xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
193 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
194 #define MVNETA_GMAC_CTRL_2                       0x2c08
195 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
196 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
197 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
198 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
199 #define MVNETA_GMAC_STATUS                       0x2c10
200 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
201 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
202 #define      MVNETA_GMAC_SPEED_100               BIT(2)
203 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
206 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
207 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
208 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
209 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
211 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
212 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
213 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
214 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
215 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
216 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
217 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
218 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
219 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
220 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
221 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
222 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
223 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
224 #define MVNETA_GMAC_CTRL_4                       0x2c90
225 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
226 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
227 #define      MVNETA_MIB_LATE_COLLISION           0x7c
228 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
229 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
230 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
231 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
232 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
233 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
234 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
235 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
236 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
237 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
238 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
239 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
240 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
241 #define MVNETA_PORT_TX_RESET                     0x3cf0
242 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
243 #define MVNETA_TX_MTU                            0x3e0c
244 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
245 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
246 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
247 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
248 
249 #define MVNETA_LPI_CTRL_0                        0x2cc0
250 #define MVNETA_LPI_CTRL_1                        0x2cc4
251 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
252 #define MVNETA_LPI_CTRL_2                        0x2cc8
253 #define MVNETA_LPI_STATUS                        0x2ccc
254 
255 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
256 
257 /* Descriptor ring Macros */
258 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
259 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
260 
261 /* Various constants */
262 
263 /* Coalescing */
264 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
265 #define MVNETA_RX_COAL_PKTS		32
266 #define MVNETA_RX_COAL_USEC		100
267 
268 /* The two bytes Marvell header. Either contains a special value used
269  * by Marvell switches when a specific hardware mode is enabled (not
270  * supported by this driver) or is filled automatically by zeroes on
271  * the RX side. Those two bytes being at the front of the Ethernet
272  * header, they allow to have the IP header aligned on a 4 bytes
273  * boundary automatically: the hardware skips those two bytes on its
274  * own.
275  */
276 #define MVNETA_MH_SIZE			2
277 
278 #define MVNETA_VLAN_TAG_LEN             4
279 
280 #define MVNETA_TX_CSUM_DEF_SIZE		1600
281 #define MVNETA_TX_CSUM_MAX_SIZE		9800
282 #define MVNETA_ACC_MODE_EXT1		1
283 #define MVNETA_ACC_MODE_EXT2		2
284 
285 #define MVNETA_MAX_DECODE_WIN		6
286 
287 /* Timeout constants */
288 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
289 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
290 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
291 
292 #define MVNETA_TX_MTU_MAX		0x3ffff
293 
294 /* The RSS lookup table actually has 256 entries but we do not use
295  * them yet
296  */
297 #define MVNETA_RSS_LU_TABLE_SIZE	1
298 
299 /* Max number of Rx descriptors */
300 #define MVNETA_MAX_RXD 512
301 
302 /* Max number of Tx descriptors */
303 #define MVNETA_MAX_TXD 1024
304 
305 /* Max number of allowed TCP segments for software TSO */
306 #define MVNETA_MAX_TSO_SEGS 100
307 
308 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
309 
310 /* descriptor aligned size */
311 #define MVNETA_DESC_ALIGNED_SIZE	32
312 
313 /* Number of bytes to be taken into account by HW when putting incoming data
314  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
315  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
316  */
317 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
318 
319 #define MVNETA_RX_PKT_SIZE(mtu) \
320 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
321 	      ETH_HLEN + ETH_FCS_LEN,			     \
322 	      cache_line_size())
323 
324 #define IS_TSO_HEADER(txq, addr) \
325 	((addr >= txq->tso_hdrs_phys) && \
326 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
327 
328 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
329 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
330 
331 enum {
332 	ETHTOOL_STAT_EEE_WAKEUP,
333 	ETHTOOL_STAT_SKB_ALLOC_ERR,
334 	ETHTOOL_STAT_REFILL_ERR,
335 	ETHTOOL_MAX_STATS,
336 };
337 
338 struct mvneta_statistic {
339 	unsigned short offset;
340 	unsigned short type;
341 	const char name[ETH_GSTRING_LEN];
342 };
343 
344 #define T_REG_32	32
345 #define T_REG_64	64
346 #define T_SW		1
347 
348 static const struct mvneta_statistic mvneta_statistics[] = {
349 	{ 0x3000, T_REG_64, "good_octets_received", },
350 	{ 0x3010, T_REG_32, "good_frames_received", },
351 	{ 0x3008, T_REG_32, "bad_octets_received", },
352 	{ 0x3014, T_REG_32, "bad_frames_received", },
353 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
354 	{ 0x301c, T_REG_32, "multicast_frames_received", },
355 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
356 	{ 0x3058, T_REG_32, "good_fc_received", },
357 	{ 0x305c, T_REG_32, "bad_fc_received", },
358 	{ 0x3060, T_REG_32, "undersize_received", },
359 	{ 0x3064, T_REG_32, "fragments_received", },
360 	{ 0x3068, T_REG_32, "oversize_received", },
361 	{ 0x306c, T_REG_32, "jabber_received", },
362 	{ 0x3070, T_REG_32, "mac_receive_error", },
363 	{ 0x3074, T_REG_32, "bad_crc_event", },
364 	{ 0x3078, T_REG_32, "collision", },
365 	{ 0x307c, T_REG_32, "late_collision", },
366 	{ 0x2484, T_REG_32, "rx_discard", },
367 	{ 0x2488, T_REG_32, "rx_overrun", },
368 	{ 0x3020, T_REG_32, "frames_64_octets", },
369 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
370 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
371 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
372 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
373 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
374 	{ 0x3038, T_REG_64, "good_octets_sent", },
375 	{ 0x3040, T_REG_32, "good_frames_sent", },
376 	{ 0x3044, T_REG_32, "excessive_collision", },
377 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
378 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
379 	{ 0x3054, T_REG_32, "fc_sent", },
380 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
381 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
382 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
383 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
384 };
385 
386 struct mvneta_pcpu_stats {
387 	struct	u64_stats_sync syncp;
388 	u64	rx_packets;
389 	u64	rx_bytes;
390 	u64	tx_packets;
391 	u64	tx_bytes;
392 };
393 
394 struct mvneta_pcpu_port {
395 	/* Pointer to the shared port */
396 	struct mvneta_port	*pp;
397 
398 	/* Pointer to the CPU-local NAPI struct */
399 	struct napi_struct	napi;
400 
401 	/* Cause of the previous interrupt */
402 	u32			cause_rx_tx;
403 };
404 
405 struct mvneta_port {
406 	u8 id;
407 	struct mvneta_pcpu_port __percpu	*ports;
408 	struct mvneta_pcpu_stats __percpu	*stats;
409 
410 	int pkt_size;
411 	unsigned int frag_size;
412 	void __iomem *base;
413 	struct mvneta_rx_queue *rxqs;
414 	struct mvneta_tx_queue *txqs;
415 	struct net_device *dev;
416 	struct hlist_node node_online;
417 	struct hlist_node node_dead;
418 	int rxq_def;
419 	/* Protect the access to the percpu interrupt registers,
420 	 * ensuring that the configuration remains coherent.
421 	 */
422 	spinlock_t lock;
423 	bool is_stopped;
424 
425 	u32 cause_rx_tx;
426 	struct napi_struct napi;
427 
428 	/* Core clock */
429 	struct clk *clk;
430 	/* AXI clock */
431 	struct clk *clk_bus;
432 	u8 mcast_count[256];
433 	u16 tx_ring_size;
434 	u16 rx_ring_size;
435 
436 	phy_interface_t phy_interface;
437 	struct device_node *dn;
438 	unsigned int tx_csum_limit;
439 	struct phylink *phylink;
440 
441 	struct mvneta_bm *bm_priv;
442 	struct mvneta_bm_pool *pool_long;
443 	struct mvneta_bm_pool *pool_short;
444 	int bm_win_id;
445 
446 	bool eee_enabled;
447 	bool eee_active;
448 	bool tx_lpi_enabled;
449 
450 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
451 
452 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
453 
454 	/* Flags for special SoC configurations */
455 	bool neta_armada3700;
456 	u16 rx_offset_correction;
457 	const struct mbus_dram_target_info *dram_target_info;
458 };
459 
460 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
461  * layout of the transmit and reception DMA descriptors, and their
462  * layout is therefore defined by the hardware design
463  */
464 
465 #define MVNETA_TX_L3_OFF_SHIFT	0
466 #define MVNETA_TX_IP_HLEN_SHIFT	8
467 #define MVNETA_TX_L4_UDP	BIT(16)
468 #define MVNETA_TX_L3_IP6	BIT(17)
469 #define MVNETA_TXD_IP_CSUM	BIT(18)
470 #define MVNETA_TXD_Z_PAD	BIT(19)
471 #define MVNETA_TXD_L_DESC	BIT(20)
472 #define MVNETA_TXD_F_DESC	BIT(21)
473 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
474 				 MVNETA_TXD_L_DESC | \
475 				 MVNETA_TXD_F_DESC)
476 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
477 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
478 
479 #define MVNETA_RXD_ERR_CRC		0x0
480 #define MVNETA_RXD_BM_POOL_SHIFT	13
481 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
482 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
483 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
484 #define MVNETA_RXD_ERR_LEN		BIT(18)
485 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
486 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
487 #define MVNETA_RXD_L3_IP4		BIT(25)
488 #define MVNETA_RXD_LAST_DESC		BIT(26)
489 #define MVNETA_RXD_FIRST_DESC		BIT(27)
490 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
491 					 MVNETA_RXD_LAST_DESC)
492 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
493 
494 #if defined(__LITTLE_ENDIAN)
495 struct mvneta_tx_desc {
496 	u32  command;		/* Options used by HW for packet transmitting.*/
497 	u16  reserverd1;	/* csum_l4 (for future use)		*/
498 	u16  data_size;		/* Data size of transmitted packet in bytes */
499 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
500 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
501 	u32  reserved3[4];	/* Reserved - (for future use)		*/
502 };
503 
504 struct mvneta_rx_desc {
505 	u32  status;		/* Info about received packet		*/
506 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
507 	u16  data_size;		/* Size of received packet in bytes	*/
508 
509 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
510 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
511 
512 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
513 	u16  reserved3;		/* prefetch_cmd, for future use		*/
514 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
515 
516 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
517 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
518 };
519 #else
520 struct mvneta_tx_desc {
521 	u16  data_size;		/* Data size of transmitted packet in bytes */
522 	u16  reserverd1;	/* csum_l4 (for future use)		*/
523 	u32  command;		/* Options used by HW for packet transmitting.*/
524 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
525 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
526 	u32  reserved3[4];	/* Reserved - (for future use)		*/
527 };
528 
529 struct mvneta_rx_desc {
530 	u16  data_size;		/* Size of received packet in bytes	*/
531 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
532 	u32  status;		/* Info about received packet		*/
533 
534 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
535 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
536 
537 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
538 	u16  reserved3;		/* prefetch_cmd, for future use		*/
539 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
540 
541 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
542 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
543 };
544 #endif
545 
546 struct mvneta_tx_queue {
547 	/* Number of this TX queue, in the range 0-7 */
548 	u8 id;
549 
550 	/* Number of TX DMA descriptors in the descriptor ring */
551 	int size;
552 
553 	/* Number of currently used TX DMA descriptor in the
554 	 * descriptor ring
555 	 */
556 	int count;
557 	int pending;
558 	int tx_stop_threshold;
559 	int tx_wake_threshold;
560 
561 	/* Array of transmitted skb */
562 	struct sk_buff **tx_skb;
563 
564 	/* Index of last TX DMA descriptor that was inserted */
565 	int txq_put_index;
566 
567 	/* Index of the TX DMA descriptor to be cleaned up */
568 	int txq_get_index;
569 
570 	u32 done_pkts_coal;
571 
572 	/* Virtual address of the TX DMA descriptors array */
573 	struct mvneta_tx_desc *descs;
574 
575 	/* DMA address of the TX DMA descriptors array */
576 	dma_addr_t descs_phys;
577 
578 	/* Index of the last TX DMA descriptor */
579 	int last_desc;
580 
581 	/* Index of the next TX DMA descriptor to process */
582 	int next_desc_to_proc;
583 
584 	/* DMA buffers for TSO headers */
585 	char *tso_hdrs;
586 
587 	/* DMA address of TSO headers */
588 	dma_addr_t tso_hdrs_phys;
589 
590 	/* Affinity mask for CPUs*/
591 	cpumask_t affinity_mask;
592 };
593 
594 struct mvneta_rx_queue {
595 	/* rx queue number, in the range 0-7 */
596 	u8 id;
597 
598 	/* num of rx descriptors in the rx descriptor ring */
599 	int size;
600 
601 	u32 pkts_coal;
602 	u32 time_coal;
603 
604 	/* Virtual address of the RX buffer */
605 	void  **buf_virt_addr;
606 
607 	/* Virtual address of the RX DMA descriptors array */
608 	struct mvneta_rx_desc *descs;
609 
610 	/* DMA address of the RX DMA descriptors array */
611 	dma_addr_t descs_phys;
612 
613 	/* Index of the last RX DMA descriptor */
614 	int last_desc;
615 
616 	/* Index of the next RX DMA descriptor to process */
617 	int next_desc_to_proc;
618 
619 	/* Index of first RX DMA descriptor to refill */
620 	int first_to_refill;
621 	u32 refill_num;
622 
623 	/* pointer to uncomplete skb buffer */
624 	struct sk_buff *skb;
625 	int left_size;
626 
627 	/* error counters */
628 	u32 skb_alloc_err;
629 	u32 refill_err;
630 };
631 
632 static enum cpuhp_state online_hpstate;
633 /* The hardware supports eight (8) rx queues, but we are only allowing
634  * the first one to be used. Therefore, let's just allocate one queue.
635  */
636 static int rxq_number = 8;
637 static int txq_number = 8;
638 
639 static int rxq_def;
640 
641 static int rx_copybreak __read_mostly = 256;
642 static int rx_header_size __read_mostly = 128;
643 
644 /* HW BM need that each port be identify by a unique ID */
645 static int global_port_id;
646 
647 #define MVNETA_DRIVER_NAME "mvneta"
648 #define MVNETA_DRIVER_VERSION "1.0"
649 
650 /* Utility/helper methods */
651 
652 /* Write helper method */
653 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
654 {
655 	writel(data, pp->base + offset);
656 }
657 
658 /* Read helper method */
659 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
660 {
661 	return readl(pp->base + offset);
662 }
663 
664 /* Increment txq get counter */
665 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
666 {
667 	txq->txq_get_index++;
668 	if (txq->txq_get_index == txq->size)
669 		txq->txq_get_index = 0;
670 }
671 
672 /* Increment txq put counter */
673 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
674 {
675 	txq->txq_put_index++;
676 	if (txq->txq_put_index == txq->size)
677 		txq->txq_put_index = 0;
678 }
679 
680 
681 /* Clear all MIB counters */
682 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
683 {
684 	int i;
685 	u32 dummy;
686 
687 	/* Perform dummy reads from MIB counters */
688 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
689 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
690 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
691 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
692 }
693 
694 /* Get System Network Statistics */
695 static void
696 mvneta_get_stats64(struct net_device *dev,
697 		   struct rtnl_link_stats64 *stats)
698 {
699 	struct mvneta_port *pp = netdev_priv(dev);
700 	unsigned int start;
701 	int cpu;
702 
703 	for_each_possible_cpu(cpu) {
704 		struct mvneta_pcpu_stats *cpu_stats;
705 		u64 rx_packets;
706 		u64 rx_bytes;
707 		u64 tx_packets;
708 		u64 tx_bytes;
709 
710 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
711 		do {
712 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
713 			rx_packets = cpu_stats->rx_packets;
714 			rx_bytes   = cpu_stats->rx_bytes;
715 			tx_packets = cpu_stats->tx_packets;
716 			tx_bytes   = cpu_stats->tx_bytes;
717 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
718 
719 		stats->rx_packets += rx_packets;
720 		stats->rx_bytes   += rx_bytes;
721 		stats->tx_packets += tx_packets;
722 		stats->tx_bytes   += tx_bytes;
723 	}
724 
725 	stats->rx_errors	= dev->stats.rx_errors;
726 	stats->rx_dropped	= dev->stats.rx_dropped;
727 
728 	stats->tx_dropped	= dev->stats.tx_dropped;
729 }
730 
731 /* Rx descriptors helper methods */
732 
733 /* Checks whether the RX descriptor having this status is both the first
734  * and the last descriptor for the RX packet. Each RX packet is currently
735  * received through a single RX descriptor, so not having each RX
736  * descriptor with its first and last bits set is an error
737  */
738 static int mvneta_rxq_desc_is_first_last(u32 status)
739 {
740 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
741 		MVNETA_RXD_FIRST_LAST_DESC;
742 }
743 
744 /* Add number of descriptors ready to receive new packets */
745 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
746 					  struct mvneta_rx_queue *rxq,
747 					  int ndescs)
748 {
749 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
750 	 * be added at once
751 	 */
752 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
753 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
754 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
755 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
756 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
757 	}
758 
759 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
760 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
761 }
762 
763 /* Get number of RX descriptors occupied by received packets */
764 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
765 					struct mvneta_rx_queue *rxq)
766 {
767 	u32 val;
768 
769 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
770 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
771 }
772 
773 /* Update num of rx desc called upon return from rx path or
774  * from mvneta_rxq_drop_pkts().
775  */
776 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
777 				       struct mvneta_rx_queue *rxq,
778 				       int rx_done, int rx_filled)
779 {
780 	u32 val;
781 
782 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
783 		val = rx_done |
784 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
785 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
786 		return;
787 	}
788 
789 	/* Only 255 descriptors can be added at once */
790 	while ((rx_done > 0) || (rx_filled > 0)) {
791 		if (rx_done <= 0xff) {
792 			val = rx_done;
793 			rx_done = 0;
794 		} else {
795 			val = 0xff;
796 			rx_done -= 0xff;
797 		}
798 		if (rx_filled <= 0xff) {
799 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
800 			rx_filled = 0;
801 		} else {
802 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
803 			rx_filled -= 0xff;
804 		}
805 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
806 	}
807 }
808 
809 /* Get pointer to next RX descriptor to be processed by SW */
810 static struct mvneta_rx_desc *
811 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
812 {
813 	int rx_desc = rxq->next_desc_to_proc;
814 
815 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
816 	prefetch(rxq->descs + rxq->next_desc_to_proc);
817 	return rxq->descs + rx_desc;
818 }
819 
820 /* Change maximum receive size of the port. */
821 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
822 {
823 	u32 val;
824 
825 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
826 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
827 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
828 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
829 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
830 }
831 
832 
833 /* Set rx queue offset */
834 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
835 				  struct mvneta_rx_queue *rxq,
836 				  int offset)
837 {
838 	u32 val;
839 
840 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
841 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
842 
843 	/* Offset is in */
844 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
845 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
846 }
847 
848 
849 /* Tx descriptors helper methods */
850 
851 /* Update HW with number of TX descriptors to be sent */
852 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
853 				     struct mvneta_tx_queue *txq,
854 				     int pend_desc)
855 {
856 	u32 val;
857 
858 	pend_desc += txq->pending;
859 
860 	/* Only 255 Tx descriptors can be added at once */
861 	do {
862 		val = min(pend_desc, 255);
863 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
864 		pend_desc -= val;
865 	} while (pend_desc > 0);
866 	txq->pending = 0;
867 }
868 
869 /* Get pointer to next TX descriptor to be processed (send) by HW */
870 static struct mvneta_tx_desc *
871 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
872 {
873 	int tx_desc = txq->next_desc_to_proc;
874 
875 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
876 	return txq->descs + tx_desc;
877 }
878 
879 /* Release the last allocated TX descriptor. Useful to handle DMA
880  * mapping failures in the TX path.
881  */
882 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
883 {
884 	if (txq->next_desc_to_proc == 0)
885 		txq->next_desc_to_proc = txq->last_desc - 1;
886 	else
887 		txq->next_desc_to_proc--;
888 }
889 
890 /* Set rxq buf size */
891 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
892 				    struct mvneta_rx_queue *rxq,
893 				    int buf_size)
894 {
895 	u32 val;
896 
897 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
898 
899 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
900 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
901 
902 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
903 }
904 
905 /* Disable buffer management (BM) */
906 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
907 				  struct mvneta_rx_queue *rxq)
908 {
909 	u32 val;
910 
911 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
913 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
914 }
915 
916 /* Enable buffer management (BM) */
917 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
918 				 struct mvneta_rx_queue *rxq)
919 {
920 	u32 val;
921 
922 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
923 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
924 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
925 }
926 
927 /* Notify HW about port's assignment of pool for bigger packets */
928 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
929 				     struct mvneta_rx_queue *rxq)
930 {
931 	u32 val;
932 
933 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
934 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
935 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
936 
937 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
938 }
939 
940 /* Notify HW about port's assignment of pool for smaller packets */
941 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
942 				      struct mvneta_rx_queue *rxq)
943 {
944 	u32 val;
945 
946 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
947 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
948 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
949 
950 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
951 }
952 
953 /* Set port's receive buffer size for assigned BM pool */
954 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
955 					      int buf_size,
956 					      u8 pool_id)
957 {
958 	u32 val;
959 
960 	if (!IS_ALIGNED(buf_size, 8)) {
961 		dev_warn(pp->dev->dev.parent,
962 			 "illegal buf_size value %d, round to %d\n",
963 			 buf_size, ALIGN(buf_size, 8));
964 		buf_size = ALIGN(buf_size, 8);
965 	}
966 
967 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
968 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
969 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
970 }
971 
972 /* Configure MBUS window in order to enable access BM internal SRAM */
973 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
974 				  u8 target, u8 attr)
975 {
976 	u32 win_enable, win_protect;
977 	int i;
978 
979 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
980 
981 	if (pp->bm_win_id < 0) {
982 		/* Find first not occupied window */
983 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
984 			if (win_enable & (1 << i)) {
985 				pp->bm_win_id = i;
986 				break;
987 			}
988 		}
989 		if (i == MVNETA_MAX_DECODE_WIN)
990 			return -ENOMEM;
991 	} else {
992 		i = pp->bm_win_id;
993 	}
994 
995 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
996 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
997 
998 	if (i < 4)
999 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1000 
1001 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1002 		    (attr << 8) | target);
1003 
1004 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1005 
1006 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1007 	win_protect |= 3 << (2 * i);
1008 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1009 
1010 	win_enable &= ~(1 << i);
1011 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1012 
1013 	return 0;
1014 }
1015 
1016 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1017 {
1018 	u32 wsize;
1019 	u8 target, attr;
1020 	int err;
1021 
1022 	/* Get BM window information */
1023 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1024 					 &target, &attr);
1025 	if (err < 0)
1026 		return err;
1027 
1028 	pp->bm_win_id = -1;
1029 
1030 	/* Open NETA -> BM window */
1031 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1032 				     target, attr);
1033 	if (err < 0) {
1034 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1035 		return err;
1036 	}
1037 	return 0;
1038 }
1039 
1040 /* Assign and initialize pools for port. In case of fail
1041  * buffer manager will remain disabled for current port.
1042  */
1043 static int mvneta_bm_port_init(struct platform_device *pdev,
1044 			       struct mvneta_port *pp)
1045 {
1046 	struct device_node *dn = pdev->dev.of_node;
1047 	u32 long_pool_id, short_pool_id;
1048 
1049 	if (!pp->neta_armada3700) {
1050 		int ret;
1051 
1052 		ret = mvneta_bm_port_mbus_init(pp);
1053 		if (ret)
1054 			return ret;
1055 	}
1056 
1057 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1058 		netdev_info(pp->dev, "missing long pool id\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	/* Create port's long pool depending on mtu */
1063 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1064 					   MVNETA_BM_LONG, pp->id,
1065 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1066 	if (!pp->pool_long) {
1067 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1068 		return -ENOMEM;
1069 	}
1070 
1071 	pp->pool_long->port_map |= 1 << pp->id;
1072 
1073 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1074 				   pp->pool_long->id);
1075 
1076 	/* If short pool id is not defined, assume using single pool */
1077 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1078 		short_pool_id = long_pool_id;
1079 
1080 	/* Create port's short pool */
1081 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1082 					    MVNETA_BM_SHORT, pp->id,
1083 					    MVNETA_BM_SHORT_PKT_SIZE);
1084 	if (!pp->pool_short) {
1085 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1086 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1087 		return -ENOMEM;
1088 	}
1089 
1090 	if (short_pool_id != long_pool_id) {
1091 		pp->pool_short->port_map |= 1 << pp->id;
1092 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1093 					   pp->pool_short->id);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 /* Update settings of a pool for bigger packets */
1100 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1101 {
1102 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1103 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1104 	int num;
1105 
1106 	/* Release all buffers from long pool */
1107 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1108 	if (hwbm_pool->buf_num) {
1109 		WARN(1, "cannot free all buffers in pool %d\n",
1110 		     bm_pool->id);
1111 		goto bm_mtu_err;
1112 	}
1113 
1114 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1115 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1116 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1117 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1118 
1119 	/* Fill entire long pool */
1120 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1121 	if (num != hwbm_pool->size) {
1122 		WARN(1, "pool %d: %d of %d allocated\n",
1123 		     bm_pool->id, num, hwbm_pool->size);
1124 		goto bm_mtu_err;
1125 	}
1126 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1127 
1128 	return;
1129 
1130 bm_mtu_err:
1131 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1132 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1133 
1134 	pp->bm_priv = NULL;
1135 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1136 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1137 }
1138 
1139 /* Start the Ethernet port RX and TX activity */
1140 static void mvneta_port_up(struct mvneta_port *pp)
1141 {
1142 	int queue;
1143 	u32 q_map;
1144 
1145 	/* Enable all initialized TXs. */
1146 	q_map = 0;
1147 	for (queue = 0; queue < txq_number; queue++) {
1148 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1149 		if (txq->descs)
1150 			q_map |= (1 << queue);
1151 	}
1152 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1153 
1154 	q_map = 0;
1155 	/* Enable all initialized RXQs. */
1156 	for (queue = 0; queue < rxq_number; queue++) {
1157 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1158 
1159 		if (rxq->descs)
1160 			q_map |= (1 << queue);
1161 	}
1162 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1163 }
1164 
1165 /* Stop the Ethernet port activity */
1166 static void mvneta_port_down(struct mvneta_port *pp)
1167 {
1168 	u32 val;
1169 	int count;
1170 
1171 	/* Stop Rx port activity. Check port Rx activity. */
1172 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1173 
1174 	/* Issue stop command for active channels only */
1175 	if (val != 0)
1176 		mvreg_write(pp, MVNETA_RXQ_CMD,
1177 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1178 
1179 	/* Wait for all Rx activity to terminate. */
1180 	count = 0;
1181 	do {
1182 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1183 			netdev_warn(pp->dev,
1184 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1185 				    val);
1186 			break;
1187 		}
1188 		mdelay(1);
1189 
1190 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1191 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1192 
1193 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1194 	 * command for active channels only
1195 	 */
1196 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1197 
1198 	if (val != 0)
1199 		mvreg_write(pp, MVNETA_TXQ_CMD,
1200 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1201 
1202 	/* Wait for all Tx activity to terminate. */
1203 	count = 0;
1204 	do {
1205 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1206 			netdev_warn(pp->dev,
1207 				    "TIMEOUT for TX stopped status=0x%08x\n",
1208 				    val);
1209 			break;
1210 		}
1211 		mdelay(1);
1212 
1213 		/* Check TX Command reg that all Txqs are stopped */
1214 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1215 
1216 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1217 
1218 	/* Double check to verify that TX FIFO is empty */
1219 	count = 0;
1220 	do {
1221 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1222 			netdev_warn(pp->dev,
1223 				    "TX FIFO empty timeout status=0x%08x\n",
1224 				    val);
1225 			break;
1226 		}
1227 		mdelay(1);
1228 
1229 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1230 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1231 		 (val & MVNETA_TX_IN_PRGRS));
1232 
1233 	udelay(200);
1234 }
1235 
1236 /* Enable the port by setting the port enable bit of the MAC control register */
1237 static void mvneta_port_enable(struct mvneta_port *pp)
1238 {
1239 	u32 val;
1240 
1241 	/* Enable port */
1242 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1243 	val |= MVNETA_GMAC0_PORT_ENABLE;
1244 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1245 }
1246 
1247 /* Disable the port and wait for about 200 usec before retuning */
1248 static void mvneta_port_disable(struct mvneta_port *pp)
1249 {
1250 	u32 val;
1251 
1252 	/* Reset the Enable bit in the Serial Control Register */
1253 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1254 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1255 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1256 
1257 	udelay(200);
1258 }
1259 
1260 /* Multicast tables methods */
1261 
1262 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1263 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1264 {
1265 	int offset;
1266 	u32 val;
1267 
1268 	if (queue == -1) {
1269 		val = 0;
1270 	} else {
1271 		val = 0x1 | (queue << 1);
1272 		val |= (val << 24) | (val << 16) | (val << 8);
1273 	}
1274 
1275 	for (offset = 0; offset <= 0xc; offset += 4)
1276 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1277 }
1278 
1279 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1280 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1281 {
1282 	int offset;
1283 	u32 val;
1284 
1285 	if (queue == -1) {
1286 		val = 0;
1287 	} else {
1288 		val = 0x1 | (queue << 1);
1289 		val |= (val << 24) | (val << 16) | (val << 8);
1290 	}
1291 
1292 	for (offset = 0; offset <= 0xfc; offset += 4)
1293 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1294 
1295 }
1296 
1297 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1298 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1299 {
1300 	int offset;
1301 	u32 val;
1302 
1303 	if (queue == -1) {
1304 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1305 		val = 0;
1306 	} else {
1307 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1308 		val = 0x1 | (queue << 1);
1309 		val |= (val << 24) | (val << 16) | (val << 8);
1310 	}
1311 
1312 	for (offset = 0; offset <= 0xfc; offset += 4)
1313 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1314 }
1315 
1316 static void mvneta_percpu_unmask_interrupt(void *arg)
1317 {
1318 	struct mvneta_port *pp = arg;
1319 
1320 	/* All the queue are unmasked, but actually only the ones
1321 	 * mapped to this CPU will be unmasked
1322 	 */
1323 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1324 		    MVNETA_RX_INTR_MASK_ALL |
1325 		    MVNETA_TX_INTR_MASK_ALL |
1326 		    MVNETA_MISCINTR_INTR_MASK);
1327 }
1328 
1329 static void mvneta_percpu_mask_interrupt(void *arg)
1330 {
1331 	struct mvneta_port *pp = arg;
1332 
1333 	/* All the queue are masked, but actually only the ones
1334 	 * mapped to this CPU will be masked
1335 	 */
1336 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1337 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1338 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1339 }
1340 
1341 static void mvneta_percpu_clear_intr_cause(void *arg)
1342 {
1343 	struct mvneta_port *pp = arg;
1344 
1345 	/* All the queue are cleared, but actually only the ones
1346 	 * mapped to this CPU will be cleared
1347 	 */
1348 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1349 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1350 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1351 }
1352 
1353 /* This method sets defaults to the NETA port:
1354  *	Clears interrupt Cause and Mask registers.
1355  *	Clears all MAC tables.
1356  *	Sets defaults to all registers.
1357  *	Resets RX and TX descriptor rings.
1358  *	Resets PHY.
1359  * This method can be called after mvneta_port_down() to return the port
1360  *	settings to defaults.
1361  */
1362 static void mvneta_defaults_set(struct mvneta_port *pp)
1363 {
1364 	int cpu;
1365 	int queue;
1366 	u32 val;
1367 	int max_cpu = num_present_cpus();
1368 
1369 	/* Clear all Cause registers */
1370 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1371 
1372 	/* Mask all interrupts */
1373 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1374 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1375 
1376 	/* Enable MBUS Retry bit16 */
1377 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1378 
1379 	/* Set CPU queue access map. CPUs are assigned to the RX and
1380 	 * TX queues modulo their number. If there is only one TX
1381 	 * queue then it is assigned to the CPU associated to the
1382 	 * default RX queue.
1383 	 */
1384 	for_each_present_cpu(cpu) {
1385 		int rxq_map = 0, txq_map = 0;
1386 		int rxq, txq;
1387 		if (!pp->neta_armada3700) {
1388 			for (rxq = 0; rxq < rxq_number; rxq++)
1389 				if ((rxq % max_cpu) == cpu)
1390 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1391 
1392 			for (txq = 0; txq < txq_number; txq++)
1393 				if ((txq % max_cpu) == cpu)
1394 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1395 
1396 			/* With only one TX queue we configure a special case
1397 			 * which will allow to get all the irq on a single
1398 			 * CPU
1399 			 */
1400 			if (txq_number == 1)
1401 				txq_map = (cpu == pp->rxq_def) ?
1402 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1403 
1404 		} else {
1405 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1406 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1407 		}
1408 
1409 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1410 	}
1411 
1412 	/* Reset RX and TX DMAs */
1413 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1414 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1415 
1416 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1417 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1418 	for (queue = 0; queue < txq_number; queue++) {
1419 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1420 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1421 	}
1422 
1423 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1424 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1425 
1426 	/* Set Port Acceleration Mode */
1427 	if (pp->bm_priv)
1428 		/* HW buffer management + legacy parser */
1429 		val = MVNETA_ACC_MODE_EXT2;
1430 	else
1431 		/* SW buffer management + legacy parser */
1432 		val = MVNETA_ACC_MODE_EXT1;
1433 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1434 
1435 	if (pp->bm_priv)
1436 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1437 
1438 	/* Update val of portCfg register accordingly with all RxQueue types */
1439 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1440 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1441 
1442 	val = 0;
1443 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1444 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1445 
1446 	/* Build PORT_SDMA_CONFIG_REG */
1447 	val = 0;
1448 
1449 	/* Default burst size */
1450 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1451 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1452 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1453 
1454 #if defined(__BIG_ENDIAN)
1455 	val |= MVNETA_DESC_SWAP;
1456 #endif
1457 
1458 	/* Assign port SDMA configuration */
1459 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1460 
1461 	/* Disable PHY polling in hardware, since we're using the
1462 	 * kernel phylib to do this.
1463 	 */
1464 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1465 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1466 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1467 
1468 	mvneta_set_ucast_table(pp, -1);
1469 	mvneta_set_special_mcast_table(pp, -1);
1470 	mvneta_set_other_mcast_table(pp, -1);
1471 
1472 	/* Set port interrupt enable register - default enable all */
1473 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1474 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1475 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1476 
1477 	mvneta_mib_counters_clear(pp);
1478 }
1479 
1480 /* Set max sizes for tx queues */
1481 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1482 
1483 {
1484 	u32 val, size, mtu;
1485 	int queue;
1486 
1487 	mtu = max_tx_size * 8;
1488 	if (mtu > MVNETA_TX_MTU_MAX)
1489 		mtu = MVNETA_TX_MTU_MAX;
1490 
1491 	/* Set MTU */
1492 	val = mvreg_read(pp, MVNETA_TX_MTU);
1493 	val &= ~MVNETA_TX_MTU_MAX;
1494 	val |= mtu;
1495 	mvreg_write(pp, MVNETA_TX_MTU, val);
1496 
1497 	/* TX token size and all TXQs token size must be larger that MTU */
1498 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1499 
1500 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1501 	if (size < mtu) {
1502 		size = mtu;
1503 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1504 		val |= size;
1505 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1506 	}
1507 	for (queue = 0; queue < txq_number; queue++) {
1508 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1509 
1510 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1511 		if (size < mtu) {
1512 			size = mtu;
1513 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1514 			val |= size;
1515 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1516 		}
1517 	}
1518 }
1519 
1520 /* Set unicast address */
1521 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1522 				  int queue)
1523 {
1524 	unsigned int unicast_reg;
1525 	unsigned int tbl_offset;
1526 	unsigned int reg_offset;
1527 
1528 	/* Locate the Unicast table entry */
1529 	last_nibble = (0xf & last_nibble);
1530 
1531 	/* offset from unicast tbl base */
1532 	tbl_offset = (last_nibble / 4) * 4;
1533 
1534 	/* offset within the above reg  */
1535 	reg_offset = last_nibble % 4;
1536 
1537 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1538 
1539 	if (queue == -1) {
1540 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1541 		unicast_reg &= ~(0xff << (8 * reg_offset));
1542 	} else {
1543 		unicast_reg &= ~(0xff << (8 * reg_offset));
1544 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1545 	}
1546 
1547 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1548 }
1549 
1550 /* Set mac address */
1551 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1552 				int queue)
1553 {
1554 	unsigned int mac_h;
1555 	unsigned int mac_l;
1556 
1557 	if (queue != -1) {
1558 		mac_l = (addr[4] << 8) | (addr[5]);
1559 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1560 			(addr[2] << 8) | (addr[3] << 0);
1561 
1562 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1563 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1564 	}
1565 
1566 	/* Accept frames of this address */
1567 	mvneta_set_ucast_addr(pp, addr[5], queue);
1568 }
1569 
1570 /* Set the number of packets that will be received before RX interrupt
1571  * will be generated by HW.
1572  */
1573 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1574 				    struct mvneta_rx_queue *rxq, u32 value)
1575 {
1576 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1577 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1578 }
1579 
1580 /* Set the time delay in usec before RX interrupt will be generated by
1581  * HW.
1582  */
1583 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1584 				    struct mvneta_rx_queue *rxq, u32 value)
1585 {
1586 	u32 val;
1587 	unsigned long clk_rate;
1588 
1589 	clk_rate = clk_get_rate(pp->clk);
1590 	val = (clk_rate / 1000000) * value;
1591 
1592 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1593 }
1594 
1595 /* Set threshold for TX_DONE pkts coalescing */
1596 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1597 					 struct mvneta_tx_queue *txq, u32 value)
1598 {
1599 	u32 val;
1600 
1601 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1602 
1603 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1604 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1605 
1606 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1607 }
1608 
1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1611 				u32 phys_addr, void *virt_addr,
1612 				struct mvneta_rx_queue *rxq)
1613 {
1614 	int i;
1615 
1616 	rx_desc->buf_phys_addr = phys_addr;
1617 	i = rx_desc - rxq->descs;
1618 	rxq->buf_virt_addr[i] = virt_addr;
1619 }
1620 
1621 /* Decrement sent descriptors counter */
1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1623 				     struct mvneta_tx_queue *txq,
1624 				     int sent_desc)
1625 {
1626 	u32 val;
1627 
1628 	/* Only 255 TX descriptors can be updated at once */
1629 	while (sent_desc > 0xff) {
1630 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1631 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1632 		sent_desc = sent_desc - 0xff;
1633 	}
1634 
1635 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1636 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1637 }
1638 
1639 /* Get number of TX descriptors already sent by HW */
1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1641 					struct mvneta_tx_queue *txq)
1642 {
1643 	u32 val;
1644 	int sent_desc;
1645 
1646 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1647 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1648 		MVNETA_TXQ_SENT_DESC_SHIFT;
1649 
1650 	return sent_desc;
1651 }
1652 
1653 /* Get number of sent descriptors and decrement counter.
1654  *  The number of sent descriptors is returned.
1655  */
1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1657 				     struct mvneta_tx_queue *txq)
1658 {
1659 	int sent_desc;
1660 
1661 	/* Get number of sent descriptors */
1662 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1663 
1664 	/* Decrement sent descriptors counter */
1665 	if (sent_desc)
1666 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1667 
1668 	return sent_desc;
1669 }
1670 
1671 /* Set TXQ descriptors fields relevant for CSUM calculation */
1672 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1673 				int ip_hdr_len, int l4_proto)
1674 {
1675 	u32 command;
1676 
1677 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 	 * G_L4_chk, L4_type; required only for checksum
1679 	 * calculation
1680 	 */
1681 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1682 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1683 
1684 	if (l3_proto == htons(ETH_P_IP))
1685 		command |= MVNETA_TXD_IP_CSUM;
1686 	else
1687 		command |= MVNETA_TX_L3_IP6;
1688 
1689 	if (l4_proto == IPPROTO_TCP)
1690 		command |=  MVNETA_TX_L4_CSUM_FULL;
1691 	else if (l4_proto == IPPROTO_UDP)
1692 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1693 	else
1694 		command |= MVNETA_TX_L4_CSUM_NOT;
1695 
1696 	return command;
1697 }
1698 
1699 
1700 /* Display more error info */
1701 static void mvneta_rx_error(struct mvneta_port *pp,
1702 			    struct mvneta_rx_desc *rx_desc)
1703 {
1704 	u32 status = rx_desc->status;
1705 
1706 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1707 	case MVNETA_RXD_ERR_CRC:
1708 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1709 			   status, rx_desc->data_size);
1710 		break;
1711 	case MVNETA_RXD_ERR_OVERRUN:
1712 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1713 			   status, rx_desc->data_size);
1714 		break;
1715 	case MVNETA_RXD_ERR_LEN:
1716 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1717 			   status, rx_desc->data_size);
1718 		break;
1719 	case MVNETA_RXD_ERR_RESOURCE:
1720 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1721 			   status, rx_desc->data_size);
1722 		break;
1723 	}
1724 }
1725 
1726 /* Handle RX checksum offload based on the descriptor's status */
1727 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1728 			   struct sk_buff *skb)
1729 {
1730 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1731 	    (status & MVNETA_RXD_L3_IP4) &&
1732 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1733 		skb->csum = 0;
1734 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1735 		return;
1736 	}
1737 
1738 	skb->ip_summed = CHECKSUM_NONE;
1739 }
1740 
1741 /* Return tx queue pointer (find last set bit) according to <cause> returned
1742  * form tx_done reg. <cause> must not be null. The return value is always a
1743  * valid queue for matching the first one found in <cause>.
1744  */
1745 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1746 						     u32 cause)
1747 {
1748 	int queue = fls(cause) - 1;
1749 
1750 	return &pp->txqs[queue];
1751 }
1752 
1753 /* Free tx queue skbuffs */
1754 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1755 				 struct mvneta_tx_queue *txq, int num,
1756 				 struct netdev_queue *nq)
1757 {
1758 	unsigned int bytes_compl = 0, pkts_compl = 0;
1759 	int i;
1760 
1761 	for (i = 0; i < num; i++) {
1762 		struct mvneta_tx_desc *tx_desc = txq->descs +
1763 			txq->txq_get_index;
1764 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1765 
1766 		if (skb) {
1767 			bytes_compl += skb->len;
1768 			pkts_compl++;
1769 		}
1770 
1771 		mvneta_txq_inc_get(txq);
1772 
1773 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1774 			dma_unmap_single(pp->dev->dev.parent,
1775 					 tx_desc->buf_phys_addr,
1776 					 tx_desc->data_size, DMA_TO_DEVICE);
1777 		if (!skb)
1778 			continue;
1779 		dev_kfree_skb_any(skb);
1780 	}
1781 
1782 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1783 }
1784 
1785 /* Handle end of transmission */
1786 static void mvneta_txq_done(struct mvneta_port *pp,
1787 			   struct mvneta_tx_queue *txq)
1788 {
1789 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1790 	int tx_done;
1791 
1792 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1793 	if (!tx_done)
1794 		return;
1795 
1796 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1797 
1798 	txq->count -= tx_done;
1799 
1800 	if (netif_tx_queue_stopped(nq)) {
1801 		if (txq->count <= txq->tx_wake_threshold)
1802 			netif_tx_wake_queue(nq);
1803 	}
1804 }
1805 
1806 /* Refill processing for SW buffer management */
1807 /* Allocate page per descriptor */
1808 static int mvneta_rx_refill(struct mvneta_port *pp,
1809 			    struct mvneta_rx_desc *rx_desc,
1810 			    struct mvneta_rx_queue *rxq,
1811 			    gfp_t gfp_mask)
1812 {
1813 	dma_addr_t phys_addr;
1814 	struct page *page;
1815 
1816 	page = __dev_alloc_page(gfp_mask);
1817 	if (!page)
1818 		return -ENOMEM;
1819 
1820 	/* map page for use */
1821 	phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1822 				 DMA_FROM_DEVICE);
1823 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1824 		__free_page(page);
1825 		return -ENOMEM;
1826 	}
1827 
1828 	phys_addr += pp->rx_offset_correction;
1829 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1830 	return 0;
1831 }
1832 
1833 /* Handle tx checksum */
1834 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1835 {
1836 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1837 		int ip_hdr_len = 0;
1838 		__be16 l3_proto = vlan_get_protocol(skb);
1839 		u8 l4_proto;
1840 
1841 		if (l3_proto == htons(ETH_P_IP)) {
1842 			struct iphdr *ip4h = ip_hdr(skb);
1843 
1844 			/* Calculate IPv4 checksum and L4 checksum */
1845 			ip_hdr_len = ip4h->ihl;
1846 			l4_proto = ip4h->protocol;
1847 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1848 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1849 
1850 			/* Read l4_protocol from one of IPv6 extra headers */
1851 			if (skb_network_header_len(skb) > 0)
1852 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1853 			l4_proto = ip6h->nexthdr;
1854 		} else
1855 			return MVNETA_TX_L4_CSUM_NOT;
1856 
1857 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1858 					    l3_proto, ip_hdr_len, l4_proto);
1859 	}
1860 
1861 	return MVNETA_TX_L4_CSUM_NOT;
1862 }
1863 
1864 /* Drop packets received by the RXQ and free buffers */
1865 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1866 				 struct mvneta_rx_queue *rxq)
1867 {
1868 	int rx_done, i;
1869 
1870 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1871 	if (rx_done)
1872 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1873 
1874 	if (pp->bm_priv) {
1875 		for (i = 0; i < rx_done; i++) {
1876 			struct mvneta_rx_desc *rx_desc =
1877 						  mvneta_rxq_next_desc_get(rxq);
1878 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1879 			struct mvneta_bm_pool *bm_pool;
1880 
1881 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1882 			/* Return dropped buffer to the pool */
1883 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1884 					      rx_desc->buf_phys_addr);
1885 		}
1886 		return;
1887 	}
1888 
1889 	for (i = 0; i < rxq->size; i++) {
1890 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1891 		void *data = rxq->buf_virt_addr[i];
1892 		if (!data || !(rx_desc->buf_phys_addr))
1893 			continue;
1894 
1895 		dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1896 			       PAGE_SIZE, DMA_FROM_DEVICE);
1897 		__free_page(data);
1898 	}
1899 }
1900 
1901 static inline
1902 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1903 {
1904 	struct mvneta_rx_desc *rx_desc;
1905 	int curr_desc = rxq->first_to_refill;
1906 	int i;
1907 
1908 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1909 		rx_desc = rxq->descs + curr_desc;
1910 		if (!(rx_desc->buf_phys_addr)) {
1911 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1912 				pr_err("Can't refill queue %d. Done %d from %d\n",
1913 				       rxq->id, i, rxq->refill_num);
1914 				rxq->refill_err++;
1915 				break;
1916 			}
1917 		}
1918 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1919 	}
1920 	rxq->refill_num -= i;
1921 	rxq->first_to_refill = curr_desc;
1922 
1923 	return i;
1924 }
1925 
1926 /* Main rx processing when using software buffer management */
1927 static int mvneta_rx_swbm(struct napi_struct *napi,
1928 			  struct mvneta_port *pp, int budget,
1929 			  struct mvneta_rx_queue *rxq)
1930 {
1931 	struct net_device *dev = pp->dev;
1932 	int rx_todo, rx_proc;
1933 	int refill = 0;
1934 	u32 rcvd_pkts = 0;
1935 	u32 rcvd_bytes = 0;
1936 
1937 	/* Get number of received packets */
1938 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1939 	rx_proc = 0;
1940 
1941 	/* Fairness NAPI loop */
1942 	while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1943 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1944 		unsigned char *data;
1945 		struct page *page;
1946 		dma_addr_t phys_addr;
1947 		u32 rx_status, index;
1948 		int rx_bytes, skb_size, copy_size;
1949 		int frag_num, frag_size, frag_offset;
1950 
1951 		index = rx_desc - rxq->descs;
1952 		page = (struct page *)rxq->buf_virt_addr[index];
1953 		data = page_address(page);
1954 		/* Prefetch header */
1955 		prefetch(data);
1956 
1957 		phys_addr = rx_desc->buf_phys_addr;
1958 		rx_status = rx_desc->status;
1959 		rx_proc++;
1960 		rxq->refill_num++;
1961 
1962 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
1963 			/* Check errors only for FIRST descriptor */
1964 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1965 				mvneta_rx_error(pp, rx_desc);
1966 				dev->stats.rx_errors++;
1967 				/* leave the descriptor untouched */
1968 				continue;
1969 			}
1970 			rx_bytes = rx_desc->data_size -
1971 				   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1972 
1973 			/* Allocate small skb for each new packet */
1974 			skb_size = max(rx_copybreak, rx_header_size);
1975 			rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1976 			if (unlikely(!rxq->skb)) {
1977 				netdev_err(dev,
1978 					   "Can't allocate skb on queue %d\n",
1979 					   rxq->id);
1980 				dev->stats.rx_dropped++;
1981 				rxq->skb_alloc_err++;
1982 				continue;
1983 			}
1984 			copy_size = min(skb_size, rx_bytes);
1985 
1986 			/* Copy data from buffer to SKB, skip Marvell header */
1987 			memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1988 			       copy_size);
1989 			skb_put(rxq->skb, copy_size);
1990 			rxq->left_size = rx_bytes - copy_size;
1991 
1992 			mvneta_rx_csum(pp, rx_status, rxq->skb);
1993 			if (rxq->left_size == 0) {
1994 				int size = copy_size + MVNETA_MH_SIZE;
1995 
1996 				dma_sync_single_range_for_cpu(dev->dev.parent,
1997 							      phys_addr, 0,
1998 							      size,
1999 							      DMA_FROM_DEVICE);
2000 
2001 				/* leave the descriptor and buffer untouched */
2002 			} else {
2003 				/* refill descriptor with new buffer later */
2004 				rx_desc->buf_phys_addr = 0;
2005 
2006 				frag_num = 0;
2007 				frag_offset = copy_size + MVNETA_MH_SIZE;
2008 				frag_size = min(rxq->left_size,
2009 						(int)(PAGE_SIZE - frag_offset));
2010 				skb_add_rx_frag(rxq->skb, frag_num, page,
2011 						frag_offset, frag_size,
2012 						PAGE_SIZE);
2013 				dma_unmap_page(dev->dev.parent, phys_addr,
2014 					       PAGE_SIZE, DMA_FROM_DEVICE);
2015 				rxq->left_size -= frag_size;
2016 			}
2017 		} else {
2018 			/* Middle or Last descriptor */
2019 			if (unlikely(!rxq->skb)) {
2020 				pr_debug("no skb for rx_status 0x%x\n",
2021 					 rx_status);
2022 				continue;
2023 			}
2024 			if (!rxq->left_size) {
2025 				/* last descriptor has only FCS */
2026 				/* and can be discarded */
2027 				dma_sync_single_range_for_cpu(dev->dev.parent,
2028 							      phys_addr, 0,
2029 							      ETH_FCS_LEN,
2030 							      DMA_FROM_DEVICE);
2031 				/* leave the descriptor and buffer untouched */
2032 			} else {
2033 				/* refill descriptor with new buffer later */
2034 				rx_desc->buf_phys_addr = 0;
2035 
2036 				frag_num = skb_shinfo(rxq->skb)->nr_frags;
2037 				frag_offset = 0;
2038 				frag_size = min(rxq->left_size,
2039 						(int)(PAGE_SIZE - frag_offset));
2040 				skb_add_rx_frag(rxq->skb, frag_num, page,
2041 						frag_offset, frag_size,
2042 						PAGE_SIZE);
2043 
2044 				dma_unmap_page(dev->dev.parent, phys_addr,
2045 					       PAGE_SIZE, DMA_FROM_DEVICE);
2046 
2047 				rxq->left_size -= frag_size;
2048 			}
2049 		} /* Middle or Last descriptor */
2050 
2051 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2052 			/* no last descriptor this time */
2053 			continue;
2054 
2055 		if (rxq->left_size) {
2056 			pr_err("get last desc, but left_size (%d) != 0\n",
2057 			       rxq->left_size);
2058 			dev_kfree_skb_any(rxq->skb);
2059 			rxq->left_size = 0;
2060 			rxq->skb = NULL;
2061 			continue;
2062 		}
2063 		rcvd_pkts++;
2064 		rcvd_bytes += rxq->skb->len;
2065 
2066 		/* Linux processing */
2067 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2068 
2069 		napi_gro_receive(napi, rxq->skb);
2070 
2071 		/* clean uncomplete skb pointer in queue */
2072 		rxq->skb = NULL;
2073 		rxq->left_size = 0;
2074 	}
2075 
2076 	if (rcvd_pkts) {
2077 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2078 
2079 		u64_stats_update_begin(&stats->syncp);
2080 		stats->rx_packets += rcvd_pkts;
2081 		stats->rx_bytes   += rcvd_bytes;
2082 		u64_stats_update_end(&stats->syncp);
2083 	}
2084 
2085 	/* return some buffers to hardware queue, one at a time is too slow */
2086 	refill = mvneta_rx_refill_queue(pp, rxq);
2087 
2088 	/* Update rxq management counters */
2089 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2090 
2091 	return rcvd_pkts;
2092 }
2093 
2094 /* Main rx processing when using hardware buffer management */
2095 static int mvneta_rx_hwbm(struct napi_struct *napi,
2096 			  struct mvneta_port *pp, int rx_todo,
2097 			  struct mvneta_rx_queue *rxq)
2098 {
2099 	struct net_device *dev = pp->dev;
2100 	int rx_done;
2101 	u32 rcvd_pkts = 0;
2102 	u32 rcvd_bytes = 0;
2103 
2104 	/* Get number of received packets */
2105 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2106 
2107 	if (rx_todo > rx_done)
2108 		rx_todo = rx_done;
2109 
2110 	rx_done = 0;
2111 
2112 	/* Fairness NAPI loop */
2113 	while (rx_done < rx_todo) {
2114 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2115 		struct mvneta_bm_pool *bm_pool = NULL;
2116 		struct sk_buff *skb;
2117 		unsigned char *data;
2118 		dma_addr_t phys_addr;
2119 		u32 rx_status, frag_size;
2120 		int rx_bytes, err;
2121 		u8 pool_id;
2122 
2123 		rx_done++;
2124 		rx_status = rx_desc->status;
2125 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2126 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2127 		phys_addr = rx_desc->buf_phys_addr;
2128 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2129 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2130 
2131 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2132 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2133 err_drop_frame_ret_pool:
2134 			/* Return the buffer to the pool */
2135 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2136 					      rx_desc->buf_phys_addr);
2137 err_drop_frame:
2138 			dev->stats.rx_errors++;
2139 			mvneta_rx_error(pp, rx_desc);
2140 			/* leave the descriptor untouched */
2141 			continue;
2142 		}
2143 
2144 		if (rx_bytes <= rx_copybreak) {
2145 			/* better copy a small frame and not unmap the DMA region */
2146 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2147 			if (unlikely(!skb))
2148 				goto err_drop_frame_ret_pool;
2149 
2150 			dma_sync_single_range_for_cpu(dev->dev.parent,
2151 			                              rx_desc->buf_phys_addr,
2152 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2153 			                              rx_bytes,
2154 			                              DMA_FROM_DEVICE);
2155 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2156 				     rx_bytes);
2157 
2158 			skb->protocol = eth_type_trans(skb, dev);
2159 			mvneta_rx_csum(pp, rx_status, skb);
2160 			napi_gro_receive(napi, skb);
2161 
2162 			rcvd_pkts++;
2163 			rcvd_bytes += rx_bytes;
2164 
2165 			/* Return the buffer to the pool */
2166 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2167 					      rx_desc->buf_phys_addr);
2168 
2169 			/* leave the descriptor and buffer untouched */
2170 			continue;
2171 		}
2172 
2173 		/* Refill processing */
2174 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2175 		if (err) {
2176 			netdev_err(dev, "Linux processing - Can't refill\n");
2177 			rxq->refill_err++;
2178 			goto err_drop_frame_ret_pool;
2179 		}
2180 
2181 		frag_size = bm_pool->hwbm_pool.frag_size;
2182 
2183 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2184 
2185 		/* After refill old buffer has to be unmapped regardless
2186 		 * the skb is successfully built or not.
2187 		 */
2188 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2189 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2190 		if (!skb)
2191 			goto err_drop_frame;
2192 
2193 		rcvd_pkts++;
2194 		rcvd_bytes += rx_bytes;
2195 
2196 		/* Linux processing */
2197 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2198 		skb_put(skb, rx_bytes);
2199 
2200 		skb->protocol = eth_type_trans(skb, dev);
2201 
2202 		mvneta_rx_csum(pp, rx_status, skb);
2203 
2204 		napi_gro_receive(napi, skb);
2205 	}
2206 
2207 	if (rcvd_pkts) {
2208 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2209 
2210 		u64_stats_update_begin(&stats->syncp);
2211 		stats->rx_packets += rcvd_pkts;
2212 		stats->rx_bytes   += rcvd_bytes;
2213 		u64_stats_update_end(&stats->syncp);
2214 	}
2215 
2216 	/* Update rxq management counters */
2217 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2218 
2219 	return rx_done;
2220 }
2221 
2222 static inline void
2223 mvneta_tso_put_hdr(struct sk_buff *skb,
2224 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2225 {
2226 	struct mvneta_tx_desc *tx_desc;
2227 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2228 
2229 	txq->tx_skb[txq->txq_put_index] = NULL;
2230 	tx_desc = mvneta_txq_next_desc_get(txq);
2231 	tx_desc->data_size = hdr_len;
2232 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2233 	tx_desc->command |= MVNETA_TXD_F_DESC;
2234 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2235 				 txq->txq_put_index * TSO_HEADER_SIZE;
2236 	mvneta_txq_inc_put(txq);
2237 }
2238 
2239 static inline int
2240 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2241 		    struct sk_buff *skb, char *data, int size,
2242 		    bool last_tcp, bool is_last)
2243 {
2244 	struct mvneta_tx_desc *tx_desc;
2245 
2246 	tx_desc = mvneta_txq_next_desc_get(txq);
2247 	tx_desc->data_size = size;
2248 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2249 						size, DMA_TO_DEVICE);
2250 	if (unlikely(dma_mapping_error(dev->dev.parent,
2251 		     tx_desc->buf_phys_addr))) {
2252 		mvneta_txq_desc_put(txq);
2253 		return -ENOMEM;
2254 	}
2255 
2256 	tx_desc->command = 0;
2257 	txq->tx_skb[txq->txq_put_index] = NULL;
2258 
2259 	if (last_tcp) {
2260 		/* last descriptor in the TCP packet */
2261 		tx_desc->command = MVNETA_TXD_L_DESC;
2262 
2263 		/* last descriptor in SKB */
2264 		if (is_last)
2265 			txq->tx_skb[txq->txq_put_index] = skb;
2266 	}
2267 	mvneta_txq_inc_put(txq);
2268 	return 0;
2269 }
2270 
2271 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2272 			 struct mvneta_tx_queue *txq)
2273 {
2274 	int total_len, data_left;
2275 	int desc_count = 0;
2276 	struct mvneta_port *pp = netdev_priv(dev);
2277 	struct tso_t tso;
2278 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2279 	int i;
2280 
2281 	/* Count needed descriptors */
2282 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2283 		return 0;
2284 
2285 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2286 		pr_info("*** Is this even  possible???!?!?\n");
2287 		return 0;
2288 	}
2289 
2290 	/* Initialize the TSO handler, and prepare the first payload */
2291 	tso_start(skb, &tso);
2292 
2293 	total_len = skb->len - hdr_len;
2294 	while (total_len > 0) {
2295 		char *hdr;
2296 
2297 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2298 		total_len -= data_left;
2299 		desc_count++;
2300 
2301 		/* prepare packet headers: MAC + IP + TCP */
2302 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2303 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2304 
2305 		mvneta_tso_put_hdr(skb, pp, txq);
2306 
2307 		while (data_left > 0) {
2308 			int size;
2309 			desc_count++;
2310 
2311 			size = min_t(int, tso.size, data_left);
2312 
2313 			if (mvneta_tso_put_data(dev, txq, skb,
2314 						 tso.data, size,
2315 						 size == data_left,
2316 						 total_len == 0))
2317 				goto err_release;
2318 			data_left -= size;
2319 
2320 			tso_build_data(skb, &tso, size);
2321 		}
2322 	}
2323 
2324 	return desc_count;
2325 
2326 err_release:
2327 	/* Release all used data descriptors; header descriptors must not
2328 	 * be DMA-unmapped.
2329 	 */
2330 	for (i = desc_count - 1; i >= 0; i--) {
2331 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2332 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2333 			dma_unmap_single(pp->dev->dev.parent,
2334 					 tx_desc->buf_phys_addr,
2335 					 tx_desc->data_size,
2336 					 DMA_TO_DEVICE);
2337 		mvneta_txq_desc_put(txq);
2338 	}
2339 	return 0;
2340 }
2341 
2342 /* Handle tx fragmentation processing */
2343 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2344 				  struct mvneta_tx_queue *txq)
2345 {
2346 	struct mvneta_tx_desc *tx_desc;
2347 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2348 
2349 	for (i = 0; i < nr_frags; i++) {
2350 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2351 		void *addr = page_address(frag->page.p) + frag->page_offset;
2352 
2353 		tx_desc = mvneta_txq_next_desc_get(txq);
2354 		tx_desc->data_size = frag->size;
2355 
2356 		tx_desc->buf_phys_addr =
2357 			dma_map_single(pp->dev->dev.parent, addr,
2358 				       tx_desc->data_size, DMA_TO_DEVICE);
2359 
2360 		if (dma_mapping_error(pp->dev->dev.parent,
2361 				      tx_desc->buf_phys_addr)) {
2362 			mvneta_txq_desc_put(txq);
2363 			goto error;
2364 		}
2365 
2366 		if (i == nr_frags - 1) {
2367 			/* Last descriptor */
2368 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2369 			txq->tx_skb[txq->txq_put_index] = skb;
2370 		} else {
2371 			/* Descriptor in the middle: Not First, Not Last */
2372 			tx_desc->command = 0;
2373 			txq->tx_skb[txq->txq_put_index] = NULL;
2374 		}
2375 		mvneta_txq_inc_put(txq);
2376 	}
2377 
2378 	return 0;
2379 
2380 error:
2381 	/* Release all descriptors that were used to map fragments of
2382 	 * this packet, as well as the corresponding DMA mappings
2383 	 */
2384 	for (i = i - 1; i >= 0; i--) {
2385 		tx_desc = txq->descs + i;
2386 		dma_unmap_single(pp->dev->dev.parent,
2387 				 tx_desc->buf_phys_addr,
2388 				 tx_desc->data_size,
2389 				 DMA_TO_DEVICE);
2390 		mvneta_txq_desc_put(txq);
2391 	}
2392 
2393 	return -ENOMEM;
2394 }
2395 
2396 /* Main tx processing */
2397 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2398 {
2399 	struct mvneta_port *pp = netdev_priv(dev);
2400 	u16 txq_id = skb_get_queue_mapping(skb);
2401 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2402 	struct mvneta_tx_desc *tx_desc;
2403 	int len = skb->len;
2404 	int frags = 0;
2405 	u32 tx_cmd;
2406 
2407 	if (!netif_running(dev))
2408 		goto out;
2409 
2410 	if (skb_is_gso(skb)) {
2411 		frags = mvneta_tx_tso(skb, dev, txq);
2412 		goto out;
2413 	}
2414 
2415 	frags = skb_shinfo(skb)->nr_frags + 1;
2416 
2417 	/* Get a descriptor for the first part of the packet */
2418 	tx_desc = mvneta_txq_next_desc_get(txq);
2419 
2420 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2421 
2422 	tx_desc->data_size = skb_headlen(skb);
2423 
2424 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2425 						tx_desc->data_size,
2426 						DMA_TO_DEVICE);
2427 	if (unlikely(dma_mapping_error(dev->dev.parent,
2428 				       tx_desc->buf_phys_addr))) {
2429 		mvneta_txq_desc_put(txq);
2430 		frags = 0;
2431 		goto out;
2432 	}
2433 
2434 	if (frags == 1) {
2435 		/* First and Last descriptor */
2436 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2437 		tx_desc->command = tx_cmd;
2438 		txq->tx_skb[txq->txq_put_index] = skb;
2439 		mvneta_txq_inc_put(txq);
2440 	} else {
2441 		/* First but not Last */
2442 		tx_cmd |= MVNETA_TXD_F_DESC;
2443 		txq->tx_skb[txq->txq_put_index] = NULL;
2444 		mvneta_txq_inc_put(txq);
2445 		tx_desc->command = tx_cmd;
2446 		/* Continue with other skb fragments */
2447 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2448 			dma_unmap_single(dev->dev.parent,
2449 					 tx_desc->buf_phys_addr,
2450 					 tx_desc->data_size,
2451 					 DMA_TO_DEVICE);
2452 			mvneta_txq_desc_put(txq);
2453 			frags = 0;
2454 			goto out;
2455 		}
2456 	}
2457 
2458 out:
2459 	if (frags > 0) {
2460 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2461 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2462 
2463 		netdev_tx_sent_queue(nq, len);
2464 
2465 		txq->count += frags;
2466 		if (txq->count >= txq->tx_stop_threshold)
2467 			netif_tx_stop_queue(nq);
2468 
2469 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2470 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2471 			mvneta_txq_pend_desc_add(pp, txq, frags);
2472 		else
2473 			txq->pending += frags;
2474 
2475 		u64_stats_update_begin(&stats->syncp);
2476 		stats->tx_packets++;
2477 		stats->tx_bytes  += len;
2478 		u64_stats_update_end(&stats->syncp);
2479 	} else {
2480 		dev->stats.tx_dropped++;
2481 		dev_kfree_skb_any(skb);
2482 	}
2483 
2484 	return NETDEV_TX_OK;
2485 }
2486 
2487 
2488 /* Free tx resources, when resetting a port */
2489 static void mvneta_txq_done_force(struct mvneta_port *pp,
2490 				  struct mvneta_tx_queue *txq)
2491 
2492 {
2493 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2494 	int tx_done = txq->count;
2495 
2496 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2497 
2498 	/* reset txq */
2499 	txq->count = 0;
2500 	txq->txq_put_index = 0;
2501 	txq->txq_get_index = 0;
2502 }
2503 
2504 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2505  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2506  */
2507 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2508 {
2509 	struct mvneta_tx_queue *txq;
2510 	struct netdev_queue *nq;
2511 	int cpu = smp_processor_id();
2512 
2513 	while (cause_tx_done) {
2514 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2515 
2516 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2517 		__netif_tx_lock(nq, cpu);
2518 
2519 		if (txq->count)
2520 			mvneta_txq_done(pp, txq);
2521 
2522 		__netif_tx_unlock(nq);
2523 		cause_tx_done &= ~((1 << txq->id));
2524 	}
2525 }
2526 
2527 /* Compute crc8 of the specified address, using a unique algorithm ,
2528  * according to hw spec, different than generic crc8 algorithm
2529  */
2530 static int mvneta_addr_crc(unsigned char *addr)
2531 {
2532 	int crc = 0;
2533 	int i;
2534 
2535 	for (i = 0; i < ETH_ALEN; i++) {
2536 		int j;
2537 
2538 		crc = (crc ^ addr[i]) << 8;
2539 		for (j = 7; j >= 0; j--) {
2540 			if (crc & (0x100 << j))
2541 				crc ^= 0x107 << j;
2542 		}
2543 	}
2544 
2545 	return crc;
2546 }
2547 
2548 /* This method controls the net device special MAC multicast support.
2549  * The Special Multicast Table for MAC addresses supports MAC of the form
2550  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2551  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2552  * Table entries in the DA-Filter table. This method set the Special
2553  * Multicast Table appropriate entry.
2554  */
2555 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2556 					  unsigned char last_byte,
2557 					  int queue)
2558 {
2559 	unsigned int smc_table_reg;
2560 	unsigned int tbl_offset;
2561 	unsigned int reg_offset;
2562 
2563 	/* Register offset from SMC table base    */
2564 	tbl_offset = (last_byte / 4);
2565 	/* Entry offset within the above reg */
2566 	reg_offset = last_byte % 4;
2567 
2568 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2569 					+ tbl_offset * 4));
2570 
2571 	if (queue == -1)
2572 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2573 	else {
2574 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2575 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2576 	}
2577 
2578 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2579 		    smc_table_reg);
2580 }
2581 
2582 /* This method controls the network device Other MAC multicast support.
2583  * The Other Multicast Table is used for multicast of another type.
2584  * A CRC-8 is used as an index to the Other Multicast Table entries
2585  * in the DA-Filter table.
2586  * The method gets the CRC-8 value from the calling routine and
2587  * sets the Other Multicast Table appropriate entry according to the
2588  * specified CRC-8 .
2589  */
2590 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2591 					unsigned char crc8,
2592 					int queue)
2593 {
2594 	unsigned int omc_table_reg;
2595 	unsigned int tbl_offset;
2596 	unsigned int reg_offset;
2597 
2598 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2599 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2600 
2601 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2602 
2603 	if (queue == -1) {
2604 		/* Clear accepts frame bit at specified Other DA table entry */
2605 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2606 	} else {
2607 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2608 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2609 	}
2610 
2611 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2612 }
2613 
2614 /* The network device supports multicast using two tables:
2615  *    1) Special Multicast Table for MAC addresses of the form
2616  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2617  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2618  *       Table entries in the DA-Filter table.
2619  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2620  *       is used as an index to the Other Multicast Table entries in the
2621  *       DA-Filter table.
2622  */
2623 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2624 				 int queue)
2625 {
2626 	unsigned char crc_result = 0;
2627 
2628 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2629 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2630 		return 0;
2631 	}
2632 
2633 	crc_result = mvneta_addr_crc(p_addr);
2634 	if (queue == -1) {
2635 		if (pp->mcast_count[crc_result] == 0) {
2636 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2637 				    crc_result);
2638 			return -EINVAL;
2639 		}
2640 
2641 		pp->mcast_count[crc_result]--;
2642 		if (pp->mcast_count[crc_result] != 0) {
2643 			netdev_info(pp->dev,
2644 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2645 				    pp->mcast_count[crc_result], crc_result);
2646 			return -EINVAL;
2647 		}
2648 	} else
2649 		pp->mcast_count[crc_result]++;
2650 
2651 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2652 
2653 	return 0;
2654 }
2655 
2656 /* Configure Fitering mode of Ethernet port */
2657 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2658 					  int is_promisc)
2659 {
2660 	u32 port_cfg_reg, val;
2661 
2662 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2663 
2664 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2665 
2666 	/* Set / Clear UPM bit in port configuration register */
2667 	if (is_promisc) {
2668 		/* Accept all Unicast addresses */
2669 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2670 		val |= MVNETA_FORCE_UNI;
2671 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2672 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2673 	} else {
2674 		/* Reject all Unicast addresses */
2675 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2676 		val &= ~MVNETA_FORCE_UNI;
2677 	}
2678 
2679 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2680 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2681 }
2682 
2683 /* register unicast and multicast addresses */
2684 static void mvneta_set_rx_mode(struct net_device *dev)
2685 {
2686 	struct mvneta_port *pp = netdev_priv(dev);
2687 	struct netdev_hw_addr *ha;
2688 
2689 	if (dev->flags & IFF_PROMISC) {
2690 		/* Accept all: Multicast + Unicast */
2691 		mvneta_rx_unicast_promisc_set(pp, 1);
2692 		mvneta_set_ucast_table(pp, pp->rxq_def);
2693 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2694 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2695 	} else {
2696 		/* Accept single Unicast */
2697 		mvneta_rx_unicast_promisc_set(pp, 0);
2698 		mvneta_set_ucast_table(pp, -1);
2699 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2700 
2701 		if (dev->flags & IFF_ALLMULTI) {
2702 			/* Accept all multicast */
2703 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2704 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2705 		} else {
2706 			/* Accept only initialized multicast */
2707 			mvneta_set_special_mcast_table(pp, -1);
2708 			mvneta_set_other_mcast_table(pp, -1);
2709 
2710 			if (!netdev_mc_empty(dev)) {
2711 				netdev_for_each_mc_addr(ha, dev) {
2712 					mvneta_mcast_addr_set(pp, ha->addr,
2713 							      pp->rxq_def);
2714 				}
2715 			}
2716 		}
2717 	}
2718 }
2719 
2720 /* Interrupt handling - the callback for request_irq() */
2721 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2722 {
2723 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2724 
2725 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2726 	napi_schedule(&pp->napi);
2727 
2728 	return IRQ_HANDLED;
2729 }
2730 
2731 /* Interrupt handling - the callback for request_percpu_irq() */
2732 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2733 {
2734 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2735 
2736 	disable_percpu_irq(port->pp->dev->irq);
2737 	napi_schedule(&port->napi);
2738 
2739 	return IRQ_HANDLED;
2740 }
2741 
2742 static void mvneta_link_change(struct mvneta_port *pp)
2743 {
2744 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2745 
2746 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2747 }
2748 
2749 /* NAPI handler
2750  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2751  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2752  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2753  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2754  * Each CPU has its own causeRxTx register
2755  */
2756 static int mvneta_poll(struct napi_struct *napi, int budget)
2757 {
2758 	int rx_done = 0;
2759 	u32 cause_rx_tx;
2760 	int rx_queue;
2761 	struct mvneta_port *pp = netdev_priv(napi->dev);
2762 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2763 
2764 	if (!netif_running(pp->dev)) {
2765 		napi_complete(napi);
2766 		return rx_done;
2767 	}
2768 
2769 	/* Read cause register */
2770 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2771 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2772 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2773 
2774 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2775 
2776 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2777 				  MVNETA_CAUSE_LINK_CHANGE))
2778 			mvneta_link_change(pp);
2779 	}
2780 
2781 	/* Release Tx descriptors */
2782 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2783 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2784 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2785 	}
2786 
2787 	/* For the case where the last mvneta_poll did not process all
2788 	 * RX packets
2789 	 */
2790 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2791 
2792 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2793 		port->cause_rx_tx;
2794 
2795 	if (rx_queue) {
2796 		rx_queue = rx_queue - 1;
2797 		if (pp->bm_priv)
2798 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
2799 						 &pp->rxqs[rx_queue]);
2800 		else
2801 			rx_done = mvneta_rx_swbm(napi, pp, budget,
2802 						 &pp->rxqs[rx_queue]);
2803 	}
2804 
2805 	if (rx_done < budget) {
2806 		cause_rx_tx = 0;
2807 		napi_complete_done(napi, rx_done);
2808 
2809 		if (pp->neta_armada3700) {
2810 			unsigned long flags;
2811 
2812 			local_irq_save(flags);
2813 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2814 				    MVNETA_RX_INTR_MASK(rxq_number) |
2815 				    MVNETA_TX_INTR_MASK(txq_number) |
2816 				    MVNETA_MISCINTR_INTR_MASK);
2817 			local_irq_restore(flags);
2818 		} else {
2819 			enable_percpu_irq(pp->dev->irq, 0);
2820 		}
2821 	}
2822 
2823 	if (pp->neta_armada3700)
2824 		pp->cause_rx_tx = cause_rx_tx;
2825 	else
2826 		port->cause_rx_tx = cause_rx_tx;
2827 
2828 	return rx_done;
2829 }
2830 
2831 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2832 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2833 			   int num)
2834 {
2835 	int i;
2836 
2837 	for (i = 0; i < num; i++) {
2838 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2839 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2840 				     GFP_KERNEL) != 0) {
2841 			netdev_err(pp->dev,
2842 				   "%s:rxq %d, %d of %d buffs  filled\n",
2843 				   __func__, rxq->id, i, num);
2844 			break;
2845 		}
2846 	}
2847 
2848 	/* Add this number of RX descriptors as non occupied (ready to
2849 	 * get packets)
2850 	 */
2851 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2852 
2853 	return i;
2854 }
2855 
2856 /* Free all packets pending transmit from all TXQs and reset TX port */
2857 static void mvneta_tx_reset(struct mvneta_port *pp)
2858 {
2859 	int queue;
2860 
2861 	/* free the skb's in the tx ring */
2862 	for (queue = 0; queue < txq_number; queue++)
2863 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2864 
2865 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2866 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2867 }
2868 
2869 static void mvneta_rx_reset(struct mvneta_port *pp)
2870 {
2871 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2872 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2873 }
2874 
2875 /* Rx/Tx queue initialization/cleanup methods */
2876 
2877 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2878 			      struct mvneta_rx_queue *rxq)
2879 {
2880 	rxq->size = pp->rx_ring_size;
2881 
2882 	/* Allocate memory for RX descriptors */
2883 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2884 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2885 					&rxq->descs_phys, GFP_KERNEL);
2886 	if (!rxq->descs)
2887 		return -ENOMEM;
2888 
2889 	rxq->last_desc = rxq->size - 1;
2890 
2891 	return 0;
2892 }
2893 
2894 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2895 			       struct mvneta_rx_queue *rxq)
2896 {
2897 	/* Set Rx descriptors queue starting address */
2898 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2899 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2900 
2901 	/* Set coalescing pkts and time */
2902 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2903 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2904 
2905 	if (!pp->bm_priv) {
2906 		/* Set Offset */
2907 		mvneta_rxq_offset_set(pp, rxq, 0);
2908 		mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size);
2909 		mvneta_rxq_bm_disable(pp, rxq);
2910 		mvneta_rxq_fill(pp, rxq, rxq->size);
2911 	} else {
2912 		/* Set Offset */
2913 		mvneta_rxq_offset_set(pp, rxq,
2914 				      NET_SKB_PAD - pp->rx_offset_correction);
2915 
2916 		mvneta_rxq_bm_enable(pp, rxq);
2917 		/* Fill RXQ with buffers from RX pool */
2918 		mvneta_rxq_long_pool_set(pp, rxq);
2919 		mvneta_rxq_short_pool_set(pp, rxq);
2920 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2921 	}
2922 }
2923 
2924 /* Create a specified RX queue */
2925 static int mvneta_rxq_init(struct mvneta_port *pp,
2926 			   struct mvneta_rx_queue *rxq)
2927 
2928 {
2929 	int ret;
2930 
2931 	ret = mvneta_rxq_sw_init(pp, rxq);
2932 	if (ret < 0)
2933 		return ret;
2934 
2935 	mvneta_rxq_hw_init(pp, rxq);
2936 
2937 	return 0;
2938 }
2939 
2940 /* Cleanup Rx queue */
2941 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2942 			      struct mvneta_rx_queue *rxq)
2943 {
2944 	mvneta_rxq_drop_pkts(pp, rxq);
2945 
2946 	if (rxq->skb)
2947 		dev_kfree_skb_any(rxq->skb);
2948 
2949 	if (rxq->descs)
2950 		dma_free_coherent(pp->dev->dev.parent,
2951 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2952 				  rxq->descs,
2953 				  rxq->descs_phys);
2954 
2955 	rxq->descs             = NULL;
2956 	rxq->last_desc         = 0;
2957 	rxq->next_desc_to_proc = 0;
2958 	rxq->descs_phys        = 0;
2959 	rxq->first_to_refill   = 0;
2960 	rxq->refill_num        = 0;
2961 	rxq->skb               = NULL;
2962 	rxq->left_size         = 0;
2963 }
2964 
2965 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2966 			      struct mvneta_tx_queue *txq)
2967 {
2968 	int cpu;
2969 
2970 	txq->size = pp->tx_ring_size;
2971 
2972 	/* A queue must always have room for at least one skb.
2973 	 * Therefore, stop the queue when the free entries reaches
2974 	 * the maximum number of descriptors per skb.
2975 	 */
2976 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2977 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2978 
2979 	/* Allocate memory for TX descriptors */
2980 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2981 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2982 					&txq->descs_phys, GFP_KERNEL);
2983 	if (!txq->descs)
2984 		return -ENOMEM;
2985 
2986 	txq->last_desc = txq->size - 1;
2987 
2988 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2989 				    GFP_KERNEL);
2990 	if (!txq->tx_skb) {
2991 		dma_free_coherent(pp->dev->dev.parent,
2992 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2993 				  txq->descs, txq->descs_phys);
2994 		return -ENOMEM;
2995 	}
2996 
2997 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2998 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2999 					   txq->size * TSO_HEADER_SIZE,
3000 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3001 	if (!txq->tso_hdrs) {
3002 		kfree(txq->tx_skb);
3003 		dma_free_coherent(pp->dev->dev.parent,
3004 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3005 				  txq->descs, txq->descs_phys);
3006 		return -ENOMEM;
3007 	}
3008 
3009 	/* Setup XPS mapping */
3010 	if (txq_number > 1)
3011 		cpu = txq->id % num_present_cpus();
3012 	else
3013 		cpu = pp->rxq_def % num_present_cpus();
3014 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3015 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3016 
3017 	return 0;
3018 }
3019 
3020 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3021 			       struct mvneta_tx_queue *txq)
3022 {
3023 	/* Set maximum bandwidth for enabled TXQs */
3024 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3025 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3026 
3027 	/* Set Tx descriptors queue starting address */
3028 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3029 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3030 
3031 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3032 }
3033 
3034 /* Create and initialize a tx queue */
3035 static int mvneta_txq_init(struct mvneta_port *pp,
3036 			   struct mvneta_tx_queue *txq)
3037 {
3038 	int ret;
3039 
3040 	ret = mvneta_txq_sw_init(pp, txq);
3041 	if (ret < 0)
3042 		return ret;
3043 
3044 	mvneta_txq_hw_init(pp, txq);
3045 
3046 	return 0;
3047 }
3048 
3049 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3050 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3051 				 struct mvneta_tx_queue *txq)
3052 {
3053 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3054 
3055 	kfree(txq->tx_skb);
3056 
3057 	if (txq->tso_hdrs)
3058 		dma_free_coherent(pp->dev->dev.parent,
3059 				  txq->size * TSO_HEADER_SIZE,
3060 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3061 	if (txq->descs)
3062 		dma_free_coherent(pp->dev->dev.parent,
3063 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3064 				  txq->descs, txq->descs_phys);
3065 
3066 	netdev_tx_reset_queue(nq);
3067 
3068 	txq->descs             = NULL;
3069 	txq->last_desc         = 0;
3070 	txq->next_desc_to_proc = 0;
3071 	txq->descs_phys        = 0;
3072 }
3073 
3074 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3075 				 struct mvneta_tx_queue *txq)
3076 {
3077 	/* Set minimum bandwidth for disabled TXQs */
3078 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3079 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3080 
3081 	/* Set Tx descriptors queue starting address and size */
3082 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3083 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3084 }
3085 
3086 static void mvneta_txq_deinit(struct mvneta_port *pp,
3087 			      struct mvneta_tx_queue *txq)
3088 {
3089 	mvneta_txq_sw_deinit(pp, txq);
3090 	mvneta_txq_hw_deinit(pp, txq);
3091 }
3092 
3093 /* Cleanup all Tx queues */
3094 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3095 {
3096 	int queue;
3097 
3098 	for (queue = 0; queue < txq_number; queue++)
3099 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3100 }
3101 
3102 /* Cleanup all Rx queues */
3103 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3104 {
3105 	int queue;
3106 
3107 	for (queue = 0; queue < rxq_number; queue++)
3108 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3109 }
3110 
3111 
3112 /* Init all Rx queues */
3113 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3114 {
3115 	int queue;
3116 
3117 	for (queue = 0; queue < rxq_number; queue++) {
3118 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3119 
3120 		if (err) {
3121 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3122 				   __func__, queue);
3123 			mvneta_cleanup_rxqs(pp);
3124 			return err;
3125 		}
3126 	}
3127 
3128 	return 0;
3129 }
3130 
3131 /* Init all tx queues */
3132 static int mvneta_setup_txqs(struct mvneta_port *pp)
3133 {
3134 	int queue;
3135 
3136 	for (queue = 0; queue < txq_number; queue++) {
3137 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3138 		if (err) {
3139 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3140 				   __func__, queue);
3141 			mvneta_cleanup_txqs(pp);
3142 			return err;
3143 		}
3144 	}
3145 
3146 	return 0;
3147 }
3148 
3149 static void mvneta_start_dev(struct mvneta_port *pp)
3150 {
3151 	int cpu;
3152 
3153 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3154 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3155 
3156 	/* start the Rx/Tx activity */
3157 	mvneta_port_enable(pp);
3158 
3159 	if (!pp->neta_armada3700) {
3160 		/* Enable polling on the port */
3161 		for_each_online_cpu(cpu) {
3162 			struct mvneta_pcpu_port *port =
3163 				per_cpu_ptr(pp->ports, cpu);
3164 
3165 			napi_enable(&port->napi);
3166 		}
3167 	} else {
3168 		napi_enable(&pp->napi);
3169 	}
3170 
3171 	/* Unmask interrupts. It has to be done from each CPU */
3172 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3173 
3174 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3175 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3176 		    MVNETA_CAUSE_LINK_CHANGE);
3177 
3178 	phylink_start(pp->phylink);
3179 	netif_tx_start_all_queues(pp->dev);
3180 }
3181 
3182 static void mvneta_stop_dev(struct mvneta_port *pp)
3183 {
3184 	unsigned int cpu;
3185 
3186 	phylink_stop(pp->phylink);
3187 
3188 	if (!pp->neta_armada3700) {
3189 		for_each_online_cpu(cpu) {
3190 			struct mvneta_pcpu_port *port =
3191 				per_cpu_ptr(pp->ports, cpu);
3192 
3193 			napi_disable(&port->napi);
3194 		}
3195 	} else {
3196 		napi_disable(&pp->napi);
3197 	}
3198 
3199 	netif_carrier_off(pp->dev);
3200 
3201 	mvneta_port_down(pp);
3202 	netif_tx_stop_all_queues(pp->dev);
3203 
3204 	/* Stop the port activity */
3205 	mvneta_port_disable(pp);
3206 
3207 	/* Clear all ethernet port interrupts */
3208 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3209 
3210 	/* Mask all ethernet port interrupts */
3211 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3212 
3213 	mvneta_tx_reset(pp);
3214 	mvneta_rx_reset(pp);
3215 }
3216 
3217 static void mvneta_percpu_enable(void *arg)
3218 {
3219 	struct mvneta_port *pp = arg;
3220 
3221 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3222 }
3223 
3224 static void mvneta_percpu_disable(void *arg)
3225 {
3226 	struct mvneta_port *pp = arg;
3227 
3228 	disable_percpu_irq(pp->dev->irq);
3229 }
3230 
3231 /* Change the device mtu */
3232 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3233 {
3234 	struct mvneta_port *pp = netdev_priv(dev);
3235 	int ret;
3236 
3237 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3238 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3239 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3240 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3241 	}
3242 
3243 	dev->mtu = mtu;
3244 
3245 	if (!netif_running(dev)) {
3246 		if (pp->bm_priv)
3247 			mvneta_bm_update_mtu(pp, mtu);
3248 
3249 		netdev_update_features(dev);
3250 		return 0;
3251 	}
3252 
3253 	/* The interface is running, so we have to force a
3254 	 * reallocation of the queues
3255 	 */
3256 	mvneta_stop_dev(pp);
3257 	on_each_cpu(mvneta_percpu_disable, pp, true);
3258 
3259 	mvneta_cleanup_txqs(pp);
3260 	mvneta_cleanup_rxqs(pp);
3261 
3262 	if (pp->bm_priv)
3263 		mvneta_bm_update_mtu(pp, mtu);
3264 
3265 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3266 
3267 	ret = mvneta_setup_rxqs(pp);
3268 	if (ret) {
3269 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3270 		return ret;
3271 	}
3272 
3273 	ret = mvneta_setup_txqs(pp);
3274 	if (ret) {
3275 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3276 		return ret;
3277 	}
3278 
3279 	on_each_cpu(mvneta_percpu_enable, pp, true);
3280 	mvneta_start_dev(pp);
3281 
3282 	netdev_update_features(dev);
3283 
3284 	return 0;
3285 }
3286 
3287 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3288 					     netdev_features_t features)
3289 {
3290 	struct mvneta_port *pp = netdev_priv(dev);
3291 
3292 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3293 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3294 		netdev_info(dev,
3295 			    "Disable IP checksum for MTU greater than %dB\n",
3296 			    pp->tx_csum_limit);
3297 	}
3298 
3299 	return features;
3300 }
3301 
3302 /* Get mac address */
3303 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3304 {
3305 	u32 mac_addr_l, mac_addr_h;
3306 
3307 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3308 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3309 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3310 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3311 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3312 	addr[3] = mac_addr_h & 0xFF;
3313 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3314 	addr[5] = mac_addr_l & 0xFF;
3315 }
3316 
3317 /* Handle setting mac address */
3318 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3319 {
3320 	struct mvneta_port *pp = netdev_priv(dev);
3321 	struct sockaddr *sockaddr = addr;
3322 	int ret;
3323 
3324 	ret = eth_prepare_mac_addr_change(dev, addr);
3325 	if (ret < 0)
3326 		return ret;
3327 	/* Remove previous address table entry */
3328 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3329 
3330 	/* Set new addr in hw */
3331 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3332 
3333 	eth_commit_mac_addr_change(dev, addr);
3334 	return 0;
3335 }
3336 
3337 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3338 			    struct phylink_link_state *state)
3339 {
3340 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3341 
3342 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3343 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3344 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3345 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3346 	    state->interface != PHY_INTERFACE_MODE_2500BASEX &&
3347 	    !phy_interface_mode_is_8023z(state->interface) &&
3348 	    !phy_interface_mode_is_rgmii(state->interface)) {
3349 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3350 		return;
3351 	}
3352 
3353 	/* Allow all the expected bits */
3354 	phylink_set(mask, Autoneg);
3355 	phylink_set_port_modes(mask);
3356 
3357 	/* Asymmetric pause is unsupported */
3358 	phylink_set(mask, Pause);
3359 
3360 	/* We cannot use 1Gbps when using the 2.5G interface. */
3361 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3362 		phylink_set(mask, 2500baseT_Full);
3363 		phylink_set(mask, 2500baseX_Full);
3364 	} else {
3365 		phylink_set(mask, 1000baseT_Full);
3366 		phylink_set(mask, 1000baseX_Full);
3367 	}
3368 
3369 	if (!phy_interface_mode_is_8023z(state->interface)) {
3370 		/* 10M and 100M are only supported in non-802.3z mode */
3371 		phylink_set(mask, 10baseT_Half);
3372 		phylink_set(mask, 10baseT_Full);
3373 		phylink_set(mask, 100baseT_Half);
3374 		phylink_set(mask, 100baseT_Full);
3375 	}
3376 
3377 	bitmap_and(supported, supported, mask,
3378 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3379 	bitmap_and(state->advertising, state->advertising, mask,
3380 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3381 }
3382 
3383 static int mvneta_mac_link_state(struct net_device *ndev,
3384 				 struct phylink_link_state *state)
3385 {
3386 	struct mvneta_port *pp = netdev_priv(ndev);
3387 	u32 gmac_stat;
3388 
3389 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3390 
3391 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3392 		state->speed = SPEED_1000;
3393 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3394 		state->speed = SPEED_100;
3395 	else
3396 		state->speed = SPEED_10;
3397 
3398 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3399 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3400 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3401 
3402 	state->pause = 0;
3403 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3404 		state->pause |= MLO_PAUSE_RX;
3405 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3406 		state->pause |= MLO_PAUSE_TX;
3407 
3408 	return 1;
3409 }
3410 
3411 static void mvneta_mac_an_restart(struct net_device *ndev)
3412 {
3413 	struct mvneta_port *pp = netdev_priv(ndev);
3414 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3415 
3416 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3417 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3418 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3419 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3420 }
3421 
3422 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3423 	const struct phylink_link_state *state)
3424 {
3425 	struct mvneta_port *pp = netdev_priv(ndev);
3426 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3427 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3428 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3429 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3430 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3431 
3432 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3433 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3434 				   MVNETA_GMAC2_PORT_RESET);
3435 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3436 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3437 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3438 			     MVNETA_GMAC_INBAND_RESTART_AN |
3439 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3440 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3441 			     MVNETA_GMAC_AN_SPEED_EN |
3442 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3443 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3444 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3445 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3446 			     MVNETA_GMAC_AN_DUPLEX_EN);
3447 
3448 	/* Even though it might look weird, when we're configured in
3449 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3450 	 */
3451 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3452 
3453 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3454 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3455 	    phy_interface_mode_is_8023z(state->interface))
3456 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3457 
3458 	if (phylink_test(state->advertising, Pause))
3459 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3460 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3461 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3462 
3463 	if (!phylink_autoneg_inband(mode)) {
3464 		/* Phy or fixed speed */
3465 		if (state->duplex)
3466 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3467 
3468 		if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3469 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3470 		else if (state->speed == SPEED_100)
3471 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3472 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3473 		/* SGMII mode receives the state from the PHY */
3474 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3475 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3476 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3477 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3478 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3479 			 MVNETA_GMAC_AN_SPEED_EN |
3480 			 MVNETA_GMAC_AN_DUPLEX_EN;
3481 	} else {
3482 		/* 802.3z negotiation - only 1000base-X */
3483 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3484 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3485 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3486 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3487 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3488 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3489 			 /* The MAC only supports FD mode */
3490 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3491 
3492 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3493 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3494 	}
3495 
3496 	/* Armada 370 documentation says we can only change the port mode
3497 	 * and in-band enable when the link is down, so force it down
3498 	 * while making these changes. We also do this for GMAC_CTRL2 */
3499 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3500 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3501 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3502 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3503 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3504 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3505 	}
3506 
3507 	/* When at 2.5G, the link partner can send frames with shortened
3508 	 * preambles.
3509 	 */
3510 	if (state->speed == SPEED_2500)
3511 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3512 
3513 	if (new_ctrl0 != gmac_ctrl0)
3514 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3515 	if (new_ctrl2 != gmac_ctrl2)
3516 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3517 	if (new_ctrl4 != gmac_ctrl4)
3518 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3519 	if (new_clk != gmac_clk)
3520 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3521 	if (new_an != gmac_an)
3522 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3523 
3524 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3525 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3526 			MVNETA_GMAC2_PORT_RESET) != 0)
3527 			continue;
3528 	}
3529 }
3530 
3531 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3532 {
3533 	u32 lpi_ctl1;
3534 
3535 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3536 	if (enable)
3537 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3538 	else
3539 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3540 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3541 }
3542 
3543 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3544 				 phy_interface_t interface)
3545 {
3546 	struct mvneta_port *pp = netdev_priv(ndev);
3547 	u32 val;
3548 
3549 	mvneta_port_down(pp);
3550 
3551 	if (!phylink_autoneg_inband(mode)) {
3552 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3553 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3554 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3555 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3556 	}
3557 
3558 	pp->eee_active = false;
3559 	mvneta_set_eee(pp, false);
3560 }
3561 
3562 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3563 			       phy_interface_t interface,
3564 			       struct phy_device *phy)
3565 {
3566 	struct mvneta_port *pp = netdev_priv(ndev);
3567 	u32 val;
3568 
3569 	if (!phylink_autoneg_inband(mode)) {
3570 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3571 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3572 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3573 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3574 	}
3575 
3576 	mvneta_port_up(pp);
3577 
3578 	if (phy && pp->eee_enabled) {
3579 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3580 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3581 	}
3582 }
3583 
3584 static const struct phylink_mac_ops mvneta_phylink_ops = {
3585 	.validate = mvneta_validate,
3586 	.mac_link_state = mvneta_mac_link_state,
3587 	.mac_an_restart = mvneta_mac_an_restart,
3588 	.mac_config = mvneta_mac_config,
3589 	.mac_link_down = mvneta_mac_link_down,
3590 	.mac_link_up = mvneta_mac_link_up,
3591 };
3592 
3593 static int mvneta_mdio_probe(struct mvneta_port *pp)
3594 {
3595 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3596 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3597 
3598 	if (err)
3599 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3600 
3601 	phylink_ethtool_get_wol(pp->phylink, &wol);
3602 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3603 
3604 	return err;
3605 }
3606 
3607 static void mvneta_mdio_remove(struct mvneta_port *pp)
3608 {
3609 	phylink_disconnect_phy(pp->phylink);
3610 }
3611 
3612 /* Electing a CPU must be done in an atomic way: it should be done
3613  * after or before the removal/insertion of a CPU and this function is
3614  * not reentrant.
3615  */
3616 static void mvneta_percpu_elect(struct mvneta_port *pp)
3617 {
3618 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3619 
3620 	/* Use the cpu associated to the rxq when it is online, in all
3621 	 * the other cases, use the cpu 0 which can't be offline.
3622 	 */
3623 	if (cpu_online(pp->rxq_def))
3624 		elected_cpu = pp->rxq_def;
3625 
3626 	max_cpu = num_present_cpus();
3627 
3628 	for_each_online_cpu(cpu) {
3629 		int rxq_map = 0, txq_map = 0;
3630 		int rxq;
3631 
3632 		for (rxq = 0; rxq < rxq_number; rxq++)
3633 			if ((rxq % max_cpu) == cpu)
3634 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3635 
3636 		if (cpu == elected_cpu)
3637 			/* Map the default receive queue queue to the
3638 			 * elected CPU
3639 			 */
3640 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3641 
3642 		/* We update the TX queue map only if we have one
3643 		 * queue. In this case we associate the TX queue to
3644 		 * the CPU bound to the default RX queue
3645 		 */
3646 		if (txq_number == 1)
3647 			txq_map = (cpu == elected_cpu) ?
3648 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3649 		else
3650 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3651 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3652 
3653 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3654 
3655 		/* Update the interrupt mask on each CPU according the
3656 		 * new mapping
3657 		 */
3658 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3659 					 pp, true);
3660 		i++;
3661 
3662 	}
3663 };
3664 
3665 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3666 {
3667 	int other_cpu;
3668 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3669 						  node_online);
3670 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3671 
3672 
3673 	spin_lock(&pp->lock);
3674 	/*
3675 	 * Configuring the driver for a new CPU while the driver is
3676 	 * stopping is racy, so just avoid it.
3677 	 */
3678 	if (pp->is_stopped) {
3679 		spin_unlock(&pp->lock);
3680 		return 0;
3681 	}
3682 	netif_tx_stop_all_queues(pp->dev);
3683 
3684 	/*
3685 	 * We have to synchronise on tha napi of each CPU except the one
3686 	 * just being woken up
3687 	 */
3688 	for_each_online_cpu(other_cpu) {
3689 		if (other_cpu != cpu) {
3690 			struct mvneta_pcpu_port *other_port =
3691 				per_cpu_ptr(pp->ports, other_cpu);
3692 
3693 			napi_synchronize(&other_port->napi);
3694 		}
3695 	}
3696 
3697 	/* Mask all ethernet port interrupts */
3698 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3699 	napi_enable(&port->napi);
3700 
3701 	/*
3702 	 * Enable per-CPU interrupts on the CPU that is
3703 	 * brought up.
3704 	 */
3705 	mvneta_percpu_enable(pp);
3706 
3707 	/*
3708 	 * Enable per-CPU interrupt on the one CPU we care
3709 	 * about.
3710 	 */
3711 	mvneta_percpu_elect(pp);
3712 
3713 	/* Unmask all ethernet port interrupts */
3714 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3715 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3716 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3717 		    MVNETA_CAUSE_LINK_CHANGE);
3718 	netif_tx_start_all_queues(pp->dev);
3719 	spin_unlock(&pp->lock);
3720 	return 0;
3721 }
3722 
3723 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3724 {
3725 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3726 						  node_online);
3727 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3728 
3729 	/*
3730 	 * Thanks to this lock we are sure that any pending cpu election is
3731 	 * done.
3732 	 */
3733 	spin_lock(&pp->lock);
3734 	/* Mask all ethernet port interrupts */
3735 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3736 	spin_unlock(&pp->lock);
3737 
3738 	napi_synchronize(&port->napi);
3739 	napi_disable(&port->napi);
3740 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3741 	mvneta_percpu_disable(pp);
3742 	return 0;
3743 }
3744 
3745 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3746 {
3747 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3748 						  node_dead);
3749 
3750 	/* Check if a new CPU must be elected now this on is down */
3751 	spin_lock(&pp->lock);
3752 	mvneta_percpu_elect(pp);
3753 	spin_unlock(&pp->lock);
3754 	/* Unmask all ethernet port interrupts */
3755 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3756 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3757 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3758 		    MVNETA_CAUSE_LINK_CHANGE);
3759 	netif_tx_start_all_queues(pp->dev);
3760 	return 0;
3761 }
3762 
3763 static int mvneta_open(struct net_device *dev)
3764 {
3765 	struct mvneta_port *pp = netdev_priv(dev);
3766 	int ret;
3767 
3768 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3769 	pp->frag_size = PAGE_SIZE;
3770 
3771 	ret = mvneta_setup_rxqs(pp);
3772 	if (ret)
3773 		return ret;
3774 
3775 	ret = mvneta_setup_txqs(pp);
3776 	if (ret)
3777 		goto err_cleanup_rxqs;
3778 
3779 	/* Connect to port interrupt line */
3780 	if (pp->neta_armada3700)
3781 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3782 				  dev->name, pp);
3783 	else
3784 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3785 					 dev->name, pp->ports);
3786 	if (ret) {
3787 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3788 		goto err_cleanup_txqs;
3789 	}
3790 
3791 	if (!pp->neta_armada3700) {
3792 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3793 		 * queue interrupts
3794 		 */
3795 		on_each_cpu(mvneta_percpu_enable, pp, true);
3796 
3797 		pp->is_stopped = false;
3798 		/* Register a CPU notifier to handle the case where our CPU
3799 		 * might be taken offline.
3800 		 */
3801 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3802 						       &pp->node_online);
3803 		if (ret)
3804 			goto err_free_irq;
3805 
3806 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3807 						       &pp->node_dead);
3808 		if (ret)
3809 			goto err_free_online_hp;
3810 	}
3811 
3812 	ret = mvneta_mdio_probe(pp);
3813 	if (ret < 0) {
3814 		netdev_err(dev, "cannot probe MDIO bus\n");
3815 		goto err_free_dead_hp;
3816 	}
3817 
3818 	mvneta_start_dev(pp);
3819 
3820 	return 0;
3821 
3822 err_free_dead_hp:
3823 	if (!pp->neta_armada3700)
3824 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3825 						    &pp->node_dead);
3826 err_free_online_hp:
3827 	if (!pp->neta_armada3700)
3828 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3829 						    &pp->node_online);
3830 err_free_irq:
3831 	if (pp->neta_armada3700) {
3832 		free_irq(pp->dev->irq, pp);
3833 	} else {
3834 		on_each_cpu(mvneta_percpu_disable, pp, true);
3835 		free_percpu_irq(pp->dev->irq, pp->ports);
3836 	}
3837 err_cleanup_txqs:
3838 	mvneta_cleanup_txqs(pp);
3839 err_cleanup_rxqs:
3840 	mvneta_cleanup_rxqs(pp);
3841 	return ret;
3842 }
3843 
3844 /* Stop the port, free port interrupt line */
3845 static int mvneta_stop(struct net_device *dev)
3846 {
3847 	struct mvneta_port *pp = netdev_priv(dev);
3848 
3849 	if (!pp->neta_armada3700) {
3850 		/* Inform that we are stopping so we don't want to setup the
3851 		 * driver for new CPUs in the notifiers. The code of the
3852 		 * notifier for CPU online is protected by the same spinlock,
3853 		 * so when we get the lock, the notifer work is done.
3854 		 */
3855 		spin_lock(&pp->lock);
3856 		pp->is_stopped = true;
3857 		spin_unlock(&pp->lock);
3858 
3859 		mvneta_stop_dev(pp);
3860 		mvneta_mdio_remove(pp);
3861 
3862 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3863 						    &pp->node_online);
3864 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3865 						    &pp->node_dead);
3866 		on_each_cpu(mvneta_percpu_disable, pp, true);
3867 		free_percpu_irq(dev->irq, pp->ports);
3868 	} else {
3869 		mvneta_stop_dev(pp);
3870 		mvneta_mdio_remove(pp);
3871 		free_irq(dev->irq, pp);
3872 	}
3873 
3874 	mvneta_cleanup_rxqs(pp);
3875 	mvneta_cleanup_txqs(pp);
3876 
3877 	return 0;
3878 }
3879 
3880 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3881 {
3882 	struct mvneta_port *pp = netdev_priv(dev);
3883 
3884 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3885 }
3886 
3887 /* Ethtool methods */
3888 
3889 /* Set link ksettings (phy address, speed) for ethtools */
3890 static int
3891 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3892 				  const struct ethtool_link_ksettings *cmd)
3893 {
3894 	struct mvneta_port *pp = netdev_priv(ndev);
3895 
3896 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3897 }
3898 
3899 /* Get link ksettings for ethtools */
3900 static int
3901 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3902 				  struct ethtool_link_ksettings *cmd)
3903 {
3904 	struct mvneta_port *pp = netdev_priv(ndev);
3905 
3906 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3907 }
3908 
3909 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3910 {
3911 	struct mvneta_port *pp = netdev_priv(dev);
3912 
3913 	return phylink_ethtool_nway_reset(pp->phylink);
3914 }
3915 
3916 /* Set interrupt coalescing for ethtools */
3917 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3918 				       struct ethtool_coalesce *c)
3919 {
3920 	struct mvneta_port *pp = netdev_priv(dev);
3921 	int queue;
3922 
3923 	for (queue = 0; queue < rxq_number; queue++) {
3924 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3925 		rxq->time_coal = c->rx_coalesce_usecs;
3926 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3927 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3928 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3929 	}
3930 
3931 	for (queue = 0; queue < txq_number; queue++) {
3932 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3933 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3934 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3935 	}
3936 
3937 	return 0;
3938 }
3939 
3940 /* get coalescing for ethtools */
3941 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3942 				       struct ethtool_coalesce *c)
3943 {
3944 	struct mvneta_port *pp = netdev_priv(dev);
3945 
3946 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3947 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3948 
3949 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3950 	return 0;
3951 }
3952 
3953 
3954 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3955 				    struct ethtool_drvinfo *drvinfo)
3956 {
3957 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3958 		sizeof(drvinfo->driver));
3959 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3960 		sizeof(drvinfo->version));
3961 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3962 		sizeof(drvinfo->bus_info));
3963 }
3964 
3965 
3966 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3967 					 struct ethtool_ringparam *ring)
3968 {
3969 	struct mvneta_port *pp = netdev_priv(netdev);
3970 
3971 	ring->rx_max_pending = MVNETA_MAX_RXD;
3972 	ring->tx_max_pending = MVNETA_MAX_TXD;
3973 	ring->rx_pending = pp->rx_ring_size;
3974 	ring->tx_pending = pp->tx_ring_size;
3975 }
3976 
3977 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3978 					struct ethtool_ringparam *ring)
3979 {
3980 	struct mvneta_port *pp = netdev_priv(dev);
3981 
3982 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3983 		return -EINVAL;
3984 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3985 		ring->rx_pending : MVNETA_MAX_RXD;
3986 
3987 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3988 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3989 	if (pp->tx_ring_size != ring->tx_pending)
3990 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3991 			    pp->tx_ring_size, ring->tx_pending);
3992 
3993 	if (netif_running(dev)) {
3994 		mvneta_stop(dev);
3995 		if (mvneta_open(dev)) {
3996 			netdev_err(dev,
3997 				   "error on opening device after ring param change\n");
3998 			return -ENOMEM;
3999 		}
4000 	}
4001 
4002 	return 0;
4003 }
4004 
4005 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4006 					  struct ethtool_pauseparam *pause)
4007 {
4008 	struct mvneta_port *pp = netdev_priv(dev);
4009 
4010 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4011 }
4012 
4013 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4014 					 struct ethtool_pauseparam *pause)
4015 {
4016 	struct mvneta_port *pp = netdev_priv(dev);
4017 
4018 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4019 }
4020 
4021 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4022 				       u8 *data)
4023 {
4024 	if (sset == ETH_SS_STATS) {
4025 		int i;
4026 
4027 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4028 			memcpy(data + i * ETH_GSTRING_LEN,
4029 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4030 	}
4031 }
4032 
4033 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4034 {
4035 	const struct mvneta_statistic *s;
4036 	void __iomem *base = pp->base;
4037 	u32 high, low;
4038 	u64 val;
4039 	int i;
4040 
4041 	for (i = 0, s = mvneta_statistics;
4042 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4043 	     s++, i++) {
4044 		val = 0;
4045 
4046 		switch (s->type) {
4047 		case T_REG_32:
4048 			val = readl_relaxed(base + s->offset);
4049 			break;
4050 		case T_REG_64:
4051 			/* Docs say to read low 32-bit then high */
4052 			low = readl_relaxed(base + s->offset);
4053 			high = readl_relaxed(base + s->offset + 4);
4054 			val = (u64)high << 32 | low;
4055 			break;
4056 		case T_SW:
4057 			switch (s->offset) {
4058 			case ETHTOOL_STAT_EEE_WAKEUP:
4059 				val = phylink_get_eee_err(pp->phylink);
4060 				break;
4061 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4062 				val = pp->rxqs[0].skb_alloc_err;
4063 				break;
4064 			case ETHTOOL_STAT_REFILL_ERR:
4065 				val = pp->rxqs[0].refill_err;
4066 				break;
4067 			}
4068 			break;
4069 		}
4070 
4071 		pp->ethtool_stats[i] += val;
4072 	}
4073 }
4074 
4075 static void mvneta_ethtool_get_stats(struct net_device *dev,
4076 				     struct ethtool_stats *stats, u64 *data)
4077 {
4078 	struct mvneta_port *pp = netdev_priv(dev);
4079 	int i;
4080 
4081 	mvneta_ethtool_update_stats(pp);
4082 
4083 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4084 		*data++ = pp->ethtool_stats[i];
4085 }
4086 
4087 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4088 {
4089 	if (sset == ETH_SS_STATS)
4090 		return ARRAY_SIZE(mvneta_statistics);
4091 	return -EOPNOTSUPP;
4092 }
4093 
4094 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4095 {
4096 	return MVNETA_RSS_LU_TABLE_SIZE;
4097 }
4098 
4099 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4100 				    struct ethtool_rxnfc *info,
4101 				    u32 *rules __always_unused)
4102 {
4103 	switch (info->cmd) {
4104 	case ETHTOOL_GRXRINGS:
4105 		info->data =  rxq_number;
4106 		return 0;
4107 	case ETHTOOL_GRXFH:
4108 		return -EOPNOTSUPP;
4109 	default:
4110 		return -EOPNOTSUPP;
4111 	}
4112 }
4113 
4114 static int  mvneta_config_rss(struct mvneta_port *pp)
4115 {
4116 	int cpu;
4117 	u32 val;
4118 
4119 	netif_tx_stop_all_queues(pp->dev);
4120 
4121 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4122 
4123 	if (!pp->neta_armada3700) {
4124 		/* We have to synchronise on the napi of each CPU */
4125 		for_each_online_cpu(cpu) {
4126 			struct mvneta_pcpu_port *pcpu_port =
4127 				per_cpu_ptr(pp->ports, cpu);
4128 
4129 			napi_synchronize(&pcpu_port->napi);
4130 			napi_disable(&pcpu_port->napi);
4131 		}
4132 	} else {
4133 		napi_synchronize(&pp->napi);
4134 		napi_disable(&pp->napi);
4135 	}
4136 
4137 	pp->rxq_def = pp->indir[0];
4138 
4139 	/* Update unicast mapping */
4140 	mvneta_set_rx_mode(pp->dev);
4141 
4142 	/* Update val of portCfg register accordingly with all RxQueue types */
4143 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4144 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4145 
4146 	/* Update the elected CPU matching the new rxq_def */
4147 	spin_lock(&pp->lock);
4148 	mvneta_percpu_elect(pp);
4149 	spin_unlock(&pp->lock);
4150 
4151 	if (!pp->neta_armada3700) {
4152 		/* We have to synchronise on the napi of each CPU */
4153 		for_each_online_cpu(cpu) {
4154 			struct mvneta_pcpu_port *pcpu_port =
4155 				per_cpu_ptr(pp->ports, cpu);
4156 
4157 			napi_enable(&pcpu_port->napi);
4158 		}
4159 	} else {
4160 		napi_enable(&pp->napi);
4161 	}
4162 
4163 	netif_tx_start_all_queues(pp->dev);
4164 
4165 	return 0;
4166 }
4167 
4168 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4169 				   const u8 *key, const u8 hfunc)
4170 {
4171 	struct mvneta_port *pp = netdev_priv(dev);
4172 
4173 	/* Current code for Armada 3700 doesn't support RSS features yet */
4174 	if (pp->neta_armada3700)
4175 		return -EOPNOTSUPP;
4176 
4177 	/* We require at least one supported parameter to be changed
4178 	 * and no change in any of the unsupported parameters
4179 	 */
4180 	if (key ||
4181 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4182 		return -EOPNOTSUPP;
4183 
4184 	if (!indir)
4185 		return 0;
4186 
4187 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4188 
4189 	return mvneta_config_rss(pp);
4190 }
4191 
4192 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4193 				   u8 *hfunc)
4194 {
4195 	struct mvneta_port *pp = netdev_priv(dev);
4196 
4197 	/* Current code for Armada 3700 doesn't support RSS features yet */
4198 	if (pp->neta_armada3700)
4199 		return -EOPNOTSUPP;
4200 
4201 	if (hfunc)
4202 		*hfunc = ETH_RSS_HASH_TOP;
4203 
4204 	if (!indir)
4205 		return 0;
4206 
4207 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4208 
4209 	return 0;
4210 }
4211 
4212 static void mvneta_ethtool_get_wol(struct net_device *dev,
4213 				   struct ethtool_wolinfo *wol)
4214 {
4215 	struct mvneta_port *pp = netdev_priv(dev);
4216 
4217 	phylink_ethtool_get_wol(pp->phylink, wol);
4218 }
4219 
4220 static int mvneta_ethtool_set_wol(struct net_device *dev,
4221 				  struct ethtool_wolinfo *wol)
4222 {
4223 	struct mvneta_port *pp = netdev_priv(dev);
4224 	int ret;
4225 
4226 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4227 	if (!ret)
4228 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4229 
4230 	return ret;
4231 }
4232 
4233 static int mvneta_ethtool_get_eee(struct net_device *dev,
4234 				  struct ethtool_eee *eee)
4235 {
4236 	struct mvneta_port *pp = netdev_priv(dev);
4237 	u32 lpi_ctl0;
4238 
4239 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4240 
4241 	eee->eee_enabled = pp->eee_enabled;
4242 	eee->eee_active = pp->eee_active;
4243 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4244 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4245 
4246 	return phylink_ethtool_get_eee(pp->phylink, eee);
4247 }
4248 
4249 static int mvneta_ethtool_set_eee(struct net_device *dev,
4250 				  struct ethtool_eee *eee)
4251 {
4252 	struct mvneta_port *pp = netdev_priv(dev);
4253 	u32 lpi_ctl0;
4254 
4255 	/* The Armada 37x documents do not give limits for this other than
4256 	 * it being an 8-bit register. */
4257 	if (eee->tx_lpi_enabled &&
4258 	    (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4259 		return -EINVAL;
4260 
4261 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4262 	lpi_ctl0 &= ~(0xff << 8);
4263 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4264 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4265 
4266 	pp->eee_enabled = eee->eee_enabled;
4267 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4268 
4269 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4270 
4271 	return phylink_ethtool_set_eee(pp->phylink, eee);
4272 }
4273 
4274 static const struct net_device_ops mvneta_netdev_ops = {
4275 	.ndo_open            = mvneta_open,
4276 	.ndo_stop            = mvneta_stop,
4277 	.ndo_start_xmit      = mvneta_tx,
4278 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4279 	.ndo_set_mac_address = mvneta_set_mac_addr,
4280 	.ndo_change_mtu      = mvneta_change_mtu,
4281 	.ndo_fix_features    = mvneta_fix_features,
4282 	.ndo_get_stats64     = mvneta_get_stats64,
4283 	.ndo_do_ioctl        = mvneta_ioctl,
4284 };
4285 
4286 static const struct ethtool_ops mvneta_eth_tool_ops = {
4287 	.nway_reset	= mvneta_ethtool_nway_reset,
4288 	.get_link       = ethtool_op_get_link,
4289 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4290 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4291 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4292 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4293 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4294 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4295 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4296 	.get_strings	= mvneta_ethtool_get_strings,
4297 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4298 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4299 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4300 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4301 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4302 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4303 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4304 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4305 	.get_wol        = mvneta_ethtool_get_wol,
4306 	.set_wol        = mvneta_ethtool_set_wol,
4307 	.get_eee	= mvneta_ethtool_get_eee,
4308 	.set_eee	= mvneta_ethtool_set_eee,
4309 };
4310 
4311 /* Initialize hw */
4312 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4313 {
4314 	int queue;
4315 
4316 	/* Disable port */
4317 	mvneta_port_disable(pp);
4318 
4319 	/* Set port default values */
4320 	mvneta_defaults_set(pp);
4321 
4322 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4323 	if (!pp->txqs)
4324 		return -ENOMEM;
4325 
4326 	/* Initialize TX descriptor rings */
4327 	for (queue = 0; queue < txq_number; queue++) {
4328 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4329 		txq->id = queue;
4330 		txq->size = pp->tx_ring_size;
4331 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4332 	}
4333 
4334 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4335 	if (!pp->rxqs)
4336 		return -ENOMEM;
4337 
4338 	/* Create Rx descriptor rings */
4339 	for (queue = 0; queue < rxq_number; queue++) {
4340 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4341 		rxq->id = queue;
4342 		rxq->size = pp->rx_ring_size;
4343 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4344 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4345 		rxq->buf_virt_addr
4346 			= devm_kmalloc_array(pp->dev->dev.parent,
4347 					     rxq->size,
4348 					     sizeof(*rxq->buf_virt_addr),
4349 					     GFP_KERNEL);
4350 		if (!rxq->buf_virt_addr)
4351 			return -ENOMEM;
4352 	}
4353 
4354 	return 0;
4355 }
4356 
4357 /* platform glue : initialize decoding windows */
4358 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4359 				     const struct mbus_dram_target_info *dram)
4360 {
4361 	u32 win_enable;
4362 	u32 win_protect;
4363 	int i;
4364 
4365 	for (i = 0; i < 6; i++) {
4366 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4367 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4368 
4369 		if (i < 4)
4370 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4371 	}
4372 
4373 	win_enable = 0x3f;
4374 	win_protect = 0;
4375 
4376 	if (dram) {
4377 		for (i = 0; i < dram->num_cs; i++) {
4378 			const struct mbus_dram_window *cs = dram->cs + i;
4379 
4380 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4381 				    (cs->base & 0xffff0000) |
4382 				    (cs->mbus_attr << 8) |
4383 				    dram->mbus_dram_target_id);
4384 
4385 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4386 				    (cs->size - 1) & 0xffff0000);
4387 
4388 			win_enable &= ~(1 << i);
4389 			win_protect |= 3 << (2 * i);
4390 		}
4391 	} else {
4392 		/* For Armada3700 open default 4GB Mbus window, leaving
4393 		 * arbitration of target/attribute to a different layer
4394 		 * of configuration.
4395 		 */
4396 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4397 		win_enable &= ~BIT(0);
4398 		win_protect = 3;
4399 	}
4400 
4401 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4402 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4403 }
4404 
4405 /* Power up the port */
4406 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4407 {
4408 	/* MAC Cause register should be cleared */
4409 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4410 
4411 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4412 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4413 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4414 		 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4415 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4416 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4417 		return -EINVAL;
4418 
4419 	return 0;
4420 }
4421 
4422 /* Device initialization routine */
4423 static int mvneta_probe(struct platform_device *pdev)
4424 {
4425 	struct resource *res;
4426 	struct device_node *dn = pdev->dev.of_node;
4427 	struct device_node *bm_node;
4428 	struct mvneta_port *pp;
4429 	struct net_device *dev;
4430 	struct phylink *phylink;
4431 	const char *dt_mac_addr;
4432 	char hw_mac_addr[ETH_ALEN];
4433 	const char *mac_from;
4434 	int tx_csum_limit;
4435 	int phy_mode;
4436 	int err;
4437 	int cpu;
4438 
4439 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4440 	if (!dev)
4441 		return -ENOMEM;
4442 
4443 	dev->irq = irq_of_parse_and_map(dn, 0);
4444 	if (dev->irq == 0) {
4445 		err = -EINVAL;
4446 		goto err_free_netdev;
4447 	}
4448 
4449 	phy_mode = of_get_phy_mode(dn);
4450 	if (phy_mode < 0) {
4451 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4452 		err = -EINVAL;
4453 		goto err_free_irq;
4454 	}
4455 
4456 	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4457 				 &mvneta_phylink_ops);
4458 	if (IS_ERR(phylink)) {
4459 		err = PTR_ERR(phylink);
4460 		goto err_free_irq;
4461 	}
4462 
4463 	dev->tx_queue_len = MVNETA_MAX_TXD;
4464 	dev->watchdog_timeo = 5 * HZ;
4465 	dev->netdev_ops = &mvneta_netdev_ops;
4466 
4467 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4468 
4469 	pp = netdev_priv(dev);
4470 	spin_lock_init(&pp->lock);
4471 	pp->phylink = phylink;
4472 	pp->phy_interface = phy_mode;
4473 	pp->dn = dn;
4474 
4475 	pp->rxq_def = rxq_def;
4476 	pp->indir[0] = rxq_def;
4477 
4478 	/* Get special SoC configurations */
4479 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4480 		pp->neta_armada3700 = true;
4481 
4482 	pp->clk = devm_clk_get(&pdev->dev, "core");
4483 	if (IS_ERR(pp->clk))
4484 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4485 	if (IS_ERR(pp->clk)) {
4486 		err = PTR_ERR(pp->clk);
4487 		goto err_free_phylink;
4488 	}
4489 
4490 	clk_prepare_enable(pp->clk);
4491 
4492 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4493 	if (!IS_ERR(pp->clk_bus))
4494 		clk_prepare_enable(pp->clk_bus);
4495 
4496 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4497 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4498 	if (IS_ERR(pp->base)) {
4499 		err = PTR_ERR(pp->base);
4500 		goto err_clk;
4501 	}
4502 
4503 	/* Alloc per-cpu port structure */
4504 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4505 	if (!pp->ports) {
4506 		err = -ENOMEM;
4507 		goto err_clk;
4508 	}
4509 
4510 	/* Alloc per-cpu stats */
4511 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4512 	if (!pp->stats) {
4513 		err = -ENOMEM;
4514 		goto err_free_ports;
4515 	}
4516 
4517 	dt_mac_addr = of_get_mac_address(dn);
4518 	if (dt_mac_addr) {
4519 		mac_from = "device tree";
4520 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4521 	} else {
4522 		mvneta_get_mac_addr(pp, hw_mac_addr);
4523 		if (is_valid_ether_addr(hw_mac_addr)) {
4524 			mac_from = "hardware";
4525 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4526 		} else {
4527 			mac_from = "random";
4528 			eth_hw_addr_random(dev);
4529 		}
4530 	}
4531 
4532 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4533 		if (tx_csum_limit < 0 ||
4534 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4535 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4536 			dev_info(&pdev->dev,
4537 				 "Wrong TX csum limit in DT, set to %dB\n",
4538 				 MVNETA_TX_CSUM_DEF_SIZE);
4539 		}
4540 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4541 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4542 	} else {
4543 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4544 	}
4545 
4546 	pp->tx_csum_limit = tx_csum_limit;
4547 
4548 	pp->dram_target_info = mv_mbus_dram_info();
4549 	/* Armada3700 requires setting default configuration of Mbus
4550 	 * windows, however without using filled mbus_dram_target_info
4551 	 * structure.
4552 	 */
4553 	if (pp->dram_target_info || pp->neta_armada3700)
4554 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4555 
4556 	pp->tx_ring_size = MVNETA_MAX_TXD;
4557 	pp->rx_ring_size = MVNETA_MAX_RXD;
4558 
4559 	pp->dev = dev;
4560 	SET_NETDEV_DEV(dev, &pdev->dev);
4561 
4562 	pp->id = global_port_id++;
4563 	pp->rx_offset_correction = 0; /* not relevant for SW BM */
4564 
4565 	/* Obtain access to BM resources if enabled and already initialized */
4566 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4567 	if (bm_node) {
4568 		pp->bm_priv = mvneta_bm_get(bm_node);
4569 		if (pp->bm_priv) {
4570 			err = mvneta_bm_port_init(pdev, pp);
4571 			if (err < 0) {
4572 				dev_info(&pdev->dev,
4573 					 "use SW buffer management\n");
4574 				mvneta_bm_put(pp->bm_priv);
4575 				pp->bm_priv = NULL;
4576 			}
4577 		}
4578 		/* Set RX packet offset correction for platforms, whose
4579 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4580 		 * platforms and 0B for 32-bit ones.
4581 		 */
4582 		pp->rx_offset_correction = max(0,
4583 					       NET_SKB_PAD -
4584 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4585 	}
4586 	of_node_put(bm_node);
4587 
4588 	err = mvneta_init(&pdev->dev, pp);
4589 	if (err < 0)
4590 		goto err_netdev;
4591 
4592 	err = mvneta_port_power_up(pp, phy_mode);
4593 	if (err < 0) {
4594 		dev_err(&pdev->dev, "can't power up port\n");
4595 		goto err_netdev;
4596 	}
4597 
4598 	/* Armada3700 network controller does not support per-cpu
4599 	 * operation, so only single NAPI should be initialized.
4600 	 */
4601 	if (pp->neta_armada3700) {
4602 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4603 	} else {
4604 		for_each_present_cpu(cpu) {
4605 			struct mvneta_pcpu_port *port =
4606 				per_cpu_ptr(pp->ports, cpu);
4607 
4608 			netif_napi_add(dev, &port->napi, mvneta_poll,
4609 				       NAPI_POLL_WEIGHT);
4610 			port->pp = pp;
4611 		}
4612 	}
4613 
4614 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4615 			NETIF_F_TSO | NETIF_F_RXCSUM;
4616 	dev->hw_features |= dev->features;
4617 	dev->vlan_features |= dev->features;
4618 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4619 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4620 
4621 	/* MTU range: 68 - 9676 */
4622 	dev->min_mtu = ETH_MIN_MTU;
4623 	/* 9676 == 9700 - 20 and rounding to 8 */
4624 	dev->max_mtu = 9676;
4625 
4626 	err = register_netdev(dev);
4627 	if (err < 0) {
4628 		dev_err(&pdev->dev, "failed to register\n");
4629 		goto err_free_stats;
4630 	}
4631 
4632 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4633 		    dev->dev_addr);
4634 
4635 	platform_set_drvdata(pdev, pp->dev);
4636 
4637 	return 0;
4638 
4639 err_netdev:
4640 	unregister_netdev(dev);
4641 	if (pp->bm_priv) {
4642 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4643 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4644 				       1 << pp->id);
4645 		mvneta_bm_put(pp->bm_priv);
4646 	}
4647 err_free_stats:
4648 	free_percpu(pp->stats);
4649 err_free_ports:
4650 	free_percpu(pp->ports);
4651 err_clk:
4652 	clk_disable_unprepare(pp->clk_bus);
4653 	clk_disable_unprepare(pp->clk);
4654 err_free_phylink:
4655 	if (pp->phylink)
4656 		phylink_destroy(pp->phylink);
4657 err_free_irq:
4658 	irq_dispose_mapping(dev->irq);
4659 err_free_netdev:
4660 	free_netdev(dev);
4661 	return err;
4662 }
4663 
4664 /* Device removal routine */
4665 static int mvneta_remove(struct platform_device *pdev)
4666 {
4667 	struct net_device  *dev = platform_get_drvdata(pdev);
4668 	struct mvneta_port *pp = netdev_priv(dev);
4669 
4670 	unregister_netdev(dev);
4671 	clk_disable_unprepare(pp->clk_bus);
4672 	clk_disable_unprepare(pp->clk);
4673 	free_percpu(pp->ports);
4674 	free_percpu(pp->stats);
4675 	irq_dispose_mapping(dev->irq);
4676 	phylink_destroy(pp->phylink);
4677 	free_netdev(dev);
4678 
4679 	if (pp->bm_priv) {
4680 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4681 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4682 				       1 << pp->id);
4683 		mvneta_bm_put(pp->bm_priv);
4684 	}
4685 
4686 	return 0;
4687 }
4688 
4689 #ifdef CONFIG_PM_SLEEP
4690 static int mvneta_suspend(struct device *device)
4691 {
4692 	int queue;
4693 	struct net_device *dev = dev_get_drvdata(device);
4694 	struct mvneta_port *pp = netdev_priv(dev);
4695 
4696 	if (!netif_running(dev))
4697 		goto clean_exit;
4698 
4699 	if (!pp->neta_armada3700) {
4700 		spin_lock(&pp->lock);
4701 		pp->is_stopped = true;
4702 		spin_unlock(&pp->lock);
4703 
4704 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4705 						    &pp->node_online);
4706 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4707 						    &pp->node_dead);
4708 	}
4709 
4710 	rtnl_lock();
4711 	mvneta_stop_dev(pp);
4712 	rtnl_unlock();
4713 
4714 	for (queue = 0; queue < rxq_number; queue++) {
4715 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4716 
4717 		mvneta_rxq_drop_pkts(pp, rxq);
4718 	}
4719 
4720 	for (queue = 0; queue < txq_number; queue++) {
4721 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4722 
4723 		mvneta_txq_hw_deinit(pp, txq);
4724 	}
4725 
4726 clean_exit:
4727 	netif_device_detach(dev);
4728 	clk_disable_unprepare(pp->clk_bus);
4729 	clk_disable_unprepare(pp->clk);
4730 
4731 	return 0;
4732 }
4733 
4734 static int mvneta_resume(struct device *device)
4735 {
4736 	struct platform_device *pdev = to_platform_device(device);
4737 	struct net_device *dev = dev_get_drvdata(device);
4738 	struct mvneta_port *pp = netdev_priv(dev);
4739 	int err, queue;
4740 
4741 	clk_prepare_enable(pp->clk);
4742 	if (!IS_ERR(pp->clk_bus))
4743 		clk_prepare_enable(pp->clk_bus);
4744 	if (pp->dram_target_info || pp->neta_armada3700)
4745 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4746 	if (pp->bm_priv) {
4747 		err = mvneta_bm_port_init(pdev, pp);
4748 		if (err < 0) {
4749 			dev_info(&pdev->dev, "use SW buffer management\n");
4750 			pp->bm_priv = NULL;
4751 		}
4752 	}
4753 	mvneta_defaults_set(pp);
4754 	err = mvneta_port_power_up(pp, pp->phy_interface);
4755 	if (err < 0) {
4756 		dev_err(device, "can't power up port\n");
4757 		return err;
4758 	}
4759 
4760 	netif_device_attach(dev);
4761 
4762 	if (!netif_running(dev))
4763 		return 0;
4764 
4765 	for (queue = 0; queue < rxq_number; queue++) {
4766 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4767 
4768 		rxq->next_desc_to_proc = 0;
4769 		mvneta_rxq_hw_init(pp, rxq);
4770 	}
4771 
4772 	for (queue = 0; queue < txq_number; queue++) {
4773 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4774 
4775 		txq->next_desc_to_proc = 0;
4776 		mvneta_txq_hw_init(pp, txq);
4777 	}
4778 
4779 	if (!pp->neta_armada3700) {
4780 		spin_lock(&pp->lock);
4781 		pp->is_stopped = false;
4782 		spin_unlock(&pp->lock);
4783 		cpuhp_state_add_instance_nocalls(online_hpstate,
4784 						 &pp->node_online);
4785 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4786 						 &pp->node_dead);
4787 	}
4788 
4789 	rtnl_lock();
4790 	mvneta_start_dev(pp);
4791 	rtnl_unlock();
4792 	mvneta_set_rx_mode(dev);
4793 
4794 	return 0;
4795 }
4796 #endif
4797 
4798 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4799 
4800 static const struct of_device_id mvneta_match[] = {
4801 	{ .compatible = "marvell,armada-370-neta" },
4802 	{ .compatible = "marvell,armada-xp-neta" },
4803 	{ .compatible = "marvell,armada-3700-neta" },
4804 	{ }
4805 };
4806 MODULE_DEVICE_TABLE(of, mvneta_match);
4807 
4808 static struct platform_driver mvneta_driver = {
4809 	.probe = mvneta_probe,
4810 	.remove = mvneta_remove,
4811 	.driver = {
4812 		.name = MVNETA_DRIVER_NAME,
4813 		.of_match_table = mvneta_match,
4814 		.pm = &mvneta_pm_ops,
4815 	},
4816 };
4817 
4818 static int __init mvneta_driver_init(void)
4819 {
4820 	int ret;
4821 
4822 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4823 				      mvneta_cpu_online,
4824 				      mvneta_cpu_down_prepare);
4825 	if (ret < 0)
4826 		goto out;
4827 	online_hpstate = ret;
4828 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4829 				      NULL, mvneta_cpu_dead);
4830 	if (ret)
4831 		goto err_dead;
4832 
4833 	ret = platform_driver_register(&mvneta_driver);
4834 	if (ret)
4835 		goto err;
4836 	return 0;
4837 
4838 err:
4839 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4840 err_dead:
4841 	cpuhp_remove_multi_state(online_hpstate);
4842 out:
4843 	return ret;
4844 }
4845 module_init(mvneta_driver_init);
4846 
4847 static void __exit mvneta_driver_exit(void)
4848 {
4849 	platform_driver_unregister(&mvneta_driver);
4850 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4851 	cpuhp_remove_multi_state(online_hpstate);
4852 }
4853 module_exit(mvneta_driver_exit);
4854 
4855 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4856 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4857 MODULE_LICENSE("GPL");
4858 
4859 module_param(rxq_number, int, 0444);
4860 module_param(txq_number, int, 0444);
4861 
4862 module_param(rxq_def, int, 0444);
4863 module_param(rx_copybreak, int, 0644);
4864