1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <net/ip.h> 24 #include <net/ipv6.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_net.h> 29 #include <linux/of_address.h> 30 #include <linux/phy.h> 31 #include <linux/clk.h> 32 33 /* Registers */ 34 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 35 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 36 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 37 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 38 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 39 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 40 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 41 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 42 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 43 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 44 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 45 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 47 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 48 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 49 #define MVNETA_PORT_RX_RESET 0x1cc0 50 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 51 #define MVNETA_PHY_ADDR 0x2000 52 #define MVNETA_PHY_ADDR_MASK 0x1f 53 #define MVNETA_MBUS_RETRY 0x2010 54 #define MVNETA_UNIT_INTR_CAUSE 0x2080 55 #define MVNETA_UNIT_CONTROL 0x20B0 56 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 57 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 58 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 59 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 60 #define MVNETA_BASE_ADDR_ENABLE 0x2290 61 #define MVNETA_PORT_CONFIG 0x2400 62 #define MVNETA_UNI_PROMISC_MODE BIT(0) 63 #define MVNETA_DEF_RXQ(q) ((q) << 1) 64 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 65 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 66 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 67 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 68 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 69 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 70 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 71 MVNETA_DEF_RXQ_ARP(q) | \ 72 MVNETA_DEF_RXQ_TCP(q) | \ 73 MVNETA_DEF_RXQ_UDP(q) | \ 74 MVNETA_DEF_RXQ_BPDU(q) | \ 75 MVNETA_TX_UNSET_ERR_SUM | \ 76 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 77 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 78 #define MVNETA_MAC_ADDR_LOW 0x2414 79 #define MVNETA_MAC_ADDR_HIGH 0x2418 80 #define MVNETA_SDMA_CONFIG 0x241c 81 #define MVNETA_SDMA_BRST_SIZE_16 4 82 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 83 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 84 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 85 #define MVNETA_DESC_SWAP BIT(6) 86 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 87 #define MVNETA_PORT_STATUS 0x2444 88 #define MVNETA_TX_IN_PRGRS BIT(1) 89 #define MVNETA_TX_FIFO_EMPTY BIT(8) 90 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 91 #define MVNETA_SGMII_SERDES_CFG 0x24A0 92 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 93 #define MVNETA_TYPE_PRIO 0x24bc 94 #define MVNETA_FORCE_UNI BIT(21) 95 #define MVNETA_TXQ_CMD_1 0x24e4 96 #define MVNETA_TXQ_CMD 0x2448 97 #define MVNETA_TXQ_DISABLE_SHIFT 8 98 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 99 #define MVNETA_ACC_MODE 0x2500 100 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 101 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 102 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 103 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 104 105 /* Exception Interrupt Port/Queue Cause register */ 106 107 #define MVNETA_INTR_NEW_CAUSE 0x25a0 108 #define MVNETA_INTR_NEW_MASK 0x25a4 109 110 /* bits 0..7 = TXQ SENT, one bit per queue. 111 * bits 8..15 = RXQ OCCUP, one bit per queue. 112 * bits 16..23 = RXQ FREE, one bit per queue. 113 * bit 29 = OLD_REG_SUM, see old reg ? 114 * bit 30 = TX_ERR_SUM, one bit for 4 ports 115 * bit 31 = MISC_SUM, one bit for 4 ports 116 */ 117 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 118 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 119 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 120 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 121 122 #define MVNETA_INTR_OLD_CAUSE 0x25a8 123 #define MVNETA_INTR_OLD_MASK 0x25ac 124 125 /* Data Path Port/Queue Cause Register */ 126 #define MVNETA_INTR_MISC_CAUSE 0x25b0 127 #define MVNETA_INTR_MISC_MASK 0x25b4 128 129 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 130 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 131 #define MVNETA_CAUSE_PTP BIT(4) 132 133 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 134 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 135 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 136 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 137 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 138 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 139 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 140 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 141 142 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 143 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 144 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 145 146 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 147 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 148 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 149 150 #define MVNETA_INTR_ENABLE 0x25b8 151 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 152 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 153 154 #define MVNETA_RXQ_CMD 0x2680 155 #define MVNETA_RXQ_DISABLE_SHIFT 8 156 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 157 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 158 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 159 #define MVNETA_GMAC_CTRL_0 0x2c00 160 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 161 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 162 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 163 #define MVNETA_GMAC_CTRL_2 0x2c08 164 #define MVNETA_GMAC2_PSC_ENABLE BIT(3) 165 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 166 #define MVNETA_GMAC2_PORT_RESET BIT(6) 167 #define MVNETA_GMAC_STATUS 0x2c10 168 #define MVNETA_GMAC_LINK_UP BIT(0) 169 #define MVNETA_GMAC_SPEED_1000 BIT(1) 170 #define MVNETA_GMAC_SPEED_100 BIT(2) 171 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 172 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 173 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 174 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 175 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 176 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 177 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 178 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 179 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 180 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 181 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 182 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 183 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 184 #define MVNETA_MIB_COUNTERS_BASE 0x3080 185 #define MVNETA_MIB_LATE_COLLISION 0x7c 186 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 187 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 188 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 189 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 190 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 191 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 192 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 193 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 194 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 195 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 196 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 197 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 198 #define MVNETA_PORT_TX_RESET 0x3cf0 199 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 200 #define MVNETA_TX_MTU 0x3e0c 201 #define MVNETA_TX_TOKEN_SIZE 0x3e14 202 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 203 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 204 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 205 206 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 207 208 /* Descriptor ring Macros */ 209 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 210 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 211 212 /* Various constants */ 213 214 /* Coalescing */ 215 #define MVNETA_TXDONE_COAL_PKTS 16 216 #define MVNETA_RX_COAL_PKTS 32 217 #define MVNETA_RX_COAL_USEC 100 218 219 /* Napi polling weight */ 220 #define MVNETA_RX_POLL_WEIGHT 64 221 222 /* The two bytes Marvell header. Either contains a special value used 223 * by Marvell switches when a specific hardware mode is enabled (not 224 * supported by this driver) or is filled automatically by zeroes on 225 * the RX side. Those two bytes being at the front of the Ethernet 226 * header, they allow to have the IP header aligned on a 4 bytes 227 * boundary automatically: the hardware skips those two bytes on its 228 * own. 229 */ 230 #define MVNETA_MH_SIZE 2 231 232 #define MVNETA_VLAN_TAG_LEN 4 233 234 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 235 #define MVNETA_TX_CSUM_MAX_SIZE 9800 236 #define MVNETA_ACC_MODE_EXT 1 237 238 /* Timeout constants */ 239 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 240 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 241 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 242 243 #define MVNETA_TX_MTU_MAX 0x3ffff 244 245 /* Max number of Rx descriptors */ 246 #define MVNETA_MAX_RXD 128 247 248 /* Max number of Tx descriptors */ 249 #define MVNETA_MAX_TXD 532 250 251 /* descriptor aligned size */ 252 #define MVNETA_DESC_ALIGNED_SIZE 32 253 254 #define MVNETA_RX_PKT_SIZE(mtu) \ 255 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 256 ETH_HLEN + ETH_FCS_LEN, \ 257 MVNETA_CPU_D_CACHE_LINE_SIZE) 258 259 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 260 261 struct mvneta_pcpu_stats { 262 struct u64_stats_sync syncp; 263 u64 rx_packets; 264 u64 rx_bytes; 265 u64 tx_packets; 266 u64 tx_bytes; 267 }; 268 269 struct mvneta_port { 270 int pkt_size; 271 unsigned int frag_size; 272 void __iomem *base; 273 struct mvneta_rx_queue *rxqs; 274 struct mvneta_tx_queue *txqs; 275 struct net_device *dev; 276 277 u32 cause_rx_tx; 278 struct napi_struct napi; 279 280 /* Napi weight */ 281 int weight; 282 283 /* Core clock */ 284 struct clk *clk; 285 u8 mcast_count[256]; 286 u16 tx_ring_size; 287 u16 rx_ring_size; 288 struct mvneta_pcpu_stats *stats; 289 290 struct mii_bus *mii_bus; 291 struct phy_device *phy_dev; 292 phy_interface_t phy_interface; 293 struct device_node *phy_node; 294 unsigned int link; 295 unsigned int duplex; 296 unsigned int speed; 297 }; 298 299 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 300 * layout of the transmit and reception DMA descriptors, and their 301 * layout is therefore defined by the hardware design 302 */ 303 304 #define MVNETA_TX_L3_OFF_SHIFT 0 305 #define MVNETA_TX_IP_HLEN_SHIFT 8 306 #define MVNETA_TX_L4_UDP BIT(16) 307 #define MVNETA_TX_L3_IP6 BIT(17) 308 #define MVNETA_TXD_IP_CSUM BIT(18) 309 #define MVNETA_TXD_Z_PAD BIT(19) 310 #define MVNETA_TXD_L_DESC BIT(20) 311 #define MVNETA_TXD_F_DESC BIT(21) 312 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 313 MVNETA_TXD_L_DESC | \ 314 MVNETA_TXD_F_DESC) 315 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 316 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 317 318 #define MVNETA_RXD_ERR_CRC 0x0 319 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 320 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 321 #define MVNETA_RXD_ERR_LEN BIT(18) 322 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 323 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 324 #define MVNETA_RXD_L3_IP4 BIT(25) 325 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 326 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 327 328 #if defined(__LITTLE_ENDIAN) 329 struct mvneta_tx_desc { 330 u32 command; /* Options used by HW for packet transmitting.*/ 331 u16 reserverd1; /* csum_l4 (for future use) */ 332 u16 data_size; /* Data size of transmitted packet in bytes */ 333 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 334 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 335 u32 reserved3[4]; /* Reserved - (for future use) */ 336 }; 337 338 struct mvneta_rx_desc { 339 u32 status; /* Info about received packet */ 340 u16 reserved1; /* pnc_info - (for future use, PnC) */ 341 u16 data_size; /* Size of received packet in bytes */ 342 343 u32 buf_phys_addr; /* Physical address of the buffer */ 344 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 345 346 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 347 u16 reserved3; /* prefetch_cmd, for future use */ 348 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 349 350 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 351 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 352 }; 353 #else 354 struct mvneta_tx_desc { 355 u16 data_size; /* Data size of transmitted packet in bytes */ 356 u16 reserverd1; /* csum_l4 (for future use) */ 357 u32 command; /* Options used by HW for packet transmitting.*/ 358 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 359 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 360 u32 reserved3[4]; /* Reserved - (for future use) */ 361 }; 362 363 struct mvneta_rx_desc { 364 u16 data_size; /* Size of received packet in bytes */ 365 u16 reserved1; /* pnc_info - (for future use, PnC) */ 366 u32 status; /* Info about received packet */ 367 368 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 369 u32 buf_phys_addr; /* Physical address of the buffer */ 370 371 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 372 u16 reserved3; /* prefetch_cmd, for future use */ 373 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 374 375 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 376 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 377 }; 378 #endif 379 380 struct mvneta_tx_queue { 381 /* Number of this TX queue, in the range 0-7 */ 382 u8 id; 383 384 /* Number of TX DMA descriptors in the descriptor ring */ 385 int size; 386 387 /* Number of currently used TX DMA descriptor in the 388 * descriptor ring 389 */ 390 int count; 391 392 /* Array of transmitted skb */ 393 struct sk_buff **tx_skb; 394 395 /* Index of last TX DMA descriptor that was inserted */ 396 int txq_put_index; 397 398 /* Index of the TX DMA descriptor to be cleaned up */ 399 int txq_get_index; 400 401 u32 done_pkts_coal; 402 403 /* Virtual address of the TX DMA descriptors array */ 404 struct mvneta_tx_desc *descs; 405 406 /* DMA address of the TX DMA descriptors array */ 407 dma_addr_t descs_phys; 408 409 /* Index of the last TX DMA descriptor */ 410 int last_desc; 411 412 /* Index of the next TX DMA descriptor to process */ 413 int next_desc_to_proc; 414 }; 415 416 struct mvneta_rx_queue { 417 /* rx queue number, in the range 0-7 */ 418 u8 id; 419 420 /* num of rx descriptors in the rx descriptor ring */ 421 int size; 422 423 /* counter of times when mvneta_refill() failed */ 424 int missed; 425 426 u32 pkts_coal; 427 u32 time_coal; 428 429 /* Virtual address of the RX DMA descriptors array */ 430 struct mvneta_rx_desc *descs; 431 432 /* DMA address of the RX DMA descriptors array */ 433 dma_addr_t descs_phys; 434 435 /* Index of the last RX DMA descriptor */ 436 int last_desc; 437 438 /* Index of the next RX DMA descriptor to process */ 439 int next_desc_to_proc; 440 }; 441 442 static int rxq_number = 8; 443 static int txq_number = 8; 444 445 static int rxq_def; 446 447 static int rx_copybreak __read_mostly = 256; 448 449 #define MVNETA_DRIVER_NAME "mvneta" 450 #define MVNETA_DRIVER_VERSION "1.0" 451 452 /* Utility/helper methods */ 453 454 /* Write helper method */ 455 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 456 { 457 writel(data, pp->base + offset); 458 } 459 460 /* Read helper method */ 461 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 462 { 463 return readl(pp->base + offset); 464 } 465 466 /* Increment txq get counter */ 467 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 468 { 469 txq->txq_get_index++; 470 if (txq->txq_get_index == txq->size) 471 txq->txq_get_index = 0; 472 } 473 474 /* Increment txq put counter */ 475 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 476 { 477 txq->txq_put_index++; 478 if (txq->txq_put_index == txq->size) 479 txq->txq_put_index = 0; 480 } 481 482 483 /* Clear all MIB counters */ 484 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 485 { 486 int i; 487 u32 dummy; 488 489 /* Perform dummy reads from MIB counters */ 490 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 491 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 492 } 493 494 /* Get System Network Statistics */ 495 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 496 struct rtnl_link_stats64 *stats) 497 { 498 struct mvneta_port *pp = netdev_priv(dev); 499 unsigned int start; 500 int cpu; 501 502 for_each_possible_cpu(cpu) { 503 struct mvneta_pcpu_stats *cpu_stats; 504 u64 rx_packets; 505 u64 rx_bytes; 506 u64 tx_packets; 507 u64 tx_bytes; 508 509 cpu_stats = per_cpu_ptr(pp->stats, cpu); 510 do { 511 start = u64_stats_fetch_begin_bh(&cpu_stats->syncp); 512 rx_packets = cpu_stats->rx_packets; 513 rx_bytes = cpu_stats->rx_bytes; 514 tx_packets = cpu_stats->tx_packets; 515 tx_bytes = cpu_stats->tx_bytes; 516 } while (u64_stats_fetch_retry_bh(&cpu_stats->syncp, start)); 517 518 stats->rx_packets += rx_packets; 519 stats->rx_bytes += rx_bytes; 520 stats->tx_packets += tx_packets; 521 stats->tx_bytes += tx_bytes; 522 } 523 524 stats->rx_errors = dev->stats.rx_errors; 525 stats->rx_dropped = dev->stats.rx_dropped; 526 527 stats->tx_dropped = dev->stats.tx_dropped; 528 529 return stats; 530 } 531 532 /* Rx descriptors helper methods */ 533 534 /* Checks whether the RX descriptor having this status is both the first 535 * and the last descriptor for the RX packet. Each RX packet is currently 536 * received through a single RX descriptor, so not having each RX 537 * descriptor with its first and last bits set is an error 538 */ 539 static int mvneta_rxq_desc_is_first_last(u32 status) 540 { 541 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 542 MVNETA_RXD_FIRST_LAST_DESC; 543 } 544 545 /* Add number of descriptors ready to receive new packets */ 546 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 547 struct mvneta_rx_queue *rxq, 548 int ndescs) 549 { 550 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 551 * be added at once 552 */ 553 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 554 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 555 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 556 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 557 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 558 } 559 560 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 561 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 562 } 563 564 /* Get number of RX descriptors occupied by received packets */ 565 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 566 struct mvneta_rx_queue *rxq) 567 { 568 u32 val; 569 570 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 571 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 572 } 573 574 /* Update num of rx desc called upon return from rx path or 575 * from mvneta_rxq_drop_pkts(). 576 */ 577 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 578 struct mvneta_rx_queue *rxq, 579 int rx_done, int rx_filled) 580 { 581 u32 val; 582 583 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 584 val = rx_done | 585 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 586 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 587 return; 588 } 589 590 /* Only 255 descriptors can be added at once */ 591 while ((rx_done > 0) || (rx_filled > 0)) { 592 if (rx_done <= 0xff) { 593 val = rx_done; 594 rx_done = 0; 595 } else { 596 val = 0xff; 597 rx_done -= 0xff; 598 } 599 if (rx_filled <= 0xff) { 600 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 601 rx_filled = 0; 602 } else { 603 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 604 rx_filled -= 0xff; 605 } 606 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 607 } 608 } 609 610 /* Get pointer to next RX descriptor to be processed by SW */ 611 static struct mvneta_rx_desc * 612 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 613 { 614 int rx_desc = rxq->next_desc_to_proc; 615 616 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 617 prefetch(rxq->descs + rxq->next_desc_to_proc); 618 return rxq->descs + rx_desc; 619 } 620 621 /* Change maximum receive size of the port. */ 622 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 623 { 624 u32 val; 625 626 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 627 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 628 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 629 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 630 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 631 } 632 633 634 /* Set rx queue offset */ 635 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 636 struct mvneta_rx_queue *rxq, 637 int offset) 638 { 639 u32 val; 640 641 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 642 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 643 644 /* Offset is in */ 645 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 646 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 647 } 648 649 650 /* Tx descriptors helper methods */ 651 652 /* Update HW with number of TX descriptors to be sent */ 653 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 654 struct mvneta_tx_queue *txq, 655 int pend_desc) 656 { 657 u32 val; 658 659 /* Only 255 descriptors can be added at once ; Assume caller 660 * process TX desriptors in quanta less than 256 661 */ 662 val = pend_desc; 663 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 664 } 665 666 /* Get pointer to next TX descriptor to be processed (send) by HW */ 667 static struct mvneta_tx_desc * 668 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 669 { 670 int tx_desc = txq->next_desc_to_proc; 671 672 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 673 return txq->descs + tx_desc; 674 } 675 676 /* Release the last allocated TX descriptor. Useful to handle DMA 677 * mapping failures in the TX path. 678 */ 679 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 680 { 681 if (txq->next_desc_to_proc == 0) 682 txq->next_desc_to_proc = txq->last_desc - 1; 683 else 684 txq->next_desc_to_proc--; 685 } 686 687 /* Set rxq buf size */ 688 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 689 struct mvneta_rx_queue *rxq, 690 int buf_size) 691 { 692 u32 val; 693 694 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 695 696 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 697 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 698 699 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 700 } 701 702 /* Disable buffer management (BM) */ 703 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 704 struct mvneta_rx_queue *rxq) 705 { 706 u32 val; 707 708 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 709 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 710 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 711 } 712 713 714 715 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */ 716 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable) 717 { 718 u32 val; 719 720 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 721 722 if (enable) 723 val |= MVNETA_GMAC2_PORT_RGMII; 724 else 725 val &= ~MVNETA_GMAC2_PORT_RGMII; 726 727 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 728 } 729 730 /* Config SGMII port */ 731 static void mvneta_port_sgmii_config(struct mvneta_port *pp) 732 { 733 u32 val; 734 735 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 736 val |= MVNETA_GMAC2_PSC_ENABLE; 737 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 738 739 mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 740 } 741 742 /* Start the Ethernet port RX and TX activity */ 743 static void mvneta_port_up(struct mvneta_port *pp) 744 { 745 int queue; 746 u32 q_map; 747 748 /* Enable all initialized TXs. */ 749 mvneta_mib_counters_clear(pp); 750 q_map = 0; 751 for (queue = 0; queue < txq_number; queue++) { 752 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 753 if (txq->descs != NULL) 754 q_map |= (1 << queue); 755 } 756 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 757 758 /* Enable all initialized RXQs. */ 759 q_map = 0; 760 for (queue = 0; queue < rxq_number; queue++) { 761 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 762 if (rxq->descs != NULL) 763 q_map |= (1 << queue); 764 } 765 766 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 767 } 768 769 /* Stop the Ethernet port activity */ 770 static void mvneta_port_down(struct mvneta_port *pp) 771 { 772 u32 val; 773 int count; 774 775 /* Stop Rx port activity. Check port Rx activity. */ 776 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 777 778 /* Issue stop command for active channels only */ 779 if (val != 0) 780 mvreg_write(pp, MVNETA_RXQ_CMD, 781 val << MVNETA_RXQ_DISABLE_SHIFT); 782 783 /* Wait for all Rx activity to terminate. */ 784 count = 0; 785 do { 786 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 787 netdev_warn(pp->dev, 788 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 789 val); 790 break; 791 } 792 mdelay(1); 793 794 val = mvreg_read(pp, MVNETA_RXQ_CMD); 795 } while (val & 0xff); 796 797 /* Stop Tx port activity. Check port Tx activity. Issue stop 798 * command for active channels only 799 */ 800 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 801 802 if (val != 0) 803 mvreg_write(pp, MVNETA_TXQ_CMD, 804 (val << MVNETA_TXQ_DISABLE_SHIFT)); 805 806 /* Wait for all Tx activity to terminate. */ 807 count = 0; 808 do { 809 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 810 netdev_warn(pp->dev, 811 "TIMEOUT for TX stopped status=0x%08x\n", 812 val); 813 break; 814 } 815 mdelay(1); 816 817 /* Check TX Command reg that all Txqs are stopped */ 818 val = mvreg_read(pp, MVNETA_TXQ_CMD); 819 820 } while (val & 0xff); 821 822 /* Double check to verify that TX FIFO is empty */ 823 count = 0; 824 do { 825 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 826 netdev_warn(pp->dev, 827 "TX FIFO empty timeout status=0x08%x\n", 828 val); 829 break; 830 } 831 mdelay(1); 832 833 val = mvreg_read(pp, MVNETA_PORT_STATUS); 834 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 835 (val & MVNETA_TX_IN_PRGRS)); 836 837 udelay(200); 838 } 839 840 /* Enable the port by setting the port enable bit of the MAC control register */ 841 static void mvneta_port_enable(struct mvneta_port *pp) 842 { 843 u32 val; 844 845 /* Enable port */ 846 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 847 val |= MVNETA_GMAC0_PORT_ENABLE; 848 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 849 } 850 851 /* Disable the port and wait for about 200 usec before retuning */ 852 static void mvneta_port_disable(struct mvneta_port *pp) 853 { 854 u32 val; 855 856 /* Reset the Enable bit in the Serial Control Register */ 857 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 858 val &= ~MVNETA_GMAC0_PORT_ENABLE; 859 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 860 861 udelay(200); 862 } 863 864 /* Multicast tables methods */ 865 866 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 867 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 868 { 869 int offset; 870 u32 val; 871 872 if (queue == -1) { 873 val = 0; 874 } else { 875 val = 0x1 | (queue << 1); 876 val |= (val << 24) | (val << 16) | (val << 8); 877 } 878 879 for (offset = 0; offset <= 0xc; offset += 4) 880 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 881 } 882 883 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 884 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 885 { 886 int offset; 887 u32 val; 888 889 if (queue == -1) { 890 val = 0; 891 } else { 892 val = 0x1 | (queue << 1); 893 val |= (val << 24) | (val << 16) | (val << 8); 894 } 895 896 for (offset = 0; offset <= 0xfc; offset += 4) 897 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 898 899 } 900 901 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 902 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 903 { 904 int offset; 905 u32 val; 906 907 if (queue == -1) { 908 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 909 val = 0; 910 } else { 911 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 912 val = 0x1 | (queue << 1); 913 val |= (val << 24) | (val << 16) | (val << 8); 914 } 915 916 for (offset = 0; offset <= 0xfc; offset += 4) 917 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 918 } 919 920 /* This method sets defaults to the NETA port: 921 * Clears interrupt Cause and Mask registers. 922 * Clears all MAC tables. 923 * Sets defaults to all registers. 924 * Resets RX and TX descriptor rings. 925 * Resets PHY. 926 * This method can be called after mvneta_port_down() to return the port 927 * settings to defaults. 928 */ 929 static void mvneta_defaults_set(struct mvneta_port *pp) 930 { 931 int cpu; 932 int queue; 933 u32 val; 934 935 /* Clear all Cause registers */ 936 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 937 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 938 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 939 940 /* Mask all interrupts */ 941 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 942 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 943 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 944 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 945 946 /* Enable MBUS Retry bit16 */ 947 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 948 949 /* Set CPU queue access map - all CPUs have access to all RX 950 * queues and to all TX queues 951 */ 952 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 953 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 954 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 955 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 956 957 /* Reset RX and TX DMAs */ 958 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 959 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 960 961 /* Disable Legacy WRR, Disable EJP, Release from reset */ 962 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 963 for (queue = 0; queue < txq_number; queue++) { 964 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 965 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 966 } 967 968 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 969 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 970 971 /* Set Port Acceleration Mode */ 972 val = MVNETA_ACC_MODE_EXT; 973 mvreg_write(pp, MVNETA_ACC_MODE, val); 974 975 /* Update val of portCfg register accordingly with all RxQueue types */ 976 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 977 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 978 979 val = 0; 980 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 981 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 982 983 /* Build PORT_SDMA_CONFIG_REG */ 984 val = 0; 985 986 /* Default burst size */ 987 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 988 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 989 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 990 991 #if defined(__BIG_ENDIAN) 992 val |= MVNETA_DESC_SWAP; 993 #endif 994 995 /* Assign port SDMA configuration */ 996 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 997 998 /* Disable PHY polling in hardware, since we're using the 999 * kernel phylib to do this. 1000 */ 1001 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1002 val &= ~MVNETA_PHY_POLLING_ENABLE; 1003 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1004 1005 mvneta_set_ucast_table(pp, -1); 1006 mvneta_set_special_mcast_table(pp, -1); 1007 mvneta_set_other_mcast_table(pp, -1); 1008 1009 /* Set port interrupt enable register - default enable all */ 1010 mvreg_write(pp, MVNETA_INTR_ENABLE, 1011 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1012 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1013 } 1014 1015 /* Set max sizes for tx queues */ 1016 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1017 1018 { 1019 u32 val, size, mtu; 1020 int queue; 1021 1022 mtu = max_tx_size * 8; 1023 if (mtu > MVNETA_TX_MTU_MAX) 1024 mtu = MVNETA_TX_MTU_MAX; 1025 1026 /* Set MTU */ 1027 val = mvreg_read(pp, MVNETA_TX_MTU); 1028 val &= ~MVNETA_TX_MTU_MAX; 1029 val |= mtu; 1030 mvreg_write(pp, MVNETA_TX_MTU, val); 1031 1032 /* TX token size and all TXQs token size must be larger that MTU */ 1033 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1034 1035 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1036 if (size < mtu) { 1037 size = mtu; 1038 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1039 val |= size; 1040 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1041 } 1042 for (queue = 0; queue < txq_number; queue++) { 1043 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1044 1045 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1046 if (size < mtu) { 1047 size = mtu; 1048 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1049 val |= size; 1050 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1051 } 1052 } 1053 } 1054 1055 /* Set unicast address */ 1056 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1057 int queue) 1058 { 1059 unsigned int unicast_reg; 1060 unsigned int tbl_offset; 1061 unsigned int reg_offset; 1062 1063 /* Locate the Unicast table entry */ 1064 last_nibble = (0xf & last_nibble); 1065 1066 /* offset from unicast tbl base */ 1067 tbl_offset = (last_nibble / 4) * 4; 1068 1069 /* offset within the above reg */ 1070 reg_offset = last_nibble % 4; 1071 1072 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1073 1074 if (queue == -1) { 1075 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1076 unicast_reg &= ~(0xff << (8 * reg_offset)); 1077 } else { 1078 unicast_reg &= ~(0xff << (8 * reg_offset)); 1079 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1080 } 1081 1082 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1083 } 1084 1085 /* Set mac address */ 1086 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1087 int queue) 1088 { 1089 unsigned int mac_h; 1090 unsigned int mac_l; 1091 1092 if (queue != -1) { 1093 mac_l = (addr[4] << 8) | (addr[5]); 1094 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1095 (addr[2] << 8) | (addr[3] << 0); 1096 1097 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1098 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1099 } 1100 1101 /* Accept frames of this address */ 1102 mvneta_set_ucast_addr(pp, addr[5], queue); 1103 } 1104 1105 /* Set the number of packets that will be received before RX interrupt 1106 * will be generated by HW. 1107 */ 1108 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1109 struct mvneta_rx_queue *rxq, u32 value) 1110 { 1111 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1112 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1113 rxq->pkts_coal = value; 1114 } 1115 1116 /* Set the time delay in usec before RX interrupt will be generated by 1117 * HW. 1118 */ 1119 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1120 struct mvneta_rx_queue *rxq, u32 value) 1121 { 1122 u32 val; 1123 unsigned long clk_rate; 1124 1125 clk_rate = clk_get_rate(pp->clk); 1126 val = (clk_rate / 1000000) * value; 1127 1128 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1129 rxq->time_coal = value; 1130 } 1131 1132 /* Set threshold for TX_DONE pkts coalescing */ 1133 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1134 struct mvneta_tx_queue *txq, u32 value) 1135 { 1136 u32 val; 1137 1138 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1139 1140 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1141 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1142 1143 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1144 1145 txq->done_pkts_coal = value; 1146 } 1147 1148 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1149 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1150 u32 phys_addr, u32 cookie) 1151 { 1152 rx_desc->buf_cookie = cookie; 1153 rx_desc->buf_phys_addr = phys_addr; 1154 } 1155 1156 /* Decrement sent descriptors counter */ 1157 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1158 struct mvneta_tx_queue *txq, 1159 int sent_desc) 1160 { 1161 u32 val; 1162 1163 /* Only 255 TX descriptors can be updated at once */ 1164 while (sent_desc > 0xff) { 1165 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1166 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1167 sent_desc = sent_desc - 0xff; 1168 } 1169 1170 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1171 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1172 } 1173 1174 /* Get number of TX descriptors already sent by HW */ 1175 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1176 struct mvneta_tx_queue *txq) 1177 { 1178 u32 val; 1179 int sent_desc; 1180 1181 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1182 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1183 MVNETA_TXQ_SENT_DESC_SHIFT; 1184 1185 return sent_desc; 1186 } 1187 1188 /* Get number of sent descriptors and decrement counter. 1189 * The number of sent descriptors is returned. 1190 */ 1191 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1192 struct mvneta_tx_queue *txq) 1193 { 1194 int sent_desc; 1195 1196 /* Get number of sent descriptors */ 1197 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1198 1199 /* Decrement sent descriptors counter */ 1200 if (sent_desc) 1201 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1202 1203 return sent_desc; 1204 } 1205 1206 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1207 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1208 int ip_hdr_len, int l4_proto) 1209 { 1210 u32 command; 1211 1212 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1213 * G_L4_chk, L4_type; required only for checksum 1214 * calculation 1215 */ 1216 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1217 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1218 1219 if (l3_proto == swab16(ETH_P_IP)) 1220 command |= MVNETA_TXD_IP_CSUM; 1221 else 1222 command |= MVNETA_TX_L3_IP6; 1223 1224 if (l4_proto == IPPROTO_TCP) 1225 command |= MVNETA_TX_L4_CSUM_FULL; 1226 else if (l4_proto == IPPROTO_UDP) 1227 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1228 else 1229 command |= MVNETA_TX_L4_CSUM_NOT; 1230 1231 return command; 1232 } 1233 1234 1235 /* Display more error info */ 1236 static void mvneta_rx_error(struct mvneta_port *pp, 1237 struct mvneta_rx_desc *rx_desc) 1238 { 1239 u32 status = rx_desc->status; 1240 1241 if (!mvneta_rxq_desc_is_first_last(status)) { 1242 netdev_err(pp->dev, 1243 "bad rx status %08x (buffer oversize), size=%d\n", 1244 status, rx_desc->data_size); 1245 return; 1246 } 1247 1248 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1249 case MVNETA_RXD_ERR_CRC: 1250 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1251 status, rx_desc->data_size); 1252 break; 1253 case MVNETA_RXD_ERR_OVERRUN: 1254 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1255 status, rx_desc->data_size); 1256 break; 1257 case MVNETA_RXD_ERR_LEN: 1258 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1259 status, rx_desc->data_size); 1260 break; 1261 case MVNETA_RXD_ERR_RESOURCE: 1262 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1263 status, rx_desc->data_size); 1264 break; 1265 } 1266 } 1267 1268 /* Handle RX checksum offload based on the descriptor's status */ 1269 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1270 struct sk_buff *skb) 1271 { 1272 if ((status & MVNETA_RXD_L3_IP4) && 1273 (status & MVNETA_RXD_L4_CSUM_OK)) { 1274 skb->csum = 0; 1275 skb->ip_summed = CHECKSUM_UNNECESSARY; 1276 return; 1277 } 1278 1279 skb->ip_summed = CHECKSUM_NONE; 1280 } 1281 1282 /* Return tx queue pointer (find last set bit) according to <cause> returned 1283 * form tx_done reg. <cause> must not be null. The return value is always a 1284 * valid queue for matching the first one found in <cause>. 1285 */ 1286 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1287 u32 cause) 1288 { 1289 int queue = fls(cause) - 1; 1290 1291 return &pp->txqs[queue]; 1292 } 1293 1294 /* Free tx queue skbuffs */ 1295 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1296 struct mvneta_tx_queue *txq, int num) 1297 { 1298 int i; 1299 1300 for (i = 0; i < num; i++) { 1301 struct mvneta_tx_desc *tx_desc = txq->descs + 1302 txq->txq_get_index; 1303 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1304 1305 mvneta_txq_inc_get(txq); 1306 1307 if (!skb) 1308 continue; 1309 1310 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, 1311 tx_desc->data_size, DMA_TO_DEVICE); 1312 dev_kfree_skb_any(skb); 1313 } 1314 } 1315 1316 /* Handle end of transmission */ 1317 static void mvneta_txq_done(struct mvneta_port *pp, 1318 struct mvneta_tx_queue *txq) 1319 { 1320 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1321 int tx_done; 1322 1323 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1324 if (!tx_done) 1325 return; 1326 1327 mvneta_txq_bufs_free(pp, txq, tx_done); 1328 1329 txq->count -= tx_done; 1330 1331 if (netif_tx_queue_stopped(nq)) { 1332 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1) 1333 netif_tx_wake_queue(nq); 1334 } 1335 } 1336 1337 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1338 { 1339 if (likely(pp->frag_size <= PAGE_SIZE)) 1340 return netdev_alloc_frag(pp->frag_size); 1341 else 1342 return kmalloc(pp->frag_size, GFP_ATOMIC); 1343 } 1344 1345 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1346 { 1347 if (likely(pp->frag_size <= PAGE_SIZE)) 1348 put_page(virt_to_head_page(data)); 1349 else 1350 kfree(data); 1351 } 1352 1353 /* Refill processing */ 1354 static int mvneta_rx_refill(struct mvneta_port *pp, 1355 struct mvneta_rx_desc *rx_desc) 1356 1357 { 1358 dma_addr_t phys_addr; 1359 void *data; 1360 1361 data = mvneta_frag_alloc(pp); 1362 if (!data) 1363 return -ENOMEM; 1364 1365 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1366 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1367 DMA_FROM_DEVICE); 1368 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1369 mvneta_frag_free(pp, data); 1370 return -ENOMEM; 1371 } 1372 1373 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1374 return 0; 1375 } 1376 1377 /* Handle tx checksum */ 1378 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1379 { 1380 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1381 int ip_hdr_len = 0; 1382 u8 l4_proto; 1383 1384 if (skb->protocol == htons(ETH_P_IP)) { 1385 struct iphdr *ip4h = ip_hdr(skb); 1386 1387 /* Calculate IPv4 checksum and L4 checksum */ 1388 ip_hdr_len = ip4h->ihl; 1389 l4_proto = ip4h->protocol; 1390 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1391 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1392 1393 /* Read l4_protocol from one of IPv6 extra headers */ 1394 if (skb_network_header_len(skb) > 0) 1395 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1396 l4_proto = ip6h->nexthdr; 1397 } else 1398 return MVNETA_TX_L4_CSUM_NOT; 1399 1400 return mvneta_txq_desc_csum(skb_network_offset(skb), 1401 skb->protocol, ip_hdr_len, l4_proto); 1402 } 1403 1404 return MVNETA_TX_L4_CSUM_NOT; 1405 } 1406 1407 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1408 * value 1409 */ 1410 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1411 u32 cause) 1412 { 1413 int queue = fls(cause >> 8) - 1; 1414 1415 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1416 } 1417 1418 /* Drop packets received by the RXQ and free buffers */ 1419 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1420 struct mvneta_rx_queue *rxq) 1421 { 1422 int rx_done, i; 1423 1424 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1425 for (i = 0; i < rxq->size; i++) { 1426 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1427 void *data = (void *)rx_desc->buf_cookie; 1428 1429 mvneta_frag_free(pp, data); 1430 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1431 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1432 } 1433 1434 if (rx_done) 1435 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1436 } 1437 1438 /* Main rx processing */ 1439 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1440 struct mvneta_rx_queue *rxq) 1441 { 1442 struct net_device *dev = pp->dev; 1443 int rx_done, rx_filled; 1444 u32 rcvd_pkts = 0; 1445 u32 rcvd_bytes = 0; 1446 1447 /* Get number of received packets */ 1448 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1449 1450 if (rx_todo > rx_done) 1451 rx_todo = rx_done; 1452 1453 rx_done = 0; 1454 rx_filled = 0; 1455 1456 /* Fairness NAPI loop */ 1457 while (rx_done < rx_todo) { 1458 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1459 struct sk_buff *skb; 1460 unsigned char *data; 1461 u32 rx_status; 1462 int rx_bytes, err; 1463 1464 rx_done++; 1465 rx_filled++; 1466 rx_status = rx_desc->status; 1467 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1468 data = (unsigned char *)rx_desc->buf_cookie; 1469 1470 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1471 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1472 err_drop_frame: 1473 dev->stats.rx_errors++; 1474 mvneta_rx_error(pp, rx_desc); 1475 /* leave the descriptor untouched */ 1476 continue; 1477 } 1478 1479 if (rx_bytes <= rx_copybreak) { 1480 /* better copy a small frame and not unmap the DMA region */ 1481 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1482 if (unlikely(!skb)) 1483 goto err_drop_frame; 1484 1485 dma_sync_single_range_for_cpu(dev->dev.parent, 1486 rx_desc->buf_phys_addr, 1487 MVNETA_MH_SIZE + NET_SKB_PAD, 1488 rx_bytes, 1489 DMA_FROM_DEVICE); 1490 memcpy(skb_put(skb, rx_bytes), 1491 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1492 rx_bytes); 1493 1494 skb->protocol = eth_type_trans(skb, dev); 1495 mvneta_rx_csum(pp, rx_status, skb); 1496 napi_gro_receive(&pp->napi, skb); 1497 1498 rcvd_pkts++; 1499 rcvd_bytes += rx_bytes; 1500 1501 /* leave the descriptor and buffer untouched */ 1502 continue; 1503 } 1504 1505 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1506 if (!skb) 1507 goto err_drop_frame; 1508 1509 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr, 1510 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1511 1512 rcvd_pkts++; 1513 rcvd_bytes += rx_bytes; 1514 1515 /* Linux processing */ 1516 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1517 skb_put(skb, rx_bytes); 1518 1519 skb->protocol = eth_type_trans(skb, dev); 1520 1521 mvneta_rx_csum(pp, rx_status, skb); 1522 1523 napi_gro_receive(&pp->napi, skb); 1524 1525 /* Refill processing */ 1526 err = mvneta_rx_refill(pp, rx_desc); 1527 if (err) { 1528 netdev_err(dev, "Linux processing - Can't refill\n"); 1529 rxq->missed++; 1530 rx_filled--; 1531 } 1532 } 1533 1534 if (rcvd_pkts) { 1535 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1536 1537 u64_stats_update_begin(&stats->syncp); 1538 stats->rx_packets += rcvd_pkts; 1539 stats->rx_bytes += rcvd_bytes; 1540 u64_stats_update_end(&stats->syncp); 1541 } 1542 1543 /* Update rxq management counters */ 1544 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1545 1546 return rx_done; 1547 } 1548 1549 /* Handle tx fragmentation processing */ 1550 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1551 struct mvneta_tx_queue *txq) 1552 { 1553 struct mvneta_tx_desc *tx_desc; 1554 int i; 1555 1556 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1557 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1558 void *addr = page_address(frag->page.p) + frag->page_offset; 1559 1560 tx_desc = mvneta_txq_next_desc_get(txq); 1561 tx_desc->data_size = frag->size; 1562 1563 tx_desc->buf_phys_addr = 1564 dma_map_single(pp->dev->dev.parent, addr, 1565 tx_desc->data_size, DMA_TO_DEVICE); 1566 1567 if (dma_mapping_error(pp->dev->dev.parent, 1568 tx_desc->buf_phys_addr)) { 1569 mvneta_txq_desc_put(txq); 1570 goto error; 1571 } 1572 1573 if (i == (skb_shinfo(skb)->nr_frags - 1)) { 1574 /* Last descriptor */ 1575 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1576 1577 txq->tx_skb[txq->txq_put_index] = skb; 1578 1579 mvneta_txq_inc_put(txq); 1580 } else { 1581 /* Descriptor in the middle: Not First, Not Last */ 1582 tx_desc->command = 0; 1583 1584 txq->tx_skb[txq->txq_put_index] = NULL; 1585 mvneta_txq_inc_put(txq); 1586 } 1587 } 1588 1589 return 0; 1590 1591 error: 1592 /* Release all descriptors that were used to map fragments of 1593 * this packet, as well as the corresponding DMA mappings 1594 */ 1595 for (i = i - 1; i >= 0; i--) { 1596 tx_desc = txq->descs + i; 1597 dma_unmap_single(pp->dev->dev.parent, 1598 tx_desc->buf_phys_addr, 1599 tx_desc->data_size, 1600 DMA_TO_DEVICE); 1601 mvneta_txq_desc_put(txq); 1602 } 1603 1604 return -ENOMEM; 1605 } 1606 1607 /* Main tx processing */ 1608 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1609 { 1610 struct mvneta_port *pp = netdev_priv(dev); 1611 u16 txq_id = skb_get_queue_mapping(skb); 1612 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1613 struct mvneta_tx_desc *tx_desc; 1614 struct netdev_queue *nq; 1615 int frags = 0; 1616 u32 tx_cmd; 1617 1618 if (!netif_running(dev)) 1619 goto out; 1620 1621 frags = skb_shinfo(skb)->nr_frags + 1; 1622 nq = netdev_get_tx_queue(dev, txq_id); 1623 1624 /* Get a descriptor for the first part of the packet */ 1625 tx_desc = mvneta_txq_next_desc_get(txq); 1626 1627 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1628 1629 tx_desc->data_size = skb_headlen(skb); 1630 1631 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1632 tx_desc->data_size, 1633 DMA_TO_DEVICE); 1634 if (unlikely(dma_mapping_error(dev->dev.parent, 1635 tx_desc->buf_phys_addr))) { 1636 mvneta_txq_desc_put(txq); 1637 frags = 0; 1638 goto out; 1639 } 1640 1641 if (frags == 1) { 1642 /* First and Last descriptor */ 1643 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1644 tx_desc->command = tx_cmd; 1645 txq->tx_skb[txq->txq_put_index] = skb; 1646 mvneta_txq_inc_put(txq); 1647 } else { 1648 /* First but not Last */ 1649 tx_cmd |= MVNETA_TXD_F_DESC; 1650 txq->tx_skb[txq->txq_put_index] = NULL; 1651 mvneta_txq_inc_put(txq); 1652 tx_desc->command = tx_cmd; 1653 /* Continue with other skb fragments */ 1654 if (mvneta_tx_frag_process(pp, skb, txq)) { 1655 dma_unmap_single(dev->dev.parent, 1656 tx_desc->buf_phys_addr, 1657 tx_desc->data_size, 1658 DMA_TO_DEVICE); 1659 mvneta_txq_desc_put(txq); 1660 frags = 0; 1661 goto out; 1662 } 1663 } 1664 1665 txq->count += frags; 1666 mvneta_txq_pend_desc_add(pp, txq, frags); 1667 1668 if (txq->size - txq->count < MAX_SKB_FRAGS + 1) 1669 netif_tx_stop_queue(nq); 1670 1671 out: 1672 if (frags > 0) { 1673 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1674 1675 u64_stats_update_begin(&stats->syncp); 1676 stats->tx_packets++; 1677 stats->tx_bytes += skb->len; 1678 u64_stats_update_end(&stats->syncp); 1679 } else { 1680 dev->stats.tx_dropped++; 1681 dev_kfree_skb_any(skb); 1682 } 1683 1684 return NETDEV_TX_OK; 1685 } 1686 1687 1688 /* Free tx resources, when resetting a port */ 1689 static void mvneta_txq_done_force(struct mvneta_port *pp, 1690 struct mvneta_tx_queue *txq) 1691 1692 { 1693 int tx_done = txq->count; 1694 1695 mvneta_txq_bufs_free(pp, txq, tx_done); 1696 1697 /* reset txq */ 1698 txq->count = 0; 1699 txq->txq_put_index = 0; 1700 txq->txq_get_index = 0; 1701 } 1702 1703 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1704 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1705 */ 1706 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1707 { 1708 struct mvneta_tx_queue *txq; 1709 struct netdev_queue *nq; 1710 1711 while (cause_tx_done) { 1712 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1713 1714 nq = netdev_get_tx_queue(pp->dev, txq->id); 1715 __netif_tx_lock(nq, smp_processor_id()); 1716 1717 if (txq->count) 1718 mvneta_txq_done(pp, txq); 1719 1720 __netif_tx_unlock(nq); 1721 cause_tx_done &= ~((1 << txq->id)); 1722 } 1723 } 1724 1725 /* Compute crc8 of the specified address, using a unique algorithm , 1726 * according to hw spec, different than generic crc8 algorithm 1727 */ 1728 static int mvneta_addr_crc(unsigned char *addr) 1729 { 1730 int crc = 0; 1731 int i; 1732 1733 for (i = 0; i < ETH_ALEN; i++) { 1734 int j; 1735 1736 crc = (crc ^ addr[i]) << 8; 1737 for (j = 7; j >= 0; j--) { 1738 if (crc & (0x100 << j)) 1739 crc ^= 0x107 << j; 1740 } 1741 } 1742 1743 return crc; 1744 } 1745 1746 /* This method controls the net device special MAC multicast support. 1747 * The Special Multicast Table for MAC addresses supports MAC of the form 1748 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1749 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1750 * Table entries in the DA-Filter table. This method set the Special 1751 * Multicast Table appropriate entry. 1752 */ 1753 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1754 unsigned char last_byte, 1755 int queue) 1756 { 1757 unsigned int smc_table_reg; 1758 unsigned int tbl_offset; 1759 unsigned int reg_offset; 1760 1761 /* Register offset from SMC table base */ 1762 tbl_offset = (last_byte / 4); 1763 /* Entry offset within the above reg */ 1764 reg_offset = last_byte % 4; 1765 1766 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1767 + tbl_offset * 4)); 1768 1769 if (queue == -1) 1770 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1771 else { 1772 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1773 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1774 } 1775 1776 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1777 smc_table_reg); 1778 } 1779 1780 /* This method controls the network device Other MAC multicast support. 1781 * The Other Multicast Table is used for multicast of another type. 1782 * A CRC-8 is used as an index to the Other Multicast Table entries 1783 * in the DA-Filter table. 1784 * The method gets the CRC-8 value from the calling routine and 1785 * sets the Other Multicast Table appropriate entry according to the 1786 * specified CRC-8 . 1787 */ 1788 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1789 unsigned char crc8, 1790 int queue) 1791 { 1792 unsigned int omc_table_reg; 1793 unsigned int tbl_offset; 1794 unsigned int reg_offset; 1795 1796 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1797 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1798 1799 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1800 1801 if (queue == -1) { 1802 /* Clear accepts frame bit at specified Other DA table entry */ 1803 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1804 } else { 1805 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1806 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1807 } 1808 1809 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1810 } 1811 1812 /* The network device supports multicast using two tables: 1813 * 1) Special Multicast Table for MAC addresses of the form 1814 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1815 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1816 * Table entries in the DA-Filter table. 1817 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1818 * is used as an index to the Other Multicast Table entries in the 1819 * DA-Filter table. 1820 */ 1821 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1822 int queue) 1823 { 1824 unsigned char crc_result = 0; 1825 1826 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1827 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1828 return 0; 1829 } 1830 1831 crc_result = mvneta_addr_crc(p_addr); 1832 if (queue == -1) { 1833 if (pp->mcast_count[crc_result] == 0) { 1834 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1835 crc_result); 1836 return -EINVAL; 1837 } 1838 1839 pp->mcast_count[crc_result]--; 1840 if (pp->mcast_count[crc_result] != 0) { 1841 netdev_info(pp->dev, 1842 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1843 pp->mcast_count[crc_result], crc_result); 1844 return -EINVAL; 1845 } 1846 } else 1847 pp->mcast_count[crc_result]++; 1848 1849 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1850 1851 return 0; 1852 } 1853 1854 /* Configure Fitering mode of Ethernet port */ 1855 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1856 int is_promisc) 1857 { 1858 u32 port_cfg_reg, val; 1859 1860 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1861 1862 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1863 1864 /* Set / Clear UPM bit in port configuration register */ 1865 if (is_promisc) { 1866 /* Accept all Unicast addresses */ 1867 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 1868 val |= MVNETA_FORCE_UNI; 1869 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 1870 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 1871 } else { 1872 /* Reject all Unicast addresses */ 1873 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 1874 val &= ~MVNETA_FORCE_UNI; 1875 } 1876 1877 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 1878 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 1879 } 1880 1881 /* register unicast and multicast addresses */ 1882 static void mvneta_set_rx_mode(struct net_device *dev) 1883 { 1884 struct mvneta_port *pp = netdev_priv(dev); 1885 struct netdev_hw_addr *ha; 1886 1887 if (dev->flags & IFF_PROMISC) { 1888 /* Accept all: Multicast + Unicast */ 1889 mvneta_rx_unicast_promisc_set(pp, 1); 1890 mvneta_set_ucast_table(pp, rxq_def); 1891 mvneta_set_special_mcast_table(pp, rxq_def); 1892 mvneta_set_other_mcast_table(pp, rxq_def); 1893 } else { 1894 /* Accept single Unicast */ 1895 mvneta_rx_unicast_promisc_set(pp, 0); 1896 mvneta_set_ucast_table(pp, -1); 1897 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 1898 1899 if (dev->flags & IFF_ALLMULTI) { 1900 /* Accept all multicast */ 1901 mvneta_set_special_mcast_table(pp, rxq_def); 1902 mvneta_set_other_mcast_table(pp, rxq_def); 1903 } else { 1904 /* Accept only initialized multicast */ 1905 mvneta_set_special_mcast_table(pp, -1); 1906 mvneta_set_other_mcast_table(pp, -1); 1907 1908 if (!netdev_mc_empty(dev)) { 1909 netdev_for_each_mc_addr(ha, dev) { 1910 mvneta_mcast_addr_set(pp, ha->addr, 1911 rxq_def); 1912 } 1913 } 1914 } 1915 } 1916 } 1917 1918 /* Interrupt handling - the callback for request_irq() */ 1919 static irqreturn_t mvneta_isr(int irq, void *dev_id) 1920 { 1921 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 1922 1923 /* Mask all interrupts */ 1924 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1925 1926 napi_schedule(&pp->napi); 1927 1928 return IRQ_HANDLED; 1929 } 1930 1931 /* NAPI handler 1932 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 1933 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 1934 * Bits 8 -15 of the cause Rx Tx register indicate that are received 1935 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 1936 * Each CPU has its own causeRxTx register 1937 */ 1938 static int mvneta_poll(struct napi_struct *napi, int budget) 1939 { 1940 int rx_done = 0; 1941 u32 cause_rx_tx; 1942 unsigned long flags; 1943 struct mvneta_port *pp = netdev_priv(napi->dev); 1944 1945 if (!netif_running(pp->dev)) { 1946 napi_complete(napi); 1947 return rx_done; 1948 } 1949 1950 /* Read cause register */ 1951 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) & 1952 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 1953 1954 /* Release Tx descriptors */ 1955 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 1956 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 1957 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 1958 } 1959 1960 /* For the case where the last mvneta_poll did not process all 1961 * RX packets 1962 */ 1963 cause_rx_tx |= pp->cause_rx_tx; 1964 if (rxq_number > 1) { 1965 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) { 1966 int count; 1967 struct mvneta_rx_queue *rxq; 1968 /* get rx queue number from cause_rx_tx */ 1969 rxq = mvneta_rx_policy(pp, cause_rx_tx); 1970 if (!rxq) 1971 break; 1972 1973 /* process the packet in that rx queue */ 1974 count = mvneta_rx(pp, budget, rxq); 1975 rx_done += count; 1976 budget -= count; 1977 if (budget > 0) { 1978 /* set off the rx bit of the 1979 * corresponding bit in the cause rx 1980 * tx register, so that next iteration 1981 * will find the next rx queue where 1982 * packets are received on 1983 */ 1984 cause_rx_tx &= ~((1 << rxq->id) << 8); 1985 } 1986 } 1987 } else { 1988 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 1989 budget -= rx_done; 1990 } 1991 1992 if (budget > 0) { 1993 cause_rx_tx = 0; 1994 napi_complete(napi); 1995 local_irq_save(flags); 1996 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1997 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 1998 local_irq_restore(flags); 1999 } 2000 2001 pp->cause_rx_tx = cause_rx_tx; 2002 return rx_done; 2003 } 2004 2005 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2006 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2007 int num) 2008 { 2009 int i; 2010 2011 for (i = 0; i < num; i++) { 2012 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2013 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2014 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2015 __func__, rxq->id, i, num); 2016 break; 2017 } 2018 } 2019 2020 /* Add this number of RX descriptors as non occupied (ready to 2021 * get packets) 2022 */ 2023 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2024 2025 return i; 2026 } 2027 2028 /* Free all packets pending transmit from all TXQs and reset TX port */ 2029 static void mvneta_tx_reset(struct mvneta_port *pp) 2030 { 2031 int queue; 2032 2033 /* free the skb's in the hal tx ring */ 2034 for (queue = 0; queue < txq_number; queue++) 2035 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2036 2037 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2038 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2039 } 2040 2041 static void mvneta_rx_reset(struct mvneta_port *pp) 2042 { 2043 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2044 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2045 } 2046 2047 /* Rx/Tx queue initialization/cleanup methods */ 2048 2049 /* Create a specified RX queue */ 2050 static int mvneta_rxq_init(struct mvneta_port *pp, 2051 struct mvneta_rx_queue *rxq) 2052 2053 { 2054 rxq->size = pp->rx_ring_size; 2055 2056 /* Allocate memory for RX descriptors */ 2057 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2058 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2059 &rxq->descs_phys, GFP_KERNEL); 2060 if (rxq->descs == NULL) 2061 return -ENOMEM; 2062 2063 BUG_ON(rxq->descs != 2064 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2065 2066 rxq->last_desc = rxq->size - 1; 2067 2068 /* Set Rx descriptors queue starting address */ 2069 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2070 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2071 2072 /* Set Offset */ 2073 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2074 2075 /* Set coalescing pkts and time */ 2076 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2077 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2078 2079 /* Fill RXQ with buffers from RX pool */ 2080 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2081 mvneta_rxq_bm_disable(pp, rxq); 2082 mvneta_rxq_fill(pp, rxq, rxq->size); 2083 2084 return 0; 2085 } 2086 2087 /* Cleanup Rx queue */ 2088 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2089 struct mvneta_rx_queue *rxq) 2090 { 2091 mvneta_rxq_drop_pkts(pp, rxq); 2092 2093 if (rxq->descs) 2094 dma_free_coherent(pp->dev->dev.parent, 2095 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2096 rxq->descs, 2097 rxq->descs_phys); 2098 2099 rxq->descs = NULL; 2100 rxq->last_desc = 0; 2101 rxq->next_desc_to_proc = 0; 2102 rxq->descs_phys = 0; 2103 } 2104 2105 /* Create and initialize a tx queue */ 2106 static int mvneta_txq_init(struct mvneta_port *pp, 2107 struct mvneta_tx_queue *txq) 2108 { 2109 txq->size = pp->tx_ring_size; 2110 2111 /* Allocate memory for TX descriptors */ 2112 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2113 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2114 &txq->descs_phys, GFP_KERNEL); 2115 if (txq->descs == NULL) 2116 return -ENOMEM; 2117 2118 /* Make sure descriptor address is cache line size aligned */ 2119 BUG_ON(txq->descs != 2120 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2121 2122 txq->last_desc = txq->size - 1; 2123 2124 /* Set maximum bandwidth for enabled TXQs */ 2125 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2126 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2127 2128 /* Set Tx descriptors queue starting address */ 2129 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2130 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2131 2132 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2133 if (txq->tx_skb == NULL) { 2134 dma_free_coherent(pp->dev->dev.parent, 2135 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2136 txq->descs, txq->descs_phys); 2137 return -ENOMEM; 2138 } 2139 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2140 2141 return 0; 2142 } 2143 2144 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2145 static void mvneta_txq_deinit(struct mvneta_port *pp, 2146 struct mvneta_tx_queue *txq) 2147 { 2148 kfree(txq->tx_skb); 2149 2150 if (txq->descs) 2151 dma_free_coherent(pp->dev->dev.parent, 2152 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2153 txq->descs, txq->descs_phys); 2154 2155 txq->descs = NULL; 2156 txq->last_desc = 0; 2157 txq->next_desc_to_proc = 0; 2158 txq->descs_phys = 0; 2159 2160 /* Set minimum bandwidth for disabled TXQs */ 2161 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2162 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2163 2164 /* Set Tx descriptors queue starting address and size */ 2165 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2166 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2167 } 2168 2169 /* Cleanup all Tx queues */ 2170 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2171 { 2172 int queue; 2173 2174 for (queue = 0; queue < txq_number; queue++) 2175 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2176 } 2177 2178 /* Cleanup all Rx queues */ 2179 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2180 { 2181 int queue; 2182 2183 for (queue = 0; queue < rxq_number; queue++) 2184 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2185 } 2186 2187 2188 /* Init all Rx queues */ 2189 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2190 { 2191 int queue; 2192 2193 for (queue = 0; queue < rxq_number; queue++) { 2194 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2195 if (err) { 2196 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2197 __func__, queue); 2198 mvneta_cleanup_rxqs(pp); 2199 return err; 2200 } 2201 } 2202 2203 return 0; 2204 } 2205 2206 /* Init all tx queues */ 2207 static int mvneta_setup_txqs(struct mvneta_port *pp) 2208 { 2209 int queue; 2210 2211 for (queue = 0; queue < txq_number; queue++) { 2212 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2213 if (err) { 2214 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2215 __func__, queue); 2216 mvneta_cleanup_txqs(pp); 2217 return err; 2218 } 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void mvneta_start_dev(struct mvneta_port *pp) 2225 { 2226 mvneta_max_rx_size_set(pp, pp->pkt_size); 2227 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2228 2229 /* start the Rx/Tx activity */ 2230 mvneta_port_enable(pp); 2231 2232 /* Enable polling on the port */ 2233 napi_enable(&pp->napi); 2234 2235 /* Unmask interrupts */ 2236 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2237 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 2238 2239 phy_start(pp->phy_dev); 2240 netif_tx_start_all_queues(pp->dev); 2241 } 2242 2243 static void mvneta_stop_dev(struct mvneta_port *pp) 2244 { 2245 phy_stop(pp->phy_dev); 2246 2247 napi_disable(&pp->napi); 2248 2249 netif_carrier_off(pp->dev); 2250 2251 mvneta_port_down(pp); 2252 netif_tx_stop_all_queues(pp->dev); 2253 2254 /* Stop the port activity */ 2255 mvneta_port_disable(pp); 2256 2257 /* Clear all ethernet port interrupts */ 2258 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2259 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2260 2261 /* Mask all ethernet port interrupts */ 2262 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2263 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2264 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2265 2266 mvneta_tx_reset(pp); 2267 mvneta_rx_reset(pp); 2268 } 2269 2270 /* Return positive if MTU is valid */ 2271 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2272 { 2273 if (mtu < 68) { 2274 netdev_err(dev, "cannot change mtu to less than 68\n"); 2275 return -EINVAL; 2276 } 2277 2278 /* 9676 == 9700 - 20 and rounding to 8 */ 2279 if (mtu > 9676) { 2280 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2281 mtu = 9676; 2282 } 2283 2284 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2285 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2286 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2287 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2288 } 2289 2290 return mtu; 2291 } 2292 2293 /* Change the device mtu */ 2294 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2295 { 2296 struct mvneta_port *pp = netdev_priv(dev); 2297 int ret; 2298 2299 mtu = mvneta_check_mtu_valid(dev, mtu); 2300 if (mtu < 0) 2301 return -EINVAL; 2302 2303 dev->mtu = mtu; 2304 2305 if (!netif_running(dev)) 2306 return 0; 2307 2308 /* The interface is running, so we have to force a 2309 * reallocation of the RXQs 2310 */ 2311 mvneta_stop_dev(pp); 2312 2313 mvneta_cleanup_txqs(pp); 2314 mvneta_cleanup_rxqs(pp); 2315 2316 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2317 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2318 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2319 2320 ret = mvneta_setup_rxqs(pp); 2321 if (ret) { 2322 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n"); 2323 return ret; 2324 } 2325 2326 mvneta_setup_txqs(pp); 2327 2328 mvneta_start_dev(pp); 2329 mvneta_port_up(pp); 2330 2331 return 0; 2332 } 2333 2334 /* Get mac address */ 2335 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2336 { 2337 u32 mac_addr_l, mac_addr_h; 2338 2339 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2340 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2341 addr[0] = (mac_addr_h >> 24) & 0xFF; 2342 addr[1] = (mac_addr_h >> 16) & 0xFF; 2343 addr[2] = (mac_addr_h >> 8) & 0xFF; 2344 addr[3] = mac_addr_h & 0xFF; 2345 addr[4] = (mac_addr_l >> 8) & 0xFF; 2346 addr[5] = mac_addr_l & 0xFF; 2347 } 2348 2349 /* Handle setting mac address */ 2350 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2351 { 2352 struct mvneta_port *pp = netdev_priv(dev); 2353 u8 *mac = addr + 2; 2354 int i; 2355 2356 if (netif_running(dev)) 2357 return -EBUSY; 2358 2359 /* Remove previous address table entry */ 2360 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2361 2362 /* Set new addr in hw */ 2363 mvneta_mac_addr_set(pp, mac, rxq_def); 2364 2365 /* Set addr in the device */ 2366 for (i = 0; i < ETH_ALEN; i++) 2367 dev->dev_addr[i] = mac[i]; 2368 2369 return 0; 2370 } 2371 2372 static void mvneta_adjust_link(struct net_device *ndev) 2373 { 2374 struct mvneta_port *pp = netdev_priv(ndev); 2375 struct phy_device *phydev = pp->phy_dev; 2376 int status_change = 0; 2377 2378 if (phydev->link) { 2379 if ((pp->speed != phydev->speed) || 2380 (pp->duplex != phydev->duplex)) { 2381 u32 val; 2382 2383 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2384 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2385 MVNETA_GMAC_CONFIG_GMII_SPEED | 2386 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 2387 MVNETA_GMAC_AN_SPEED_EN | 2388 MVNETA_GMAC_AN_DUPLEX_EN); 2389 2390 if (phydev->duplex) 2391 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2392 2393 if (phydev->speed == SPEED_1000) 2394 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2395 else 2396 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2397 2398 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2399 2400 pp->duplex = phydev->duplex; 2401 pp->speed = phydev->speed; 2402 } 2403 } 2404 2405 if (phydev->link != pp->link) { 2406 if (!phydev->link) { 2407 pp->duplex = -1; 2408 pp->speed = 0; 2409 } 2410 2411 pp->link = phydev->link; 2412 status_change = 1; 2413 } 2414 2415 if (status_change) { 2416 if (phydev->link) { 2417 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2418 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 2419 MVNETA_GMAC_FORCE_LINK_DOWN); 2420 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2421 mvneta_port_up(pp); 2422 netdev_info(pp->dev, "link up\n"); 2423 } else { 2424 mvneta_port_down(pp); 2425 netdev_info(pp->dev, "link down\n"); 2426 } 2427 } 2428 } 2429 2430 static int mvneta_mdio_probe(struct mvneta_port *pp) 2431 { 2432 struct phy_device *phy_dev; 2433 2434 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2435 pp->phy_interface); 2436 if (!phy_dev) { 2437 netdev_err(pp->dev, "could not find the PHY\n"); 2438 return -ENODEV; 2439 } 2440 2441 phy_dev->supported &= PHY_GBIT_FEATURES; 2442 phy_dev->advertising = phy_dev->supported; 2443 2444 pp->phy_dev = phy_dev; 2445 pp->link = 0; 2446 pp->duplex = 0; 2447 pp->speed = 0; 2448 2449 return 0; 2450 } 2451 2452 static void mvneta_mdio_remove(struct mvneta_port *pp) 2453 { 2454 phy_disconnect(pp->phy_dev); 2455 pp->phy_dev = NULL; 2456 } 2457 2458 static int mvneta_open(struct net_device *dev) 2459 { 2460 struct mvneta_port *pp = netdev_priv(dev); 2461 int ret; 2462 2463 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2464 2465 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2466 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2467 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2468 2469 ret = mvneta_setup_rxqs(pp); 2470 if (ret) 2471 return ret; 2472 2473 ret = mvneta_setup_txqs(pp); 2474 if (ret) 2475 goto err_cleanup_rxqs; 2476 2477 /* Connect to port interrupt line */ 2478 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2479 MVNETA_DRIVER_NAME, pp); 2480 if (ret) { 2481 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2482 goto err_cleanup_txqs; 2483 } 2484 2485 /* In default link is down */ 2486 netif_carrier_off(pp->dev); 2487 2488 ret = mvneta_mdio_probe(pp); 2489 if (ret < 0) { 2490 netdev_err(dev, "cannot probe MDIO bus\n"); 2491 goto err_free_irq; 2492 } 2493 2494 mvneta_start_dev(pp); 2495 2496 return 0; 2497 2498 err_free_irq: 2499 free_irq(pp->dev->irq, pp); 2500 err_cleanup_txqs: 2501 mvneta_cleanup_txqs(pp); 2502 err_cleanup_rxqs: 2503 mvneta_cleanup_rxqs(pp); 2504 return ret; 2505 } 2506 2507 /* Stop the port, free port interrupt line */ 2508 static int mvneta_stop(struct net_device *dev) 2509 { 2510 struct mvneta_port *pp = netdev_priv(dev); 2511 2512 mvneta_stop_dev(pp); 2513 mvneta_mdio_remove(pp); 2514 free_irq(dev->irq, pp); 2515 mvneta_cleanup_rxqs(pp); 2516 mvneta_cleanup_txqs(pp); 2517 2518 return 0; 2519 } 2520 2521 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2522 { 2523 struct mvneta_port *pp = netdev_priv(dev); 2524 int ret; 2525 2526 if (!pp->phy_dev) 2527 return -ENOTSUPP; 2528 2529 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2530 if (!ret) 2531 mvneta_adjust_link(dev); 2532 2533 return ret; 2534 } 2535 2536 /* Ethtool methods */ 2537 2538 /* Get settings (phy address, speed) for ethtools */ 2539 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2540 { 2541 struct mvneta_port *pp = netdev_priv(dev); 2542 2543 if (!pp->phy_dev) 2544 return -ENODEV; 2545 2546 return phy_ethtool_gset(pp->phy_dev, cmd); 2547 } 2548 2549 /* Set settings (phy address, speed) for ethtools */ 2550 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2551 { 2552 struct mvneta_port *pp = netdev_priv(dev); 2553 2554 if (!pp->phy_dev) 2555 return -ENODEV; 2556 2557 return phy_ethtool_sset(pp->phy_dev, cmd); 2558 } 2559 2560 /* Set interrupt coalescing for ethtools */ 2561 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2562 struct ethtool_coalesce *c) 2563 { 2564 struct mvneta_port *pp = netdev_priv(dev); 2565 int queue; 2566 2567 for (queue = 0; queue < rxq_number; queue++) { 2568 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2569 rxq->time_coal = c->rx_coalesce_usecs; 2570 rxq->pkts_coal = c->rx_max_coalesced_frames; 2571 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2572 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2573 } 2574 2575 for (queue = 0; queue < txq_number; queue++) { 2576 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2577 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2578 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2579 } 2580 2581 return 0; 2582 } 2583 2584 /* get coalescing for ethtools */ 2585 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2586 struct ethtool_coalesce *c) 2587 { 2588 struct mvneta_port *pp = netdev_priv(dev); 2589 2590 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2591 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2592 2593 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2594 return 0; 2595 } 2596 2597 2598 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2599 struct ethtool_drvinfo *drvinfo) 2600 { 2601 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2602 sizeof(drvinfo->driver)); 2603 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2604 sizeof(drvinfo->version)); 2605 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2606 sizeof(drvinfo->bus_info)); 2607 } 2608 2609 2610 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2611 struct ethtool_ringparam *ring) 2612 { 2613 struct mvneta_port *pp = netdev_priv(netdev); 2614 2615 ring->rx_max_pending = MVNETA_MAX_RXD; 2616 ring->tx_max_pending = MVNETA_MAX_TXD; 2617 ring->rx_pending = pp->rx_ring_size; 2618 ring->tx_pending = pp->tx_ring_size; 2619 } 2620 2621 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2622 struct ethtool_ringparam *ring) 2623 { 2624 struct mvneta_port *pp = netdev_priv(dev); 2625 2626 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2627 return -EINVAL; 2628 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2629 ring->rx_pending : MVNETA_MAX_RXD; 2630 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ? 2631 ring->tx_pending : MVNETA_MAX_TXD; 2632 2633 if (netif_running(dev)) { 2634 mvneta_stop(dev); 2635 if (mvneta_open(dev)) { 2636 netdev_err(dev, 2637 "error on opening device after ring param change\n"); 2638 return -ENOMEM; 2639 } 2640 } 2641 2642 return 0; 2643 } 2644 2645 static const struct net_device_ops mvneta_netdev_ops = { 2646 .ndo_open = mvneta_open, 2647 .ndo_stop = mvneta_stop, 2648 .ndo_start_xmit = mvneta_tx, 2649 .ndo_set_rx_mode = mvneta_set_rx_mode, 2650 .ndo_set_mac_address = mvneta_set_mac_addr, 2651 .ndo_change_mtu = mvneta_change_mtu, 2652 .ndo_get_stats64 = mvneta_get_stats64, 2653 .ndo_do_ioctl = mvneta_ioctl, 2654 }; 2655 2656 const struct ethtool_ops mvneta_eth_tool_ops = { 2657 .get_link = ethtool_op_get_link, 2658 .get_settings = mvneta_ethtool_get_settings, 2659 .set_settings = mvneta_ethtool_set_settings, 2660 .set_coalesce = mvneta_ethtool_set_coalesce, 2661 .get_coalesce = mvneta_ethtool_get_coalesce, 2662 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2663 .get_ringparam = mvneta_ethtool_get_ringparam, 2664 .set_ringparam = mvneta_ethtool_set_ringparam, 2665 }; 2666 2667 /* Initialize hw */ 2668 static int mvneta_init(struct mvneta_port *pp, int phy_addr) 2669 { 2670 int queue; 2671 2672 /* Disable port */ 2673 mvneta_port_disable(pp); 2674 2675 /* Set port default values */ 2676 mvneta_defaults_set(pp); 2677 2678 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), 2679 GFP_KERNEL); 2680 if (!pp->txqs) 2681 return -ENOMEM; 2682 2683 /* Initialize TX descriptor rings */ 2684 for (queue = 0; queue < txq_number; queue++) { 2685 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2686 txq->id = queue; 2687 txq->size = pp->tx_ring_size; 2688 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2689 } 2690 2691 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), 2692 GFP_KERNEL); 2693 if (!pp->rxqs) { 2694 kfree(pp->txqs); 2695 return -ENOMEM; 2696 } 2697 2698 /* Create Rx descriptor rings */ 2699 for (queue = 0; queue < rxq_number; queue++) { 2700 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2701 rxq->id = queue; 2702 rxq->size = pp->rx_ring_size; 2703 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2704 rxq->time_coal = MVNETA_RX_COAL_USEC; 2705 } 2706 2707 return 0; 2708 } 2709 2710 static void mvneta_deinit(struct mvneta_port *pp) 2711 { 2712 kfree(pp->txqs); 2713 kfree(pp->rxqs); 2714 } 2715 2716 /* platform glue : initialize decoding windows */ 2717 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2718 const struct mbus_dram_target_info *dram) 2719 { 2720 u32 win_enable; 2721 u32 win_protect; 2722 int i; 2723 2724 for (i = 0; i < 6; i++) { 2725 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2726 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2727 2728 if (i < 4) 2729 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2730 } 2731 2732 win_enable = 0x3f; 2733 win_protect = 0; 2734 2735 for (i = 0; i < dram->num_cs; i++) { 2736 const struct mbus_dram_window *cs = dram->cs + i; 2737 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2738 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2739 2740 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2741 (cs->size - 1) & 0xffff0000); 2742 2743 win_enable &= ~(1 << i); 2744 win_protect |= 3 << (2 * i); 2745 } 2746 2747 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2748 } 2749 2750 /* Power up the port */ 2751 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2752 { 2753 u32 val; 2754 2755 /* MAC Cause register should be cleared */ 2756 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2757 2758 if (phy_mode == PHY_INTERFACE_MODE_SGMII) 2759 mvneta_port_sgmii_config(pp); 2760 2761 mvneta_gmac_rgmii_set(pp, 1); 2762 2763 /* Cancel Port Reset */ 2764 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2765 val &= ~MVNETA_GMAC2_PORT_RESET; 2766 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 2767 2768 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2769 MVNETA_GMAC2_PORT_RESET) != 0) 2770 continue; 2771 } 2772 2773 /* Device initialization routine */ 2774 static int mvneta_probe(struct platform_device *pdev) 2775 { 2776 const struct mbus_dram_target_info *dram_target_info; 2777 struct device_node *dn = pdev->dev.of_node; 2778 struct device_node *phy_node; 2779 u32 phy_addr; 2780 struct mvneta_port *pp; 2781 struct net_device *dev; 2782 const char *dt_mac_addr; 2783 char hw_mac_addr[ETH_ALEN]; 2784 const char *mac_from; 2785 int phy_mode; 2786 int err; 2787 int cpu; 2788 2789 /* Our multiqueue support is not complete, so for now, only 2790 * allow the usage of the first RX queue 2791 */ 2792 if (rxq_def != 0) { 2793 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 2794 return -EINVAL; 2795 } 2796 2797 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 2798 if (!dev) 2799 return -ENOMEM; 2800 2801 dev->irq = irq_of_parse_and_map(dn, 0); 2802 if (dev->irq == 0) { 2803 err = -EINVAL; 2804 goto err_free_netdev; 2805 } 2806 2807 phy_node = of_parse_phandle(dn, "phy", 0); 2808 if (!phy_node) { 2809 dev_err(&pdev->dev, "no associated PHY\n"); 2810 err = -ENODEV; 2811 goto err_free_irq; 2812 } 2813 2814 phy_mode = of_get_phy_mode(dn); 2815 if (phy_mode < 0) { 2816 dev_err(&pdev->dev, "incorrect phy-mode\n"); 2817 err = -EINVAL; 2818 goto err_free_irq; 2819 } 2820 2821 dev->tx_queue_len = MVNETA_MAX_TXD; 2822 dev->watchdog_timeo = 5 * HZ; 2823 dev->netdev_ops = &mvneta_netdev_ops; 2824 2825 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops); 2826 2827 pp = netdev_priv(dev); 2828 2829 pp->weight = MVNETA_RX_POLL_WEIGHT; 2830 pp->phy_node = phy_node; 2831 pp->phy_interface = phy_mode; 2832 2833 pp->clk = devm_clk_get(&pdev->dev, NULL); 2834 if (IS_ERR(pp->clk)) { 2835 err = PTR_ERR(pp->clk); 2836 goto err_free_irq; 2837 } 2838 2839 clk_prepare_enable(pp->clk); 2840 2841 pp->base = of_iomap(dn, 0); 2842 if (pp->base == NULL) { 2843 err = -ENOMEM; 2844 goto err_clk; 2845 } 2846 2847 /* Alloc per-cpu stats */ 2848 pp->stats = alloc_percpu(struct mvneta_pcpu_stats); 2849 if (!pp->stats) { 2850 err = -ENOMEM; 2851 goto err_unmap; 2852 } 2853 2854 for_each_possible_cpu(cpu) { 2855 struct mvneta_pcpu_stats *stats; 2856 stats = per_cpu_ptr(pp->stats, cpu); 2857 u64_stats_init(&stats->syncp); 2858 } 2859 2860 dt_mac_addr = of_get_mac_address(dn); 2861 if (dt_mac_addr) { 2862 mac_from = "device tree"; 2863 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 2864 } else { 2865 mvneta_get_mac_addr(pp, hw_mac_addr); 2866 if (is_valid_ether_addr(hw_mac_addr)) { 2867 mac_from = "hardware"; 2868 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 2869 } else { 2870 mac_from = "random"; 2871 eth_hw_addr_random(dev); 2872 } 2873 } 2874 2875 pp->tx_ring_size = MVNETA_MAX_TXD; 2876 pp->rx_ring_size = MVNETA_MAX_RXD; 2877 2878 pp->dev = dev; 2879 SET_NETDEV_DEV(dev, &pdev->dev); 2880 2881 err = mvneta_init(pp, phy_addr); 2882 if (err < 0) { 2883 dev_err(&pdev->dev, "can't init eth hal\n"); 2884 goto err_free_stats; 2885 } 2886 mvneta_port_power_up(pp, phy_mode); 2887 2888 dram_target_info = mv_mbus_dram_info(); 2889 if (dram_target_info) 2890 mvneta_conf_mbus_windows(pp, dram_target_info); 2891 2892 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight); 2893 2894 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; 2895 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2896 dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2897 dev->priv_flags |= IFF_UNICAST_FLT; 2898 2899 err = register_netdev(dev); 2900 if (err < 0) { 2901 dev_err(&pdev->dev, "failed to register\n"); 2902 goto err_deinit; 2903 } 2904 2905 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 2906 dev->dev_addr); 2907 2908 platform_set_drvdata(pdev, pp->dev); 2909 2910 return 0; 2911 2912 err_deinit: 2913 mvneta_deinit(pp); 2914 err_free_stats: 2915 free_percpu(pp->stats); 2916 err_unmap: 2917 iounmap(pp->base); 2918 err_clk: 2919 clk_disable_unprepare(pp->clk); 2920 err_free_irq: 2921 irq_dispose_mapping(dev->irq); 2922 err_free_netdev: 2923 free_netdev(dev); 2924 return err; 2925 } 2926 2927 /* Device removal routine */ 2928 static int mvneta_remove(struct platform_device *pdev) 2929 { 2930 struct net_device *dev = platform_get_drvdata(pdev); 2931 struct mvneta_port *pp = netdev_priv(dev); 2932 2933 unregister_netdev(dev); 2934 mvneta_deinit(pp); 2935 clk_disable_unprepare(pp->clk); 2936 free_percpu(pp->stats); 2937 iounmap(pp->base); 2938 irq_dispose_mapping(dev->irq); 2939 free_netdev(dev); 2940 2941 return 0; 2942 } 2943 2944 static const struct of_device_id mvneta_match[] = { 2945 { .compatible = "marvell,armada-370-neta" }, 2946 { } 2947 }; 2948 MODULE_DEVICE_TABLE(of, mvneta_match); 2949 2950 static struct platform_driver mvneta_driver = { 2951 .probe = mvneta_probe, 2952 .remove = mvneta_remove, 2953 .driver = { 2954 .name = MVNETA_DRIVER_NAME, 2955 .of_match_table = mvneta_match, 2956 }, 2957 }; 2958 2959 module_platform_driver(mvneta_driver); 2960 2961 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 2962 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 2963 MODULE_LICENSE("GPL"); 2964 2965 module_param(rxq_number, int, S_IRUGO); 2966 module_param(txq_number, int, S_IRUGO); 2967 2968 module_param(rxq_def, int, S_IRUGO); 2969 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 2970