1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phylink.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 194 #define MVNETA_GMAC_CTRL_2 0x2c08 195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 197 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 198 #define MVNETA_GMAC2_PORT_RESET BIT(6) 199 #define MVNETA_GMAC_STATUS 0x2c10 200 #define MVNETA_GMAC_LINK_UP BIT(0) 201 #define MVNETA_GMAC_SPEED_1000 BIT(1) 202 #define MVNETA_GMAC_SPEED_100 BIT(2) 203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 208 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 209 #define MVNETA_GMAC_SYNC_OK BIT(14) 210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 224 #define MVNETA_MIB_COUNTERS_BASE 0x3000 225 #define MVNETA_MIB_LATE_COLLISION 0x7c 226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 239 #define MVNETA_PORT_TX_RESET 0x3cf0 240 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 241 #define MVNETA_TX_MTU 0x3e0c 242 #define MVNETA_TX_TOKEN_SIZE 0x3e14 243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 246 247 #define MVNETA_LPI_CTRL_0 0x2cc0 248 #define MVNETA_LPI_CTRL_1 0x2cc4 249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 250 #define MVNETA_LPI_CTRL_2 0x2cc8 251 #define MVNETA_LPI_STATUS 0x2ccc 252 253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 254 255 /* Descriptor ring Macros */ 256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 257 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 258 259 /* Various constants */ 260 261 /* Coalescing */ 262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 263 #define MVNETA_RX_COAL_PKTS 32 264 #define MVNETA_RX_COAL_USEC 100 265 266 /* The two bytes Marvell header. Either contains a special value used 267 * by Marvell switches when a specific hardware mode is enabled (not 268 * supported by this driver) or is filled automatically by zeroes on 269 * the RX side. Those two bytes being at the front of the Ethernet 270 * header, they allow to have the IP header aligned on a 4 bytes 271 * boundary automatically: the hardware skips those two bytes on its 272 * own. 273 */ 274 #define MVNETA_MH_SIZE 2 275 276 #define MVNETA_VLAN_TAG_LEN 4 277 278 #define MVNETA_TX_CSUM_DEF_SIZE 1600 279 #define MVNETA_TX_CSUM_MAX_SIZE 9800 280 #define MVNETA_ACC_MODE_EXT1 1 281 #define MVNETA_ACC_MODE_EXT2 2 282 283 #define MVNETA_MAX_DECODE_WIN 6 284 285 /* Timeout constants */ 286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 289 290 #define MVNETA_TX_MTU_MAX 0x3ffff 291 292 /* The RSS lookup table actually has 256 entries but we do not use 293 * them yet 294 */ 295 #define MVNETA_RSS_LU_TABLE_SIZE 1 296 297 /* Max number of Rx descriptors */ 298 #define MVNETA_MAX_RXD 128 299 300 /* Max number of Tx descriptors */ 301 #define MVNETA_MAX_TXD 532 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define MVNETA_MAX_TSO_SEGS 100 305 306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 307 308 /* descriptor aligned size */ 309 #define MVNETA_DESC_ALIGNED_SIZE 32 310 311 /* Number of bytes to be taken into account by HW when putting incoming data 312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 314 */ 315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 316 317 #define MVNETA_RX_PKT_SIZE(mtu) \ 318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 319 ETH_HLEN + ETH_FCS_LEN, \ 320 cache_line_size()) 321 322 #define IS_TSO_HEADER(txq, addr) \ 323 ((addr >= txq->tso_hdrs_phys) && \ 324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 325 326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 328 329 enum { 330 ETHTOOL_STAT_EEE_WAKEUP, 331 ETHTOOL_MAX_STATS, 332 }; 333 334 struct mvneta_statistic { 335 unsigned short offset; 336 unsigned short type; 337 const char name[ETH_GSTRING_LEN]; 338 }; 339 340 #define T_REG_32 32 341 #define T_REG_64 64 342 #define T_SW 1 343 344 static const struct mvneta_statistic mvneta_statistics[] = { 345 { 0x3000, T_REG_64, "good_octets_received", }, 346 { 0x3010, T_REG_32, "good_frames_received", }, 347 { 0x3008, T_REG_32, "bad_octets_received", }, 348 { 0x3014, T_REG_32, "bad_frames_received", }, 349 { 0x3018, T_REG_32, "broadcast_frames_received", }, 350 { 0x301c, T_REG_32, "multicast_frames_received", }, 351 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 352 { 0x3058, T_REG_32, "good_fc_received", }, 353 { 0x305c, T_REG_32, "bad_fc_received", }, 354 { 0x3060, T_REG_32, "undersize_received", }, 355 { 0x3064, T_REG_32, "fragments_received", }, 356 { 0x3068, T_REG_32, "oversize_received", }, 357 { 0x306c, T_REG_32, "jabber_received", }, 358 { 0x3070, T_REG_32, "mac_receive_error", }, 359 { 0x3074, T_REG_32, "bad_crc_event", }, 360 { 0x3078, T_REG_32, "collision", }, 361 { 0x307c, T_REG_32, "late_collision", }, 362 { 0x2484, T_REG_32, "rx_discard", }, 363 { 0x2488, T_REG_32, "rx_overrun", }, 364 { 0x3020, T_REG_32, "frames_64_octets", }, 365 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 366 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 367 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 368 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 369 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 370 { 0x3038, T_REG_64, "good_octets_sent", }, 371 { 0x3040, T_REG_32, "good_frames_sent", }, 372 { 0x3044, T_REG_32, "excessive_collision", }, 373 { 0x3048, T_REG_32, "multicast_frames_sent", }, 374 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 375 { 0x3054, T_REG_32, "fc_sent", }, 376 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 377 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 378 }; 379 380 struct mvneta_pcpu_stats { 381 struct u64_stats_sync syncp; 382 u64 rx_packets; 383 u64 rx_bytes; 384 u64 tx_packets; 385 u64 tx_bytes; 386 }; 387 388 struct mvneta_pcpu_port { 389 /* Pointer to the shared port */ 390 struct mvneta_port *pp; 391 392 /* Pointer to the CPU-local NAPI struct */ 393 struct napi_struct napi; 394 395 /* Cause of the previous interrupt */ 396 u32 cause_rx_tx; 397 }; 398 399 struct mvneta_port { 400 u8 id; 401 struct mvneta_pcpu_port __percpu *ports; 402 struct mvneta_pcpu_stats __percpu *stats; 403 404 int pkt_size; 405 unsigned int frag_size; 406 void __iomem *base; 407 struct mvneta_rx_queue *rxqs; 408 struct mvneta_tx_queue *txqs; 409 struct net_device *dev; 410 struct hlist_node node_online; 411 struct hlist_node node_dead; 412 int rxq_def; 413 /* Protect the access to the percpu interrupt registers, 414 * ensuring that the configuration remains coherent. 415 */ 416 spinlock_t lock; 417 bool is_stopped; 418 419 u32 cause_rx_tx; 420 struct napi_struct napi; 421 422 /* Core clock */ 423 struct clk *clk; 424 /* AXI clock */ 425 struct clk *clk_bus; 426 u8 mcast_count[256]; 427 u16 tx_ring_size; 428 u16 rx_ring_size; 429 430 phy_interface_t phy_interface; 431 struct device_node *dn; 432 unsigned int tx_csum_limit; 433 struct phylink *phylink; 434 435 struct mvneta_bm *bm_priv; 436 struct mvneta_bm_pool *pool_long; 437 struct mvneta_bm_pool *pool_short; 438 int bm_win_id; 439 440 bool eee_enabled; 441 bool eee_active; 442 bool tx_lpi_enabled; 443 444 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 445 446 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 447 448 /* Flags for special SoC configurations */ 449 bool neta_armada3700; 450 u16 rx_offset_correction; 451 const struct mbus_dram_target_info *dram_target_info; 452 }; 453 454 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 455 * layout of the transmit and reception DMA descriptors, and their 456 * layout is therefore defined by the hardware design 457 */ 458 459 #define MVNETA_TX_L3_OFF_SHIFT 0 460 #define MVNETA_TX_IP_HLEN_SHIFT 8 461 #define MVNETA_TX_L4_UDP BIT(16) 462 #define MVNETA_TX_L3_IP6 BIT(17) 463 #define MVNETA_TXD_IP_CSUM BIT(18) 464 #define MVNETA_TXD_Z_PAD BIT(19) 465 #define MVNETA_TXD_L_DESC BIT(20) 466 #define MVNETA_TXD_F_DESC BIT(21) 467 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 468 MVNETA_TXD_L_DESC | \ 469 MVNETA_TXD_F_DESC) 470 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 471 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 472 473 #define MVNETA_RXD_ERR_CRC 0x0 474 #define MVNETA_RXD_BM_POOL_SHIFT 13 475 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 476 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 477 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 478 #define MVNETA_RXD_ERR_LEN BIT(18) 479 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 480 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 481 #define MVNETA_RXD_L3_IP4 BIT(25) 482 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 483 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 484 485 #if defined(__LITTLE_ENDIAN) 486 struct mvneta_tx_desc { 487 u32 command; /* Options used by HW for packet transmitting.*/ 488 u16 reserverd1; /* csum_l4 (for future use) */ 489 u16 data_size; /* Data size of transmitted packet in bytes */ 490 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 491 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 492 u32 reserved3[4]; /* Reserved - (for future use) */ 493 }; 494 495 struct mvneta_rx_desc { 496 u32 status; /* Info about received packet */ 497 u16 reserved1; /* pnc_info - (for future use, PnC) */ 498 u16 data_size; /* Size of received packet in bytes */ 499 500 u32 buf_phys_addr; /* Physical address of the buffer */ 501 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 502 503 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 504 u16 reserved3; /* prefetch_cmd, for future use */ 505 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 506 507 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 508 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 509 }; 510 #else 511 struct mvneta_tx_desc { 512 u16 data_size; /* Data size of transmitted packet in bytes */ 513 u16 reserverd1; /* csum_l4 (for future use) */ 514 u32 command; /* Options used by HW for packet transmitting.*/ 515 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 516 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 517 u32 reserved3[4]; /* Reserved - (for future use) */ 518 }; 519 520 struct mvneta_rx_desc { 521 u16 data_size; /* Size of received packet in bytes */ 522 u16 reserved1; /* pnc_info - (for future use, PnC) */ 523 u32 status; /* Info about received packet */ 524 525 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 526 u32 buf_phys_addr; /* Physical address of the buffer */ 527 528 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 529 u16 reserved3; /* prefetch_cmd, for future use */ 530 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 531 532 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 533 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 534 }; 535 #endif 536 537 struct mvneta_tx_queue { 538 /* Number of this TX queue, in the range 0-7 */ 539 u8 id; 540 541 /* Number of TX DMA descriptors in the descriptor ring */ 542 int size; 543 544 /* Number of currently used TX DMA descriptor in the 545 * descriptor ring 546 */ 547 int count; 548 int pending; 549 int tx_stop_threshold; 550 int tx_wake_threshold; 551 552 /* Array of transmitted skb */ 553 struct sk_buff **tx_skb; 554 555 /* Index of last TX DMA descriptor that was inserted */ 556 int txq_put_index; 557 558 /* Index of the TX DMA descriptor to be cleaned up */ 559 int txq_get_index; 560 561 u32 done_pkts_coal; 562 563 /* Virtual address of the TX DMA descriptors array */ 564 struct mvneta_tx_desc *descs; 565 566 /* DMA address of the TX DMA descriptors array */ 567 dma_addr_t descs_phys; 568 569 /* Index of the last TX DMA descriptor */ 570 int last_desc; 571 572 /* Index of the next TX DMA descriptor to process */ 573 int next_desc_to_proc; 574 575 /* DMA buffers for TSO headers */ 576 char *tso_hdrs; 577 578 /* DMA address of TSO headers */ 579 dma_addr_t tso_hdrs_phys; 580 581 /* Affinity mask for CPUs*/ 582 cpumask_t affinity_mask; 583 }; 584 585 struct mvneta_rx_queue { 586 /* rx queue number, in the range 0-7 */ 587 u8 id; 588 589 /* num of rx descriptors in the rx descriptor ring */ 590 int size; 591 592 /* counter of times when mvneta_refill() failed */ 593 int missed; 594 595 u32 pkts_coal; 596 u32 time_coal; 597 598 /* Virtual address of the RX buffer */ 599 void **buf_virt_addr; 600 601 /* Virtual address of the RX DMA descriptors array */ 602 struct mvneta_rx_desc *descs; 603 604 /* DMA address of the RX DMA descriptors array */ 605 dma_addr_t descs_phys; 606 607 /* Index of the last RX DMA descriptor */ 608 int last_desc; 609 610 /* Index of the next RX DMA descriptor to process */ 611 int next_desc_to_proc; 612 }; 613 614 static enum cpuhp_state online_hpstate; 615 /* The hardware supports eight (8) rx queues, but we are only allowing 616 * the first one to be used. Therefore, let's just allocate one queue. 617 */ 618 static int rxq_number = 8; 619 static int txq_number = 8; 620 621 static int rxq_def; 622 623 static int rx_copybreak __read_mostly = 256; 624 625 /* HW BM need that each port be identify by a unique ID */ 626 static int global_port_id; 627 628 #define MVNETA_DRIVER_NAME "mvneta" 629 #define MVNETA_DRIVER_VERSION "1.0" 630 631 /* Utility/helper methods */ 632 633 /* Write helper method */ 634 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 635 { 636 writel(data, pp->base + offset); 637 } 638 639 /* Read helper method */ 640 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 641 { 642 return readl(pp->base + offset); 643 } 644 645 /* Increment txq get counter */ 646 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 647 { 648 txq->txq_get_index++; 649 if (txq->txq_get_index == txq->size) 650 txq->txq_get_index = 0; 651 } 652 653 /* Increment txq put counter */ 654 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 655 { 656 txq->txq_put_index++; 657 if (txq->txq_put_index == txq->size) 658 txq->txq_put_index = 0; 659 } 660 661 662 /* Clear all MIB counters */ 663 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 664 { 665 int i; 666 u32 dummy; 667 668 /* Perform dummy reads from MIB counters */ 669 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 670 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 671 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 672 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 673 } 674 675 /* Get System Network Statistics */ 676 static void 677 mvneta_get_stats64(struct net_device *dev, 678 struct rtnl_link_stats64 *stats) 679 { 680 struct mvneta_port *pp = netdev_priv(dev); 681 unsigned int start; 682 int cpu; 683 684 for_each_possible_cpu(cpu) { 685 struct mvneta_pcpu_stats *cpu_stats; 686 u64 rx_packets; 687 u64 rx_bytes; 688 u64 tx_packets; 689 u64 tx_bytes; 690 691 cpu_stats = per_cpu_ptr(pp->stats, cpu); 692 do { 693 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 694 rx_packets = cpu_stats->rx_packets; 695 rx_bytes = cpu_stats->rx_bytes; 696 tx_packets = cpu_stats->tx_packets; 697 tx_bytes = cpu_stats->tx_bytes; 698 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 699 700 stats->rx_packets += rx_packets; 701 stats->rx_bytes += rx_bytes; 702 stats->tx_packets += tx_packets; 703 stats->tx_bytes += tx_bytes; 704 } 705 706 stats->rx_errors = dev->stats.rx_errors; 707 stats->rx_dropped = dev->stats.rx_dropped; 708 709 stats->tx_dropped = dev->stats.tx_dropped; 710 } 711 712 /* Rx descriptors helper methods */ 713 714 /* Checks whether the RX descriptor having this status is both the first 715 * and the last descriptor for the RX packet. Each RX packet is currently 716 * received through a single RX descriptor, so not having each RX 717 * descriptor with its first and last bits set is an error 718 */ 719 static int mvneta_rxq_desc_is_first_last(u32 status) 720 { 721 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 722 MVNETA_RXD_FIRST_LAST_DESC; 723 } 724 725 /* Add number of descriptors ready to receive new packets */ 726 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 727 struct mvneta_rx_queue *rxq, 728 int ndescs) 729 { 730 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 731 * be added at once 732 */ 733 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 734 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 735 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 736 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 737 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 738 } 739 740 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 741 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 742 } 743 744 /* Get number of RX descriptors occupied by received packets */ 745 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 746 struct mvneta_rx_queue *rxq) 747 { 748 u32 val; 749 750 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 751 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 752 } 753 754 /* Update num of rx desc called upon return from rx path or 755 * from mvneta_rxq_drop_pkts(). 756 */ 757 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 758 struct mvneta_rx_queue *rxq, 759 int rx_done, int rx_filled) 760 { 761 u32 val; 762 763 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 764 val = rx_done | 765 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 766 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 767 return; 768 } 769 770 /* Only 255 descriptors can be added at once */ 771 while ((rx_done > 0) || (rx_filled > 0)) { 772 if (rx_done <= 0xff) { 773 val = rx_done; 774 rx_done = 0; 775 } else { 776 val = 0xff; 777 rx_done -= 0xff; 778 } 779 if (rx_filled <= 0xff) { 780 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 781 rx_filled = 0; 782 } else { 783 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 784 rx_filled -= 0xff; 785 } 786 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 787 } 788 } 789 790 /* Get pointer to next RX descriptor to be processed by SW */ 791 static struct mvneta_rx_desc * 792 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 793 { 794 int rx_desc = rxq->next_desc_to_proc; 795 796 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 797 prefetch(rxq->descs + rxq->next_desc_to_proc); 798 return rxq->descs + rx_desc; 799 } 800 801 /* Change maximum receive size of the port. */ 802 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 803 { 804 u32 val; 805 806 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 807 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 808 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 809 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 810 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 811 } 812 813 814 /* Set rx queue offset */ 815 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 816 struct mvneta_rx_queue *rxq, 817 int offset) 818 { 819 u32 val; 820 821 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 822 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 823 824 /* Offset is in */ 825 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 826 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 827 } 828 829 830 /* Tx descriptors helper methods */ 831 832 /* Update HW with number of TX descriptors to be sent */ 833 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 834 struct mvneta_tx_queue *txq, 835 int pend_desc) 836 { 837 u32 val; 838 839 pend_desc += txq->pending; 840 841 /* Only 255 Tx descriptors can be added at once */ 842 do { 843 val = min(pend_desc, 255); 844 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 845 pend_desc -= val; 846 } while (pend_desc > 0); 847 txq->pending = 0; 848 } 849 850 /* Get pointer to next TX descriptor to be processed (send) by HW */ 851 static struct mvneta_tx_desc * 852 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 853 { 854 int tx_desc = txq->next_desc_to_proc; 855 856 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 857 return txq->descs + tx_desc; 858 } 859 860 /* Release the last allocated TX descriptor. Useful to handle DMA 861 * mapping failures in the TX path. 862 */ 863 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 864 { 865 if (txq->next_desc_to_proc == 0) 866 txq->next_desc_to_proc = txq->last_desc - 1; 867 else 868 txq->next_desc_to_proc--; 869 } 870 871 /* Set rxq buf size */ 872 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 873 struct mvneta_rx_queue *rxq, 874 int buf_size) 875 { 876 u32 val; 877 878 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 879 880 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 881 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 882 883 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 884 } 885 886 /* Disable buffer management (BM) */ 887 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 888 struct mvneta_rx_queue *rxq) 889 { 890 u32 val; 891 892 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 893 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 894 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 895 } 896 897 /* Enable buffer management (BM) */ 898 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 899 struct mvneta_rx_queue *rxq) 900 { 901 u32 val; 902 903 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 904 val |= MVNETA_RXQ_HW_BUF_ALLOC; 905 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 906 } 907 908 /* Notify HW about port's assignment of pool for bigger packets */ 909 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 910 struct mvneta_rx_queue *rxq) 911 { 912 u32 val; 913 914 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 915 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 916 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 917 918 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 919 } 920 921 /* Notify HW about port's assignment of pool for smaller packets */ 922 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 923 struct mvneta_rx_queue *rxq) 924 { 925 u32 val; 926 927 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 928 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 929 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 930 931 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 932 } 933 934 /* Set port's receive buffer size for assigned BM pool */ 935 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 936 int buf_size, 937 u8 pool_id) 938 { 939 u32 val; 940 941 if (!IS_ALIGNED(buf_size, 8)) { 942 dev_warn(pp->dev->dev.parent, 943 "illegal buf_size value %d, round to %d\n", 944 buf_size, ALIGN(buf_size, 8)); 945 buf_size = ALIGN(buf_size, 8); 946 } 947 948 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 949 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 950 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 951 } 952 953 /* Configure MBUS window in order to enable access BM internal SRAM */ 954 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 955 u8 target, u8 attr) 956 { 957 u32 win_enable, win_protect; 958 int i; 959 960 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 961 962 if (pp->bm_win_id < 0) { 963 /* Find first not occupied window */ 964 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 965 if (win_enable & (1 << i)) { 966 pp->bm_win_id = i; 967 break; 968 } 969 } 970 if (i == MVNETA_MAX_DECODE_WIN) 971 return -ENOMEM; 972 } else { 973 i = pp->bm_win_id; 974 } 975 976 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 977 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 978 979 if (i < 4) 980 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 981 982 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 983 (attr << 8) | target); 984 985 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 986 987 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 988 win_protect |= 3 << (2 * i); 989 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 990 991 win_enable &= ~(1 << i); 992 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 993 994 return 0; 995 } 996 997 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 998 { 999 u32 wsize; 1000 u8 target, attr; 1001 int err; 1002 1003 /* Get BM window information */ 1004 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1005 &target, &attr); 1006 if (err < 0) 1007 return err; 1008 1009 pp->bm_win_id = -1; 1010 1011 /* Open NETA -> BM window */ 1012 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1013 target, attr); 1014 if (err < 0) { 1015 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1016 return err; 1017 } 1018 return 0; 1019 } 1020 1021 /* Assign and initialize pools for port. In case of fail 1022 * buffer manager will remain disabled for current port. 1023 */ 1024 static int mvneta_bm_port_init(struct platform_device *pdev, 1025 struct mvneta_port *pp) 1026 { 1027 struct device_node *dn = pdev->dev.of_node; 1028 u32 long_pool_id, short_pool_id; 1029 1030 if (!pp->neta_armada3700) { 1031 int ret; 1032 1033 ret = mvneta_bm_port_mbus_init(pp); 1034 if (ret) 1035 return ret; 1036 } 1037 1038 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1039 netdev_info(pp->dev, "missing long pool id\n"); 1040 return -EINVAL; 1041 } 1042 1043 /* Create port's long pool depending on mtu */ 1044 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1045 MVNETA_BM_LONG, pp->id, 1046 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1047 if (!pp->pool_long) { 1048 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1049 return -ENOMEM; 1050 } 1051 1052 pp->pool_long->port_map |= 1 << pp->id; 1053 1054 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1055 pp->pool_long->id); 1056 1057 /* If short pool id is not defined, assume using single pool */ 1058 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1059 short_pool_id = long_pool_id; 1060 1061 /* Create port's short pool */ 1062 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1063 MVNETA_BM_SHORT, pp->id, 1064 MVNETA_BM_SHORT_PKT_SIZE); 1065 if (!pp->pool_short) { 1066 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1067 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1068 return -ENOMEM; 1069 } 1070 1071 if (short_pool_id != long_pool_id) { 1072 pp->pool_short->port_map |= 1 << pp->id; 1073 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1074 pp->pool_short->id); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* Update settings of a pool for bigger packets */ 1081 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1082 { 1083 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1084 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1085 int num; 1086 1087 /* Release all buffers from long pool */ 1088 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1089 if (hwbm_pool->buf_num) { 1090 WARN(1, "cannot free all buffers in pool %d\n", 1091 bm_pool->id); 1092 goto bm_mtu_err; 1093 } 1094 1095 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1096 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1097 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1098 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1099 1100 /* Fill entire long pool */ 1101 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1102 if (num != hwbm_pool->size) { 1103 WARN(1, "pool %d: %d of %d allocated\n", 1104 bm_pool->id, num, hwbm_pool->size); 1105 goto bm_mtu_err; 1106 } 1107 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1108 1109 return; 1110 1111 bm_mtu_err: 1112 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1113 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1114 1115 pp->bm_priv = NULL; 1116 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1117 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1118 } 1119 1120 /* Start the Ethernet port RX and TX activity */ 1121 static void mvneta_port_up(struct mvneta_port *pp) 1122 { 1123 int queue; 1124 u32 q_map; 1125 1126 /* Enable all initialized TXs. */ 1127 q_map = 0; 1128 for (queue = 0; queue < txq_number; queue++) { 1129 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1130 if (txq->descs) 1131 q_map |= (1 << queue); 1132 } 1133 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1134 1135 /* Enable all initialized RXQs. */ 1136 for (queue = 0; queue < rxq_number; queue++) { 1137 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1138 1139 if (rxq->descs) 1140 q_map |= (1 << queue); 1141 } 1142 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1143 } 1144 1145 /* Stop the Ethernet port activity */ 1146 static void mvneta_port_down(struct mvneta_port *pp) 1147 { 1148 u32 val; 1149 int count; 1150 1151 /* Stop Rx port activity. Check port Rx activity. */ 1152 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1153 1154 /* Issue stop command for active channels only */ 1155 if (val != 0) 1156 mvreg_write(pp, MVNETA_RXQ_CMD, 1157 val << MVNETA_RXQ_DISABLE_SHIFT); 1158 1159 /* Wait for all Rx activity to terminate. */ 1160 count = 0; 1161 do { 1162 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1163 netdev_warn(pp->dev, 1164 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1165 val); 1166 break; 1167 } 1168 mdelay(1); 1169 1170 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1171 } while (val & MVNETA_RXQ_ENABLE_MASK); 1172 1173 /* Stop Tx port activity. Check port Tx activity. Issue stop 1174 * command for active channels only 1175 */ 1176 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1177 1178 if (val != 0) 1179 mvreg_write(pp, MVNETA_TXQ_CMD, 1180 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1181 1182 /* Wait for all Tx activity to terminate. */ 1183 count = 0; 1184 do { 1185 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1186 netdev_warn(pp->dev, 1187 "TIMEOUT for TX stopped status=0x%08x\n", 1188 val); 1189 break; 1190 } 1191 mdelay(1); 1192 1193 /* Check TX Command reg that all Txqs are stopped */ 1194 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1195 1196 } while (val & MVNETA_TXQ_ENABLE_MASK); 1197 1198 /* Double check to verify that TX FIFO is empty */ 1199 count = 0; 1200 do { 1201 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1202 netdev_warn(pp->dev, 1203 "TX FIFO empty timeout status=0x%08x\n", 1204 val); 1205 break; 1206 } 1207 mdelay(1); 1208 1209 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1210 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1211 (val & MVNETA_TX_IN_PRGRS)); 1212 1213 udelay(200); 1214 } 1215 1216 /* Enable the port by setting the port enable bit of the MAC control register */ 1217 static void mvneta_port_enable(struct mvneta_port *pp) 1218 { 1219 u32 val; 1220 1221 /* Enable port */ 1222 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1223 val |= MVNETA_GMAC0_PORT_ENABLE; 1224 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1225 } 1226 1227 /* Disable the port and wait for about 200 usec before retuning */ 1228 static void mvneta_port_disable(struct mvneta_port *pp) 1229 { 1230 u32 val; 1231 1232 /* Reset the Enable bit in the Serial Control Register */ 1233 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1234 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1235 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1236 1237 udelay(200); 1238 } 1239 1240 /* Multicast tables methods */ 1241 1242 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1243 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1244 { 1245 int offset; 1246 u32 val; 1247 1248 if (queue == -1) { 1249 val = 0; 1250 } else { 1251 val = 0x1 | (queue << 1); 1252 val |= (val << 24) | (val << 16) | (val << 8); 1253 } 1254 1255 for (offset = 0; offset <= 0xc; offset += 4) 1256 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1257 } 1258 1259 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1260 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1261 { 1262 int offset; 1263 u32 val; 1264 1265 if (queue == -1) { 1266 val = 0; 1267 } else { 1268 val = 0x1 | (queue << 1); 1269 val |= (val << 24) | (val << 16) | (val << 8); 1270 } 1271 1272 for (offset = 0; offset <= 0xfc; offset += 4) 1273 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1274 1275 } 1276 1277 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1278 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1279 { 1280 int offset; 1281 u32 val; 1282 1283 if (queue == -1) { 1284 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1285 val = 0; 1286 } else { 1287 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1288 val = 0x1 | (queue << 1); 1289 val |= (val << 24) | (val << 16) | (val << 8); 1290 } 1291 1292 for (offset = 0; offset <= 0xfc; offset += 4) 1293 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1294 } 1295 1296 static void mvneta_percpu_unmask_interrupt(void *arg) 1297 { 1298 struct mvneta_port *pp = arg; 1299 1300 /* All the queue are unmasked, but actually only the ones 1301 * mapped to this CPU will be unmasked 1302 */ 1303 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1304 MVNETA_RX_INTR_MASK_ALL | 1305 MVNETA_TX_INTR_MASK_ALL | 1306 MVNETA_MISCINTR_INTR_MASK); 1307 } 1308 1309 static void mvneta_percpu_mask_interrupt(void *arg) 1310 { 1311 struct mvneta_port *pp = arg; 1312 1313 /* All the queue are masked, but actually only the ones 1314 * mapped to this CPU will be masked 1315 */ 1316 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1317 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1318 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1319 } 1320 1321 static void mvneta_percpu_clear_intr_cause(void *arg) 1322 { 1323 struct mvneta_port *pp = arg; 1324 1325 /* All the queue are cleared, but actually only the ones 1326 * mapped to this CPU will be cleared 1327 */ 1328 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1329 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1330 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1331 } 1332 1333 /* This method sets defaults to the NETA port: 1334 * Clears interrupt Cause and Mask registers. 1335 * Clears all MAC tables. 1336 * Sets defaults to all registers. 1337 * Resets RX and TX descriptor rings. 1338 * Resets PHY. 1339 * This method can be called after mvneta_port_down() to return the port 1340 * settings to defaults. 1341 */ 1342 static void mvneta_defaults_set(struct mvneta_port *pp) 1343 { 1344 int cpu; 1345 int queue; 1346 u32 val; 1347 int max_cpu = num_present_cpus(); 1348 1349 /* Clear all Cause registers */ 1350 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1351 1352 /* Mask all interrupts */ 1353 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1354 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1355 1356 /* Enable MBUS Retry bit16 */ 1357 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1358 1359 /* Set CPU queue access map. CPUs are assigned to the RX and 1360 * TX queues modulo their number. If there is only one TX 1361 * queue then it is assigned to the CPU associated to the 1362 * default RX queue. 1363 */ 1364 for_each_present_cpu(cpu) { 1365 int rxq_map = 0, txq_map = 0; 1366 int rxq, txq; 1367 if (!pp->neta_armada3700) { 1368 for (rxq = 0; rxq < rxq_number; rxq++) 1369 if ((rxq % max_cpu) == cpu) 1370 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1371 1372 for (txq = 0; txq < txq_number; txq++) 1373 if ((txq % max_cpu) == cpu) 1374 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1375 1376 /* With only one TX queue we configure a special case 1377 * which will allow to get all the irq on a single 1378 * CPU 1379 */ 1380 if (txq_number == 1) 1381 txq_map = (cpu == pp->rxq_def) ? 1382 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1383 1384 } else { 1385 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1386 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1387 } 1388 1389 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1390 } 1391 1392 /* Reset RX and TX DMAs */ 1393 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1394 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1395 1396 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1397 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1398 for (queue = 0; queue < txq_number; queue++) { 1399 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1400 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1401 } 1402 1403 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1404 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1405 1406 /* Set Port Acceleration Mode */ 1407 if (pp->bm_priv) 1408 /* HW buffer management + legacy parser */ 1409 val = MVNETA_ACC_MODE_EXT2; 1410 else 1411 /* SW buffer management + legacy parser */ 1412 val = MVNETA_ACC_MODE_EXT1; 1413 mvreg_write(pp, MVNETA_ACC_MODE, val); 1414 1415 if (pp->bm_priv) 1416 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1417 1418 /* Update val of portCfg register accordingly with all RxQueue types */ 1419 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1420 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1421 1422 val = 0; 1423 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1424 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1425 1426 /* Build PORT_SDMA_CONFIG_REG */ 1427 val = 0; 1428 1429 /* Default burst size */ 1430 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1431 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1432 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1433 1434 #if defined(__BIG_ENDIAN) 1435 val |= MVNETA_DESC_SWAP; 1436 #endif 1437 1438 /* Assign port SDMA configuration */ 1439 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1440 1441 /* Disable PHY polling in hardware, since we're using the 1442 * kernel phylib to do this. 1443 */ 1444 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1445 val &= ~MVNETA_PHY_POLLING_ENABLE; 1446 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1447 1448 mvneta_set_ucast_table(pp, -1); 1449 mvneta_set_special_mcast_table(pp, -1); 1450 mvneta_set_other_mcast_table(pp, -1); 1451 1452 /* Set port interrupt enable register - default enable all */ 1453 mvreg_write(pp, MVNETA_INTR_ENABLE, 1454 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1455 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1456 1457 mvneta_mib_counters_clear(pp); 1458 } 1459 1460 /* Set max sizes for tx queues */ 1461 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1462 1463 { 1464 u32 val, size, mtu; 1465 int queue; 1466 1467 mtu = max_tx_size * 8; 1468 if (mtu > MVNETA_TX_MTU_MAX) 1469 mtu = MVNETA_TX_MTU_MAX; 1470 1471 /* Set MTU */ 1472 val = mvreg_read(pp, MVNETA_TX_MTU); 1473 val &= ~MVNETA_TX_MTU_MAX; 1474 val |= mtu; 1475 mvreg_write(pp, MVNETA_TX_MTU, val); 1476 1477 /* TX token size and all TXQs token size must be larger that MTU */ 1478 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1479 1480 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1481 if (size < mtu) { 1482 size = mtu; 1483 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1484 val |= size; 1485 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1486 } 1487 for (queue = 0; queue < txq_number; queue++) { 1488 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1489 1490 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1491 if (size < mtu) { 1492 size = mtu; 1493 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1494 val |= size; 1495 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1496 } 1497 } 1498 } 1499 1500 /* Set unicast address */ 1501 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1502 int queue) 1503 { 1504 unsigned int unicast_reg; 1505 unsigned int tbl_offset; 1506 unsigned int reg_offset; 1507 1508 /* Locate the Unicast table entry */ 1509 last_nibble = (0xf & last_nibble); 1510 1511 /* offset from unicast tbl base */ 1512 tbl_offset = (last_nibble / 4) * 4; 1513 1514 /* offset within the above reg */ 1515 reg_offset = last_nibble % 4; 1516 1517 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1518 1519 if (queue == -1) { 1520 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1521 unicast_reg &= ~(0xff << (8 * reg_offset)); 1522 } else { 1523 unicast_reg &= ~(0xff << (8 * reg_offset)); 1524 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1525 } 1526 1527 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1528 } 1529 1530 /* Set mac address */ 1531 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1532 int queue) 1533 { 1534 unsigned int mac_h; 1535 unsigned int mac_l; 1536 1537 if (queue != -1) { 1538 mac_l = (addr[4] << 8) | (addr[5]); 1539 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1540 (addr[2] << 8) | (addr[3] << 0); 1541 1542 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1543 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1544 } 1545 1546 /* Accept frames of this address */ 1547 mvneta_set_ucast_addr(pp, addr[5], queue); 1548 } 1549 1550 /* Set the number of packets that will be received before RX interrupt 1551 * will be generated by HW. 1552 */ 1553 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1554 struct mvneta_rx_queue *rxq, u32 value) 1555 { 1556 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1557 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1558 rxq->pkts_coal = value; 1559 } 1560 1561 /* Set the time delay in usec before RX interrupt will be generated by 1562 * HW. 1563 */ 1564 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1565 struct mvneta_rx_queue *rxq, u32 value) 1566 { 1567 u32 val; 1568 unsigned long clk_rate; 1569 1570 clk_rate = clk_get_rate(pp->clk); 1571 val = (clk_rate / 1000000) * value; 1572 1573 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1574 rxq->time_coal = value; 1575 } 1576 1577 /* Set threshold for TX_DONE pkts coalescing */ 1578 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1579 struct mvneta_tx_queue *txq, u32 value) 1580 { 1581 u32 val; 1582 1583 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1584 1585 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1586 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1587 1588 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1589 1590 txq->done_pkts_coal = value; 1591 } 1592 1593 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1594 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1595 u32 phys_addr, void *virt_addr, 1596 struct mvneta_rx_queue *rxq) 1597 { 1598 int i; 1599 1600 rx_desc->buf_phys_addr = phys_addr; 1601 i = rx_desc - rxq->descs; 1602 rxq->buf_virt_addr[i] = virt_addr; 1603 } 1604 1605 /* Decrement sent descriptors counter */ 1606 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1607 struct mvneta_tx_queue *txq, 1608 int sent_desc) 1609 { 1610 u32 val; 1611 1612 /* Only 255 TX descriptors can be updated at once */ 1613 while (sent_desc > 0xff) { 1614 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1615 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1616 sent_desc = sent_desc - 0xff; 1617 } 1618 1619 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1620 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1621 } 1622 1623 /* Get number of TX descriptors already sent by HW */ 1624 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1625 struct mvneta_tx_queue *txq) 1626 { 1627 u32 val; 1628 int sent_desc; 1629 1630 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1631 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1632 MVNETA_TXQ_SENT_DESC_SHIFT; 1633 1634 return sent_desc; 1635 } 1636 1637 /* Get number of sent descriptors and decrement counter. 1638 * The number of sent descriptors is returned. 1639 */ 1640 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1641 struct mvneta_tx_queue *txq) 1642 { 1643 int sent_desc; 1644 1645 /* Get number of sent descriptors */ 1646 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1647 1648 /* Decrement sent descriptors counter */ 1649 if (sent_desc) 1650 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1651 1652 return sent_desc; 1653 } 1654 1655 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1656 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1657 int ip_hdr_len, int l4_proto) 1658 { 1659 u32 command; 1660 1661 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1662 * G_L4_chk, L4_type; required only for checksum 1663 * calculation 1664 */ 1665 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1666 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1667 1668 if (l3_proto == htons(ETH_P_IP)) 1669 command |= MVNETA_TXD_IP_CSUM; 1670 else 1671 command |= MVNETA_TX_L3_IP6; 1672 1673 if (l4_proto == IPPROTO_TCP) 1674 command |= MVNETA_TX_L4_CSUM_FULL; 1675 else if (l4_proto == IPPROTO_UDP) 1676 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1677 else 1678 command |= MVNETA_TX_L4_CSUM_NOT; 1679 1680 return command; 1681 } 1682 1683 1684 /* Display more error info */ 1685 static void mvneta_rx_error(struct mvneta_port *pp, 1686 struct mvneta_rx_desc *rx_desc) 1687 { 1688 u32 status = rx_desc->status; 1689 1690 if (!mvneta_rxq_desc_is_first_last(status)) { 1691 netdev_err(pp->dev, 1692 "bad rx status %08x (buffer oversize), size=%d\n", 1693 status, rx_desc->data_size); 1694 return; 1695 } 1696 1697 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1698 case MVNETA_RXD_ERR_CRC: 1699 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1700 status, rx_desc->data_size); 1701 break; 1702 case MVNETA_RXD_ERR_OVERRUN: 1703 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1704 status, rx_desc->data_size); 1705 break; 1706 case MVNETA_RXD_ERR_LEN: 1707 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1708 status, rx_desc->data_size); 1709 break; 1710 case MVNETA_RXD_ERR_RESOURCE: 1711 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1712 status, rx_desc->data_size); 1713 break; 1714 } 1715 } 1716 1717 /* Handle RX checksum offload based on the descriptor's status */ 1718 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1719 struct sk_buff *skb) 1720 { 1721 if ((status & MVNETA_RXD_L3_IP4) && 1722 (status & MVNETA_RXD_L4_CSUM_OK)) { 1723 skb->csum = 0; 1724 skb->ip_summed = CHECKSUM_UNNECESSARY; 1725 return; 1726 } 1727 1728 skb->ip_summed = CHECKSUM_NONE; 1729 } 1730 1731 /* Return tx queue pointer (find last set bit) according to <cause> returned 1732 * form tx_done reg. <cause> must not be null. The return value is always a 1733 * valid queue for matching the first one found in <cause>. 1734 */ 1735 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1736 u32 cause) 1737 { 1738 int queue = fls(cause) - 1; 1739 1740 return &pp->txqs[queue]; 1741 } 1742 1743 /* Free tx queue skbuffs */ 1744 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1745 struct mvneta_tx_queue *txq, int num, 1746 struct netdev_queue *nq) 1747 { 1748 unsigned int bytes_compl = 0, pkts_compl = 0; 1749 int i; 1750 1751 for (i = 0; i < num; i++) { 1752 struct mvneta_tx_desc *tx_desc = txq->descs + 1753 txq->txq_get_index; 1754 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1755 1756 if (skb) { 1757 bytes_compl += skb->len; 1758 pkts_compl++; 1759 } 1760 1761 mvneta_txq_inc_get(txq); 1762 1763 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1764 dma_unmap_single(pp->dev->dev.parent, 1765 tx_desc->buf_phys_addr, 1766 tx_desc->data_size, DMA_TO_DEVICE); 1767 if (!skb) 1768 continue; 1769 dev_kfree_skb_any(skb); 1770 } 1771 1772 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1773 } 1774 1775 /* Handle end of transmission */ 1776 static void mvneta_txq_done(struct mvneta_port *pp, 1777 struct mvneta_tx_queue *txq) 1778 { 1779 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1780 int tx_done; 1781 1782 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1783 if (!tx_done) 1784 return; 1785 1786 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1787 1788 txq->count -= tx_done; 1789 1790 if (netif_tx_queue_stopped(nq)) { 1791 if (txq->count <= txq->tx_wake_threshold) 1792 netif_tx_wake_queue(nq); 1793 } 1794 } 1795 1796 void *mvneta_frag_alloc(unsigned int frag_size) 1797 { 1798 if (likely(frag_size <= PAGE_SIZE)) 1799 return netdev_alloc_frag(frag_size); 1800 else 1801 return kmalloc(frag_size, GFP_ATOMIC); 1802 } 1803 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1804 1805 void mvneta_frag_free(unsigned int frag_size, void *data) 1806 { 1807 if (likely(frag_size <= PAGE_SIZE)) 1808 skb_free_frag(data); 1809 else 1810 kfree(data); 1811 } 1812 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1813 1814 /* Refill processing for SW buffer management */ 1815 static int mvneta_rx_refill(struct mvneta_port *pp, 1816 struct mvneta_rx_desc *rx_desc, 1817 struct mvneta_rx_queue *rxq) 1818 1819 { 1820 dma_addr_t phys_addr; 1821 void *data; 1822 1823 data = mvneta_frag_alloc(pp->frag_size); 1824 if (!data) 1825 return -ENOMEM; 1826 1827 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1828 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1829 DMA_FROM_DEVICE); 1830 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1831 mvneta_frag_free(pp->frag_size, data); 1832 return -ENOMEM; 1833 } 1834 1835 phys_addr += pp->rx_offset_correction; 1836 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1837 return 0; 1838 } 1839 1840 /* Handle tx checksum */ 1841 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1842 { 1843 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1844 int ip_hdr_len = 0; 1845 __be16 l3_proto = vlan_get_protocol(skb); 1846 u8 l4_proto; 1847 1848 if (l3_proto == htons(ETH_P_IP)) { 1849 struct iphdr *ip4h = ip_hdr(skb); 1850 1851 /* Calculate IPv4 checksum and L4 checksum */ 1852 ip_hdr_len = ip4h->ihl; 1853 l4_proto = ip4h->protocol; 1854 } else if (l3_proto == htons(ETH_P_IPV6)) { 1855 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1856 1857 /* Read l4_protocol from one of IPv6 extra headers */ 1858 if (skb_network_header_len(skb) > 0) 1859 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1860 l4_proto = ip6h->nexthdr; 1861 } else 1862 return MVNETA_TX_L4_CSUM_NOT; 1863 1864 return mvneta_txq_desc_csum(skb_network_offset(skb), 1865 l3_proto, ip_hdr_len, l4_proto); 1866 } 1867 1868 return MVNETA_TX_L4_CSUM_NOT; 1869 } 1870 1871 /* Drop packets received by the RXQ and free buffers */ 1872 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1873 struct mvneta_rx_queue *rxq) 1874 { 1875 int rx_done, i; 1876 1877 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1878 if (rx_done) 1879 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1880 1881 if (pp->bm_priv) { 1882 for (i = 0; i < rx_done; i++) { 1883 struct mvneta_rx_desc *rx_desc = 1884 mvneta_rxq_next_desc_get(rxq); 1885 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1886 struct mvneta_bm_pool *bm_pool; 1887 1888 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1889 /* Return dropped buffer to the pool */ 1890 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1891 rx_desc->buf_phys_addr); 1892 } 1893 return; 1894 } 1895 1896 for (i = 0; i < rxq->size; i++) { 1897 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1898 void *data = rxq->buf_virt_addr[i]; 1899 1900 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1901 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1902 mvneta_frag_free(pp->frag_size, data); 1903 } 1904 } 1905 1906 /* Main rx processing when using software buffer management */ 1907 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1908 struct mvneta_rx_queue *rxq) 1909 { 1910 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1911 struct net_device *dev = pp->dev; 1912 int rx_done; 1913 u32 rcvd_pkts = 0; 1914 u32 rcvd_bytes = 0; 1915 1916 /* Get number of received packets */ 1917 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1918 1919 if (rx_todo > rx_done) 1920 rx_todo = rx_done; 1921 1922 rx_done = 0; 1923 1924 /* Fairness NAPI loop */ 1925 while (rx_done < rx_todo) { 1926 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1927 struct sk_buff *skb; 1928 unsigned char *data; 1929 dma_addr_t phys_addr; 1930 u32 rx_status, frag_size; 1931 int rx_bytes, err, index; 1932 1933 rx_done++; 1934 rx_status = rx_desc->status; 1935 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1936 index = rx_desc - rxq->descs; 1937 data = rxq->buf_virt_addr[index]; 1938 phys_addr = rx_desc->buf_phys_addr; 1939 1940 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1941 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1942 mvneta_rx_error(pp, rx_desc); 1943 err_drop_frame: 1944 dev->stats.rx_errors++; 1945 /* leave the descriptor untouched */ 1946 continue; 1947 } 1948 1949 if (rx_bytes <= rx_copybreak) { 1950 /* better copy a small frame and not unmap the DMA region */ 1951 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1952 if (unlikely(!skb)) 1953 goto err_drop_frame; 1954 1955 dma_sync_single_range_for_cpu(dev->dev.parent, 1956 phys_addr, 1957 MVNETA_MH_SIZE + NET_SKB_PAD, 1958 rx_bytes, 1959 DMA_FROM_DEVICE); 1960 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 1961 rx_bytes); 1962 1963 skb->protocol = eth_type_trans(skb, dev); 1964 mvneta_rx_csum(pp, rx_status, skb); 1965 napi_gro_receive(&port->napi, skb); 1966 1967 rcvd_pkts++; 1968 rcvd_bytes += rx_bytes; 1969 1970 /* leave the descriptor and buffer untouched */ 1971 continue; 1972 } 1973 1974 /* Refill processing */ 1975 err = mvneta_rx_refill(pp, rx_desc, rxq); 1976 if (err) { 1977 netdev_err(dev, "Linux processing - Can't refill\n"); 1978 rxq->missed++; 1979 goto err_drop_frame; 1980 } 1981 1982 frag_size = pp->frag_size; 1983 1984 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 1985 1986 /* After refill old buffer has to be unmapped regardless 1987 * the skb is successfully built or not. 1988 */ 1989 dma_unmap_single(dev->dev.parent, phys_addr, 1990 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1991 DMA_FROM_DEVICE); 1992 1993 if (!skb) 1994 goto err_drop_frame; 1995 1996 rcvd_pkts++; 1997 rcvd_bytes += rx_bytes; 1998 1999 /* Linux processing */ 2000 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2001 skb_put(skb, rx_bytes); 2002 2003 skb->protocol = eth_type_trans(skb, dev); 2004 2005 mvneta_rx_csum(pp, rx_status, skb); 2006 2007 napi_gro_receive(&port->napi, skb); 2008 } 2009 2010 if (rcvd_pkts) { 2011 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2012 2013 u64_stats_update_begin(&stats->syncp); 2014 stats->rx_packets += rcvd_pkts; 2015 stats->rx_bytes += rcvd_bytes; 2016 u64_stats_update_end(&stats->syncp); 2017 } 2018 2019 /* Update rxq management counters */ 2020 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2021 2022 return rx_done; 2023 } 2024 2025 /* Main rx processing when using hardware buffer management */ 2026 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2027 struct mvneta_rx_queue *rxq) 2028 { 2029 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2030 struct net_device *dev = pp->dev; 2031 int rx_done; 2032 u32 rcvd_pkts = 0; 2033 u32 rcvd_bytes = 0; 2034 2035 /* Get number of received packets */ 2036 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2037 2038 if (rx_todo > rx_done) 2039 rx_todo = rx_done; 2040 2041 rx_done = 0; 2042 2043 /* Fairness NAPI loop */ 2044 while (rx_done < rx_todo) { 2045 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2046 struct mvneta_bm_pool *bm_pool = NULL; 2047 struct sk_buff *skb; 2048 unsigned char *data; 2049 dma_addr_t phys_addr; 2050 u32 rx_status, frag_size; 2051 int rx_bytes, err; 2052 u8 pool_id; 2053 2054 rx_done++; 2055 rx_status = rx_desc->status; 2056 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2057 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2058 phys_addr = rx_desc->buf_phys_addr; 2059 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2060 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2061 2062 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2063 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2064 err_drop_frame_ret_pool: 2065 /* Return the buffer to the pool */ 2066 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2067 rx_desc->buf_phys_addr); 2068 err_drop_frame: 2069 dev->stats.rx_errors++; 2070 mvneta_rx_error(pp, rx_desc); 2071 /* leave the descriptor untouched */ 2072 continue; 2073 } 2074 2075 if (rx_bytes <= rx_copybreak) { 2076 /* better copy a small frame and not unmap the DMA region */ 2077 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2078 if (unlikely(!skb)) 2079 goto err_drop_frame_ret_pool; 2080 2081 dma_sync_single_range_for_cpu(dev->dev.parent, 2082 rx_desc->buf_phys_addr, 2083 MVNETA_MH_SIZE + NET_SKB_PAD, 2084 rx_bytes, 2085 DMA_FROM_DEVICE); 2086 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2087 rx_bytes); 2088 2089 skb->protocol = eth_type_trans(skb, dev); 2090 mvneta_rx_csum(pp, rx_status, skb); 2091 napi_gro_receive(&port->napi, skb); 2092 2093 rcvd_pkts++; 2094 rcvd_bytes += rx_bytes; 2095 2096 /* Return the buffer to the pool */ 2097 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2098 rx_desc->buf_phys_addr); 2099 2100 /* leave the descriptor and buffer untouched */ 2101 continue; 2102 } 2103 2104 /* Refill processing */ 2105 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2106 if (err) { 2107 netdev_err(dev, "Linux processing - Can't refill\n"); 2108 rxq->missed++; 2109 goto err_drop_frame_ret_pool; 2110 } 2111 2112 frag_size = bm_pool->hwbm_pool.frag_size; 2113 2114 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2115 2116 /* After refill old buffer has to be unmapped regardless 2117 * the skb is successfully built or not. 2118 */ 2119 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2120 bm_pool->buf_size, DMA_FROM_DEVICE); 2121 if (!skb) 2122 goto err_drop_frame; 2123 2124 rcvd_pkts++; 2125 rcvd_bytes += rx_bytes; 2126 2127 /* Linux processing */ 2128 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2129 skb_put(skb, rx_bytes); 2130 2131 skb->protocol = eth_type_trans(skb, dev); 2132 2133 mvneta_rx_csum(pp, rx_status, skb); 2134 2135 napi_gro_receive(&port->napi, skb); 2136 } 2137 2138 if (rcvd_pkts) { 2139 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2140 2141 u64_stats_update_begin(&stats->syncp); 2142 stats->rx_packets += rcvd_pkts; 2143 stats->rx_bytes += rcvd_bytes; 2144 u64_stats_update_end(&stats->syncp); 2145 } 2146 2147 /* Update rxq management counters */ 2148 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2149 2150 return rx_done; 2151 } 2152 2153 static inline void 2154 mvneta_tso_put_hdr(struct sk_buff *skb, 2155 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2156 { 2157 struct mvneta_tx_desc *tx_desc; 2158 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2159 2160 txq->tx_skb[txq->txq_put_index] = NULL; 2161 tx_desc = mvneta_txq_next_desc_get(txq); 2162 tx_desc->data_size = hdr_len; 2163 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2164 tx_desc->command |= MVNETA_TXD_F_DESC; 2165 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2166 txq->txq_put_index * TSO_HEADER_SIZE; 2167 mvneta_txq_inc_put(txq); 2168 } 2169 2170 static inline int 2171 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2172 struct sk_buff *skb, char *data, int size, 2173 bool last_tcp, bool is_last) 2174 { 2175 struct mvneta_tx_desc *tx_desc; 2176 2177 tx_desc = mvneta_txq_next_desc_get(txq); 2178 tx_desc->data_size = size; 2179 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2180 size, DMA_TO_DEVICE); 2181 if (unlikely(dma_mapping_error(dev->dev.parent, 2182 tx_desc->buf_phys_addr))) { 2183 mvneta_txq_desc_put(txq); 2184 return -ENOMEM; 2185 } 2186 2187 tx_desc->command = 0; 2188 txq->tx_skb[txq->txq_put_index] = NULL; 2189 2190 if (last_tcp) { 2191 /* last descriptor in the TCP packet */ 2192 tx_desc->command = MVNETA_TXD_L_DESC; 2193 2194 /* last descriptor in SKB */ 2195 if (is_last) 2196 txq->tx_skb[txq->txq_put_index] = skb; 2197 } 2198 mvneta_txq_inc_put(txq); 2199 return 0; 2200 } 2201 2202 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2203 struct mvneta_tx_queue *txq) 2204 { 2205 int total_len, data_left; 2206 int desc_count = 0; 2207 struct mvneta_port *pp = netdev_priv(dev); 2208 struct tso_t tso; 2209 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2210 int i; 2211 2212 /* Count needed descriptors */ 2213 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2214 return 0; 2215 2216 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2217 pr_info("*** Is this even possible???!?!?\n"); 2218 return 0; 2219 } 2220 2221 /* Initialize the TSO handler, and prepare the first payload */ 2222 tso_start(skb, &tso); 2223 2224 total_len = skb->len - hdr_len; 2225 while (total_len > 0) { 2226 char *hdr; 2227 2228 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2229 total_len -= data_left; 2230 desc_count++; 2231 2232 /* prepare packet headers: MAC + IP + TCP */ 2233 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2234 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2235 2236 mvneta_tso_put_hdr(skb, pp, txq); 2237 2238 while (data_left > 0) { 2239 int size; 2240 desc_count++; 2241 2242 size = min_t(int, tso.size, data_left); 2243 2244 if (mvneta_tso_put_data(dev, txq, skb, 2245 tso.data, size, 2246 size == data_left, 2247 total_len == 0)) 2248 goto err_release; 2249 data_left -= size; 2250 2251 tso_build_data(skb, &tso, size); 2252 } 2253 } 2254 2255 return desc_count; 2256 2257 err_release: 2258 /* Release all used data descriptors; header descriptors must not 2259 * be DMA-unmapped. 2260 */ 2261 for (i = desc_count - 1; i >= 0; i--) { 2262 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2263 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2264 dma_unmap_single(pp->dev->dev.parent, 2265 tx_desc->buf_phys_addr, 2266 tx_desc->data_size, 2267 DMA_TO_DEVICE); 2268 mvneta_txq_desc_put(txq); 2269 } 2270 return 0; 2271 } 2272 2273 /* Handle tx fragmentation processing */ 2274 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2275 struct mvneta_tx_queue *txq) 2276 { 2277 struct mvneta_tx_desc *tx_desc; 2278 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2279 2280 for (i = 0; i < nr_frags; i++) { 2281 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2282 void *addr = page_address(frag->page.p) + frag->page_offset; 2283 2284 tx_desc = mvneta_txq_next_desc_get(txq); 2285 tx_desc->data_size = frag->size; 2286 2287 tx_desc->buf_phys_addr = 2288 dma_map_single(pp->dev->dev.parent, addr, 2289 tx_desc->data_size, DMA_TO_DEVICE); 2290 2291 if (dma_mapping_error(pp->dev->dev.parent, 2292 tx_desc->buf_phys_addr)) { 2293 mvneta_txq_desc_put(txq); 2294 goto error; 2295 } 2296 2297 if (i == nr_frags - 1) { 2298 /* Last descriptor */ 2299 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2300 txq->tx_skb[txq->txq_put_index] = skb; 2301 } else { 2302 /* Descriptor in the middle: Not First, Not Last */ 2303 tx_desc->command = 0; 2304 txq->tx_skb[txq->txq_put_index] = NULL; 2305 } 2306 mvneta_txq_inc_put(txq); 2307 } 2308 2309 return 0; 2310 2311 error: 2312 /* Release all descriptors that were used to map fragments of 2313 * this packet, as well as the corresponding DMA mappings 2314 */ 2315 for (i = i - 1; i >= 0; i--) { 2316 tx_desc = txq->descs + i; 2317 dma_unmap_single(pp->dev->dev.parent, 2318 tx_desc->buf_phys_addr, 2319 tx_desc->data_size, 2320 DMA_TO_DEVICE); 2321 mvneta_txq_desc_put(txq); 2322 } 2323 2324 return -ENOMEM; 2325 } 2326 2327 /* Main tx processing */ 2328 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2329 { 2330 struct mvneta_port *pp = netdev_priv(dev); 2331 u16 txq_id = skb_get_queue_mapping(skb); 2332 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2333 struct mvneta_tx_desc *tx_desc; 2334 int len = skb->len; 2335 int frags = 0; 2336 u32 tx_cmd; 2337 2338 if (!netif_running(dev)) 2339 goto out; 2340 2341 if (skb_is_gso(skb)) { 2342 frags = mvneta_tx_tso(skb, dev, txq); 2343 goto out; 2344 } 2345 2346 frags = skb_shinfo(skb)->nr_frags + 1; 2347 2348 /* Get a descriptor for the first part of the packet */ 2349 tx_desc = mvneta_txq_next_desc_get(txq); 2350 2351 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2352 2353 tx_desc->data_size = skb_headlen(skb); 2354 2355 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2356 tx_desc->data_size, 2357 DMA_TO_DEVICE); 2358 if (unlikely(dma_mapping_error(dev->dev.parent, 2359 tx_desc->buf_phys_addr))) { 2360 mvneta_txq_desc_put(txq); 2361 frags = 0; 2362 goto out; 2363 } 2364 2365 if (frags == 1) { 2366 /* First and Last descriptor */ 2367 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2368 tx_desc->command = tx_cmd; 2369 txq->tx_skb[txq->txq_put_index] = skb; 2370 mvneta_txq_inc_put(txq); 2371 } else { 2372 /* First but not Last */ 2373 tx_cmd |= MVNETA_TXD_F_DESC; 2374 txq->tx_skb[txq->txq_put_index] = NULL; 2375 mvneta_txq_inc_put(txq); 2376 tx_desc->command = tx_cmd; 2377 /* Continue with other skb fragments */ 2378 if (mvneta_tx_frag_process(pp, skb, txq)) { 2379 dma_unmap_single(dev->dev.parent, 2380 tx_desc->buf_phys_addr, 2381 tx_desc->data_size, 2382 DMA_TO_DEVICE); 2383 mvneta_txq_desc_put(txq); 2384 frags = 0; 2385 goto out; 2386 } 2387 } 2388 2389 out: 2390 if (frags > 0) { 2391 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2392 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2393 2394 netdev_tx_sent_queue(nq, len); 2395 2396 txq->count += frags; 2397 if (txq->count >= txq->tx_stop_threshold) 2398 netif_tx_stop_queue(nq); 2399 2400 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2401 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2402 mvneta_txq_pend_desc_add(pp, txq, frags); 2403 else 2404 txq->pending += frags; 2405 2406 u64_stats_update_begin(&stats->syncp); 2407 stats->tx_packets++; 2408 stats->tx_bytes += len; 2409 u64_stats_update_end(&stats->syncp); 2410 } else { 2411 dev->stats.tx_dropped++; 2412 dev_kfree_skb_any(skb); 2413 } 2414 2415 return NETDEV_TX_OK; 2416 } 2417 2418 2419 /* Free tx resources, when resetting a port */ 2420 static void mvneta_txq_done_force(struct mvneta_port *pp, 2421 struct mvneta_tx_queue *txq) 2422 2423 { 2424 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2425 int tx_done = txq->count; 2426 2427 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2428 2429 /* reset txq */ 2430 txq->count = 0; 2431 txq->txq_put_index = 0; 2432 txq->txq_get_index = 0; 2433 } 2434 2435 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2436 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2437 */ 2438 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2439 { 2440 struct mvneta_tx_queue *txq; 2441 struct netdev_queue *nq; 2442 2443 while (cause_tx_done) { 2444 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2445 2446 nq = netdev_get_tx_queue(pp->dev, txq->id); 2447 __netif_tx_lock(nq, smp_processor_id()); 2448 2449 if (txq->count) 2450 mvneta_txq_done(pp, txq); 2451 2452 __netif_tx_unlock(nq); 2453 cause_tx_done &= ~((1 << txq->id)); 2454 } 2455 } 2456 2457 /* Compute crc8 of the specified address, using a unique algorithm , 2458 * according to hw spec, different than generic crc8 algorithm 2459 */ 2460 static int mvneta_addr_crc(unsigned char *addr) 2461 { 2462 int crc = 0; 2463 int i; 2464 2465 for (i = 0; i < ETH_ALEN; i++) { 2466 int j; 2467 2468 crc = (crc ^ addr[i]) << 8; 2469 for (j = 7; j >= 0; j--) { 2470 if (crc & (0x100 << j)) 2471 crc ^= 0x107 << j; 2472 } 2473 } 2474 2475 return crc; 2476 } 2477 2478 /* This method controls the net device special MAC multicast support. 2479 * The Special Multicast Table for MAC addresses supports MAC of the form 2480 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2481 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2482 * Table entries in the DA-Filter table. This method set the Special 2483 * Multicast Table appropriate entry. 2484 */ 2485 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2486 unsigned char last_byte, 2487 int queue) 2488 { 2489 unsigned int smc_table_reg; 2490 unsigned int tbl_offset; 2491 unsigned int reg_offset; 2492 2493 /* Register offset from SMC table base */ 2494 tbl_offset = (last_byte / 4); 2495 /* Entry offset within the above reg */ 2496 reg_offset = last_byte % 4; 2497 2498 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2499 + tbl_offset * 4)); 2500 2501 if (queue == -1) 2502 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2503 else { 2504 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2505 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2506 } 2507 2508 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2509 smc_table_reg); 2510 } 2511 2512 /* This method controls the network device Other MAC multicast support. 2513 * The Other Multicast Table is used for multicast of another type. 2514 * A CRC-8 is used as an index to the Other Multicast Table entries 2515 * in the DA-Filter table. 2516 * The method gets the CRC-8 value from the calling routine and 2517 * sets the Other Multicast Table appropriate entry according to the 2518 * specified CRC-8 . 2519 */ 2520 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2521 unsigned char crc8, 2522 int queue) 2523 { 2524 unsigned int omc_table_reg; 2525 unsigned int tbl_offset; 2526 unsigned int reg_offset; 2527 2528 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2529 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2530 2531 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2532 2533 if (queue == -1) { 2534 /* Clear accepts frame bit at specified Other DA table entry */ 2535 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2536 } else { 2537 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2538 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2539 } 2540 2541 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2542 } 2543 2544 /* The network device supports multicast using two tables: 2545 * 1) Special Multicast Table for MAC addresses of the form 2546 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2547 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2548 * Table entries in the DA-Filter table. 2549 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2550 * is used as an index to the Other Multicast Table entries in the 2551 * DA-Filter table. 2552 */ 2553 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2554 int queue) 2555 { 2556 unsigned char crc_result = 0; 2557 2558 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2559 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2560 return 0; 2561 } 2562 2563 crc_result = mvneta_addr_crc(p_addr); 2564 if (queue == -1) { 2565 if (pp->mcast_count[crc_result] == 0) { 2566 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2567 crc_result); 2568 return -EINVAL; 2569 } 2570 2571 pp->mcast_count[crc_result]--; 2572 if (pp->mcast_count[crc_result] != 0) { 2573 netdev_info(pp->dev, 2574 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2575 pp->mcast_count[crc_result], crc_result); 2576 return -EINVAL; 2577 } 2578 } else 2579 pp->mcast_count[crc_result]++; 2580 2581 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2582 2583 return 0; 2584 } 2585 2586 /* Configure Fitering mode of Ethernet port */ 2587 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2588 int is_promisc) 2589 { 2590 u32 port_cfg_reg, val; 2591 2592 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2593 2594 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2595 2596 /* Set / Clear UPM bit in port configuration register */ 2597 if (is_promisc) { 2598 /* Accept all Unicast addresses */ 2599 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2600 val |= MVNETA_FORCE_UNI; 2601 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2602 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2603 } else { 2604 /* Reject all Unicast addresses */ 2605 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2606 val &= ~MVNETA_FORCE_UNI; 2607 } 2608 2609 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2610 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2611 } 2612 2613 /* register unicast and multicast addresses */ 2614 static void mvneta_set_rx_mode(struct net_device *dev) 2615 { 2616 struct mvneta_port *pp = netdev_priv(dev); 2617 struct netdev_hw_addr *ha; 2618 2619 if (dev->flags & IFF_PROMISC) { 2620 /* Accept all: Multicast + Unicast */ 2621 mvneta_rx_unicast_promisc_set(pp, 1); 2622 mvneta_set_ucast_table(pp, pp->rxq_def); 2623 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2624 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2625 } else { 2626 /* Accept single Unicast */ 2627 mvneta_rx_unicast_promisc_set(pp, 0); 2628 mvneta_set_ucast_table(pp, -1); 2629 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2630 2631 if (dev->flags & IFF_ALLMULTI) { 2632 /* Accept all multicast */ 2633 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2634 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2635 } else { 2636 /* Accept only initialized multicast */ 2637 mvneta_set_special_mcast_table(pp, -1); 2638 mvneta_set_other_mcast_table(pp, -1); 2639 2640 if (!netdev_mc_empty(dev)) { 2641 netdev_for_each_mc_addr(ha, dev) { 2642 mvneta_mcast_addr_set(pp, ha->addr, 2643 pp->rxq_def); 2644 } 2645 } 2646 } 2647 } 2648 } 2649 2650 /* Interrupt handling - the callback for request_irq() */ 2651 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2652 { 2653 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2654 2655 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2656 napi_schedule(&pp->napi); 2657 2658 return IRQ_HANDLED; 2659 } 2660 2661 /* Interrupt handling - the callback for request_percpu_irq() */ 2662 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2663 { 2664 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2665 2666 disable_percpu_irq(port->pp->dev->irq); 2667 napi_schedule(&port->napi); 2668 2669 return IRQ_HANDLED; 2670 } 2671 2672 static void mvneta_link_change(struct mvneta_port *pp) 2673 { 2674 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2675 2676 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2677 } 2678 2679 /* NAPI handler 2680 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2681 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2682 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2683 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2684 * Each CPU has its own causeRxTx register 2685 */ 2686 static int mvneta_poll(struct napi_struct *napi, int budget) 2687 { 2688 int rx_done = 0; 2689 u32 cause_rx_tx; 2690 int rx_queue; 2691 struct mvneta_port *pp = netdev_priv(napi->dev); 2692 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2693 2694 if (!netif_running(pp->dev)) { 2695 napi_complete(napi); 2696 return rx_done; 2697 } 2698 2699 /* Read cause register */ 2700 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2701 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2702 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2703 2704 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2705 2706 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2707 MVNETA_CAUSE_LINK_CHANGE)) 2708 mvneta_link_change(pp); 2709 } 2710 2711 /* Release Tx descriptors */ 2712 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2713 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2714 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2715 } 2716 2717 /* For the case where the last mvneta_poll did not process all 2718 * RX packets 2719 */ 2720 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2721 2722 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2723 port->cause_rx_tx; 2724 2725 if (rx_queue) { 2726 rx_queue = rx_queue - 1; 2727 if (pp->bm_priv) 2728 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2729 else 2730 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2731 } 2732 2733 if (rx_done < budget) { 2734 cause_rx_tx = 0; 2735 napi_complete_done(napi, rx_done); 2736 2737 if (pp->neta_armada3700) { 2738 unsigned long flags; 2739 2740 local_irq_save(flags); 2741 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2742 MVNETA_RX_INTR_MASK(rxq_number) | 2743 MVNETA_TX_INTR_MASK(txq_number) | 2744 MVNETA_MISCINTR_INTR_MASK); 2745 local_irq_restore(flags); 2746 } else { 2747 enable_percpu_irq(pp->dev->irq, 0); 2748 } 2749 } 2750 2751 if (pp->neta_armada3700) 2752 pp->cause_rx_tx = cause_rx_tx; 2753 else 2754 port->cause_rx_tx = cause_rx_tx; 2755 2756 return rx_done; 2757 } 2758 2759 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2760 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2761 int num) 2762 { 2763 int i; 2764 2765 for (i = 0; i < num; i++) { 2766 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2767 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2768 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2769 __func__, rxq->id, i, num); 2770 break; 2771 } 2772 } 2773 2774 /* Add this number of RX descriptors as non occupied (ready to 2775 * get packets) 2776 */ 2777 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2778 2779 return i; 2780 } 2781 2782 /* Free all packets pending transmit from all TXQs and reset TX port */ 2783 static void mvneta_tx_reset(struct mvneta_port *pp) 2784 { 2785 int queue; 2786 2787 /* free the skb's in the tx ring */ 2788 for (queue = 0; queue < txq_number; queue++) 2789 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2790 2791 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2792 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2793 } 2794 2795 static void mvneta_rx_reset(struct mvneta_port *pp) 2796 { 2797 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2798 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2799 } 2800 2801 /* Rx/Tx queue initialization/cleanup methods */ 2802 2803 /* Create a specified RX queue */ 2804 static int mvneta_rxq_init(struct mvneta_port *pp, 2805 struct mvneta_rx_queue *rxq) 2806 2807 { 2808 rxq->size = pp->rx_ring_size; 2809 2810 /* Allocate memory for RX descriptors */ 2811 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2812 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2813 &rxq->descs_phys, GFP_KERNEL); 2814 if (!rxq->descs) 2815 return -ENOMEM; 2816 2817 rxq->last_desc = rxq->size - 1; 2818 2819 /* Set Rx descriptors queue starting address */ 2820 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2821 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2822 2823 /* Set Offset */ 2824 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2825 2826 /* Set coalescing pkts and time */ 2827 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2828 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2829 2830 if (!pp->bm_priv) { 2831 /* Fill RXQ with buffers from RX pool */ 2832 mvneta_rxq_buf_size_set(pp, rxq, 2833 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2834 mvneta_rxq_bm_disable(pp, rxq); 2835 mvneta_rxq_fill(pp, rxq, rxq->size); 2836 } else { 2837 mvneta_rxq_bm_enable(pp, rxq); 2838 mvneta_rxq_long_pool_set(pp, rxq); 2839 mvneta_rxq_short_pool_set(pp, rxq); 2840 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2841 } 2842 2843 return 0; 2844 } 2845 2846 /* Cleanup Rx queue */ 2847 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2848 struct mvneta_rx_queue *rxq) 2849 { 2850 mvneta_rxq_drop_pkts(pp, rxq); 2851 2852 if (rxq->descs) 2853 dma_free_coherent(pp->dev->dev.parent, 2854 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2855 rxq->descs, 2856 rxq->descs_phys); 2857 2858 rxq->descs = NULL; 2859 rxq->last_desc = 0; 2860 rxq->next_desc_to_proc = 0; 2861 rxq->descs_phys = 0; 2862 } 2863 2864 /* Create and initialize a tx queue */ 2865 static int mvneta_txq_init(struct mvneta_port *pp, 2866 struct mvneta_tx_queue *txq) 2867 { 2868 int cpu; 2869 2870 txq->size = pp->tx_ring_size; 2871 2872 /* A queue must always have room for at least one skb. 2873 * Therefore, stop the queue when the free entries reaches 2874 * the maximum number of descriptors per skb. 2875 */ 2876 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2877 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2878 2879 2880 /* Allocate memory for TX descriptors */ 2881 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2882 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2883 &txq->descs_phys, GFP_KERNEL); 2884 if (!txq->descs) 2885 return -ENOMEM; 2886 2887 txq->last_desc = txq->size - 1; 2888 2889 /* Set maximum bandwidth for enabled TXQs */ 2890 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2891 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2892 2893 /* Set Tx descriptors queue starting address */ 2894 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2895 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2896 2897 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2898 GFP_KERNEL); 2899 if (!txq->tx_skb) { 2900 dma_free_coherent(pp->dev->dev.parent, 2901 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2902 txq->descs, txq->descs_phys); 2903 return -ENOMEM; 2904 } 2905 2906 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2907 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2908 txq->size * TSO_HEADER_SIZE, 2909 &txq->tso_hdrs_phys, GFP_KERNEL); 2910 if (!txq->tso_hdrs) { 2911 kfree(txq->tx_skb); 2912 dma_free_coherent(pp->dev->dev.parent, 2913 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2914 txq->descs, txq->descs_phys); 2915 return -ENOMEM; 2916 } 2917 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2918 2919 /* Setup XPS mapping */ 2920 if (txq_number > 1) 2921 cpu = txq->id % num_present_cpus(); 2922 else 2923 cpu = pp->rxq_def % num_present_cpus(); 2924 cpumask_set_cpu(cpu, &txq->affinity_mask); 2925 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2926 2927 return 0; 2928 } 2929 2930 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2931 static void mvneta_txq_deinit(struct mvneta_port *pp, 2932 struct mvneta_tx_queue *txq) 2933 { 2934 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2935 2936 kfree(txq->tx_skb); 2937 2938 if (txq->tso_hdrs) 2939 dma_free_coherent(pp->dev->dev.parent, 2940 txq->size * TSO_HEADER_SIZE, 2941 txq->tso_hdrs, txq->tso_hdrs_phys); 2942 if (txq->descs) 2943 dma_free_coherent(pp->dev->dev.parent, 2944 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2945 txq->descs, txq->descs_phys); 2946 2947 netdev_tx_reset_queue(nq); 2948 2949 txq->descs = NULL; 2950 txq->last_desc = 0; 2951 txq->next_desc_to_proc = 0; 2952 txq->descs_phys = 0; 2953 2954 /* Set minimum bandwidth for disabled TXQs */ 2955 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2956 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2957 2958 /* Set Tx descriptors queue starting address and size */ 2959 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2960 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2961 } 2962 2963 /* Cleanup all Tx queues */ 2964 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2965 { 2966 int queue; 2967 2968 for (queue = 0; queue < txq_number; queue++) 2969 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2970 } 2971 2972 /* Cleanup all Rx queues */ 2973 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2974 { 2975 int queue; 2976 2977 for (queue = 0; queue < rxq_number; queue++) 2978 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2979 } 2980 2981 2982 /* Init all Rx queues */ 2983 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2984 { 2985 int queue; 2986 2987 for (queue = 0; queue < rxq_number; queue++) { 2988 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2989 2990 if (err) { 2991 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2992 __func__, queue); 2993 mvneta_cleanup_rxqs(pp); 2994 return err; 2995 } 2996 } 2997 2998 return 0; 2999 } 3000 3001 /* Init all tx queues */ 3002 static int mvneta_setup_txqs(struct mvneta_port *pp) 3003 { 3004 int queue; 3005 3006 for (queue = 0; queue < txq_number; queue++) { 3007 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3008 if (err) { 3009 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3010 __func__, queue); 3011 mvneta_cleanup_txqs(pp); 3012 return err; 3013 } 3014 } 3015 3016 return 0; 3017 } 3018 3019 static void mvneta_start_dev(struct mvneta_port *pp) 3020 { 3021 int cpu; 3022 3023 mvneta_max_rx_size_set(pp, pp->pkt_size); 3024 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3025 3026 /* start the Rx/Tx activity */ 3027 mvneta_port_enable(pp); 3028 3029 if (!pp->neta_armada3700) { 3030 /* Enable polling on the port */ 3031 for_each_online_cpu(cpu) { 3032 struct mvneta_pcpu_port *port = 3033 per_cpu_ptr(pp->ports, cpu); 3034 3035 napi_enable(&port->napi); 3036 } 3037 } else { 3038 napi_enable(&pp->napi); 3039 } 3040 3041 /* Unmask interrupts. It has to be done from each CPU */ 3042 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3043 3044 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3045 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3046 MVNETA_CAUSE_LINK_CHANGE); 3047 3048 phylink_start(pp->phylink); 3049 netif_tx_start_all_queues(pp->dev); 3050 } 3051 3052 static void mvneta_stop_dev(struct mvneta_port *pp) 3053 { 3054 unsigned int cpu; 3055 3056 phylink_stop(pp->phylink); 3057 3058 if (!pp->neta_armada3700) { 3059 for_each_online_cpu(cpu) { 3060 struct mvneta_pcpu_port *port = 3061 per_cpu_ptr(pp->ports, cpu); 3062 3063 napi_disable(&port->napi); 3064 } 3065 } else { 3066 napi_disable(&pp->napi); 3067 } 3068 3069 netif_carrier_off(pp->dev); 3070 3071 mvneta_port_down(pp); 3072 netif_tx_stop_all_queues(pp->dev); 3073 3074 /* Stop the port activity */ 3075 mvneta_port_disable(pp); 3076 3077 /* Clear all ethernet port interrupts */ 3078 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3079 3080 /* Mask all ethernet port interrupts */ 3081 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3082 3083 mvneta_tx_reset(pp); 3084 mvneta_rx_reset(pp); 3085 } 3086 3087 static void mvneta_percpu_enable(void *arg) 3088 { 3089 struct mvneta_port *pp = arg; 3090 3091 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3092 } 3093 3094 static void mvneta_percpu_disable(void *arg) 3095 { 3096 struct mvneta_port *pp = arg; 3097 3098 disable_percpu_irq(pp->dev->irq); 3099 } 3100 3101 /* Change the device mtu */ 3102 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3103 { 3104 struct mvneta_port *pp = netdev_priv(dev); 3105 int ret; 3106 3107 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3108 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3109 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3110 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3111 } 3112 3113 dev->mtu = mtu; 3114 3115 if (!netif_running(dev)) { 3116 if (pp->bm_priv) 3117 mvneta_bm_update_mtu(pp, mtu); 3118 3119 netdev_update_features(dev); 3120 return 0; 3121 } 3122 3123 /* The interface is running, so we have to force a 3124 * reallocation of the queues 3125 */ 3126 mvneta_stop_dev(pp); 3127 on_each_cpu(mvneta_percpu_disable, pp, true); 3128 3129 mvneta_cleanup_txqs(pp); 3130 mvneta_cleanup_rxqs(pp); 3131 3132 if (pp->bm_priv) 3133 mvneta_bm_update_mtu(pp, mtu); 3134 3135 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3136 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3137 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3138 3139 ret = mvneta_setup_rxqs(pp); 3140 if (ret) { 3141 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3142 return ret; 3143 } 3144 3145 ret = mvneta_setup_txqs(pp); 3146 if (ret) { 3147 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3148 return ret; 3149 } 3150 3151 on_each_cpu(mvneta_percpu_enable, pp, true); 3152 mvneta_start_dev(pp); 3153 mvneta_port_up(pp); 3154 3155 netdev_update_features(dev); 3156 3157 return 0; 3158 } 3159 3160 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3161 netdev_features_t features) 3162 { 3163 struct mvneta_port *pp = netdev_priv(dev); 3164 3165 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3166 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3167 netdev_info(dev, 3168 "Disable IP checksum for MTU greater than %dB\n", 3169 pp->tx_csum_limit); 3170 } 3171 3172 return features; 3173 } 3174 3175 /* Get mac address */ 3176 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3177 { 3178 u32 mac_addr_l, mac_addr_h; 3179 3180 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3181 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3182 addr[0] = (mac_addr_h >> 24) & 0xFF; 3183 addr[1] = (mac_addr_h >> 16) & 0xFF; 3184 addr[2] = (mac_addr_h >> 8) & 0xFF; 3185 addr[3] = mac_addr_h & 0xFF; 3186 addr[4] = (mac_addr_l >> 8) & 0xFF; 3187 addr[5] = mac_addr_l & 0xFF; 3188 } 3189 3190 /* Handle setting mac address */ 3191 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3192 { 3193 struct mvneta_port *pp = netdev_priv(dev); 3194 struct sockaddr *sockaddr = addr; 3195 int ret; 3196 3197 ret = eth_prepare_mac_addr_change(dev, addr); 3198 if (ret < 0) 3199 return ret; 3200 /* Remove previous address table entry */ 3201 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3202 3203 /* Set new addr in hw */ 3204 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3205 3206 eth_commit_mac_addr_change(dev, addr); 3207 return 0; 3208 } 3209 3210 static void mvneta_validate(struct net_device *ndev, unsigned long *supported, 3211 struct phylink_link_state *state) 3212 { 3213 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3214 3215 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3216 if (state->interface != PHY_INTERFACE_MODE_NA && 3217 state->interface != PHY_INTERFACE_MODE_QSGMII && 3218 state->interface != PHY_INTERFACE_MODE_SGMII && 3219 !phy_interface_mode_is_8023z(state->interface) && 3220 !phy_interface_mode_is_rgmii(state->interface)) { 3221 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3222 return; 3223 } 3224 3225 /* Allow all the expected bits */ 3226 phylink_set(mask, Autoneg); 3227 phylink_set_port_modes(mask); 3228 3229 /* Asymmetric pause is unsupported */ 3230 phylink_set(mask, Pause); 3231 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3232 phylink_set(mask, 1000baseT_Full); 3233 phylink_set(mask, 1000baseX_Full); 3234 3235 if (!phy_interface_mode_is_8023z(state->interface)) { 3236 /* 10M and 100M are only supported in non-802.3z mode */ 3237 phylink_set(mask, 10baseT_Half); 3238 phylink_set(mask, 10baseT_Full); 3239 phylink_set(mask, 100baseT_Half); 3240 phylink_set(mask, 100baseT_Full); 3241 } 3242 3243 bitmap_and(supported, supported, mask, 3244 __ETHTOOL_LINK_MODE_MASK_NBITS); 3245 bitmap_and(state->advertising, state->advertising, mask, 3246 __ETHTOOL_LINK_MODE_MASK_NBITS); 3247 } 3248 3249 static int mvneta_mac_link_state(struct net_device *ndev, 3250 struct phylink_link_state *state) 3251 { 3252 struct mvneta_port *pp = netdev_priv(ndev); 3253 u32 gmac_stat; 3254 3255 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3256 3257 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3258 state->speed = SPEED_1000; 3259 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3260 state->speed = SPEED_100; 3261 else 3262 state->speed = SPEED_10; 3263 3264 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3265 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3266 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3267 3268 state->pause = 0; 3269 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3270 state->pause |= MLO_PAUSE_RX; 3271 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3272 state->pause |= MLO_PAUSE_TX; 3273 3274 return 1; 3275 } 3276 3277 static void mvneta_mac_an_restart(struct net_device *ndev) 3278 { 3279 struct mvneta_port *pp = netdev_priv(ndev); 3280 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3281 3282 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3283 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3284 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3285 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3286 } 3287 3288 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode, 3289 const struct phylink_link_state *state) 3290 { 3291 struct mvneta_port *pp = netdev_priv(ndev); 3292 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3293 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3294 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3295 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3296 3297 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3298 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3299 MVNETA_GMAC2_PORT_RESET); 3300 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3301 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3302 MVNETA_GMAC_INBAND_RESTART_AN | 3303 MVNETA_GMAC_CONFIG_MII_SPEED | 3304 MVNETA_GMAC_CONFIG_GMII_SPEED | 3305 MVNETA_GMAC_AN_SPEED_EN | 3306 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3307 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3308 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3309 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3310 MVNETA_GMAC_AN_DUPLEX_EN); 3311 3312 /* Even though it might look weird, when we're configured in 3313 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3314 */ 3315 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3316 3317 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3318 state->interface == PHY_INTERFACE_MODE_SGMII || 3319 phy_interface_mode_is_8023z(state->interface)) 3320 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3321 3322 if (phylink_test(state->advertising, Pause)) 3323 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3324 if (state->pause & MLO_PAUSE_TXRX_MASK) 3325 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3326 3327 if (!phylink_autoneg_inband(mode)) { 3328 /* Phy or fixed speed */ 3329 if (state->duplex) 3330 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3331 3332 if (state->speed == SPEED_1000) 3333 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3334 else if (state->speed == SPEED_100) 3335 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3336 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3337 /* SGMII mode receives the state from the PHY */ 3338 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3339 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3340 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3341 MVNETA_GMAC_FORCE_LINK_PASS)) | 3342 MVNETA_GMAC_INBAND_AN_ENABLE | 3343 MVNETA_GMAC_AN_SPEED_EN | 3344 MVNETA_GMAC_AN_DUPLEX_EN; 3345 } else { 3346 /* 802.3z negotiation - only 1000base-X */ 3347 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3348 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3349 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3350 MVNETA_GMAC_FORCE_LINK_PASS)) | 3351 MVNETA_GMAC_INBAND_AN_ENABLE | 3352 MVNETA_GMAC_CONFIG_GMII_SPEED | 3353 /* The MAC only supports FD mode */ 3354 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3355 3356 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3357 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3358 } 3359 3360 /* Armada 370 documentation says we can only change the port mode 3361 * and in-band enable when the link is down, so force it down 3362 * while making these changes. We also do this for GMAC_CTRL2 */ 3363 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3364 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3365 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3366 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3367 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3368 MVNETA_GMAC_FORCE_LINK_DOWN); 3369 } 3370 3371 if (new_ctrl0 != gmac_ctrl0) 3372 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3373 if (new_ctrl2 != gmac_ctrl2) 3374 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3375 if (new_clk != gmac_clk) 3376 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3377 if (new_an != gmac_an) 3378 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3379 3380 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3381 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3382 MVNETA_GMAC2_PORT_RESET) != 0) 3383 continue; 3384 } 3385 } 3386 3387 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3388 { 3389 u32 lpi_ctl1; 3390 3391 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3392 if (enable) 3393 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3394 else 3395 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3396 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3397 } 3398 3399 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode) 3400 { 3401 struct mvneta_port *pp = netdev_priv(ndev); 3402 u32 val; 3403 3404 mvneta_port_down(pp); 3405 3406 if (!phylink_autoneg_inband(mode)) { 3407 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3408 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3409 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3410 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3411 } 3412 3413 pp->eee_active = false; 3414 mvneta_set_eee(pp, false); 3415 } 3416 3417 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode, 3418 struct phy_device *phy) 3419 { 3420 struct mvneta_port *pp = netdev_priv(ndev); 3421 u32 val; 3422 3423 if (!phylink_autoneg_inband(mode)) { 3424 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3425 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3426 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3427 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3428 } 3429 3430 mvneta_port_up(pp); 3431 3432 if (phy && pp->eee_enabled) { 3433 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3434 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3435 } 3436 } 3437 3438 static const struct phylink_mac_ops mvneta_phylink_ops = { 3439 .validate = mvneta_validate, 3440 .mac_link_state = mvneta_mac_link_state, 3441 .mac_an_restart = mvneta_mac_an_restart, 3442 .mac_config = mvneta_mac_config, 3443 .mac_link_down = mvneta_mac_link_down, 3444 .mac_link_up = mvneta_mac_link_up, 3445 }; 3446 3447 static int mvneta_mdio_probe(struct mvneta_port *pp) 3448 { 3449 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3450 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3451 3452 if (err) 3453 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3454 3455 phylink_ethtool_get_wol(pp->phylink, &wol); 3456 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3457 3458 return err; 3459 } 3460 3461 static void mvneta_mdio_remove(struct mvneta_port *pp) 3462 { 3463 phylink_disconnect_phy(pp->phylink); 3464 } 3465 3466 /* Electing a CPU must be done in an atomic way: it should be done 3467 * after or before the removal/insertion of a CPU and this function is 3468 * not reentrant. 3469 */ 3470 static void mvneta_percpu_elect(struct mvneta_port *pp) 3471 { 3472 int elected_cpu = 0, max_cpu, cpu, i = 0; 3473 3474 /* Use the cpu associated to the rxq when it is online, in all 3475 * the other cases, use the cpu 0 which can't be offline. 3476 */ 3477 if (cpu_online(pp->rxq_def)) 3478 elected_cpu = pp->rxq_def; 3479 3480 max_cpu = num_present_cpus(); 3481 3482 for_each_online_cpu(cpu) { 3483 int rxq_map = 0, txq_map = 0; 3484 int rxq; 3485 3486 for (rxq = 0; rxq < rxq_number; rxq++) 3487 if ((rxq % max_cpu) == cpu) 3488 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3489 3490 if (cpu == elected_cpu) 3491 /* Map the default receive queue queue to the 3492 * elected CPU 3493 */ 3494 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3495 3496 /* We update the TX queue map only if we have one 3497 * queue. In this case we associate the TX queue to 3498 * the CPU bound to the default RX queue 3499 */ 3500 if (txq_number == 1) 3501 txq_map = (cpu == elected_cpu) ? 3502 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3503 else 3504 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3505 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3506 3507 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3508 3509 /* Update the interrupt mask on each CPU according the 3510 * new mapping 3511 */ 3512 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3513 pp, true); 3514 i++; 3515 3516 } 3517 }; 3518 3519 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3520 { 3521 int other_cpu; 3522 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3523 node_online); 3524 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3525 3526 3527 spin_lock(&pp->lock); 3528 /* 3529 * Configuring the driver for a new CPU while the driver is 3530 * stopping is racy, so just avoid it. 3531 */ 3532 if (pp->is_stopped) { 3533 spin_unlock(&pp->lock); 3534 return 0; 3535 } 3536 netif_tx_stop_all_queues(pp->dev); 3537 3538 /* 3539 * We have to synchronise on tha napi of each CPU except the one 3540 * just being woken up 3541 */ 3542 for_each_online_cpu(other_cpu) { 3543 if (other_cpu != cpu) { 3544 struct mvneta_pcpu_port *other_port = 3545 per_cpu_ptr(pp->ports, other_cpu); 3546 3547 napi_synchronize(&other_port->napi); 3548 } 3549 } 3550 3551 /* Mask all ethernet port interrupts */ 3552 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3553 napi_enable(&port->napi); 3554 3555 /* 3556 * Enable per-CPU interrupts on the CPU that is 3557 * brought up. 3558 */ 3559 mvneta_percpu_enable(pp); 3560 3561 /* 3562 * Enable per-CPU interrupt on the one CPU we care 3563 * about. 3564 */ 3565 mvneta_percpu_elect(pp); 3566 3567 /* Unmask all ethernet port interrupts */ 3568 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3569 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3570 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3571 MVNETA_CAUSE_LINK_CHANGE); 3572 netif_tx_start_all_queues(pp->dev); 3573 spin_unlock(&pp->lock); 3574 return 0; 3575 } 3576 3577 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3578 { 3579 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3580 node_online); 3581 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3582 3583 /* 3584 * Thanks to this lock we are sure that any pending cpu election is 3585 * done. 3586 */ 3587 spin_lock(&pp->lock); 3588 /* Mask all ethernet port interrupts */ 3589 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3590 spin_unlock(&pp->lock); 3591 3592 napi_synchronize(&port->napi); 3593 napi_disable(&port->napi); 3594 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3595 mvneta_percpu_disable(pp); 3596 return 0; 3597 } 3598 3599 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3600 { 3601 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3602 node_dead); 3603 3604 /* Check if a new CPU must be elected now this on is down */ 3605 spin_lock(&pp->lock); 3606 mvneta_percpu_elect(pp); 3607 spin_unlock(&pp->lock); 3608 /* Unmask all ethernet port interrupts */ 3609 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3610 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3611 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3612 MVNETA_CAUSE_LINK_CHANGE); 3613 netif_tx_start_all_queues(pp->dev); 3614 return 0; 3615 } 3616 3617 static int mvneta_open(struct net_device *dev) 3618 { 3619 struct mvneta_port *pp = netdev_priv(dev); 3620 int ret; 3621 3622 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3623 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3624 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3625 3626 ret = mvneta_setup_rxqs(pp); 3627 if (ret) 3628 return ret; 3629 3630 ret = mvneta_setup_txqs(pp); 3631 if (ret) 3632 goto err_cleanup_rxqs; 3633 3634 /* Connect to port interrupt line */ 3635 if (pp->neta_armada3700) 3636 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3637 dev->name, pp); 3638 else 3639 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3640 dev->name, pp->ports); 3641 if (ret) { 3642 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3643 goto err_cleanup_txqs; 3644 } 3645 3646 if (!pp->neta_armada3700) { 3647 /* Enable per-CPU interrupt on all the CPU to handle our RX 3648 * queue interrupts 3649 */ 3650 on_each_cpu(mvneta_percpu_enable, pp, true); 3651 3652 pp->is_stopped = false; 3653 /* Register a CPU notifier to handle the case where our CPU 3654 * might be taken offline. 3655 */ 3656 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3657 &pp->node_online); 3658 if (ret) 3659 goto err_free_irq; 3660 3661 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3662 &pp->node_dead); 3663 if (ret) 3664 goto err_free_online_hp; 3665 } 3666 3667 /* In default link is down */ 3668 netif_carrier_off(pp->dev); 3669 3670 ret = mvneta_mdio_probe(pp); 3671 if (ret < 0) { 3672 netdev_err(dev, "cannot probe MDIO bus\n"); 3673 goto err_free_dead_hp; 3674 } 3675 3676 mvneta_start_dev(pp); 3677 3678 return 0; 3679 3680 err_free_dead_hp: 3681 if (!pp->neta_armada3700) 3682 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3683 &pp->node_dead); 3684 err_free_online_hp: 3685 if (!pp->neta_armada3700) 3686 cpuhp_state_remove_instance_nocalls(online_hpstate, 3687 &pp->node_online); 3688 err_free_irq: 3689 if (pp->neta_armada3700) { 3690 free_irq(pp->dev->irq, pp); 3691 } else { 3692 on_each_cpu(mvneta_percpu_disable, pp, true); 3693 free_percpu_irq(pp->dev->irq, pp->ports); 3694 } 3695 err_cleanup_txqs: 3696 mvneta_cleanup_txqs(pp); 3697 err_cleanup_rxqs: 3698 mvneta_cleanup_rxqs(pp); 3699 return ret; 3700 } 3701 3702 /* Stop the port, free port interrupt line */ 3703 static int mvneta_stop(struct net_device *dev) 3704 { 3705 struct mvneta_port *pp = netdev_priv(dev); 3706 3707 if (!pp->neta_armada3700) { 3708 /* Inform that we are stopping so we don't want to setup the 3709 * driver for new CPUs in the notifiers. The code of the 3710 * notifier for CPU online is protected by the same spinlock, 3711 * so when we get the lock, the notifer work is done. 3712 */ 3713 spin_lock(&pp->lock); 3714 pp->is_stopped = true; 3715 spin_unlock(&pp->lock); 3716 3717 mvneta_stop_dev(pp); 3718 mvneta_mdio_remove(pp); 3719 3720 cpuhp_state_remove_instance_nocalls(online_hpstate, 3721 &pp->node_online); 3722 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3723 &pp->node_dead); 3724 on_each_cpu(mvneta_percpu_disable, pp, true); 3725 free_percpu_irq(dev->irq, pp->ports); 3726 } else { 3727 mvneta_stop_dev(pp); 3728 mvneta_mdio_remove(pp); 3729 free_irq(dev->irq, pp); 3730 } 3731 3732 mvneta_cleanup_rxqs(pp); 3733 mvneta_cleanup_txqs(pp); 3734 3735 return 0; 3736 } 3737 3738 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3739 { 3740 struct mvneta_port *pp = netdev_priv(dev); 3741 3742 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 3743 } 3744 3745 /* Ethtool methods */ 3746 3747 /* Set link ksettings (phy address, speed) for ethtools */ 3748 static int 3749 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3750 const struct ethtool_link_ksettings *cmd) 3751 { 3752 struct mvneta_port *pp = netdev_priv(ndev); 3753 3754 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 3755 } 3756 3757 /* Get link ksettings for ethtools */ 3758 static int 3759 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 3760 struct ethtool_link_ksettings *cmd) 3761 { 3762 struct mvneta_port *pp = netdev_priv(ndev); 3763 3764 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 3765 } 3766 3767 static int mvneta_ethtool_nway_reset(struct net_device *dev) 3768 { 3769 struct mvneta_port *pp = netdev_priv(dev); 3770 3771 return phylink_ethtool_nway_reset(pp->phylink); 3772 } 3773 3774 /* Set interrupt coalescing for ethtools */ 3775 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3776 struct ethtool_coalesce *c) 3777 { 3778 struct mvneta_port *pp = netdev_priv(dev); 3779 int queue; 3780 3781 for (queue = 0; queue < rxq_number; queue++) { 3782 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3783 rxq->time_coal = c->rx_coalesce_usecs; 3784 rxq->pkts_coal = c->rx_max_coalesced_frames; 3785 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3786 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3787 } 3788 3789 for (queue = 0; queue < txq_number; queue++) { 3790 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3791 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3792 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3793 } 3794 3795 return 0; 3796 } 3797 3798 /* get coalescing for ethtools */ 3799 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3800 struct ethtool_coalesce *c) 3801 { 3802 struct mvneta_port *pp = netdev_priv(dev); 3803 3804 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3805 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3806 3807 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3808 return 0; 3809 } 3810 3811 3812 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3813 struct ethtool_drvinfo *drvinfo) 3814 { 3815 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3816 sizeof(drvinfo->driver)); 3817 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3818 sizeof(drvinfo->version)); 3819 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3820 sizeof(drvinfo->bus_info)); 3821 } 3822 3823 3824 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3825 struct ethtool_ringparam *ring) 3826 { 3827 struct mvneta_port *pp = netdev_priv(netdev); 3828 3829 ring->rx_max_pending = MVNETA_MAX_RXD; 3830 ring->tx_max_pending = MVNETA_MAX_TXD; 3831 ring->rx_pending = pp->rx_ring_size; 3832 ring->tx_pending = pp->tx_ring_size; 3833 } 3834 3835 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3836 struct ethtool_ringparam *ring) 3837 { 3838 struct mvneta_port *pp = netdev_priv(dev); 3839 3840 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3841 return -EINVAL; 3842 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3843 ring->rx_pending : MVNETA_MAX_RXD; 3844 3845 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3846 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3847 if (pp->tx_ring_size != ring->tx_pending) 3848 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3849 pp->tx_ring_size, ring->tx_pending); 3850 3851 if (netif_running(dev)) { 3852 mvneta_stop(dev); 3853 if (mvneta_open(dev)) { 3854 netdev_err(dev, 3855 "error on opening device after ring param change\n"); 3856 return -ENOMEM; 3857 } 3858 } 3859 3860 return 0; 3861 } 3862 3863 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 3864 struct ethtool_pauseparam *pause) 3865 { 3866 struct mvneta_port *pp = netdev_priv(dev); 3867 3868 phylink_ethtool_get_pauseparam(pp->phylink, pause); 3869 } 3870 3871 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 3872 struct ethtool_pauseparam *pause) 3873 { 3874 struct mvneta_port *pp = netdev_priv(dev); 3875 3876 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 3877 } 3878 3879 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3880 u8 *data) 3881 { 3882 if (sset == ETH_SS_STATS) { 3883 int i; 3884 3885 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3886 memcpy(data + i * ETH_GSTRING_LEN, 3887 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3888 } 3889 } 3890 3891 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3892 { 3893 const struct mvneta_statistic *s; 3894 void __iomem *base = pp->base; 3895 u32 high, low; 3896 u64 val; 3897 int i; 3898 3899 for (i = 0, s = mvneta_statistics; 3900 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3901 s++, i++) { 3902 val = 0; 3903 3904 switch (s->type) { 3905 case T_REG_32: 3906 val = readl_relaxed(base + s->offset); 3907 break; 3908 case T_REG_64: 3909 /* Docs say to read low 32-bit then high */ 3910 low = readl_relaxed(base + s->offset); 3911 high = readl_relaxed(base + s->offset + 4); 3912 val = (u64)high << 32 | low; 3913 break; 3914 case T_SW: 3915 switch (s->offset) { 3916 case ETHTOOL_STAT_EEE_WAKEUP: 3917 val = phylink_get_eee_err(pp->phylink); 3918 break; 3919 } 3920 break; 3921 } 3922 3923 pp->ethtool_stats[i] += val; 3924 } 3925 } 3926 3927 static void mvneta_ethtool_get_stats(struct net_device *dev, 3928 struct ethtool_stats *stats, u64 *data) 3929 { 3930 struct mvneta_port *pp = netdev_priv(dev); 3931 int i; 3932 3933 mvneta_ethtool_update_stats(pp); 3934 3935 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3936 *data++ = pp->ethtool_stats[i]; 3937 } 3938 3939 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3940 { 3941 if (sset == ETH_SS_STATS) 3942 return ARRAY_SIZE(mvneta_statistics); 3943 return -EOPNOTSUPP; 3944 } 3945 3946 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3947 { 3948 return MVNETA_RSS_LU_TABLE_SIZE; 3949 } 3950 3951 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3952 struct ethtool_rxnfc *info, 3953 u32 *rules __always_unused) 3954 { 3955 switch (info->cmd) { 3956 case ETHTOOL_GRXRINGS: 3957 info->data = rxq_number; 3958 return 0; 3959 case ETHTOOL_GRXFH: 3960 return -EOPNOTSUPP; 3961 default: 3962 return -EOPNOTSUPP; 3963 } 3964 } 3965 3966 static int mvneta_config_rss(struct mvneta_port *pp) 3967 { 3968 int cpu; 3969 u32 val; 3970 3971 netif_tx_stop_all_queues(pp->dev); 3972 3973 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3974 3975 /* We have to synchronise on the napi of each CPU */ 3976 for_each_online_cpu(cpu) { 3977 struct mvneta_pcpu_port *pcpu_port = 3978 per_cpu_ptr(pp->ports, cpu); 3979 3980 napi_synchronize(&pcpu_port->napi); 3981 napi_disable(&pcpu_port->napi); 3982 } 3983 3984 pp->rxq_def = pp->indir[0]; 3985 3986 /* Update unicast mapping */ 3987 mvneta_set_rx_mode(pp->dev); 3988 3989 /* Update val of portCfg register accordingly with all RxQueue types */ 3990 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3991 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3992 3993 /* Update the elected CPU matching the new rxq_def */ 3994 spin_lock(&pp->lock); 3995 mvneta_percpu_elect(pp); 3996 spin_unlock(&pp->lock); 3997 3998 /* We have to synchronise on the napi of each CPU */ 3999 for_each_online_cpu(cpu) { 4000 struct mvneta_pcpu_port *pcpu_port = 4001 per_cpu_ptr(pp->ports, cpu); 4002 4003 napi_enable(&pcpu_port->napi); 4004 } 4005 4006 netif_tx_start_all_queues(pp->dev); 4007 4008 return 0; 4009 } 4010 4011 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4012 const u8 *key, const u8 hfunc) 4013 { 4014 struct mvneta_port *pp = netdev_priv(dev); 4015 4016 /* Current code for Armada 3700 doesn't support RSS features yet */ 4017 if (pp->neta_armada3700) 4018 return -EOPNOTSUPP; 4019 4020 /* We require at least one supported parameter to be changed 4021 * and no change in any of the unsupported parameters 4022 */ 4023 if (key || 4024 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4025 return -EOPNOTSUPP; 4026 4027 if (!indir) 4028 return 0; 4029 4030 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4031 4032 return mvneta_config_rss(pp); 4033 } 4034 4035 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4036 u8 *hfunc) 4037 { 4038 struct mvneta_port *pp = netdev_priv(dev); 4039 4040 /* Current code for Armada 3700 doesn't support RSS features yet */ 4041 if (pp->neta_armada3700) 4042 return -EOPNOTSUPP; 4043 4044 if (hfunc) 4045 *hfunc = ETH_RSS_HASH_TOP; 4046 4047 if (!indir) 4048 return 0; 4049 4050 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4051 4052 return 0; 4053 } 4054 4055 static void mvneta_ethtool_get_wol(struct net_device *dev, 4056 struct ethtool_wolinfo *wol) 4057 { 4058 struct mvneta_port *pp = netdev_priv(dev); 4059 4060 phylink_ethtool_get_wol(pp->phylink, wol); 4061 } 4062 4063 static int mvneta_ethtool_set_wol(struct net_device *dev, 4064 struct ethtool_wolinfo *wol) 4065 { 4066 struct mvneta_port *pp = netdev_priv(dev); 4067 int ret; 4068 4069 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4070 if (!ret) 4071 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4072 4073 return ret; 4074 } 4075 4076 static int mvneta_ethtool_get_module_info(struct net_device *dev, 4077 struct ethtool_modinfo *modinfo) 4078 { 4079 struct mvneta_port *pp = netdev_priv(dev); 4080 4081 return phylink_ethtool_get_module_info(pp->phylink, modinfo); 4082 } 4083 4084 static int mvneta_ethtool_get_module_eeprom(struct net_device *dev, 4085 struct ethtool_eeprom *ee, u8 *buf) 4086 { 4087 struct mvneta_port *pp = netdev_priv(dev); 4088 4089 return phylink_ethtool_get_module_eeprom(pp->phylink, ee, buf); 4090 } 4091 4092 static int mvneta_ethtool_get_eee(struct net_device *dev, 4093 struct ethtool_eee *eee) 4094 { 4095 struct mvneta_port *pp = netdev_priv(dev); 4096 u32 lpi_ctl0; 4097 4098 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4099 4100 eee->eee_enabled = pp->eee_enabled; 4101 eee->eee_active = pp->eee_active; 4102 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4103 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4104 4105 return phylink_ethtool_get_eee(pp->phylink, eee); 4106 } 4107 4108 static int mvneta_ethtool_set_eee(struct net_device *dev, 4109 struct ethtool_eee *eee) 4110 { 4111 struct mvneta_port *pp = netdev_priv(dev); 4112 u32 lpi_ctl0; 4113 4114 /* The Armada 37x documents do not give limits for this other than 4115 * it being an 8-bit register. */ 4116 if (eee->tx_lpi_enabled && 4117 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255)) 4118 return -EINVAL; 4119 4120 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4121 lpi_ctl0 &= ~(0xff << 8); 4122 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4123 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4124 4125 pp->eee_enabled = eee->eee_enabled; 4126 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4127 4128 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4129 4130 return phylink_ethtool_set_eee(pp->phylink, eee); 4131 } 4132 4133 static const struct net_device_ops mvneta_netdev_ops = { 4134 .ndo_open = mvneta_open, 4135 .ndo_stop = mvneta_stop, 4136 .ndo_start_xmit = mvneta_tx, 4137 .ndo_set_rx_mode = mvneta_set_rx_mode, 4138 .ndo_set_mac_address = mvneta_set_mac_addr, 4139 .ndo_change_mtu = mvneta_change_mtu, 4140 .ndo_fix_features = mvneta_fix_features, 4141 .ndo_get_stats64 = mvneta_get_stats64, 4142 .ndo_do_ioctl = mvneta_ioctl, 4143 }; 4144 4145 static const struct ethtool_ops mvneta_eth_tool_ops = { 4146 .nway_reset = mvneta_ethtool_nway_reset, 4147 .get_link = ethtool_op_get_link, 4148 .set_coalesce = mvneta_ethtool_set_coalesce, 4149 .get_coalesce = mvneta_ethtool_get_coalesce, 4150 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4151 .get_ringparam = mvneta_ethtool_get_ringparam, 4152 .set_ringparam = mvneta_ethtool_set_ringparam, 4153 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4154 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4155 .get_strings = mvneta_ethtool_get_strings, 4156 .get_ethtool_stats = mvneta_ethtool_get_stats, 4157 .get_sset_count = mvneta_ethtool_get_sset_count, 4158 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4159 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4160 .get_rxfh = mvneta_ethtool_get_rxfh, 4161 .set_rxfh = mvneta_ethtool_set_rxfh, 4162 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4163 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4164 .get_wol = mvneta_ethtool_get_wol, 4165 .set_wol = mvneta_ethtool_set_wol, 4166 .get_module_info = mvneta_ethtool_get_module_info, 4167 .get_module_eeprom = mvneta_ethtool_get_module_eeprom, 4168 .get_eee = mvneta_ethtool_get_eee, 4169 .set_eee = mvneta_ethtool_set_eee, 4170 }; 4171 4172 /* Initialize hw */ 4173 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4174 { 4175 int queue; 4176 4177 /* Disable port */ 4178 mvneta_port_disable(pp); 4179 4180 /* Set port default values */ 4181 mvneta_defaults_set(pp); 4182 4183 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4184 if (!pp->txqs) 4185 return -ENOMEM; 4186 4187 /* Initialize TX descriptor rings */ 4188 for (queue = 0; queue < txq_number; queue++) { 4189 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4190 txq->id = queue; 4191 txq->size = pp->tx_ring_size; 4192 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4193 } 4194 4195 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4196 if (!pp->rxqs) 4197 return -ENOMEM; 4198 4199 /* Create Rx descriptor rings */ 4200 for (queue = 0; queue < rxq_number; queue++) { 4201 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4202 rxq->id = queue; 4203 rxq->size = pp->rx_ring_size; 4204 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4205 rxq->time_coal = MVNETA_RX_COAL_USEC; 4206 rxq->buf_virt_addr 4207 = devm_kmalloc_array(pp->dev->dev.parent, 4208 rxq->size, 4209 sizeof(*rxq->buf_virt_addr), 4210 GFP_KERNEL); 4211 if (!rxq->buf_virt_addr) 4212 return -ENOMEM; 4213 } 4214 4215 return 0; 4216 } 4217 4218 /* platform glue : initialize decoding windows */ 4219 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4220 const struct mbus_dram_target_info *dram) 4221 { 4222 u32 win_enable; 4223 u32 win_protect; 4224 int i; 4225 4226 for (i = 0; i < 6; i++) { 4227 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4228 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4229 4230 if (i < 4) 4231 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4232 } 4233 4234 win_enable = 0x3f; 4235 win_protect = 0; 4236 4237 if (dram) { 4238 for (i = 0; i < dram->num_cs; i++) { 4239 const struct mbus_dram_window *cs = dram->cs + i; 4240 4241 mvreg_write(pp, MVNETA_WIN_BASE(i), 4242 (cs->base & 0xffff0000) | 4243 (cs->mbus_attr << 8) | 4244 dram->mbus_dram_target_id); 4245 4246 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4247 (cs->size - 1) & 0xffff0000); 4248 4249 win_enable &= ~(1 << i); 4250 win_protect |= 3 << (2 * i); 4251 } 4252 } else { 4253 /* For Armada3700 open default 4GB Mbus window, leaving 4254 * arbitration of target/attribute to a different layer 4255 * of configuration. 4256 */ 4257 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4258 win_enable &= ~BIT(0); 4259 win_protect = 3; 4260 } 4261 4262 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4263 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4264 } 4265 4266 /* Power up the port */ 4267 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4268 { 4269 /* MAC Cause register should be cleared */ 4270 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4271 4272 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4273 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4274 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4275 phy_mode == PHY_INTERFACE_MODE_1000BASEX) 4276 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4277 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4278 return -EINVAL; 4279 4280 return 0; 4281 } 4282 4283 /* Device initialization routine */ 4284 static int mvneta_probe(struct platform_device *pdev) 4285 { 4286 struct resource *res; 4287 struct device_node *dn = pdev->dev.of_node; 4288 struct device_node *bm_node; 4289 struct mvneta_port *pp; 4290 struct net_device *dev; 4291 struct phylink *phylink; 4292 const char *dt_mac_addr; 4293 char hw_mac_addr[ETH_ALEN]; 4294 const char *mac_from; 4295 int tx_csum_limit; 4296 int phy_mode; 4297 int err; 4298 int cpu; 4299 4300 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4301 if (!dev) 4302 return -ENOMEM; 4303 4304 dev->irq = irq_of_parse_and_map(dn, 0); 4305 if (dev->irq == 0) { 4306 err = -EINVAL; 4307 goto err_free_netdev; 4308 } 4309 4310 phy_mode = of_get_phy_mode(dn); 4311 if (phy_mode < 0) { 4312 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4313 err = -EINVAL; 4314 goto err_free_irq; 4315 } 4316 4317 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode, 4318 &mvneta_phylink_ops); 4319 if (IS_ERR(phylink)) { 4320 err = PTR_ERR(phylink); 4321 goto err_free_irq; 4322 } 4323 4324 dev->tx_queue_len = MVNETA_MAX_TXD; 4325 dev->watchdog_timeo = 5 * HZ; 4326 dev->netdev_ops = &mvneta_netdev_ops; 4327 4328 dev->ethtool_ops = &mvneta_eth_tool_ops; 4329 4330 pp = netdev_priv(dev); 4331 spin_lock_init(&pp->lock); 4332 pp->phylink = phylink; 4333 pp->phy_interface = phy_mode; 4334 pp->dn = dn; 4335 4336 pp->rxq_def = rxq_def; 4337 4338 /* Set RX packet offset correction for platforms, whose 4339 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4340 * platforms and 0B for 32-bit ones. 4341 */ 4342 pp->rx_offset_correction = 4343 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4344 4345 pp->indir[0] = rxq_def; 4346 4347 /* Get special SoC configurations */ 4348 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4349 pp->neta_armada3700 = true; 4350 4351 pp->clk = devm_clk_get(&pdev->dev, "core"); 4352 if (IS_ERR(pp->clk)) 4353 pp->clk = devm_clk_get(&pdev->dev, NULL); 4354 if (IS_ERR(pp->clk)) { 4355 err = PTR_ERR(pp->clk); 4356 goto err_free_phylink; 4357 } 4358 4359 clk_prepare_enable(pp->clk); 4360 4361 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4362 if (!IS_ERR(pp->clk_bus)) 4363 clk_prepare_enable(pp->clk_bus); 4364 4365 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4366 pp->base = devm_ioremap_resource(&pdev->dev, res); 4367 if (IS_ERR(pp->base)) { 4368 err = PTR_ERR(pp->base); 4369 goto err_clk; 4370 } 4371 4372 /* Alloc per-cpu port structure */ 4373 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4374 if (!pp->ports) { 4375 err = -ENOMEM; 4376 goto err_clk; 4377 } 4378 4379 /* Alloc per-cpu stats */ 4380 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4381 if (!pp->stats) { 4382 err = -ENOMEM; 4383 goto err_free_ports; 4384 } 4385 4386 dt_mac_addr = of_get_mac_address(dn); 4387 if (dt_mac_addr) { 4388 mac_from = "device tree"; 4389 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4390 } else { 4391 mvneta_get_mac_addr(pp, hw_mac_addr); 4392 if (is_valid_ether_addr(hw_mac_addr)) { 4393 mac_from = "hardware"; 4394 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4395 } else { 4396 mac_from = "random"; 4397 eth_hw_addr_random(dev); 4398 } 4399 } 4400 4401 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4402 if (tx_csum_limit < 0 || 4403 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4404 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4405 dev_info(&pdev->dev, 4406 "Wrong TX csum limit in DT, set to %dB\n", 4407 MVNETA_TX_CSUM_DEF_SIZE); 4408 } 4409 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4410 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4411 } else { 4412 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4413 } 4414 4415 pp->tx_csum_limit = tx_csum_limit; 4416 4417 pp->dram_target_info = mv_mbus_dram_info(); 4418 /* Armada3700 requires setting default configuration of Mbus 4419 * windows, however without using filled mbus_dram_target_info 4420 * structure. 4421 */ 4422 if (pp->dram_target_info || pp->neta_armada3700) 4423 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4424 4425 pp->tx_ring_size = MVNETA_MAX_TXD; 4426 pp->rx_ring_size = MVNETA_MAX_RXD; 4427 4428 pp->dev = dev; 4429 SET_NETDEV_DEV(dev, &pdev->dev); 4430 4431 pp->id = global_port_id++; 4432 4433 /* Obtain access to BM resources if enabled and already initialized */ 4434 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4435 if (bm_node && bm_node->data) { 4436 pp->bm_priv = bm_node->data; 4437 err = mvneta_bm_port_init(pdev, pp); 4438 if (err < 0) { 4439 dev_info(&pdev->dev, "use SW buffer management\n"); 4440 pp->bm_priv = NULL; 4441 } 4442 } 4443 of_node_put(bm_node); 4444 4445 err = mvneta_init(&pdev->dev, pp); 4446 if (err < 0) 4447 goto err_netdev; 4448 4449 err = mvneta_port_power_up(pp, phy_mode); 4450 if (err < 0) { 4451 dev_err(&pdev->dev, "can't power up port\n"); 4452 goto err_netdev; 4453 } 4454 4455 /* Armada3700 network controller does not support per-cpu 4456 * operation, so only single NAPI should be initialized. 4457 */ 4458 if (pp->neta_armada3700) { 4459 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4460 } else { 4461 for_each_present_cpu(cpu) { 4462 struct mvneta_pcpu_port *port = 4463 per_cpu_ptr(pp->ports, cpu); 4464 4465 netif_napi_add(dev, &port->napi, mvneta_poll, 4466 NAPI_POLL_WEIGHT); 4467 port->pp = pp; 4468 } 4469 } 4470 4471 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO; 4472 dev->hw_features |= dev->features; 4473 dev->vlan_features |= dev->features; 4474 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4475 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4476 4477 /* MTU range: 68 - 9676 */ 4478 dev->min_mtu = ETH_MIN_MTU; 4479 /* 9676 == 9700 - 20 and rounding to 8 */ 4480 dev->max_mtu = 9676; 4481 4482 err = register_netdev(dev); 4483 if (err < 0) { 4484 dev_err(&pdev->dev, "failed to register\n"); 4485 goto err_free_stats; 4486 } 4487 4488 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4489 dev->dev_addr); 4490 4491 platform_set_drvdata(pdev, pp->dev); 4492 4493 return 0; 4494 4495 err_netdev: 4496 unregister_netdev(dev); 4497 if (pp->bm_priv) { 4498 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4499 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4500 1 << pp->id); 4501 } 4502 err_free_stats: 4503 free_percpu(pp->stats); 4504 err_free_ports: 4505 free_percpu(pp->ports); 4506 err_clk: 4507 clk_disable_unprepare(pp->clk_bus); 4508 clk_disable_unprepare(pp->clk); 4509 err_free_phylink: 4510 if (pp->phylink) 4511 phylink_destroy(pp->phylink); 4512 err_free_irq: 4513 irq_dispose_mapping(dev->irq); 4514 err_free_netdev: 4515 free_netdev(dev); 4516 return err; 4517 } 4518 4519 /* Device removal routine */ 4520 static int mvneta_remove(struct platform_device *pdev) 4521 { 4522 struct net_device *dev = platform_get_drvdata(pdev); 4523 struct mvneta_port *pp = netdev_priv(dev); 4524 4525 unregister_netdev(dev); 4526 clk_disable_unprepare(pp->clk_bus); 4527 clk_disable_unprepare(pp->clk); 4528 free_percpu(pp->ports); 4529 free_percpu(pp->stats); 4530 irq_dispose_mapping(dev->irq); 4531 phylink_destroy(pp->phylink); 4532 free_netdev(dev); 4533 4534 if (pp->bm_priv) { 4535 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4536 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4537 1 << pp->id); 4538 } 4539 4540 return 0; 4541 } 4542 4543 #ifdef CONFIG_PM_SLEEP 4544 static int mvneta_suspend(struct device *device) 4545 { 4546 struct net_device *dev = dev_get_drvdata(device); 4547 struct mvneta_port *pp = netdev_priv(dev); 4548 4549 rtnl_lock(); 4550 if (netif_running(dev)) 4551 mvneta_stop(dev); 4552 rtnl_unlock(); 4553 netif_device_detach(dev); 4554 clk_disable_unprepare(pp->clk_bus); 4555 clk_disable_unprepare(pp->clk); 4556 return 0; 4557 } 4558 4559 static int mvneta_resume(struct device *device) 4560 { 4561 struct platform_device *pdev = to_platform_device(device); 4562 struct net_device *dev = dev_get_drvdata(device); 4563 struct mvneta_port *pp = netdev_priv(dev); 4564 int err; 4565 4566 clk_prepare_enable(pp->clk); 4567 if (!IS_ERR(pp->clk_bus)) 4568 clk_prepare_enable(pp->clk_bus); 4569 if (pp->dram_target_info || pp->neta_armada3700) 4570 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4571 if (pp->bm_priv) { 4572 err = mvneta_bm_port_init(pdev, pp); 4573 if (err < 0) { 4574 dev_info(&pdev->dev, "use SW buffer management\n"); 4575 pp->bm_priv = NULL; 4576 } 4577 } 4578 mvneta_defaults_set(pp); 4579 err = mvneta_port_power_up(pp, pp->phy_interface); 4580 if (err < 0) { 4581 dev_err(device, "can't power up port\n"); 4582 return err; 4583 } 4584 4585 netif_device_attach(dev); 4586 rtnl_lock(); 4587 if (netif_running(dev)) { 4588 mvneta_open(dev); 4589 mvneta_set_rx_mode(dev); 4590 } 4591 rtnl_unlock(); 4592 4593 return 0; 4594 } 4595 #endif 4596 4597 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4598 4599 static const struct of_device_id mvneta_match[] = { 4600 { .compatible = "marvell,armada-370-neta" }, 4601 { .compatible = "marvell,armada-xp-neta" }, 4602 { .compatible = "marvell,armada-3700-neta" }, 4603 { } 4604 }; 4605 MODULE_DEVICE_TABLE(of, mvneta_match); 4606 4607 static struct platform_driver mvneta_driver = { 4608 .probe = mvneta_probe, 4609 .remove = mvneta_remove, 4610 .driver = { 4611 .name = MVNETA_DRIVER_NAME, 4612 .of_match_table = mvneta_match, 4613 .pm = &mvneta_pm_ops, 4614 }, 4615 }; 4616 4617 static int __init mvneta_driver_init(void) 4618 { 4619 int ret; 4620 4621 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4622 mvneta_cpu_online, 4623 mvneta_cpu_down_prepare); 4624 if (ret < 0) 4625 goto out; 4626 online_hpstate = ret; 4627 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4628 NULL, mvneta_cpu_dead); 4629 if (ret) 4630 goto err_dead; 4631 4632 ret = platform_driver_register(&mvneta_driver); 4633 if (ret) 4634 goto err; 4635 return 0; 4636 4637 err: 4638 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4639 err_dead: 4640 cpuhp_remove_multi_state(online_hpstate); 4641 out: 4642 return ret; 4643 } 4644 module_init(mvneta_driver_init); 4645 4646 static void __exit mvneta_driver_exit(void) 4647 { 4648 platform_driver_unregister(&mvneta_driver); 4649 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4650 cpuhp_remove_multi_state(online_hpstate); 4651 } 4652 module_exit(mvneta_driver_exit); 4653 4654 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4655 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4656 MODULE_LICENSE("GPL"); 4657 4658 module_param(rxq_number, int, S_IRUGO); 4659 module_param(txq_number, int, S_IRUGO); 4660 4661 module_param(rxq_def, int, S_IRUGO); 4662 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4663