1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35 #include <linux/cpu.h>
36 
37 /* Registers */
38 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
39 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
40 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
41 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
42 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
43 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
44 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
45 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
46 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
47 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
48 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
49 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
51 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
52 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
53 #define MVNETA_PORT_RX_RESET                    0x1cc0
54 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
55 #define MVNETA_PHY_ADDR                         0x2000
56 #define      MVNETA_PHY_ADDR_MASK               0x1f
57 #define MVNETA_MBUS_RETRY                       0x2010
58 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
59 #define MVNETA_UNIT_CONTROL                     0x20B0
60 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
61 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
62 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
63 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
64 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
65 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
66 #define MVNETA_PORT_CONFIG                      0x2400
67 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
68 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
69 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
70 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
71 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
72 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
73 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
74 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
75 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
76 						 MVNETA_DEF_RXQ_ARP(q)	 | \
77 						 MVNETA_DEF_RXQ_TCP(q)	 | \
78 						 MVNETA_DEF_RXQ_UDP(q)	 | \
79 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
80 						 MVNETA_TX_UNSET_ERR_SUM | \
81 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
82 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
83 #define MVNETA_MAC_ADDR_LOW                      0x2414
84 #define MVNETA_MAC_ADDR_HIGH                     0x2418
85 #define MVNETA_SDMA_CONFIG                       0x241c
86 #define      MVNETA_SDMA_BRST_SIZE_16            4
87 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
88 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
89 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
90 #define      MVNETA_DESC_SWAP                    BIT(6)
91 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
92 #define MVNETA_PORT_STATUS                       0x2444
93 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
94 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
95 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
96 #define MVNETA_SERDES_CFG			 0x24A0
97 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
98 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
99 #define MVNETA_TYPE_PRIO                         0x24bc
100 #define      MVNETA_FORCE_UNI                    BIT(21)
101 #define MVNETA_TXQ_CMD_1                         0x24e4
102 #define MVNETA_TXQ_CMD                           0x2448
103 #define      MVNETA_TXQ_DISABLE_SHIFT            8
104 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
105 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
106 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
107 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
108 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
109 #define MVNETA_ACC_MODE                          0x2500
110 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
111 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
112 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
113 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
114 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
115 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
116 
117 /* Exception Interrupt Port/Queue Cause register
118  *
119  * Their behavior depend of the mapping done using the PCPX2Q
120  * registers. For a given CPU if the bit associated to a queue is not
121  * set, then for the register a read from this CPU will always return
122  * 0 and a write won't do anything
123  */
124 
125 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
126 #define MVNETA_INTR_NEW_MASK                     0x25a4
127 
128 /* bits  0..7  = TXQ SENT, one bit per queue.
129  * bits  8..15 = RXQ OCCUP, one bit per queue.
130  * bits 16..23 = RXQ FREE, one bit per queue.
131  * bit  29 = OLD_REG_SUM, see old reg ?
132  * bit  30 = TX_ERR_SUM, one bit for 4 ports
133  * bit  31 = MISC_SUM,   one bit for 4 ports
134  */
135 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
136 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
137 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
138 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
139 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
140 
141 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
142 #define MVNETA_INTR_OLD_MASK                     0x25ac
143 
144 /* Data Path Port/Queue Cause Register */
145 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
146 #define MVNETA_INTR_MISC_MASK                    0x25b4
147 
148 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
149 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
150 #define      MVNETA_CAUSE_PTP                    BIT(4)
151 
152 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
153 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
154 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
155 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
156 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
157 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
158 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
159 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
160 
161 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
162 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
163 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
164 
165 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
166 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
167 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
168 
169 #define MVNETA_INTR_ENABLE                       0x25b8
170 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
171 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
172 
173 #define MVNETA_RXQ_CMD                           0x2680
174 #define      MVNETA_RXQ_DISABLE_SHIFT            8
175 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
176 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
177 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
178 #define MVNETA_GMAC_CTRL_0                       0x2c00
179 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
180 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
181 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
182 #define MVNETA_GMAC_CTRL_2                       0x2c08
183 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
184 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
185 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
186 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
187 #define MVNETA_GMAC_STATUS                       0x2c10
188 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
189 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
190 #define      MVNETA_GMAC_SPEED_100               BIT(2)
191 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
192 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
193 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
194 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
195 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
196 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
197 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
198 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
199 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
200 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
201 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
202 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
203 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
204 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
205 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
206 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
207 #define      MVNETA_MIB_LATE_COLLISION           0x7c
208 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
209 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
210 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
211 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
212 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
213 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
214 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
215 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
216 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
217 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
218 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
219 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
220 #define MVNETA_PORT_TX_RESET                     0x3cf0
221 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
222 #define MVNETA_TX_MTU                            0x3e0c
223 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
224 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
226 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
227 
228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
229 
230 /* Descriptor ring Macros */
231 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
232 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
233 
234 /* Various constants */
235 
236 /* Coalescing */
237 #define MVNETA_TXDONE_COAL_PKTS		1
238 #define MVNETA_RX_COAL_PKTS		32
239 #define MVNETA_RX_COAL_USEC		100
240 
241 /* The two bytes Marvell header. Either contains a special value used
242  * by Marvell switches when a specific hardware mode is enabled (not
243  * supported by this driver) or is filled automatically by zeroes on
244  * the RX side. Those two bytes being at the front of the Ethernet
245  * header, they allow to have the IP header aligned on a 4 bytes
246  * boundary automatically: the hardware skips those two bytes on its
247  * own.
248  */
249 #define MVNETA_MH_SIZE			2
250 
251 #define MVNETA_VLAN_TAG_LEN             4
252 
253 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
254 #define MVNETA_TX_CSUM_DEF_SIZE		1600
255 #define MVNETA_TX_CSUM_MAX_SIZE		9800
256 #define MVNETA_ACC_MODE_EXT		1
257 
258 /* Timeout constants */
259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
262 
263 #define MVNETA_TX_MTU_MAX		0x3ffff
264 
265 /* The RSS lookup table actually has 256 entries but we do not use
266  * them yet
267  */
268 #define MVNETA_RSS_LU_TABLE_SIZE	1
269 
270 /* TSO header size */
271 #define TSO_HEADER_SIZE 128
272 
273 /* Max number of Rx descriptors */
274 #define MVNETA_MAX_RXD 128
275 
276 /* Max number of Tx descriptors */
277 #define MVNETA_MAX_TXD 532
278 
279 /* Max number of allowed TCP segments for software TSO */
280 #define MVNETA_MAX_TSO_SEGS 100
281 
282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
283 
284 /* descriptor aligned size */
285 #define MVNETA_DESC_ALIGNED_SIZE	32
286 
287 #define MVNETA_RX_PKT_SIZE(mtu) \
288 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
289 	      ETH_HLEN + ETH_FCS_LEN,			     \
290 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
291 
292 #define IS_TSO_HEADER(txq, addr) \
293 	((addr >= txq->tso_hdrs_phys) && \
294 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
295 
296 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
297 
298 struct mvneta_statistic {
299 	unsigned short offset;
300 	unsigned short type;
301 	const char name[ETH_GSTRING_LEN];
302 };
303 
304 #define T_REG_32	32
305 #define T_REG_64	64
306 
307 static const struct mvneta_statistic mvneta_statistics[] = {
308 	{ 0x3000, T_REG_64, "good_octets_received", },
309 	{ 0x3010, T_REG_32, "good_frames_received", },
310 	{ 0x3008, T_REG_32, "bad_octets_received", },
311 	{ 0x3014, T_REG_32, "bad_frames_received", },
312 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
313 	{ 0x301c, T_REG_32, "multicast_frames_received", },
314 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
315 	{ 0x3058, T_REG_32, "good_fc_received", },
316 	{ 0x305c, T_REG_32, "bad_fc_received", },
317 	{ 0x3060, T_REG_32, "undersize_received", },
318 	{ 0x3064, T_REG_32, "fragments_received", },
319 	{ 0x3068, T_REG_32, "oversize_received", },
320 	{ 0x306c, T_REG_32, "jabber_received", },
321 	{ 0x3070, T_REG_32, "mac_receive_error", },
322 	{ 0x3074, T_REG_32, "bad_crc_event", },
323 	{ 0x3078, T_REG_32, "collision", },
324 	{ 0x307c, T_REG_32, "late_collision", },
325 	{ 0x2484, T_REG_32, "rx_discard", },
326 	{ 0x2488, T_REG_32, "rx_overrun", },
327 	{ 0x3020, T_REG_32, "frames_64_octets", },
328 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
329 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
330 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
331 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
332 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
333 	{ 0x3038, T_REG_64, "good_octets_sent", },
334 	{ 0x3040, T_REG_32, "good_frames_sent", },
335 	{ 0x3044, T_REG_32, "excessive_collision", },
336 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
337 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
338 	{ 0x3054, T_REG_32, "fc_sent", },
339 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
340 };
341 
342 struct mvneta_pcpu_stats {
343 	struct	u64_stats_sync syncp;
344 	u64	rx_packets;
345 	u64	rx_bytes;
346 	u64	tx_packets;
347 	u64	tx_bytes;
348 };
349 
350 struct mvneta_pcpu_port {
351 	/* Pointer to the shared port */
352 	struct mvneta_port	*pp;
353 
354 	/* Pointer to the CPU-local NAPI struct */
355 	struct napi_struct	napi;
356 
357 	/* Cause of the previous interrupt */
358 	u32			cause_rx_tx;
359 };
360 
361 struct mvneta_port {
362 	struct mvneta_pcpu_port __percpu	*ports;
363 	struct mvneta_pcpu_stats __percpu	*stats;
364 
365 	int pkt_size;
366 	unsigned int frag_size;
367 	void __iomem *base;
368 	struct mvneta_rx_queue *rxqs;
369 	struct mvneta_tx_queue *txqs;
370 	struct net_device *dev;
371 	struct notifier_block cpu_notifier;
372 	int rxq_def;
373 
374 	/* Core clock */
375 	struct clk *clk;
376 	u8 mcast_count[256];
377 	u16 tx_ring_size;
378 	u16 rx_ring_size;
379 
380 	struct mii_bus *mii_bus;
381 	struct phy_device *phy_dev;
382 	phy_interface_t phy_interface;
383 	struct device_node *phy_node;
384 	unsigned int link;
385 	unsigned int duplex;
386 	unsigned int speed;
387 	unsigned int tx_csum_limit;
388 	unsigned int use_inband_status:1;
389 
390 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
391 
392 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
393 };
394 
395 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
396  * layout of the transmit and reception DMA descriptors, and their
397  * layout is therefore defined by the hardware design
398  */
399 
400 #define MVNETA_TX_L3_OFF_SHIFT	0
401 #define MVNETA_TX_IP_HLEN_SHIFT	8
402 #define MVNETA_TX_L4_UDP	BIT(16)
403 #define MVNETA_TX_L3_IP6	BIT(17)
404 #define MVNETA_TXD_IP_CSUM	BIT(18)
405 #define MVNETA_TXD_Z_PAD	BIT(19)
406 #define MVNETA_TXD_L_DESC	BIT(20)
407 #define MVNETA_TXD_F_DESC	BIT(21)
408 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
409 				 MVNETA_TXD_L_DESC | \
410 				 MVNETA_TXD_F_DESC)
411 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
412 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
413 
414 #define MVNETA_RXD_ERR_CRC		0x0
415 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
416 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
417 #define MVNETA_RXD_ERR_LEN		BIT(18)
418 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
419 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
420 #define MVNETA_RXD_L3_IP4		BIT(25)
421 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
422 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
423 
424 #if defined(__LITTLE_ENDIAN)
425 struct mvneta_tx_desc {
426 	u32  command;		/* Options used by HW for packet transmitting.*/
427 	u16  reserverd1;	/* csum_l4 (for future use)		*/
428 	u16  data_size;		/* Data size of transmitted packet in bytes */
429 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
430 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
431 	u32  reserved3[4];	/* Reserved - (for future use)		*/
432 };
433 
434 struct mvneta_rx_desc {
435 	u32  status;		/* Info about received packet		*/
436 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
437 	u16  data_size;		/* Size of received packet in bytes	*/
438 
439 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
440 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
441 
442 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
443 	u16  reserved3;		/* prefetch_cmd, for future use		*/
444 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
445 
446 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
447 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
448 };
449 #else
450 struct mvneta_tx_desc {
451 	u16  data_size;		/* Data size of transmitted packet in bytes */
452 	u16  reserverd1;	/* csum_l4 (for future use)		*/
453 	u32  command;		/* Options used by HW for packet transmitting.*/
454 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
455 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
456 	u32  reserved3[4];	/* Reserved - (for future use)		*/
457 };
458 
459 struct mvneta_rx_desc {
460 	u16  data_size;		/* Size of received packet in bytes	*/
461 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
462 	u32  status;		/* Info about received packet		*/
463 
464 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
465 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
466 
467 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
468 	u16  reserved3;		/* prefetch_cmd, for future use		*/
469 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
470 
471 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
472 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
473 };
474 #endif
475 
476 struct mvneta_tx_queue {
477 	/* Number of this TX queue, in the range 0-7 */
478 	u8 id;
479 
480 	/* Number of TX DMA descriptors in the descriptor ring */
481 	int size;
482 
483 	/* Number of currently used TX DMA descriptor in the
484 	 * descriptor ring
485 	 */
486 	int count;
487 	int tx_stop_threshold;
488 	int tx_wake_threshold;
489 
490 	/* Array of transmitted skb */
491 	struct sk_buff **tx_skb;
492 
493 	/* Index of last TX DMA descriptor that was inserted */
494 	int txq_put_index;
495 
496 	/* Index of the TX DMA descriptor to be cleaned up */
497 	int txq_get_index;
498 
499 	u32 done_pkts_coal;
500 
501 	/* Virtual address of the TX DMA descriptors array */
502 	struct mvneta_tx_desc *descs;
503 
504 	/* DMA address of the TX DMA descriptors array */
505 	dma_addr_t descs_phys;
506 
507 	/* Index of the last TX DMA descriptor */
508 	int last_desc;
509 
510 	/* Index of the next TX DMA descriptor to process */
511 	int next_desc_to_proc;
512 
513 	/* DMA buffers for TSO headers */
514 	char *tso_hdrs;
515 
516 	/* DMA address of TSO headers */
517 	dma_addr_t tso_hdrs_phys;
518 
519 	/* Affinity mask for CPUs*/
520 	cpumask_t affinity_mask;
521 };
522 
523 struct mvneta_rx_queue {
524 	/* rx queue number, in the range 0-7 */
525 	u8 id;
526 
527 	/* num of rx descriptors in the rx descriptor ring */
528 	int size;
529 
530 	/* counter of times when mvneta_refill() failed */
531 	int missed;
532 
533 	u32 pkts_coal;
534 	u32 time_coal;
535 
536 	/* Virtual address of the RX DMA descriptors array */
537 	struct mvneta_rx_desc *descs;
538 
539 	/* DMA address of the RX DMA descriptors array */
540 	dma_addr_t descs_phys;
541 
542 	/* Index of the last RX DMA descriptor */
543 	int last_desc;
544 
545 	/* Index of the next RX DMA descriptor to process */
546 	int next_desc_to_proc;
547 };
548 
549 /* The hardware supports eight (8) rx queues, but we are only allowing
550  * the first one to be used. Therefore, let's just allocate one queue.
551  */
552 static int rxq_number = 8;
553 static int txq_number = 8;
554 
555 static int rxq_def;
556 
557 static int rx_copybreak __read_mostly = 256;
558 
559 #define MVNETA_DRIVER_NAME "mvneta"
560 #define MVNETA_DRIVER_VERSION "1.0"
561 
562 /* Utility/helper methods */
563 
564 /* Write helper method */
565 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
566 {
567 	writel(data, pp->base + offset);
568 }
569 
570 /* Read helper method */
571 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
572 {
573 	return readl(pp->base + offset);
574 }
575 
576 /* Increment txq get counter */
577 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
578 {
579 	txq->txq_get_index++;
580 	if (txq->txq_get_index == txq->size)
581 		txq->txq_get_index = 0;
582 }
583 
584 /* Increment txq put counter */
585 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
586 {
587 	txq->txq_put_index++;
588 	if (txq->txq_put_index == txq->size)
589 		txq->txq_put_index = 0;
590 }
591 
592 
593 /* Clear all MIB counters */
594 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
595 {
596 	int i;
597 	u32 dummy;
598 
599 	/* Perform dummy reads from MIB counters */
600 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
601 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
602 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
603 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
604 }
605 
606 /* Get System Network Statistics */
607 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
608 					     struct rtnl_link_stats64 *stats)
609 {
610 	struct mvneta_port *pp = netdev_priv(dev);
611 	unsigned int start;
612 	int cpu;
613 
614 	for_each_possible_cpu(cpu) {
615 		struct mvneta_pcpu_stats *cpu_stats;
616 		u64 rx_packets;
617 		u64 rx_bytes;
618 		u64 tx_packets;
619 		u64 tx_bytes;
620 
621 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
622 		do {
623 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
624 			rx_packets = cpu_stats->rx_packets;
625 			rx_bytes   = cpu_stats->rx_bytes;
626 			tx_packets = cpu_stats->tx_packets;
627 			tx_bytes   = cpu_stats->tx_bytes;
628 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
629 
630 		stats->rx_packets += rx_packets;
631 		stats->rx_bytes   += rx_bytes;
632 		stats->tx_packets += tx_packets;
633 		stats->tx_bytes   += tx_bytes;
634 	}
635 
636 	stats->rx_errors	= dev->stats.rx_errors;
637 	stats->rx_dropped	= dev->stats.rx_dropped;
638 
639 	stats->tx_dropped	= dev->stats.tx_dropped;
640 
641 	return stats;
642 }
643 
644 /* Rx descriptors helper methods */
645 
646 /* Checks whether the RX descriptor having this status is both the first
647  * and the last descriptor for the RX packet. Each RX packet is currently
648  * received through a single RX descriptor, so not having each RX
649  * descriptor with its first and last bits set is an error
650  */
651 static int mvneta_rxq_desc_is_first_last(u32 status)
652 {
653 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
654 		MVNETA_RXD_FIRST_LAST_DESC;
655 }
656 
657 /* Add number of descriptors ready to receive new packets */
658 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
659 					  struct mvneta_rx_queue *rxq,
660 					  int ndescs)
661 {
662 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
663 	 * be added at once
664 	 */
665 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
666 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
667 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
668 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
669 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
670 	}
671 
672 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
673 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
674 }
675 
676 /* Get number of RX descriptors occupied by received packets */
677 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
678 					struct mvneta_rx_queue *rxq)
679 {
680 	u32 val;
681 
682 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
683 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
684 }
685 
686 /* Update num of rx desc called upon return from rx path or
687  * from mvneta_rxq_drop_pkts().
688  */
689 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
690 				       struct mvneta_rx_queue *rxq,
691 				       int rx_done, int rx_filled)
692 {
693 	u32 val;
694 
695 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
696 		val = rx_done |
697 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
698 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
699 		return;
700 	}
701 
702 	/* Only 255 descriptors can be added at once */
703 	while ((rx_done > 0) || (rx_filled > 0)) {
704 		if (rx_done <= 0xff) {
705 			val = rx_done;
706 			rx_done = 0;
707 		} else {
708 			val = 0xff;
709 			rx_done -= 0xff;
710 		}
711 		if (rx_filled <= 0xff) {
712 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
713 			rx_filled = 0;
714 		} else {
715 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
716 			rx_filled -= 0xff;
717 		}
718 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
719 	}
720 }
721 
722 /* Get pointer to next RX descriptor to be processed by SW */
723 static struct mvneta_rx_desc *
724 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
725 {
726 	int rx_desc = rxq->next_desc_to_proc;
727 
728 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
729 	prefetch(rxq->descs + rxq->next_desc_to_proc);
730 	return rxq->descs + rx_desc;
731 }
732 
733 /* Change maximum receive size of the port. */
734 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
735 {
736 	u32 val;
737 
738 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
739 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
740 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
741 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
742 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
743 }
744 
745 
746 /* Set rx queue offset */
747 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
748 				  struct mvneta_rx_queue *rxq,
749 				  int offset)
750 {
751 	u32 val;
752 
753 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
754 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
755 
756 	/* Offset is in */
757 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
758 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
759 }
760 
761 
762 /* Tx descriptors helper methods */
763 
764 /* Update HW with number of TX descriptors to be sent */
765 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
766 				     struct mvneta_tx_queue *txq,
767 				     int pend_desc)
768 {
769 	u32 val;
770 
771 	/* Only 255 descriptors can be added at once ; Assume caller
772 	 * process TX desriptors in quanta less than 256
773 	 */
774 	val = pend_desc;
775 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
776 }
777 
778 /* Get pointer to next TX descriptor to be processed (send) by HW */
779 static struct mvneta_tx_desc *
780 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
781 {
782 	int tx_desc = txq->next_desc_to_proc;
783 
784 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
785 	return txq->descs + tx_desc;
786 }
787 
788 /* Release the last allocated TX descriptor. Useful to handle DMA
789  * mapping failures in the TX path.
790  */
791 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
792 {
793 	if (txq->next_desc_to_proc == 0)
794 		txq->next_desc_to_proc = txq->last_desc - 1;
795 	else
796 		txq->next_desc_to_proc--;
797 }
798 
799 /* Set rxq buf size */
800 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
801 				    struct mvneta_rx_queue *rxq,
802 				    int buf_size)
803 {
804 	u32 val;
805 
806 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
807 
808 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
809 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
810 
811 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
812 }
813 
814 /* Disable buffer management (BM) */
815 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
816 				  struct mvneta_rx_queue *rxq)
817 {
818 	u32 val;
819 
820 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
821 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
822 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
823 }
824 
825 /* Start the Ethernet port RX and TX activity */
826 static void mvneta_port_up(struct mvneta_port *pp)
827 {
828 	int queue;
829 	u32 q_map;
830 
831 	/* Enable all initialized TXs. */
832 	q_map = 0;
833 	for (queue = 0; queue < txq_number; queue++) {
834 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
835 		if (txq->descs != NULL)
836 			q_map |= (1 << queue);
837 	}
838 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
839 
840 	/* Enable all initialized RXQs. */
841 	for (queue = 0; queue < rxq_number; queue++) {
842 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
843 
844 		if (rxq->descs != NULL)
845 			q_map |= (1 << queue);
846 	}
847 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
848 }
849 
850 /* Stop the Ethernet port activity */
851 static void mvneta_port_down(struct mvneta_port *pp)
852 {
853 	u32 val;
854 	int count;
855 
856 	/* Stop Rx port activity. Check port Rx activity. */
857 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
858 
859 	/* Issue stop command for active channels only */
860 	if (val != 0)
861 		mvreg_write(pp, MVNETA_RXQ_CMD,
862 			    val << MVNETA_RXQ_DISABLE_SHIFT);
863 
864 	/* Wait for all Rx activity to terminate. */
865 	count = 0;
866 	do {
867 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
868 			netdev_warn(pp->dev,
869 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
870 				    val);
871 			break;
872 		}
873 		mdelay(1);
874 
875 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
876 	} while (val & 0xff);
877 
878 	/* Stop Tx port activity. Check port Tx activity. Issue stop
879 	 * command for active channels only
880 	 */
881 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
882 
883 	if (val != 0)
884 		mvreg_write(pp, MVNETA_TXQ_CMD,
885 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
886 
887 	/* Wait for all Tx activity to terminate. */
888 	count = 0;
889 	do {
890 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
891 			netdev_warn(pp->dev,
892 				    "TIMEOUT for TX stopped status=0x%08x\n",
893 				    val);
894 			break;
895 		}
896 		mdelay(1);
897 
898 		/* Check TX Command reg that all Txqs are stopped */
899 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
900 
901 	} while (val & 0xff);
902 
903 	/* Double check to verify that TX FIFO is empty */
904 	count = 0;
905 	do {
906 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
907 			netdev_warn(pp->dev,
908 				    "TX FIFO empty timeout status=0x08%x\n",
909 				    val);
910 			break;
911 		}
912 		mdelay(1);
913 
914 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
915 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
916 		 (val & MVNETA_TX_IN_PRGRS));
917 
918 	udelay(200);
919 }
920 
921 /* Enable the port by setting the port enable bit of the MAC control register */
922 static void mvneta_port_enable(struct mvneta_port *pp)
923 {
924 	u32 val;
925 
926 	/* Enable port */
927 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
928 	val |= MVNETA_GMAC0_PORT_ENABLE;
929 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
930 }
931 
932 /* Disable the port and wait for about 200 usec before retuning */
933 static void mvneta_port_disable(struct mvneta_port *pp)
934 {
935 	u32 val;
936 
937 	/* Reset the Enable bit in the Serial Control Register */
938 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
939 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
940 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
941 
942 	udelay(200);
943 }
944 
945 /* Multicast tables methods */
946 
947 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
948 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
949 {
950 	int offset;
951 	u32 val;
952 
953 	if (queue == -1) {
954 		val = 0;
955 	} else {
956 		val = 0x1 | (queue << 1);
957 		val |= (val << 24) | (val << 16) | (val << 8);
958 	}
959 
960 	for (offset = 0; offset <= 0xc; offset += 4)
961 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
962 }
963 
964 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
965 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
966 {
967 	int offset;
968 	u32 val;
969 
970 	if (queue == -1) {
971 		val = 0;
972 	} else {
973 		val = 0x1 | (queue << 1);
974 		val |= (val << 24) | (val << 16) | (val << 8);
975 	}
976 
977 	for (offset = 0; offset <= 0xfc; offset += 4)
978 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
979 
980 }
981 
982 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
983 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
984 {
985 	int offset;
986 	u32 val;
987 
988 	if (queue == -1) {
989 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
990 		val = 0;
991 	} else {
992 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
993 		val = 0x1 | (queue << 1);
994 		val |= (val << 24) | (val << 16) | (val << 8);
995 	}
996 
997 	for (offset = 0; offset <= 0xfc; offset += 4)
998 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
999 }
1000 
1001 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1002 {
1003 	u32 val;
1004 
1005 	if (enable) {
1006 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1007 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1008 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1009 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1010 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1011 		       MVNETA_GMAC_AN_SPEED_EN |
1012 		       MVNETA_GMAC_AN_DUPLEX_EN;
1013 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1014 
1015 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1016 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1017 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1018 
1019 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1020 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1021 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1022 	} else {
1023 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1024 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1025 		       MVNETA_GMAC_AN_SPEED_EN |
1026 		       MVNETA_GMAC_AN_DUPLEX_EN);
1027 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1028 
1029 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1030 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1031 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1032 
1033 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1034 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1035 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1036 	}
1037 }
1038 
1039 /* This method sets defaults to the NETA port:
1040  *	Clears interrupt Cause and Mask registers.
1041  *	Clears all MAC tables.
1042  *	Sets defaults to all registers.
1043  *	Resets RX and TX descriptor rings.
1044  *	Resets PHY.
1045  * This method can be called after mvneta_port_down() to return the port
1046  *	settings to defaults.
1047  */
1048 static void mvneta_defaults_set(struct mvneta_port *pp)
1049 {
1050 	int cpu;
1051 	int queue;
1052 	u32 val;
1053 	int max_cpu = num_present_cpus();
1054 
1055 	/* Clear all Cause registers */
1056 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1057 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1058 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1059 
1060 	/* Mask all interrupts */
1061 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1062 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1063 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1064 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1065 
1066 	/* Enable MBUS Retry bit16 */
1067 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1068 
1069 	/* Set CPU queue access map. CPUs are assigned to the RX and
1070 	 * TX queues modulo their number. If there is only one TX
1071 	 * queue then it is assigned to the CPU associated to the
1072 	 * default RX queue.
1073 	 */
1074 	for_each_present_cpu(cpu) {
1075 		int rxq_map = 0, txq_map = 0;
1076 		int rxq, txq;
1077 
1078 		for (rxq = 0; rxq < rxq_number; rxq++)
1079 			if ((rxq % max_cpu) == cpu)
1080 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1081 
1082 		for (txq = 0; txq < txq_number; txq++)
1083 			if ((txq % max_cpu) == cpu)
1084 				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1085 
1086 		/* With only one TX queue we configure a special case
1087 		 * which will allow to get all the irq on a single
1088 		 * CPU
1089 		 */
1090 		if (txq_number == 1)
1091 			txq_map = (cpu == pp->rxq_def) ?
1092 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1093 
1094 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1095 	}
1096 
1097 	/* Reset RX and TX DMAs */
1098 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1099 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1100 
1101 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1102 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1103 	for (queue = 0; queue < txq_number; queue++) {
1104 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1105 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1106 	}
1107 
1108 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1109 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1110 
1111 	/* Set Port Acceleration Mode */
1112 	val = MVNETA_ACC_MODE_EXT;
1113 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1114 
1115 	/* Update val of portCfg register accordingly with all RxQueue types */
1116 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1117 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1118 
1119 	val = 0;
1120 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1121 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1122 
1123 	/* Build PORT_SDMA_CONFIG_REG */
1124 	val = 0;
1125 
1126 	/* Default burst size */
1127 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1128 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1129 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1130 
1131 #if defined(__BIG_ENDIAN)
1132 	val |= MVNETA_DESC_SWAP;
1133 #endif
1134 
1135 	/* Assign port SDMA configuration */
1136 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1137 
1138 	/* Disable PHY polling in hardware, since we're using the
1139 	 * kernel phylib to do this.
1140 	 */
1141 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1142 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1143 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1144 
1145 	mvneta_set_autoneg(pp, pp->use_inband_status);
1146 	mvneta_set_ucast_table(pp, -1);
1147 	mvneta_set_special_mcast_table(pp, -1);
1148 	mvneta_set_other_mcast_table(pp, -1);
1149 
1150 	/* Set port interrupt enable register - default enable all */
1151 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1152 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1153 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1154 
1155 	mvneta_mib_counters_clear(pp);
1156 }
1157 
1158 /* Set max sizes for tx queues */
1159 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1160 
1161 {
1162 	u32 val, size, mtu;
1163 	int queue;
1164 
1165 	mtu = max_tx_size * 8;
1166 	if (mtu > MVNETA_TX_MTU_MAX)
1167 		mtu = MVNETA_TX_MTU_MAX;
1168 
1169 	/* Set MTU */
1170 	val = mvreg_read(pp, MVNETA_TX_MTU);
1171 	val &= ~MVNETA_TX_MTU_MAX;
1172 	val |= mtu;
1173 	mvreg_write(pp, MVNETA_TX_MTU, val);
1174 
1175 	/* TX token size and all TXQs token size must be larger that MTU */
1176 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1177 
1178 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1179 	if (size < mtu) {
1180 		size = mtu;
1181 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1182 		val |= size;
1183 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1184 	}
1185 	for (queue = 0; queue < txq_number; queue++) {
1186 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1187 
1188 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1189 		if (size < mtu) {
1190 			size = mtu;
1191 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1192 			val |= size;
1193 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1194 		}
1195 	}
1196 }
1197 
1198 /* Set unicast address */
1199 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1200 				  int queue)
1201 {
1202 	unsigned int unicast_reg;
1203 	unsigned int tbl_offset;
1204 	unsigned int reg_offset;
1205 
1206 	/* Locate the Unicast table entry */
1207 	last_nibble = (0xf & last_nibble);
1208 
1209 	/* offset from unicast tbl base */
1210 	tbl_offset = (last_nibble / 4) * 4;
1211 
1212 	/* offset within the above reg  */
1213 	reg_offset = last_nibble % 4;
1214 
1215 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1216 
1217 	if (queue == -1) {
1218 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1219 		unicast_reg &= ~(0xff << (8 * reg_offset));
1220 	} else {
1221 		unicast_reg &= ~(0xff << (8 * reg_offset));
1222 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1223 	}
1224 
1225 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1226 }
1227 
1228 /* Set mac address */
1229 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1230 				int queue)
1231 {
1232 	unsigned int mac_h;
1233 	unsigned int mac_l;
1234 
1235 	if (queue != -1) {
1236 		mac_l = (addr[4] << 8) | (addr[5]);
1237 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1238 			(addr[2] << 8) | (addr[3] << 0);
1239 
1240 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1241 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1242 	}
1243 
1244 	/* Accept frames of this address */
1245 	mvneta_set_ucast_addr(pp, addr[5], queue);
1246 }
1247 
1248 /* Set the number of packets that will be received before RX interrupt
1249  * will be generated by HW.
1250  */
1251 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1252 				    struct mvneta_rx_queue *rxq, u32 value)
1253 {
1254 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1255 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1256 	rxq->pkts_coal = value;
1257 }
1258 
1259 /* Set the time delay in usec before RX interrupt will be generated by
1260  * HW.
1261  */
1262 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1263 				    struct mvneta_rx_queue *rxq, u32 value)
1264 {
1265 	u32 val;
1266 	unsigned long clk_rate;
1267 
1268 	clk_rate = clk_get_rate(pp->clk);
1269 	val = (clk_rate / 1000000) * value;
1270 
1271 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1272 	rxq->time_coal = value;
1273 }
1274 
1275 /* Set threshold for TX_DONE pkts coalescing */
1276 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1277 					 struct mvneta_tx_queue *txq, u32 value)
1278 {
1279 	u32 val;
1280 
1281 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1282 
1283 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1284 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1285 
1286 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1287 
1288 	txq->done_pkts_coal = value;
1289 }
1290 
1291 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1292 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1293 				u32 phys_addr, u32 cookie)
1294 {
1295 	rx_desc->buf_cookie = cookie;
1296 	rx_desc->buf_phys_addr = phys_addr;
1297 }
1298 
1299 /* Decrement sent descriptors counter */
1300 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1301 				     struct mvneta_tx_queue *txq,
1302 				     int sent_desc)
1303 {
1304 	u32 val;
1305 
1306 	/* Only 255 TX descriptors can be updated at once */
1307 	while (sent_desc > 0xff) {
1308 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1309 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1310 		sent_desc = sent_desc - 0xff;
1311 	}
1312 
1313 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1314 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1315 }
1316 
1317 /* Get number of TX descriptors already sent by HW */
1318 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1319 					struct mvneta_tx_queue *txq)
1320 {
1321 	u32 val;
1322 	int sent_desc;
1323 
1324 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1325 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1326 		MVNETA_TXQ_SENT_DESC_SHIFT;
1327 
1328 	return sent_desc;
1329 }
1330 
1331 /* Get number of sent descriptors and decrement counter.
1332  *  The number of sent descriptors is returned.
1333  */
1334 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1335 				     struct mvneta_tx_queue *txq)
1336 {
1337 	int sent_desc;
1338 
1339 	/* Get number of sent descriptors */
1340 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1341 
1342 	/* Decrement sent descriptors counter */
1343 	if (sent_desc)
1344 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1345 
1346 	return sent_desc;
1347 }
1348 
1349 /* Set TXQ descriptors fields relevant for CSUM calculation */
1350 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1351 				int ip_hdr_len, int l4_proto)
1352 {
1353 	u32 command;
1354 
1355 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1356 	 * G_L4_chk, L4_type; required only for checksum
1357 	 * calculation
1358 	 */
1359 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1360 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1361 
1362 	if (l3_proto == htons(ETH_P_IP))
1363 		command |= MVNETA_TXD_IP_CSUM;
1364 	else
1365 		command |= MVNETA_TX_L3_IP6;
1366 
1367 	if (l4_proto == IPPROTO_TCP)
1368 		command |=  MVNETA_TX_L4_CSUM_FULL;
1369 	else if (l4_proto == IPPROTO_UDP)
1370 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1371 	else
1372 		command |= MVNETA_TX_L4_CSUM_NOT;
1373 
1374 	return command;
1375 }
1376 
1377 
1378 /* Display more error info */
1379 static void mvneta_rx_error(struct mvneta_port *pp,
1380 			    struct mvneta_rx_desc *rx_desc)
1381 {
1382 	u32 status = rx_desc->status;
1383 
1384 	if (!mvneta_rxq_desc_is_first_last(status)) {
1385 		netdev_err(pp->dev,
1386 			   "bad rx status %08x (buffer oversize), size=%d\n",
1387 			   status, rx_desc->data_size);
1388 		return;
1389 	}
1390 
1391 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1392 	case MVNETA_RXD_ERR_CRC:
1393 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1394 			   status, rx_desc->data_size);
1395 		break;
1396 	case MVNETA_RXD_ERR_OVERRUN:
1397 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1398 			   status, rx_desc->data_size);
1399 		break;
1400 	case MVNETA_RXD_ERR_LEN:
1401 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1402 			   status, rx_desc->data_size);
1403 		break;
1404 	case MVNETA_RXD_ERR_RESOURCE:
1405 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1406 			   status, rx_desc->data_size);
1407 		break;
1408 	}
1409 }
1410 
1411 /* Handle RX checksum offload based on the descriptor's status */
1412 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1413 			   struct sk_buff *skb)
1414 {
1415 	if ((status & MVNETA_RXD_L3_IP4) &&
1416 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1417 		skb->csum = 0;
1418 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1419 		return;
1420 	}
1421 
1422 	skb->ip_summed = CHECKSUM_NONE;
1423 }
1424 
1425 /* Return tx queue pointer (find last set bit) according to <cause> returned
1426  * form tx_done reg. <cause> must not be null. The return value is always a
1427  * valid queue for matching the first one found in <cause>.
1428  */
1429 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1430 						     u32 cause)
1431 {
1432 	int queue = fls(cause) - 1;
1433 
1434 	return &pp->txqs[queue];
1435 }
1436 
1437 /* Free tx queue skbuffs */
1438 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1439 				 struct mvneta_tx_queue *txq, int num)
1440 {
1441 	int i;
1442 
1443 	for (i = 0; i < num; i++) {
1444 		struct mvneta_tx_desc *tx_desc = txq->descs +
1445 			txq->txq_get_index;
1446 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1447 
1448 		mvneta_txq_inc_get(txq);
1449 
1450 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1451 			dma_unmap_single(pp->dev->dev.parent,
1452 					 tx_desc->buf_phys_addr,
1453 					 tx_desc->data_size, DMA_TO_DEVICE);
1454 		if (!skb)
1455 			continue;
1456 		dev_kfree_skb_any(skb);
1457 	}
1458 }
1459 
1460 /* Handle end of transmission */
1461 static void mvneta_txq_done(struct mvneta_port *pp,
1462 			   struct mvneta_tx_queue *txq)
1463 {
1464 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1465 	int tx_done;
1466 
1467 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1468 	if (!tx_done)
1469 		return;
1470 
1471 	mvneta_txq_bufs_free(pp, txq, tx_done);
1472 
1473 	txq->count -= tx_done;
1474 
1475 	if (netif_tx_queue_stopped(nq)) {
1476 		if (txq->count <= txq->tx_wake_threshold)
1477 			netif_tx_wake_queue(nq);
1478 	}
1479 }
1480 
1481 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1482 {
1483 	if (likely(pp->frag_size <= PAGE_SIZE))
1484 		return netdev_alloc_frag(pp->frag_size);
1485 	else
1486 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1487 }
1488 
1489 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1490 {
1491 	if (likely(pp->frag_size <= PAGE_SIZE))
1492 		skb_free_frag(data);
1493 	else
1494 		kfree(data);
1495 }
1496 
1497 /* Refill processing */
1498 static int mvneta_rx_refill(struct mvneta_port *pp,
1499 			    struct mvneta_rx_desc *rx_desc)
1500 
1501 {
1502 	dma_addr_t phys_addr;
1503 	void *data;
1504 
1505 	data = mvneta_frag_alloc(pp);
1506 	if (!data)
1507 		return -ENOMEM;
1508 
1509 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1510 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1511 				   DMA_FROM_DEVICE);
1512 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1513 		mvneta_frag_free(pp, data);
1514 		return -ENOMEM;
1515 	}
1516 
1517 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1518 	return 0;
1519 }
1520 
1521 /* Handle tx checksum */
1522 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1523 {
1524 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1525 		int ip_hdr_len = 0;
1526 		__be16 l3_proto = vlan_get_protocol(skb);
1527 		u8 l4_proto;
1528 
1529 		if (l3_proto == htons(ETH_P_IP)) {
1530 			struct iphdr *ip4h = ip_hdr(skb);
1531 
1532 			/* Calculate IPv4 checksum and L4 checksum */
1533 			ip_hdr_len = ip4h->ihl;
1534 			l4_proto = ip4h->protocol;
1535 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1536 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1537 
1538 			/* Read l4_protocol from one of IPv6 extra headers */
1539 			if (skb_network_header_len(skb) > 0)
1540 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1541 			l4_proto = ip6h->nexthdr;
1542 		} else
1543 			return MVNETA_TX_L4_CSUM_NOT;
1544 
1545 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1546 					    l3_proto, ip_hdr_len, l4_proto);
1547 	}
1548 
1549 	return MVNETA_TX_L4_CSUM_NOT;
1550 }
1551 
1552 /* Drop packets received by the RXQ and free buffers */
1553 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1554 				 struct mvneta_rx_queue *rxq)
1555 {
1556 	int rx_done, i;
1557 
1558 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1559 	for (i = 0; i < rxq->size; i++) {
1560 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1561 		void *data = (void *)rx_desc->buf_cookie;
1562 
1563 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1564 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1565 		mvneta_frag_free(pp, data);
1566 	}
1567 
1568 	if (rx_done)
1569 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1570 }
1571 
1572 /* Main rx processing */
1573 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1574 		     struct mvneta_rx_queue *rxq)
1575 {
1576 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1577 	struct net_device *dev = pp->dev;
1578 	int rx_done;
1579 	u32 rcvd_pkts = 0;
1580 	u32 rcvd_bytes = 0;
1581 
1582 	/* Get number of received packets */
1583 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1584 
1585 	if (rx_todo > rx_done)
1586 		rx_todo = rx_done;
1587 
1588 	rx_done = 0;
1589 
1590 	/* Fairness NAPI loop */
1591 	while (rx_done < rx_todo) {
1592 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1593 		struct sk_buff *skb;
1594 		unsigned char *data;
1595 		dma_addr_t phys_addr;
1596 		u32 rx_status;
1597 		int rx_bytes, err;
1598 
1599 		rx_done++;
1600 		rx_status = rx_desc->status;
1601 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1602 		data = (unsigned char *)rx_desc->buf_cookie;
1603 		phys_addr = rx_desc->buf_phys_addr;
1604 
1605 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1606 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1607 		err_drop_frame:
1608 			dev->stats.rx_errors++;
1609 			mvneta_rx_error(pp, rx_desc);
1610 			/* leave the descriptor untouched */
1611 			continue;
1612 		}
1613 
1614 		if (rx_bytes <= rx_copybreak) {
1615 			/* better copy a small frame and not unmap the DMA region */
1616 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1617 			if (unlikely(!skb))
1618 				goto err_drop_frame;
1619 
1620 			dma_sync_single_range_for_cpu(dev->dev.parent,
1621 			                              rx_desc->buf_phys_addr,
1622 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1623 			                              rx_bytes,
1624 			                              DMA_FROM_DEVICE);
1625 			memcpy(skb_put(skb, rx_bytes),
1626 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1627 			       rx_bytes);
1628 
1629 			skb->protocol = eth_type_trans(skb, dev);
1630 			mvneta_rx_csum(pp, rx_status, skb);
1631 			napi_gro_receive(&port->napi, skb);
1632 
1633 			rcvd_pkts++;
1634 			rcvd_bytes += rx_bytes;
1635 
1636 			/* leave the descriptor and buffer untouched */
1637 			continue;
1638 		}
1639 
1640 		/* Refill processing */
1641 		err = mvneta_rx_refill(pp, rx_desc);
1642 		if (err) {
1643 			netdev_err(dev, "Linux processing - Can't refill\n");
1644 			rxq->missed++;
1645 			goto err_drop_frame;
1646 		}
1647 
1648 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1649 
1650 		/* After refill old buffer has to be unmapped regardless
1651 		 * the skb is successfully built or not.
1652 		 */
1653 		dma_unmap_single(dev->dev.parent, phys_addr,
1654 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1655 
1656 		if (!skb)
1657 			goto err_drop_frame;
1658 
1659 		rcvd_pkts++;
1660 		rcvd_bytes += rx_bytes;
1661 
1662 		/* Linux processing */
1663 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1664 		skb_put(skb, rx_bytes);
1665 
1666 		skb->protocol = eth_type_trans(skb, dev);
1667 
1668 		mvneta_rx_csum(pp, rx_status, skb);
1669 
1670 		napi_gro_receive(&port->napi, skb);
1671 	}
1672 
1673 	if (rcvd_pkts) {
1674 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1675 
1676 		u64_stats_update_begin(&stats->syncp);
1677 		stats->rx_packets += rcvd_pkts;
1678 		stats->rx_bytes   += rcvd_bytes;
1679 		u64_stats_update_end(&stats->syncp);
1680 	}
1681 
1682 	/* Update rxq management counters */
1683 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1684 
1685 	return rx_done;
1686 }
1687 
1688 static inline void
1689 mvneta_tso_put_hdr(struct sk_buff *skb,
1690 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1691 {
1692 	struct mvneta_tx_desc *tx_desc;
1693 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1694 
1695 	txq->tx_skb[txq->txq_put_index] = NULL;
1696 	tx_desc = mvneta_txq_next_desc_get(txq);
1697 	tx_desc->data_size = hdr_len;
1698 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1699 	tx_desc->command |= MVNETA_TXD_F_DESC;
1700 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1701 				 txq->txq_put_index * TSO_HEADER_SIZE;
1702 	mvneta_txq_inc_put(txq);
1703 }
1704 
1705 static inline int
1706 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1707 		    struct sk_buff *skb, char *data, int size,
1708 		    bool last_tcp, bool is_last)
1709 {
1710 	struct mvneta_tx_desc *tx_desc;
1711 
1712 	tx_desc = mvneta_txq_next_desc_get(txq);
1713 	tx_desc->data_size = size;
1714 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1715 						size, DMA_TO_DEVICE);
1716 	if (unlikely(dma_mapping_error(dev->dev.parent,
1717 		     tx_desc->buf_phys_addr))) {
1718 		mvneta_txq_desc_put(txq);
1719 		return -ENOMEM;
1720 	}
1721 
1722 	tx_desc->command = 0;
1723 	txq->tx_skb[txq->txq_put_index] = NULL;
1724 
1725 	if (last_tcp) {
1726 		/* last descriptor in the TCP packet */
1727 		tx_desc->command = MVNETA_TXD_L_DESC;
1728 
1729 		/* last descriptor in SKB */
1730 		if (is_last)
1731 			txq->tx_skb[txq->txq_put_index] = skb;
1732 	}
1733 	mvneta_txq_inc_put(txq);
1734 	return 0;
1735 }
1736 
1737 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1738 			 struct mvneta_tx_queue *txq)
1739 {
1740 	int total_len, data_left;
1741 	int desc_count = 0;
1742 	struct mvneta_port *pp = netdev_priv(dev);
1743 	struct tso_t tso;
1744 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1745 	int i;
1746 
1747 	/* Count needed descriptors */
1748 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1749 		return 0;
1750 
1751 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1752 		pr_info("*** Is this even  possible???!?!?\n");
1753 		return 0;
1754 	}
1755 
1756 	/* Initialize the TSO handler, and prepare the first payload */
1757 	tso_start(skb, &tso);
1758 
1759 	total_len = skb->len - hdr_len;
1760 	while (total_len > 0) {
1761 		char *hdr;
1762 
1763 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1764 		total_len -= data_left;
1765 		desc_count++;
1766 
1767 		/* prepare packet headers: MAC + IP + TCP */
1768 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1769 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1770 
1771 		mvneta_tso_put_hdr(skb, pp, txq);
1772 
1773 		while (data_left > 0) {
1774 			int size;
1775 			desc_count++;
1776 
1777 			size = min_t(int, tso.size, data_left);
1778 
1779 			if (mvneta_tso_put_data(dev, txq, skb,
1780 						 tso.data, size,
1781 						 size == data_left,
1782 						 total_len == 0))
1783 				goto err_release;
1784 			data_left -= size;
1785 
1786 			tso_build_data(skb, &tso, size);
1787 		}
1788 	}
1789 
1790 	return desc_count;
1791 
1792 err_release:
1793 	/* Release all used data descriptors; header descriptors must not
1794 	 * be DMA-unmapped.
1795 	 */
1796 	for (i = desc_count - 1; i >= 0; i--) {
1797 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1798 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1799 			dma_unmap_single(pp->dev->dev.parent,
1800 					 tx_desc->buf_phys_addr,
1801 					 tx_desc->data_size,
1802 					 DMA_TO_DEVICE);
1803 		mvneta_txq_desc_put(txq);
1804 	}
1805 	return 0;
1806 }
1807 
1808 /* Handle tx fragmentation processing */
1809 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1810 				  struct mvneta_tx_queue *txq)
1811 {
1812 	struct mvneta_tx_desc *tx_desc;
1813 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1814 
1815 	for (i = 0; i < nr_frags; i++) {
1816 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1817 		void *addr = page_address(frag->page.p) + frag->page_offset;
1818 
1819 		tx_desc = mvneta_txq_next_desc_get(txq);
1820 		tx_desc->data_size = frag->size;
1821 
1822 		tx_desc->buf_phys_addr =
1823 			dma_map_single(pp->dev->dev.parent, addr,
1824 				       tx_desc->data_size, DMA_TO_DEVICE);
1825 
1826 		if (dma_mapping_error(pp->dev->dev.parent,
1827 				      tx_desc->buf_phys_addr)) {
1828 			mvneta_txq_desc_put(txq);
1829 			goto error;
1830 		}
1831 
1832 		if (i == nr_frags - 1) {
1833 			/* Last descriptor */
1834 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1835 			txq->tx_skb[txq->txq_put_index] = skb;
1836 		} else {
1837 			/* Descriptor in the middle: Not First, Not Last */
1838 			tx_desc->command = 0;
1839 			txq->tx_skb[txq->txq_put_index] = NULL;
1840 		}
1841 		mvneta_txq_inc_put(txq);
1842 	}
1843 
1844 	return 0;
1845 
1846 error:
1847 	/* Release all descriptors that were used to map fragments of
1848 	 * this packet, as well as the corresponding DMA mappings
1849 	 */
1850 	for (i = i - 1; i >= 0; i--) {
1851 		tx_desc = txq->descs + i;
1852 		dma_unmap_single(pp->dev->dev.parent,
1853 				 tx_desc->buf_phys_addr,
1854 				 tx_desc->data_size,
1855 				 DMA_TO_DEVICE);
1856 		mvneta_txq_desc_put(txq);
1857 	}
1858 
1859 	return -ENOMEM;
1860 }
1861 
1862 /* Main tx processing */
1863 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1864 {
1865 	struct mvneta_port *pp = netdev_priv(dev);
1866 	u16 txq_id = skb_get_queue_mapping(skb);
1867 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1868 	struct mvneta_tx_desc *tx_desc;
1869 	int len = skb->len;
1870 	int frags = 0;
1871 	u32 tx_cmd;
1872 
1873 	if (!netif_running(dev))
1874 		goto out;
1875 
1876 	if (skb_is_gso(skb)) {
1877 		frags = mvneta_tx_tso(skb, dev, txq);
1878 		goto out;
1879 	}
1880 
1881 	frags = skb_shinfo(skb)->nr_frags + 1;
1882 
1883 	/* Get a descriptor for the first part of the packet */
1884 	tx_desc = mvneta_txq_next_desc_get(txq);
1885 
1886 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1887 
1888 	tx_desc->data_size = skb_headlen(skb);
1889 
1890 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1891 						tx_desc->data_size,
1892 						DMA_TO_DEVICE);
1893 	if (unlikely(dma_mapping_error(dev->dev.parent,
1894 				       tx_desc->buf_phys_addr))) {
1895 		mvneta_txq_desc_put(txq);
1896 		frags = 0;
1897 		goto out;
1898 	}
1899 
1900 	if (frags == 1) {
1901 		/* First and Last descriptor */
1902 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1903 		tx_desc->command = tx_cmd;
1904 		txq->tx_skb[txq->txq_put_index] = skb;
1905 		mvneta_txq_inc_put(txq);
1906 	} else {
1907 		/* First but not Last */
1908 		tx_cmd |= MVNETA_TXD_F_DESC;
1909 		txq->tx_skb[txq->txq_put_index] = NULL;
1910 		mvneta_txq_inc_put(txq);
1911 		tx_desc->command = tx_cmd;
1912 		/* Continue with other skb fragments */
1913 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1914 			dma_unmap_single(dev->dev.parent,
1915 					 tx_desc->buf_phys_addr,
1916 					 tx_desc->data_size,
1917 					 DMA_TO_DEVICE);
1918 			mvneta_txq_desc_put(txq);
1919 			frags = 0;
1920 			goto out;
1921 		}
1922 	}
1923 
1924 out:
1925 	if (frags > 0) {
1926 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1927 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1928 
1929 		txq->count += frags;
1930 		mvneta_txq_pend_desc_add(pp, txq, frags);
1931 
1932 		if (txq->count >= txq->tx_stop_threshold)
1933 			netif_tx_stop_queue(nq);
1934 
1935 		u64_stats_update_begin(&stats->syncp);
1936 		stats->tx_packets++;
1937 		stats->tx_bytes  += len;
1938 		u64_stats_update_end(&stats->syncp);
1939 	} else {
1940 		dev->stats.tx_dropped++;
1941 		dev_kfree_skb_any(skb);
1942 	}
1943 
1944 	return NETDEV_TX_OK;
1945 }
1946 
1947 
1948 /* Free tx resources, when resetting a port */
1949 static void mvneta_txq_done_force(struct mvneta_port *pp,
1950 				  struct mvneta_tx_queue *txq)
1951 
1952 {
1953 	int tx_done = txq->count;
1954 
1955 	mvneta_txq_bufs_free(pp, txq, tx_done);
1956 
1957 	/* reset txq */
1958 	txq->count = 0;
1959 	txq->txq_put_index = 0;
1960 	txq->txq_get_index = 0;
1961 }
1962 
1963 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1964  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1965  */
1966 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1967 {
1968 	struct mvneta_tx_queue *txq;
1969 	struct netdev_queue *nq;
1970 
1971 	while (cause_tx_done) {
1972 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1973 
1974 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1975 		__netif_tx_lock(nq, smp_processor_id());
1976 
1977 		if (txq->count)
1978 			mvneta_txq_done(pp, txq);
1979 
1980 		__netif_tx_unlock(nq);
1981 		cause_tx_done &= ~((1 << txq->id));
1982 	}
1983 }
1984 
1985 /* Compute crc8 of the specified address, using a unique algorithm ,
1986  * according to hw spec, different than generic crc8 algorithm
1987  */
1988 static int mvneta_addr_crc(unsigned char *addr)
1989 {
1990 	int crc = 0;
1991 	int i;
1992 
1993 	for (i = 0; i < ETH_ALEN; i++) {
1994 		int j;
1995 
1996 		crc = (crc ^ addr[i]) << 8;
1997 		for (j = 7; j >= 0; j--) {
1998 			if (crc & (0x100 << j))
1999 				crc ^= 0x107 << j;
2000 		}
2001 	}
2002 
2003 	return crc;
2004 }
2005 
2006 /* This method controls the net device special MAC multicast support.
2007  * The Special Multicast Table for MAC addresses supports MAC of the form
2008  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2009  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2010  * Table entries in the DA-Filter table. This method set the Special
2011  * Multicast Table appropriate entry.
2012  */
2013 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2014 					  unsigned char last_byte,
2015 					  int queue)
2016 {
2017 	unsigned int smc_table_reg;
2018 	unsigned int tbl_offset;
2019 	unsigned int reg_offset;
2020 
2021 	/* Register offset from SMC table base    */
2022 	tbl_offset = (last_byte / 4);
2023 	/* Entry offset within the above reg */
2024 	reg_offset = last_byte % 4;
2025 
2026 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2027 					+ tbl_offset * 4));
2028 
2029 	if (queue == -1)
2030 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2031 	else {
2032 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2033 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2034 	}
2035 
2036 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2037 		    smc_table_reg);
2038 }
2039 
2040 /* This method controls the network device Other MAC multicast support.
2041  * The Other Multicast Table is used for multicast of another type.
2042  * A CRC-8 is used as an index to the Other Multicast Table entries
2043  * in the DA-Filter table.
2044  * The method gets the CRC-8 value from the calling routine and
2045  * sets the Other Multicast Table appropriate entry according to the
2046  * specified CRC-8 .
2047  */
2048 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2049 					unsigned char crc8,
2050 					int queue)
2051 {
2052 	unsigned int omc_table_reg;
2053 	unsigned int tbl_offset;
2054 	unsigned int reg_offset;
2055 
2056 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2057 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2058 
2059 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2060 
2061 	if (queue == -1) {
2062 		/* Clear accepts frame bit at specified Other DA table entry */
2063 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2064 	} else {
2065 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2066 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2067 	}
2068 
2069 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2070 }
2071 
2072 /* The network device supports multicast using two tables:
2073  *    1) Special Multicast Table for MAC addresses of the form
2074  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2075  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2076  *       Table entries in the DA-Filter table.
2077  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2078  *       is used as an index to the Other Multicast Table entries in the
2079  *       DA-Filter table.
2080  */
2081 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2082 				 int queue)
2083 {
2084 	unsigned char crc_result = 0;
2085 
2086 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2087 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2088 		return 0;
2089 	}
2090 
2091 	crc_result = mvneta_addr_crc(p_addr);
2092 	if (queue == -1) {
2093 		if (pp->mcast_count[crc_result] == 0) {
2094 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2095 				    crc_result);
2096 			return -EINVAL;
2097 		}
2098 
2099 		pp->mcast_count[crc_result]--;
2100 		if (pp->mcast_count[crc_result] != 0) {
2101 			netdev_info(pp->dev,
2102 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2103 				    pp->mcast_count[crc_result], crc_result);
2104 			return -EINVAL;
2105 		}
2106 	} else
2107 		pp->mcast_count[crc_result]++;
2108 
2109 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2110 
2111 	return 0;
2112 }
2113 
2114 /* Configure Fitering mode of Ethernet port */
2115 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2116 					  int is_promisc)
2117 {
2118 	u32 port_cfg_reg, val;
2119 
2120 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2121 
2122 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2123 
2124 	/* Set / Clear UPM bit in port configuration register */
2125 	if (is_promisc) {
2126 		/* Accept all Unicast addresses */
2127 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2128 		val |= MVNETA_FORCE_UNI;
2129 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2130 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2131 	} else {
2132 		/* Reject all Unicast addresses */
2133 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2134 		val &= ~MVNETA_FORCE_UNI;
2135 	}
2136 
2137 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2138 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2139 }
2140 
2141 /* register unicast and multicast addresses */
2142 static void mvneta_set_rx_mode(struct net_device *dev)
2143 {
2144 	struct mvneta_port *pp = netdev_priv(dev);
2145 	struct netdev_hw_addr *ha;
2146 
2147 	if (dev->flags & IFF_PROMISC) {
2148 		/* Accept all: Multicast + Unicast */
2149 		mvneta_rx_unicast_promisc_set(pp, 1);
2150 		mvneta_set_ucast_table(pp, pp->rxq_def);
2151 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2152 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2153 	} else {
2154 		/* Accept single Unicast */
2155 		mvneta_rx_unicast_promisc_set(pp, 0);
2156 		mvneta_set_ucast_table(pp, -1);
2157 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2158 
2159 		if (dev->flags & IFF_ALLMULTI) {
2160 			/* Accept all multicast */
2161 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2162 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2163 		} else {
2164 			/* Accept only initialized multicast */
2165 			mvneta_set_special_mcast_table(pp, -1);
2166 			mvneta_set_other_mcast_table(pp, -1);
2167 
2168 			if (!netdev_mc_empty(dev)) {
2169 				netdev_for_each_mc_addr(ha, dev) {
2170 					mvneta_mcast_addr_set(pp, ha->addr,
2171 							      pp->rxq_def);
2172 				}
2173 			}
2174 		}
2175 	}
2176 }
2177 
2178 /* Interrupt handling - the callback for request_irq() */
2179 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2180 {
2181 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2182 
2183 	disable_percpu_irq(port->pp->dev->irq);
2184 	napi_schedule(&port->napi);
2185 
2186 	return IRQ_HANDLED;
2187 }
2188 
2189 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2190 				    struct phy_device *phy)
2191 {
2192 	struct fixed_phy_status status;
2193 	struct fixed_phy_status changed = {};
2194 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2195 
2196 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2197 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2198 		status.speed = SPEED_1000;
2199 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2200 		status.speed = SPEED_100;
2201 	else
2202 		status.speed = SPEED_10;
2203 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2204 	changed.link = 1;
2205 	changed.speed = 1;
2206 	changed.duplex = 1;
2207 	fixed_phy_update_state(phy, &status, &changed);
2208 	return 0;
2209 }
2210 
2211 /* NAPI handler
2212  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2213  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2214  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2215  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2216  * Each CPU has its own causeRxTx register
2217  */
2218 static int mvneta_poll(struct napi_struct *napi, int budget)
2219 {
2220 	int rx_done = 0;
2221 	u32 cause_rx_tx;
2222 	int rx_queue;
2223 	struct mvneta_port *pp = netdev_priv(napi->dev);
2224 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2225 
2226 	if (!netif_running(pp->dev)) {
2227 		napi_complete(&port->napi);
2228 		return rx_done;
2229 	}
2230 
2231 	/* Read cause register */
2232 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2233 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2234 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2235 
2236 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2237 		if (pp->use_inband_status && (cause_misc &
2238 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2239 				 MVNETA_CAUSE_LINK_CHANGE |
2240 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2241 			mvneta_fixed_link_update(pp, pp->phy_dev);
2242 		}
2243 	}
2244 
2245 	/* Release Tx descriptors */
2246 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2247 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2248 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2249 	}
2250 
2251 	/* For the case where the last mvneta_poll did not process all
2252 	 * RX packets
2253 	 */
2254 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2255 
2256 	cause_rx_tx |= port->cause_rx_tx;
2257 
2258 	if (rx_queue) {
2259 		rx_queue = rx_queue - 1;
2260 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]);
2261 	}
2262 
2263 	budget -= rx_done;
2264 
2265 	if (budget > 0) {
2266 		cause_rx_tx = 0;
2267 		napi_complete(&port->napi);
2268 		enable_percpu_irq(pp->dev->irq, 0);
2269 	}
2270 
2271 	port->cause_rx_tx = cause_rx_tx;
2272 	return rx_done;
2273 }
2274 
2275 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2276 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2277 			   int num)
2278 {
2279 	int i;
2280 
2281 	for (i = 0; i < num; i++) {
2282 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2283 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2284 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2285 				__func__, rxq->id, i, num);
2286 			break;
2287 		}
2288 	}
2289 
2290 	/* Add this number of RX descriptors as non occupied (ready to
2291 	 * get packets)
2292 	 */
2293 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2294 
2295 	return i;
2296 }
2297 
2298 /* Free all packets pending transmit from all TXQs and reset TX port */
2299 static void mvneta_tx_reset(struct mvneta_port *pp)
2300 {
2301 	int queue;
2302 
2303 	/* free the skb's in the tx ring */
2304 	for (queue = 0; queue < txq_number; queue++)
2305 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2306 
2307 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2308 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2309 }
2310 
2311 static void mvneta_rx_reset(struct mvneta_port *pp)
2312 {
2313 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2314 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2315 }
2316 
2317 /* Rx/Tx queue initialization/cleanup methods */
2318 
2319 /* Create a specified RX queue */
2320 static int mvneta_rxq_init(struct mvneta_port *pp,
2321 			   struct mvneta_rx_queue *rxq)
2322 
2323 {
2324 	rxq->size = pp->rx_ring_size;
2325 
2326 	/* Allocate memory for RX descriptors */
2327 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2328 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2329 					&rxq->descs_phys, GFP_KERNEL);
2330 	if (rxq->descs == NULL)
2331 		return -ENOMEM;
2332 
2333 	BUG_ON(rxq->descs !=
2334 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2335 
2336 	rxq->last_desc = rxq->size - 1;
2337 
2338 	/* Set Rx descriptors queue starting address */
2339 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2340 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2341 
2342 	/* Set Offset */
2343 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2344 
2345 	/* Set coalescing pkts and time */
2346 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2347 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2348 
2349 	/* Fill RXQ with buffers from RX pool */
2350 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2351 	mvneta_rxq_bm_disable(pp, rxq);
2352 	mvneta_rxq_fill(pp, rxq, rxq->size);
2353 
2354 	return 0;
2355 }
2356 
2357 /* Cleanup Rx queue */
2358 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2359 			      struct mvneta_rx_queue *rxq)
2360 {
2361 	mvneta_rxq_drop_pkts(pp, rxq);
2362 
2363 	if (rxq->descs)
2364 		dma_free_coherent(pp->dev->dev.parent,
2365 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2366 				  rxq->descs,
2367 				  rxq->descs_phys);
2368 
2369 	rxq->descs             = NULL;
2370 	rxq->last_desc         = 0;
2371 	rxq->next_desc_to_proc = 0;
2372 	rxq->descs_phys        = 0;
2373 }
2374 
2375 /* Create and initialize a tx queue */
2376 static int mvneta_txq_init(struct mvneta_port *pp,
2377 			   struct mvneta_tx_queue *txq)
2378 {
2379 	int cpu;
2380 
2381 	txq->size = pp->tx_ring_size;
2382 
2383 	/* A queue must always have room for at least one skb.
2384 	 * Therefore, stop the queue when the free entries reaches
2385 	 * the maximum number of descriptors per skb.
2386 	 */
2387 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2388 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2389 
2390 
2391 	/* Allocate memory for TX descriptors */
2392 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2393 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2394 					&txq->descs_phys, GFP_KERNEL);
2395 	if (txq->descs == NULL)
2396 		return -ENOMEM;
2397 
2398 	/* Make sure descriptor address is cache line size aligned  */
2399 	BUG_ON(txq->descs !=
2400 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2401 
2402 	txq->last_desc = txq->size - 1;
2403 
2404 	/* Set maximum bandwidth for enabled TXQs */
2405 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2406 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2407 
2408 	/* Set Tx descriptors queue starting address */
2409 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2410 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2411 
2412 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2413 	if (txq->tx_skb == NULL) {
2414 		dma_free_coherent(pp->dev->dev.parent,
2415 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2416 				  txq->descs, txq->descs_phys);
2417 		return -ENOMEM;
2418 	}
2419 
2420 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2421 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2422 					   txq->size * TSO_HEADER_SIZE,
2423 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2424 	if (txq->tso_hdrs == NULL) {
2425 		kfree(txq->tx_skb);
2426 		dma_free_coherent(pp->dev->dev.parent,
2427 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2428 				  txq->descs, txq->descs_phys);
2429 		return -ENOMEM;
2430 	}
2431 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2432 
2433 	/* Setup XPS mapping */
2434 	if (txq_number > 1)
2435 		cpu = txq->id % num_present_cpus();
2436 	else
2437 		cpu = pp->rxq_def % num_present_cpus();
2438 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2439 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2440 
2441 	return 0;
2442 }
2443 
2444 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2445 static void mvneta_txq_deinit(struct mvneta_port *pp,
2446 			      struct mvneta_tx_queue *txq)
2447 {
2448 	kfree(txq->tx_skb);
2449 
2450 	if (txq->tso_hdrs)
2451 		dma_free_coherent(pp->dev->dev.parent,
2452 				  txq->size * TSO_HEADER_SIZE,
2453 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2454 	if (txq->descs)
2455 		dma_free_coherent(pp->dev->dev.parent,
2456 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2457 				  txq->descs, txq->descs_phys);
2458 
2459 	txq->descs             = NULL;
2460 	txq->last_desc         = 0;
2461 	txq->next_desc_to_proc = 0;
2462 	txq->descs_phys        = 0;
2463 
2464 	/* Set minimum bandwidth for disabled TXQs */
2465 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2466 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2467 
2468 	/* Set Tx descriptors queue starting address and size */
2469 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2470 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2471 }
2472 
2473 /* Cleanup all Tx queues */
2474 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2475 {
2476 	int queue;
2477 
2478 	for (queue = 0; queue < txq_number; queue++)
2479 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2480 }
2481 
2482 /* Cleanup all Rx queues */
2483 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2484 {
2485 	int queue;
2486 
2487 	for (queue = 0; queue < txq_number; queue++)
2488 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2489 }
2490 
2491 
2492 /* Init all Rx queues */
2493 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2494 {
2495 	int queue;
2496 
2497 	for (queue = 0; queue < rxq_number; queue++) {
2498 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2499 
2500 		if (err) {
2501 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2502 				   __func__, queue);
2503 			mvneta_cleanup_rxqs(pp);
2504 			return err;
2505 		}
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 /* Init all tx queues */
2512 static int mvneta_setup_txqs(struct mvneta_port *pp)
2513 {
2514 	int queue;
2515 
2516 	for (queue = 0; queue < txq_number; queue++) {
2517 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2518 		if (err) {
2519 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2520 				   __func__, queue);
2521 			mvneta_cleanup_txqs(pp);
2522 			return err;
2523 		}
2524 	}
2525 
2526 	return 0;
2527 }
2528 
2529 static void mvneta_percpu_unmask_interrupt(void *arg)
2530 {
2531 	struct mvneta_port *pp = arg;
2532 
2533 	/* All the queue are unmasked, but actually only the ones
2534 	 * maped to this CPU will be unmasked
2535 	 */
2536 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2537 		    MVNETA_RX_INTR_MASK_ALL |
2538 		    MVNETA_TX_INTR_MASK_ALL |
2539 		    MVNETA_MISCINTR_INTR_MASK);
2540 }
2541 
2542 static void mvneta_percpu_mask_interrupt(void *arg)
2543 {
2544 	struct mvneta_port *pp = arg;
2545 
2546 	/* All the queue are masked, but actually only the ones
2547 	 * maped to this CPU will be masked
2548 	 */
2549 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2550 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2551 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2552 }
2553 
2554 static void mvneta_start_dev(struct mvneta_port *pp)
2555 {
2556 	unsigned int cpu;
2557 
2558 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2559 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2560 
2561 	/* start the Rx/Tx activity */
2562 	mvneta_port_enable(pp);
2563 
2564 	/* Enable polling on the port */
2565 	for_each_present_cpu(cpu) {
2566 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2567 
2568 		napi_enable(&port->napi);
2569 	}
2570 
2571 	/* Unmask interrupts. It has to be done from each CPU */
2572 	for_each_online_cpu(cpu)
2573 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
2574 					 pp, true);
2575 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2576 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2577 		    MVNETA_CAUSE_LINK_CHANGE |
2578 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2579 
2580 	phy_start(pp->phy_dev);
2581 	netif_tx_start_all_queues(pp->dev);
2582 }
2583 
2584 static void mvneta_stop_dev(struct mvneta_port *pp)
2585 {
2586 	unsigned int cpu;
2587 
2588 	phy_stop(pp->phy_dev);
2589 
2590 	for_each_present_cpu(cpu) {
2591 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2592 
2593 		napi_disable(&port->napi);
2594 	}
2595 
2596 	netif_carrier_off(pp->dev);
2597 
2598 	mvneta_port_down(pp);
2599 	netif_tx_stop_all_queues(pp->dev);
2600 
2601 	/* Stop the port activity */
2602 	mvneta_port_disable(pp);
2603 
2604 	/* Clear all ethernet port interrupts */
2605 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2606 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2607 
2608 	/* Mask all ethernet port interrupts */
2609 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2610 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2611 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2612 
2613 	mvneta_tx_reset(pp);
2614 	mvneta_rx_reset(pp);
2615 }
2616 
2617 /* Return positive if MTU is valid */
2618 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2619 {
2620 	if (mtu < 68) {
2621 		netdev_err(dev, "cannot change mtu to less than 68\n");
2622 		return -EINVAL;
2623 	}
2624 
2625 	/* 9676 == 9700 - 20 and rounding to 8 */
2626 	if (mtu > 9676) {
2627 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2628 		mtu = 9676;
2629 	}
2630 
2631 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2632 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2633 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2634 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2635 	}
2636 
2637 	return mtu;
2638 }
2639 
2640 /* Change the device mtu */
2641 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2642 {
2643 	struct mvneta_port *pp = netdev_priv(dev);
2644 	int ret;
2645 
2646 	mtu = mvneta_check_mtu_valid(dev, mtu);
2647 	if (mtu < 0)
2648 		return -EINVAL;
2649 
2650 	dev->mtu = mtu;
2651 
2652 	if (!netif_running(dev)) {
2653 		netdev_update_features(dev);
2654 		return 0;
2655 	}
2656 
2657 	/* The interface is running, so we have to force a
2658 	 * reallocation of the queues
2659 	 */
2660 	mvneta_stop_dev(pp);
2661 
2662 	mvneta_cleanup_txqs(pp);
2663 	mvneta_cleanup_rxqs(pp);
2664 
2665 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2666 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2667 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2668 
2669 	ret = mvneta_setup_rxqs(pp);
2670 	if (ret) {
2671 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2672 		return ret;
2673 	}
2674 
2675 	ret = mvneta_setup_txqs(pp);
2676 	if (ret) {
2677 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2678 		return ret;
2679 	}
2680 
2681 	mvneta_start_dev(pp);
2682 	mvneta_port_up(pp);
2683 
2684 	netdev_update_features(dev);
2685 
2686 	return 0;
2687 }
2688 
2689 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2690 					     netdev_features_t features)
2691 {
2692 	struct mvneta_port *pp = netdev_priv(dev);
2693 
2694 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2695 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2696 		netdev_info(dev,
2697 			    "Disable IP checksum for MTU greater than %dB\n",
2698 			    pp->tx_csum_limit);
2699 	}
2700 
2701 	return features;
2702 }
2703 
2704 /* Get mac address */
2705 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2706 {
2707 	u32 mac_addr_l, mac_addr_h;
2708 
2709 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2710 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2711 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2712 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2713 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2714 	addr[3] = mac_addr_h & 0xFF;
2715 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2716 	addr[5] = mac_addr_l & 0xFF;
2717 }
2718 
2719 /* Handle setting mac address */
2720 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2721 {
2722 	struct mvneta_port *pp = netdev_priv(dev);
2723 	struct sockaddr *sockaddr = addr;
2724 	int ret;
2725 
2726 	ret = eth_prepare_mac_addr_change(dev, addr);
2727 	if (ret < 0)
2728 		return ret;
2729 	/* Remove previous address table entry */
2730 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2731 
2732 	/* Set new addr in hw */
2733 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
2734 
2735 	eth_commit_mac_addr_change(dev, addr);
2736 	return 0;
2737 }
2738 
2739 static void mvneta_adjust_link(struct net_device *ndev)
2740 {
2741 	struct mvneta_port *pp = netdev_priv(ndev);
2742 	struct phy_device *phydev = pp->phy_dev;
2743 	int status_change = 0;
2744 
2745 	if (phydev->link) {
2746 		if ((pp->speed != phydev->speed) ||
2747 		    (pp->duplex != phydev->duplex)) {
2748 			u32 val;
2749 
2750 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2751 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2752 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2753 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2754 
2755 			if (phydev->duplex)
2756 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2757 
2758 			if (phydev->speed == SPEED_1000)
2759 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2760 			else if (phydev->speed == SPEED_100)
2761 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2762 
2763 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2764 
2765 			pp->duplex = phydev->duplex;
2766 			pp->speed  = phydev->speed;
2767 		}
2768 	}
2769 
2770 	if (phydev->link != pp->link) {
2771 		if (!phydev->link) {
2772 			pp->duplex = -1;
2773 			pp->speed = 0;
2774 		}
2775 
2776 		pp->link = phydev->link;
2777 		status_change = 1;
2778 	}
2779 
2780 	if (status_change) {
2781 		if (phydev->link) {
2782 			if (!pp->use_inband_status) {
2783 				u32 val = mvreg_read(pp,
2784 						  MVNETA_GMAC_AUTONEG_CONFIG);
2785 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2786 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2787 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2788 					    val);
2789 			}
2790 			mvneta_port_up(pp);
2791 		} else {
2792 			if (!pp->use_inband_status) {
2793 				u32 val = mvreg_read(pp,
2794 						  MVNETA_GMAC_AUTONEG_CONFIG);
2795 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2796 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2797 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2798 					    val);
2799 			}
2800 			mvneta_port_down(pp);
2801 		}
2802 		phy_print_status(phydev);
2803 	}
2804 }
2805 
2806 static int mvneta_mdio_probe(struct mvneta_port *pp)
2807 {
2808 	struct phy_device *phy_dev;
2809 
2810 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2811 				 pp->phy_interface);
2812 	if (!phy_dev) {
2813 		netdev_err(pp->dev, "could not find the PHY\n");
2814 		return -ENODEV;
2815 	}
2816 
2817 	phy_dev->supported &= PHY_GBIT_FEATURES;
2818 	phy_dev->advertising = phy_dev->supported;
2819 
2820 	pp->phy_dev = phy_dev;
2821 	pp->link    = 0;
2822 	pp->duplex  = 0;
2823 	pp->speed   = 0;
2824 
2825 	return 0;
2826 }
2827 
2828 static void mvneta_mdio_remove(struct mvneta_port *pp)
2829 {
2830 	phy_disconnect(pp->phy_dev);
2831 	pp->phy_dev = NULL;
2832 }
2833 
2834 static void mvneta_percpu_enable(void *arg)
2835 {
2836 	struct mvneta_port *pp = arg;
2837 
2838 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2839 }
2840 
2841 static void mvneta_percpu_disable(void *arg)
2842 {
2843 	struct mvneta_port *pp = arg;
2844 
2845 	disable_percpu_irq(pp->dev->irq);
2846 }
2847 
2848 static void mvneta_percpu_elect(struct mvneta_port *pp)
2849 {
2850 	int online_cpu_idx, max_cpu, cpu, i = 0;
2851 
2852 	online_cpu_idx = pp->rxq_def % num_online_cpus();
2853 	max_cpu = num_present_cpus();
2854 
2855 	for_each_online_cpu(cpu) {
2856 		int rxq_map = 0, txq_map = 0;
2857 		int rxq;
2858 
2859 		for (rxq = 0; rxq < rxq_number; rxq++)
2860 			if ((rxq % max_cpu) == cpu)
2861 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
2862 
2863 		if (i == online_cpu_idx)
2864 			/* Map the default receive queue queue to the
2865 			 * elected CPU
2866 			 */
2867 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
2868 
2869 		/* We update the TX queue map only if we have one
2870 		 * queue. In this case we associate the TX queue to
2871 		 * the CPU bound to the default RX queue
2872 		 */
2873 		if (txq_number == 1)
2874 			txq_map = (i == online_cpu_idx) ?
2875 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
2876 		else
2877 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
2878 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
2879 
2880 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
2881 
2882 		/* Update the interrupt mask on each CPU according the
2883 		 * new mapping
2884 		 */
2885 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
2886 					 pp, true);
2887 		i++;
2888 
2889 	}
2890 };
2891 
2892 static int mvneta_percpu_notifier(struct notifier_block *nfb,
2893 				  unsigned long action, void *hcpu)
2894 {
2895 	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2896 					      cpu_notifier);
2897 	int cpu = (unsigned long)hcpu, other_cpu;
2898 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2899 
2900 	switch (action) {
2901 	case CPU_ONLINE:
2902 	case CPU_ONLINE_FROZEN:
2903 		netif_tx_stop_all_queues(pp->dev);
2904 
2905 		/* We have to synchronise on tha napi of each CPU
2906 		 * except the one just being waked up
2907 		 */
2908 		for_each_online_cpu(other_cpu) {
2909 			if (other_cpu != cpu) {
2910 				struct mvneta_pcpu_port *other_port =
2911 					per_cpu_ptr(pp->ports, other_cpu);
2912 
2913 				napi_synchronize(&other_port->napi);
2914 			}
2915 		}
2916 
2917 		/* Mask all ethernet port interrupts */
2918 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2919 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2920 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2921 		napi_enable(&port->napi);
2922 
2923 
2924 		/* Enable per-CPU interrupts on the CPU that is
2925 		 * brought up.
2926 		 */
2927 		smp_call_function_single(cpu, mvneta_percpu_enable,
2928 					 pp, true);
2929 
2930 		/* Enable per-CPU interrupt on the one CPU we care
2931 		 * about.
2932 		 */
2933 		mvneta_percpu_elect(pp);
2934 
2935 		/* Unmask all ethernet port interrupts, as this
2936 		 * notifier is called for each CPU then the CPU to
2937 		 * Queue mapping is applied
2938 		 */
2939 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2940 			MVNETA_RX_INTR_MASK(rxq_number) |
2941 			MVNETA_TX_INTR_MASK(txq_number) |
2942 			MVNETA_MISCINTR_INTR_MASK);
2943 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2944 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2945 			MVNETA_CAUSE_LINK_CHANGE |
2946 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2947 		netif_tx_start_all_queues(pp->dev);
2948 		break;
2949 	case CPU_DOWN_PREPARE:
2950 	case CPU_DOWN_PREPARE_FROZEN:
2951 		netif_tx_stop_all_queues(pp->dev);
2952 		/* Mask all ethernet port interrupts */
2953 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2954 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2955 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2956 
2957 		napi_synchronize(&port->napi);
2958 		napi_disable(&port->napi);
2959 		/* Disable per-CPU interrupts on the CPU that is
2960 		 * brought down.
2961 		 */
2962 		smp_call_function_single(cpu, mvneta_percpu_disable,
2963 					 pp, true);
2964 
2965 		break;
2966 	case CPU_DEAD:
2967 	case CPU_DEAD_FROZEN:
2968 		/* Check if a new CPU must be elected now this on is down */
2969 		mvneta_percpu_elect(pp);
2970 		/* Unmask all ethernet port interrupts */
2971 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2972 			MVNETA_RX_INTR_MASK(rxq_number) |
2973 			MVNETA_TX_INTR_MASK(txq_number) |
2974 			MVNETA_MISCINTR_INTR_MASK);
2975 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2976 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2977 			MVNETA_CAUSE_LINK_CHANGE |
2978 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2979 		netif_tx_start_all_queues(pp->dev);
2980 		break;
2981 	}
2982 
2983 	return NOTIFY_OK;
2984 }
2985 
2986 static int mvneta_open(struct net_device *dev)
2987 {
2988 	struct mvneta_port *pp = netdev_priv(dev);
2989 	int ret, cpu;
2990 
2991 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2992 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2993 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2994 
2995 	ret = mvneta_setup_rxqs(pp);
2996 	if (ret)
2997 		return ret;
2998 
2999 	ret = mvneta_setup_txqs(pp);
3000 	if (ret)
3001 		goto err_cleanup_rxqs;
3002 
3003 	/* Connect to port interrupt line */
3004 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3005 				 MVNETA_DRIVER_NAME, pp->ports);
3006 	if (ret) {
3007 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3008 		goto err_cleanup_txqs;
3009 	}
3010 
3011 	/* Even though the documentation says that request_percpu_irq
3012 	 * doesn't enable the interrupts automatically, it actually
3013 	 * does so on the local CPU.
3014 	 *
3015 	 * Make sure it's disabled.
3016 	 */
3017 	mvneta_percpu_disable(pp);
3018 
3019 	/* Enable per-CPU interrupt on all the CPU to handle our RX
3020 	 * queue interrupts
3021 	 */
3022 	for_each_online_cpu(cpu)
3023 		smp_call_function_single(cpu, mvneta_percpu_enable,
3024 					 pp, true);
3025 
3026 
3027 	/* Register a CPU notifier to handle the case where our CPU
3028 	 * might be taken offline.
3029 	 */
3030 	register_cpu_notifier(&pp->cpu_notifier);
3031 
3032 	/* In default link is down */
3033 	netif_carrier_off(pp->dev);
3034 
3035 	ret = mvneta_mdio_probe(pp);
3036 	if (ret < 0) {
3037 		netdev_err(dev, "cannot probe MDIO bus\n");
3038 		goto err_free_irq;
3039 	}
3040 
3041 	mvneta_start_dev(pp);
3042 
3043 	return 0;
3044 
3045 err_free_irq:
3046 	free_percpu_irq(pp->dev->irq, pp->ports);
3047 err_cleanup_txqs:
3048 	mvneta_cleanup_txqs(pp);
3049 err_cleanup_rxqs:
3050 	mvneta_cleanup_rxqs(pp);
3051 	return ret;
3052 }
3053 
3054 /* Stop the port, free port interrupt line */
3055 static int mvneta_stop(struct net_device *dev)
3056 {
3057 	struct mvneta_port *pp = netdev_priv(dev);
3058 	int cpu;
3059 
3060 	mvneta_stop_dev(pp);
3061 	mvneta_mdio_remove(pp);
3062 	unregister_cpu_notifier(&pp->cpu_notifier);
3063 	for_each_present_cpu(cpu)
3064 		smp_call_function_single(cpu, mvneta_percpu_disable, pp, true);
3065 	free_percpu_irq(dev->irq, pp->ports);
3066 	mvneta_cleanup_rxqs(pp);
3067 	mvneta_cleanup_txqs(pp);
3068 
3069 	return 0;
3070 }
3071 
3072 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3073 {
3074 	struct mvneta_port *pp = netdev_priv(dev);
3075 
3076 	if (!pp->phy_dev)
3077 		return -ENOTSUPP;
3078 
3079 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3080 }
3081 
3082 /* Ethtool methods */
3083 
3084 /* Get settings (phy address, speed) for ethtools */
3085 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3086 {
3087 	struct mvneta_port *pp = netdev_priv(dev);
3088 
3089 	if (!pp->phy_dev)
3090 		return -ENODEV;
3091 
3092 	return phy_ethtool_gset(pp->phy_dev, cmd);
3093 }
3094 
3095 /* Set settings (phy address, speed) for ethtools */
3096 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3097 {
3098 	struct mvneta_port *pp = netdev_priv(dev);
3099 	struct phy_device *phydev = pp->phy_dev;
3100 
3101 	if (!phydev)
3102 		return -ENODEV;
3103 
3104 	if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3105 		u32 val;
3106 
3107 		mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3108 
3109 		if (cmd->autoneg == AUTONEG_DISABLE) {
3110 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3111 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3112 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3113 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3114 
3115 			if (phydev->duplex)
3116 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3117 
3118 			if (phydev->speed == SPEED_1000)
3119 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3120 			else if (phydev->speed == SPEED_100)
3121 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3122 
3123 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3124 		}
3125 
3126 		pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3127 		netdev_info(pp->dev, "autoneg status set to %i\n",
3128 			    pp->use_inband_status);
3129 
3130 		if (netif_running(dev)) {
3131 			mvneta_port_down(pp);
3132 			mvneta_port_up(pp);
3133 		}
3134 	}
3135 
3136 	return phy_ethtool_sset(pp->phy_dev, cmd);
3137 }
3138 
3139 /* Set interrupt coalescing for ethtools */
3140 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3141 				       struct ethtool_coalesce *c)
3142 {
3143 	struct mvneta_port *pp = netdev_priv(dev);
3144 	int queue;
3145 
3146 	for (queue = 0; queue < rxq_number; queue++) {
3147 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3148 		rxq->time_coal = c->rx_coalesce_usecs;
3149 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3150 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3151 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3152 	}
3153 
3154 	for (queue = 0; queue < txq_number; queue++) {
3155 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3156 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3157 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3158 	}
3159 
3160 	return 0;
3161 }
3162 
3163 /* get coalescing for ethtools */
3164 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3165 				       struct ethtool_coalesce *c)
3166 {
3167 	struct mvneta_port *pp = netdev_priv(dev);
3168 
3169 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3170 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3171 
3172 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3173 	return 0;
3174 }
3175 
3176 
3177 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3178 				    struct ethtool_drvinfo *drvinfo)
3179 {
3180 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3181 		sizeof(drvinfo->driver));
3182 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3183 		sizeof(drvinfo->version));
3184 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3185 		sizeof(drvinfo->bus_info));
3186 }
3187 
3188 
3189 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3190 					 struct ethtool_ringparam *ring)
3191 {
3192 	struct mvneta_port *pp = netdev_priv(netdev);
3193 
3194 	ring->rx_max_pending = MVNETA_MAX_RXD;
3195 	ring->tx_max_pending = MVNETA_MAX_TXD;
3196 	ring->rx_pending = pp->rx_ring_size;
3197 	ring->tx_pending = pp->tx_ring_size;
3198 }
3199 
3200 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3201 					struct ethtool_ringparam *ring)
3202 {
3203 	struct mvneta_port *pp = netdev_priv(dev);
3204 
3205 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3206 		return -EINVAL;
3207 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3208 		ring->rx_pending : MVNETA_MAX_RXD;
3209 
3210 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3211 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3212 	if (pp->tx_ring_size != ring->tx_pending)
3213 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3214 			    pp->tx_ring_size, ring->tx_pending);
3215 
3216 	if (netif_running(dev)) {
3217 		mvneta_stop(dev);
3218 		if (mvneta_open(dev)) {
3219 			netdev_err(dev,
3220 				   "error on opening device after ring param change\n");
3221 			return -ENOMEM;
3222 		}
3223 	}
3224 
3225 	return 0;
3226 }
3227 
3228 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3229 				       u8 *data)
3230 {
3231 	if (sset == ETH_SS_STATS) {
3232 		int i;
3233 
3234 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3235 			memcpy(data + i * ETH_GSTRING_LEN,
3236 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3237 	}
3238 }
3239 
3240 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3241 {
3242 	const struct mvneta_statistic *s;
3243 	void __iomem *base = pp->base;
3244 	u32 high, low, val;
3245 	int i;
3246 
3247 	for (i = 0, s = mvneta_statistics;
3248 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3249 	     s++, i++) {
3250 		val = 0;
3251 
3252 		switch (s->type) {
3253 		case T_REG_32:
3254 			val = readl_relaxed(base + s->offset);
3255 			break;
3256 		case T_REG_64:
3257 			/* Docs say to read low 32-bit then high */
3258 			low = readl_relaxed(base + s->offset);
3259 			high = readl_relaxed(base + s->offset + 4);
3260 			val = (u64)high << 32 | low;
3261 			break;
3262 		}
3263 
3264 		pp->ethtool_stats[i] += val;
3265 	}
3266 }
3267 
3268 static void mvneta_ethtool_get_stats(struct net_device *dev,
3269 				     struct ethtool_stats *stats, u64 *data)
3270 {
3271 	struct mvneta_port *pp = netdev_priv(dev);
3272 	int i;
3273 
3274 	mvneta_ethtool_update_stats(pp);
3275 
3276 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3277 		*data++ = pp->ethtool_stats[i];
3278 }
3279 
3280 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3281 {
3282 	if (sset == ETH_SS_STATS)
3283 		return ARRAY_SIZE(mvneta_statistics);
3284 	return -EOPNOTSUPP;
3285 }
3286 
3287 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3288 {
3289 	return MVNETA_RSS_LU_TABLE_SIZE;
3290 }
3291 
3292 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3293 				    struct ethtool_rxnfc *info,
3294 				    u32 *rules __always_unused)
3295 {
3296 	switch (info->cmd) {
3297 	case ETHTOOL_GRXRINGS:
3298 		info->data =  rxq_number;
3299 		return 0;
3300 	case ETHTOOL_GRXFH:
3301 		return -EOPNOTSUPP;
3302 	default:
3303 		return -EOPNOTSUPP;
3304 	}
3305 }
3306 
3307 static int  mvneta_config_rss(struct mvneta_port *pp)
3308 {
3309 	int cpu;
3310 	u32 val;
3311 
3312 	netif_tx_stop_all_queues(pp->dev);
3313 
3314 	for_each_online_cpu(cpu)
3315 		smp_call_function_single(cpu, mvneta_percpu_mask_interrupt,
3316 					 pp, true);
3317 
3318 	/* We have to synchronise on the napi of each CPU */
3319 	for_each_online_cpu(cpu) {
3320 		struct mvneta_pcpu_port *pcpu_port =
3321 			per_cpu_ptr(pp->ports, cpu);
3322 
3323 		napi_synchronize(&pcpu_port->napi);
3324 		napi_disable(&pcpu_port->napi);
3325 	}
3326 
3327 	pp->rxq_def = pp->indir[0];
3328 
3329 	/* Update unicast mapping */
3330 	mvneta_set_rx_mode(pp->dev);
3331 
3332 	/* Update val of portCfg register accordingly with all RxQueue types */
3333 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3334 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3335 
3336 	/* Update the elected CPU matching the new rxq_def */
3337 	mvneta_percpu_elect(pp);
3338 
3339 	/* We have to synchronise on the napi of each CPU */
3340 	for_each_online_cpu(cpu) {
3341 		struct mvneta_pcpu_port *pcpu_port =
3342 			per_cpu_ptr(pp->ports, cpu);
3343 
3344 		napi_enable(&pcpu_port->napi);
3345 	}
3346 
3347 	netif_tx_start_all_queues(pp->dev);
3348 
3349 	return 0;
3350 }
3351 
3352 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3353 				   const u8 *key, const u8 hfunc)
3354 {
3355 	struct mvneta_port *pp = netdev_priv(dev);
3356 	/* We require at least one supported parameter to be changed
3357 	 * and no change in any of the unsupported parameters
3358 	 */
3359 	if (key ||
3360 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3361 		return -EOPNOTSUPP;
3362 
3363 	if (!indir)
3364 		return 0;
3365 
3366 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3367 
3368 	return mvneta_config_rss(pp);
3369 }
3370 
3371 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3372 				   u8 *hfunc)
3373 {
3374 	struct mvneta_port *pp = netdev_priv(dev);
3375 
3376 	if (hfunc)
3377 		*hfunc = ETH_RSS_HASH_TOP;
3378 
3379 	if (!indir)
3380 		return 0;
3381 
3382 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3383 
3384 	return 0;
3385 }
3386 
3387 static const struct net_device_ops mvneta_netdev_ops = {
3388 	.ndo_open            = mvneta_open,
3389 	.ndo_stop            = mvneta_stop,
3390 	.ndo_start_xmit      = mvneta_tx,
3391 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3392 	.ndo_set_mac_address = mvneta_set_mac_addr,
3393 	.ndo_change_mtu      = mvneta_change_mtu,
3394 	.ndo_fix_features    = mvneta_fix_features,
3395 	.ndo_get_stats64     = mvneta_get_stats64,
3396 	.ndo_do_ioctl        = mvneta_ioctl,
3397 };
3398 
3399 const struct ethtool_ops mvneta_eth_tool_ops = {
3400 	.get_link       = ethtool_op_get_link,
3401 	.get_settings   = mvneta_ethtool_get_settings,
3402 	.set_settings   = mvneta_ethtool_set_settings,
3403 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3404 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3405 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3406 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3407 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3408 	.get_strings	= mvneta_ethtool_get_strings,
3409 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3410 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3411 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3412 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3413 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3414 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3415 };
3416 
3417 /* Initialize hw */
3418 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3419 {
3420 	int queue;
3421 
3422 	/* Disable port */
3423 	mvneta_port_disable(pp);
3424 
3425 	/* Set port default values */
3426 	mvneta_defaults_set(pp);
3427 
3428 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3429 				GFP_KERNEL);
3430 	if (!pp->txqs)
3431 		return -ENOMEM;
3432 
3433 	/* Initialize TX descriptor rings */
3434 	for (queue = 0; queue < txq_number; queue++) {
3435 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3436 		txq->id = queue;
3437 		txq->size = pp->tx_ring_size;
3438 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3439 	}
3440 
3441 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3442 				GFP_KERNEL);
3443 	if (!pp->rxqs)
3444 		return -ENOMEM;
3445 
3446 	/* Create Rx descriptor rings */
3447 	for (queue = 0; queue < rxq_number; queue++) {
3448 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3449 		rxq->id = queue;
3450 		rxq->size = pp->rx_ring_size;
3451 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3452 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3453 	}
3454 
3455 	return 0;
3456 }
3457 
3458 /* platform glue : initialize decoding windows */
3459 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3460 				     const struct mbus_dram_target_info *dram)
3461 {
3462 	u32 win_enable;
3463 	u32 win_protect;
3464 	int i;
3465 
3466 	for (i = 0; i < 6; i++) {
3467 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3468 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3469 
3470 		if (i < 4)
3471 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3472 	}
3473 
3474 	win_enable = 0x3f;
3475 	win_protect = 0;
3476 
3477 	for (i = 0; i < dram->num_cs; i++) {
3478 		const struct mbus_dram_window *cs = dram->cs + i;
3479 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3480 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3481 
3482 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3483 			    (cs->size - 1) & 0xffff0000);
3484 
3485 		win_enable &= ~(1 << i);
3486 		win_protect |= 3 << (2 * i);
3487 	}
3488 
3489 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3490 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3491 }
3492 
3493 /* Power up the port */
3494 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3495 {
3496 	u32 ctrl;
3497 
3498 	/* MAC Cause register should be cleared */
3499 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3500 
3501 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3502 
3503 	/* Even though it might look weird, when we're configured in
3504 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3505 	 */
3506 	switch(phy_mode) {
3507 	case PHY_INTERFACE_MODE_QSGMII:
3508 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3509 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3510 		break;
3511 	case PHY_INTERFACE_MODE_SGMII:
3512 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3513 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3514 		break;
3515 	case PHY_INTERFACE_MODE_RGMII:
3516 	case PHY_INTERFACE_MODE_RGMII_ID:
3517 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3518 		break;
3519 	default:
3520 		return -EINVAL;
3521 	}
3522 
3523 	/* Cancel Port Reset */
3524 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3525 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3526 
3527 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3528 		MVNETA_GMAC2_PORT_RESET) != 0)
3529 		continue;
3530 
3531 	return 0;
3532 }
3533 
3534 /* Device initialization routine */
3535 static int mvneta_probe(struct platform_device *pdev)
3536 {
3537 	const struct mbus_dram_target_info *dram_target_info;
3538 	struct resource *res;
3539 	struct device_node *dn = pdev->dev.of_node;
3540 	struct device_node *phy_node;
3541 	struct mvneta_port *pp;
3542 	struct net_device *dev;
3543 	const char *dt_mac_addr;
3544 	char hw_mac_addr[ETH_ALEN];
3545 	const char *mac_from;
3546 	const char *managed;
3547 	int tx_csum_limit;
3548 	int phy_mode;
3549 	int err;
3550 	int cpu;
3551 
3552 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3553 	if (!dev)
3554 		return -ENOMEM;
3555 
3556 	dev->irq = irq_of_parse_and_map(dn, 0);
3557 	if (dev->irq == 0) {
3558 		err = -EINVAL;
3559 		goto err_free_netdev;
3560 	}
3561 
3562 	phy_node = of_parse_phandle(dn, "phy", 0);
3563 	if (!phy_node) {
3564 		if (!of_phy_is_fixed_link(dn)) {
3565 			dev_err(&pdev->dev, "no PHY specified\n");
3566 			err = -ENODEV;
3567 			goto err_free_irq;
3568 		}
3569 
3570 		err = of_phy_register_fixed_link(dn);
3571 		if (err < 0) {
3572 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3573 			goto err_free_irq;
3574 		}
3575 
3576 		/* In the case of a fixed PHY, the DT node associated
3577 		 * to the PHY is the Ethernet MAC DT node.
3578 		 */
3579 		phy_node = of_node_get(dn);
3580 	}
3581 
3582 	phy_mode = of_get_phy_mode(dn);
3583 	if (phy_mode < 0) {
3584 		dev_err(&pdev->dev, "incorrect phy-mode\n");
3585 		err = -EINVAL;
3586 		goto err_put_phy_node;
3587 	}
3588 
3589 	dev->tx_queue_len = MVNETA_MAX_TXD;
3590 	dev->watchdog_timeo = 5 * HZ;
3591 	dev->netdev_ops = &mvneta_netdev_ops;
3592 
3593 	dev->ethtool_ops = &mvneta_eth_tool_ops;
3594 
3595 	pp = netdev_priv(dev);
3596 	pp->phy_node = phy_node;
3597 	pp->phy_interface = phy_mode;
3598 
3599 	err = of_property_read_string(dn, "managed", &managed);
3600 	pp->use_inband_status = (err == 0 &&
3601 				 strcmp(managed, "in-band-status") == 0);
3602 	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3603 
3604 	pp->rxq_def = rxq_def;
3605 
3606 	pp->indir[0] = rxq_def;
3607 
3608 	pp->clk = devm_clk_get(&pdev->dev, NULL);
3609 	if (IS_ERR(pp->clk)) {
3610 		err = PTR_ERR(pp->clk);
3611 		goto err_put_phy_node;
3612 	}
3613 
3614 	clk_prepare_enable(pp->clk);
3615 
3616 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3617 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3618 	if (IS_ERR(pp->base)) {
3619 		err = PTR_ERR(pp->base);
3620 		goto err_clk;
3621 	}
3622 
3623 	/* Alloc per-cpu port structure */
3624 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3625 	if (!pp->ports) {
3626 		err = -ENOMEM;
3627 		goto err_clk;
3628 	}
3629 
3630 	/* Alloc per-cpu stats */
3631 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3632 	if (!pp->stats) {
3633 		err = -ENOMEM;
3634 		goto err_free_ports;
3635 	}
3636 
3637 	dt_mac_addr = of_get_mac_address(dn);
3638 	if (dt_mac_addr) {
3639 		mac_from = "device tree";
3640 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3641 	} else {
3642 		mvneta_get_mac_addr(pp, hw_mac_addr);
3643 		if (is_valid_ether_addr(hw_mac_addr)) {
3644 			mac_from = "hardware";
3645 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3646 		} else {
3647 			mac_from = "random";
3648 			eth_hw_addr_random(dev);
3649 		}
3650 	}
3651 
3652 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
3653 		if (tx_csum_limit < 0 ||
3654 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
3655 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3656 			dev_info(&pdev->dev,
3657 				 "Wrong TX csum limit in DT, set to %dB\n",
3658 				 MVNETA_TX_CSUM_DEF_SIZE);
3659 		}
3660 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
3661 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3662 	} else {
3663 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
3664 	}
3665 
3666 	pp->tx_csum_limit = tx_csum_limit;
3667 
3668 	pp->tx_ring_size = MVNETA_MAX_TXD;
3669 	pp->rx_ring_size = MVNETA_MAX_RXD;
3670 
3671 	pp->dev = dev;
3672 	SET_NETDEV_DEV(dev, &pdev->dev);
3673 
3674 	err = mvneta_init(&pdev->dev, pp);
3675 	if (err < 0)
3676 		goto err_free_stats;
3677 
3678 	err = mvneta_port_power_up(pp, phy_mode);
3679 	if (err < 0) {
3680 		dev_err(&pdev->dev, "can't power up port\n");
3681 		goto err_free_stats;
3682 	}
3683 
3684 	dram_target_info = mv_mbus_dram_info();
3685 	if (dram_target_info)
3686 		mvneta_conf_mbus_windows(pp, dram_target_info);
3687 
3688 	for_each_present_cpu(cpu) {
3689 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3690 
3691 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3692 		port->pp = pp;
3693 	}
3694 
3695 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3696 	dev->hw_features |= dev->features;
3697 	dev->vlan_features |= dev->features;
3698 	dev->priv_flags |= IFF_UNICAST_FLT;
3699 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3700 
3701 	err = register_netdev(dev);
3702 	if (err < 0) {
3703 		dev_err(&pdev->dev, "failed to register\n");
3704 		goto err_free_stats;
3705 	}
3706 
3707 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3708 		    dev->dev_addr);
3709 
3710 	platform_set_drvdata(pdev, pp->dev);
3711 
3712 	if (pp->use_inband_status) {
3713 		struct phy_device *phy = of_phy_find_device(dn);
3714 
3715 		mvneta_fixed_link_update(pp, phy);
3716 
3717 		put_device(&phy->mdio.dev);
3718 	}
3719 
3720 	return 0;
3721 
3722 err_free_stats:
3723 	free_percpu(pp->stats);
3724 err_free_ports:
3725 	free_percpu(pp->ports);
3726 err_clk:
3727 	clk_disable_unprepare(pp->clk);
3728 err_put_phy_node:
3729 	of_node_put(phy_node);
3730 err_free_irq:
3731 	irq_dispose_mapping(dev->irq);
3732 err_free_netdev:
3733 	free_netdev(dev);
3734 	return err;
3735 }
3736 
3737 /* Device removal routine */
3738 static int mvneta_remove(struct platform_device *pdev)
3739 {
3740 	struct net_device  *dev = platform_get_drvdata(pdev);
3741 	struct mvneta_port *pp = netdev_priv(dev);
3742 
3743 	unregister_netdev(dev);
3744 	clk_disable_unprepare(pp->clk);
3745 	free_percpu(pp->ports);
3746 	free_percpu(pp->stats);
3747 	irq_dispose_mapping(dev->irq);
3748 	of_node_put(pp->phy_node);
3749 	free_netdev(dev);
3750 
3751 	return 0;
3752 }
3753 
3754 static const struct of_device_id mvneta_match[] = {
3755 	{ .compatible = "marvell,armada-370-neta" },
3756 	{ .compatible = "marvell,armada-xp-neta" },
3757 	{ }
3758 };
3759 MODULE_DEVICE_TABLE(of, mvneta_match);
3760 
3761 static struct platform_driver mvneta_driver = {
3762 	.probe = mvneta_probe,
3763 	.remove = mvneta_remove,
3764 	.driver = {
3765 		.name = MVNETA_DRIVER_NAME,
3766 		.of_match_table = mvneta_match,
3767 	},
3768 };
3769 
3770 module_platform_driver(mvneta_driver);
3771 
3772 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3773 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3774 MODULE_LICENSE("GPL");
3775 
3776 module_param(rxq_number, int, S_IRUGO);
3777 module_param(txq_number, int, S_IRUGO);
3778 
3779 module_param(rxq_def, int, S_IRUGO);
3780 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3781