1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/phy.h>
31 #include <linux/clk.h>
32 
33 /* Registers */
34 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
35 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
36 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
37 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
38 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
39 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
40 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
41 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
42 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
43 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
44 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
45 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
47 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
49 #define MVNETA_PORT_RX_RESET                    0x1cc0
50 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
51 #define MVNETA_PHY_ADDR                         0x2000
52 #define      MVNETA_PHY_ADDR_MASK               0x1f
53 #define MVNETA_MBUS_RETRY                       0x2010
54 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
55 #define MVNETA_UNIT_CONTROL                     0x20B0
56 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
57 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
58 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
59 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
60 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
61 #define MVNETA_PORT_CONFIG                      0x2400
62 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
63 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
64 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
65 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
66 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
67 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
68 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
69 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
70 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
71 						 MVNETA_DEF_RXQ_ARP(q)	 | \
72 						 MVNETA_DEF_RXQ_TCP(q)	 | \
73 						 MVNETA_DEF_RXQ_UDP(q)	 | \
74 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
75 						 MVNETA_TX_UNSET_ERR_SUM | \
76 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
78 #define MVNETA_MAC_ADDR_LOW                      0x2414
79 #define MVNETA_MAC_ADDR_HIGH                     0x2418
80 #define MVNETA_SDMA_CONFIG                       0x241c
81 #define      MVNETA_SDMA_BRST_SIZE_16            4
82 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
83 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
84 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
85 #define      MVNETA_DESC_SWAP                    BIT(6)
86 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
87 #define MVNETA_PORT_STATUS                       0x2444
88 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
89 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
90 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
91 #define MVNETA_SGMII_SERDES_CFG			 0x24A0
92 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
93 #define MVNETA_TYPE_PRIO                         0x24bc
94 #define      MVNETA_FORCE_UNI                    BIT(21)
95 #define MVNETA_TXQ_CMD_1                         0x24e4
96 #define MVNETA_TXQ_CMD                           0x2448
97 #define      MVNETA_TXQ_DISABLE_SHIFT            8
98 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
99 #define MVNETA_ACC_MODE                          0x2500
100 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
101 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
102 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
103 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
104 
105 /* Exception Interrupt Port/Queue Cause register */
106 
107 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
108 #define MVNETA_INTR_NEW_MASK                     0x25a4
109 
110 /* bits  0..7  = TXQ SENT, one bit per queue.
111  * bits  8..15 = RXQ OCCUP, one bit per queue.
112  * bits 16..23 = RXQ FREE, one bit per queue.
113  * bit  29 = OLD_REG_SUM, see old reg ?
114  * bit  30 = TX_ERR_SUM, one bit for 4 ports
115  * bit  31 = MISC_SUM,   one bit for 4 ports
116  */
117 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
118 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
119 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
120 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
121 
122 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
123 #define MVNETA_INTR_OLD_MASK                     0x25ac
124 
125 /* Data Path Port/Queue Cause Register */
126 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
127 #define MVNETA_INTR_MISC_MASK                    0x25b4
128 
129 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
130 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
131 #define      MVNETA_CAUSE_PTP                    BIT(4)
132 
133 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
134 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
135 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
136 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
137 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
138 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
139 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
140 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
141 
142 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
143 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
144 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
145 
146 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
147 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
148 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
149 
150 #define MVNETA_INTR_ENABLE                       0x25b8
151 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
152 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
153 
154 #define MVNETA_RXQ_CMD                           0x2680
155 #define      MVNETA_RXQ_DISABLE_SHIFT            8
156 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
157 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
158 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
159 #define MVNETA_GMAC_CTRL_0                       0x2c00
160 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
161 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
162 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
163 #define MVNETA_GMAC_CTRL_2                       0x2c08
164 #define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
165 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
166 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
167 #define MVNETA_GMAC_STATUS                       0x2c10
168 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
169 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
170 #define      MVNETA_GMAC_SPEED_100               BIT(2)
171 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
172 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
173 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
174 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
175 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
176 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
177 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
178 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
179 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
180 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
181 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
182 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
183 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
184 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
185 #define      MVNETA_MIB_LATE_COLLISION           0x7c
186 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
187 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
188 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
189 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
190 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
191 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
192 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
193 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
194 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
195 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
196 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
197 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
198 #define MVNETA_PORT_TX_RESET                     0x3cf0
199 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
200 #define MVNETA_TX_MTU                            0x3e0c
201 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
202 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
203 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
204 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
205 
206 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
207 
208 /* Descriptor ring Macros */
209 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
210 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
211 
212 /* Various constants */
213 
214 /* Coalescing */
215 #define MVNETA_TXDONE_COAL_PKTS		16
216 #define MVNETA_RX_COAL_PKTS		32
217 #define MVNETA_RX_COAL_USEC		100
218 
219 /* Napi polling weight */
220 #define MVNETA_RX_POLL_WEIGHT		64
221 
222 /* The two bytes Marvell header. Either contains a special value used
223  * by Marvell switches when a specific hardware mode is enabled (not
224  * supported by this driver) or is filled automatically by zeroes on
225  * the RX side. Those two bytes being at the front of the Ethernet
226  * header, they allow to have the IP header aligned on a 4 bytes
227  * boundary automatically: the hardware skips those two bytes on its
228  * own.
229  */
230 #define MVNETA_MH_SIZE			2
231 
232 #define MVNETA_VLAN_TAG_LEN             4
233 
234 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
235 #define MVNETA_TX_CSUM_MAX_SIZE		9800
236 #define MVNETA_ACC_MODE_EXT		1
237 
238 /* Timeout constants */
239 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
240 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
241 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
242 
243 #define MVNETA_TX_MTU_MAX		0x3ffff
244 
245 /* Max number of Rx descriptors */
246 #define MVNETA_MAX_RXD 128
247 
248 /* Max number of Tx descriptors */
249 #define MVNETA_MAX_TXD 532
250 
251 /* descriptor aligned size */
252 #define MVNETA_DESC_ALIGNED_SIZE	32
253 
254 #define MVNETA_RX_PKT_SIZE(mtu) \
255 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
256 	      ETH_HLEN + ETH_FCS_LEN,			     \
257 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
258 
259 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
260 
261 struct mvneta_pcpu_stats {
262 	struct	u64_stats_sync syncp;
263 	u64	rx_packets;
264 	u64	rx_bytes;
265 	u64	tx_packets;
266 	u64	tx_bytes;
267 };
268 
269 struct mvneta_port {
270 	int pkt_size;
271 	unsigned int frag_size;
272 	void __iomem *base;
273 	struct mvneta_rx_queue *rxqs;
274 	struct mvneta_tx_queue *txqs;
275 	struct net_device *dev;
276 
277 	u32 cause_rx_tx;
278 	struct napi_struct napi;
279 
280 	/* Napi weight */
281 	int weight;
282 
283 	/* Core clock */
284 	struct clk *clk;
285 	u8 mcast_count[256];
286 	u16 tx_ring_size;
287 	u16 rx_ring_size;
288 	struct mvneta_pcpu_stats *stats;
289 
290 	struct mii_bus *mii_bus;
291 	struct phy_device *phy_dev;
292 	phy_interface_t phy_interface;
293 	struct device_node *phy_node;
294 	unsigned int link;
295 	unsigned int duplex;
296 	unsigned int speed;
297 };
298 
299 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
300  * layout of the transmit and reception DMA descriptors, and their
301  * layout is therefore defined by the hardware design
302  */
303 
304 #define MVNETA_TX_L3_OFF_SHIFT	0
305 #define MVNETA_TX_IP_HLEN_SHIFT	8
306 #define MVNETA_TX_L4_UDP	BIT(16)
307 #define MVNETA_TX_L3_IP6	BIT(17)
308 #define MVNETA_TXD_IP_CSUM	BIT(18)
309 #define MVNETA_TXD_Z_PAD	BIT(19)
310 #define MVNETA_TXD_L_DESC	BIT(20)
311 #define MVNETA_TXD_F_DESC	BIT(21)
312 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
313 				 MVNETA_TXD_L_DESC | \
314 				 MVNETA_TXD_F_DESC)
315 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
316 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
317 
318 #define MVNETA_RXD_ERR_CRC		0x0
319 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
320 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
321 #define MVNETA_RXD_ERR_LEN		BIT(18)
322 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
323 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
324 #define MVNETA_RXD_L3_IP4		BIT(25)
325 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
326 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
327 
328 #if defined(__LITTLE_ENDIAN)
329 struct mvneta_tx_desc {
330 	u32  command;		/* Options used by HW for packet transmitting.*/
331 	u16  reserverd1;	/* csum_l4 (for future use)		*/
332 	u16  data_size;		/* Data size of transmitted packet in bytes */
333 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
334 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
335 	u32  reserved3[4];	/* Reserved - (for future use)		*/
336 };
337 
338 struct mvneta_rx_desc {
339 	u32  status;		/* Info about received packet		*/
340 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
341 	u16  data_size;		/* Size of received packet in bytes	*/
342 
343 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
344 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
345 
346 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
347 	u16  reserved3;		/* prefetch_cmd, for future use		*/
348 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
349 
350 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
351 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
352 };
353 #else
354 struct mvneta_tx_desc {
355 	u16  data_size;		/* Data size of transmitted packet in bytes */
356 	u16  reserverd1;	/* csum_l4 (for future use)		*/
357 	u32  command;		/* Options used by HW for packet transmitting.*/
358 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
359 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
360 	u32  reserved3[4];	/* Reserved - (for future use)		*/
361 };
362 
363 struct mvneta_rx_desc {
364 	u16  data_size;		/* Size of received packet in bytes	*/
365 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
366 	u32  status;		/* Info about received packet		*/
367 
368 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
369 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
370 
371 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
372 	u16  reserved3;		/* prefetch_cmd, for future use		*/
373 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
374 
375 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
376 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
377 };
378 #endif
379 
380 struct mvneta_tx_queue {
381 	/* Number of this TX queue, in the range 0-7 */
382 	u8 id;
383 
384 	/* Number of TX DMA descriptors in the descriptor ring */
385 	int size;
386 
387 	/* Number of currently used TX DMA descriptor in the
388 	 * descriptor ring
389 	 */
390 	int count;
391 
392 	/* Array of transmitted skb */
393 	struct sk_buff **tx_skb;
394 
395 	/* Index of last TX DMA descriptor that was inserted */
396 	int txq_put_index;
397 
398 	/* Index of the TX DMA descriptor to be cleaned up */
399 	int txq_get_index;
400 
401 	u32 done_pkts_coal;
402 
403 	/* Virtual address of the TX DMA descriptors array */
404 	struct mvneta_tx_desc *descs;
405 
406 	/* DMA address of the TX DMA descriptors array */
407 	dma_addr_t descs_phys;
408 
409 	/* Index of the last TX DMA descriptor */
410 	int last_desc;
411 
412 	/* Index of the next TX DMA descriptor to process */
413 	int next_desc_to_proc;
414 };
415 
416 struct mvneta_rx_queue {
417 	/* rx queue number, in the range 0-7 */
418 	u8 id;
419 
420 	/* num of rx descriptors in the rx descriptor ring */
421 	int size;
422 
423 	/* counter of times when mvneta_refill() failed */
424 	int missed;
425 
426 	u32 pkts_coal;
427 	u32 time_coal;
428 
429 	/* Virtual address of the RX DMA descriptors array */
430 	struct mvneta_rx_desc *descs;
431 
432 	/* DMA address of the RX DMA descriptors array */
433 	dma_addr_t descs_phys;
434 
435 	/* Index of the last RX DMA descriptor */
436 	int last_desc;
437 
438 	/* Index of the next RX DMA descriptor to process */
439 	int next_desc_to_proc;
440 };
441 
442 static int rxq_number = 8;
443 static int txq_number = 8;
444 
445 static int rxq_def;
446 
447 static int rx_copybreak __read_mostly = 256;
448 
449 #define MVNETA_DRIVER_NAME "mvneta"
450 #define MVNETA_DRIVER_VERSION "1.0"
451 
452 /* Utility/helper methods */
453 
454 /* Write helper method */
455 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
456 {
457 	writel(data, pp->base + offset);
458 }
459 
460 /* Read helper method */
461 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
462 {
463 	return readl(pp->base + offset);
464 }
465 
466 /* Increment txq get counter */
467 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
468 {
469 	txq->txq_get_index++;
470 	if (txq->txq_get_index == txq->size)
471 		txq->txq_get_index = 0;
472 }
473 
474 /* Increment txq put counter */
475 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
476 {
477 	txq->txq_put_index++;
478 	if (txq->txq_put_index == txq->size)
479 		txq->txq_put_index = 0;
480 }
481 
482 
483 /* Clear all MIB counters */
484 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
485 {
486 	int i;
487 	u32 dummy;
488 
489 	/* Perform dummy reads from MIB counters */
490 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
491 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
492 }
493 
494 /* Get System Network Statistics */
495 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
496 					     struct rtnl_link_stats64 *stats)
497 {
498 	struct mvneta_port *pp = netdev_priv(dev);
499 	unsigned int start;
500 	int cpu;
501 
502 	for_each_possible_cpu(cpu) {
503 		struct mvneta_pcpu_stats *cpu_stats;
504 		u64 rx_packets;
505 		u64 rx_bytes;
506 		u64 tx_packets;
507 		u64 tx_bytes;
508 
509 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
510 		do {
511 			start = u64_stats_fetch_begin_bh(&cpu_stats->syncp);
512 			rx_packets = cpu_stats->rx_packets;
513 			rx_bytes   = cpu_stats->rx_bytes;
514 			tx_packets = cpu_stats->tx_packets;
515 			tx_bytes   = cpu_stats->tx_bytes;
516 		} while (u64_stats_fetch_retry_bh(&cpu_stats->syncp, start));
517 
518 		stats->rx_packets += rx_packets;
519 		stats->rx_bytes   += rx_bytes;
520 		stats->tx_packets += tx_packets;
521 		stats->tx_bytes   += tx_bytes;
522 	}
523 
524 	stats->rx_errors	= dev->stats.rx_errors;
525 	stats->rx_dropped	= dev->stats.rx_dropped;
526 
527 	stats->tx_dropped	= dev->stats.tx_dropped;
528 
529 	return stats;
530 }
531 
532 /* Rx descriptors helper methods */
533 
534 /* Checks whether the RX descriptor having this status is both the first
535  * and the last descriptor for the RX packet. Each RX packet is currently
536  * received through a single RX descriptor, so not having each RX
537  * descriptor with its first and last bits set is an error
538  */
539 static int mvneta_rxq_desc_is_first_last(u32 status)
540 {
541 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
542 		MVNETA_RXD_FIRST_LAST_DESC;
543 }
544 
545 /* Add number of descriptors ready to receive new packets */
546 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
547 					  struct mvneta_rx_queue *rxq,
548 					  int ndescs)
549 {
550 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
551 	 * be added at once
552 	 */
553 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
554 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
555 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
556 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
557 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
558 	}
559 
560 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
561 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
562 }
563 
564 /* Get number of RX descriptors occupied by received packets */
565 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
566 					struct mvneta_rx_queue *rxq)
567 {
568 	u32 val;
569 
570 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
571 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
572 }
573 
574 /* Update num of rx desc called upon return from rx path or
575  * from mvneta_rxq_drop_pkts().
576  */
577 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
578 				       struct mvneta_rx_queue *rxq,
579 				       int rx_done, int rx_filled)
580 {
581 	u32 val;
582 
583 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
584 		val = rx_done |
585 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
586 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
587 		return;
588 	}
589 
590 	/* Only 255 descriptors can be added at once */
591 	while ((rx_done > 0) || (rx_filled > 0)) {
592 		if (rx_done <= 0xff) {
593 			val = rx_done;
594 			rx_done = 0;
595 		} else {
596 			val = 0xff;
597 			rx_done -= 0xff;
598 		}
599 		if (rx_filled <= 0xff) {
600 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
601 			rx_filled = 0;
602 		} else {
603 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
604 			rx_filled -= 0xff;
605 		}
606 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
607 	}
608 }
609 
610 /* Get pointer to next RX descriptor to be processed by SW */
611 static struct mvneta_rx_desc *
612 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
613 {
614 	int rx_desc = rxq->next_desc_to_proc;
615 
616 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
617 	prefetch(rxq->descs + rxq->next_desc_to_proc);
618 	return rxq->descs + rx_desc;
619 }
620 
621 /* Change maximum receive size of the port. */
622 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
623 {
624 	u32 val;
625 
626 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
627 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
628 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
629 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
630 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
631 }
632 
633 
634 /* Set rx queue offset */
635 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
636 				  struct mvneta_rx_queue *rxq,
637 				  int offset)
638 {
639 	u32 val;
640 
641 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
642 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
643 
644 	/* Offset is in */
645 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
646 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
647 }
648 
649 
650 /* Tx descriptors helper methods */
651 
652 /* Update HW with number of TX descriptors to be sent */
653 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
654 				     struct mvneta_tx_queue *txq,
655 				     int pend_desc)
656 {
657 	u32 val;
658 
659 	/* Only 255 descriptors can be added at once ; Assume caller
660 	 * process TX desriptors in quanta less than 256
661 	 */
662 	val = pend_desc;
663 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
664 }
665 
666 /* Get pointer to next TX descriptor to be processed (send) by HW */
667 static struct mvneta_tx_desc *
668 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
669 {
670 	int tx_desc = txq->next_desc_to_proc;
671 
672 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
673 	return txq->descs + tx_desc;
674 }
675 
676 /* Release the last allocated TX descriptor. Useful to handle DMA
677  * mapping failures in the TX path.
678  */
679 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
680 {
681 	if (txq->next_desc_to_proc == 0)
682 		txq->next_desc_to_proc = txq->last_desc - 1;
683 	else
684 		txq->next_desc_to_proc--;
685 }
686 
687 /* Set rxq buf size */
688 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
689 				    struct mvneta_rx_queue *rxq,
690 				    int buf_size)
691 {
692 	u32 val;
693 
694 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
695 
696 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
697 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
698 
699 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
700 }
701 
702 /* Disable buffer management (BM) */
703 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
704 				  struct mvneta_rx_queue *rxq)
705 {
706 	u32 val;
707 
708 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
709 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
710 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
711 }
712 
713 
714 
715 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
716 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
717 {
718 	u32  val;
719 
720 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
721 
722 	if (enable)
723 		val |= MVNETA_GMAC2_PORT_RGMII;
724 	else
725 		val &= ~MVNETA_GMAC2_PORT_RGMII;
726 
727 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
728 }
729 
730 /* Config SGMII port */
731 static void mvneta_port_sgmii_config(struct mvneta_port *pp)
732 {
733 	u32 val;
734 
735 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
736 	val |= MVNETA_GMAC2_PSC_ENABLE;
737 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
738 
739 	mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
740 }
741 
742 /* Start the Ethernet port RX and TX activity */
743 static void mvneta_port_up(struct mvneta_port *pp)
744 {
745 	int queue;
746 	u32 q_map;
747 
748 	/* Enable all initialized TXs. */
749 	mvneta_mib_counters_clear(pp);
750 	q_map = 0;
751 	for (queue = 0; queue < txq_number; queue++) {
752 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
753 		if (txq->descs != NULL)
754 			q_map |= (1 << queue);
755 	}
756 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
757 
758 	/* Enable all initialized RXQs. */
759 	q_map = 0;
760 	for (queue = 0; queue < rxq_number; queue++) {
761 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
762 		if (rxq->descs != NULL)
763 			q_map |= (1 << queue);
764 	}
765 
766 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
767 }
768 
769 /* Stop the Ethernet port activity */
770 static void mvneta_port_down(struct mvneta_port *pp)
771 {
772 	u32 val;
773 	int count;
774 
775 	/* Stop Rx port activity. Check port Rx activity. */
776 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
777 
778 	/* Issue stop command for active channels only */
779 	if (val != 0)
780 		mvreg_write(pp, MVNETA_RXQ_CMD,
781 			    val << MVNETA_RXQ_DISABLE_SHIFT);
782 
783 	/* Wait for all Rx activity to terminate. */
784 	count = 0;
785 	do {
786 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
787 			netdev_warn(pp->dev,
788 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
789 				    val);
790 			break;
791 		}
792 		mdelay(1);
793 
794 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
795 	} while (val & 0xff);
796 
797 	/* Stop Tx port activity. Check port Tx activity. Issue stop
798 	 * command for active channels only
799 	 */
800 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
801 
802 	if (val != 0)
803 		mvreg_write(pp, MVNETA_TXQ_CMD,
804 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
805 
806 	/* Wait for all Tx activity to terminate. */
807 	count = 0;
808 	do {
809 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
810 			netdev_warn(pp->dev,
811 				    "TIMEOUT for TX stopped status=0x%08x\n",
812 				    val);
813 			break;
814 		}
815 		mdelay(1);
816 
817 		/* Check TX Command reg that all Txqs are stopped */
818 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
819 
820 	} while (val & 0xff);
821 
822 	/* Double check to verify that TX FIFO is empty */
823 	count = 0;
824 	do {
825 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
826 			netdev_warn(pp->dev,
827 				    "TX FIFO empty timeout status=0x08%x\n",
828 				    val);
829 			break;
830 		}
831 		mdelay(1);
832 
833 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
834 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
835 		 (val & MVNETA_TX_IN_PRGRS));
836 
837 	udelay(200);
838 }
839 
840 /* Enable the port by setting the port enable bit of the MAC control register */
841 static void mvneta_port_enable(struct mvneta_port *pp)
842 {
843 	u32 val;
844 
845 	/* Enable port */
846 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
847 	val |= MVNETA_GMAC0_PORT_ENABLE;
848 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
849 }
850 
851 /* Disable the port and wait for about 200 usec before retuning */
852 static void mvneta_port_disable(struct mvneta_port *pp)
853 {
854 	u32 val;
855 
856 	/* Reset the Enable bit in the Serial Control Register */
857 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
858 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
859 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
860 
861 	udelay(200);
862 }
863 
864 /* Multicast tables methods */
865 
866 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
867 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
868 {
869 	int offset;
870 	u32 val;
871 
872 	if (queue == -1) {
873 		val = 0;
874 	} else {
875 		val = 0x1 | (queue << 1);
876 		val |= (val << 24) | (val << 16) | (val << 8);
877 	}
878 
879 	for (offset = 0; offset <= 0xc; offset += 4)
880 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
881 }
882 
883 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
884 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
885 {
886 	int offset;
887 	u32 val;
888 
889 	if (queue == -1) {
890 		val = 0;
891 	} else {
892 		val = 0x1 | (queue << 1);
893 		val |= (val << 24) | (val << 16) | (val << 8);
894 	}
895 
896 	for (offset = 0; offset <= 0xfc; offset += 4)
897 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
898 
899 }
900 
901 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
902 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
903 {
904 	int offset;
905 	u32 val;
906 
907 	if (queue == -1) {
908 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
909 		val = 0;
910 	} else {
911 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
912 		val = 0x1 | (queue << 1);
913 		val |= (val << 24) | (val << 16) | (val << 8);
914 	}
915 
916 	for (offset = 0; offset <= 0xfc; offset += 4)
917 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
918 }
919 
920 /* This method sets defaults to the NETA port:
921  *	Clears interrupt Cause and Mask registers.
922  *	Clears all MAC tables.
923  *	Sets defaults to all registers.
924  *	Resets RX and TX descriptor rings.
925  *	Resets PHY.
926  * This method can be called after mvneta_port_down() to return the port
927  *	settings to defaults.
928  */
929 static void mvneta_defaults_set(struct mvneta_port *pp)
930 {
931 	int cpu;
932 	int queue;
933 	u32 val;
934 
935 	/* Clear all Cause registers */
936 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
937 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
938 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
939 
940 	/* Mask all interrupts */
941 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
942 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
943 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
944 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
945 
946 	/* Enable MBUS Retry bit16 */
947 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
948 
949 	/* Set CPU queue access map - all CPUs have access to all RX
950 	 * queues and to all TX queues
951 	 */
952 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
953 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
954 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
955 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
956 
957 	/* Reset RX and TX DMAs */
958 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
959 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
960 
961 	/* Disable Legacy WRR, Disable EJP, Release from reset */
962 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
963 	for (queue = 0; queue < txq_number; queue++) {
964 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
965 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
966 	}
967 
968 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
969 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
970 
971 	/* Set Port Acceleration Mode */
972 	val = MVNETA_ACC_MODE_EXT;
973 	mvreg_write(pp, MVNETA_ACC_MODE, val);
974 
975 	/* Update val of portCfg register accordingly with all RxQueue types */
976 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
977 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
978 
979 	val = 0;
980 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
981 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
982 
983 	/* Build PORT_SDMA_CONFIG_REG */
984 	val = 0;
985 
986 	/* Default burst size */
987 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
988 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
989 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
990 
991 #if defined(__BIG_ENDIAN)
992 	val |= MVNETA_DESC_SWAP;
993 #endif
994 
995 	/* Assign port SDMA configuration */
996 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
997 
998 	/* Disable PHY polling in hardware, since we're using the
999 	 * kernel phylib to do this.
1000 	 */
1001 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1002 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1003 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1004 
1005 	mvneta_set_ucast_table(pp, -1);
1006 	mvneta_set_special_mcast_table(pp, -1);
1007 	mvneta_set_other_mcast_table(pp, -1);
1008 
1009 	/* Set port interrupt enable register - default enable all */
1010 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1011 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1012 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1013 }
1014 
1015 /* Set max sizes for tx queues */
1016 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1017 
1018 {
1019 	u32 val, size, mtu;
1020 	int queue;
1021 
1022 	mtu = max_tx_size * 8;
1023 	if (mtu > MVNETA_TX_MTU_MAX)
1024 		mtu = MVNETA_TX_MTU_MAX;
1025 
1026 	/* Set MTU */
1027 	val = mvreg_read(pp, MVNETA_TX_MTU);
1028 	val &= ~MVNETA_TX_MTU_MAX;
1029 	val |= mtu;
1030 	mvreg_write(pp, MVNETA_TX_MTU, val);
1031 
1032 	/* TX token size and all TXQs token size must be larger that MTU */
1033 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1034 
1035 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1036 	if (size < mtu) {
1037 		size = mtu;
1038 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1039 		val |= size;
1040 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1041 	}
1042 	for (queue = 0; queue < txq_number; queue++) {
1043 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1044 
1045 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1046 		if (size < mtu) {
1047 			size = mtu;
1048 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1049 			val |= size;
1050 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1051 		}
1052 	}
1053 }
1054 
1055 /* Set unicast address */
1056 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1057 				  int queue)
1058 {
1059 	unsigned int unicast_reg;
1060 	unsigned int tbl_offset;
1061 	unsigned int reg_offset;
1062 
1063 	/* Locate the Unicast table entry */
1064 	last_nibble = (0xf & last_nibble);
1065 
1066 	/* offset from unicast tbl base */
1067 	tbl_offset = (last_nibble / 4) * 4;
1068 
1069 	/* offset within the above reg  */
1070 	reg_offset = last_nibble % 4;
1071 
1072 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1073 
1074 	if (queue == -1) {
1075 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1076 		unicast_reg &= ~(0xff << (8 * reg_offset));
1077 	} else {
1078 		unicast_reg &= ~(0xff << (8 * reg_offset));
1079 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1080 	}
1081 
1082 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1083 }
1084 
1085 /* Set mac address */
1086 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1087 				int queue)
1088 {
1089 	unsigned int mac_h;
1090 	unsigned int mac_l;
1091 
1092 	if (queue != -1) {
1093 		mac_l = (addr[4] << 8) | (addr[5]);
1094 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1095 			(addr[2] << 8) | (addr[3] << 0);
1096 
1097 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1098 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1099 	}
1100 
1101 	/* Accept frames of this address */
1102 	mvneta_set_ucast_addr(pp, addr[5], queue);
1103 }
1104 
1105 /* Set the number of packets that will be received before RX interrupt
1106  * will be generated by HW.
1107  */
1108 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1109 				    struct mvneta_rx_queue *rxq, u32 value)
1110 {
1111 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1112 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1113 	rxq->pkts_coal = value;
1114 }
1115 
1116 /* Set the time delay in usec before RX interrupt will be generated by
1117  * HW.
1118  */
1119 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1120 				    struct mvneta_rx_queue *rxq, u32 value)
1121 {
1122 	u32 val;
1123 	unsigned long clk_rate;
1124 
1125 	clk_rate = clk_get_rate(pp->clk);
1126 	val = (clk_rate / 1000000) * value;
1127 
1128 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1129 	rxq->time_coal = value;
1130 }
1131 
1132 /* Set threshold for TX_DONE pkts coalescing */
1133 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1134 					 struct mvneta_tx_queue *txq, u32 value)
1135 {
1136 	u32 val;
1137 
1138 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1139 
1140 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1141 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1142 
1143 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1144 
1145 	txq->done_pkts_coal = value;
1146 }
1147 
1148 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1149 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1150 				u32 phys_addr, u32 cookie)
1151 {
1152 	rx_desc->buf_cookie = cookie;
1153 	rx_desc->buf_phys_addr = phys_addr;
1154 }
1155 
1156 /* Decrement sent descriptors counter */
1157 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1158 				     struct mvneta_tx_queue *txq,
1159 				     int sent_desc)
1160 {
1161 	u32 val;
1162 
1163 	/* Only 255 TX descriptors can be updated at once */
1164 	while (sent_desc > 0xff) {
1165 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1166 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1167 		sent_desc = sent_desc - 0xff;
1168 	}
1169 
1170 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1171 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1172 }
1173 
1174 /* Get number of TX descriptors already sent by HW */
1175 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1176 					struct mvneta_tx_queue *txq)
1177 {
1178 	u32 val;
1179 	int sent_desc;
1180 
1181 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1182 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1183 		MVNETA_TXQ_SENT_DESC_SHIFT;
1184 
1185 	return sent_desc;
1186 }
1187 
1188 /* Get number of sent descriptors and decrement counter.
1189  *  The number of sent descriptors is returned.
1190  */
1191 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1192 				     struct mvneta_tx_queue *txq)
1193 {
1194 	int sent_desc;
1195 
1196 	/* Get number of sent descriptors */
1197 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1198 
1199 	/* Decrement sent descriptors counter */
1200 	if (sent_desc)
1201 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1202 
1203 	return sent_desc;
1204 }
1205 
1206 /* Set TXQ descriptors fields relevant for CSUM calculation */
1207 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1208 				int ip_hdr_len, int l4_proto)
1209 {
1210 	u32 command;
1211 
1212 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1213 	 * G_L4_chk, L4_type; required only for checksum
1214 	 * calculation
1215 	 */
1216 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1217 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1218 
1219 	if (l3_proto == swab16(ETH_P_IP))
1220 		command |= MVNETA_TXD_IP_CSUM;
1221 	else
1222 		command |= MVNETA_TX_L3_IP6;
1223 
1224 	if (l4_proto == IPPROTO_TCP)
1225 		command |=  MVNETA_TX_L4_CSUM_FULL;
1226 	else if (l4_proto == IPPROTO_UDP)
1227 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1228 	else
1229 		command |= MVNETA_TX_L4_CSUM_NOT;
1230 
1231 	return command;
1232 }
1233 
1234 
1235 /* Display more error info */
1236 static void mvneta_rx_error(struct mvneta_port *pp,
1237 			    struct mvneta_rx_desc *rx_desc)
1238 {
1239 	u32 status = rx_desc->status;
1240 
1241 	if (!mvneta_rxq_desc_is_first_last(status)) {
1242 		netdev_err(pp->dev,
1243 			   "bad rx status %08x (buffer oversize), size=%d\n",
1244 			   status, rx_desc->data_size);
1245 		return;
1246 	}
1247 
1248 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1249 	case MVNETA_RXD_ERR_CRC:
1250 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1251 			   status, rx_desc->data_size);
1252 		break;
1253 	case MVNETA_RXD_ERR_OVERRUN:
1254 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1255 			   status, rx_desc->data_size);
1256 		break;
1257 	case MVNETA_RXD_ERR_LEN:
1258 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1259 			   status, rx_desc->data_size);
1260 		break;
1261 	case MVNETA_RXD_ERR_RESOURCE:
1262 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1263 			   status, rx_desc->data_size);
1264 		break;
1265 	}
1266 }
1267 
1268 /* Handle RX checksum offload based on the descriptor's status */
1269 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1270 			   struct sk_buff *skb)
1271 {
1272 	if ((status & MVNETA_RXD_L3_IP4) &&
1273 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1274 		skb->csum = 0;
1275 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1276 		return;
1277 	}
1278 
1279 	skb->ip_summed = CHECKSUM_NONE;
1280 }
1281 
1282 /* Return tx queue pointer (find last set bit) according to <cause> returned
1283  * form tx_done reg. <cause> must not be null. The return value is always a
1284  * valid queue for matching the first one found in <cause>.
1285  */
1286 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1287 						     u32 cause)
1288 {
1289 	int queue = fls(cause) - 1;
1290 
1291 	return &pp->txqs[queue];
1292 }
1293 
1294 /* Free tx queue skbuffs */
1295 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1296 				 struct mvneta_tx_queue *txq, int num)
1297 {
1298 	int i;
1299 
1300 	for (i = 0; i < num; i++) {
1301 		struct mvneta_tx_desc *tx_desc = txq->descs +
1302 			txq->txq_get_index;
1303 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1304 
1305 		mvneta_txq_inc_get(txq);
1306 
1307 		if (!skb)
1308 			continue;
1309 
1310 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1311 				 tx_desc->data_size, DMA_TO_DEVICE);
1312 		dev_kfree_skb_any(skb);
1313 	}
1314 }
1315 
1316 /* Handle end of transmission */
1317 static void mvneta_txq_done(struct mvneta_port *pp,
1318 			   struct mvneta_tx_queue *txq)
1319 {
1320 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1321 	int tx_done;
1322 
1323 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1324 	if (!tx_done)
1325 		return;
1326 
1327 	mvneta_txq_bufs_free(pp, txq, tx_done);
1328 
1329 	txq->count -= tx_done;
1330 
1331 	if (netif_tx_queue_stopped(nq)) {
1332 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1333 			netif_tx_wake_queue(nq);
1334 	}
1335 }
1336 
1337 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1338 {
1339 	if (likely(pp->frag_size <= PAGE_SIZE))
1340 		return netdev_alloc_frag(pp->frag_size);
1341 	else
1342 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1343 }
1344 
1345 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1346 {
1347 	if (likely(pp->frag_size <= PAGE_SIZE))
1348 		put_page(virt_to_head_page(data));
1349 	else
1350 		kfree(data);
1351 }
1352 
1353 /* Refill processing */
1354 static int mvneta_rx_refill(struct mvneta_port *pp,
1355 			    struct mvneta_rx_desc *rx_desc)
1356 
1357 {
1358 	dma_addr_t phys_addr;
1359 	void *data;
1360 
1361 	data = mvneta_frag_alloc(pp);
1362 	if (!data)
1363 		return -ENOMEM;
1364 
1365 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1366 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1367 				   DMA_FROM_DEVICE);
1368 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1369 		mvneta_frag_free(pp, data);
1370 		return -ENOMEM;
1371 	}
1372 
1373 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1374 	return 0;
1375 }
1376 
1377 /* Handle tx checksum */
1378 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1379 {
1380 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1381 		int ip_hdr_len = 0;
1382 		u8 l4_proto;
1383 
1384 		if (skb->protocol == htons(ETH_P_IP)) {
1385 			struct iphdr *ip4h = ip_hdr(skb);
1386 
1387 			/* Calculate IPv4 checksum and L4 checksum */
1388 			ip_hdr_len = ip4h->ihl;
1389 			l4_proto = ip4h->protocol;
1390 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1391 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1392 
1393 			/* Read l4_protocol from one of IPv6 extra headers */
1394 			if (skb_network_header_len(skb) > 0)
1395 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1396 			l4_proto = ip6h->nexthdr;
1397 		} else
1398 			return MVNETA_TX_L4_CSUM_NOT;
1399 
1400 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1401 				skb->protocol, ip_hdr_len, l4_proto);
1402 	}
1403 
1404 	return MVNETA_TX_L4_CSUM_NOT;
1405 }
1406 
1407 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1408  * value
1409  */
1410 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1411 						u32 cause)
1412 {
1413 	int queue = fls(cause >> 8) - 1;
1414 
1415 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1416 }
1417 
1418 /* Drop packets received by the RXQ and free buffers */
1419 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1420 				 struct mvneta_rx_queue *rxq)
1421 {
1422 	int rx_done, i;
1423 
1424 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1425 	for (i = 0; i < rxq->size; i++) {
1426 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1427 		void *data = (void *)rx_desc->buf_cookie;
1428 
1429 		mvneta_frag_free(pp, data);
1430 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1431 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1432 	}
1433 
1434 	if (rx_done)
1435 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1436 }
1437 
1438 /* Main rx processing */
1439 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1440 		     struct mvneta_rx_queue *rxq)
1441 {
1442 	struct net_device *dev = pp->dev;
1443 	int rx_done, rx_filled;
1444 	u32 rcvd_pkts = 0;
1445 	u32 rcvd_bytes = 0;
1446 
1447 	/* Get number of received packets */
1448 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1449 
1450 	if (rx_todo > rx_done)
1451 		rx_todo = rx_done;
1452 
1453 	rx_done = 0;
1454 	rx_filled = 0;
1455 
1456 	/* Fairness NAPI loop */
1457 	while (rx_done < rx_todo) {
1458 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1459 		struct sk_buff *skb;
1460 		unsigned char *data;
1461 		u32 rx_status;
1462 		int rx_bytes, err;
1463 
1464 		rx_done++;
1465 		rx_filled++;
1466 		rx_status = rx_desc->status;
1467 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1468 		data = (unsigned char *)rx_desc->buf_cookie;
1469 
1470 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1471 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1472 		err_drop_frame:
1473 			dev->stats.rx_errors++;
1474 			mvneta_rx_error(pp, rx_desc);
1475 			/* leave the descriptor untouched */
1476 			continue;
1477 		}
1478 
1479 		if (rx_bytes <= rx_copybreak) {
1480 			/* better copy a small frame and not unmap the DMA region */
1481 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1482 			if (unlikely(!skb))
1483 				goto err_drop_frame;
1484 
1485 			dma_sync_single_range_for_cpu(dev->dev.parent,
1486 			                              rx_desc->buf_phys_addr,
1487 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1488 			                              rx_bytes,
1489 			                              DMA_FROM_DEVICE);
1490 			memcpy(skb_put(skb, rx_bytes),
1491 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1492 			       rx_bytes);
1493 
1494 			skb->protocol = eth_type_trans(skb, dev);
1495 			mvneta_rx_csum(pp, rx_status, skb);
1496 			napi_gro_receive(&pp->napi, skb);
1497 
1498 			rcvd_pkts++;
1499 			rcvd_bytes += rx_bytes;
1500 
1501 			/* leave the descriptor and buffer untouched */
1502 			continue;
1503 		}
1504 
1505 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1506 		if (!skb)
1507 			goto err_drop_frame;
1508 
1509 		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1510 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1511 
1512 		rcvd_pkts++;
1513 		rcvd_bytes += rx_bytes;
1514 
1515 		/* Linux processing */
1516 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1517 		skb_put(skb, rx_bytes);
1518 
1519 		skb->protocol = eth_type_trans(skb, dev);
1520 
1521 		mvneta_rx_csum(pp, rx_status, skb);
1522 
1523 		napi_gro_receive(&pp->napi, skb);
1524 
1525 		/* Refill processing */
1526 		err = mvneta_rx_refill(pp, rx_desc);
1527 		if (err) {
1528 			netdev_err(dev, "Linux processing - Can't refill\n");
1529 			rxq->missed++;
1530 			rx_filled--;
1531 		}
1532 	}
1533 
1534 	if (rcvd_pkts) {
1535 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1536 
1537 		u64_stats_update_begin(&stats->syncp);
1538 		stats->rx_packets += rcvd_pkts;
1539 		stats->rx_bytes   += rcvd_bytes;
1540 		u64_stats_update_end(&stats->syncp);
1541 	}
1542 
1543 	/* Update rxq management counters */
1544 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1545 
1546 	return rx_done;
1547 }
1548 
1549 /* Handle tx fragmentation processing */
1550 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1551 				  struct mvneta_tx_queue *txq)
1552 {
1553 	struct mvneta_tx_desc *tx_desc;
1554 	int i;
1555 
1556 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1557 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1558 		void *addr = page_address(frag->page.p) + frag->page_offset;
1559 
1560 		tx_desc = mvneta_txq_next_desc_get(txq);
1561 		tx_desc->data_size = frag->size;
1562 
1563 		tx_desc->buf_phys_addr =
1564 			dma_map_single(pp->dev->dev.parent, addr,
1565 				       tx_desc->data_size, DMA_TO_DEVICE);
1566 
1567 		if (dma_mapping_error(pp->dev->dev.parent,
1568 				      tx_desc->buf_phys_addr)) {
1569 			mvneta_txq_desc_put(txq);
1570 			goto error;
1571 		}
1572 
1573 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1574 			/* Last descriptor */
1575 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1576 
1577 			txq->tx_skb[txq->txq_put_index] = skb;
1578 
1579 			mvneta_txq_inc_put(txq);
1580 		} else {
1581 			/* Descriptor in the middle: Not First, Not Last */
1582 			tx_desc->command = 0;
1583 
1584 			txq->tx_skb[txq->txq_put_index] = NULL;
1585 			mvneta_txq_inc_put(txq);
1586 		}
1587 	}
1588 
1589 	return 0;
1590 
1591 error:
1592 	/* Release all descriptors that were used to map fragments of
1593 	 * this packet, as well as the corresponding DMA mappings
1594 	 */
1595 	for (i = i - 1; i >= 0; i--) {
1596 		tx_desc = txq->descs + i;
1597 		dma_unmap_single(pp->dev->dev.parent,
1598 				 tx_desc->buf_phys_addr,
1599 				 tx_desc->data_size,
1600 				 DMA_TO_DEVICE);
1601 		mvneta_txq_desc_put(txq);
1602 	}
1603 
1604 	return -ENOMEM;
1605 }
1606 
1607 /* Main tx processing */
1608 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1609 {
1610 	struct mvneta_port *pp = netdev_priv(dev);
1611 	u16 txq_id = skb_get_queue_mapping(skb);
1612 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1613 	struct mvneta_tx_desc *tx_desc;
1614 	struct netdev_queue *nq;
1615 	int frags = 0;
1616 	u32 tx_cmd;
1617 
1618 	if (!netif_running(dev))
1619 		goto out;
1620 
1621 	frags = skb_shinfo(skb)->nr_frags + 1;
1622 	nq    = netdev_get_tx_queue(dev, txq_id);
1623 
1624 	/* Get a descriptor for the first part of the packet */
1625 	tx_desc = mvneta_txq_next_desc_get(txq);
1626 
1627 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1628 
1629 	tx_desc->data_size = skb_headlen(skb);
1630 
1631 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1632 						tx_desc->data_size,
1633 						DMA_TO_DEVICE);
1634 	if (unlikely(dma_mapping_error(dev->dev.parent,
1635 				       tx_desc->buf_phys_addr))) {
1636 		mvneta_txq_desc_put(txq);
1637 		frags = 0;
1638 		goto out;
1639 	}
1640 
1641 	if (frags == 1) {
1642 		/* First and Last descriptor */
1643 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1644 		tx_desc->command = tx_cmd;
1645 		txq->tx_skb[txq->txq_put_index] = skb;
1646 		mvneta_txq_inc_put(txq);
1647 	} else {
1648 		/* First but not Last */
1649 		tx_cmd |= MVNETA_TXD_F_DESC;
1650 		txq->tx_skb[txq->txq_put_index] = NULL;
1651 		mvneta_txq_inc_put(txq);
1652 		tx_desc->command = tx_cmd;
1653 		/* Continue with other skb fragments */
1654 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1655 			dma_unmap_single(dev->dev.parent,
1656 					 tx_desc->buf_phys_addr,
1657 					 tx_desc->data_size,
1658 					 DMA_TO_DEVICE);
1659 			mvneta_txq_desc_put(txq);
1660 			frags = 0;
1661 			goto out;
1662 		}
1663 	}
1664 
1665 	txq->count += frags;
1666 	mvneta_txq_pend_desc_add(pp, txq, frags);
1667 
1668 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1669 		netif_tx_stop_queue(nq);
1670 
1671 out:
1672 	if (frags > 0) {
1673 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1674 
1675 		u64_stats_update_begin(&stats->syncp);
1676 		stats->tx_packets++;
1677 		stats->tx_bytes  += skb->len;
1678 		u64_stats_update_end(&stats->syncp);
1679 	} else {
1680 		dev->stats.tx_dropped++;
1681 		dev_kfree_skb_any(skb);
1682 	}
1683 
1684 	return NETDEV_TX_OK;
1685 }
1686 
1687 
1688 /* Free tx resources, when resetting a port */
1689 static void mvneta_txq_done_force(struct mvneta_port *pp,
1690 				  struct mvneta_tx_queue *txq)
1691 
1692 {
1693 	int tx_done = txq->count;
1694 
1695 	mvneta_txq_bufs_free(pp, txq, tx_done);
1696 
1697 	/* reset txq */
1698 	txq->count = 0;
1699 	txq->txq_put_index = 0;
1700 	txq->txq_get_index = 0;
1701 }
1702 
1703 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1704  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1705  */
1706 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1707 {
1708 	struct mvneta_tx_queue *txq;
1709 	struct netdev_queue *nq;
1710 
1711 	while (cause_tx_done) {
1712 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1713 
1714 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1715 		__netif_tx_lock(nq, smp_processor_id());
1716 
1717 		if (txq->count)
1718 			mvneta_txq_done(pp, txq);
1719 
1720 		__netif_tx_unlock(nq);
1721 		cause_tx_done &= ~((1 << txq->id));
1722 	}
1723 }
1724 
1725 /* Compute crc8 of the specified address, using a unique algorithm ,
1726  * according to hw spec, different than generic crc8 algorithm
1727  */
1728 static int mvneta_addr_crc(unsigned char *addr)
1729 {
1730 	int crc = 0;
1731 	int i;
1732 
1733 	for (i = 0; i < ETH_ALEN; i++) {
1734 		int j;
1735 
1736 		crc = (crc ^ addr[i]) << 8;
1737 		for (j = 7; j >= 0; j--) {
1738 			if (crc & (0x100 << j))
1739 				crc ^= 0x107 << j;
1740 		}
1741 	}
1742 
1743 	return crc;
1744 }
1745 
1746 /* This method controls the net device special MAC multicast support.
1747  * The Special Multicast Table for MAC addresses supports MAC of the form
1748  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1749  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1750  * Table entries in the DA-Filter table. This method set the Special
1751  * Multicast Table appropriate entry.
1752  */
1753 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1754 					  unsigned char last_byte,
1755 					  int queue)
1756 {
1757 	unsigned int smc_table_reg;
1758 	unsigned int tbl_offset;
1759 	unsigned int reg_offset;
1760 
1761 	/* Register offset from SMC table base    */
1762 	tbl_offset = (last_byte / 4);
1763 	/* Entry offset within the above reg */
1764 	reg_offset = last_byte % 4;
1765 
1766 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1767 					+ tbl_offset * 4));
1768 
1769 	if (queue == -1)
1770 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1771 	else {
1772 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1773 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1774 	}
1775 
1776 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1777 		    smc_table_reg);
1778 }
1779 
1780 /* This method controls the network device Other MAC multicast support.
1781  * The Other Multicast Table is used for multicast of another type.
1782  * A CRC-8 is used as an index to the Other Multicast Table entries
1783  * in the DA-Filter table.
1784  * The method gets the CRC-8 value from the calling routine and
1785  * sets the Other Multicast Table appropriate entry according to the
1786  * specified CRC-8 .
1787  */
1788 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1789 					unsigned char crc8,
1790 					int queue)
1791 {
1792 	unsigned int omc_table_reg;
1793 	unsigned int tbl_offset;
1794 	unsigned int reg_offset;
1795 
1796 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1797 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1798 
1799 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1800 
1801 	if (queue == -1) {
1802 		/* Clear accepts frame bit at specified Other DA table entry */
1803 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1804 	} else {
1805 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1806 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1807 	}
1808 
1809 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1810 }
1811 
1812 /* The network device supports multicast using two tables:
1813  *    1) Special Multicast Table for MAC addresses of the form
1814  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1815  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1816  *       Table entries in the DA-Filter table.
1817  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1818  *       is used as an index to the Other Multicast Table entries in the
1819  *       DA-Filter table.
1820  */
1821 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1822 				 int queue)
1823 {
1824 	unsigned char crc_result = 0;
1825 
1826 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1827 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1828 		return 0;
1829 	}
1830 
1831 	crc_result = mvneta_addr_crc(p_addr);
1832 	if (queue == -1) {
1833 		if (pp->mcast_count[crc_result] == 0) {
1834 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1835 				    crc_result);
1836 			return -EINVAL;
1837 		}
1838 
1839 		pp->mcast_count[crc_result]--;
1840 		if (pp->mcast_count[crc_result] != 0) {
1841 			netdev_info(pp->dev,
1842 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1843 				    pp->mcast_count[crc_result], crc_result);
1844 			return -EINVAL;
1845 		}
1846 	} else
1847 		pp->mcast_count[crc_result]++;
1848 
1849 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1850 
1851 	return 0;
1852 }
1853 
1854 /* Configure Fitering mode of Ethernet port */
1855 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1856 					  int is_promisc)
1857 {
1858 	u32 port_cfg_reg, val;
1859 
1860 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1861 
1862 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1863 
1864 	/* Set / Clear UPM bit in port configuration register */
1865 	if (is_promisc) {
1866 		/* Accept all Unicast addresses */
1867 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1868 		val |= MVNETA_FORCE_UNI;
1869 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1870 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1871 	} else {
1872 		/* Reject all Unicast addresses */
1873 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1874 		val &= ~MVNETA_FORCE_UNI;
1875 	}
1876 
1877 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1878 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1879 }
1880 
1881 /* register unicast and multicast addresses */
1882 static void mvneta_set_rx_mode(struct net_device *dev)
1883 {
1884 	struct mvneta_port *pp = netdev_priv(dev);
1885 	struct netdev_hw_addr *ha;
1886 
1887 	if (dev->flags & IFF_PROMISC) {
1888 		/* Accept all: Multicast + Unicast */
1889 		mvneta_rx_unicast_promisc_set(pp, 1);
1890 		mvneta_set_ucast_table(pp, rxq_def);
1891 		mvneta_set_special_mcast_table(pp, rxq_def);
1892 		mvneta_set_other_mcast_table(pp, rxq_def);
1893 	} else {
1894 		/* Accept single Unicast */
1895 		mvneta_rx_unicast_promisc_set(pp, 0);
1896 		mvneta_set_ucast_table(pp, -1);
1897 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1898 
1899 		if (dev->flags & IFF_ALLMULTI) {
1900 			/* Accept all multicast */
1901 			mvneta_set_special_mcast_table(pp, rxq_def);
1902 			mvneta_set_other_mcast_table(pp, rxq_def);
1903 		} else {
1904 			/* Accept only initialized multicast */
1905 			mvneta_set_special_mcast_table(pp, -1);
1906 			mvneta_set_other_mcast_table(pp, -1);
1907 
1908 			if (!netdev_mc_empty(dev)) {
1909 				netdev_for_each_mc_addr(ha, dev) {
1910 					mvneta_mcast_addr_set(pp, ha->addr,
1911 							      rxq_def);
1912 				}
1913 			}
1914 		}
1915 	}
1916 }
1917 
1918 /* Interrupt handling - the callback for request_irq() */
1919 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1920 {
1921 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1922 
1923 	/* Mask all interrupts */
1924 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1925 
1926 	napi_schedule(&pp->napi);
1927 
1928 	return IRQ_HANDLED;
1929 }
1930 
1931 /* NAPI handler
1932  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1933  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1934  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1935  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1936  * Each CPU has its own causeRxTx register
1937  */
1938 static int mvneta_poll(struct napi_struct *napi, int budget)
1939 {
1940 	int rx_done = 0;
1941 	u32 cause_rx_tx;
1942 	unsigned long flags;
1943 	struct mvneta_port *pp = netdev_priv(napi->dev);
1944 
1945 	if (!netif_running(pp->dev)) {
1946 		napi_complete(napi);
1947 		return rx_done;
1948 	}
1949 
1950 	/* Read cause register */
1951 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1952 		(MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1953 
1954 	/* Release Tx descriptors */
1955 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
1956 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
1957 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
1958 	}
1959 
1960 	/* For the case where the last mvneta_poll did not process all
1961 	 * RX packets
1962 	 */
1963 	cause_rx_tx |= pp->cause_rx_tx;
1964 	if (rxq_number > 1) {
1965 		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
1966 			int count;
1967 			struct mvneta_rx_queue *rxq;
1968 			/* get rx queue number from cause_rx_tx */
1969 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1970 			if (!rxq)
1971 				break;
1972 
1973 			/* process the packet in that rx queue */
1974 			count = mvneta_rx(pp, budget, rxq);
1975 			rx_done += count;
1976 			budget -= count;
1977 			if (budget > 0) {
1978 				/* set off the rx bit of the
1979 				 * corresponding bit in the cause rx
1980 				 * tx register, so that next iteration
1981 				 * will find the next rx queue where
1982 				 * packets are received on
1983 				 */
1984 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1985 			}
1986 		}
1987 	} else {
1988 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1989 		budget -= rx_done;
1990 	}
1991 
1992 	if (budget > 0) {
1993 		cause_rx_tx = 0;
1994 		napi_complete(napi);
1995 		local_irq_save(flags);
1996 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1997 			    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
1998 		local_irq_restore(flags);
1999 	}
2000 
2001 	pp->cause_rx_tx = cause_rx_tx;
2002 	return rx_done;
2003 }
2004 
2005 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2006 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2007 			   int num)
2008 {
2009 	int i;
2010 
2011 	for (i = 0; i < num; i++) {
2012 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2013 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2014 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2015 				__func__, rxq->id, i, num);
2016 			break;
2017 		}
2018 	}
2019 
2020 	/* Add this number of RX descriptors as non occupied (ready to
2021 	 * get packets)
2022 	 */
2023 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2024 
2025 	return i;
2026 }
2027 
2028 /* Free all packets pending transmit from all TXQs and reset TX port */
2029 static void mvneta_tx_reset(struct mvneta_port *pp)
2030 {
2031 	int queue;
2032 
2033 	/* free the skb's in the hal tx ring */
2034 	for (queue = 0; queue < txq_number; queue++)
2035 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2036 
2037 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2038 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2039 }
2040 
2041 static void mvneta_rx_reset(struct mvneta_port *pp)
2042 {
2043 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2044 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2045 }
2046 
2047 /* Rx/Tx queue initialization/cleanup methods */
2048 
2049 /* Create a specified RX queue */
2050 static int mvneta_rxq_init(struct mvneta_port *pp,
2051 			   struct mvneta_rx_queue *rxq)
2052 
2053 {
2054 	rxq->size = pp->rx_ring_size;
2055 
2056 	/* Allocate memory for RX descriptors */
2057 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2058 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2059 					&rxq->descs_phys, GFP_KERNEL);
2060 	if (rxq->descs == NULL)
2061 		return -ENOMEM;
2062 
2063 	BUG_ON(rxq->descs !=
2064 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2065 
2066 	rxq->last_desc = rxq->size - 1;
2067 
2068 	/* Set Rx descriptors queue starting address */
2069 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2070 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2071 
2072 	/* Set Offset */
2073 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2074 
2075 	/* Set coalescing pkts and time */
2076 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2077 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2078 
2079 	/* Fill RXQ with buffers from RX pool */
2080 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2081 	mvneta_rxq_bm_disable(pp, rxq);
2082 	mvneta_rxq_fill(pp, rxq, rxq->size);
2083 
2084 	return 0;
2085 }
2086 
2087 /* Cleanup Rx queue */
2088 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2089 			      struct mvneta_rx_queue *rxq)
2090 {
2091 	mvneta_rxq_drop_pkts(pp, rxq);
2092 
2093 	if (rxq->descs)
2094 		dma_free_coherent(pp->dev->dev.parent,
2095 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2096 				  rxq->descs,
2097 				  rxq->descs_phys);
2098 
2099 	rxq->descs             = NULL;
2100 	rxq->last_desc         = 0;
2101 	rxq->next_desc_to_proc = 0;
2102 	rxq->descs_phys        = 0;
2103 }
2104 
2105 /* Create and initialize a tx queue */
2106 static int mvneta_txq_init(struct mvneta_port *pp,
2107 			   struct mvneta_tx_queue *txq)
2108 {
2109 	txq->size = pp->tx_ring_size;
2110 
2111 	/* Allocate memory for TX descriptors */
2112 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2113 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2114 					&txq->descs_phys, GFP_KERNEL);
2115 	if (txq->descs == NULL)
2116 		return -ENOMEM;
2117 
2118 	/* Make sure descriptor address is cache line size aligned  */
2119 	BUG_ON(txq->descs !=
2120 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2121 
2122 	txq->last_desc = txq->size - 1;
2123 
2124 	/* Set maximum bandwidth for enabled TXQs */
2125 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2126 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2127 
2128 	/* Set Tx descriptors queue starting address */
2129 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2130 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2131 
2132 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2133 	if (txq->tx_skb == NULL) {
2134 		dma_free_coherent(pp->dev->dev.parent,
2135 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2136 				  txq->descs, txq->descs_phys);
2137 		return -ENOMEM;
2138 	}
2139 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2140 
2141 	return 0;
2142 }
2143 
2144 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2145 static void mvneta_txq_deinit(struct mvneta_port *pp,
2146 			      struct mvneta_tx_queue *txq)
2147 {
2148 	kfree(txq->tx_skb);
2149 
2150 	if (txq->descs)
2151 		dma_free_coherent(pp->dev->dev.parent,
2152 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2153 				  txq->descs, txq->descs_phys);
2154 
2155 	txq->descs             = NULL;
2156 	txq->last_desc         = 0;
2157 	txq->next_desc_to_proc = 0;
2158 	txq->descs_phys        = 0;
2159 
2160 	/* Set minimum bandwidth for disabled TXQs */
2161 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2162 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2163 
2164 	/* Set Tx descriptors queue starting address and size */
2165 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2166 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2167 }
2168 
2169 /* Cleanup all Tx queues */
2170 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2171 {
2172 	int queue;
2173 
2174 	for (queue = 0; queue < txq_number; queue++)
2175 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2176 }
2177 
2178 /* Cleanup all Rx queues */
2179 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2180 {
2181 	int queue;
2182 
2183 	for (queue = 0; queue < rxq_number; queue++)
2184 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2185 }
2186 
2187 
2188 /* Init all Rx queues */
2189 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2190 {
2191 	int queue;
2192 
2193 	for (queue = 0; queue < rxq_number; queue++) {
2194 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2195 		if (err) {
2196 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2197 				   __func__, queue);
2198 			mvneta_cleanup_rxqs(pp);
2199 			return err;
2200 		}
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 /* Init all tx queues */
2207 static int mvneta_setup_txqs(struct mvneta_port *pp)
2208 {
2209 	int queue;
2210 
2211 	for (queue = 0; queue < txq_number; queue++) {
2212 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2213 		if (err) {
2214 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2215 				   __func__, queue);
2216 			mvneta_cleanup_txqs(pp);
2217 			return err;
2218 		}
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static void mvneta_start_dev(struct mvneta_port *pp)
2225 {
2226 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2227 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2228 
2229 	/* start the Rx/Tx activity */
2230 	mvneta_port_enable(pp);
2231 
2232 	/* Enable polling on the port */
2233 	napi_enable(&pp->napi);
2234 
2235 	/* Unmask interrupts */
2236 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2237 		    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2238 
2239 	phy_start(pp->phy_dev);
2240 	netif_tx_start_all_queues(pp->dev);
2241 }
2242 
2243 static void mvneta_stop_dev(struct mvneta_port *pp)
2244 {
2245 	phy_stop(pp->phy_dev);
2246 
2247 	napi_disable(&pp->napi);
2248 
2249 	netif_carrier_off(pp->dev);
2250 
2251 	mvneta_port_down(pp);
2252 	netif_tx_stop_all_queues(pp->dev);
2253 
2254 	/* Stop the port activity */
2255 	mvneta_port_disable(pp);
2256 
2257 	/* Clear all ethernet port interrupts */
2258 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2259 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2260 
2261 	/* Mask all ethernet port interrupts */
2262 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2263 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2264 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2265 
2266 	mvneta_tx_reset(pp);
2267 	mvneta_rx_reset(pp);
2268 }
2269 
2270 /* Return positive if MTU is valid */
2271 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2272 {
2273 	if (mtu < 68) {
2274 		netdev_err(dev, "cannot change mtu to less than 68\n");
2275 		return -EINVAL;
2276 	}
2277 
2278 	/* 9676 == 9700 - 20 and rounding to 8 */
2279 	if (mtu > 9676) {
2280 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2281 		mtu = 9676;
2282 	}
2283 
2284 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2285 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2286 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2287 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2288 	}
2289 
2290 	return mtu;
2291 }
2292 
2293 /* Change the device mtu */
2294 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2295 {
2296 	struct mvneta_port *pp = netdev_priv(dev);
2297 	int ret;
2298 
2299 	mtu = mvneta_check_mtu_valid(dev, mtu);
2300 	if (mtu < 0)
2301 		return -EINVAL;
2302 
2303 	dev->mtu = mtu;
2304 
2305 	if (!netif_running(dev))
2306 		return 0;
2307 
2308 	/* The interface is running, so we have to force a
2309 	 * reallocation of the RXQs
2310 	 */
2311 	mvneta_stop_dev(pp);
2312 
2313 	mvneta_cleanup_txqs(pp);
2314 	mvneta_cleanup_rxqs(pp);
2315 
2316 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2317 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2318 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2319 
2320 	ret = mvneta_setup_rxqs(pp);
2321 	if (ret) {
2322 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2323 		return ret;
2324 	}
2325 
2326 	mvneta_setup_txqs(pp);
2327 
2328 	mvneta_start_dev(pp);
2329 	mvneta_port_up(pp);
2330 
2331 	return 0;
2332 }
2333 
2334 /* Get mac address */
2335 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2336 {
2337 	u32 mac_addr_l, mac_addr_h;
2338 
2339 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2340 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2341 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2342 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2343 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2344 	addr[3] = mac_addr_h & 0xFF;
2345 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2346 	addr[5] = mac_addr_l & 0xFF;
2347 }
2348 
2349 /* Handle setting mac address */
2350 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2351 {
2352 	struct mvneta_port *pp = netdev_priv(dev);
2353 	u8 *mac = addr + 2;
2354 	int i;
2355 
2356 	if (netif_running(dev))
2357 		return -EBUSY;
2358 
2359 	/* Remove previous address table entry */
2360 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2361 
2362 	/* Set new addr in hw */
2363 	mvneta_mac_addr_set(pp, mac, rxq_def);
2364 
2365 	/* Set addr in the device */
2366 	for (i = 0; i < ETH_ALEN; i++)
2367 		dev->dev_addr[i] = mac[i];
2368 
2369 	return 0;
2370 }
2371 
2372 static void mvneta_adjust_link(struct net_device *ndev)
2373 {
2374 	struct mvneta_port *pp = netdev_priv(ndev);
2375 	struct phy_device *phydev = pp->phy_dev;
2376 	int status_change = 0;
2377 
2378 	if (phydev->link) {
2379 		if ((pp->speed != phydev->speed) ||
2380 		    (pp->duplex != phydev->duplex)) {
2381 			u32 val;
2382 
2383 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2384 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2385 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2386 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2387 				 MVNETA_GMAC_AN_SPEED_EN |
2388 				 MVNETA_GMAC_AN_DUPLEX_EN);
2389 
2390 			if (phydev->duplex)
2391 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2392 
2393 			if (phydev->speed == SPEED_1000)
2394 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2395 			else
2396 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2397 
2398 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2399 
2400 			pp->duplex = phydev->duplex;
2401 			pp->speed  = phydev->speed;
2402 		}
2403 	}
2404 
2405 	if (phydev->link != pp->link) {
2406 		if (!phydev->link) {
2407 			pp->duplex = -1;
2408 			pp->speed = 0;
2409 		}
2410 
2411 		pp->link = phydev->link;
2412 		status_change = 1;
2413 	}
2414 
2415 	if (status_change) {
2416 		if (phydev->link) {
2417 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2418 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2419 				MVNETA_GMAC_FORCE_LINK_DOWN);
2420 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2421 			mvneta_port_up(pp);
2422 			netdev_info(pp->dev, "link up\n");
2423 		} else {
2424 			mvneta_port_down(pp);
2425 			netdev_info(pp->dev, "link down\n");
2426 		}
2427 	}
2428 }
2429 
2430 static int mvneta_mdio_probe(struct mvneta_port *pp)
2431 {
2432 	struct phy_device *phy_dev;
2433 
2434 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2435 				 pp->phy_interface);
2436 	if (!phy_dev) {
2437 		netdev_err(pp->dev, "could not find the PHY\n");
2438 		return -ENODEV;
2439 	}
2440 
2441 	phy_dev->supported &= PHY_GBIT_FEATURES;
2442 	phy_dev->advertising = phy_dev->supported;
2443 
2444 	pp->phy_dev = phy_dev;
2445 	pp->link    = 0;
2446 	pp->duplex  = 0;
2447 	pp->speed   = 0;
2448 
2449 	return 0;
2450 }
2451 
2452 static void mvneta_mdio_remove(struct mvneta_port *pp)
2453 {
2454 	phy_disconnect(pp->phy_dev);
2455 	pp->phy_dev = NULL;
2456 }
2457 
2458 static int mvneta_open(struct net_device *dev)
2459 {
2460 	struct mvneta_port *pp = netdev_priv(dev);
2461 	int ret;
2462 
2463 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2464 
2465 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2466 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2467 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2468 
2469 	ret = mvneta_setup_rxqs(pp);
2470 	if (ret)
2471 		return ret;
2472 
2473 	ret = mvneta_setup_txqs(pp);
2474 	if (ret)
2475 		goto err_cleanup_rxqs;
2476 
2477 	/* Connect to port interrupt line */
2478 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2479 			  MVNETA_DRIVER_NAME, pp);
2480 	if (ret) {
2481 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2482 		goto err_cleanup_txqs;
2483 	}
2484 
2485 	/* In default link is down */
2486 	netif_carrier_off(pp->dev);
2487 
2488 	ret = mvneta_mdio_probe(pp);
2489 	if (ret < 0) {
2490 		netdev_err(dev, "cannot probe MDIO bus\n");
2491 		goto err_free_irq;
2492 	}
2493 
2494 	mvneta_start_dev(pp);
2495 
2496 	return 0;
2497 
2498 err_free_irq:
2499 	free_irq(pp->dev->irq, pp);
2500 err_cleanup_txqs:
2501 	mvneta_cleanup_txqs(pp);
2502 err_cleanup_rxqs:
2503 	mvneta_cleanup_rxqs(pp);
2504 	return ret;
2505 }
2506 
2507 /* Stop the port, free port interrupt line */
2508 static int mvneta_stop(struct net_device *dev)
2509 {
2510 	struct mvneta_port *pp = netdev_priv(dev);
2511 
2512 	mvneta_stop_dev(pp);
2513 	mvneta_mdio_remove(pp);
2514 	free_irq(dev->irq, pp);
2515 	mvneta_cleanup_rxqs(pp);
2516 	mvneta_cleanup_txqs(pp);
2517 
2518 	return 0;
2519 }
2520 
2521 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2522 {
2523 	struct mvneta_port *pp = netdev_priv(dev);
2524 	int ret;
2525 
2526 	if (!pp->phy_dev)
2527 		return -ENOTSUPP;
2528 
2529 	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2530 	if (!ret)
2531 		mvneta_adjust_link(dev);
2532 
2533 	return ret;
2534 }
2535 
2536 /* Ethtool methods */
2537 
2538 /* Get settings (phy address, speed) for ethtools */
2539 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2540 {
2541 	struct mvneta_port *pp = netdev_priv(dev);
2542 
2543 	if (!pp->phy_dev)
2544 		return -ENODEV;
2545 
2546 	return phy_ethtool_gset(pp->phy_dev, cmd);
2547 }
2548 
2549 /* Set settings (phy address, speed) for ethtools */
2550 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2551 {
2552 	struct mvneta_port *pp = netdev_priv(dev);
2553 
2554 	if (!pp->phy_dev)
2555 		return -ENODEV;
2556 
2557 	return phy_ethtool_sset(pp->phy_dev, cmd);
2558 }
2559 
2560 /* Set interrupt coalescing for ethtools */
2561 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2562 				       struct ethtool_coalesce *c)
2563 {
2564 	struct mvneta_port *pp = netdev_priv(dev);
2565 	int queue;
2566 
2567 	for (queue = 0; queue < rxq_number; queue++) {
2568 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2569 		rxq->time_coal = c->rx_coalesce_usecs;
2570 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2571 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2572 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2573 	}
2574 
2575 	for (queue = 0; queue < txq_number; queue++) {
2576 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2577 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2578 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 /* get coalescing for ethtools */
2585 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2586 				       struct ethtool_coalesce *c)
2587 {
2588 	struct mvneta_port *pp = netdev_priv(dev);
2589 
2590 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2591 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2592 
2593 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2594 	return 0;
2595 }
2596 
2597 
2598 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2599 				    struct ethtool_drvinfo *drvinfo)
2600 {
2601 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2602 		sizeof(drvinfo->driver));
2603 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2604 		sizeof(drvinfo->version));
2605 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2606 		sizeof(drvinfo->bus_info));
2607 }
2608 
2609 
2610 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2611 					 struct ethtool_ringparam *ring)
2612 {
2613 	struct mvneta_port *pp = netdev_priv(netdev);
2614 
2615 	ring->rx_max_pending = MVNETA_MAX_RXD;
2616 	ring->tx_max_pending = MVNETA_MAX_TXD;
2617 	ring->rx_pending = pp->rx_ring_size;
2618 	ring->tx_pending = pp->tx_ring_size;
2619 }
2620 
2621 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2622 					struct ethtool_ringparam *ring)
2623 {
2624 	struct mvneta_port *pp = netdev_priv(dev);
2625 
2626 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2627 		return -EINVAL;
2628 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2629 		ring->rx_pending : MVNETA_MAX_RXD;
2630 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2631 		ring->tx_pending : MVNETA_MAX_TXD;
2632 
2633 	if (netif_running(dev)) {
2634 		mvneta_stop(dev);
2635 		if (mvneta_open(dev)) {
2636 			netdev_err(dev,
2637 				   "error on opening device after ring param change\n");
2638 			return -ENOMEM;
2639 		}
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 static const struct net_device_ops mvneta_netdev_ops = {
2646 	.ndo_open            = mvneta_open,
2647 	.ndo_stop            = mvneta_stop,
2648 	.ndo_start_xmit      = mvneta_tx,
2649 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2650 	.ndo_set_mac_address = mvneta_set_mac_addr,
2651 	.ndo_change_mtu      = mvneta_change_mtu,
2652 	.ndo_get_stats64     = mvneta_get_stats64,
2653 	.ndo_do_ioctl        = mvneta_ioctl,
2654 };
2655 
2656 const struct ethtool_ops mvneta_eth_tool_ops = {
2657 	.get_link       = ethtool_op_get_link,
2658 	.get_settings   = mvneta_ethtool_get_settings,
2659 	.set_settings   = mvneta_ethtool_set_settings,
2660 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2661 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2662 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2663 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2664 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2665 };
2666 
2667 /* Initialize hw */
2668 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2669 {
2670 	int queue;
2671 
2672 	/* Disable port */
2673 	mvneta_port_disable(pp);
2674 
2675 	/* Set port default values */
2676 	mvneta_defaults_set(pp);
2677 
2678 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2679 			   GFP_KERNEL);
2680 	if (!pp->txqs)
2681 		return -ENOMEM;
2682 
2683 	/* Initialize TX descriptor rings */
2684 	for (queue = 0; queue < txq_number; queue++) {
2685 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2686 		txq->id = queue;
2687 		txq->size = pp->tx_ring_size;
2688 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2689 	}
2690 
2691 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2692 			   GFP_KERNEL);
2693 	if (!pp->rxqs) {
2694 		kfree(pp->txqs);
2695 		return -ENOMEM;
2696 	}
2697 
2698 	/* Create Rx descriptor rings */
2699 	for (queue = 0; queue < rxq_number; queue++) {
2700 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2701 		rxq->id = queue;
2702 		rxq->size = pp->rx_ring_size;
2703 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2704 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 static void mvneta_deinit(struct mvneta_port *pp)
2711 {
2712 	kfree(pp->txqs);
2713 	kfree(pp->rxqs);
2714 }
2715 
2716 /* platform glue : initialize decoding windows */
2717 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2718 				     const struct mbus_dram_target_info *dram)
2719 {
2720 	u32 win_enable;
2721 	u32 win_protect;
2722 	int i;
2723 
2724 	for (i = 0; i < 6; i++) {
2725 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2726 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2727 
2728 		if (i < 4)
2729 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2730 	}
2731 
2732 	win_enable = 0x3f;
2733 	win_protect = 0;
2734 
2735 	for (i = 0; i < dram->num_cs; i++) {
2736 		const struct mbus_dram_window *cs = dram->cs + i;
2737 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2738 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2739 
2740 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2741 			    (cs->size - 1) & 0xffff0000);
2742 
2743 		win_enable &= ~(1 << i);
2744 		win_protect |= 3 << (2 * i);
2745 	}
2746 
2747 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2748 }
2749 
2750 /* Power up the port */
2751 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2752 {
2753 	u32 val;
2754 
2755 	/* MAC Cause register should be cleared */
2756 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2757 
2758 	if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2759 		mvneta_port_sgmii_config(pp);
2760 
2761 	mvneta_gmac_rgmii_set(pp, 1);
2762 
2763 	/* Cancel Port Reset */
2764 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2765 	val &= ~MVNETA_GMAC2_PORT_RESET;
2766 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2767 
2768 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2769 		MVNETA_GMAC2_PORT_RESET) != 0)
2770 		continue;
2771 }
2772 
2773 /* Device initialization routine */
2774 static int mvneta_probe(struct platform_device *pdev)
2775 {
2776 	const struct mbus_dram_target_info *dram_target_info;
2777 	struct device_node *dn = pdev->dev.of_node;
2778 	struct device_node *phy_node;
2779 	u32 phy_addr;
2780 	struct mvneta_port *pp;
2781 	struct net_device *dev;
2782 	const char *dt_mac_addr;
2783 	char hw_mac_addr[ETH_ALEN];
2784 	const char *mac_from;
2785 	int phy_mode;
2786 	int err;
2787 	int cpu;
2788 
2789 	/* Our multiqueue support is not complete, so for now, only
2790 	 * allow the usage of the first RX queue
2791 	 */
2792 	if (rxq_def != 0) {
2793 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2794 		return -EINVAL;
2795 	}
2796 
2797 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2798 	if (!dev)
2799 		return -ENOMEM;
2800 
2801 	dev->irq = irq_of_parse_and_map(dn, 0);
2802 	if (dev->irq == 0) {
2803 		err = -EINVAL;
2804 		goto err_free_netdev;
2805 	}
2806 
2807 	phy_node = of_parse_phandle(dn, "phy", 0);
2808 	if (!phy_node) {
2809 		dev_err(&pdev->dev, "no associated PHY\n");
2810 		err = -ENODEV;
2811 		goto err_free_irq;
2812 	}
2813 
2814 	phy_mode = of_get_phy_mode(dn);
2815 	if (phy_mode < 0) {
2816 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2817 		err = -EINVAL;
2818 		goto err_free_irq;
2819 	}
2820 
2821 	dev->tx_queue_len = MVNETA_MAX_TXD;
2822 	dev->watchdog_timeo = 5 * HZ;
2823 	dev->netdev_ops = &mvneta_netdev_ops;
2824 
2825 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2826 
2827 	pp = netdev_priv(dev);
2828 
2829 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2830 	pp->phy_node = phy_node;
2831 	pp->phy_interface = phy_mode;
2832 
2833 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2834 	if (IS_ERR(pp->clk)) {
2835 		err = PTR_ERR(pp->clk);
2836 		goto err_free_irq;
2837 	}
2838 
2839 	clk_prepare_enable(pp->clk);
2840 
2841 	pp->base = of_iomap(dn, 0);
2842 	if (pp->base == NULL) {
2843 		err = -ENOMEM;
2844 		goto err_clk;
2845 	}
2846 
2847 	/* Alloc per-cpu stats */
2848 	pp->stats = alloc_percpu(struct mvneta_pcpu_stats);
2849 	if (!pp->stats) {
2850 		err = -ENOMEM;
2851 		goto err_unmap;
2852 	}
2853 
2854 	for_each_possible_cpu(cpu) {
2855 		struct mvneta_pcpu_stats *stats;
2856 		stats = per_cpu_ptr(pp->stats, cpu);
2857 		u64_stats_init(&stats->syncp);
2858 	}
2859 
2860 	dt_mac_addr = of_get_mac_address(dn);
2861 	if (dt_mac_addr) {
2862 		mac_from = "device tree";
2863 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2864 	} else {
2865 		mvneta_get_mac_addr(pp, hw_mac_addr);
2866 		if (is_valid_ether_addr(hw_mac_addr)) {
2867 			mac_from = "hardware";
2868 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2869 		} else {
2870 			mac_from = "random";
2871 			eth_hw_addr_random(dev);
2872 		}
2873 	}
2874 
2875 	pp->tx_ring_size = MVNETA_MAX_TXD;
2876 	pp->rx_ring_size = MVNETA_MAX_RXD;
2877 
2878 	pp->dev = dev;
2879 	SET_NETDEV_DEV(dev, &pdev->dev);
2880 
2881 	err = mvneta_init(pp, phy_addr);
2882 	if (err < 0) {
2883 		dev_err(&pdev->dev, "can't init eth hal\n");
2884 		goto err_free_stats;
2885 	}
2886 	mvneta_port_power_up(pp, phy_mode);
2887 
2888 	dram_target_info = mv_mbus_dram_info();
2889 	if (dram_target_info)
2890 		mvneta_conf_mbus_windows(pp, dram_target_info);
2891 
2892 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2893 
2894 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2895 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2896 	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2897 	dev->priv_flags |= IFF_UNICAST_FLT;
2898 
2899 	err = register_netdev(dev);
2900 	if (err < 0) {
2901 		dev_err(&pdev->dev, "failed to register\n");
2902 		goto err_deinit;
2903 	}
2904 
2905 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2906 		    dev->dev_addr);
2907 
2908 	platform_set_drvdata(pdev, pp->dev);
2909 
2910 	return 0;
2911 
2912 err_deinit:
2913 	mvneta_deinit(pp);
2914 err_free_stats:
2915 	free_percpu(pp->stats);
2916 err_unmap:
2917 	iounmap(pp->base);
2918 err_clk:
2919 	clk_disable_unprepare(pp->clk);
2920 err_free_irq:
2921 	irq_dispose_mapping(dev->irq);
2922 err_free_netdev:
2923 	free_netdev(dev);
2924 	return err;
2925 }
2926 
2927 /* Device removal routine */
2928 static int mvneta_remove(struct platform_device *pdev)
2929 {
2930 	struct net_device  *dev = platform_get_drvdata(pdev);
2931 	struct mvneta_port *pp = netdev_priv(dev);
2932 
2933 	unregister_netdev(dev);
2934 	mvneta_deinit(pp);
2935 	clk_disable_unprepare(pp->clk);
2936 	free_percpu(pp->stats);
2937 	iounmap(pp->base);
2938 	irq_dispose_mapping(dev->irq);
2939 	free_netdev(dev);
2940 
2941 	return 0;
2942 }
2943 
2944 static const struct of_device_id mvneta_match[] = {
2945 	{ .compatible = "marvell,armada-370-neta" },
2946 	{ }
2947 };
2948 MODULE_DEVICE_TABLE(of, mvneta_match);
2949 
2950 static struct platform_driver mvneta_driver = {
2951 	.probe = mvneta_probe,
2952 	.remove = mvneta_remove,
2953 	.driver = {
2954 		.name = MVNETA_DRIVER_NAME,
2955 		.of_match_table = mvneta_match,
2956 	},
2957 };
2958 
2959 module_platform_driver(mvneta_driver);
2960 
2961 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2962 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2963 MODULE_LICENSE("GPL");
2964 
2965 module_param(rxq_number, int, S_IRUGO);
2966 module_param(txq_number, int, S_IRUGO);
2967 
2968 module_param(rxq_def, int, S_IRUGO);
2969 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
2970