1410 1411 /* Handle RX checksum offload based on the descriptor's status */ 1412 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1413 struct sk_buff *skb) 1414 { 1415 if ((status & MVNETA_RXD_L3_IP4) && 1416 (status & MVNETA_RXD_L4_CSUM_OK)) { 1417 skb->csum = 0; 1418 skb->ip_summed = CHECKSUM_UNNECESSARY; 1419 return; 1420 } 1421 1422 skb->ip_summed = CHECKSUM_NONE; 1423 } 1424 1425 /* Return tx queue pointer (find last set bit) according to <cause> returned 1426 * form tx_done reg. <cause> must not be null. The return value is always a 1427 * valid queue for matching the first one found in <cause>. 1428 */ 1429 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1430 u32 cause) 1431 { 1432 int queue = fls(cause) - 1; 1433 1434 return &pp->txqs[queue]; 1435 } 1436 1437 /* Free tx queue skbuffs */ 1438 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1439 struct mvneta_tx_queue *txq, int num) 1440 { 1441 int i; 1442 1443 for (i = 0; i < num; i++) { 1444 struct mvneta_tx_desc *tx_desc = txq->descs + 1445 txq->txq_get_index; 1446 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1447 1448 mvneta_txq_inc_get(txq); 1449 1450 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1451 dma_unmap_single(pp->dev->dev.parent, 1452 tx_desc->buf_phys_addr, 1453 tx_desc->data_size, DMA_TO_DEVICE); 1454 if (!skb) 1455 continue; 1456 dev_kfree_skb_any(skb); 1457 } 1458 } 1459 1460 /* Handle end of transmission */ 1461 static void mvneta_txq_done(struct mvneta_port *pp, 1462 struct mvneta_tx_queue *txq) 1463 { 1464 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1465 int tx_done; 1466 1467 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1468 if (!tx_done) 1469 return; 1470 1471 mvneta_txq_bufs_free(pp, txq, tx_done); 1472 1473 txq->count -= tx_done; 1474 1475 if (netif_tx_queue_stopped(nq)) { 1476 if (txq->count <= txq->tx_wake_threshold) 1477 netif_tx_wake_queue(nq); 1478 } 1479 } 1480 1481 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1482 { 1483 if (likely(pp->frag_size <= PAGE_SIZE)) 1484 return netdev_alloc_frag(pp->frag_size); 1485 else 1486 return kmalloc(pp->frag_size, GFP_ATOMIC); 1487 } 1488 1489 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1490 { 1491 if (likely(pp->frag_size <= PAGE_SIZE)) 1492 skb_free_frag(data); 1493 else 1494 kfree(data); 1495 } 1496 1497 /* Refill processing */ 1498 static int mvneta_rx_refill(struct mvneta_port *pp, 1499 struct mvneta_rx_desc *rx_desc) 1500 1501 { 1502 dma_addr_t phys_addr; 1503 void *data; 1504 1505 data = mvneta_frag_alloc(pp); 1506 if (!data) 1507 return -ENOMEM; 1508 1509 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1510 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1511 DMA_FROM_DEVICE); 1512 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1513 mvneta_frag_free(pp, data); 1514 return -ENOMEM; 1515 } 1516 1517 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1518 return 0; 1519 } 1520 1521 /* Handle tx checksum */ 1522 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1523 { 1524 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1525 int ip_hdr_len = 0; 1526 __be16 l3_proto = vlan_get_protocol(skb); 1527 u8 l4_proto; 1528 1529 if (l3_proto == htons(ETH_P_IP)) { 1530 struct iphdr *ip4h = ip_hdr(skb); 1531 1532 /* Calculate IPv4 checksum and L4 checksum */ 1533 ip_hdr_len = ip4h->ihl; 1534 l4_proto = ip4h->protocol; 1535 } else if (l3_proto == htons(ETH_P_IPV6)) { 1536 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1537 1538 /* Read l4_protocol from one of IPv6 extra headers */ 1539 if (skb_network_header_len(skb) > 0) 1540 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1541 l4_proto = ip6h->nexthdr; 1542 } else 1543 return MVNETA_TX_L4_CSUM_NOT; 1544 1545 return mvneta_txq_desc_csum(skb_network_offset(skb), 1546 l3_proto, ip_hdr_len, l4_proto); 1547 } 1548 1549 return MVNETA_TX_L4_CSUM_NOT; 1550 } 1551 1552 /* Drop packets received by the RXQ and free buffers */ 1553 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1554 struct mvneta_rx_queue *rxq) 1555 { 1556 int rx_done, i; 1557 1558 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1559 for (i = 0; i < rxq->size; i++) { 1560 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1561 void *data = (void *)rx_desc->buf_cookie; 1562 1563 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1564 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1565 mvneta_frag_free(pp, data); 1566 } 1567 1568 if (rx_done) 1569 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1570 } 1571 1572 /* Main rx processing */ 1573 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1574 struct mvneta_rx_queue *rxq) 1575 { 1576 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1577 struct net_device *dev = pp->dev; 1578 int rx_done; 1579 u32 rcvd_pkts = 0; 1580 u32 rcvd_bytes = 0; 1581 1582 /* Get number of received packets */ 1583 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1584 1585 if (rx_todo > rx_done) 1586 rx_todo = rx_done; 1587 1588 rx_done = 0; 1589 1590 /* Fairness NAPI loop */ 1591 while (rx_done < rx_todo) { 1592 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1593 struct sk_buff *skb; 1594 unsigned char *data; 1595 dma_addr_t phys_addr; 1596 u32 rx_status; 1597 int rx_bytes, err; 1598 1599 rx_done++; 1600 rx_status = rx_desc->status; 1601 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1602 data = (unsigned char *)rx_desc->buf_cookie; 1603 phys_addr = rx_desc->buf_phys_addr; 1604 1605 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1606 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1607 err_drop_frame: 1608 dev->stats.rx_errors++; 1609 mvneta_rx_error(pp, rx_desc); 1610 /* leave the descriptor untouched */ 1611 continue; 1612 } 1613 1614 if (rx_bytes <= rx_copybreak) { 1615 /* better copy a small frame and not unmap the DMA region */ 1616 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1617 if (unlikely(!skb)) 1618 goto err_drop_frame; 1619 1620 dma_sync_single_range_for_cpu(dev->dev.parent, 1621 rx_desc->buf_phys_addr, 1622 MVNETA_MH_SIZE + NET_SKB_PAD, 1623 rx_bytes, 1624 DMA_FROM_DEVICE); 1625 memcpy(skb_put(skb, rx_bytes), 1626 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1627 rx_bytes); 1628 1629 skb->protocol = eth_type_trans(skb, dev); 1630 mvneta_rx_csum(pp, rx_status, skb); 1631 napi_gro_receive(&port->napi, skb); 1632 1633 rcvd_pkts++; 1634 rcvd_bytes += rx_bytes; 1635 1636 /* leave the descriptor and buffer untouched */ 1637 continue; 1638 } 1639 1640 /* Refill processing */ 1641 err = mvneta_rx_refill(pp, rx_desc); 1642 if (err) { 1643 netdev_err(dev, "Linux processing - Can't refill\n"); 1644 rxq->missed++; 1645 goto err_drop_frame; 1646 } 1647 1648 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1649 1650 /* After refill old buffer has to be unmapped regardless 1651 * the skb is successfully built or not. 1652 */ 1653 dma_unmap_single(dev->dev.parent, phys_addr, 1654 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1655 1656 if (!skb) 1657 goto err_drop_frame; 1658 1659 rcvd_pkts++; 1660 rcvd_bytes += rx_bytes; 1661 1662 /* Linux processing */ 1663 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1664 skb_put(skb, rx_bytes); 1665 1666 skb->protocol = eth_type_trans(skb, dev); 1667 1668 mvneta_rx_csum(pp, rx_status, skb); 1669 1670 napi_gro_receive(&port->napi, skb); 1671 } 1672 1673 if (rcvd_pkts) { 1674 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1675 1676 u64_stats_update_begin(&stats->syncp); 1677 stats->rx_packets += rcvd_pkts; 1678 stats->rx_bytes += rcvd_bytes; 1679 u64_stats_update_end(&stats->syncp); 1680 } 1681 1682 /* Update rxq management counters */ 1683 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1684 1685 return rx_done; 1686 } 1687 1688 static inline void 1689 mvneta_tso_put_hdr(struct sk_buff *skb, 1690 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1691 { 1692 struct mvneta_tx_desc *tx_desc; 1693 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1694 1695 txq->tx_skb[txq->txq_put_index] = NULL; 1696 tx_desc = mvneta_txq_next_desc_get(txq); 1697 tx_desc->data_size = hdr_len; 1698 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1699 tx_desc->command |= MVNETA_TXD_F_DESC; 1700 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1701 txq->txq_put_index * TSO_HEADER_SIZE; 1702 mvneta_txq_inc_put(txq); 1703 } 1704 1705 static inline int 1706 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1707 struct sk_buff *skb, char *data, int size, 1708 bool last_tcp, bool is_last) 1709 { 1710 struct mvneta_tx_desc *tx_desc; 1711 1712 tx_desc = mvneta_txq_next_desc_get(txq); 1713 tx_desc->data_size = size; 1714 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1715 size, DMA_TO_DEVICE); 1716 if (unlikely(dma_mapping_error(dev->dev.parent, 1717 tx_desc->buf_phys_addr))) { 1718 mvneta_txq_desc_put(txq); 1719 return -ENOMEM; 1720 } 1721 1722 tx_desc->command = 0; 1723 txq->tx_skb[txq->txq_put_index] = NULL; 1724 1725 if (last_tcp) { 1726 /* last descriptor in the TCP packet */ 1727 tx_desc->command = MVNETA_TXD_L_DESC; 1728 1729 /* last descriptor in SKB */ 1730 if (is_last) 1731 txq->tx_skb[txq->txq_put_index] = skb; 1732 } 1733 mvneta_txq_inc_put(txq); 1734 return 0; 1735 } 1736 1737 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1738 struct mvneta_tx_queue *txq) 1739 { 1740 int total_len, data_left; 1741 int desc_count = 0; 1742 struct mvneta_port *pp = netdev_priv(dev); 1743 struct tso_t tso; 1744 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1745 int i; 1746 1747 /* Count needed descriptors */ 1748 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1749 return 0; 1750 1751 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1752 pr_info("*** Is this even possible???!?!?\n"); 1753 return 0; 1754 } 1755 1756 /* Initialize the TSO handler, and prepare the first payload */ 1757 tso_start(skb, &tso); 1758 1759 total_len = skb->len - hdr_len; 1760 while (total_len > 0) { 1761 char *hdr; 1762 1763 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1764 total_len -= data_left; 1765 desc_count++; 1766 1767 /* prepare packet headers: MAC + IP + TCP */ 1768 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1769 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1770 1771 mvneta_tso_put_hdr(skb, pp, txq); 1772 1773 while (data_left > 0) { 1774 int size; 1775 desc_count++; 1776 1777 size = min_t(int, tso.size, data_left); 1778 1779 if (mvneta_tso_put_data(dev, txq, skb, 1780 tso.data, size, 1781 size == data_left, 1782 total_len == 0)) 1783 goto err_release; 1784 data_left -= size; 1785 1786 tso_build_data(skb, &tso, size); 1787 } 1788 } 1789 1790 return desc_count; 1791 1792 err_release: 1793 /* Release all used data descriptors; header descriptors must not 1794 * be DMA-unmapped. 1795 */ 1796 for (i = desc_count - 1; i >= 0; i--) { 1797 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1798 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1799 dma_unmap_single(pp->dev->dev.parent, 1800 tx_desc->buf_phys_addr, 1801 tx_desc->data_size, 1802 DMA_TO_DEVICE); 1803 mvneta_txq_desc_put(txq); 1804 } 1805 return 0; 1806 } 1807 1808 /* Handle tx fragmentation processing */ 1809 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1810 struct mvneta_tx_queue *txq) 1811 { 1812 struct mvneta_tx_desc *tx_desc; 1813 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1814 1815 for (i = 0; i < nr_frags; i++) { 1816 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1817 void *addr = page_address(frag->page.p) + frag->page_offset; 1818 1819 tx_desc = mvneta_txq_next_desc_get(txq); 1820 tx_desc->data_size = frag->size; 1821 1822 tx_desc->buf_phys_addr = 1823 dma_map_single(pp->dev->dev.parent, addr, 1824 tx_desc->data_size, DMA_TO_DEVICE); 1825 1826 if (dma_mapping_error(pp->dev->dev.parent, 1827 tx_desc->buf_phys_addr)) { 1828 mvneta_txq_desc_put(txq); 1829 goto error; 1830 } 1831 1832 if (i == nr_frags - 1) { 1833 /* Last descriptor */ 1834 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1835 txq->tx_skb[txq->txq_put_index] = skb; 1836 } else { 1837 /* Descriptor in the middle: Not First, Not Last */ 1838 tx_desc->command = 0; 1839 txq->tx_skb[txq->txq_put_index] = NULL; 1840 } 1841 mvneta_txq_inc_put(txq); 1842 } 1843 1844 return 0; 1845 1846 error: 1847 /* Release all descriptors that were used to map fragments of 1848 * this packet, as well as the corresponding DMA mappings 1849 */ 1850 for (i = i - 1; i >= 0; i--) { 1851 tx_desc = txq->descs + i; 1852 dma_unmap_single(pp->dev->dev.parent, 1853 tx_desc->buf_phys_addr, 1854 tx_desc->data_size, 1855 DMA_TO_DEVICE); 1856 mvneta_txq_desc_put(txq); 1857 } 1858 1859 return -ENOMEM; 1860 } 1861 1862 /* Main tx processing */ 1863 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1864 { 1865 struct mvneta_port *pp = netdev_priv(dev); 1866 u16 txq_id = skb_get_queue_mapping(skb); 1867 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1868 struct mvneta_tx_desc *tx_desc; 1869 int len = skb->len; 1870 int frags = 0; 1871 u32 tx_cmd; 1872 1873 if (!netif_running(dev)) 1874 goto out; 1875 1876 if (skb_is_gso(skb)) { 1877 frags = mvneta_tx_tso(skb, dev, txq); 1878 goto out; 1879 } 1880 1881 frags = skb_shinfo(skb)->nr_frags + 1; 1882 1883 /* Get a descriptor for the first part of the packet */ 1884 tx_desc = mvneta_txq_next_desc_get(txq); 1885 1886 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1887 1888 tx_desc->data_size = skb_headlen(skb); 1889 1890 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1891 tx_desc->data_size, 1892 DMA_TO_DEVICE); 1893 if (unlikely(dma_mapping_error(dev->dev.parent, 1894 tx_desc->buf_phys_addr))) { 1895 mvneta_txq_desc_put(txq); 1896 frags = 0; 1897 goto out; 1898 } 1899 1900 if (frags == 1) { 1901 /* First and Last descriptor */ 1902 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1903 tx_desc->command = tx_cmd; 1904 txq->tx_skb[txq->txq_put_index] = skb; 1905 mvneta_txq_inc_put(txq); 1906 } else { 1907 /* First but not Last */ 1908 tx_cmd |= MVNETA_TXD_F_DESC; 1909 txq->tx_skb[txq->txq_put_index] = NULL; 1910 mvneta_txq_inc_put(txq); 1911 tx_desc->command = tx_cmd; 1912 /* Continue with other skb fragments */ 1913 if (mvneta_tx_frag_process(pp, skb, txq)) { 1914 dma_unmap_single(dev->dev.parent, 1915 tx_desc->buf_phys_addr, 1916 tx_desc->data_size, 1917 DMA_TO_DEVICE); 1918 mvneta_txq_desc_put(txq); 1919 frags = 0; 1920 goto out; 1921 } 1922 } 1923 1924 out: 1925 if (frags > 0) { 1926 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1927 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1928 1929 txq->count += frags; 1930 mvneta_txq_pend_desc_add(pp, txq, frags); 1931 1932 if (txq->count >= txq->tx_stop_threshold) 1933 netif_tx_stop_queue(nq); 1934 1935 u64_stats_update_begin(&stats->syncp); 1936 stats->tx_packets++; 1937 stats->tx_bytes += len; 1938 u64_stats_update_end(&stats->syncp); 1939 } else { 1940 dev->stats.tx_dropped++; 1941 dev_kfree_skb_any(skb); 1942 } 1943 1944 return NETDEV_TX_OK; 1945 } 1946 1947 1948 /* Free tx resources, when resetting a port */ 1949 static void mvneta_txq_done_force(struct mvneta_port *pp, 1950 struct mvneta_tx_queue *txq) 1951 1952 { 1953 int tx_done = txq->count; 1954 1955 mvneta_txq_bufs_free(pp, txq, tx_done); 1956 1957 /* reset txq */ 1958 txq->count = 0; 1959 txq->txq_put_index = 0; 1960 txq->txq_get_index = 0; 1961 } 1962 1963 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1964 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1965 */ 1966 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1967 { 1968 struct mvneta_tx_queue *txq; 1969 struct netdev_queue *nq; 1970 1971 while (cause_tx_done) { 1972 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1973 1974 nq = netdev_get_tx_queue(pp->dev, txq->id); 1975 __netif_tx_lock(nq, smp_processor_id()); 1976 1977 if (txq->count) 1978 mvneta_txq_done(pp, txq); 1979 1980 __netif_tx_unlock(nq); 1981 cause_tx_done &= ~((1 << txq->id)); 1982 } 1983 } 1984 1985 /* Compute crc8 of the specified address, using a unique algorithm , 1986 * according to hw spec, different than generic crc8 algorithm 1987 */ 1988 static int mvneta_addr_crc(unsigned char *addr) 1989 { 1990 int crc = 0; 1991 int i; 1992 1993 for (i = 0; i < ETH_ALEN; i++) { 1994 int j; 1995 1996 crc = (crc ^ addr[i]) << 8; 1997 for (j = 7; j >= 0; j--) { 1998 if (crc & (0x100 << j)) 1999 crc ^= 0x107 << j; 2000 } 2001 } 2002 2003 return crc; 2004 } 2005 2006 /* This method controls the net device special MAC multicast support. 2007 * The Special Multicast Table for MAC addresses supports MAC of the form 2008 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2009 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2010 * Table entries in the DA-Filter table. This method set the Special 2011 * Multicast Table appropriate entry. 2012 */ 2013 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2014 unsigned char last_byte, 2015 int queue) 2016 { 2017 unsigned int smc_table_reg; 2018 unsigned int tbl_offset; 2019 unsigned int reg_offset; 2020 2021 /* Register offset from SMC table base */ 2022 tbl_offset = (last_byte / 4); 2023 /* Entry offset within the above reg */ 2024 reg_offset = last_byte % 4; 2025 2026 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2027 + tbl_offset * 4)); 2028 2029 if (queue == -1) 2030 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2031 else { 2032 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2033 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2034 } 2035 2036 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2037 smc_table_reg); 2038 } 2039 2040 /* This method controls the network device Other MAC multicast support. 2041 * The Other Multicast Table is used for multicast of another type. 2042 * A CRC-8 is used as an index to the Other Multicast Table entries 2043 * in the DA-Filter table. 2044 * The method gets the CRC-8 value from the calling routine and 2045 * sets the Other Multicast Table appropriate entry according to the 2046 * specified CRC-8 . 2047 */ 2048 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2049 unsigned char crc8, 2050 int queue) 2051 { 2052 unsigned int omc_table_reg; 2053 unsigned int tbl_offset; 2054 unsigned int reg_offset; 2055 2056 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2057 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2058 2059 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2060 2061 if (queue == -1) { 2062 /* Clear accepts frame bit at specified Other DA table entry */ 2063 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2064 } else { 2065 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2066 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2067 } 2068 2069 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2070 } 2071 2072 /* The network device supports multicast using two tables: 2073 * 1) Special Multicast Table for MAC addresses of the form 2074 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2075 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2076 * Table entries in the DA-Filter table. 2077 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2078 * is used as an index to the Other Multicast Table entries in the 2079 * DA-Filter table. 2080 */ 2081 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2082 int queue) 2083 { 2084 unsigned char crc_result = 0; 2085 2086 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2087 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2088 return 0; 2089 } 2090 2091 crc_result = mvneta_addr_crc(p_addr); 2092 if (queue == -1) { 2093 if (pp->mcast_count[crc_result] == 0) { 2094 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2095 crc_result); 2096 return -EINVAL; 2097 } 2098 2099 pp->mcast_count[crc_result]--; 2100 if (pp->mcast_count[crc_result] != 0) { 2101 netdev_info(pp->dev, 2102 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2103 pp->mcast_count[crc_result], crc_result); 2104 return -EINVAL; 2105 } 2106 } else 2107 pp->mcast_count[crc_result]++; 2108 2109 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2110 2111 return 0; 2112 } 2113 2114 /* Configure Fitering mode of Ethernet port */ 2115 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2116 int is_promisc) 2117 { 2118 u32 port_cfg_reg, val; 2119 2120 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2121 2122 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2123 2124 /* Set / Clear UPM bit in port configuration register */ 2125 if (is_promisc) { 2126 /* Accept all Unicast addresses */ 2127 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2128 val |= MVNETA_FORCE_UNI; 2129 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2130 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2131 } else { 2132 /* Reject all Unicast addresses */ 2133 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2134 val &= ~MVNETA_FORCE_UNI; 2135 } 2136 2137 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2138 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2139 } 2140 2141 /* register unicast and multicast addresses */ 2142 static void mvneta_set_rx_mode(struct net_device *dev) 2143 { 2144 struct mvneta_port *pp = netdev_priv(dev); 2145 struct netdev_hw_addr *ha; 2146 2147 if (dev->flags & IFF_PROMISC) { 2148 /* Accept all: Multicast + Unicast */ 2149 mvneta_rx_unicast_promisc_set(pp, 1); 2150 mvneta_set_ucast_table(pp, pp->rxq_def); 2151 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2152 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2153 } else { 2154 /* Accept single Unicast */ 2155 mvneta_rx_unicast_promisc_set(pp, 0); 2156 mvneta_set_ucast_table(pp, -1); 2157 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2158 2159 if (dev->flags & IFF_ALLMULTI) { 2160 /* Accept all multicast */ 2161 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2162 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2163 } else { 2164 /* Accept only initialized multicast */ 2165 mvneta_set_special_mcast_table(pp, -1); 2166 mvneta_set_other_mcast_table(pp, -1); 2167 2168 if (!netdev_mc_empty(dev)) { 2169 netdev_for_each_mc_addr(ha, dev) { 2170 mvneta_mcast_addr_set(pp, ha->addr, 2171 pp->rxq_def); 2172 } 2173 } 2174 } 2175 } 2176 } 2177 2178 /* Interrupt handling - the callback for request_irq() */ 2179 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2180 { 2181 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2182 2183 disable_percpu_irq(port->pp->dev->irq); 2184 napi_schedule(&port->napi); 2185 2186 return IRQ_HANDLED; 2187 } 2188 2189 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2190 struct phy_device *phy) 2191 { 2192 struct fixed_phy_status status; 2193 struct fixed_phy_status changed = {}; 2194 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2195 2196 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2197 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2198 status.speed = SPEED_1000; 2199 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2200 status.speed = SPEED_100; 2201 else 2202 status.speed = SPEED_10; 2203 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2204 changed.link = 1; 2205 changed.speed = 1; 2206 changed.duplex = 1; 2207 fixed_phy_update_state(phy, &status, &changed); 2208 return 0; 2209 } 2210 2211 /* NAPI handler 2212 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2213 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2214 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2215 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2216 * Each CPU has its own causeRxTx register 2217 */ 2218 static int mvneta_poll(struct napi_struct *napi, int budget) 2219 { 2220 int rx_done = 0; 2221 u32 cause_rx_tx; 2222 int rx_queue; 2223 struct mvneta_port *pp = netdev_priv(napi->dev); 2224 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2225 2226 if (!netif_running(pp->dev)) { 2227 napi_complete(&port->napi); 2228 return rx_done; 2229 } 2230 2231 /* Read cause register */ 2232 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2233 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2234 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2235 2236 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2237 if (pp->use_inband_status && (cause_misc & 2238 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2239 MVNETA_CAUSE_LINK_CHANGE | 2240 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2241 mvneta_fixed_link_update(pp, pp->phy_dev); 2242 } 2243 } 2244 2245 /* Release Tx descriptors */ 2246 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2247 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2248 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2249 } 2250 2251 /* For the case where the last mvneta_poll did not process all 2252 * RX packets 2253 */ 2254 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2255 2256 cause_rx_tx |= port->cause_rx_tx; 2257 2258 if (rx_queue) { 2259 rx_queue = rx_queue - 1; 2260 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]); 2261 } 2262 2263 budget -= rx_done; 2264 2265 if (budget > 0) { 2266 cause_rx_tx = 0; 2267 napi_complete(&port->napi); 2268 enable_percpu_irq(pp->dev->irq, 0); 2269 } 2270 2271 port->cause_rx_tx = cause_rx_tx; 2272 return rx_done; 2273 } 2274 2275 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2276 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2277 int num) 2278 { 2279 int i; 2280 2281 for (i = 0; i < num; i++) { 2282 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2283 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2284 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2285 __func__, rxq->id, i, num); 2286 break; 2287 } 2288 } 2289 2290 /* Add this number of RX descriptors as non occupied (ready to 2291 * get packets) 2292 */ 2293 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2294 2295 return i; 2296 } 2297 2298 /* Free all packets pending transmit from all TXQs and reset TX port */ 2299 static void mvneta_tx_reset(struct mvneta_port *pp) 2300 { 2301 int queue; 2302 2303 /* free the skb's in the tx ring */ 2304 for (queue = 0; queue < txq_number; queue++) 2305 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2306 2307 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2308 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2309 } 2310 2311 static void mvneta_rx_reset(struct mvneta_port *pp) 2312 { 2313 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2314 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2315 } 2316 2317 /* Rx/Tx queue initialization/cleanup methods */ 2318 2319 /* Create a specified RX queue */ 2320 static int mvneta_rxq_init(struct mvneta_port *pp, 2321 struct mvneta_rx_queue *rxq) 2322 2323 { 2324 rxq->size = pp->rx_ring_size; 2325 2326 /* Allocate memory for RX descriptors */ 2327 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2328 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2329 &rxq->descs_phys, GFP_KERNEL); 2330 if (rxq->descs == NULL) 2331 return -ENOMEM; 2332 2333 BUG_ON(rxq->descs != 2334 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2335 2336 rxq->last_desc = rxq->size - 1; 2337 2338 /* Set Rx descriptors queue starting address */ 2339 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2340 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2341 2342 /* Set Offset */ 2343 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2344 2345 /* Set coalescing pkts and time */ 2346 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2347 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2348 2349 /* Fill RXQ with buffers from RX pool */ 2350 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2351 mvneta_rxq_bm_disable(pp, rxq); 2352 mvneta_rxq_fill(pp, rxq, rxq->size); 2353 2354 return 0; 2355 } 2356 2357 /* Cleanup Rx queue */ 2358 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2359 struct mvneta_rx_queue *rxq) 2360 { 2361 mvneta_rxq_drop_pkts(pp, rxq); 2362 2363 if (rxq->descs) 2364 dma_free_coherent(pp->dev->dev.parent, 2365 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2366 rxq->descs, 2367 rxq->descs_phys); 2368 2369 rxq->descs = NULL; 2370 rxq->last_desc = 0; 2371 rxq->next_desc_to_proc = 0; 2372 rxq->descs_phys = 0; 2373 } 2374 2375 /* Create and initialize a tx queue */ 2376 static int mvneta_txq_init(struct mvneta_port *pp, 2377 struct mvneta_tx_queue *txq) 2378 { 2379 int cpu; 2380 2381 txq->size = pp->tx_ring_size; 2382 2383 /* A queue must always have room for at least one skb. 2384 * Therefore, stop the queue when the free entries reaches 2385 * the maximum number of descriptors per skb. 2386 */ 2387 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2388 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2389 2390 2391 /* Allocate memory for TX descriptors */ 2392 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2393 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2394 &txq->descs_phys, GFP_KERNEL); 2395 if (txq->descs == NULL) 2396 return -ENOMEM; 2397 2398 /* Make sure descriptor address is cache line size aligned */ 2399 BUG_ON(txq->descs != 2400 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2401 2402 txq->last_desc = txq->size - 1; 2403 2404 /* Set maximum bandwidth for enabled TXQs */ 2405 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2406 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2407 2408 /* Set Tx descriptors queue starting address */ 2409 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2410 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2411 2412 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2413 if (txq->tx_skb == NULL) { 2414 dma_free_coherent(pp->dev->dev.parent, 2415 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2416 txq->descs, txq->descs_phys); 2417 return -ENOMEM; 2418 } 2419 2420 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2421 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2422 txq->size * TSO_HEADER_SIZE, 2423 &txq->tso_hdrs_phys, GFP_KERNEL); 2424 if (txq->tso_hdrs == NULL) { 2425 kfree(txq->tx_skb); 2426 dma_free_coherent(pp->dev->dev.parent, 2427 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2428 txq->descs, txq->descs_phys); 2429 return -ENOMEM; 2430 } 2431 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2432 2433 /* Setup XPS mapping */ 2434 if (txq_number > 1) 2435 cpu = txq->id % num_present_cpus(); 2436 else 2437 cpu = pp->rxq_def % num_present_cpus(); 2438 cpumask_set_cpu(cpu, &txq->affinity_mask); 2439 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2440 2441 return 0; 2442 } 2443 2444 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2445 static void mvneta_txq_deinit(struct mvneta_port *pp, 2446 struct mvneta_tx_queue *txq) 2447 { 2448 kfree(txq->tx_skb); 2449 2450 if (txq->tso_hdrs) 2451 dma_free_coherent(pp->dev->dev.parent, 2452 txq->size * TSO_HEADER_SIZE, 2453 txq->tso_hdrs, txq->tso_hdrs_phys); 2454 if (txq->descs) 2455 dma_free_coherent(pp->dev->dev.parent, 2456 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2457 txq->descs, txq->descs_phys); 2458 2459 txq->descs = NULL; 2460 txq->last_desc = 0; 2461 txq->next_desc_to_proc = 0; 2462 txq->descs_phys = 0; 2463 2464 /* Set minimum bandwidth for disabled TXQs */ 2465 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2466 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2467 2468 /* Set Tx descriptors queue starting address and size */ 2469 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2470 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2471 } 2472 2473 /* Cleanup all Tx queues */ 2474 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2475 { 2476 int queue; 2477 2478 for (queue = 0; queue < txq_number; queue++) 2479 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2480 } 2481 2482 /* Cleanup all Rx queues */ 2483 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2484 { 2485 int queue; 2486 2487 for (queue = 0; queue < txq_number; queue++) 2488 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2489 } 2490 2491 2492 /* Init all Rx queues */ 2493 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2494 { 2495 int queue; 2496 2497 for (queue = 0; queue < rxq_number; queue++) { 2498 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2499 2500 if (err) { 2501 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2502 __func__, queue); 2503 mvneta_cleanup_rxqs(pp); 2504 return err; 2505 } 2506 } 2507 2508 return 0; 2509 } 2510 2511 /* Init all tx queues */ 2512 static int mvneta_setup_txqs(struct mvneta_port *pp) 2513 { 2514 int queue; 2515 2516 for (queue = 0; queue < txq_number; queue++) { 2517 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2518 if (err) { 2519 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2520 __func__, queue); 2521 mvneta_cleanup_txqs(pp); 2522 return err; 2523 } 2524 } 2525 2526 return 0; 2527 } 2528 2529 static void mvneta_percpu_unmask_interrupt(void *arg) 2530 { 2531 struct mvneta_port *pp = arg; 2532 2533 /* All the queue are unmasked, but actually only the ones 2534 * maped to this CPU will be unmasked 2535 */ 2536 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2537 MVNETA_RX_INTR_MASK_ALL | 2538 MVNETA_TX_INTR_MASK_ALL | 2539 MVNETA_MISCINTR_INTR_MASK); 2540 } 2541 2542 static void mvneta_percpu_mask_interrupt(void *arg) 2543 { 2544 struct mvneta_port *pp = arg; 2545 2546 /* All the queue are masked, but actually only the ones 2547 * maped to this CPU will be masked 2548 */ 2549 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2550 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2551 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2552 } 2553 2554 static void mvneta_start_dev(struct mvneta_port *pp) 2555 { 2556 unsigned int cpu; 2557 2558 mvneta_max_rx_size_set(pp, pp->pkt_size); 2559 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2560 2561 /* start the Rx/Tx activity */ 2562 mvneta_port_enable(pp); 2563 2564 /* Enable polling on the port */ 2565 for_each_present_cpu(cpu) { 2566 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2567 2568 napi_enable(&port->napi); 2569 } 2570 2571 /* Unmask interrupts. It has to be done from each CPU */ 2572 for_each_online_cpu(cpu) 2573 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 2574 pp, true); 2575 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2576 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2577 MVNETA_CAUSE_LINK_CHANGE | 2578 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2579 2580 phy_start(pp->phy_dev); 2581 netif_tx_start_all_queues(pp->dev); 2582 } 2583 2584 static void mvneta_stop_dev(struct mvneta_port *pp) 2585 { 2586 unsigned int cpu; 2587 2588 phy_stop(pp->phy_dev); 2589 2590 for_each_present_cpu(cpu) { 2591 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2592 2593 napi_disable(&port->napi); 2594 } 2595 2596 netif_carrier_off(pp->dev); 2597 2598 mvneta_port_down(pp); 2599 netif_tx_stop_all_queues(pp->dev); 2600 2601 /* Stop the port activity */ 2602 mvneta_port_disable(pp); 2603 2604 /* Clear all ethernet port interrupts */ 2605 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2606 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2607 2608 /* Mask all ethernet port interrupts */ 2609 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2610 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2611 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2612 2613 mvneta_tx_reset(pp); 2614 mvneta_rx_reset(pp); 2615 } 2616 2617 /* Return positive if MTU is valid */ 2618 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2619 { 2620 if (mtu < 68) { 2621 netdev_err(dev, "cannot change mtu to less than 68\n"); 2622 return -EINVAL; 2623 } 2624 2625 /* 9676 == 9700 - 20 and rounding to 8 */ 2626 if (mtu > 9676) { 2627 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2628 mtu = 9676; 2629 } 2630 2631 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2632 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2633 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2634 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2635 } 2636 2637 return mtu; 2638 } 2639 2640 /* Change the device mtu */ 2641 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2642 { 2643 struct mvneta_port *pp = netdev_priv(dev); 2644 int ret; 2645 2646 mtu = mvneta_check_mtu_valid(dev, mtu); 2647 if (mtu < 0) 2648 return -EINVAL; 2649 2650 dev->mtu = mtu; 2651 2652 if (!netif_running(dev)) { 2653 netdev_update_features(dev); 2654 return 0; 2655 } 2656 2657 /* The interface is running, so we have to force a 2658 * reallocation of the queues 2659 */ 2660 mvneta_stop_dev(pp); 2661 2662 mvneta_cleanup_txqs(pp); 2663 mvneta_cleanup_rxqs(pp); 2664 2665 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2666 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2667 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2668 2669 ret = mvneta_setup_rxqs(pp); 2670 if (ret) { 2671 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2672 return ret; 2673 } 2674 2675 ret = mvneta_setup_txqs(pp); 2676 if (ret) { 2677 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2678 return ret; 2679 } 2680 2681 mvneta_start_dev(pp); 2682 mvneta_port_up(pp); 2683 2684 netdev_update_features(dev); 2685 2686 return 0; 2687 } 2688 2689 static netdev_features_t mvneta_fix_features(struct net_device *dev, 2690 netdev_features_t features) 2691 { 2692 struct mvneta_port *pp = netdev_priv(dev); 2693 2694 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2695 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2696 netdev_info(dev, 2697 "Disable IP checksum for MTU greater than %dB\n", 2698 pp->tx_csum_limit); 2699 } 2700 2701 return features; 2702 } 2703 2704 /* Get mac address */ 2705 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2706 { 2707 u32 mac_addr_l, mac_addr_h; 2708 2709 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2710 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2711 addr[0] = (mac_addr_h >> 24) & 0xFF; 2712 addr[1] = (mac_addr_h >> 16) & 0xFF; 2713 addr[2] = (mac_addr_h >> 8) & 0xFF; 2714 addr[3] = mac_addr_h & 0xFF; 2715 addr[4] = (mac_addr_l >> 8) & 0xFF; 2716 addr[5] = mac_addr_l & 0xFF; 2717 } 2718 2719 /* Handle setting mac address */ 2720 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2721 { 2722 struct mvneta_port *pp = netdev_priv(dev); 2723 struct sockaddr *sockaddr = addr; 2724 int ret; 2725 2726 ret = eth_prepare_mac_addr_change(dev, addr); 2727 if (ret < 0) 2728 return ret; 2729 /* Remove previous address table entry */ 2730 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2731 2732 /* Set new addr in hw */ 2733 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 2734 2735 eth_commit_mac_addr_change(dev, addr); 2736 return 0; 2737 } 2738 2739 static void mvneta_adjust_link(struct net_device *ndev) 2740 { 2741 struct mvneta_port *pp = netdev_priv(ndev); 2742 struct phy_device *phydev = pp->phy_dev; 2743 int status_change = 0; 2744 2745 if (phydev->link) { 2746 if ((pp->speed != phydev->speed) || 2747 (pp->duplex != phydev->duplex)) { 2748 u32 val; 2749 2750 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2751 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2752 MVNETA_GMAC_CONFIG_GMII_SPEED | 2753 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2754 2755 if (phydev->duplex) 2756 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2757 2758 if (phydev->speed == SPEED_1000) 2759 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2760 else if (phydev->speed == SPEED_100) 2761 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2762 2763 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2764 2765 pp->duplex = phydev->duplex; 2766 pp->speed = phydev->speed; 2767 } 2768 } 2769 2770 if (phydev->link != pp->link) { 2771 if (!phydev->link) { 2772 pp->duplex = -1; 2773 pp->speed = 0; 2774 } 2775 2776 pp->link = phydev->link; 2777 status_change = 1; 2778 } 2779 2780 if (status_change) { 2781 if (phydev->link) { 2782 if (!pp->use_inband_status) { 2783 u32 val = mvreg_read(pp, 2784 MVNETA_GMAC_AUTONEG_CONFIG); 2785 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2786 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2787 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2788 val); 2789 } 2790 mvneta_port_up(pp); 2791 } else { 2792 if (!pp->use_inband_status) { 2793 u32 val = mvreg_read(pp, 2794 MVNETA_GMAC_AUTONEG_CONFIG); 2795 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2796 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2797 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2798 val); 2799 } 2800 mvneta_port_down(pp); 2801 } 2802 phy_print_status(phydev); 2803 } 2804 } 2805 2806 static int mvneta_mdio_probe(struct mvneta_port *pp) 2807 { 2808 struct phy_device *phy_dev; 2809 2810 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2811 pp->phy_interface); 2812 if (!phy_dev) { 2813 netdev_err(pp->dev, "could not find the PHY\n"); 2814 return -ENODEV; 2815 } 2816 2817 phy_dev->supported &= PHY_GBIT_FEATURES; 2818 phy_dev->advertising = phy_dev->supported; 2819 2820 pp->phy_dev = phy_dev; 2821 pp->link = 0; 2822 pp->duplex = 0; 2823 pp->speed = 0; 2824 2825 return 0; 2826 } 2827 2828 static void mvneta_mdio_remove(struct mvneta_port *pp) 2829 { 2830 phy_disconnect(pp->phy_dev); 2831 pp->phy_dev = NULL; 2832 } 2833 2834 static void mvneta_percpu_enable(void *arg) 2835 { 2836 struct mvneta_port *pp = arg; 2837 2838 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 2839 } 2840 2841 static void mvneta_percpu_disable(void *arg) 2842 { 2843 struct mvneta_port *pp = arg; 2844 2845 disable_percpu_irq(pp->dev->irq); 2846 } 2847 2848 static void mvneta_percpu_elect(struct mvneta_port *pp) 2849 { 2850 int online_cpu_idx, max_cpu, cpu, i = 0; 2851 2852 online_cpu_idx = pp->rxq_def % num_online_cpus(); 2853 max_cpu = num_present_cpus(); 2854 2855 for_each_online_cpu(cpu) { 2856 int rxq_map = 0, txq_map = 0; 2857 int rxq; 2858 2859 for (rxq = 0; rxq < rxq_number; rxq++) 2860 if ((rxq % max_cpu) == cpu) 2861 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 2862 2863 if (i == online_cpu_idx) 2864 /* Map the default receive queue queue to the 2865 * elected CPU 2866 */ 2867 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 2868 2869 /* We update the TX queue map only if we have one 2870 * queue. In this case we associate the TX queue to 2871 * the CPU bound to the default RX queue 2872 */ 2873 if (txq_number == 1) 2874 txq_map = (i == online_cpu_idx) ? 2875 MVNETA_CPU_TXQ_ACCESS(1) : 0; 2876 else 2877 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 2878 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 2879 2880 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 2881 2882 /* Update the interrupt mask on each CPU according the 2883 * new mapping 2884 */ 2885 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 2886 pp, true); 2887 i++; 2888 2889 } 2890 }; 2891 2892 static int mvneta_percpu_notifier(struct notifier_block *nfb, 2893 unsigned long action, void *hcpu) 2894 { 2895 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 2896 cpu_notifier); 2897 int cpu = (unsigned long)hcpu, other_cpu; 2898 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2899 2900 switch (action) { 2901 case CPU_ONLINE: 2902 case CPU_ONLINE_FROZEN: 2903 netif_tx_stop_all_queues(pp->dev); 2904 2905 /* We have to synchronise on tha napi of each CPU 2906 * except the one just being waked up 2907 */ 2908 for_each_online_cpu(other_cpu) { 2909 if (other_cpu != cpu) { 2910 struct mvneta_pcpu_port *other_port = 2911 per_cpu_ptr(pp->ports, other_cpu); 2912 2913 napi_synchronize(&other_port->napi); 2914 } 2915 } 2916 2917 /* Mask all ethernet port interrupts */ 2918 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2919 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2920 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2921 napi_enable(&port->napi); 2922 2923 2924 /* Enable per-CPU interrupts on the CPU that is 2925 * brought up. 2926 */ 2927 smp_call_function_single(cpu, mvneta_percpu_enable, 2928 pp, true); 2929 2930 /* Enable per-CPU interrupt on the one CPU we care 2931 * about. 2932 */ 2933 mvneta_percpu_elect(pp); 2934 2935 /* Unmask all ethernet port interrupts, as this 2936 * notifier is called for each CPU then the CPU to 2937 * Queue mapping is applied 2938 */ 2939 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2940 MVNETA_RX_INTR_MASK(rxq_number) | 2941 MVNETA_TX_INTR_MASK(txq_number) | 2942 MVNETA_MISCINTR_INTR_MASK); 2943 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2944 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2945 MVNETA_CAUSE_LINK_CHANGE | 2946 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2947 netif_tx_start_all_queues(pp->dev); 2948 break; 2949 case CPU_DOWN_PREPARE: 2950 case CPU_DOWN_PREPARE_FROZEN: 2951 netif_tx_stop_all_queues(pp->dev); 2952 /* Mask all ethernet port interrupts */ 2953 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2954 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2955 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2956 2957 napi_synchronize(&port->napi); 2958 napi_disable(&port->napi); 2959 /* Disable per-CPU interrupts on the CPU that is 2960 * brought down. 2961 */ 2962 smp_call_function_single(cpu, mvneta_percpu_disable, 2963 pp, true); 2964 2965 break; 2966 case CPU_DEAD: 2967 case CPU_DEAD_FROZEN: 2968 /* Check if a new CPU must be elected now this on is down */ 2969 mvneta_percpu_elect(pp); 2970 /* Unmask all ethernet port interrupts */ 2971 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2972 MVNETA_RX_INTR_MASK(rxq_number) | 2973 MVNETA_TX_INTR_MASK(txq_number) | 2974 MVNETA_MISCINTR_INTR_MASK); 2975 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2976 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2977 MVNETA_CAUSE_LINK_CHANGE | 2978 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2979 netif_tx_start_all_queues(pp->dev); 2980 break; 2981 } 2982 2983 return NOTIFY_OK; 2984 } 2985 2986 static int mvneta_open(struct net_device *dev) 2987 { 2988 struct mvneta_port *pp = netdev_priv(dev); 2989 int ret, cpu; 2990 2991 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2992 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2993 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2994 2995 ret = mvneta_setup_rxqs(pp); 2996 if (ret) 2997 return ret; 2998 2999 ret = mvneta_setup_txqs(pp); 3000 if (ret) 3001 goto err_cleanup_rxqs; 3002 3003 /* Connect to port interrupt line */ 3004 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 3005 MVNETA_DRIVER_NAME, pp->ports); 3006 if (ret) { 3007 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3008 goto err_cleanup_txqs; 3009 } 3010 3011 /* Even though the documentation says that request_percpu_irq 3012 * doesn't enable the interrupts automatically, it actually 3013 * does so on the local CPU. 3014 * 3015 * Make sure it's disabled. 3016 */ 3017 mvneta_percpu_disable(pp); 3018 3019 /* Enable per-CPU interrupt on all the CPU to handle our RX 3020 * queue interrupts 3021 */ 3022 for_each_online_cpu(cpu) 3023 smp_call_function_single(cpu, mvneta_percpu_enable, 3024 pp, true); 3025 3026 3027 /* Register a CPU notifier to handle the case where our CPU 3028 * might be taken offline. 3029 */ 3030 register_cpu_notifier(&pp->cpu_notifier); 3031 3032 /* In default link is down */ 3033 netif_carrier_off(pp->dev); 3034 3035 ret = mvneta_mdio_probe(pp); 3036 if (ret < 0) { 3037 netdev_err(dev, "cannot probe MDIO bus\n"); 3038 goto err_free_irq; 3039 } 3040 3041 mvneta_start_dev(pp); 3042 3043 return 0; 3044 3045 err_free_irq: 3046 free_percpu_irq(pp->dev->irq, pp->ports); 3047 err_cleanup_txqs: 3048 mvneta_cleanup_txqs(pp); 3049 err_cleanup_rxqs: 3050 mvneta_cleanup_rxqs(pp); 3051 return ret; 3052 } 3053 3054 /* Stop the port, free port interrupt line */ 3055 static int mvneta_stop(struct net_device *dev) 3056 { 3057 struct mvneta_port *pp = netdev_priv(dev); 3058 int cpu; 3059 3060 mvneta_stop_dev(pp); 3061 mvneta_mdio_remove(pp); 3062 unregister_cpu_notifier(&pp->cpu_notifier); 3063 for_each_present_cpu(cpu) 3064 smp_call_function_single(cpu, mvneta_percpu_disable, pp, true); 3065 free_percpu_irq(dev->irq, pp->ports); 3066 mvneta_cleanup_rxqs(pp); 3067 mvneta_cleanup_txqs(pp); 3068 3069 return 0; 3070 } 3071 3072 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3073 { 3074 struct mvneta_port *pp = netdev_priv(dev); 3075 3076 if (!pp->phy_dev) 3077 return -ENOTSUPP; 3078 3079 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 3080 } 3081 3082 /* Ethtool methods */ 3083 3084 /* Get settings (phy address, speed) for ethtools */ 3085 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3086 { 3087 struct mvneta_port *pp = netdev_priv(dev); 3088 3089 if (!pp->phy_dev) 3090 return -ENODEV; 3091 3092 return phy_ethtool_gset(pp->phy_dev, cmd); 3093 } 3094 3095 /* Set settings (phy address, speed) for ethtools */ 3096 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3097 { 3098 struct mvneta_port *pp = netdev_priv(dev); 3099 struct phy_device *phydev = pp->phy_dev; 3100 3101 if (!phydev) 3102 return -ENODEV; 3103 3104 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3105 u32 val; 3106 3107 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE); 3108 3109 if (cmd->autoneg == AUTONEG_DISABLE) { 3110 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3111 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3112 MVNETA_GMAC_CONFIG_GMII_SPEED | 3113 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3114 3115 if (phydev->duplex) 3116 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3117 3118 if (phydev->speed == SPEED_1000) 3119 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3120 else if (phydev->speed == SPEED_100) 3121 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3122 3123 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3124 } 3125 3126 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE); 3127 netdev_info(pp->dev, "autoneg status set to %i\n", 3128 pp->use_inband_status); 3129 3130 if (netif_running(dev)) { 3131 mvneta_port_down(pp); 3132 mvneta_port_up(pp); 3133 } 3134 } 3135 3136 return phy_ethtool_sset(pp->phy_dev, cmd); 3137 } 3138 3139 /* Set interrupt coalescing for ethtools */ 3140 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3141 struct ethtool_coalesce *c) 3142 { 3143 struct mvneta_port *pp = netdev_priv(dev); 3144 int queue; 3145 3146 for (queue = 0; queue < rxq_number; queue++) { 3147 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3148 rxq->time_coal = c->rx_coalesce_usecs; 3149 rxq->pkts_coal = c->rx_max_coalesced_frames; 3150 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3151 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3152 } 3153 3154 for (queue = 0; queue < txq_number; queue++) { 3155 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3156 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3157 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3158 } 3159 3160 return 0; 3161 } 3162 3163 /* get coalescing for ethtools */ 3164 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3165 struct ethtool_coalesce *c) 3166 { 3167 struct mvneta_port *pp = netdev_priv(dev); 3168 3169 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3170 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3171 3172 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3173 return 0; 3174 } 3175 3176 3177 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3178 struct ethtool_drvinfo *drvinfo) 3179 { 3180 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3181 sizeof(drvinfo->driver)); 3182 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3183 sizeof(drvinfo->version)); 3184 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3185 sizeof(drvinfo->bus_info)); 3186 } 3187 3188 3189 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3190 struct ethtool_ringparam *ring) 3191 { 3192 struct mvneta_port *pp = netdev_priv(netdev); 3193 3194 ring->rx_max_pending = MVNETA_MAX_RXD; 3195 ring->tx_max_pending = MVNETA_MAX_TXD; 3196 ring->rx_pending = pp->rx_ring_size; 3197 ring->tx_pending = pp->tx_ring_size; 3198 } 3199 3200 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3201 struct ethtool_ringparam *ring) 3202 { 3203 struct mvneta_port *pp = netdev_priv(dev); 3204 3205 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3206 return -EINVAL; 3207 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3208 ring->rx_pending : MVNETA_MAX_RXD; 3209 3210 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3211 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3212 if (pp->tx_ring_size != ring->tx_pending) 3213 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3214 pp->tx_ring_size, ring->tx_pending); 3215 3216 if (netif_running(dev)) { 3217 mvneta_stop(dev); 3218 if (mvneta_open(dev)) { 3219 netdev_err(dev, 3220 "error on opening device after ring param change\n"); 3221 return -ENOMEM; 3222 } 3223 } 3224 3225 return 0; 3226 } 3227 3228 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3229 u8 *data) 3230 { 3231 if (sset == ETH_SS_STATS) { 3232 int i; 3233 3234 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3235 memcpy(data + i * ETH_GSTRING_LEN, 3236 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3237 } 3238 } 3239 3240 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3241 { 3242 const struct mvneta_statistic *s; 3243 void __iomem *base = pp->base; 3244 u32 high, low, val; 3245 int i; 3246 3247 for (i = 0, s = mvneta_statistics; 3248 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3249 s++, i++) { 3250 val = 0; 3251 3252 switch (s->type) { 3253 case T_REG_32: 3254 val = readl_relaxed(base + s->offset); 3255 break; 3256 case T_REG_64: 3257 /* Docs say to read low 32-bit then high */ 3258 low = readl_relaxed(base + s->offset); 3259 high = readl_relaxed(base + s->offset + 4); 3260 val = (u64)high << 32 | low; 3261 break; 3262 } 3263 3264 pp->ethtool_stats[i] += val; 3265 } 3266 } 3267 3268 static void mvneta_ethtool_get_stats(struct net_device *dev, 3269 struct ethtool_stats *stats, u64 *data) 3270 { 3271 struct mvneta_port *pp = netdev_priv(dev); 3272 int i; 3273 3274 mvneta_ethtool_update_stats(pp); 3275 3276 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3277 *data++ = pp->ethtool_stats[i]; 3278 } 3279 3280 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3281 { 3282 if (sset == ETH_SS_STATS) 3283 return ARRAY_SIZE(mvneta_statistics); 3284 return -EOPNOTSUPP; 3285 } 3286 3287 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3288 { 3289 return MVNETA_RSS_LU_TABLE_SIZE; 3290 } 3291 3292 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3293 struct ethtool_rxnfc *info, 3294 u32 *rules __always_unused) 3295 { 3296 switch (info->cmd) { 3297 case ETHTOOL_GRXRINGS: 3298 info->data = rxq_number; 3299 return 0; 3300 case ETHTOOL_GRXFH: 3301 return -EOPNOTSUPP; 3302 default: 3303 return -EOPNOTSUPP; 3304 } 3305 } 3306 3307 static int mvneta_config_rss(struct mvneta_port *pp) 3308 { 3309 int cpu; 3310 u32 val; 3311 3312 netif_tx_stop_all_queues(pp->dev); 3313 3314 for_each_online_cpu(cpu) 3315 smp_call_function_single(cpu, mvneta_percpu_mask_interrupt, 3316 pp, true); 3317 3318 /* We have to synchronise on the napi of each CPU */ 3319 for_each_online_cpu(cpu) { 3320 struct mvneta_pcpu_port *pcpu_port = 3321 per_cpu_ptr(pp->ports, cpu); 3322 3323 napi_synchronize(&pcpu_port->napi); 3324 napi_disable(&pcpu_port->napi); 3325 } 3326 3327 pp->rxq_def = pp->indir[0]; 3328 3329 /* Update unicast mapping */ 3330 mvneta_set_rx_mode(pp->dev); 3331 3332 /* Update val of portCfg register accordingly with all RxQueue types */ 3333 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3334 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3335 3336 /* Update the elected CPU matching the new rxq_def */ 3337 mvneta_percpu_elect(pp); 3338 3339 /* We have to synchronise on the napi of each CPU */ 3340 for_each_online_cpu(cpu) { 3341 struct mvneta_pcpu_port *pcpu_port = 3342 per_cpu_ptr(pp->ports, cpu); 3343 3344 napi_enable(&pcpu_port->napi); 3345 } 3346 3347 netif_tx_start_all_queues(pp->dev); 3348 3349 return 0; 3350 } 3351 3352 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3353 const u8 *key, const u8 hfunc) 3354 { 3355 struct mvneta_port *pp = netdev_priv(dev); 3356 /* We require at least one supported parameter to be changed 3357 * and no change in any of the unsupported parameters 3358 */ 3359 if (key || 3360 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3361 return -EOPNOTSUPP; 3362 3363 if (!indir) 3364 return 0; 3365 3366 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3367 3368 return mvneta_config_rss(pp); 3369 } 3370 3371 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3372 u8 *hfunc) 3373 { 3374 struct mvneta_port *pp = netdev_priv(dev); 3375 3376 if (hfunc) 3377 *hfunc = ETH_RSS_HASH_TOP; 3378 3379 if (!indir) 3380 return 0; 3381 3382 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3383 3384 return 0; 3385 } 3386 3387 static const struct net_device_ops mvneta_netdev_ops = { 3388 .ndo_open = mvneta_open, 3389 .ndo_stop = mvneta_stop, 3390 .ndo_start_xmit = mvneta_tx, 3391 .ndo_set_rx_mode = mvneta_set_rx_mode, 3392 .ndo_set_mac_address = mvneta_set_mac_addr, 3393 .ndo_change_mtu = mvneta_change_mtu, 3394 .ndo_fix_features = mvneta_fix_features, 3395 .ndo_get_stats64 = mvneta_get_stats64, 3396 .ndo_do_ioctl = mvneta_ioctl, 3397 }; 3398 3399 const struct ethtool_ops mvneta_eth_tool_ops = { 3400 .get_link = ethtool_op_get_link, 3401 .get_settings = mvneta_ethtool_get_settings, 3402 .set_settings = mvneta_ethtool_set_settings, 3403 .set_coalesce = mvneta_ethtool_set_coalesce, 3404 .get_coalesce = mvneta_ethtool_get_coalesce, 3405 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3406 .get_ringparam = mvneta_ethtool_get_ringparam, 3407 .set_ringparam = mvneta_ethtool_set_ringparam, 3408 .get_strings = mvneta_ethtool_get_strings, 3409 .get_ethtool_stats = mvneta_ethtool_get_stats, 3410 .get_sset_count = mvneta_ethtool_get_sset_count, 3411 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3412 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3413 .get_rxfh = mvneta_ethtool_get_rxfh, 3414 .set_rxfh = mvneta_ethtool_set_rxfh, 3415 }; 3416 3417 /* Initialize hw */ 3418 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3419 { 3420 int queue; 3421 3422 /* Disable port */ 3423 mvneta_port_disable(pp); 3424 3425 /* Set port default values */ 3426 mvneta_defaults_set(pp); 3427 3428 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3429 GFP_KERNEL); 3430 if (!pp->txqs) 3431 return -ENOMEM; 3432 3433 /* Initialize TX descriptor rings */ 3434 for (queue = 0; queue < txq_number; queue++) { 3435 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3436 txq->id = queue; 3437 txq->size = pp->tx_ring_size; 3438 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3439 } 3440 3441 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3442 GFP_KERNEL); 3443 if (!pp->rxqs) 3444 return -ENOMEM; 3445 3446 /* Create Rx descriptor rings */ 3447 for (queue = 0; queue < rxq_number; queue++) { 3448 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3449 rxq->id = queue; 3450 rxq->size = pp->rx_ring_size; 3451 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3452 rxq->time_coal = MVNETA_RX_COAL_USEC; 3453 } 3454 3455 return 0; 3456 } 3457 3458 /* platform glue : initialize decoding windows */ 3459 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3460 const struct mbus_dram_target_info *dram) 3461 { 3462 u32 win_enable; 3463 u32 win_protect; 3464 int i; 3465 3466 for (i = 0; i < 6; i++) { 3467 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3468 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3469 3470 if (i < 4) 3471 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3472 } 3473 3474 win_enable = 0x3f; 3475 win_protect = 0; 3476 3477 for (i = 0; i < dram->num_cs; i++) { 3478 const struct mbus_dram_window *cs = dram->cs + i; 3479 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3480 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3481 3482 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3483 (cs->size - 1) & 0xffff0000); 3484 3485 win_enable &= ~(1 << i); 3486 win_protect |= 3 << (2 * i); 3487 } 3488 3489 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3490 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3491 } 3492 3493 /* Power up the port */ 3494 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3495 { 3496 u32 ctrl; 3497 3498 /* MAC Cause register should be cleared */ 3499 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3500 3501 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3502 3503 /* Even though it might look weird, when we're configured in 3504 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3505 */ 3506 switch(phy_mode) { 3507 case PHY_INTERFACE_MODE_QSGMII: 3508 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3509 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3510 break; 3511 case PHY_INTERFACE_MODE_SGMII: 3512 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3513 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3514 break; 3515 case PHY_INTERFACE_MODE_RGMII: 3516 case PHY_INTERFACE_MODE_RGMII_ID: 3517 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3518 break; 3519 default: 3520 return -EINVAL; 3521 } 3522 3523 /* Cancel Port Reset */ 3524 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3525 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3526 3527 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3528 MVNETA_GMAC2_PORT_RESET) != 0) 3529 continue; 3530 3531 return 0; 3532 } 3533 3534 /* Device initialization routine */ 3535 static int mvneta_probe(struct platform_device *pdev) 3536 { 3537 const struct mbus_dram_target_info *dram_target_info; 3538 struct resource *res; 3539 struct device_node *dn = pdev->dev.of_node; 3540 struct device_node *phy_node; 3541 struct mvneta_port *pp; 3542 struct net_device *dev; 3543 const char *dt_mac_addr; 3544 char hw_mac_addr[ETH_ALEN]; 3545 const char *mac_from; 3546 const char *managed; 3547 int tx_csum_limit; 3548 int phy_mode; 3549 int err; 3550 int cpu; 3551 3552 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3553 if (!dev) 3554 return -ENOMEM; 3555 3556 dev->irq = irq_of_parse_and_map(dn, 0); 3557 if (dev->irq == 0) { 3558 err = -EINVAL; 3559 goto err_free_netdev; 3560 } 3561 3562 phy_node = of_parse_phandle(dn, "phy", 0); 3563 if (!phy_node) { 3564 if (!of_phy_is_fixed_link(dn)) { 3565 dev_err(&pdev->dev, "no PHY specified\n"); 3566 err = -ENODEV; 3567 goto err_free_irq; 3568 } 3569 3570 err = of_phy_register_fixed_link(dn); 3571 if (err < 0) { 3572 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3573 goto err_free_irq; 3574 } 3575 3576 /* In the case of a fixed PHY, the DT node associated 3577 * to the PHY is the Ethernet MAC DT node. 3578 */ 3579 phy_node = of_node_get(dn); 3580 } 3581 3582 phy_mode = of_get_phy_mode(dn); 3583 if (phy_mode < 0) { 3584 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3585 err = -EINVAL; 3586 goto err_put_phy_node; 3587 } 3588 3589 dev->tx_queue_len = MVNETA_MAX_TXD; 3590 dev->watchdog_timeo = 5 * HZ; 3591 dev->netdev_ops = &mvneta_netdev_ops; 3592 3593 dev->ethtool_ops = &mvneta_eth_tool_ops; 3594 3595 pp = netdev_priv(dev); 3596 pp->phy_node = phy_node; 3597 pp->phy_interface = phy_mode; 3598 3599 err = of_property_read_string(dn, "managed", &managed); 3600 pp->use_inband_status = (err == 0 && 3601 strcmp(managed, "in-band-status") == 0); 3602 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 3603 3604 pp->rxq_def = rxq_def; 3605 3606 pp->indir[0] = rxq_def; 3607 3608 pp->clk = devm_clk_get(&pdev->dev, NULL); 3609 if (IS_ERR(pp->clk)) { 3610 err = PTR_ERR(pp->clk); 3611 goto err_put_phy_node; 3612 } 3613 3614 clk_prepare_enable(pp->clk); 3615 3616 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3617 pp->base = devm_ioremap_resource(&pdev->dev, res); 3618 if (IS_ERR(pp->base)) { 3619 err = PTR_ERR(pp->base); 3620 goto err_clk; 3621 } 3622 3623 /* Alloc per-cpu port structure */ 3624 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 3625 if (!pp->ports) { 3626 err = -ENOMEM; 3627 goto err_clk; 3628 } 3629 3630 /* Alloc per-cpu stats */ 3631 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3632 if (!pp->stats) { 3633 err = -ENOMEM; 3634 goto err_free_ports; 3635 } 3636 3637 dt_mac_addr = of_get_mac_address(dn); 3638 if (dt_mac_addr) { 3639 mac_from = "device tree"; 3640 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3641 } else { 3642 mvneta_get_mac_addr(pp, hw_mac_addr); 3643 if (is_valid_ether_addr(hw_mac_addr)) { 3644 mac_from = "hardware"; 3645 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3646 } else { 3647 mac_from = "random"; 3648 eth_hw_addr_random(dev); 3649 } 3650 } 3651 3652 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 3653 if (tx_csum_limit < 0 || 3654 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 3655 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3656 dev_info(&pdev->dev, 3657 "Wrong TX csum limit in DT, set to %dB\n", 3658 MVNETA_TX_CSUM_DEF_SIZE); 3659 } 3660 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 3661 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3662 } else { 3663 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 3664 } 3665 3666 pp->tx_csum_limit = tx_csum_limit; 3667 3668 pp->tx_ring_size = MVNETA_MAX_TXD; 3669 pp->rx_ring_size = MVNETA_MAX_RXD; 3670 3671 pp->dev = dev; 3672 SET_NETDEV_DEV(dev, &pdev->dev); 3673 3674 err = mvneta_init(&pdev->dev, pp); 3675 if (err < 0) 3676 goto err_free_stats; 3677 3678 err = mvneta_port_power_up(pp, phy_mode); 3679 if (err < 0) { 3680 dev_err(&pdev->dev, "can't power up port\n"); 3681 goto err_free_stats; 3682 } 3683 3684 dram_target_info = mv_mbus_dram_info(); 3685 if (dram_target_info) 3686 mvneta_conf_mbus_windows(pp, dram_target_info); 3687 3688 for_each_present_cpu(cpu) { 3689 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3690 3691 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3692 port->pp = pp; 3693 } 3694 3695 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3696 dev->hw_features |= dev->features; 3697 dev->vlan_features |= dev->features; 3698 dev->priv_flags |= IFF_UNICAST_FLT; 3699 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3700 3701 err = register_netdev(dev); 3702 if (err < 0) { 3703 dev_err(&pdev->dev, "failed to register\n"); 3704 goto err_free_stats; 3705 } 3706 3707 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3708 dev->dev_addr); 3709 3710 platform_set_drvdata(pdev, pp->dev); 3711 3712 if (pp->use_inband_status) { 3713 struct phy_device *phy = of_phy_find_device(dn); 3714 3715 mvneta_fixed_link_update(pp, phy); 3716 3717 put_device(&phy->mdio.dev); 3718 } 3719 3720 return 0; 3721 3722 err_free_stats: 3723 free_percpu(pp->stats); 3724 err_free_ports: 3725 free_percpu(pp->ports); 3726 err_clk: 3727 clk_disable_unprepare(pp->clk); 3728 err_put_phy_node: 3729 of_node_put(phy_node); 3730 err_free_irq: 3731 irq_dispose_mapping(dev->irq); 3732 err_free_netdev: 3733 free_netdev(dev); 3734 return err; 3735 } 3736 3737 /* Device removal routine */ 3738 static int mvneta_remove(struct platform_device *pdev) 3739 { 3740 struct net_device *dev = platform_get_drvdata(pdev); 3741 struct mvneta_port *pp = netdev_priv(dev); 3742 3743 unregister_netdev(dev); 3744 clk_disable_unprepare(pp->clk); 3745 free_percpu(pp->ports); 3746 free_percpu(pp->stats); 3747 irq_dispose_mapping(dev->irq); 3748 of_node_put(pp->phy_node); 3749 free_netdev(dev); 3750 3751 return 0; 3752 } 3753 3754 static const struct of_device_id mvneta_match[] = { 3755 { .compatible = "marvell,armada-370-neta" }, 3756 { .compatible = "marvell,armada-xp-neta" }, 3757 { } 3758 }; 3759 MODULE_DEVICE_TABLE(of, mvneta_match); 3760 3761 static struct platform_driver mvneta_driver = { 3762 .probe = mvneta_probe, 3763 .remove = mvneta_remove, 3764 .driver = { 3765 .name = MVNETA_DRIVER_NAME, 3766 .of_match_table = mvneta_match, 3767 }, 3768 }; 3769 3770 module_platform_driver(mvneta_driver); 3771 3772 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3773 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3774 MODULE_LICENSE("GPL"); 3775 3776 module_param(rxq_number, int, S_IRUGO); 3777 module_param(txq_number, int, S_IRUGO); 3778 3779 module_param(rxq_def, int, S_IRUGO); 3780 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3781