1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 41 /* Registers */ 42 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 43 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 44 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 45 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 46 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 47 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 48 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 49 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 50 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 51 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 52 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 53 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 54 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 55 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 56 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 57 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 58 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 60 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 61 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 62 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 63 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 64 #define MVNETA_PORT_RX_RESET 0x1cc0 65 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 66 #define MVNETA_PHY_ADDR 0x2000 67 #define MVNETA_PHY_ADDR_MASK 0x1f 68 #define MVNETA_MBUS_RETRY 0x2010 69 #define MVNETA_UNIT_INTR_CAUSE 0x2080 70 #define MVNETA_UNIT_CONTROL 0x20B0 71 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 72 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 73 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 74 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 75 #define MVNETA_BASE_ADDR_ENABLE 0x2290 76 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 77 #define MVNETA_PORT_CONFIG 0x2400 78 #define MVNETA_UNI_PROMISC_MODE BIT(0) 79 #define MVNETA_DEF_RXQ(q) ((q) << 1) 80 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 81 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 82 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 83 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 84 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 85 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 86 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 87 MVNETA_DEF_RXQ_ARP(q) | \ 88 MVNETA_DEF_RXQ_TCP(q) | \ 89 MVNETA_DEF_RXQ_UDP(q) | \ 90 MVNETA_DEF_RXQ_BPDU(q) | \ 91 MVNETA_TX_UNSET_ERR_SUM | \ 92 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 93 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 94 #define MVNETA_MAC_ADDR_LOW 0x2414 95 #define MVNETA_MAC_ADDR_HIGH 0x2418 96 #define MVNETA_SDMA_CONFIG 0x241c 97 #define MVNETA_SDMA_BRST_SIZE_16 4 98 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 99 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 100 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 101 #define MVNETA_DESC_SWAP BIT(6) 102 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 103 #define MVNETA_PORT_STATUS 0x2444 104 #define MVNETA_TX_IN_PRGRS BIT(1) 105 #define MVNETA_TX_FIFO_EMPTY BIT(8) 106 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 107 #define MVNETA_SERDES_CFG 0x24A0 108 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 109 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 110 #define MVNETA_TYPE_PRIO 0x24bc 111 #define MVNETA_FORCE_UNI BIT(21) 112 #define MVNETA_TXQ_CMD_1 0x24e4 113 #define MVNETA_TXQ_CMD 0x2448 114 #define MVNETA_TXQ_DISABLE_SHIFT 8 115 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 116 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 117 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 118 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 119 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 120 #define MVNETA_ACC_MODE 0x2500 121 #define MVNETA_BM_ADDRESS 0x2504 122 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 123 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 124 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 125 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 126 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 127 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 128 129 /* Exception Interrupt Port/Queue Cause register 130 * 131 * Their behavior depend of the mapping done using the PCPX2Q 132 * registers. For a given CPU if the bit associated to a queue is not 133 * set, then for the register a read from this CPU will always return 134 * 0 and a write won't do anything 135 */ 136 137 #define MVNETA_INTR_NEW_CAUSE 0x25a0 138 #define MVNETA_INTR_NEW_MASK 0x25a4 139 140 /* bits 0..7 = TXQ SENT, one bit per queue. 141 * bits 8..15 = RXQ OCCUP, one bit per queue. 142 * bits 16..23 = RXQ FREE, one bit per queue. 143 * bit 29 = OLD_REG_SUM, see old reg ? 144 * bit 30 = TX_ERR_SUM, one bit for 4 ports 145 * bit 31 = MISC_SUM, one bit for 4 ports 146 */ 147 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 148 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 149 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 150 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 151 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 152 153 #define MVNETA_INTR_OLD_CAUSE 0x25a8 154 #define MVNETA_INTR_OLD_MASK 0x25ac 155 156 /* Data Path Port/Queue Cause Register */ 157 #define MVNETA_INTR_MISC_CAUSE 0x25b0 158 #define MVNETA_INTR_MISC_MASK 0x25b4 159 160 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 161 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 162 #define MVNETA_CAUSE_PTP BIT(4) 163 164 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 165 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 166 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 167 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 168 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 169 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 170 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 171 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 172 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 176 177 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 178 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 179 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 180 181 #define MVNETA_INTR_ENABLE 0x25b8 182 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 183 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 184 185 #define MVNETA_RXQ_CMD 0x2680 186 #define MVNETA_RXQ_DISABLE_SHIFT 8 187 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 188 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 189 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 190 #define MVNETA_GMAC_CTRL_0 0x2c00 191 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 192 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 193 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 194 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 195 #define MVNETA_GMAC_CTRL_2 0x2c08 196 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 197 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 198 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 199 #define MVNETA_GMAC2_PORT_RESET BIT(6) 200 #define MVNETA_GMAC_STATUS 0x2c10 201 #define MVNETA_GMAC_LINK_UP BIT(0) 202 #define MVNETA_GMAC_SPEED_1000 BIT(1) 203 #define MVNETA_GMAC_SPEED_100 BIT(2) 204 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 205 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 206 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 209 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 210 #define MVNETA_GMAC_SYNC_OK BIT(14) 211 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 212 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 213 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 214 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 215 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 216 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 217 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 218 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 219 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 220 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 221 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 222 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 223 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 224 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 225 #define MVNETA_GMAC_CTRL_4 0x2c90 226 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 227 #define MVNETA_MIB_COUNTERS_BASE 0x3000 228 #define MVNETA_MIB_LATE_COLLISION 0x7c 229 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 230 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 231 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 232 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 233 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 234 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 235 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 236 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 237 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 238 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 239 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 240 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 241 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 242 #define MVNETA_PORT_TX_RESET 0x3cf0 243 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 244 #define MVNETA_TX_MTU 0x3e0c 245 #define MVNETA_TX_TOKEN_SIZE 0x3e14 246 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 247 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 248 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 249 250 #define MVNETA_LPI_CTRL_0 0x2cc0 251 #define MVNETA_LPI_CTRL_1 0x2cc4 252 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 253 #define MVNETA_LPI_CTRL_2 0x2cc8 254 #define MVNETA_LPI_STATUS 0x2ccc 255 256 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 257 258 /* Descriptor ring Macros */ 259 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 260 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 261 262 /* Various constants */ 263 264 /* Coalescing */ 265 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 266 #define MVNETA_RX_COAL_PKTS 32 267 #define MVNETA_RX_COAL_USEC 100 268 269 /* The two bytes Marvell header. Either contains a special value used 270 * by Marvell switches when a specific hardware mode is enabled (not 271 * supported by this driver) or is filled automatically by zeroes on 272 * the RX side. Those two bytes being at the front of the Ethernet 273 * header, they allow to have the IP header aligned on a 4 bytes 274 * boundary automatically: the hardware skips those two bytes on its 275 * own. 276 */ 277 #define MVNETA_MH_SIZE 2 278 279 #define MVNETA_VLAN_TAG_LEN 4 280 281 #define MVNETA_TX_CSUM_DEF_SIZE 1600 282 #define MVNETA_TX_CSUM_MAX_SIZE 9800 283 #define MVNETA_ACC_MODE_EXT1 1 284 #define MVNETA_ACC_MODE_EXT2 2 285 286 #define MVNETA_MAX_DECODE_WIN 6 287 288 /* Timeout constants */ 289 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 290 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 291 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 292 293 #define MVNETA_TX_MTU_MAX 0x3ffff 294 295 /* The RSS lookup table actually has 256 entries but we do not use 296 * them yet 297 */ 298 #define MVNETA_RSS_LU_TABLE_SIZE 1 299 300 /* Max number of Rx descriptors */ 301 #define MVNETA_MAX_RXD 512 302 303 /* Max number of Tx descriptors */ 304 #define MVNETA_MAX_TXD 1024 305 306 /* Max number of allowed TCP segments for software TSO */ 307 #define MVNETA_MAX_TSO_SEGS 100 308 309 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 310 311 /* descriptor aligned size */ 312 #define MVNETA_DESC_ALIGNED_SIZE 32 313 314 /* Number of bytes to be taken into account by HW when putting incoming data 315 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 316 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 317 */ 318 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 319 320 #define MVNETA_RX_PKT_SIZE(mtu) \ 321 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 322 ETH_HLEN + ETH_FCS_LEN, \ 323 cache_line_size()) 324 325 #define IS_TSO_HEADER(txq, addr) \ 326 ((addr >= txq->tso_hdrs_phys) && \ 327 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 328 329 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 330 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 331 332 enum { 333 ETHTOOL_STAT_EEE_WAKEUP, 334 ETHTOOL_STAT_SKB_ALLOC_ERR, 335 ETHTOOL_STAT_REFILL_ERR, 336 ETHTOOL_MAX_STATS, 337 }; 338 339 struct mvneta_statistic { 340 unsigned short offset; 341 unsigned short type; 342 const char name[ETH_GSTRING_LEN]; 343 }; 344 345 #define T_REG_32 32 346 #define T_REG_64 64 347 #define T_SW 1 348 349 static const struct mvneta_statistic mvneta_statistics[] = { 350 { 0x3000, T_REG_64, "good_octets_received", }, 351 { 0x3010, T_REG_32, "good_frames_received", }, 352 { 0x3008, T_REG_32, "bad_octets_received", }, 353 { 0x3014, T_REG_32, "bad_frames_received", }, 354 { 0x3018, T_REG_32, "broadcast_frames_received", }, 355 { 0x301c, T_REG_32, "multicast_frames_received", }, 356 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 357 { 0x3058, T_REG_32, "good_fc_received", }, 358 { 0x305c, T_REG_32, "bad_fc_received", }, 359 { 0x3060, T_REG_32, "undersize_received", }, 360 { 0x3064, T_REG_32, "fragments_received", }, 361 { 0x3068, T_REG_32, "oversize_received", }, 362 { 0x306c, T_REG_32, "jabber_received", }, 363 { 0x3070, T_REG_32, "mac_receive_error", }, 364 { 0x3074, T_REG_32, "bad_crc_event", }, 365 { 0x3078, T_REG_32, "collision", }, 366 { 0x307c, T_REG_32, "late_collision", }, 367 { 0x2484, T_REG_32, "rx_discard", }, 368 { 0x2488, T_REG_32, "rx_overrun", }, 369 { 0x3020, T_REG_32, "frames_64_octets", }, 370 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 371 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 372 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 373 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 374 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 375 { 0x3038, T_REG_64, "good_octets_sent", }, 376 { 0x3040, T_REG_32, "good_frames_sent", }, 377 { 0x3044, T_REG_32, "excessive_collision", }, 378 { 0x3048, T_REG_32, "multicast_frames_sent", }, 379 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 380 { 0x3054, T_REG_32, "fc_sent", }, 381 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 382 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 383 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 384 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 385 }; 386 387 struct mvneta_pcpu_stats { 388 struct u64_stats_sync syncp; 389 u64 rx_packets; 390 u64 rx_bytes; 391 u64 tx_packets; 392 u64 tx_bytes; 393 }; 394 395 struct mvneta_pcpu_port { 396 /* Pointer to the shared port */ 397 struct mvneta_port *pp; 398 399 /* Pointer to the CPU-local NAPI struct */ 400 struct napi_struct napi; 401 402 /* Cause of the previous interrupt */ 403 u32 cause_rx_tx; 404 }; 405 406 struct mvneta_port { 407 u8 id; 408 struct mvneta_pcpu_port __percpu *ports; 409 struct mvneta_pcpu_stats __percpu *stats; 410 411 int pkt_size; 412 void __iomem *base; 413 struct mvneta_rx_queue *rxqs; 414 struct mvneta_tx_queue *txqs; 415 struct net_device *dev; 416 struct hlist_node node_online; 417 struct hlist_node node_dead; 418 int rxq_def; 419 /* Protect the access to the percpu interrupt registers, 420 * ensuring that the configuration remains coherent. 421 */ 422 spinlock_t lock; 423 bool is_stopped; 424 425 u32 cause_rx_tx; 426 struct napi_struct napi; 427 428 /* Core clock */ 429 struct clk *clk; 430 /* AXI clock */ 431 struct clk *clk_bus; 432 u8 mcast_count[256]; 433 u16 tx_ring_size; 434 u16 rx_ring_size; 435 436 phy_interface_t phy_interface; 437 struct device_node *dn; 438 unsigned int tx_csum_limit; 439 struct phylink *phylink; 440 struct phylink_config phylink_config; 441 struct phy *comphy; 442 443 struct mvneta_bm *bm_priv; 444 struct mvneta_bm_pool *pool_long; 445 struct mvneta_bm_pool *pool_short; 446 int bm_win_id; 447 448 bool eee_enabled; 449 bool eee_active; 450 bool tx_lpi_enabled; 451 452 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 453 454 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 455 456 /* Flags for special SoC configurations */ 457 bool neta_armada3700; 458 u16 rx_offset_correction; 459 const struct mbus_dram_target_info *dram_target_info; 460 }; 461 462 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 463 * layout of the transmit and reception DMA descriptors, and their 464 * layout is therefore defined by the hardware design 465 */ 466 467 #define MVNETA_TX_L3_OFF_SHIFT 0 468 #define MVNETA_TX_IP_HLEN_SHIFT 8 469 #define MVNETA_TX_L4_UDP BIT(16) 470 #define MVNETA_TX_L3_IP6 BIT(17) 471 #define MVNETA_TXD_IP_CSUM BIT(18) 472 #define MVNETA_TXD_Z_PAD BIT(19) 473 #define MVNETA_TXD_L_DESC BIT(20) 474 #define MVNETA_TXD_F_DESC BIT(21) 475 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 476 MVNETA_TXD_L_DESC | \ 477 MVNETA_TXD_F_DESC) 478 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 479 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 480 481 #define MVNETA_RXD_ERR_CRC 0x0 482 #define MVNETA_RXD_BM_POOL_SHIFT 13 483 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 484 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 485 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 486 #define MVNETA_RXD_ERR_LEN BIT(18) 487 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 488 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 489 #define MVNETA_RXD_L3_IP4 BIT(25) 490 #define MVNETA_RXD_LAST_DESC BIT(26) 491 #define MVNETA_RXD_FIRST_DESC BIT(27) 492 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 493 MVNETA_RXD_LAST_DESC) 494 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 495 496 #if defined(__LITTLE_ENDIAN) 497 struct mvneta_tx_desc { 498 u32 command; /* Options used by HW for packet transmitting.*/ 499 u16 reserved1; /* csum_l4 (for future use) */ 500 u16 data_size; /* Data size of transmitted packet in bytes */ 501 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 502 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 503 u32 reserved3[4]; /* Reserved - (for future use) */ 504 }; 505 506 struct mvneta_rx_desc { 507 u32 status; /* Info about received packet */ 508 u16 reserved1; /* pnc_info - (for future use, PnC) */ 509 u16 data_size; /* Size of received packet in bytes */ 510 511 u32 buf_phys_addr; /* Physical address of the buffer */ 512 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 513 514 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 515 u16 reserved3; /* prefetch_cmd, for future use */ 516 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 517 518 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 519 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 520 }; 521 #else 522 struct mvneta_tx_desc { 523 u16 data_size; /* Data size of transmitted packet in bytes */ 524 u16 reserved1; /* csum_l4 (for future use) */ 525 u32 command; /* Options used by HW for packet transmitting.*/ 526 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 527 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 528 u32 reserved3[4]; /* Reserved - (for future use) */ 529 }; 530 531 struct mvneta_rx_desc { 532 u16 data_size; /* Size of received packet in bytes */ 533 u16 reserved1; /* pnc_info - (for future use, PnC) */ 534 u32 status; /* Info about received packet */ 535 536 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 537 u32 buf_phys_addr; /* Physical address of the buffer */ 538 539 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 540 u16 reserved3; /* prefetch_cmd, for future use */ 541 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 542 543 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 544 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 545 }; 546 #endif 547 548 struct mvneta_tx_queue { 549 /* Number of this TX queue, in the range 0-7 */ 550 u8 id; 551 552 /* Number of TX DMA descriptors in the descriptor ring */ 553 int size; 554 555 /* Number of currently used TX DMA descriptor in the 556 * descriptor ring 557 */ 558 int count; 559 int pending; 560 int tx_stop_threshold; 561 int tx_wake_threshold; 562 563 /* Array of transmitted skb */ 564 struct sk_buff **tx_skb; 565 566 /* Index of last TX DMA descriptor that was inserted */ 567 int txq_put_index; 568 569 /* Index of the TX DMA descriptor to be cleaned up */ 570 int txq_get_index; 571 572 u32 done_pkts_coal; 573 574 /* Virtual address of the TX DMA descriptors array */ 575 struct mvneta_tx_desc *descs; 576 577 /* DMA address of the TX DMA descriptors array */ 578 dma_addr_t descs_phys; 579 580 /* Index of the last TX DMA descriptor */ 581 int last_desc; 582 583 /* Index of the next TX DMA descriptor to process */ 584 int next_desc_to_proc; 585 586 /* DMA buffers for TSO headers */ 587 char *tso_hdrs; 588 589 /* DMA address of TSO headers */ 590 dma_addr_t tso_hdrs_phys; 591 592 /* Affinity mask for CPUs*/ 593 cpumask_t affinity_mask; 594 }; 595 596 struct mvneta_rx_queue { 597 /* rx queue number, in the range 0-7 */ 598 u8 id; 599 600 /* num of rx descriptors in the rx descriptor ring */ 601 int size; 602 603 u32 pkts_coal; 604 u32 time_coal; 605 606 /* Virtual address of the RX buffer */ 607 void **buf_virt_addr; 608 609 /* Virtual address of the RX DMA descriptors array */ 610 struct mvneta_rx_desc *descs; 611 612 /* DMA address of the RX DMA descriptors array */ 613 dma_addr_t descs_phys; 614 615 /* Index of the last RX DMA descriptor */ 616 int last_desc; 617 618 /* Index of the next RX DMA descriptor to process */ 619 int next_desc_to_proc; 620 621 /* Index of first RX DMA descriptor to refill */ 622 int first_to_refill; 623 u32 refill_num; 624 625 /* pointer to uncomplete skb buffer */ 626 struct sk_buff *skb; 627 int left_size; 628 629 /* error counters */ 630 u32 skb_alloc_err; 631 u32 refill_err; 632 }; 633 634 static enum cpuhp_state online_hpstate; 635 /* The hardware supports eight (8) rx queues, but we are only allowing 636 * the first one to be used. Therefore, let's just allocate one queue. 637 */ 638 static int rxq_number = 8; 639 static int txq_number = 8; 640 641 static int rxq_def; 642 643 static int rx_copybreak __read_mostly = 256; 644 static int rx_header_size __read_mostly = 128; 645 646 /* HW BM need that each port be identify by a unique ID */ 647 static int global_port_id; 648 649 #define MVNETA_DRIVER_NAME "mvneta" 650 #define MVNETA_DRIVER_VERSION "1.0" 651 652 /* Utility/helper methods */ 653 654 /* Write helper method */ 655 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 656 { 657 writel(data, pp->base + offset); 658 } 659 660 /* Read helper method */ 661 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 662 { 663 return readl(pp->base + offset); 664 } 665 666 /* Increment txq get counter */ 667 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 668 { 669 txq->txq_get_index++; 670 if (txq->txq_get_index == txq->size) 671 txq->txq_get_index = 0; 672 } 673 674 /* Increment txq put counter */ 675 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 676 { 677 txq->txq_put_index++; 678 if (txq->txq_put_index == txq->size) 679 txq->txq_put_index = 0; 680 } 681 682 683 /* Clear all MIB counters */ 684 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 685 { 686 int i; 687 u32 dummy; 688 689 /* Perform dummy reads from MIB counters */ 690 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 691 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 692 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 693 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 694 } 695 696 /* Get System Network Statistics */ 697 static void 698 mvneta_get_stats64(struct net_device *dev, 699 struct rtnl_link_stats64 *stats) 700 { 701 struct mvneta_port *pp = netdev_priv(dev); 702 unsigned int start; 703 int cpu; 704 705 for_each_possible_cpu(cpu) { 706 struct mvneta_pcpu_stats *cpu_stats; 707 u64 rx_packets; 708 u64 rx_bytes; 709 u64 tx_packets; 710 u64 tx_bytes; 711 712 cpu_stats = per_cpu_ptr(pp->stats, cpu); 713 do { 714 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 715 rx_packets = cpu_stats->rx_packets; 716 rx_bytes = cpu_stats->rx_bytes; 717 tx_packets = cpu_stats->tx_packets; 718 tx_bytes = cpu_stats->tx_bytes; 719 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 720 721 stats->rx_packets += rx_packets; 722 stats->rx_bytes += rx_bytes; 723 stats->tx_packets += tx_packets; 724 stats->tx_bytes += tx_bytes; 725 } 726 727 stats->rx_errors = dev->stats.rx_errors; 728 stats->rx_dropped = dev->stats.rx_dropped; 729 730 stats->tx_dropped = dev->stats.tx_dropped; 731 } 732 733 /* Rx descriptors helper methods */ 734 735 /* Checks whether the RX descriptor having this status is both the first 736 * and the last descriptor for the RX packet. Each RX packet is currently 737 * received through a single RX descriptor, so not having each RX 738 * descriptor with its first and last bits set is an error 739 */ 740 static int mvneta_rxq_desc_is_first_last(u32 status) 741 { 742 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 743 MVNETA_RXD_FIRST_LAST_DESC; 744 } 745 746 /* Add number of descriptors ready to receive new packets */ 747 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 748 struct mvneta_rx_queue *rxq, 749 int ndescs) 750 { 751 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 752 * be added at once 753 */ 754 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 755 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 756 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 757 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 758 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 759 } 760 761 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 762 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 763 } 764 765 /* Get number of RX descriptors occupied by received packets */ 766 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 767 struct mvneta_rx_queue *rxq) 768 { 769 u32 val; 770 771 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 772 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 773 } 774 775 /* Update num of rx desc called upon return from rx path or 776 * from mvneta_rxq_drop_pkts(). 777 */ 778 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 779 struct mvneta_rx_queue *rxq, 780 int rx_done, int rx_filled) 781 { 782 u32 val; 783 784 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 785 val = rx_done | 786 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 787 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 788 return; 789 } 790 791 /* Only 255 descriptors can be added at once */ 792 while ((rx_done > 0) || (rx_filled > 0)) { 793 if (rx_done <= 0xff) { 794 val = rx_done; 795 rx_done = 0; 796 } else { 797 val = 0xff; 798 rx_done -= 0xff; 799 } 800 if (rx_filled <= 0xff) { 801 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 802 rx_filled = 0; 803 } else { 804 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 805 rx_filled -= 0xff; 806 } 807 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 808 } 809 } 810 811 /* Get pointer to next RX descriptor to be processed by SW */ 812 static struct mvneta_rx_desc * 813 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 814 { 815 int rx_desc = rxq->next_desc_to_proc; 816 817 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 818 prefetch(rxq->descs + rxq->next_desc_to_proc); 819 return rxq->descs + rx_desc; 820 } 821 822 /* Change maximum receive size of the port. */ 823 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 824 { 825 u32 val; 826 827 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 828 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 829 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 830 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 831 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 832 } 833 834 835 /* Set rx queue offset */ 836 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 837 struct mvneta_rx_queue *rxq, 838 int offset) 839 { 840 u32 val; 841 842 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 843 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 844 845 /* Offset is in */ 846 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 847 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 848 } 849 850 851 /* Tx descriptors helper methods */ 852 853 /* Update HW with number of TX descriptors to be sent */ 854 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 855 struct mvneta_tx_queue *txq, 856 int pend_desc) 857 { 858 u32 val; 859 860 pend_desc += txq->pending; 861 862 /* Only 255 Tx descriptors can be added at once */ 863 do { 864 val = min(pend_desc, 255); 865 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 866 pend_desc -= val; 867 } while (pend_desc > 0); 868 txq->pending = 0; 869 } 870 871 /* Get pointer to next TX descriptor to be processed (send) by HW */ 872 static struct mvneta_tx_desc * 873 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 874 { 875 int tx_desc = txq->next_desc_to_proc; 876 877 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 878 return txq->descs + tx_desc; 879 } 880 881 /* Release the last allocated TX descriptor. Useful to handle DMA 882 * mapping failures in the TX path. 883 */ 884 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 885 { 886 if (txq->next_desc_to_proc == 0) 887 txq->next_desc_to_proc = txq->last_desc - 1; 888 else 889 txq->next_desc_to_proc--; 890 } 891 892 /* Set rxq buf size */ 893 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 894 struct mvneta_rx_queue *rxq, 895 int buf_size) 896 { 897 u32 val; 898 899 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 900 901 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 902 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 903 904 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 905 } 906 907 /* Disable buffer management (BM) */ 908 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 909 struct mvneta_rx_queue *rxq) 910 { 911 u32 val; 912 913 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 914 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 915 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 916 } 917 918 /* Enable buffer management (BM) */ 919 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 920 struct mvneta_rx_queue *rxq) 921 { 922 u32 val; 923 924 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 925 val |= MVNETA_RXQ_HW_BUF_ALLOC; 926 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 927 } 928 929 /* Notify HW about port's assignment of pool for bigger packets */ 930 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 931 struct mvneta_rx_queue *rxq) 932 { 933 u32 val; 934 935 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 936 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 937 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 938 939 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 940 } 941 942 /* Notify HW about port's assignment of pool for smaller packets */ 943 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 944 struct mvneta_rx_queue *rxq) 945 { 946 u32 val; 947 948 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 949 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 950 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 951 952 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 953 } 954 955 /* Set port's receive buffer size for assigned BM pool */ 956 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 957 int buf_size, 958 u8 pool_id) 959 { 960 u32 val; 961 962 if (!IS_ALIGNED(buf_size, 8)) { 963 dev_warn(pp->dev->dev.parent, 964 "illegal buf_size value %d, round to %d\n", 965 buf_size, ALIGN(buf_size, 8)); 966 buf_size = ALIGN(buf_size, 8); 967 } 968 969 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 970 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 971 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 972 } 973 974 /* Configure MBUS window in order to enable access BM internal SRAM */ 975 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 976 u8 target, u8 attr) 977 { 978 u32 win_enable, win_protect; 979 int i; 980 981 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 982 983 if (pp->bm_win_id < 0) { 984 /* Find first not occupied window */ 985 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 986 if (win_enable & (1 << i)) { 987 pp->bm_win_id = i; 988 break; 989 } 990 } 991 if (i == MVNETA_MAX_DECODE_WIN) 992 return -ENOMEM; 993 } else { 994 i = pp->bm_win_id; 995 } 996 997 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 998 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 999 1000 if (i < 4) 1001 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1002 1003 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1004 (attr << 8) | target); 1005 1006 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1007 1008 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1009 win_protect |= 3 << (2 * i); 1010 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1011 1012 win_enable &= ~(1 << i); 1013 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1014 1015 return 0; 1016 } 1017 1018 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1019 { 1020 u32 wsize; 1021 u8 target, attr; 1022 int err; 1023 1024 /* Get BM window information */ 1025 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1026 &target, &attr); 1027 if (err < 0) 1028 return err; 1029 1030 pp->bm_win_id = -1; 1031 1032 /* Open NETA -> BM window */ 1033 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1034 target, attr); 1035 if (err < 0) { 1036 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1037 return err; 1038 } 1039 return 0; 1040 } 1041 1042 /* Assign and initialize pools for port. In case of fail 1043 * buffer manager will remain disabled for current port. 1044 */ 1045 static int mvneta_bm_port_init(struct platform_device *pdev, 1046 struct mvneta_port *pp) 1047 { 1048 struct device_node *dn = pdev->dev.of_node; 1049 u32 long_pool_id, short_pool_id; 1050 1051 if (!pp->neta_armada3700) { 1052 int ret; 1053 1054 ret = mvneta_bm_port_mbus_init(pp); 1055 if (ret) 1056 return ret; 1057 } 1058 1059 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1060 netdev_info(pp->dev, "missing long pool id\n"); 1061 return -EINVAL; 1062 } 1063 1064 /* Create port's long pool depending on mtu */ 1065 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1066 MVNETA_BM_LONG, pp->id, 1067 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1068 if (!pp->pool_long) { 1069 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1070 return -ENOMEM; 1071 } 1072 1073 pp->pool_long->port_map |= 1 << pp->id; 1074 1075 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1076 pp->pool_long->id); 1077 1078 /* If short pool id is not defined, assume using single pool */ 1079 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1080 short_pool_id = long_pool_id; 1081 1082 /* Create port's short pool */ 1083 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1084 MVNETA_BM_SHORT, pp->id, 1085 MVNETA_BM_SHORT_PKT_SIZE); 1086 if (!pp->pool_short) { 1087 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1088 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1089 return -ENOMEM; 1090 } 1091 1092 if (short_pool_id != long_pool_id) { 1093 pp->pool_short->port_map |= 1 << pp->id; 1094 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1095 pp->pool_short->id); 1096 } 1097 1098 return 0; 1099 } 1100 1101 /* Update settings of a pool for bigger packets */ 1102 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1103 { 1104 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1105 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1106 int num; 1107 1108 /* Release all buffers from long pool */ 1109 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1110 if (hwbm_pool->buf_num) { 1111 WARN(1, "cannot free all buffers in pool %d\n", 1112 bm_pool->id); 1113 goto bm_mtu_err; 1114 } 1115 1116 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1117 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1118 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1119 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1120 1121 /* Fill entire long pool */ 1122 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1123 if (num != hwbm_pool->size) { 1124 WARN(1, "pool %d: %d of %d allocated\n", 1125 bm_pool->id, num, hwbm_pool->size); 1126 goto bm_mtu_err; 1127 } 1128 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1129 1130 return; 1131 1132 bm_mtu_err: 1133 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1134 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1135 1136 pp->bm_priv = NULL; 1137 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1138 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1139 } 1140 1141 /* Start the Ethernet port RX and TX activity */ 1142 static void mvneta_port_up(struct mvneta_port *pp) 1143 { 1144 int queue; 1145 u32 q_map; 1146 1147 /* Enable all initialized TXs. */ 1148 q_map = 0; 1149 for (queue = 0; queue < txq_number; queue++) { 1150 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1151 if (txq->descs) 1152 q_map |= (1 << queue); 1153 } 1154 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1155 1156 q_map = 0; 1157 /* Enable all initialized RXQs. */ 1158 for (queue = 0; queue < rxq_number; queue++) { 1159 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1160 1161 if (rxq->descs) 1162 q_map |= (1 << queue); 1163 } 1164 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1165 } 1166 1167 /* Stop the Ethernet port activity */ 1168 static void mvneta_port_down(struct mvneta_port *pp) 1169 { 1170 u32 val; 1171 int count; 1172 1173 /* Stop Rx port activity. Check port Rx activity. */ 1174 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1175 1176 /* Issue stop command for active channels only */ 1177 if (val != 0) 1178 mvreg_write(pp, MVNETA_RXQ_CMD, 1179 val << MVNETA_RXQ_DISABLE_SHIFT); 1180 1181 /* Wait for all Rx activity to terminate. */ 1182 count = 0; 1183 do { 1184 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1185 netdev_warn(pp->dev, 1186 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1187 val); 1188 break; 1189 } 1190 mdelay(1); 1191 1192 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1193 } while (val & MVNETA_RXQ_ENABLE_MASK); 1194 1195 /* Stop Tx port activity. Check port Tx activity. Issue stop 1196 * command for active channels only 1197 */ 1198 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1199 1200 if (val != 0) 1201 mvreg_write(pp, MVNETA_TXQ_CMD, 1202 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1203 1204 /* Wait for all Tx activity to terminate. */ 1205 count = 0; 1206 do { 1207 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1208 netdev_warn(pp->dev, 1209 "TIMEOUT for TX stopped status=0x%08x\n", 1210 val); 1211 break; 1212 } 1213 mdelay(1); 1214 1215 /* Check TX Command reg that all Txqs are stopped */ 1216 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1217 1218 } while (val & MVNETA_TXQ_ENABLE_MASK); 1219 1220 /* Double check to verify that TX FIFO is empty */ 1221 count = 0; 1222 do { 1223 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1224 netdev_warn(pp->dev, 1225 "TX FIFO empty timeout status=0x%08x\n", 1226 val); 1227 break; 1228 } 1229 mdelay(1); 1230 1231 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1232 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1233 (val & MVNETA_TX_IN_PRGRS)); 1234 1235 udelay(200); 1236 } 1237 1238 /* Enable the port by setting the port enable bit of the MAC control register */ 1239 static void mvneta_port_enable(struct mvneta_port *pp) 1240 { 1241 u32 val; 1242 1243 /* Enable port */ 1244 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1245 val |= MVNETA_GMAC0_PORT_ENABLE; 1246 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1247 } 1248 1249 /* Disable the port and wait for about 200 usec before retuning */ 1250 static void mvneta_port_disable(struct mvneta_port *pp) 1251 { 1252 u32 val; 1253 1254 /* Reset the Enable bit in the Serial Control Register */ 1255 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1256 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1257 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1258 1259 udelay(200); 1260 } 1261 1262 /* Multicast tables methods */ 1263 1264 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1265 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1266 { 1267 int offset; 1268 u32 val; 1269 1270 if (queue == -1) { 1271 val = 0; 1272 } else { 1273 val = 0x1 | (queue << 1); 1274 val |= (val << 24) | (val << 16) | (val << 8); 1275 } 1276 1277 for (offset = 0; offset <= 0xc; offset += 4) 1278 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1279 } 1280 1281 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1282 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1283 { 1284 int offset; 1285 u32 val; 1286 1287 if (queue == -1) { 1288 val = 0; 1289 } else { 1290 val = 0x1 | (queue << 1); 1291 val |= (val << 24) | (val << 16) | (val << 8); 1292 } 1293 1294 for (offset = 0; offset <= 0xfc; offset += 4) 1295 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1296 1297 } 1298 1299 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1300 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1301 { 1302 int offset; 1303 u32 val; 1304 1305 if (queue == -1) { 1306 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1307 val = 0; 1308 } else { 1309 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1310 val = 0x1 | (queue << 1); 1311 val |= (val << 24) | (val << 16) | (val << 8); 1312 } 1313 1314 for (offset = 0; offset <= 0xfc; offset += 4) 1315 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1316 } 1317 1318 static void mvneta_percpu_unmask_interrupt(void *arg) 1319 { 1320 struct mvneta_port *pp = arg; 1321 1322 /* All the queue are unmasked, but actually only the ones 1323 * mapped to this CPU will be unmasked 1324 */ 1325 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1326 MVNETA_RX_INTR_MASK_ALL | 1327 MVNETA_TX_INTR_MASK_ALL | 1328 MVNETA_MISCINTR_INTR_MASK); 1329 } 1330 1331 static void mvneta_percpu_mask_interrupt(void *arg) 1332 { 1333 struct mvneta_port *pp = arg; 1334 1335 /* All the queue are masked, but actually only the ones 1336 * mapped to this CPU will be masked 1337 */ 1338 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1339 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1340 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1341 } 1342 1343 static void mvneta_percpu_clear_intr_cause(void *arg) 1344 { 1345 struct mvneta_port *pp = arg; 1346 1347 /* All the queue are cleared, but actually only the ones 1348 * mapped to this CPU will be cleared 1349 */ 1350 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1351 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1352 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1353 } 1354 1355 /* This method sets defaults to the NETA port: 1356 * Clears interrupt Cause and Mask registers. 1357 * Clears all MAC tables. 1358 * Sets defaults to all registers. 1359 * Resets RX and TX descriptor rings. 1360 * Resets PHY. 1361 * This method can be called after mvneta_port_down() to return the port 1362 * settings to defaults. 1363 */ 1364 static void mvneta_defaults_set(struct mvneta_port *pp) 1365 { 1366 int cpu; 1367 int queue; 1368 u32 val; 1369 int max_cpu = num_present_cpus(); 1370 1371 /* Clear all Cause registers */ 1372 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1373 1374 /* Mask all interrupts */ 1375 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1376 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1377 1378 /* Enable MBUS Retry bit16 */ 1379 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1380 1381 /* Set CPU queue access map. CPUs are assigned to the RX and 1382 * TX queues modulo their number. If there is only one TX 1383 * queue then it is assigned to the CPU associated to the 1384 * default RX queue. 1385 */ 1386 for_each_present_cpu(cpu) { 1387 int rxq_map = 0, txq_map = 0; 1388 int rxq, txq; 1389 if (!pp->neta_armada3700) { 1390 for (rxq = 0; rxq < rxq_number; rxq++) 1391 if ((rxq % max_cpu) == cpu) 1392 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1393 1394 for (txq = 0; txq < txq_number; txq++) 1395 if ((txq % max_cpu) == cpu) 1396 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1397 1398 /* With only one TX queue we configure a special case 1399 * which will allow to get all the irq on a single 1400 * CPU 1401 */ 1402 if (txq_number == 1) 1403 txq_map = (cpu == pp->rxq_def) ? 1404 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1405 1406 } else { 1407 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1408 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1409 } 1410 1411 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1412 } 1413 1414 /* Reset RX and TX DMAs */ 1415 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1416 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1417 1418 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1419 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1420 for (queue = 0; queue < txq_number; queue++) { 1421 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1422 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1423 } 1424 1425 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1426 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1427 1428 /* Set Port Acceleration Mode */ 1429 if (pp->bm_priv) 1430 /* HW buffer management + legacy parser */ 1431 val = MVNETA_ACC_MODE_EXT2; 1432 else 1433 /* SW buffer management + legacy parser */ 1434 val = MVNETA_ACC_MODE_EXT1; 1435 mvreg_write(pp, MVNETA_ACC_MODE, val); 1436 1437 if (pp->bm_priv) 1438 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1439 1440 /* Update val of portCfg register accordingly with all RxQueue types */ 1441 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1442 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1443 1444 val = 0; 1445 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1446 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1447 1448 /* Build PORT_SDMA_CONFIG_REG */ 1449 val = 0; 1450 1451 /* Default burst size */ 1452 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1453 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1454 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1455 1456 #if defined(__BIG_ENDIAN) 1457 val |= MVNETA_DESC_SWAP; 1458 #endif 1459 1460 /* Assign port SDMA configuration */ 1461 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1462 1463 /* Disable PHY polling in hardware, since we're using the 1464 * kernel phylib to do this. 1465 */ 1466 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1467 val &= ~MVNETA_PHY_POLLING_ENABLE; 1468 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1469 1470 mvneta_set_ucast_table(pp, -1); 1471 mvneta_set_special_mcast_table(pp, -1); 1472 mvneta_set_other_mcast_table(pp, -1); 1473 1474 /* Set port interrupt enable register - default enable all */ 1475 mvreg_write(pp, MVNETA_INTR_ENABLE, 1476 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1477 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1478 1479 mvneta_mib_counters_clear(pp); 1480 } 1481 1482 /* Set max sizes for tx queues */ 1483 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1484 1485 { 1486 u32 val, size, mtu; 1487 int queue; 1488 1489 mtu = max_tx_size * 8; 1490 if (mtu > MVNETA_TX_MTU_MAX) 1491 mtu = MVNETA_TX_MTU_MAX; 1492 1493 /* Set MTU */ 1494 val = mvreg_read(pp, MVNETA_TX_MTU); 1495 val &= ~MVNETA_TX_MTU_MAX; 1496 val |= mtu; 1497 mvreg_write(pp, MVNETA_TX_MTU, val); 1498 1499 /* TX token size and all TXQs token size must be larger that MTU */ 1500 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1501 1502 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1503 if (size < mtu) { 1504 size = mtu; 1505 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1506 val |= size; 1507 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1508 } 1509 for (queue = 0; queue < txq_number; queue++) { 1510 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1511 1512 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1513 if (size < mtu) { 1514 size = mtu; 1515 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1516 val |= size; 1517 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1518 } 1519 } 1520 } 1521 1522 /* Set unicast address */ 1523 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1524 int queue) 1525 { 1526 unsigned int unicast_reg; 1527 unsigned int tbl_offset; 1528 unsigned int reg_offset; 1529 1530 /* Locate the Unicast table entry */ 1531 last_nibble = (0xf & last_nibble); 1532 1533 /* offset from unicast tbl base */ 1534 tbl_offset = (last_nibble / 4) * 4; 1535 1536 /* offset within the above reg */ 1537 reg_offset = last_nibble % 4; 1538 1539 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1540 1541 if (queue == -1) { 1542 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1543 unicast_reg &= ~(0xff << (8 * reg_offset)); 1544 } else { 1545 unicast_reg &= ~(0xff << (8 * reg_offset)); 1546 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1547 } 1548 1549 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1550 } 1551 1552 /* Set mac address */ 1553 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1554 int queue) 1555 { 1556 unsigned int mac_h; 1557 unsigned int mac_l; 1558 1559 if (queue != -1) { 1560 mac_l = (addr[4] << 8) | (addr[5]); 1561 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1562 (addr[2] << 8) | (addr[3] << 0); 1563 1564 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1565 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1566 } 1567 1568 /* Accept frames of this address */ 1569 mvneta_set_ucast_addr(pp, addr[5], queue); 1570 } 1571 1572 /* Set the number of packets that will be received before RX interrupt 1573 * will be generated by HW. 1574 */ 1575 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1576 struct mvneta_rx_queue *rxq, u32 value) 1577 { 1578 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1579 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1580 } 1581 1582 /* Set the time delay in usec before RX interrupt will be generated by 1583 * HW. 1584 */ 1585 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1586 struct mvneta_rx_queue *rxq, u32 value) 1587 { 1588 u32 val; 1589 unsigned long clk_rate; 1590 1591 clk_rate = clk_get_rate(pp->clk); 1592 val = (clk_rate / 1000000) * value; 1593 1594 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1595 } 1596 1597 /* Set threshold for TX_DONE pkts coalescing */ 1598 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1599 struct mvneta_tx_queue *txq, u32 value) 1600 { 1601 u32 val; 1602 1603 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1604 1605 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1606 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1607 1608 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1609 } 1610 1611 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1612 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1613 u32 phys_addr, void *virt_addr, 1614 struct mvneta_rx_queue *rxq) 1615 { 1616 int i; 1617 1618 rx_desc->buf_phys_addr = phys_addr; 1619 i = rx_desc - rxq->descs; 1620 rxq->buf_virt_addr[i] = virt_addr; 1621 } 1622 1623 /* Decrement sent descriptors counter */ 1624 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1625 struct mvneta_tx_queue *txq, 1626 int sent_desc) 1627 { 1628 u32 val; 1629 1630 /* Only 255 TX descriptors can be updated at once */ 1631 while (sent_desc > 0xff) { 1632 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1633 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1634 sent_desc = sent_desc - 0xff; 1635 } 1636 1637 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1638 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1639 } 1640 1641 /* Get number of TX descriptors already sent by HW */ 1642 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1643 struct mvneta_tx_queue *txq) 1644 { 1645 u32 val; 1646 int sent_desc; 1647 1648 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1649 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1650 MVNETA_TXQ_SENT_DESC_SHIFT; 1651 1652 return sent_desc; 1653 } 1654 1655 /* Get number of sent descriptors and decrement counter. 1656 * The number of sent descriptors is returned. 1657 */ 1658 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1659 struct mvneta_tx_queue *txq) 1660 { 1661 int sent_desc; 1662 1663 /* Get number of sent descriptors */ 1664 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1665 1666 /* Decrement sent descriptors counter */ 1667 if (sent_desc) 1668 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1669 1670 return sent_desc; 1671 } 1672 1673 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1674 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1675 int ip_hdr_len, int l4_proto) 1676 { 1677 u32 command; 1678 1679 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1680 * G_L4_chk, L4_type; required only for checksum 1681 * calculation 1682 */ 1683 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1684 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1685 1686 if (l3_proto == htons(ETH_P_IP)) 1687 command |= MVNETA_TXD_IP_CSUM; 1688 else 1689 command |= MVNETA_TX_L3_IP6; 1690 1691 if (l4_proto == IPPROTO_TCP) 1692 command |= MVNETA_TX_L4_CSUM_FULL; 1693 else if (l4_proto == IPPROTO_UDP) 1694 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1695 else 1696 command |= MVNETA_TX_L4_CSUM_NOT; 1697 1698 return command; 1699 } 1700 1701 1702 /* Display more error info */ 1703 static void mvneta_rx_error(struct mvneta_port *pp, 1704 struct mvneta_rx_desc *rx_desc) 1705 { 1706 u32 status = rx_desc->status; 1707 1708 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1709 case MVNETA_RXD_ERR_CRC: 1710 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1711 status, rx_desc->data_size); 1712 break; 1713 case MVNETA_RXD_ERR_OVERRUN: 1714 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1715 status, rx_desc->data_size); 1716 break; 1717 case MVNETA_RXD_ERR_LEN: 1718 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1719 status, rx_desc->data_size); 1720 break; 1721 case MVNETA_RXD_ERR_RESOURCE: 1722 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1723 status, rx_desc->data_size); 1724 break; 1725 } 1726 } 1727 1728 /* Handle RX checksum offload based on the descriptor's status */ 1729 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1730 struct sk_buff *skb) 1731 { 1732 if ((pp->dev->features & NETIF_F_RXCSUM) && 1733 (status & MVNETA_RXD_L3_IP4) && 1734 (status & MVNETA_RXD_L4_CSUM_OK)) { 1735 skb->csum = 0; 1736 skb->ip_summed = CHECKSUM_UNNECESSARY; 1737 return; 1738 } 1739 1740 skb->ip_summed = CHECKSUM_NONE; 1741 } 1742 1743 /* Return tx queue pointer (find last set bit) according to <cause> returned 1744 * form tx_done reg. <cause> must not be null. The return value is always a 1745 * valid queue for matching the first one found in <cause>. 1746 */ 1747 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1748 u32 cause) 1749 { 1750 int queue = fls(cause) - 1; 1751 1752 return &pp->txqs[queue]; 1753 } 1754 1755 /* Free tx queue skbuffs */ 1756 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1757 struct mvneta_tx_queue *txq, int num, 1758 struct netdev_queue *nq) 1759 { 1760 unsigned int bytes_compl = 0, pkts_compl = 0; 1761 int i; 1762 1763 for (i = 0; i < num; i++) { 1764 struct mvneta_tx_desc *tx_desc = txq->descs + 1765 txq->txq_get_index; 1766 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1767 1768 if (skb) { 1769 bytes_compl += skb->len; 1770 pkts_compl++; 1771 } 1772 1773 mvneta_txq_inc_get(txq); 1774 1775 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1776 dma_unmap_single(pp->dev->dev.parent, 1777 tx_desc->buf_phys_addr, 1778 tx_desc->data_size, DMA_TO_DEVICE); 1779 if (!skb) 1780 continue; 1781 dev_kfree_skb_any(skb); 1782 } 1783 1784 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1785 } 1786 1787 /* Handle end of transmission */ 1788 static void mvneta_txq_done(struct mvneta_port *pp, 1789 struct mvneta_tx_queue *txq) 1790 { 1791 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1792 int tx_done; 1793 1794 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1795 if (!tx_done) 1796 return; 1797 1798 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1799 1800 txq->count -= tx_done; 1801 1802 if (netif_tx_queue_stopped(nq)) { 1803 if (txq->count <= txq->tx_wake_threshold) 1804 netif_tx_wake_queue(nq); 1805 } 1806 } 1807 1808 /* Refill processing for SW buffer management */ 1809 /* Allocate page per descriptor */ 1810 static int mvneta_rx_refill(struct mvneta_port *pp, 1811 struct mvneta_rx_desc *rx_desc, 1812 struct mvneta_rx_queue *rxq, 1813 gfp_t gfp_mask) 1814 { 1815 dma_addr_t phys_addr; 1816 struct page *page; 1817 1818 page = __dev_alloc_page(gfp_mask); 1819 if (!page) 1820 return -ENOMEM; 1821 1822 /* map page for use */ 1823 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE, 1824 DMA_FROM_DEVICE); 1825 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1826 __free_page(page); 1827 return -ENOMEM; 1828 } 1829 1830 phys_addr += pp->rx_offset_correction; 1831 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1832 return 0; 1833 } 1834 1835 /* Handle tx checksum */ 1836 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1837 { 1838 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1839 int ip_hdr_len = 0; 1840 __be16 l3_proto = vlan_get_protocol(skb); 1841 u8 l4_proto; 1842 1843 if (l3_proto == htons(ETH_P_IP)) { 1844 struct iphdr *ip4h = ip_hdr(skb); 1845 1846 /* Calculate IPv4 checksum and L4 checksum */ 1847 ip_hdr_len = ip4h->ihl; 1848 l4_proto = ip4h->protocol; 1849 } else if (l3_proto == htons(ETH_P_IPV6)) { 1850 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1851 1852 /* Read l4_protocol from one of IPv6 extra headers */ 1853 if (skb_network_header_len(skb) > 0) 1854 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1855 l4_proto = ip6h->nexthdr; 1856 } else 1857 return MVNETA_TX_L4_CSUM_NOT; 1858 1859 return mvneta_txq_desc_csum(skb_network_offset(skb), 1860 l3_proto, ip_hdr_len, l4_proto); 1861 } 1862 1863 return MVNETA_TX_L4_CSUM_NOT; 1864 } 1865 1866 /* Drop packets received by the RXQ and free buffers */ 1867 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1868 struct mvneta_rx_queue *rxq) 1869 { 1870 int rx_done, i; 1871 1872 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1873 if (rx_done) 1874 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1875 1876 if (pp->bm_priv) { 1877 for (i = 0; i < rx_done; i++) { 1878 struct mvneta_rx_desc *rx_desc = 1879 mvneta_rxq_next_desc_get(rxq); 1880 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1881 struct mvneta_bm_pool *bm_pool; 1882 1883 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1884 /* Return dropped buffer to the pool */ 1885 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1886 rx_desc->buf_phys_addr); 1887 } 1888 return; 1889 } 1890 1891 for (i = 0; i < rxq->size; i++) { 1892 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1893 void *data = rxq->buf_virt_addr[i]; 1894 if (!data || !(rx_desc->buf_phys_addr)) 1895 continue; 1896 1897 dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1898 PAGE_SIZE, DMA_FROM_DEVICE); 1899 __free_page(data); 1900 } 1901 } 1902 1903 static inline 1904 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1905 { 1906 struct mvneta_rx_desc *rx_desc; 1907 int curr_desc = rxq->first_to_refill; 1908 int i; 1909 1910 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1911 rx_desc = rxq->descs + curr_desc; 1912 if (!(rx_desc->buf_phys_addr)) { 1913 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 1914 pr_err("Can't refill queue %d. Done %d from %d\n", 1915 rxq->id, i, rxq->refill_num); 1916 rxq->refill_err++; 1917 break; 1918 } 1919 } 1920 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 1921 } 1922 rxq->refill_num -= i; 1923 rxq->first_to_refill = curr_desc; 1924 1925 return i; 1926 } 1927 1928 /* Main rx processing when using software buffer management */ 1929 static int mvneta_rx_swbm(struct napi_struct *napi, 1930 struct mvneta_port *pp, int budget, 1931 struct mvneta_rx_queue *rxq) 1932 { 1933 struct net_device *dev = pp->dev; 1934 int rx_todo, rx_proc; 1935 int refill = 0; 1936 u32 rcvd_pkts = 0; 1937 u32 rcvd_bytes = 0; 1938 1939 /* Get number of received packets */ 1940 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 1941 rx_proc = 0; 1942 1943 /* Fairness NAPI loop */ 1944 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) { 1945 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1946 unsigned char *data; 1947 struct page *page; 1948 dma_addr_t phys_addr; 1949 u32 rx_status, index; 1950 int rx_bytes, skb_size, copy_size; 1951 int frag_num, frag_size, frag_offset; 1952 1953 index = rx_desc - rxq->descs; 1954 page = (struct page *)rxq->buf_virt_addr[index]; 1955 data = page_address(page); 1956 /* Prefetch header */ 1957 prefetch(data); 1958 1959 phys_addr = rx_desc->buf_phys_addr; 1960 rx_status = rx_desc->status; 1961 rx_proc++; 1962 rxq->refill_num++; 1963 1964 if (rx_status & MVNETA_RXD_FIRST_DESC) { 1965 /* Check errors only for FIRST descriptor */ 1966 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 1967 mvneta_rx_error(pp, rx_desc); 1968 dev->stats.rx_errors++; 1969 /* leave the descriptor untouched */ 1970 continue; 1971 } 1972 rx_bytes = rx_desc->data_size - 1973 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1974 1975 /* Allocate small skb for each new packet */ 1976 skb_size = max(rx_copybreak, rx_header_size); 1977 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size); 1978 if (unlikely(!rxq->skb)) { 1979 netdev_err(dev, 1980 "Can't allocate skb on queue %d\n", 1981 rxq->id); 1982 dev->stats.rx_dropped++; 1983 rxq->skb_alloc_err++; 1984 continue; 1985 } 1986 copy_size = min(skb_size, rx_bytes); 1987 1988 /* Copy data from buffer to SKB, skip Marvell header */ 1989 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE, 1990 copy_size); 1991 skb_put(rxq->skb, copy_size); 1992 rxq->left_size = rx_bytes - copy_size; 1993 1994 mvneta_rx_csum(pp, rx_status, rxq->skb); 1995 if (rxq->left_size == 0) { 1996 int size = copy_size + MVNETA_MH_SIZE; 1997 1998 dma_sync_single_range_for_cpu(dev->dev.parent, 1999 phys_addr, 0, 2000 size, 2001 DMA_FROM_DEVICE); 2002 2003 /* leave the descriptor and buffer untouched */ 2004 } else { 2005 /* refill descriptor with new buffer later */ 2006 rx_desc->buf_phys_addr = 0; 2007 2008 frag_num = 0; 2009 frag_offset = copy_size + MVNETA_MH_SIZE; 2010 frag_size = min(rxq->left_size, 2011 (int)(PAGE_SIZE - frag_offset)); 2012 skb_add_rx_frag(rxq->skb, frag_num, page, 2013 frag_offset, frag_size, 2014 PAGE_SIZE); 2015 dma_unmap_page(dev->dev.parent, phys_addr, 2016 PAGE_SIZE, DMA_FROM_DEVICE); 2017 rxq->left_size -= frag_size; 2018 } 2019 } else { 2020 /* Middle or Last descriptor */ 2021 if (unlikely(!rxq->skb)) { 2022 pr_debug("no skb for rx_status 0x%x\n", 2023 rx_status); 2024 continue; 2025 } 2026 if (!rxq->left_size) { 2027 /* last descriptor has only FCS */ 2028 /* and can be discarded */ 2029 dma_sync_single_range_for_cpu(dev->dev.parent, 2030 phys_addr, 0, 2031 ETH_FCS_LEN, 2032 DMA_FROM_DEVICE); 2033 /* leave the descriptor and buffer untouched */ 2034 } else { 2035 /* refill descriptor with new buffer later */ 2036 rx_desc->buf_phys_addr = 0; 2037 2038 frag_num = skb_shinfo(rxq->skb)->nr_frags; 2039 frag_offset = 0; 2040 frag_size = min(rxq->left_size, 2041 (int)(PAGE_SIZE - frag_offset)); 2042 skb_add_rx_frag(rxq->skb, frag_num, page, 2043 frag_offset, frag_size, 2044 PAGE_SIZE); 2045 2046 dma_unmap_page(dev->dev.parent, phys_addr, 2047 PAGE_SIZE, DMA_FROM_DEVICE); 2048 2049 rxq->left_size -= frag_size; 2050 } 2051 } /* Middle or Last descriptor */ 2052 2053 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2054 /* no last descriptor this time */ 2055 continue; 2056 2057 if (rxq->left_size) { 2058 pr_err("get last desc, but left_size (%d) != 0\n", 2059 rxq->left_size); 2060 dev_kfree_skb_any(rxq->skb); 2061 rxq->left_size = 0; 2062 rxq->skb = NULL; 2063 continue; 2064 } 2065 rcvd_pkts++; 2066 rcvd_bytes += rxq->skb->len; 2067 2068 /* Linux processing */ 2069 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2070 2071 napi_gro_receive(napi, rxq->skb); 2072 2073 /* clean uncomplete skb pointer in queue */ 2074 rxq->skb = NULL; 2075 rxq->left_size = 0; 2076 } 2077 2078 if (rcvd_pkts) { 2079 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2080 2081 u64_stats_update_begin(&stats->syncp); 2082 stats->rx_packets += rcvd_pkts; 2083 stats->rx_bytes += rcvd_bytes; 2084 u64_stats_update_end(&stats->syncp); 2085 } 2086 2087 /* return some buffers to hardware queue, one at a time is too slow */ 2088 refill = mvneta_rx_refill_queue(pp, rxq); 2089 2090 /* Update rxq management counters */ 2091 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2092 2093 return rcvd_pkts; 2094 } 2095 2096 /* Main rx processing when using hardware buffer management */ 2097 static int mvneta_rx_hwbm(struct napi_struct *napi, 2098 struct mvneta_port *pp, int rx_todo, 2099 struct mvneta_rx_queue *rxq) 2100 { 2101 struct net_device *dev = pp->dev; 2102 int rx_done; 2103 u32 rcvd_pkts = 0; 2104 u32 rcvd_bytes = 0; 2105 2106 /* Get number of received packets */ 2107 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2108 2109 if (rx_todo > rx_done) 2110 rx_todo = rx_done; 2111 2112 rx_done = 0; 2113 2114 /* Fairness NAPI loop */ 2115 while (rx_done < rx_todo) { 2116 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2117 struct mvneta_bm_pool *bm_pool = NULL; 2118 struct sk_buff *skb; 2119 unsigned char *data; 2120 dma_addr_t phys_addr; 2121 u32 rx_status, frag_size; 2122 int rx_bytes, err; 2123 u8 pool_id; 2124 2125 rx_done++; 2126 rx_status = rx_desc->status; 2127 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2128 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2129 phys_addr = rx_desc->buf_phys_addr; 2130 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2131 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2132 2133 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2134 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2135 err_drop_frame_ret_pool: 2136 /* Return the buffer to the pool */ 2137 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2138 rx_desc->buf_phys_addr); 2139 err_drop_frame: 2140 dev->stats.rx_errors++; 2141 mvneta_rx_error(pp, rx_desc); 2142 /* leave the descriptor untouched */ 2143 continue; 2144 } 2145 2146 if (rx_bytes <= rx_copybreak) { 2147 /* better copy a small frame and not unmap the DMA region */ 2148 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2149 if (unlikely(!skb)) 2150 goto err_drop_frame_ret_pool; 2151 2152 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2153 rx_desc->buf_phys_addr, 2154 MVNETA_MH_SIZE + NET_SKB_PAD, 2155 rx_bytes, 2156 DMA_FROM_DEVICE); 2157 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2158 rx_bytes); 2159 2160 skb->protocol = eth_type_trans(skb, dev); 2161 mvneta_rx_csum(pp, rx_status, skb); 2162 napi_gro_receive(napi, skb); 2163 2164 rcvd_pkts++; 2165 rcvd_bytes += rx_bytes; 2166 2167 /* Return the buffer to the pool */ 2168 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2169 rx_desc->buf_phys_addr); 2170 2171 /* leave the descriptor and buffer untouched */ 2172 continue; 2173 } 2174 2175 /* Refill processing */ 2176 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2177 if (err) { 2178 netdev_err(dev, "Linux processing - Can't refill\n"); 2179 rxq->refill_err++; 2180 goto err_drop_frame_ret_pool; 2181 } 2182 2183 frag_size = bm_pool->hwbm_pool.frag_size; 2184 2185 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2186 2187 /* After refill old buffer has to be unmapped regardless 2188 * the skb is successfully built or not. 2189 */ 2190 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2191 bm_pool->buf_size, DMA_FROM_DEVICE); 2192 if (!skb) 2193 goto err_drop_frame; 2194 2195 rcvd_pkts++; 2196 rcvd_bytes += rx_bytes; 2197 2198 /* Linux processing */ 2199 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2200 skb_put(skb, rx_bytes); 2201 2202 skb->protocol = eth_type_trans(skb, dev); 2203 2204 mvneta_rx_csum(pp, rx_status, skb); 2205 2206 napi_gro_receive(napi, skb); 2207 } 2208 2209 if (rcvd_pkts) { 2210 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2211 2212 u64_stats_update_begin(&stats->syncp); 2213 stats->rx_packets += rcvd_pkts; 2214 stats->rx_bytes += rcvd_bytes; 2215 u64_stats_update_end(&stats->syncp); 2216 } 2217 2218 /* Update rxq management counters */ 2219 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2220 2221 return rx_done; 2222 } 2223 2224 static inline void 2225 mvneta_tso_put_hdr(struct sk_buff *skb, 2226 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2227 { 2228 struct mvneta_tx_desc *tx_desc; 2229 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2230 2231 txq->tx_skb[txq->txq_put_index] = NULL; 2232 tx_desc = mvneta_txq_next_desc_get(txq); 2233 tx_desc->data_size = hdr_len; 2234 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2235 tx_desc->command |= MVNETA_TXD_F_DESC; 2236 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2237 txq->txq_put_index * TSO_HEADER_SIZE; 2238 mvneta_txq_inc_put(txq); 2239 } 2240 2241 static inline int 2242 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2243 struct sk_buff *skb, char *data, int size, 2244 bool last_tcp, bool is_last) 2245 { 2246 struct mvneta_tx_desc *tx_desc; 2247 2248 tx_desc = mvneta_txq_next_desc_get(txq); 2249 tx_desc->data_size = size; 2250 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2251 size, DMA_TO_DEVICE); 2252 if (unlikely(dma_mapping_error(dev->dev.parent, 2253 tx_desc->buf_phys_addr))) { 2254 mvneta_txq_desc_put(txq); 2255 return -ENOMEM; 2256 } 2257 2258 tx_desc->command = 0; 2259 txq->tx_skb[txq->txq_put_index] = NULL; 2260 2261 if (last_tcp) { 2262 /* last descriptor in the TCP packet */ 2263 tx_desc->command = MVNETA_TXD_L_DESC; 2264 2265 /* last descriptor in SKB */ 2266 if (is_last) 2267 txq->tx_skb[txq->txq_put_index] = skb; 2268 } 2269 mvneta_txq_inc_put(txq); 2270 return 0; 2271 } 2272 2273 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2274 struct mvneta_tx_queue *txq) 2275 { 2276 int total_len, data_left; 2277 int desc_count = 0; 2278 struct mvneta_port *pp = netdev_priv(dev); 2279 struct tso_t tso; 2280 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2281 int i; 2282 2283 /* Count needed descriptors */ 2284 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2285 return 0; 2286 2287 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2288 pr_info("*** Is this even possible???!?!?\n"); 2289 return 0; 2290 } 2291 2292 /* Initialize the TSO handler, and prepare the first payload */ 2293 tso_start(skb, &tso); 2294 2295 total_len = skb->len - hdr_len; 2296 while (total_len > 0) { 2297 char *hdr; 2298 2299 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2300 total_len -= data_left; 2301 desc_count++; 2302 2303 /* prepare packet headers: MAC + IP + TCP */ 2304 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2305 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2306 2307 mvneta_tso_put_hdr(skb, pp, txq); 2308 2309 while (data_left > 0) { 2310 int size; 2311 desc_count++; 2312 2313 size = min_t(int, tso.size, data_left); 2314 2315 if (mvneta_tso_put_data(dev, txq, skb, 2316 tso.data, size, 2317 size == data_left, 2318 total_len == 0)) 2319 goto err_release; 2320 data_left -= size; 2321 2322 tso_build_data(skb, &tso, size); 2323 } 2324 } 2325 2326 return desc_count; 2327 2328 err_release: 2329 /* Release all used data descriptors; header descriptors must not 2330 * be DMA-unmapped. 2331 */ 2332 for (i = desc_count - 1; i >= 0; i--) { 2333 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2334 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2335 dma_unmap_single(pp->dev->dev.parent, 2336 tx_desc->buf_phys_addr, 2337 tx_desc->data_size, 2338 DMA_TO_DEVICE); 2339 mvneta_txq_desc_put(txq); 2340 } 2341 return 0; 2342 } 2343 2344 /* Handle tx fragmentation processing */ 2345 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2346 struct mvneta_tx_queue *txq) 2347 { 2348 struct mvneta_tx_desc *tx_desc; 2349 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2350 2351 for (i = 0; i < nr_frags; i++) { 2352 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2353 void *addr = skb_frag_address(frag); 2354 2355 tx_desc = mvneta_txq_next_desc_get(txq); 2356 tx_desc->data_size = skb_frag_size(frag); 2357 2358 tx_desc->buf_phys_addr = 2359 dma_map_single(pp->dev->dev.parent, addr, 2360 tx_desc->data_size, DMA_TO_DEVICE); 2361 2362 if (dma_mapping_error(pp->dev->dev.parent, 2363 tx_desc->buf_phys_addr)) { 2364 mvneta_txq_desc_put(txq); 2365 goto error; 2366 } 2367 2368 if (i == nr_frags - 1) { 2369 /* Last descriptor */ 2370 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2371 txq->tx_skb[txq->txq_put_index] = skb; 2372 } else { 2373 /* Descriptor in the middle: Not First, Not Last */ 2374 tx_desc->command = 0; 2375 txq->tx_skb[txq->txq_put_index] = NULL; 2376 } 2377 mvneta_txq_inc_put(txq); 2378 } 2379 2380 return 0; 2381 2382 error: 2383 /* Release all descriptors that were used to map fragments of 2384 * this packet, as well as the corresponding DMA mappings 2385 */ 2386 for (i = i - 1; i >= 0; i--) { 2387 tx_desc = txq->descs + i; 2388 dma_unmap_single(pp->dev->dev.parent, 2389 tx_desc->buf_phys_addr, 2390 tx_desc->data_size, 2391 DMA_TO_DEVICE); 2392 mvneta_txq_desc_put(txq); 2393 } 2394 2395 return -ENOMEM; 2396 } 2397 2398 /* Main tx processing */ 2399 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2400 { 2401 struct mvneta_port *pp = netdev_priv(dev); 2402 u16 txq_id = skb_get_queue_mapping(skb); 2403 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2404 struct mvneta_tx_desc *tx_desc; 2405 int len = skb->len; 2406 int frags = 0; 2407 u32 tx_cmd; 2408 2409 if (!netif_running(dev)) 2410 goto out; 2411 2412 if (skb_is_gso(skb)) { 2413 frags = mvneta_tx_tso(skb, dev, txq); 2414 goto out; 2415 } 2416 2417 frags = skb_shinfo(skb)->nr_frags + 1; 2418 2419 /* Get a descriptor for the first part of the packet */ 2420 tx_desc = mvneta_txq_next_desc_get(txq); 2421 2422 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2423 2424 tx_desc->data_size = skb_headlen(skb); 2425 2426 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2427 tx_desc->data_size, 2428 DMA_TO_DEVICE); 2429 if (unlikely(dma_mapping_error(dev->dev.parent, 2430 tx_desc->buf_phys_addr))) { 2431 mvneta_txq_desc_put(txq); 2432 frags = 0; 2433 goto out; 2434 } 2435 2436 if (frags == 1) { 2437 /* First and Last descriptor */ 2438 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2439 tx_desc->command = tx_cmd; 2440 txq->tx_skb[txq->txq_put_index] = skb; 2441 mvneta_txq_inc_put(txq); 2442 } else { 2443 /* First but not Last */ 2444 tx_cmd |= MVNETA_TXD_F_DESC; 2445 txq->tx_skb[txq->txq_put_index] = NULL; 2446 mvneta_txq_inc_put(txq); 2447 tx_desc->command = tx_cmd; 2448 /* Continue with other skb fragments */ 2449 if (mvneta_tx_frag_process(pp, skb, txq)) { 2450 dma_unmap_single(dev->dev.parent, 2451 tx_desc->buf_phys_addr, 2452 tx_desc->data_size, 2453 DMA_TO_DEVICE); 2454 mvneta_txq_desc_put(txq); 2455 frags = 0; 2456 goto out; 2457 } 2458 } 2459 2460 out: 2461 if (frags > 0) { 2462 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2463 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2464 2465 netdev_tx_sent_queue(nq, len); 2466 2467 txq->count += frags; 2468 if (txq->count >= txq->tx_stop_threshold) 2469 netif_tx_stop_queue(nq); 2470 2471 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2472 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2473 mvneta_txq_pend_desc_add(pp, txq, frags); 2474 else 2475 txq->pending += frags; 2476 2477 u64_stats_update_begin(&stats->syncp); 2478 stats->tx_packets++; 2479 stats->tx_bytes += len; 2480 u64_stats_update_end(&stats->syncp); 2481 } else { 2482 dev->stats.tx_dropped++; 2483 dev_kfree_skb_any(skb); 2484 } 2485 2486 return NETDEV_TX_OK; 2487 } 2488 2489 2490 /* Free tx resources, when resetting a port */ 2491 static void mvneta_txq_done_force(struct mvneta_port *pp, 2492 struct mvneta_tx_queue *txq) 2493 2494 { 2495 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2496 int tx_done = txq->count; 2497 2498 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2499 2500 /* reset txq */ 2501 txq->count = 0; 2502 txq->txq_put_index = 0; 2503 txq->txq_get_index = 0; 2504 } 2505 2506 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2507 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2508 */ 2509 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2510 { 2511 struct mvneta_tx_queue *txq; 2512 struct netdev_queue *nq; 2513 int cpu = smp_processor_id(); 2514 2515 while (cause_tx_done) { 2516 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2517 2518 nq = netdev_get_tx_queue(pp->dev, txq->id); 2519 __netif_tx_lock(nq, cpu); 2520 2521 if (txq->count) 2522 mvneta_txq_done(pp, txq); 2523 2524 __netif_tx_unlock(nq); 2525 cause_tx_done &= ~((1 << txq->id)); 2526 } 2527 } 2528 2529 /* Compute crc8 of the specified address, using a unique algorithm , 2530 * according to hw spec, different than generic crc8 algorithm 2531 */ 2532 static int mvneta_addr_crc(unsigned char *addr) 2533 { 2534 int crc = 0; 2535 int i; 2536 2537 for (i = 0; i < ETH_ALEN; i++) { 2538 int j; 2539 2540 crc = (crc ^ addr[i]) << 8; 2541 for (j = 7; j >= 0; j--) { 2542 if (crc & (0x100 << j)) 2543 crc ^= 0x107 << j; 2544 } 2545 } 2546 2547 return crc; 2548 } 2549 2550 /* This method controls the net device special MAC multicast support. 2551 * The Special Multicast Table for MAC addresses supports MAC of the form 2552 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2553 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2554 * Table entries in the DA-Filter table. This method set the Special 2555 * Multicast Table appropriate entry. 2556 */ 2557 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2558 unsigned char last_byte, 2559 int queue) 2560 { 2561 unsigned int smc_table_reg; 2562 unsigned int tbl_offset; 2563 unsigned int reg_offset; 2564 2565 /* Register offset from SMC table base */ 2566 tbl_offset = (last_byte / 4); 2567 /* Entry offset within the above reg */ 2568 reg_offset = last_byte % 4; 2569 2570 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2571 + tbl_offset * 4)); 2572 2573 if (queue == -1) 2574 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2575 else { 2576 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2577 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2578 } 2579 2580 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2581 smc_table_reg); 2582 } 2583 2584 /* This method controls the network device Other MAC multicast support. 2585 * The Other Multicast Table is used for multicast of another type. 2586 * A CRC-8 is used as an index to the Other Multicast Table entries 2587 * in the DA-Filter table. 2588 * The method gets the CRC-8 value from the calling routine and 2589 * sets the Other Multicast Table appropriate entry according to the 2590 * specified CRC-8 . 2591 */ 2592 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2593 unsigned char crc8, 2594 int queue) 2595 { 2596 unsigned int omc_table_reg; 2597 unsigned int tbl_offset; 2598 unsigned int reg_offset; 2599 2600 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2601 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2602 2603 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2604 2605 if (queue == -1) { 2606 /* Clear accepts frame bit at specified Other DA table entry */ 2607 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2608 } else { 2609 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2610 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2611 } 2612 2613 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2614 } 2615 2616 /* The network device supports multicast using two tables: 2617 * 1) Special Multicast Table for MAC addresses of the form 2618 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2619 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2620 * Table entries in the DA-Filter table. 2621 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2622 * is used as an index to the Other Multicast Table entries in the 2623 * DA-Filter table. 2624 */ 2625 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2626 int queue) 2627 { 2628 unsigned char crc_result = 0; 2629 2630 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2631 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2632 return 0; 2633 } 2634 2635 crc_result = mvneta_addr_crc(p_addr); 2636 if (queue == -1) { 2637 if (pp->mcast_count[crc_result] == 0) { 2638 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2639 crc_result); 2640 return -EINVAL; 2641 } 2642 2643 pp->mcast_count[crc_result]--; 2644 if (pp->mcast_count[crc_result] != 0) { 2645 netdev_info(pp->dev, 2646 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2647 pp->mcast_count[crc_result], crc_result); 2648 return -EINVAL; 2649 } 2650 } else 2651 pp->mcast_count[crc_result]++; 2652 2653 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2654 2655 return 0; 2656 } 2657 2658 /* Configure Fitering mode of Ethernet port */ 2659 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2660 int is_promisc) 2661 { 2662 u32 port_cfg_reg, val; 2663 2664 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2665 2666 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2667 2668 /* Set / Clear UPM bit in port configuration register */ 2669 if (is_promisc) { 2670 /* Accept all Unicast addresses */ 2671 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2672 val |= MVNETA_FORCE_UNI; 2673 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2674 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2675 } else { 2676 /* Reject all Unicast addresses */ 2677 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2678 val &= ~MVNETA_FORCE_UNI; 2679 } 2680 2681 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2682 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2683 } 2684 2685 /* register unicast and multicast addresses */ 2686 static void mvneta_set_rx_mode(struct net_device *dev) 2687 { 2688 struct mvneta_port *pp = netdev_priv(dev); 2689 struct netdev_hw_addr *ha; 2690 2691 if (dev->flags & IFF_PROMISC) { 2692 /* Accept all: Multicast + Unicast */ 2693 mvneta_rx_unicast_promisc_set(pp, 1); 2694 mvneta_set_ucast_table(pp, pp->rxq_def); 2695 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2696 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2697 } else { 2698 /* Accept single Unicast */ 2699 mvneta_rx_unicast_promisc_set(pp, 0); 2700 mvneta_set_ucast_table(pp, -1); 2701 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2702 2703 if (dev->flags & IFF_ALLMULTI) { 2704 /* Accept all multicast */ 2705 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2706 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2707 } else { 2708 /* Accept only initialized multicast */ 2709 mvneta_set_special_mcast_table(pp, -1); 2710 mvneta_set_other_mcast_table(pp, -1); 2711 2712 if (!netdev_mc_empty(dev)) { 2713 netdev_for_each_mc_addr(ha, dev) { 2714 mvneta_mcast_addr_set(pp, ha->addr, 2715 pp->rxq_def); 2716 } 2717 } 2718 } 2719 } 2720 } 2721 2722 /* Interrupt handling - the callback for request_irq() */ 2723 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2724 { 2725 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2726 2727 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2728 napi_schedule(&pp->napi); 2729 2730 return IRQ_HANDLED; 2731 } 2732 2733 /* Interrupt handling - the callback for request_percpu_irq() */ 2734 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2735 { 2736 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2737 2738 disable_percpu_irq(port->pp->dev->irq); 2739 napi_schedule(&port->napi); 2740 2741 return IRQ_HANDLED; 2742 } 2743 2744 static void mvneta_link_change(struct mvneta_port *pp) 2745 { 2746 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2747 2748 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2749 } 2750 2751 /* NAPI handler 2752 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2753 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2754 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2755 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2756 * Each CPU has its own causeRxTx register 2757 */ 2758 static int mvneta_poll(struct napi_struct *napi, int budget) 2759 { 2760 int rx_done = 0; 2761 u32 cause_rx_tx; 2762 int rx_queue; 2763 struct mvneta_port *pp = netdev_priv(napi->dev); 2764 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2765 2766 if (!netif_running(pp->dev)) { 2767 napi_complete(napi); 2768 return rx_done; 2769 } 2770 2771 /* Read cause register */ 2772 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2773 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2774 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2775 2776 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2777 2778 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2779 MVNETA_CAUSE_LINK_CHANGE)) 2780 mvneta_link_change(pp); 2781 } 2782 2783 /* Release Tx descriptors */ 2784 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2785 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2786 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2787 } 2788 2789 /* For the case where the last mvneta_poll did not process all 2790 * RX packets 2791 */ 2792 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2793 2794 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2795 port->cause_rx_tx; 2796 2797 if (rx_queue) { 2798 rx_queue = rx_queue - 1; 2799 if (pp->bm_priv) 2800 rx_done = mvneta_rx_hwbm(napi, pp, budget, 2801 &pp->rxqs[rx_queue]); 2802 else 2803 rx_done = mvneta_rx_swbm(napi, pp, budget, 2804 &pp->rxqs[rx_queue]); 2805 } 2806 2807 if (rx_done < budget) { 2808 cause_rx_tx = 0; 2809 napi_complete_done(napi, rx_done); 2810 2811 if (pp->neta_armada3700) { 2812 unsigned long flags; 2813 2814 local_irq_save(flags); 2815 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2816 MVNETA_RX_INTR_MASK(rxq_number) | 2817 MVNETA_TX_INTR_MASK(txq_number) | 2818 MVNETA_MISCINTR_INTR_MASK); 2819 local_irq_restore(flags); 2820 } else { 2821 enable_percpu_irq(pp->dev->irq, 0); 2822 } 2823 } 2824 2825 if (pp->neta_armada3700) 2826 pp->cause_rx_tx = cause_rx_tx; 2827 else 2828 port->cause_rx_tx = cause_rx_tx; 2829 2830 return rx_done; 2831 } 2832 2833 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2834 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2835 int num) 2836 { 2837 int i; 2838 2839 for (i = 0; i < num; i++) { 2840 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2841 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 2842 GFP_KERNEL) != 0) { 2843 netdev_err(pp->dev, 2844 "%s:rxq %d, %d of %d buffs filled\n", 2845 __func__, rxq->id, i, num); 2846 break; 2847 } 2848 } 2849 2850 /* Add this number of RX descriptors as non occupied (ready to 2851 * get packets) 2852 */ 2853 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2854 2855 return i; 2856 } 2857 2858 /* Free all packets pending transmit from all TXQs and reset TX port */ 2859 static void mvneta_tx_reset(struct mvneta_port *pp) 2860 { 2861 int queue; 2862 2863 /* free the skb's in the tx ring */ 2864 for (queue = 0; queue < txq_number; queue++) 2865 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2866 2867 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2868 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2869 } 2870 2871 static void mvneta_rx_reset(struct mvneta_port *pp) 2872 { 2873 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2874 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2875 } 2876 2877 /* Rx/Tx queue initialization/cleanup methods */ 2878 2879 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 2880 struct mvneta_rx_queue *rxq) 2881 { 2882 rxq->size = pp->rx_ring_size; 2883 2884 /* Allocate memory for RX descriptors */ 2885 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2886 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2887 &rxq->descs_phys, GFP_KERNEL); 2888 if (!rxq->descs) 2889 return -ENOMEM; 2890 2891 rxq->last_desc = rxq->size - 1; 2892 2893 return 0; 2894 } 2895 2896 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 2897 struct mvneta_rx_queue *rxq) 2898 { 2899 /* Set Rx descriptors queue starting address */ 2900 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2901 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2902 2903 /* Set coalescing pkts and time */ 2904 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2905 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2906 2907 if (!pp->bm_priv) { 2908 /* Set Offset */ 2909 mvneta_rxq_offset_set(pp, rxq, 0); 2910 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 2911 PAGE_SIZE : 2912 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2913 mvneta_rxq_bm_disable(pp, rxq); 2914 mvneta_rxq_fill(pp, rxq, rxq->size); 2915 } else { 2916 /* Set Offset */ 2917 mvneta_rxq_offset_set(pp, rxq, 2918 NET_SKB_PAD - pp->rx_offset_correction); 2919 2920 mvneta_rxq_bm_enable(pp, rxq); 2921 /* Fill RXQ with buffers from RX pool */ 2922 mvneta_rxq_long_pool_set(pp, rxq); 2923 mvneta_rxq_short_pool_set(pp, rxq); 2924 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2925 } 2926 } 2927 2928 /* Create a specified RX queue */ 2929 static int mvneta_rxq_init(struct mvneta_port *pp, 2930 struct mvneta_rx_queue *rxq) 2931 2932 { 2933 int ret; 2934 2935 ret = mvneta_rxq_sw_init(pp, rxq); 2936 if (ret < 0) 2937 return ret; 2938 2939 mvneta_rxq_hw_init(pp, rxq); 2940 2941 return 0; 2942 } 2943 2944 /* Cleanup Rx queue */ 2945 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2946 struct mvneta_rx_queue *rxq) 2947 { 2948 mvneta_rxq_drop_pkts(pp, rxq); 2949 2950 if (rxq->skb) 2951 dev_kfree_skb_any(rxq->skb); 2952 2953 if (rxq->descs) 2954 dma_free_coherent(pp->dev->dev.parent, 2955 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2956 rxq->descs, 2957 rxq->descs_phys); 2958 2959 rxq->descs = NULL; 2960 rxq->last_desc = 0; 2961 rxq->next_desc_to_proc = 0; 2962 rxq->descs_phys = 0; 2963 rxq->first_to_refill = 0; 2964 rxq->refill_num = 0; 2965 rxq->skb = NULL; 2966 rxq->left_size = 0; 2967 } 2968 2969 static int mvneta_txq_sw_init(struct mvneta_port *pp, 2970 struct mvneta_tx_queue *txq) 2971 { 2972 int cpu; 2973 2974 txq->size = pp->tx_ring_size; 2975 2976 /* A queue must always have room for at least one skb. 2977 * Therefore, stop the queue when the free entries reaches 2978 * the maximum number of descriptors per skb. 2979 */ 2980 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2981 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2982 2983 /* Allocate memory for TX descriptors */ 2984 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2985 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2986 &txq->descs_phys, GFP_KERNEL); 2987 if (!txq->descs) 2988 return -ENOMEM; 2989 2990 txq->last_desc = txq->size - 1; 2991 2992 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2993 GFP_KERNEL); 2994 if (!txq->tx_skb) { 2995 dma_free_coherent(pp->dev->dev.parent, 2996 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2997 txq->descs, txq->descs_phys); 2998 return -ENOMEM; 2999 } 3000 3001 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3002 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3003 txq->size * TSO_HEADER_SIZE, 3004 &txq->tso_hdrs_phys, GFP_KERNEL); 3005 if (!txq->tso_hdrs) { 3006 kfree(txq->tx_skb); 3007 dma_free_coherent(pp->dev->dev.parent, 3008 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3009 txq->descs, txq->descs_phys); 3010 return -ENOMEM; 3011 } 3012 3013 /* Setup XPS mapping */ 3014 if (txq_number > 1) 3015 cpu = txq->id % num_present_cpus(); 3016 else 3017 cpu = pp->rxq_def % num_present_cpus(); 3018 cpumask_set_cpu(cpu, &txq->affinity_mask); 3019 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3020 3021 return 0; 3022 } 3023 3024 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3025 struct mvneta_tx_queue *txq) 3026 { 3027 /* Set maximum bandwidth for enabled TXQs */ 3028 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3029 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3030 3031 /* Set Tx descriptors queue starting address */ 3032 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3033 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3034 3035 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3036 } 3037 3038 /* Create and initialize a tx queue */ 3039 static int mvneta_txq_init(struct mvneta_port *pp, 3040 struct mvneta_tx_queue *txq) 3041 { 3042 int ret; 3043 3044 ret = mvneta_txq_sw_init(pp, txq); 3045 if (ret < 0) 3046 return ret; 3047 3048 mvneta_txq_hw_init(pp, txq); 3049 3050 return 0; 3051 } 3052 3053 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3054 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3055 struct mvneta_tx_queue *txq) 3056 { 3057 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3058 3059 kfree(txq->tx_skb); 3060 3061 if (txq->tso_hdrs) 3062 dma_free_coherent(pp->dev->dev.parent, 3063 txq->size * TSO_HEADER_SIZE, 3064 txq->tso_hdrs, txq->tso_hdrs_phys); 3065 if (txq->descs) 3066 dma_free_coherent(pp->dev->dev.parent, 3067 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3068 txq->descs, txq->descs_phys); 3069 3070 netdev_tx_reset_queue(nq); 3071 3072 txq->descs = NULL; 3073 txq->last_desc = 0; 3074 txq->next_desc_to_proc = 0; 3075 txq->descs_phys = 0; 3076 } 3077 3078 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3079 struct mvneta_tx_queue *txq) 3080 { 3081 /* Set minimum bandwidth for disabled TXQs */ 3082 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3083 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3084 3085 /* Set Tx descriptors queue starting address and size */ 3086 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3087 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3088 } 3089 3090 static void mvneta_txq_deinit(struct mvneta_port *pp, 3091 struct mvneta_tx_queue *txq) 3092 { 3093 mvneta_txq_sw_deinit(pp, txq); 3094 mvneta_txq_hw_deinit(pp, txq); 3095 } 3096 3097 /* Cleanup all Tx queues */ 3098 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3099 { 3100 int queue; 3101 3102 for (queue = 0; queue < txq_number; queue++) 3103 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3104 } 3105 3106 /* Cleanup all Rx queues */ 3107 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3108 { 3109 int queue; 3110 3111 for (queue = 0; queue < rxq_number; queue++) 3112 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3113 } 3114 3115 3116 /* Init all Rx queues */ 3117 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3118 { 3119 int queue; 3120 3121 for (queue = 0; queue < rxq_number; queue++) { 3122 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3123 3124 if (err) { 3125 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3126 __func__, queue); 3127 mvneta_cleanup_rxqs(pp); 3128 return err; 3129 } 3130 } 3131 3132 return 0; 3133 } 3134 3135 /* Init all tx queues */ 3136 static int mvneta_setup_txqs(struct mvneta_port *pp) 3137 { 3138 int queue; 3139 3140 for (queue = 0; queue < txq_number; queue++) { 3141 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3142 if (err) { 3143 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3144 __func__, queue); 3145 mvneta_cleanup_txqs(pp); 3146 return err; 3147 } 3148 } 3149 3150 return 0; 3151 } 3152 3153 static int mvneta_comphy_init(struct mvneta_port *pp) 3154 { 3155 int ret; 3156 3157 if (!pp->comphy) 3158 return 0; 3159 3160 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3161 pp->phy_interface); 3162 if (ret) 3163 return ret; 3164 3165 return phy_power_on(pp->comphy); 3166 } 3167 3168 static void mvneta_start_dev(struct mvneta_port *pp) 3169 { 3170 int cpu; 3171 3172 WARN_ON(mvneta_comphy_init(pp)); 3173 3174 mvneta_max_rx_size_set(pp, pp->pkt_size); 3175 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3176 3177 /* start the Rx/Tx activity */ 3178 mvneta_port_enable(pp); 3179 3180 if (!pp->neta_armada3700) { 3181 /* Enable polling on the port */ 3182 for_each_online_cpu(cpu) { 3183 struct mvneta_pcpu_port *port = 3184 per_cpu_ptr(pp->ports, cpu); 3185 3186 napi_enable(&port->napi); 3187 } 3188 } else { 3189 napi_enable(&pp->napi); 3190 } 3191 3192 /* Unmask interrupts. It has to be done from each CPU */ 3193 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3194 3195 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3196 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3197 MVNETA_CAUSE_LINK_CHANGE); 3198 3199 phylink_start(pp->phylink); 3200 netif_tx_start_all_queues(pp->dev); 3201 } 3202 3203 static void mvneta_stop_dev(struct mvneta_port *pp) 3204 { 3205 unsigned int cpu; 3206 3207 phylink_stop(pp->phylink); 3208 3209 if (!pp->neta_armada3700) { 3210 for_each_online_cpu(cpu) { 3211 struct mvneta_pcpu_port *port = 3212 per_cpu_ptr(pp->ports, cpu); 3213 3214 napi_disable(&port->napi); 3215 } 3216 } else { 3217 napi_disable(&pp->napi); 3218 } 3219 3220 netif_carrier_off(pp->dev); 3221 3222 mvneta_port_down(pp); 3223 netif_tx_stop_all_queues(pp->dev); 3224 3225 /* Stop the port activity */ 3226 mvneta_port_disable(pp); 3227 3228 /* Clear all ethernet port interrupts */ 3229 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3230 3231 /* Mask all ethernet port interrupts */ 3232 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3233 3234 mvneta_tx_reset(pp); 3235 mvneta_rx_reset(pp); 3236 3237 WARN_ON(phy_power_off(pp->comphy)); 3238 } 3239 3240 static void mvneta_percpu_enable(void *arg) 3241 { 3242 struct mvneta_port *pp = arg; 3243 3244 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3245 } 3246 3247 static void mvneta_percpu_disable(void *arg) 3248 { 3249 struct mvneta_port *pp = arg; 3250 3251 disable_percpu_irq(pp->dev->irq); 3252 } 3253 3254 /* Change the device mtu */ 3255 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3256 { 3257 struct mvneta_port *pp = netdev_priv(dev); 3258 int ret; 3259 3260 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3261 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3262 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3263 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3264 } 3265 3266 dev->mtu = mtu; 3267 3268 if (!netif_running(dev)) { 3269 if (pp->bm_priv) 3270 mvneta_bm_update_mtu(pp, mtu); 3271 3272 netdev_update_features(dev); 3273 return 0; 3274 } 3275 3276 /* The interface is running, so we have to force a 3277 * reallocation of the queues 3278 */ 3279 mvneta_stop_dev(pp); 3280 on_each_cpu(mvneta_percpu_disable, pp, true); 3281 3282 mvneta_cleanup_txqs(pp); 3283 mvneta_cleanup_rxqs(pp); 3284 3285 if (pp->bm_priv) 3286 mvneta_bm_update_mtu(pp, mtu); 3287 3288 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3289 3290 ret = mvneta_setup_rxqs(pp); 3291 if (ret) { 3292 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3293 return ret; 3294 } 3295 3296 ret = mvneta_setup_txqs(pp); 3297 if (ret) { 3298 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3299 return ret; 3300 } 3301 3302 on_each_cpu(mvneta_percpu_enable, pp, true); 3303 mvneta_start_dev(pp); 3304 3305 netdev_update_features(dev); 3306 3307 return 0; 3308 } 3309 3310 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3311 netdev_features_t features) 3312 { 3313 struct mvneta_port *pp = netdev_priv(dev); 3314 3315 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3316 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3317 netdev_info(dev, 3318 "Disable IP checksum for MTU greater than %dB\n", 3319 pp->tx_csum_limit); 3320 } 3321 3322 return features; 3323 } 3324 3325 /* Get mac address */ 3326 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3327 { 3328 u32 mac_addr_l, mac_addr_h; 3329 3330 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3331 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3332 addr[0] = (mac_addr_h >> 24) & 0xFF; 3333 addr[1] = (mac_addr_h >> 16) & 0xFF; 3334 addr[2] = (mac_addr_h >> 8) & 0xFF; 3335 addr[3] = mac_addr_h & 0xFF; 3336 addr[4] = (mac_addr_l >> 8) & 0xFF; 3337 addr[5] = mac_addr_l & 0xFF; 3338 } 3339 3340 /* Handle setting mac address */ 3341 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3342 { 3343 struct mvneta_port *pp = netdev_priv(dev); 3344 struct sockaddr *sockaddr = addr; 3345 int ret; 3346 3347 ret = eth_prepare_mac_addr_change(dev, addr); 3348 if (ret < 0) 3349 return ret; 3350 /* Remove previous address table entry */ 3351 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3352 3353 /* Set new addr in hw */ 3354 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3355 3356 eth_commit_mac_addr_change(dev, addr); 3357 return 0; 3358 } 3359 3360 static void mvneta_validate(struct phylink_config *config, 3361 unsigned long *supported, 3362 struct phylink_link_state *state) 3363 { 3364 struct net_device *ndev = to_net_dev(config->dev); 3365 struct mvneta_port *pp = netdev_priv(ndev); 3366 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3367 3368 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3369 if (state->interface != PHY_INTERFACE_MODE_NA && 3370 state->interface != PHY_INTERFACE_MODE_QSGMII && 3371 state->interface != PHY_INTERFACE_MODE_SGMII && 3372 !phy_interface_mode_is_8023z(state->interface) && 3373 !phy_interface_mode_is_rgmii(state->interface)) { 3374 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3375 return; 3376 } 3377 3378 /* Allow all the expected bits */ 3379 phylink_set(mask, Autoneg); 3380 phylink_set_port_modes(mask); 3381 3382 /* Asymmetric pause is unsupported */ 3383 phylink_set(mask, Pause); 3384 3385 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3386 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3387 phylink_set(mask, 1000baseT_Full); 3388 phylink_set(mask, 1000baseX_Full); 3389 } 3390 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3391 phylink_set(mask, 2500baseT_Full); 3392 phylink_set(mask, 2500baseX_Full); 3393 } 3394 3395 if (!phy_interface_mode_is_8023z(state->interface)) { 3396 /* 10M and 100M are only supported in non-802.3z mode */ 3397 phylink_set(mask, 10baseT_Half); 3398 phylink_set(mask, 10baseT_Full); 3399 phylink_set(mask, 100baseT_Half); 3400 phylink_set(mask, 100baseT_Full); 3401 } 3402 3403 bitmap_and(supported, supported, mask, 3404 __ETHTOOL_LINK_MODE_MASK_NBITS); 3405 bitmap_and(state->advertising, state->advertising, mask, 3406 __ETHTOOL_LINK_MODE_MASK_NBITS); 3407 3408 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3409 * to advertise both, only report advertising at 2500BaseX. 3410 */ 3411 phylink_helper_basex_speed(state); 3412 } 3413 3414 static int mvneta_mac_link_state(struct phylink_config *config, 3415 struct phylink_link_state *state) 3416 { 3417 struct net_device *ndev = to_net_dev(config->dev); 3418 struct mvneta_port *pp = netdev_priv(ndev); 3419 u32 gmac_stat; 3420 3421 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3422 3423 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3424 state->speed = 3425 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3426 SPEED_2500 : SPEED_1000; 3427 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3428 state->speed = SPEED_100; 3429 else 3430 state->speed = SPEED_10; 3431 3432 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3433 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3434 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3435 3436 state->pause = 0; 3437 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3438 state->pause |= MLO_PAUSE_RX; 3439 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3440 state->pause |= MLO_PAUSE_TX; 3441 3442 return 1; 3443 } 3444 3445 static void mvneta_mac_an_restart(struct phylink_config *config) 3446 { 3447 struct net_device *ndev = to_net_dev(config->dev); 3448 struct mvneta_port *pp = netdev_priv(ndev); 3449 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3450 3451 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3452 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3453 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3454 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3455 } 3456 3457 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3458 const struct phylink_link_state *state) 3459 { 3460 struct net_device *ndev = to_net_dev(config->dev); 3461 struct mvneta_port *pp = netdev_priv(ndev); 3462 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3463 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3464 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3465 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3466 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3467 3468 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3469 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3470 MVNETA_GMAC2_PORT_RESET); 3471 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3472 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3473 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3474 MVNETA_GMAC_INBAND_RESTART_AN | 3475 MVNETA_GMAC_CONFIG_MII_SPEED | 3476 MVNETA_GMAC_CONFIG_GMII_SPEED | 3477 MVNETA_GMAC_AN_SPEED_EN | 3478 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3479 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3480 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3481 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3482 MVNETA_GMAC_AN_DUPLEX_EN); 3483 3484 /* Even though it might look weird, when we're configured in 3485 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3486 */ 3487 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3488 3489 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3490 state->interface == PHY_INTERFACE_MODE_SGMII || 3491 phy_interface_mode_is_8023z(state->interface)) 3492 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3493 3494 if (phylink_test(state->advertising, Pause)) 3495 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3496 if (state->pause & MLO_PAUSE_TXRX_MASK) 3497 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3498 3499 if (!phylink_autoneg_inband(mode)) { 3500 /* Phy or fixed speed */ 3501 if (state->duplex) 3502 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3503 3504 if (state->speed == SPEED_1000 || state->speed == SPEED_2500) 3505 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3506 else if (state->speed == SPEED_100) 3507 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3508 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3509 /* SGMII mode receives the state from the PHY */ 3510 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3511 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3512 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3513 MVNETA_GMAC_FORCE_LINK_PASS)) | 3514 MVNETA_GMAC_INBAND_AN_ENABLE | 3515 MVNETA_GMAC_AN_SPEED_EN | 3516 MVNETA_GMAC_AN_DUPLEX_EN; 3517 } else { 3518 /* 802.3z negotiation - only 1000base-X */ 3519 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3520 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3521 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3522 MVNETA_GMAC_FORCE_LINK_PASS)) | 3523 MVNETA_GMAC_INBAND_AN_ENABLE | 3524 MVNETA_GMAC_CONFIG_GMII_SPEED | 3525 /* The MAC only supports FD mode */ 3526 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3527 3528 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3529 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3530 } 3531 3532 /* Armada 370 documentation says we can only change the port mode 3533 * and in-band enable when the link is down, so force it down 3534 * while making these changes. We also do this for GMAC_CTRL2 */ 3535 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3536 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3537 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3538 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3539 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3540 MVNETA_GMAC_FORCE_LINK_DOWN); 3541 } 3542 3543 3544 /* When at 2.5G, the link partner can send frames with shortened 3545 * preambles. 3546 */ 3547 if (state->speed == SPEED_2500) 3548 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3549 3550 if (pp->comphy && pp->phy_interface != state->interface && 3551 (state->interface == PHY_INTERFACE_MODE_SGMII || 3552 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3553 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3554 pp->phy_interface = state->interface; 3555 3556 WARN_ON(phy_power_off(pp->comphy)); 3557 WARN_ON(mvneta_comphy_init(pp)); 3558 } 3559 3560 if (new_ctrl0 != gmac_ctrl0) 3561 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3562 if (new_ctrl2 != gmac_ctrl2) 3563 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3564 if (new_ctrl4 != gmac_ctrl4) 3565 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3566 if (new_clk != gmac_clk) 3567 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3568 if (new_an != gmac_an) 3569 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3570 3571 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3572 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3573 MVNETA_GMAC2_PORT_RESET) != 0) 3574 continue; 3575 } 3576 } 3577 3578 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3579 { 3580 u32 lpi_ctl1; 3581 3582 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3583 if (enable) 3584 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3585 else 3586 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3587 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3588 } 3589 3590 static void mvneta_mac_link_down(struct phylink_config *config, 3591 unsigned int mode, phy_interface_t interface) 3592 { 3593 struct net_device *ndev = to_net_dev(config->dev); 3594 struct mvneta_port *pp = netdev_priv(ndev); 3595 u32 val; 3596 3597 mvneta_port_down(pp); 3598 3599 if (!phylink_autoneg_inband(mode)) { 3600 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3601 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3602 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3603 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3604 } 3605 3606 pp->eee_active = false; 3607 mvneta_set_eee(pp, false); 3608 } 3609 3610 static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode, 3611 phy_interface_t interface, 3612 struct phy_device *phy) 3613 { 3614 struct net_device *ndev = to_net_dev(config->dev); 3615 struct mvneta_port *pp = netdev_priv(ndev); 3616 u32 val; 3617 3618 if (!phylink_autoneg_inband(mode)) { 3619 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3620 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3621 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3622 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3623 } 3624 3625 mvneta_port_up(pp); 3626 3627 if (phy && pp->eee_enabled) { 3628 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3629 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3630 } 3631 } 3632 3633 static const struct phylink_mac_ops mvneta_phylink_ops = { 3634 .validate = mvneta_validate, 3635 .mac_link_state = mvneta_mac_link_state, 3636 .mac_an_restart = mvneta_mac_an_restart, 3637 .mac_config = mvneta_mac_config, 3638 .mac_link_down = mvneta_mac_link_down, 3639 .mac_link_up = mvneta_mac_link_up, 3640 }; 3641 3642 static int mvneta_mdio_probe(struct mvneta_port *pp) 3643 { 3644 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3645 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3646 3647 if (err) 3648 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3649 3650 phylink_ethtool_get_wol(pp->phylink, &wol); 3651 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3652 3653 return err; 3654 } 3655 3656 static void mvneta_mdio_remove(struct mvneta_port *pp) 3657 { 3658 phylink_disconnect_phy(pp->phylink); 3659 } 3660 3661 /* Electing a CPU must be done in an atomic way: it should be done 3662 * after or before the removal/insertion of a CPU and this function is 3663 * not reentrant. 3664 */ 3665 static void mvneta_percpu_elect(struct mvneta_port *pp) 3666 { 3667 int elected_cpu = 0, max_cpu, cpu, i = 0; 3668 3669 /* Use the cpu associated to the rxq when it is online, in all 3670 * the other cases, use the cpu 0 which can't be offline. 3671 */ 3672 if (cpu_online(pp->rxq_def)) 3673 elected_cpu = pp->rxq_def; 3674 3675 max_cpu = num_present_cpus(); 3676 3677 for_each_online_cpu(cpu) { 3678 int rxq_map = 0, txq_map = 0; 3679 int rxq; 3680 3681 for (rxq = 0; rxq < rxq_number; rxq++) 3682 if ((rxq % max_cpu) == cpu) 3683 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3684 3685 if (cpu == elected_cpu) 3686 /* Map the default receive queue queue to the 3687 * elected CPU 3688 */ 3689 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3690 3691 /* We update the TX queue map only if we have one 3692 * queue. In this case we associate the TX queue to 3693 * the CPU bound to the default RX queue 3694 */ 3695 if (txq_number == 1) 3696 txq_map = (cpu == elected_cpu) ? 3697 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3698 else 3699 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3700 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3701 3702 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3703 3704 /* Update the interrupt mask on each CPU according the 3705 * new mapping 3706 */ 3707 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3708 pp, true); 3709 i++; 3710 3711 } 3712 }; 3713 3714 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3715 { 3716 int other_cpu; 3717 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3718 node_online); 3719 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3720 3721 3722 spin_lock(&pp->lock); 3723 /* 3724 * Configuring the driver for a new CPU while the driver is 3725 * stopping is racy, so just avoid it. 3726 */ 3727 if (pp->is_stopped) { 3728 spin_unlock(&pp->lock); 3729 return 0; 3730 } 3731 netif_tx_stop_all_queues(pp->dev); 3732 3733 /* 3734 * We have to synchronise on tha napi of each CPU except the one 3735 * just being woken up 3736 */ 3737 for_each_online_cpu(other_cpu) { 3738 if (other_cpu != cpu) { 3739 struct mvneta_pcpu_port *other_port = 3740 per_cpu_ptr(pp->ports, other_cpu); 3741 3742 napi_synchronize(&other_port->napi); 3743 } 3744 } 3745 3746 /* Mask all ethernet port interrupts */ 3747 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3748 napi_enable(&port->napi); 3749 3750 /* 3751 * Enable per-CPU interrupts on the CPU that is 3752 * brought up. 3753 */ 3754 mvneta_percpu_enable(pp); 3755 3756 /* 3757 * Enable per-CPU interrupt on the one CPU we care 3758 * about. 3759 */ 3760 mvneta_percpu_elect(pp); 3761 3762 /* Unmask all ethernet port interrupts */ 3763 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3764 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3765 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3766 MVNETA_CAUSE_LINK_CHANGE); 3767 netif_tx_start_all_queues(pp->dev); 3768 spin_unlock(&pp->lock); 3769 return 0; 3770 } 3771 3772 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3773 { 3774 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3775 node_online); 3776 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3777 3778 /* 3779 * Thanks to this lock we are sure that any pending cpu election is 3780 * done. 3781 */ 3782 spin_lock(&pp->lock); 3783 /* Mask all ethernet port interrupts */ 3784 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3785 spin_unlock(&pp->lock); 3786 3787 napi_synchronize(&port->napi); 3788 napi_disable(&port->napi); 3789 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3790 mvneta_percpu_disable(pp); 3791 return 0; 3792 } 3793 3794 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3795 { 3796 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3797 node_dead); 3798 3799 /* Check if a new CPU must be elected now this on is down */ 3800 spin_lock(&pp->lock); 3801 mvneta_percpu_elect(pp); 3802 spin_unlock(&pp->lock); 3803 /* Unmask all ethernet port interrupts */ 3804 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3805 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3806 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3807 MVNETA_CAUSE_LINK_CHANGE); 3808 netif_tx_start_all_queues(pp->dev); 3809 return 0; 3810 } 3811 3812 static int mvneta_open(struct net_device *dev) 3813 { 3814 struct mvneta_port *pp = netdev_priv(dev); 3815 int ret; 3816 3817 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3818 3819 ret = mvneta_setup_rxqs(pp); 3820 if (ret) 3821 return ret; 3822 3823 ret = mvneta_setup_txqs(pp); 3824 if (ret) 3825 goto err_cleanup_rxqs; 3826 3827 /* Connect to port interrupt line */ 3828 if (pp->neta_armada3700) 3829 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3830 dev->name, pp); 3831 else 3832 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3833 dev->name, pp->ports); 3834 if (ret) { 3835 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3836 goto err_cleanup_txqs; 3837 } 3838 3839 if (!pp->neta_armada3700) { 3840 /* Enable per-CPU interrupt on all the CPU to handle our RX 3841 * queue interrupts 3842 */ 3843 on_each_cpu(mvneta_percpu_enable, pp, true); 3844 3845 pp->is_stopped = false; 3846 /* Register a CPU notifier to handle the case where our CPU 3847 * might be taken offline. 3848 */ 3849 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3850 &pp->node_online); 3851 if (ret) 3852 goto err_free_irq; 3853 3854 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3855 &pp->node_dead); 3856 if (ret) 3857 goto err_free_online_hp; 3858 } 3859 3860 ret = mvneta_mdio_probe(pp); 3861 if (ret < 0) { 3862 netdev_err(dev, "cannot probe MDIO bus\n"); 3863 goto err_free_dead_hp; 3864 } 3865 3866 mvneta_start_dev(pp); 3867 3868 return 0; 3869 3870 err_free_dead_hp: 3871 if (!pp->neta_armada3700) 3872 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3873 &pp->node_dead); 3874 err_free_online_hp: 3875 if (!pp->neta_armada3700) 3876 cpuhp_state_remove_instance_nocalls(online_hpstate, 3877 &pp->node_online); 3878 err_free_irq: 3879 if (pp->neta_armada3700) { 3880 free_irq(pp->dev->irq, pp); 3881 } else { 3882 on_each_cpu(mvneta_percpu_disable, pp, true); 3883 free_percpu_irq(pp->dev->irq, pp->ports); 3884 } 3885 err_cleanup_txqs: 3886 mvneta_cleanup_txqs(pp); 3887 err_cleanup_rxqs: 3888 mvneta_cleanup_rxqs(pp); 3889 return ret; 3890 } 3891 3892 /* Stop the port, free port interrupt line */ 3893 static int mvneta_stop(struct net_device *dev) 3894 { 3895 struct mvneta_port *pp = netdev_priv(dev); 3896 3897 if (!pp->neta_armada3700) { 3898 /* Inform that we are stopping so we don't want to setup the 3899 * driver for new CPUs in the notifiers. The code of the 3900 * notifier for CPU online is protected by the same spinlock, 3901 * so when we get the lock, the notifer work is done. 3902 */ 3903 spin_lock(&pp->lock); 3904 pp->is_stopped = true; 3905 spin_unlock(&pp->lock); 3906 3907 mvneta_stop_dev(pp); 3908 mvneta_mdio_remove(pp); 3909 3910 cpuhp_state_remove_instance_nocalls(online_hpstate, 3911 &pp->node_online); 3912 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3913 &pp->node_dead); 3914 on_each_cpu(mvneta_percpu_disable, pp, true); 3915 free_percpu_irq(dev->irq, pp->ports); 3916 } else { 3917 mvneta_stop_dev(pp); 3918 mvneta_mdio_remove(pp); 3919 free_irq(dev->irq, pp); 3920 } 3921 3922 mvneta_cleanup_rxqs(pp); 3923 mvneta_cleanup_txqs(pp); 3924 3925 return 0; 3926 } 3927 3928 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3929 { 3930 struct mvneta_port *pp = netdev_priv(dev); 3931 3932 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 3933 } 3934 3935 /* Ethtool methods */ 3936 3937 /* Set link ksettings (phy address, speed) for ethtools */ 3938 static int 3939 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3940 const struct ethtool_link_ksettings *cmd) 3941 { 3942 struct mvneta_port *pp = netdev_priv(ndev); 3943 3944 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 3945 } 3946 3947 /* Get link ksettings for ethtools */ 3948 static int 3949 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 3950 struct ethtool_link_ksettings *cmd) 3951 { 3952 struct mvneta_port *pp = netdev_priv(ndev); 3953 3954 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 3955 } 3956 3957 static int mvneta_ethtool_nway_reset(struct net_device *dev) 3958 { 3959 struct mvneta_port *pp = netdev_priv(dev); 3960 3961 return phylink_ethtool_nway_reset(pp->phylink); 3962 } 3963 3964 /* Set interrupt coalescing for ethtools */ 3965 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3966 struct ethtool_coalesce *c) 3967 { 3968 struct mvneta_port *pp = netdev_priv(dev); 3969 int queue; 3970 3971 for (queue = 0; queue < rxq_number; queue++) { 3972 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3973 rxq->time_coal = c->rx_coalesce_usecs; 3974 rxq->pkts_coal = c->rx_max_coalesced_frames; 3975 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3976 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3977 } 3978 3979 for (queue = 0; queue < txq_number; queue++) { 3980 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3981 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3982 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3983 } 3984 3985 return 0; 3986 } 3987 3988 /* get coalescing for ethtools */ 3989 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3990 struct ethtool_coalesce *c) 3991 { 3992 struct mvneta_port *pp = netdev_priv(dev); 3993 3994 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3995 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3996 3997 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3998 return 0; 3999 } 4000 4001 4002 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4003 struct ethtool_drvinfo *drvinfo) 4004 { 4005 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4006 sizeof(drvinfo->driver)); 4007 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4008 sizeof(drvinfo->version)); 4009 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4010 sizeof(drvinfo->bus_info)); 4011 } 4012 4013 4014 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4015 struct ethtool_ringparam *ring) 4016 { 4017 struct mvneta_port *pp = netdev_priv(netdev); 4018 4019 ring->rx_max_pending = MVNETA_MAX_RXD; 4020 ring->tx_max_pending = MVNETA_MAX_TXD; 4021 ring->rx_pending = pp->rx_ring_size; 4022 ring->tx_pending = pp->tx_ring_size; 4023 } 4024 4025 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4026 struct ethtool_ringparam *ring) 4027 { 4028 struct mvneta_port *pp = netdev_priv(dev); 4029 4030 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4031 return -EINVAL; 4032 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4033 ring->rx_pending : MVNETA_MAX_RXD; 4034 4035 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4036 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4037 if (pp->tx_ring_size != ring->tx_pending) 4038 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4039 pp->tx_ring_size, ring->tx_pending); 4040 4041 if (netif_running(dev)) { 4042 mvneta_stop(dev); 4043 if (mvneta_open(dev)) { 4044 netdev_err(dev, 4045 "error on opening device after ring param change\n"); 4046 return -ENOMEM; 4047 } 4048 } 4049 4050 return 0; 4051 } 4052 4053 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4054 struct ethtool_pauseparam *pause) 4055 { 4056 struct mvneta_port *pp = netdev_priv(dev); 4057 4058 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4059 } 4060 4061 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4062 struct ethtool_pauseparam *pause) 4063 { 4064 struct mvneta_port *pp = netdev_priv(dev); 4065 4066 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4067 } 4068 4069 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4070 u8 *data) 4071 { 4072 if (sset == ETH_SS_STATS) { 4073 int i; 4074 4075 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4076 memcpy(data + i * ETH_GSTRING_LEN, 4077 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4078 } 4079 } 4080 4081 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4082 { 4083 const struct mvneta_statistic *s; 4084 void __iomem *base = pp->base; 4085 u32 high, low; 4086 u64 val; 4087 int i; 4088 4089 for (i = 0, s = mvneta_statistics; 4090 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4091 s++, i++) { 4092 val = 0; 4093 4094 switch (s->type) { 4095 case T_REG_32: 4096 val = readl_relaxed(base + s->offset); 4097 break; 4098 case T_REG_64: 4099 /* Docs say to read low 32-bit then high */ 4100 low = readl_relaxed(base + s->offset); 4101 high = readl_relaxed(base + s->offset + 4); 4102 val = (u64)high << 32 | low; 4103 break; 4104 case T_SW: 4105 switch (s->offset) { 4106 case ETHTOOL_STAT_EEE_WAKEUP: 4107 val = phylink_get_eee_err(pp->phylink); 4108 break; 4109 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4110 val = pp->rxqs[0].skb_alloc_err; 4111 break; 4112 case ETHTOOL_STAT_REFILL_ERR: 4113 val = pp->rxqs[0].refill_err; 4114 break; 4115 } 4116 break; 4117 } 4118 4119 pp->ethtool_stats[i] += val; 4120 } 4121 } 4122 4123 static void mvneta_ethtool_get_stats(struct net_device *dev, 4124 struct ethtool_stats *stats, u64 *data) 4125 { 4126 struct mvneta_port *pp = netdev_priv(dev); 4127 int i; 4128 4129 mvneta_ethtool_update_stats(pp); 4130 4131 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4132 *data++ = pp->ethtool_stats[i]; 4133 } 4134 4135 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4136 { 4137 if (sset == ETH_SS_STATS) 4138 return ARRAY_SIZE(mvneta_statistics); 4139 return -EOPNOTSUPP; 4140 } 4141 4142 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4143 { 4144 return MVNETA_RSS_LU_TABLE_SIZE; 4145 } 4146 4147 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4148 struct ethtool_rxnfc *info, 4149 u32 *rules __always_unused) 4150 { 4151 switch (info->cmd) { 4152 case ETHTOOL_GRXRINGS: 4153 info->data = rxq_number; 4154 return 0; 4155 case ETHTOOL_GRXFH: 4156 return -EOPNOTSUPP; 4157 default: 4158 return -EOPNOTSUPP; 4159 } 4160 } 4161 4162 static int mvneta_config_rss(struct mvneta_port *pp) 4163 { 4164 int cpu; 4165 u32 val; 4166 4167 netif_tx_stop_all_queues(pp->dev); 4168 4169 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4170 4171 if (!pp->neta_armada3700) { 4172 /* We have to synchronise on the napi of each CPU */ 4173 for_each_online_cpu(cpu) { 4174 struct mvneta_pcpu_port *pcpu_port = 4175 per_cpu_ptr(pp->ports, cpu); 4176 4177 napi_synchronize(&pcpu_port->napi); 4178 napi_disable(&pcpu_port->napi); 4179 } 4180 } else { 4181 napi_synchronize(&pp->napi); 4182 napi_disable(&pp->napi); 4183 } 4184 4185 pp->rxq_def = pp->indir[0]; 4186 4187 /* Update unicast mapping */ 4188 mvneta_set_rx_mode(pp->dev); 4189 4190 /* Update val of portCfg register accordingly with all RxQueue types */ 4191 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4192 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4193 4194 /* Update the elected CPU matching the new rxq_def */ 4195 spin_lock(&pp->lock); 4196 mvneta_percpu_elect(pp); 4197 spin_unlock(&pp->lock); 4198 4199 if (!pp->neta_armada3700) { 4200 /* We have to synchronise on the napi of each CPU */ 4201 for_each_online_cpu(cpu) { 4202 struct mvneta_pcpu_port *pcpu_port = 4203 per_cpu_ptr(pp->ports, cpu); 4204 4205 napi_enable(&pcpu_port->napi); 4206 } 4207 } else { 4208 napi_enable(&pp->napi); 4209 } 4210 4211 netif_tx_start_all_queues(pp->dev); 4212 4213 return 0; 4214 } 4215 4216 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4217 const u8 *key, const u8 hfunc) 4218 { 4219 struct mvneta_port *pp = netdev_priv(dev); 4220 4221 /* Current code for Armada 3700 doesn't support RSS features yet */ 4222 if (pp->neta_armada3700) 4223 return -EOPNOTSUPP; 4224 4225 /* We require at least one supported parameter to be changed 4226 * and no change in any of the unsupported parameters 4227 */ 4228 if (key || 4229 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4230 return -EOPNOTSUPP; 4231 4232 if (!indir) 4233 return 0; 4234 4235 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4236 4237 return mvneta_config_rss(pp); 4238 } 4239 4240 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4241 u8 *hfunc) 4242 { 4243 struct mvneta_port *pp = netdev_priv(dev); 4244 4245 /* Current code for Armada 3700 doesn't support RSS features yet */ 4246 if (pp->neta_armada3700) 4247 return -EOPNOTSUPP; 4248 4249 if (hfunc) 4250 *hfunc = ETH_RSS_HASH_TOP; 4251 4252 if (!indir) 4253 return 0; 4254 4255 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4256 4257 return 0; 4258 } 4259 4260 static void mvneta_ethtool_get_wol(struct net_device *dev, 4261 struct ethtool_wolinfo *wol) 4262 { 4263 struct mvneta_port *pp = netdev_priv(dev); 4264 4265 phylink_ethtool_get_wol(pp->phylink, wol); 4266 } 4267 4268 static int mvneta_ethtool_set_wol(struct net_device *dev, 4269 struct ethtool_wolinfo *wol) 4270 { 4271 struct mvneta_port *pp = netdev_priv(dev); 4272 int ret; 4273 4274 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4275 if (!ret) 4276 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4277 4278 return ret; 4279 } 4280 4281 static int mvneta_ethtool_get_eee(struct net_device *dev, 4282 struct ethtool_eee *eee) 4283 { 4284 struct mvneta_port *pp = netdev_priv(dev); 4285 u32 lpi_ctl0; 4286 4287 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4288 4289 eee->eee_enabled = pp->eee_enabled; 4290 eee->eee_active = pp->eee_active; 4291 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4292 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4293 4294 return phylink_ethtool_get_eee(pp->phylink, eee); 4295 } 4296 4297 static int mvneta_ethtool_set_eee(struct net_device *dev, 4298 struct ethtool_eee *eee) 4299 { 4300 struct mvneta_port *pp = netdev_priv(dev); 4301 u32 lpi_ctl0; 4302 4303 /* The Armada 37x documents do not give limits for this other than 4304 * it being an 8-bit register. */ 4305 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4306 return -EINVAL; 4307 4308 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4309 lpi_ctl0 &= ~(0xff << 8); 4310 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4311 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4312 4313 pp->eee_enabled = eee->eee_enabled; 4314 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4315 4316 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4317 4318 return phylink_ethtool_set_eee(pp->phylink, eee); 4319 } 4320 4321 static const struct net_device_ops mvneta_netdev_ops = { 4322 .ndo_open = mvneta_open, 4323 .ndo_stop = mvneta_stop, 4324 .ndo_start_xmit = mvneta_tx, 4325 .ndo_set_rx_mode = mvneta_set_rx_mode, 4326 .ndo_set_mac_address = mvneta_set_mac_addr, 4327 .ndo_change_mtu = mvneta_change_mtu, 4328 .ndo_fix_features = mvneta_fix_features, 4329 .ndo_get_stats64 = mvneta_get_stats64, 4330 .ndo_do_ioctl = mvneta_ioctl, 4331 }; 4332 4333 static const struct ethtool_ops mvneta_eth_tool_ops = { 4334 .nway_reset = mvneta_ethtool_nway_reset, 4335 .get_link = ethtool_op_get_link, 4336 .set_coalesce = mvneta_ethtool_set_coalesce, 4337 .get_coalesce = mvneta_ethtool_get_coalesce, 4338 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4339 .get_ringparam = mvneta_ethtool_get_ringparam, 4340 .set_ringparam = mvneta_ethtool_set_ringparam, 4341 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4342 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4343 .get_strings = mvneta_ethtool_get_strings, 4344 .get_ethtool_stats = mvneta_ethtool_get_stats, 4345 .get_sset_count = mvneta_ethtool_get_sset_count, 4346 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4347 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4348 .get_rxfh = mvneta_ethtool_get_rxfh, 4349 .set_rxfh = mvneta_ethtool_set_rxfh, 4350 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4351 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4352 .get_wol = mvneta_ethtool_get_wol, 4353 .set_wol = mvneta_ethtool_set_wol, 4354 .get_eee = mvneta_ethtool_get_eee, 4355 .set_eee = mvneta_ethtool_set_eee, 4356 }; 4357 4358 /* Initialize hw */ 4359 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4360 { 4361 int queue; 4362 4363 /* Disable port */ 4364 mvneta_port_disable(pp); 4365 4366 /* Set port default values */ 4367 mvneta_defaults_set(pp); 4368 4369 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4370 if (!pp->txqs) 4371 return -ENOMEM; 4372 4373 /* Initialize TX descriptor rings */ 4374 for (queue = 0; queue < txq_number; queue++) { 4375 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4376 txq->id = queue; 4377 txq->size = pp->tx_ring_size; 4378 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4379 } 4380 4381 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4382 if (!pp->rxqs) 4383 return -ENOMEM; 4384 4385 /* Create Rx descriptor rings */ 4386 for (queue = 0; queue < rxq_number; queue++) { 4387 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4388 rxq->id = queue; 4389 rxq->size = pp->rx_ring_size; 4390 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4391 rxq->time_coal = MVNETA_RX_COAL_USEC; 4392 rxq->buf_virt_addr 4393 = devm_kmalloc_array(pp->dev->dev.parent, 4394 rxq->size, 4395 sizeof(*rxq->buf_virt_addr), 4396 GFP_KERNEL); 4397 if (!rxq->buf_virt_addr) 4398 return -ENOMEM; 4399 } 4400 4401 return 0; 4402 } 4403 4404 /* platform glue : initialize decoding windows */ 4405 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4406 const struct mbus_dram_target_info *dram) 4407 { 4408 u32 win_enable; 4409 u32 win_protect; 4410 int i; 4411 4412 for (i = 0; i < 6; i++) { 4413 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4414 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4415 4416 if (i < 4) 4417 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4418 } 4419 4420 win_enable = 0x3f; 4421 win_protect = 0; 4422 4423 if (dram) { 4424 for (i = 0; i < dram->num_cs; i++) { 4425 const struct mbus_dram_window *cs = dram->cs + i; 4426 4427 mvreg_write(pp, MVNETA_WIN_BASE(i), 4428 (cs->base & 0xffff0000) | 4429 (cs->mbus_attr << 8) | 4430 dram->mbus_dram_target_id); 4431 4432 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4433 (cs->size - 1) & 0xffff0000); 4434 4435 win_enable &= ~(1 << i); 4436 win_protect |= 3 << (2 * i); 4437 } 4438 } else { 4439 /* For Armada3700 open default 4GB Mbus window, leaving 4440 * arbitration of target/attribute to a different layer 4441 * of configuration. 4442 */ 4443 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4444 win_enable &= ~BIT(0); 4445 win_protect = 3; 4446 } 4447 4448 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4449 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4450 } 4451 4452 /* Power up the port */ 4453 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4454 { 4455 /* MAC Cause register should be cleared */ 4456 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4457 4458 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4459 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4460 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4461 phy_interface_mode_is_8023z(phy_mode)) 4462 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4463 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4464 return -EINVAL; 4465 4466 return 0; 4467 } 4468 4469 /* Device initialization routine */ 4470 static int mvneta_probe(struct platform_device *pdev) 4471 { 4472 struct device_node *dn = pdev->dev.of_node; 4473 struct device_node *bm_node; 4474 struct mvneta_port *pp; 4475 struct net_device *dev; 4476 struct phylink *phylink; 4477 struct phy *comphy; 4478 const char *dt_mac_addr; 4479 char hw_mac_addr[ETH_ALEN]; 4480 const char *mac_from; 4481 int tx_csum_limit; 4482 int phy_mode; 4483 int err; 4484 int cpu; 4485 4486 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 4487 txq_number, rxq_number); 4488 if (!dev) 4489 return -ENOMEM; 4490 4491 dev->irq = irq_of_parse_and_map(dn, 0); 4492 if (dev->irq == 0) 4493 return -EINVAL; 4494 4495 phy_mode = of_get_phy_mode(dn); 4496 if (phy_mode < 0) { 4497 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4498 err = -EINVAL; 4499 goto err_free_irq; 4500 } 4501 4502 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 4503 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 4504 err = -EPROBE_DEFER; 4505 goto err_free_irq; 4506 } else if (IS_ERR(comphy)) { 4507 comphy = NULL; 4508 } 4509 4510 pp = netdev_priv(dev); 4511 spin_lock_init(&pp->lock); 4512 4513 pp->phylink_config.dev = &dev->dev; 4514 pp->phylink_config.type = PHYLINK_NETDEV; 4515 4516 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 4517 phy_mode, &mvneta_phylink_ops); 4518 if (IS_ERR(phylink)) { 4519 err = PTR_ERR(phylink); 4520 goto err_free_irq; 4521 } 4522 4523 dev->tx_queue_len = MVNETA_MAX_TXD; 4524 dev->watchdog_timeo = 5 * HZ; 4525 dev->netdev_ops = &mvneta_netdev_ops; 4526 4527 dev->ethtool_ops = &mvneta_eth_tool_ops; 4528 4529 pp->phylink = phylink; 4530 pp->comphy = comphy; 4531 pp->phy_interface = phy_mode; 4532 pp->dn = dn; 4533 4534 pp->rxq_def = rxq_def; 4535 pp->indir[0] = rxq_def; 4536 4537 /* Get special SoC configurations */ 4538 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4539 pp->neta_armada3700 = true; 4540 4541 pp->clk = devm_clk_get(&pdev->dev, "core"); 4542 if (IS_ERR(pp->clk)) 4543 pp->clk = devm_clk_get(&pdev->dev, NULL); 4544 if (IS_ERR(pp->clk)) { 4545 err = PTR_ERR(pp->clk); 4546 goto err_free_phylink; 4547 } 4548 4549 clk_prepare_enable(pp->clk); 4550 4551 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4552 if (!IS_ERR(pp->clk_bus)) 4553 clk_prepare_enable(pp->clk_bus); 4554 4555 pp->base = devm_platform_ioremap_resource(pdev, 0); 4556 if (IS_ERR(pp->base)) { 4557 err = PTR_ERR(pp->base); 4558 goto err_clk; 4559 } 4560 4561 /* Alloc per-cpu port structure */ 4562 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4563 if (!pp->ports) { 4564 err = -ENOMEM; 4565 goto err_clk; 4566 } 4567 4568 /* Alloc per-cpu stats */ 4569 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4570 if (!pp->stats) { 4571 err = -ENOMEM; 4572 goto err_free_ports; 4573 } 4574 4575 dt_mac_addr = of_get_mac_address(dn); 4576 if (!IS_ERR(dt_mac_addr)) { 4577 mac_from = "device tree"; 4578 ether_addr_copy(dev->dev_addr, dt_mac_addr); 4579 } else { 4580 mvneta_get_mac_addr(pp, hw_mac_addr); 4581 if (is_valid_ether_addr(hw_mac_addr)) { 4582 mac_from = "hardware"; 4583 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4584 } else { 4585 mac_from = "random"; 4586 eth_hw_addr_random(dev); 4587 } 4588 } 4589 4590 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4591 if (tx_csum_limit < 0 || 4592 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4593 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4594 dev_info(&pdev->dev, 4595 "Wrong TX csum limit in DT, set to %dB\n", 4596 MVNETA_TX_CSUM_DEF_SIZE); 4597 } 4598 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4599 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4600 } else { 4601 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4602 } 4603 4604 pp->tx_csum_limit = tx_csum_limit; 4605 4606 pp->dram_target_info = mv_mbus_dram_info(); 4607 /* Armada3700 requires setting default configuration of Mbus 4608 * windows, however without using filled mbus_dram_target_info 4609 * structure. 4610 */ 4611 if (pp->dram_target_info || pp->neta_armada3700) 4612 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4613 4614 pp->tx_ring_size = MVNETA_MAX_TXD; 4615 pp->rx_ring_size = MVNETA_MAX_RXD; 4616 4617 pp->dev = dev; 4618 SET_NETDEV_DEV(dev, &pdev->dev); 4619 4620 pp->id = global_port_id++; 4621 pp->rx_offset_correction = 0; /* not relevant for SW BM */ 4622 4623 /* Obtain access to BM resources if enabled and already initialized */ 4624 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4625 if (bm_node) { 4626 pp->bm_priv = mvneta_bm_get(bm_node); 4627 if (pp->bm_priv) { 4628 err = mvneta_bm_port_init(pdev, pp); 4629 if (err < 0) { 4630 dev_info(&pdev->dev, 4631 "use SW buffer management\n"); 4632 mvneta_bm_put(pp->bm_priv); 4633 pp->bm_priv = NULL; 4634 } 4635 } 4636 /* Set RX packet offset correction for platforms, whose 4637 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4638 * platforms and 0B for 32-bit ones. 4639 */ 4640 pp->rx_offset_correction = max(0, 4641 NET_SKB_PAD - 4642 MVNETA_RX_PKT_OFFSET_CORRECTION); 4643 } 4644 of_node_put(bm_node); 4645 4646 err = mvneta_init(&pdev->dev, pp); 4647 if (err < 0) 4648 goto err_netdev; 4649 4650 err = mvneta_port_power_up(pp, phy_mode); 4651 if (err < 0) { 4652 dev_err(&pdev->dev, "can't power up port\n"); 4653 goto err_netdev; 4654 } 4655 4656 /* Armada3700 network controller does not support per-cpu 4657 * operation, so only single NAPI should be initialized. 4658 */ 4659 if (pp->neta_armada3700) { 4660 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4661 } else { 4662 for_each_present_cpu(cpu) { 4663 struct mvneta_pcpu_port *port = 4664 per_cpu_ptr(pp->ports, cpu); 4665 4666 netif_napi_add(dev, &port->napi, mvneta_poll, 4667 NAPI_POLL_WEIGHT); 4668 port->pp = pp; 4669 } 4670 } 4671 4672 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4673 NETIF_F_TSO | NETIF_F_RXCSUM; 4674 dev->hw_features |= dev->features; 4675 dev->vlan_features |= dev->features; 4676 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4677 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4678 4679 /* MTU range: 68 - 9676 */ 4680 dev->min_mtu = ETH_MIN_MTU; 4681 /* 9676 == 9700 - 20 and rounding to 8 */ 4682 dev->max_mtu = 9676; 4683 4684 err = register_netdev(dev); 4685 if (err < 0) { 4686 dev_err(&pdev->dev, "failed to register\n"); 4687 goto err_netdev; 4688 } 4689 4690 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4691 dev->dev_addr); 4692 4693 platform_set_drvdata(pdev, pp->dev); 4694 4695 return 0; 4696 4697 err_netdev: 4698 if (pp->bm_priv) { 4699 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4700 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4701 1 << pp->id); 4702 mvneta_bm_put(pp->bm_priv); 4703 } 4704 free_percpu(pp->stats); 4705 err_free_ports: 4706 free_percpu(pp->ports); 4707 err_clk: 4708 clk_disable_unprepare(pp->clk_bus); 4709 clk_disable_unprepare(pp->clk); 4710 err_free_phylink: 4711 if (pp->phylink) 4712 phylink_destroy(pp->phylink); 4713 err_free_irq: 4714 irq_dispose_mapping(dev->irq); 4715 return err; 4716 } 4717 4718 /* Device removal routine */ 4719 static int mvneta_remove(struct platform_device *pdev) 4720 { 4721 struct net_device *dev = platform_get_drvdata(pdev); 4722 struct mvneta_port *pp = netdev_priv(dev); 4723 4724 unregister_netdev(dev); 4725 clk_disable_unprepare(pp->clk_bus); 4726 clk_disable_unprepare(pp->clk); 4727 free_percpu(pp->ports); 4728 free_percpu(pp->stats); 4729 irq_dispose_mapping(dev->irq); 4730 phylink_destroy(pp->phylink); 4731 4732 if (pp->bm_priv) { 4733 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4734 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4735 1 << pp->id); 4736 mvneta_bm_put(pp->bm_priv); 4737 } 4738 4739 return 0; 4740 } 4741 4742 #ifdef CONFIG_PM_SLEEP 4743 static int mvneta_suspend(struct device *device) 4744 { 4745 int queue; 4746 struct net_device *dev = dev_get_drvdata(device); 4747 struct mvneta_port *pp = netdev_priv(dev); 4748 4749 if (!netif_running(dev)) 4750 goto clean_exit; 4751 4752 if (!pp->neta_armada3700) { 4753 spin_lock(&pp->lock); 4754 pp->is_stopped = true; 4755 spin_unlock(&pp->lock); 4756 4757 cpuhp_state_remove_instance_nocalls(online_hpstate, 4758 &pp->node_online); 4759 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4760 &pp->node_dead); 4761 } 4762 4763 rtnl_lock(); 4764 mvneta_stop_dev(pp); 4765 rtnl_unlock(); 4766 4767 for (queue = 0; queue < rxq_number; queue++) { 4768 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4769 4770 mvneta_rxq_drop_pkts(pp, rxq); 4771 } 4772 4773 for (queue = 0; queue < txq_number; queue++) { 4774 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4775 4776 mvneta_txq_hw_deinit(pp, txq); 4777 } 4778 4779 clean_exit: 4780 netif_device_detach(dev); 4781 clk_disable_unprepare(pp->clk_bus); 4782 clk_disable_unprepare(pp->clk); 4783 4784 return 0; 4785 } 4786 4787 static int mvneta_resume(struct device *device) 4788 { 4789 struct platform_device *pdev = to_platform_device(device); 4790 struct net_device *dev = dev_get_drvdata(device); 4791 struct mvneta_port *pp = netdev_priv(dev); 4792 int err, queue; 4793 4794 clk_prepare_enable(pp->clk); 4795 if (!IS_ERR(pp->clk_bus)) 4796 clk_prepare_enable(pp->clk_bus); 4797 if (pp->dram_target_info || pp->neta_armada3700) 4798 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4799 if (pp->bm_priv) { 4800 err = mvneta_bm_port_init(pdev, pp); 4801 if (err < 0) { 4802 dev_info(&pdev->dev, "use SW buffer management\n"); 4803 pp->bm_priv = NULL; 4804 } 4805 } 4806 mvneta_defaults_set(pp); 4807 err = mvneta_port_power_up(pp, pp->phy_interface); 4808 if (err < 0) { 4809 dev_err(device, "can't power up port\n"); 4810 return err; 4811 } 4812 4813 netif_device_attach(dev); 4814 4815 if (!netif_running(dev)) 4816 return 0; 4817 4818 for (queue = 0; queue < rxq_number; queue++) { 4819 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4820 4821 rxq->next_desc_to_proc = 0; 4822 mvneta_rxq_hw_init(pp, rxq); 4823 } 4824 4825 for (queue = 0; queue < txq_number; queue++) { 4826 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4827 4828 txq->next_desc_to_proc = 0; 4829 mvneta_txq_hw_init(pp, txq); 4830 } 4831 4832 if (!pp->neta_armada3700) { 4833 spin_lock(&pp->lock); 4834 pp->is_stopped = false; 4835 spin_unlock(&pp->lock); 4836 cpuhp_state_add_instance_nocalls(online_hpstate, 4837 &pp->node_online); 4838 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4839 &pp->node_dead); 4840 } 4841 4842 rtnl_lock(); 4843 mvneta_start_dev(pp); 4844 rtnl_unlock(); 4845 mvneta_set_rx_mode(dev); 4846 4847 return 0; 4848 } 4849 #endif 4850 4851 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4852 4853 static const struct of_device_id mvneta_match[] = { 4854 { .compatible = "marvell,armada-370-neta" }, 4855 { .compatible = "marvell,armada-xp-neta" }, 4856 { .compatible = "marvell,armada-3700-neta" }, 4857 { } 4858 }; 4859 MODULE_DEVICE_TABLE(of, mvneta_match); 4860 4861 static struct platform_driver mvneta_driver = { 4862 .probe = mvneta_probe, 4863 .remove = mvneta_remove, 4864 .driver = { 4865 .name = MVNETA_DRIVER_NAME, 4866 .of_match_table = mvneta_match, 4867 .pm = &mvneta_pm_ops, 4868 }, 4869 }; 4870 4871 static int __init mvneta_driver_init(void) 4872 { 4873 int ret; 4874 4875 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4876 mvneta_cpu_online, 4877 mvneta_cpu_down_prepare); 4878 if (ret < 0) 4879 goto out; 4880 online_hpstate = ret; 4881 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4882 NULL, mvneta_cpu_dead); 4883 if (ret) 4884 goto err_dead; 4885 4886 ret = platform_driver_register(&mvneta_driver); 4887 if (ret) 4888 goto err; 4889 return 0; 4890 4891 err: 4892 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4893 err_dead: 4894 cpuhp_remove_multi_state(online_hpstate); 4895 out: 4896 return ret; 4897 } 4898 module_init(mvneta_driver_init); 4899 4900 static void __exit mvneta_driver_exit(void) 4901 { 4902 platform_driver_unregister(&mvneta_driver); 4903 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4904 cpuhp_remove_multi_state(online_hpstate); 4905 } 4906 module_exit(mvneta_driver_exit); 4907 4908 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4909 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4910 MODULE_LICENSE("GPL"); 4911 4912 module_param(rxq_number, int, 0444); 4913 module_param(txq_number, int, 0444); 4914 4915 module_param(rxq_def, int, 0444); 4916 module_param(rx_copybreak, int, 0644); 4917