1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 #define MVNETA_SKB_HEADROOM max(XDP_PACKET_HEADROOM, NET_SKB_PAD) 328 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 329 MVNETA_SKB_HEADROOM)) 330 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 331 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 332 333 #define IS_TSO_HEADER(txq, addr) \ 334 ((addr >= txq->tso_hdrs_phys) && \ 335 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 336 337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 338 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 339 340 enum { 341 ETHTOOL_STAT_EEE_WAKEUP, 342 ETHTOOL_STAT_SKB_ALLOC_ERR, 343 ETHTOOL_STAT_REFILL_ERR, 344 ETHTOOL_XDP_REDIRECT, 345 ETHTOOL_XDP_PASS, 346 ETHTOOL_XDP_DROP, 347 ETHTOOL_XDP_TX, 348 ETHTOOL_XDP_TX_ERR, 349 ETHTOOL_XDP_XMIT, 350 ETHTOOL_XDP_XMIT_ERR, 351 ETHTOOL_MAX_STATS, 352 }; 353 354 struct mvneta_statistic { 355 unsigned short offset; 356 unsigned short type; 357 const char name[ETH_GSTRING_LEN]; 358 }; 359 360 #define T_REG_32 32 361 #define T_REG_64 64 362 #define T_SW 1 363 364 #define MVNETA_XDP_PASS 0 365 #define MVNETA_XDP_DROPPED BIT(0) 366 #define MVNETA_XDP_TX BIT(1) 367 #define MVNETA_XDP_REDIR BIT(2) 368 369 static const struct mvneta_statistic mvneta_statistics[] = { 370 { 0x3000, T_REG_64, "good_octets_received", }, 371 { 0x3010, T_REG_32, "good_frames_received", }, 372 { 0x3008, T_REG_32, "bad_octets_received", }, 373 { 0x3014, T_REG_32, "bad_frames_received", }, 374 { 0x3018, T_REG_32, "broadcast_frames_received", }, 375 { 0x301c, T_REG_32, "multicast_frames_received", }, 376 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 377 { 0x3058, T_REG_32, "good_fc_received", }, 378 { 0x305c, T_REG_32, "bad_fc_received", }, 379 { 0x3060, T_REG_32, "undersize_received", }, 380 { 0x3064, T_REG_32, "fragments_received", }, 381 { 0x3068, T_REG_32, "oversize_received", }, 382 { 0x306c, T_REG_32, "jabber_received", }, 383 { 0x3070, T_REG_32, "mac_receive_error", }, 384 { 0x3074, T_REG_32, "bad_crc_event", }, 385 { 0x3078, T_REG_32, "collision", }, 386 { 0x307c, T_REG_32, "late_collision", }, 387 { 0x2484, T_REG_32, "rx_discard", }, 388 { 0x2488, T_REG_32, "rx_overrun", }, 389 { 0x3020, T_REG_32, "frames_64_octets", }, 390 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 391 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 392 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 393 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 394 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 395 { 0x3038, T_REG_64, "good_octets_sent", }, 396 { 0x3040, T_REG_32, "good_frames_sent", }, 397 { 0x3044, T_REG_32, "excessive_collision", }, 398 { 0x3048, T_REG_32, "multicast_frames_sent", }, 399 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 400 { 0x3054, T_REG_32, "fc_sent", }, 401 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 402 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 403 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 404 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 405 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 406 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 407 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 408 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 409 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 410 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 411 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 412 }; 413 414 struct mvneta_stats { 415 u64 rx_packets; 416 u64 rx_bytes; 417 u64 tx_packets; 418 u64 tx_bytes; 419 /* xdp */ 420 u64 xdp_redirect; 421 u64 xdp_pass; 422 u64 xdp_drop; 423 u64 xdp_xmit; 424 u64 xdp_xmit_err; 425 u64 xdp_tx; 426 u64 xdp_tx_err; 427 }; 428 429 struct mvneta_ethtool_stats { 430 struct mvneta_stats ps; 431 u64 skb_alloc_error; 432 u64 refill_error; 433 }; 434 435 struct mvneta_pcpu_stats { 436 struct u64_stats_sync syncp; 437 438 struct mvneta_ethtool_stats es; 439 u64 rx_dropped; 440 u64 rx_errors; 441 }; 442 443 struct mvneta_pcpu_port { 444 /* Pointer to the shared port */ 445 struct mvneta_port *pp; 446 447 /* Pointer to the CPU-local NAPI struct */ 448 struct napi_struct napi; 449 450 /* Cause of the previous interrupt */ 451 u32 cause_rx_tx; 452 }; 453 454 struct mvneta_port { 455 u8 id; 456 struct mvneta_pcpu_port __percpu *ports; 457 struct mvneta_pcpu_stats __percpu *stats; 458 459 int pkt_size; 460 void __iomem *base; 461 struct mvneta_rx_queue *rxqs; 462 struct mvneta_tx_queue *txqs; 463 struct net_device *dev; 464 struct hlist_node node_online; 465 struct hlist_node node_dead; 466 int rxq_def; 467 /* Protect the access to the percpu interrupt registers, 468 * ensuring that the configuration remains coherent. 469 */ 470 spinlock_t lock; 471 bool is_stopped; 472 473 u32 cause_rx_tx; 474 struct napi_struct napi; 475 476 struct bpf_prog *xdp_prog; 477 478 /* Core clock */ 479 struct clk *clk; 480 /* AXI clock */ 481 struct clk *clk_bus; 482 u8 mcast_count[256]; 483 u16 tx_ring_size; 484 u16 rx_ring_size; 485 486 phy_interface_t phy_interface; 487 struct device_node *dn; 488 unsigned int tx_csum_limit; 489 struct phylink *phylink; 490 struct phylink_config phylink_config; 491 struct phy *comphy; 492 493 struct mvneta_bm *bm_priv; 494 struct mvneta_bm_pool *pool_long; 495 struct mvneta_bm_pool *pool_short; 496 int bm_win_id; 497 498 bool eee_enabled; 499 bool eee_active; 500 bool tx_lpi_enabled; 501 502 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 503 504 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 505 506 /* Flags for special SoC configurations */ 507 bool neta_armada3700; 508 u16 rx_offset_correction; 509 const struct mbus_dram_target_info *dram_target_info; 510 }; 511 512 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 513 * layout of the transmit and reception DMA descriptors, and their 514 * layout is therefore defined by the hardware design 515 */ 516 517 #define MVNETA_TX_L3_OFF_SHIFT 0 518 #define MVNETA_TX_IP_HLEN_SHIFT 8 519 #define MVNETA_TX_L4_UDP BIT(16) 520 #define MVNETA_TX_L3_IP6 BIT(17) 521 #define MVNETA_TXD_IP_CSUM BIT(18) 522 #define MVNETA_TXD_Z_PAD BIT(19) 523 #define MVNETA_TXD_L_DESC BIT(20) 524 #define MVNETA_TXD_F_DESC BIT(21) 525 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 526 MVNETA_TXD_L_DESC | \ 527 MVNETA_TXD_F_DESC) 528 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 529 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 530 531 #define MVNETA_RXD_ERR_CRC 0x0 532 #define MVNETA_RXD_BM_POOL_SHIFT 13 533 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 534 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 535 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 536 #define MVNETA_RXD_ERR_LEN BIT(18) 537 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 538 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 539 #define MVNETA_RXD_L3_IP4 BIT(25) 540 #define MVNETA_RXD_LAST_DESC BIT(26) 541 #define MVNETA_RXD_FIRST_DESC BIT(27) 542 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 543 MVNETA_RXD_LAST_DESC) 544 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 545 546 #if defined(__LITTLE_ENDIAN) 547 struct mvneta_tx_desc { 548 u32 command; /* Options used by HW for packet transmitting.*/ 549 u16 reserved1; /* csum_l4 (for future use) */ 550 u16 data_size; /* Data size of transmitted packet in bytes */ 551 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 552 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 553 u32 reserved3[4]; /* Reserved - (for future use) */ 554 }; 555 556 struct mvneta_rx_desc { 557 u32 status; /* Info about received packet */ 558 u16 reserved1; /* pnc_info - (for future use, PnC) */ 559 u16 data_size; /* Size of received packet in bytes */ 560 561 u32 buf_phys_addr; /* Physical address of the buffer */ 562 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 563 564 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 565 u16 reserved3; /* prefetch_cmd, for future use */ 566 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 567 568 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 569 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 570 }; 571 #else 572 struct mvneta_tx_desc { 573 u16 data_size; /* Data size of transmitted packet in bytes */ 574 u16 reserved1; /* csum_l4 (for future use) */ 575 u32 command; /* Options used by HW for packet transmitting.*/ 576 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 577 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 578 u32 reserved3[4]; /* Reserved - (for future use) */ 579 }; 580 581 struct mvneta_rx_desc { 582 u16 data_size; /* Size of received packet in bytes */ 583 u16 reserved1; /* pnc_info - (for future use, PnC) */ 584 u32 status; /* Info about received packet */ 585 586 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 587 u32 buf_phys_addr; /* Physical address of the buffer */ 588 589 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 590 u16 reserved3; /* prefetch_cmd, for future use */ 591 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 592 593 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 594 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 595 }; 596 #endif 597 598 enum mvneta_tx_buf_type { 599 MVNETA_TYPE_SKB, 600 MVNETA_TYPE_XDP_TX, 601 MVNETA_TYPE_XDP_NDO, 602 }; 603 604 struct mvneta_tx_buf { 605 enum mvneta_tx_buf_type type; 606 union { 607 struct xdp_frame *xdpf; 608 struct sk_buff *skb; 609 }; 610 }; 611 612 struct mvneta_tx_queue { 613 /* Number of this TX queue, in the range 0-7 */ 614 u8 id; 615 616 /* Number of TX DMA descriptors in the descriptor ring */ 617 int size; 618 619 /* Number of currently used TX DMA descriptor in the 620 * descriptor ring 621 */ 622 int count; 623 int pending; 624 int tx_stop_threshold; 625 int tx_wake_threshold; 626 627 /* Array of transmitted buffers */ 628 struct mvneta_tx_buf *buf; 629 630 /* Index of last TX DMA descriptor that was inserted */ 631 int txq_put_index; 632 633 /* Index of the TX DMA descriptor to be cleaned up */ 634 int txq_get_index; 635 636 u32 done_pkts_coal; 637 638 /* Virtual address of the TX DMA descriptors array */ 639 struct mvneta_tx_desc *descs; 640 641 /* DMA address of the TX DMA descriptors array */ 642 dma_addr_t descs_phys; 643 644 /* Index of the last TX DMA descriptor */ 645 int last_desc; 646 647 /* Index of the next TX DMA descriptor to process */ 648 int next_desc_to_proc; 649 650 /* DMA buffers for TSO headers */ 651 char *tso_hdrs; 652 653 /* DMA address of TSO headers */ 654 dma_addr_t tso_hdrs_phys; 655 656 /* Affinity mask for CPUs*/ 657 cpumask_t affinity_mask; 658 }; 659 660 struct mvneta_rx_queue { 661 /* rx queue number, in the range 0-7 */ 662 u8 id; 663 664 /* num of rx descriptors in the rx descriptor ring */ 665 int size; 666 667 u32 pkts_coal; 668 u32 time_coal; 669 670 /* page_pool */ 671 struct page_pool *page_pool; 672 struct xdp_rxq_info xdp_rxq; 673 674 /* Virtual address of the RX buffer */ 675 void **buf_virt_addr; 676 677 /* Virtual address of the RX DMA descriptors array */ 678 struct mvneta_rx_desc *descs; 679 680 /* DMA address of the RX DMA descriptors array */ 681 dma_addr_t descs_phys; 682 683 /* Index of the last RX DMA descriptor */ 684 int last_desc; 685 686 /* Index of the next RX DMA descriptor to process */ 687 int next_desc_to_proc; 688 689 /* Index of first RX DMA descriptor to refill */ 690 int first_to_refill; 691 u32 refill_num; 692 693 /* pointer to uncomplete skb buffer */ 694 struct sk_buff *skb; 695 int left_size; 696 }; 697 698 static enum cpuhp_state online_hpstate; 699 /* The hardware supports eight (8) rx queues, but we are only allowing 700 * the first one to be used. Therefore, let's just allocate one queue. 701 */ 702 static int rxq_number = 8; 703 static int txq_number = 8; 704 705 static int rxq_def; 706 707 static int rx_copybreak __read_mostly = 256; 708 709 /* HW BM need that each port be identify by a unique ID */ 710 static int global_port_id; 711 712 #define MVNETA_DRIVER_NAME "mvneta" 713 #define MVNETA_DRIVER_VERSION "1.0" 714 715 /* Utility/helper methods */ 716 717 /* Write helper method */ 718 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 719 { 720 writel(data, pp->base + offset); 721 } 722 723 /* Read helper method */ 724 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 725 { 726 return readl(pp->base + offset); 727 } 728 729 /* Increment txq get counter */ 730 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 731 { 732 txq->txq_get_index++; 733 if (txq->txq_get_index == txq->size) 734 txq->txq_get_index = 0; 735 } 736 737 /* Increment txq put counter */ 738 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 739 { 740 txq->txq_put_index++; 741 if (txq->txq_put_index == txq->size) 742 txq->txq_put_index = 0; 743 } 744 745 746 /* Clear all MIB counters */ 747 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 748 { 749 int i; 750 u32 dummy; 751 752 /* Perform dummy reads from MIB counters */ 753 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 754 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 755 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 756 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 757 } 758 759 /* Get System Network Statistics */ 760 static void 761 mvneta_get_stats64(struct net_device *dev, 762 struct rtnl_link_stats64 *stats) 763 { 764 struct mvneta_port *pp = netdev_priv(dev); 765 unsigned int start; 766 int cpu; 767 768 for_each_possible_cpu(cpu) { 769 struct mvneta_pcpu_stats *cpu_stats; 770 u64 rx_packets; 771 u64 rx_bytes; 772 u64 rx_dropped; 773 u64 rx_errors; 774 u64 tx_packets; 775 u64 tx_bytes; 776 777 cpu_stats = per_cpu_ptr(pp->stats, cpu); 778 do { 779 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 780 rx_packets = cpu_stats->es.ps.rx_packets; 781 rx_bytes = cpu_stats->es.ps.rx_bytes; 782 rx_dropped = cpu_stats->rx_dropped; 783 rx_errors = cpu_stats->rx_errors; 784 tx_packets = cpu_stats->es.ps.tx_packets; 785 tx_bytes = cpu_stats->es.ps.tx_bytes; 786 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 787 788 stats->rx_packets += rx_packets; 789 stats->rx_bytes += rx_bytes; 790 stats->rx_dropped += rx_dropped; 791 stats->rx_errors += rx_errors; 792 stats->tx_packets += tx_packets; 793 stats->tx_bytes += tx_bytes; 794 } 795 796 stats->tx_dropped = dev->stats.tx_dropped; 797 } 798 799 /* Rx descriptors helper methods */ 800 801 /* Checks whether the RX descriptor having this status is both the first 802 * and the last descriptor for the RX packet. Each RX packet is currently 803 * received through a single RX descriptor, so not having each RX 804 * descriptor with its first and last bits set is an error 805 */ 806 static int mvneta_rxq_desc_is_first_last(u32 status) 807 { 808 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 809 MVNETA_RXD_FIRST_LAST_DESC; 810 } 811 812 /* Add number of descriptors ready to receive new packets */ 813 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 814 struct mvneta_rx_queue *rxq, 815 int ndescs) 816 { 817 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 818 * be added at once 819 */ 820 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 821 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 822 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 823 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 824 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 825 } 826 827 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 828 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 829 } 830 831 /* Get number of RX descriptors occupied by received packets */ 832 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq) 834 { 835 u32 val; 836 837 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 838 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 839 } 840 841 /* Update num of rx desc called upon return from rx path or 842 * from mvneta_rxq_drop_pkts(). 843 */ 844 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 845 struct mvneta_rx_queue *rxq, 846 int rx_done, int rx_filled) 847 { 848 u32 val; 849 850 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 851 val = rx_done | 852 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 853 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 854 return; 855 } 856 857 /* Only 255 descriptors can be added at once */ 858 while ((rx_done > 0) || (rx_filled > 0)) { 859 if (rx_done <= 0xff) { 860 val = rx_done; 861 rx_done = 0; 862 } else { 863 val = 0xff; 864 rx_done -= 0xff; 865 } 866 if (rx_filled <= 0xff) { 867 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 868 rx_filled = 0; 869 } else { 870 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 871 rx_filled -= 0xff; 872 } 873 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 874 } 875 } 876 877 /* Get pointer to next RX descriptor to be processed by SW */ 878 static struct mvneta_rx_desc * 879 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 880 { 881 int rx_desc = rxq->next_desc_to_proc; 882 883 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 884 prefetch(rxq->descs + rxq->next_desc_to_proc); 885 return rxq->descs + rx_desc; 886 } 887 888 /* Change maximum receive size of the port. */ 889 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 890 { 891 u32 val; 892 893 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 894 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 895 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 896 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 897 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 898 } 899 900 901 /* Set rx queue offset */ 902 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq, 904 int offset) 905 { 906 u32 val; 907 908 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 909 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 910 911 /* Offset is in */ 912 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 913 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 914 } 915 916 917 /* Tx descriptors helper methods */ 918 919 /* Update HW with number of TX descriptors to be sent */ 920 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 921 struct mvneta_tx_queue *txq, 922 int pend_desc) 923 { 924 u32 val; 925 926 pend_desc += txq->pending; 927 928 /* Only 255 Tx descriptors can be added at once */ 929 do { 930 val = min(pend_desc, 255); 931 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 932 pend_desc -= val; 933 } while (pend_desc > 0); 934 txq->pending = 0; 935 } 936 937 /* Get pointer to next TX descriptor to be processed (send) by HW */ 938 static struct mvneta_tx_desc * 939 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 940 { 941 int tx_desc = txq->next_desc_to_proc; 942 943 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 944 return txq->descs + tx_desc; 945 } 946 947 /* Release the last allocated TX descriptor. Useful to handle DMA 948 * mapping failures in the TX path. 949 */ 950 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 951 { 952 if (txq->next_desc_to_proc == 0) 953 txq->next_desc_to_proc = txq->last_desc - 1; 954 else 955 txq->next_desc_to_proc--; 956 } 957 958 /* Set rxq buf size */ 959 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 960 struct mvneta_rx_queue *rxq, 961 int buf_size) 962 { 963 u32 val; 964 965 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 966 967 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 968 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 969 970 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 971 } 972 973 /* Disable buffer management (BM) */ 974 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 975 struct mvneta_rx_queue *rxq) 976 { 977 u32 val; 978 979 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 980 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 981 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 982 } 983 984 /* Enable buffer management (BM) */ 985 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 986 struct mvneta_rx_queue *rxq) 987 { 988 u32 val; 989 990 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 991 val |= MVNETA_RXQ_HW_BUF_ALLOC; 992 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 993 } 994 995 /* Notify HW about port's assignment of pool for bigger packets */ 996 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 997 struct mvneta_rx_queue *rxq) 998 { 999 u32 val; 1000 1001 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1002 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1003 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1004 1005 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1006 } 1007 1008 /* Notify HW about port's assignment of pool for smaller packets */ 1009 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1010 struct mvneta_rx_queue *rxq) 1011 { 1012 u32 val; 1013 1014 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1015 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1016 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1017 1018 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1019 } 1020 1021 /* Set port's receive buffer size for assigned BM pool */ 1022 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1023 int buf_size, 1024 u8 pool_id) 1025 { 1026 u32 val; 1027 1028 if (!IS_ALIGNED(buf_size, 8)) { 1029 dev_warn(pp->dev->dev.parent, 1030 "illegal buf_size value %d, round to %d\n", 1031 buf_size, ALIGN(buf_size, 8)); 1032 buf_size = ALIGN(buf_size, 8); 1033 } 1034 1035 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1036 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1037 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1038 } 1039 1040 /* Configure MBUS window in order to enable access BM internal SRAM */ 1041 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1042 u8 target, u8 attr) 1043 { 1044 u32 win_enable, win_protect; 1045 int i; 1046 1047 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1048 1049 if (pp->bm_win_id < 0) { 1050 /* Find first not occupied window */ 1051 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1052 if (win_enable & (1 << i)) { 1053 pp->bm_win_id = i; 1054 break; 1055 } 1056 } 1057 if (i == MVNETA_MAX_DECODE_WIN) 1058 return -ENOMEM; 1059 } else { 1060 i = pp->bm_win_id; 1061 } 1062 1063 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1064 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1065 1066 if (i < 4) 1067 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1068 1069 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1070 (attr << 8) | target); 1071 1072 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1073 1074 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1075 win_protect |= 3 << (2 * i); 1076 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1077 1078 win_enable &= ~(1 << i); 1079 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1080 1081 return 0; 1082 } 1083 1084 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1085 { 1086 u32 wsize; 1087 u8 target, attr; 1088 int err; 1089 1090 /* Get BM window information */ 1091 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1092 &target, &attr); 1093 if (err < 0) 1094 return err; 1095 1096 pp->bm_win_id = -1; 1097 1098 /* Open NETA -> BM window */ 1099 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1100 target, attr); 1101 if (err < 0) { 1102 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1103 return err; 1104 } 1105 return 0; 1106 } 1107 1108 /* Assign and initialize pools for port. In case of fail 1109 * buffer manager will remain disabled for current port. 1110 */ 1111 static int mvneta_bm_port_init(struct platform_device *pdev, 1112 struct mvneta_port *pp) 1113 { 1114 struct device_node *dn = pdev->dev.of_node; 1115 u32 long_pool_id, short_pool_id; 1116 1117 if (!pp->neta_armada3700) { 1118 int ret; 1119 1120 ret = mvneta_bm_port_mbus_init(pp); 1121 if (ret) 1122 return ret; 1123 } 1124 1125 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1126 netdev_info(pp->dev, "missing long pool id\n"); 1127 return -EINVAL; 1128 } 1129 1130 /* Create port's long pool depending on mtu */ 1131 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1132 MVNETA_BM_LONG, pp->id, 1133 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1134 if (!pp->pool_long) { 1135 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1136 return -ENOMEM; 1137 } 1138 1139 pp->pool_long->port_map |= 1 << pp->id; 1140 1141 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1142 pp->pool_long->id); 1143 1144 /* If short pool id is not defined, assume using single pool */ 1145 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1146 short_pool_id = long_pool_id; 1147 1148 /* Create port's short pool */ 1149 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1150 MVNETA_BM_SHORT, pp->id, 1151 MVNETA_BM_SHORT_PKT_SIZE); 1152 if (!pp->pool_short) { 1153 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1154 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1155 return -ENOMEM; 1156 } 1157 1158 if (short_pool_id != long_pool_id) { 1159 pp->pool_short->port_map |= 1 << pp->id; 1160 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1161 pp->pool_short->id); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* Update settings of a pool for bigger packets */ 1168 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1169 { 1170 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1171 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1172 int num; 1173 1174 /* Release all buffers from long pool */ 1175 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1176 if (hwbm_pool->buf_num) { 1177 WARN(1, "cannot free all buffers in pool %d\n", 1178 bm_pool->id); 1179 goto bm_mtu_err; 1180 } 1181 1182 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1183 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1184 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1185 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1186 1187 /* Fill entire long pool */ 1188 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1189 if (num != hwbm_pool->size) { 1190 WARN(1, "pool %d: %d of %d allocated\n", 1191 bm_pool->id, num, hwbm_pool->size); 1192 goto bm_mtu_err; 1193 } 1194 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1195 1196 return; 1197 1198 bm_mtu_err: 1199 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1200 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1201 1202 pp->bm_priv = NULL; 1203 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1204 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1205 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1206 } 1207 1208 /* Start the Ethernet port RX and TX activity */ 1209 static void mvneta_port_up(struct mvneta_port *pp) 1210 { 1211 int queue; 1212 u32 q_map; 1213 1214 /* Enable all initialized TXs. */ 1215 q_map = 0; 1216 for (queue = 0; queue < txq_number; queue++) { 1217 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1218 if (txq->descs) 1219 q_map |= (1 << queue); 1220 } 1221 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1222 1223 q_map = 0; 1224 /* Enable all initialized RXQs. */ 1225 for (queue = 0; queue < rxq_number; queue++) { 1226 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1227 1228 if (rxq->descs) 1229 q_map |= (1 << queue); 1230 } 1231 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1232 } 1233 1234 /* Stop the Ethernet port activity */ 1235 static void mvneta_port_down(struct mvneta_port *pp) 1236 { 1237 u32 val; 1238 int count; 1239 1240 /* Stop Rx port activity. Check port Rx activity. */ 1241 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1242 1243 /* Issue stop command for active channels only */ 1244 if (val != 0) 1245 mvreg_write(pp, MVNETA_RXQ_CMD, 1246 val << MVNETA_RXQ_DISABLE_SHIFT); 1247 1248 /* Wait for all Rx activity to terminate. */ 1249 count = 0; 1250 do { 1251 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1252 netdev_warn(pp->dev, 1253 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1254 val); 1255 break; 1256 } 1257 mdelay(1); 1258 1259 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1260 } while (val & MVNETA_RXQ_ENABLE_MASK); 1261 1262 /* Stop Tx port activity. Check port Tx activity. Issue stop 1263 * command for active channels only 1264 */ 1265 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1266 1267 if (val != 0) 1268 mvreg_write(pp, MVNETA_TXQ_CMD, 1269 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1270 1271 /* Wait for all Tx activity to terminate. */ 1272 count = 0; 1273 do { 1274 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1275 netdev_warn(pp->dev, 1276 "TIMEOUT for TX stopped status=0x%08x\n", 1277 val); 1278 break; 1279 } 1280 mdelay(1); 1281 1282 /* Check TX Command reg that all Txqs are stopped */ 1283 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1284 1285 } while (val & MVNETA_TXQ_ENABLE_MASK); 1286 1287 /* Double check to verify that TX FIFO is empty */ 1288 count = 0; 1289 do { 1290 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1291 netdev_warn(pp->dev, 1292 "TX FIFO empty timeout status=0x%08x\n", 1293 val); 1294 break; 1295 } 1296 mdelay(1); 1297 1298 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1299 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1300 (val & MVNETA_TX_IN_PRGRS)); 1301 1302 udelay(200); 1303 } 1304 1305 /* Enable the port by setting the port enable bit of the MAC control register */ 1306 static void mvneta_port_enable(struct mvneta_port *pp) 1307 { 1308 u32 val; 1309 1310 /* Enable port */ 1311 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1312 val |= MVNETA_GMAC0_PORT_ENABLE; 1313 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1314 } 1315 1316 /* Disable the port and wait for about 200 usec before retuning */ 1317 static void mvneta_port_disable(struct mvneta_port *pp) 1318 { 1319 u32 val; 1320 1321 /* Reset the Enable bit in the Serial Control Register */ 1322 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1323 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1324 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1325 1326 udelay(200); 1327 } 1328 1329 /* Multicast tables methods */ 1330 1331 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1332 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1333 { 1334 int offset; 1335 u32 val; 1336 1337 if (queue == -1) { 1338 val = 0; 1339 } else { 1340 val = 0x1 | (queue << 1); 1341 val |= (val << 24) | (val << 16) | (val << 8); 1342 } 1343 1344 for (offset = 0; offset <= 0xc; offset += 4) 1345 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1346 } 1347 1348 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1349 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1350 { 1351 int offset; 1352 u32 val; 1353 1354 if (queue == -1) { 1355 val = 0; 1356 } else { 1357 val = 0x1 | (queue << 1); 1358 val |= (val << 24) | (val << 16) | (val << 8); 1359 } 1360 1361 for (offset = 0; offset <= 0xfc; offset += 4) 1362 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1363 1364 } 1365 1366 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1367 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1368 { 1369 int offset; 1370 u32 val; 1371 1372 if (queue == -1) { 1373 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1374 val = 0; 1375 } else { 1376 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1377 val = 0x1 | (queue << 1); 1378 val |= (val << 24) | (val << 16) | (val << 8); 1379 } 1380 1381 for (offset = 0; offset <= 0xfc; offset += 4) 1382 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1383 } 1384 1385 static void mvneta_percpu_unmask_interrupt(void *arg) 1386 { 1387 struct mvneta_port *pp = arg; 1388 1389 /* All the queue are unmasked, but actually only the ones 1390 * mapped to this CPU will be unmasked 1391 */ 1392 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1393 MVNETA_RX_INTR_MASK_ALL | 1394 MVNETA_TX_INTR_MASK_ALL | 1395 MVNETA_MISCINTR_INTR_MASK); 1396 } 1397 1398 static void mvneta_percpu_mask_interrupt(void *arg) 1399 { 1400 struct mvneta_port *pp = arg; 1401 1402 /* All the queue are masked, but actually only the ones 1403 * mapped to this CPU will be masked 1404 */ 1405 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1406 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1407 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1408 } 1409 1410 static void mvneta_percpu_clear_intr_cause(void *arg) 1411 { 1412 struct mvneta_port *pp = arg; 1413 1414 /* All the queue are cleared, but actually only the ones 1415 * mapped to this CPU will be cleared 1416 */ 1417 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1418 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1419 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1420 } 1421 1422 /* This method sets defaults to the NETA port: 1423 * Clears interrupt Cause and Mask registers. 1424 * Clears all MAC tables. 1425 * Sets defaults to all registers. 1426 * Resets RX and TX descriptor rings. 1427 * Resets PHY. 1428 * This method can be called after mvneta_port_down() to return the port 1429 * settings to defaults. 1430 */ 1431 static void mvneta_defaults_set(struct mvneta_port *pp) 1432 { 1433 int cpu; 1434 int queue; 1435 u32 val; 1436 int max_cpu = num_present_cpus(); 1437 1438 /* Clear all Cause registers */ 1439 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1440 1441 /* Mask all interrupts */ 1442 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1443 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1444 1445 /* Enable MBUS Retry bit16 */ 1446 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1447 1448 /* Set CPU queue access map. CPUs are assigned to the RX and 1449 * TX queues modulo their number. If there is only one TX 1450 * queue then it is assigned to the CPU associated to the 1451 * default RX queue. 1452 */ 1453 for_each_present_cpu(cpu) { 1454 int rxq_map = 0, txq_map = 0; 1455 int rxq, txq; 1456 if (!pp->neta_armada3700) { 1457 for (rxq = 0; rxq < rxq_number; rxq++) 1458 if ((rxq % max_cpu) == cpu) 1459 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1460 1461 for (txq = 0; txq < txq_number; txq++) 1462 if ((txq % max_cpu) == cpu) 1463 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1464 1465 /* With only one TX queue we configure a special case 1466 * which will allow to get all the irq on a single 1467 * CPU 1468 */ 1469 if (txq_number == 1) 1470 txq_map = (cpu == pp->rxq_def) ? 1471 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1472 1473 } else { 1474 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1475 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1476 } 1477 1478 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1479 } 1480 1481 /* Reset RX and TX DMAs */ 1482 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1483 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1484 1485 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1486 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1487 for (queue = 0; queue < txq_number; queue++) { 1488 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1489 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1490 } 1491 1492 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1493 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1494 1495 /* Set Port Acceleration Mode */ 1496 if (pp->bm_priv) 1497 /* HW buffer management + legacy parser */ 1498 val = MVNETA_ACC_MODE_EXT2; 1499 else 1500 /* SW buffer management + legacy parser */ 1501 val = MVNETA_ACC_MODE_EXT1; 1502 mvreg_write(pp, MVNETA_ACC_MODE, val); 1503 1504 if (pp->bm_priv) 1505 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1506 1507 /* Update val of portCfg register accordingly with all RxQueue types */ 1508 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1509 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1510 1511 val = 0; 1512 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1513 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1514 1515 /* Build PORT_SDMA_CONFIG_REG */ 1516 val = 0; 1517 1518 /* Default burst size */ 1519 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1520 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1521 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1522 1523 #if defined(__BIG_ENDIAN) 1524 val |= MVNETA_DESC_SWAP; 1525 #endif 1526 1527 /* Assign port SDMA configuration */ 1528 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1529 1530 /* Disable PHY polling in hardware, since we're using the 1531 * kernel phylib to do this. 1532 */ 1533 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1534 val &= ~MVNETA_PHY_POLLING_ENABLE; 1535 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1536 1537 mvneta_set_ucast_table(pp, -1); 1538 mvneta_set_special_mcast_table(pp, -1); 1539 mvneta_set_other_mcast_table(pp, -1); 1540 1541 /* Set port interrupt enable register - default enable all */ 1542 mvreg_write(pp, MVNETA_INTR_ENABLE, 1543 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1544 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1545 1546 mvneta_mib_counters_clear(pp); 1547 } 1548 1549 /* Set max sizes for tx queues */ 1550 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1551 1552 { 1553 u32 val, size, mtu; 1554 int queue; 1555 1556 mtu = max_tx_size * 8; 1557 if (mtu > MVNETA_TX_MTU_MAX) 1558 mtu = MVNETA_TX_MTU_MAX; 1559 1560 /* Set MTU */ 1561 val = mvreg_read(pp, MVNETA_TX_MTU); 1562 val &= ~MVNETA_TX_MTU_MAX; 1563 val |= mtu; 1564 mvreg_write(pp, MVNETA_TX_MTU, val); 1565 1566 /* TX token size and all TXQs token size must be larger that MTU */ 1567 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1568 1569 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1570 if (size < mtu) { 1571 size = mtu; 1572 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1573 val |= size; 1574 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1575 } 1576 for (queue = 0; queue < txq_number; queue++) { 1577 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1578 1579 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1580 if (size < mtu) { 1581 size = mtu; 1582 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1583 val |= size; 1584 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1585 } 1586 } 1587 } 1588 1589 /* Set unicast address */ 1590 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1591 int queue) 1592 { 1593 unsigned int unicast_reg; 1594 unsigned int tbl_offset; 1595 unsigned int reg_offset; 1596 1597 /* Locate the Unicast table entry */ 1598 last_nibble = (0xf & last_nibble); 1599 1600 /* offset from unicast tbl base */ 1601 tbl_offset = (last_nibble / 4) * 4; 1602 1603 /* offset within the above reg */ 1604 reg_offset = last_nibble % 4; 1605 1606 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1607 1608 if (queue == -1) { 1609 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1610 unicast_reg &= ~(0xff << (8 * reg_offset)); 1611 } else { 1612 unicast_reg &= ~(0xff << (8 * reg_offset)); 1613 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1614 } 1615 1616 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1617 } 1618 1619 /* Set mac address */ 1620 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1621 int queue) 1622 { 1623 unsigned int mac_h; 1624 unsigned int mac_l; 1625 1626 if (queue != -1) { 1627 mac_l = (addr[4] << 8) | (addr[5]); 1628 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1629 (addr[2] << 8) | (addr[3] << 0); 1630 1631 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1632 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1633 } 1634 1635 /* Accept frames of this address */ 1636 mvneta_set_ucast_addr(pp, addr[5], queue); 1637 } 1638 1639 /* Set the number of packets that will be received before RX interrupt 1640 * will be generated by HW. 1641 */ 1642 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1643 struct mvneta_rx_queue *rxq, u32 value) 1644 { 1645 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1646 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1647 } 1648 1649 /* Set the time delay in usec before RX interrupt will be generated by 1650 * HW. 1651 */ 1652 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1653 struct mvneta_rx_queue *rxq, u32 value) 1654 { 1655 u32 val; 1656 unsigned long clk_rate; 1657 1658 clk_rate = clk_get_rate(pp->clk); 1659 val = (clk_rate / 1000000) * value; 1660 1661 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1662 } 1663 1664 /* Set threshold for TX_DONE pkts coalescing */ 1665 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1666 struct mvneta_tx_queue *txq, u32 value) 1667 { 1668 u32 val; 1669 1670 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1671 1672 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1673 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1674 1675 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1676 } 1677 1678 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1679 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1680 u32 phys_addr, void *virt_addr, 1681 struct mvneta_rx_queue *rxq) 1682 { 1683 int i; 1684 1685 rx_desc->buf_phys_addr = phys_addr; 1686 i = rx_desc - rxq->descs; 1687 rxq->buf_virt_addr[i] = virt_addr; 1688 } 1689 1690 /* Decrement sent descriptors counter */ 1691 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1692 struct mvneta_tx_queue *txq, 1693 int sent_desc) 1694 { 1695 u32 val; 1696 1697 /* Only 255 TX descriptors can be updated at once */ 1698 while (sent_desc > 0xff) { 1699 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1700 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1701 sent_desc = sent_desc - 0xff; 1702 } 1703 1704 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1705 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1706 } 1707 1708 /* Get number of TX descriptors already sent by HW */ 1709 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1710 struct mvneta_tx_queue *txq) 1711 { 1712 u32 val; 1713 int sent_desc; 1714 1715 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1716 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1717 MVNETA_TXQ_SENT_DESC_SHIFT; 1718 1719 return sent_desc; 1720 } 1721 1722 /* Get number of sent descriptors and decrement counter. 1723 * The number of sent descriptors is returned. 1724 */ 1725 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1726 struct mvneta_tx_queue *txq) 1727 { 1728 int sent_desc; 1729 1730 /* Get number of sent descriptors */ 1731 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1732 1733 /* Decrement sent descriptors counter */ 1734 if (sent_desc) 1735 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1736 1737 return sent_desc; 1738 } 1739 1740 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1741 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1742 int ip_hdr_len, int l4_proto) 1743 { 1744 u32 command; 1745 1746 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1747 * G_L4_chk, L4_type; required only for checksum 1748 * calculation 1749 */ 1750 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1751 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1752 1753 if (l3_proto == htons(ETH_P_IP)) 1754 command |= MVNETA_TXD_IP_CSUM; 1755 else 1756 command |= MVNETA_TX_L3_IP6; 1757 1758 if (l4_proto == IPPROTO_TCP) 1759 command |= MVNETA_TX_L4_CSUM_FULL; 1760 else if (l4_proto == IPPROTO_UDP) 1761 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1762 else 1763 command |= MVNETA_TX_L4_CSUM_NOT; 1764 1765 return command; 1766 } 1767 1768 1769 /* Display more error info */ 1770 static void mvneta_rx_error(struct mvneta_port *pp, 1771 struct mvneta_rx_desc *rx_desc) 1772 { 1773 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1774 u32 status = rx_desc->status; 1775 1776 /* update per-cpu counter */ 1777 u64_stats_update_begin(&stats->syncp); 1778 stats->rx_errors++; 1779 u64_stats_update_end(&stats->syncp); 1780 1781 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1782 case MVNETA_RXD_ERR_CRC: 1783 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1784 status, rx_desc->data_size); 1785 break; 1786 case MVNETA_RXD_ERR_OVERRUN: 1787 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1788 status, rx_desc->data_size); 1789 break; 1790 case MVNETA_RXD_ERR_LEN: 1791 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1792 status, rx_desc->data_size); 1793 break; 1794 case MVNETA_RXD_ERR_RESOURCE: 1795 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1796 status, rx_desc->data_size); 1797 break; 1798 } 1799 } 1800 1801 /* Handle RX checksum offload based on the descriptor's status */ 1802 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1803 struct sk_buff *skb) 1804 { 1805 if ((pp->dev->features & NETIF_F_RXCSUM) && 1806 (status & MVNETA_RXD_L3_IP4) && 1807 (status & MVNETA_RXD_L4_CSUM_OK)) { 1808 skb->csum = 0; 1809 skb->ip_summed = CHECKSUM_UNNECESSARY; 1810 return; 1811 } 1812 1813 skb->ip_summed = CHECKSUM_NONE; 1814 } 1815 1816 /* Return tx queue pointer (find last set bit) according to <cause> returned 1817 * form tx_done reg. <cause> must not be null. The return value is always a 1818 * valid queue for matching the first one found in <cause>. 1819 */ 1820 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1821 u32 cause) 1822 { 1823 int queue = fls(cause) - 1; 1824 1825 return &pp->txqs[queue]; 1826 } 1827 1828 /* Free tx queue skbuffs */ 1829 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1830 struct mvneta_tx_queue *txq, int num, 1831 struct netdev_queue *nq) 1832 { 1833 unsigned int bytes_compl = 0, pkts_compl = 0; 1834 int i; 1835 1836 for (i = 0; i < num; i++) { 1837 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1838 struct mvneta_tx_desc *tx_desc = txq->descs + 1839 txq->txq_get_index; 1840 1841 mvneta_txq_inc_get(txq); 1842 1843 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1844 buf->type != MVNETA_TYPE_XDP_TX) 1845 dma_unmap_single(pp->dev->dev.parent, 1846 tx_desc->buf_phys_addr, 1847 tx_desc->data_size, DMA_TO_DEVICE); 1848 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1849 bytes_compl += buf->skb->len; 1850 pkts_compl++; 1851 dev_kfree_skb_any(buf->skb); 1852 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1853 buf->type == MVNETA_TYPE_XDP_NDO) { 1854 xdp_return_frame(buf->xdpf); 1855 } 1856 } 1857 1858 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1859 } 1860 1861 /* Handle end of transmission */ 1862 static void mvneta_txq_done(struct mvneta_port *pp, 1863 struct mvneta_tx_queue *txq) 1864 { 1865 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1866 int tx_done; 1867 1868 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1869 if (!tx_done) 1870 return; 1871 1872 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1873 1874 txq->count -= tx_done; 1875 1876 if (netif_tx_queue_stopped(nq)) { 1877 if (txq->count <= txq->tx_wake_threshold) 1878 netif_tx_wake_queue(nq); 1879 } 1880 } 1881 1882 /* Refill processing for SW buffer management */ 1883 /* Allocate page per descriptor */ 1884 static int mvneta_rx_refill(struct mvneta_port *pp, 1885 struct mvneta_rx_desc *rx_desc, 1886 struct mvneta_rx_queue *rxq, 1887 gfp_t gfp_mask) 1888 { 1889 dma_addr_t phys_addr; 1890 struct page *page; 1891 1892 page = page_pool_alloc_pages(rxq->page_pool, 1893 gfp_mask | __GFP_NOWARN); 1894 if (!page) 1895 return -ENOMEM; 1896 1897 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1898 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1899 1900 return 0; 1901 } 1902 1903 /* Handle tx checksum */ 1904 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1905 { 1906 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1907 int ip_hdr_len = 0; 1908 __be16 l3_proto = vlan_get_protocol(skb); 1909 u8 l4_proto; 1910 1911 if (l3_proto == htons(ETH_P_IP)) { 1912 struct iphdr *ip4h = ip_hdr(skb); 1913 1914 /* Calculate IPv4 checksum and L4 checksum */ 1915 ip_hdr_len = ip4h->ihl; 1916 l4_proto = ip4h->protocol; 1917 } else if (l3_proto == htons(ETH_P_IPV6)) { 1918 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1919 1920 /* Read l4_protocol from one of IPv6 extra headers */ 1921 if (skb_network_header_len(skb) > 0) 1922 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1923 l4_proto = ip6h->nexthdr; 1924 } else 1925 return MVNETA_TX_L4_CSUM_NOT; 1926 1927 return mvneta_txq_desc_csum(skb_network_offset(skb), 1928 l3_proto, ip_hdr_len, l4_proto); 1929 } 1930 1931 return MVNETA_TX_L4_CSUM_NOT; 1932 } 1933 1934 /* Drop packets received by the RXQ and free buffers */ 1935 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1936 struct mvneta_rx_queue *rxq) 1937 { 1938 int rx_done, i; 1939 1940 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1941 if (rx_done) 1942 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1943 1944 if (pp->bm_priv) { 1945 for (i = 0; i < rx_done; i++) { 1946 struct mvneta_rx_desc *rx_desc = 1947 mvneta_rxq_next_desc_get(rxq); 1948 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1949 struct mvneta_bm_pool *bm_pool; 1950 1951 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1952 /* Return dropped buffer to the pool */ 1953 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1954 rx_desc->buf_phys_addr); 1955 } 1956 return; 1957 } 1958 1959 for (i = 0; i < rxq->size; i++) { 1960 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1961 void *data = rxq->buf_virt_addr[i]; 1962 if (!data || !(rx_desc->buf_phys_addr)) 1963 continue; 1964 1965 page_pool_put_full_page(rxq->page_pool, data, false); 1966 } 1967 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1968 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1969 page_pool_destroy(rxq->page_pool); 1970 rxq->page_pool = NULL; 1971 } 1972 1973 static void 1974 mvneta_update_stats(struct mvneta_port *pp, 1975 struct mvneta_stats *ps) 1976 { 1977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1978 1979 u64_stats_update_begin(&stats->syncp); 1980 stats->es.ps.rx_packets += ps->rx_packets; 1981 stats->es.ps.rx_bytes += ps->rx_bytes; 1982 /* xdp */ 1983 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1984 stats->es.ps.xdp_pass += ps->xdp_pass; 1985 stats->es.ps.xdp_drop += ps->xdp_drop; 1986 u64_stats_update_end(&stats->syncp); 1987 } 1988 1989 static inline 1990 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1991 { 1992 struct mvneta_rx_desc *rx_desc; 1993 int curr_desc = rxq->first_to_refill; 1994 int i; 1995 1996 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1997 rx_desc = rxq->descs + curr_desc; 1998 if (!(rx_desc->buf_phys_addr)) { 1999 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2000 struct mvneta_pcpu_stats *stats; 2001 2002 pr_err("Can't refill queue %d. Done %d from %d\n", 2003 rxq->id, i, rxq->refill_num); 2004 2005 stats = this_cpu_ptr(pp->stats); 2006 u64_stats_update_begin(&stats->syncp); 2007 stats->es.refill_error++; 2008 u64_stats_update_end(&stats->syncp); 2009 break; 2010 } 2011 } 2012 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2013 } 2014 rxq->refill_num -= i; 2015 rxq->first_to_refill = curr_desc; 2016 2017 return i; 2018 } 2019 2020 static int 2021 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2022 struct xdp_frame *xdpf, bool dma_map) 2023 { 2024 struct mvneta_tx_desc *tx_desc; 2025 struct mvneta_tx_buf *buf; 2026 dma_addr_t dma_addr; 2027 2028 if (txq->count >= txq->tx_stop_threshold) 2029 return MVNETA_XDP_DROPPED; 2030 2031 tx_desc = mvneta_txq_next_desc_get(txq); 2032 2033 buf = &txq->buf[txq->txq_put_index]; 2034 if (dma_map) { 2035 /* ndo_xdp_xmit */ 2036 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2037 xdpf->len, DMA_TO_DEVICE); 2038 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2039 mvneta_txq_desc_put(txq); 2040 return MVNETA_XDP_DROPPED; 2041 } 2042 buf->type = MVNETA_TYPE_XDP_NDO; 2043 } else { 2044 struct page *page = virt_to_page(xdpf->data); 2045 2046 dma_addr = page_pool_get_dma_addr(page) + 2047 sizeof(*xdpf) + xdpf->headroom; 2048 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2049 xdpf->len, DMA_BIDIRECTIONAL); 2050 buf->type = MVNETA_TYPE_XDP_TX; 2051 } 2052 buf->xdpf = xdpf; 2053 2054 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2055 tx_desc->buf_phys_addr = dma_addr; 2056 tx_desc->data_size = xdpf->len; 2057 2058 mvneta_txq_inc_put(txq); 2059 txq->pending++; 2060 txq->count++; 2061 2062 return MVNETA_XDP_TX; 2063 } 2064 2065 static int 2066 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2067 { 2068 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2069 struct mvneta_tx_queue *txq; 2070 struct netdev_queue *nq; 2071 struct xdp_frame *xdpf; 2072 int cpu; 2073 u32 ret; 2074 2075 xdpf = convert_to_xdp_frame(xdp); 2076 if (unlikely(!xdpf)) 2077 return MVNETA_XDP_DROPPED; 2078 2079 cpu = smp_processor_id(); 2080 txq = &pp->txqs[cpu % txq_number]; 2081 nq = netdev_get_tx_queue(pp->dev, txq->id); 2082 2083 __netif_tx_lock(nq, cpu); 2084 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2085 if (ret == MVNETA_XDP_TX) { 2086 u64_stats_update_begin(&stats->syncp); 2087 stats->es.ps.tx_bytes += xdpf->len; 2088 stats->es.ps.tx_packets++; 2089 stats->es.ps.xdp_tx++; 2090 u64_stats_update_end(&stats->syncp); 2091 2092 mvneta_txq_pend_desc_add(pp, txq, 0); 2093 } else { 2094 u64_stats_update_begin(&stats->syncp); 2095 stats->es.ps.xdp_tx_err++; 2096 u64_stats_update_end(&stats->syncp); 2097 } 2098 __netif_tx_unlock(nq); 2099 2100 return ret; 2101 } 2102 2103 static int 2104 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2105 struct xdp_frame **frames, u32 flags) 2106 { 2107 struct mvneta_port *pp = netdev_priv(dev); 2108 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2109 int i, nxmit_byte = 0, nxmit = num_frame; 2110 int cpu = smp_processor_id(); 2111 struct mvneta_tx_queue *txq; 2112 struct netdev_queue *nq; 2113 u32 ret; 2114 2115 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2116 return -EINVAL; 2117 2118 txq = &pp->txqs[cpu % txq_number]; 2119 nq = netdev_get_tx_queue(pp->dev, txq->id); 2120 2121 __netif_tx_lock(nq, cpu); 2122 for (i = 0; i < num_frame; i++) { 2123 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2124 if (ret == MVNETA_XDP_TX) { 2125 nxmit_byte += frames[i]->len; 2126 } else { 2127 xdp_return_frame_rx_napi(frames[i]); 2128 nxmit--; 2129 } 2130 } 2131 2132 if (unlikely(flags & XDP_XMIT_FLUSH)) 2133 mvneta_txq_pend_desc_add(pp, txq, 0); 2134 __netif_tx_unlock(nq); 2135 2136 u64_stats_update_begin(&stats->syncp); 2137 stats->es.ps.tx_bytes += nxmit_byte; 2138 stats->es.ps.tx_packets += nxmit; 2139 stats->es.ps.xdp_xmit += nxmit; 2140 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2141 u64_stats_update_end(&stats->syncp); 2142 2143 return nxmit; 2144 } 2145 2146 static int 2147 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2148 struct bpf_prog *prog, struct xdp_buff *xdp, 2149 struct mvneta_stats *stats) 2150 { 2151 unsigned int len; 2152 u32 ret, act; 2153 2154 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2155 act = bpf_prog_run_xdp(prog, xdp); 2156 2157 switch (act) { 2158 case XDP_PASS: 2159 stats->xdp_pass++; 2160 return MVNETA_XDP_PASS; 2161 case XDP_REDIRECT: { 2162 int err; 2163 2164 err = xdp_do_redirect(pp->dev, xdp, prog); 2165 if (unlikely(err)) { 2166 ret = MVNETA_XDP_DROPPED; 2167 page_pool_put_page(rxq->page_pool, 2168 virt_to_head_page(xdp->data), len, 2169 true); 2170 } else { 2171 ret = MVNETA_XDP_REDIR; 2172 stats->xdp_redirect++; 2173 } 2174 break; 2175 } 2176 case XDP_TX: 2177 ret = mvneta_xdp_xmit_back(pp, xdp); 2178 if (ret != MVNETA_XDP_TX) 2179 page_pool_put_page(rxq->page_pool, 2180 virt_to_head_page(xdp->data), len, 2181 true); 2182 break; 2183 default: 2184 bpf_warn_invalid_xdp_action(act); 2185 /* fall through */ 2186 case XDP_ABORTED: 2187 trace_xdp_exception(pp->dev, prog, act); 2188 /* fall through */ 2189 case XDP_DROP: 2190 page_pool_put_page(rxq->page_pool, 2191 virt_to_head_page(xdp->data), len, true); 2192 ret = MVNETA_XDP_DROPPED; 2193 stats->xdp_drop++; 2194 break; 2195 } 2196 2197 stats->rx_bytes += xdp->data_end - xdp->data; 2198 stats->rx_packets++; 2199 2200 return ret; 2201 } 2202 2203 static int 2204 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2205 struct mvneta_rx_desc *rx_desc, 2206 struct mvneta_rx_queue *rxq, 2207 struct xdp_buff *xdp, 2208 struct bpf_prog *xdp_prog, 2209 struct page *page, 2210 struct mvneta_stats *stats) 2211 { 2212 unsigned char *data = page_address(page); 2213 int data_len = -MVNETA_MH_SIZE, len; 2214 struct net_device *dev = pp->dev; 2215 enum dma_data_direction dma_dir; 2216 int ret = 0; 2217 2218 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2219 len = MVNETA_MAX_RX_BUF_SIZE; 2220 data_len += len; 2221 } else { 2222 len = rx_desc->data_size; 2223 data_len += len - ETH_FCS_LEN; 2224 } 2225 2226 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2227 dma_sync_single_for_cpu(dev->dev.parent, 2228 rx_desc->buf_phys_addr, 2229 len, dma_dir); 2230 2231 /* Prefetch header */ 2232 prefetch(data); 2233 2234 xdp->data_hard_start = data; 2235 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2236 xdp->data_end = xdp->data + data_len; 2237 xdp_set_data_meta_invalid(xdp); 2238 2239 if (xdp_prog) { 2240 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats); 2241 if (ret) 2242 goto out; 2243 } 2244 2245 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2246 if (unlikely(!rxq->skb)) { 2247 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2248 2249 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2250 2251 u64_stats_update_begin(&stats->syncp); 2252 stats->es.skb_alloc_error++; 2253 stats->rx_dropped++; 2254 u64_stats_update_end(&stats->syncp); 2255 2256 return -ENOMEM; 2257 } 2258 page_pool_release_page(rxq->page_pool, page); 2259 2260 skb_reserve(rxq->skb, 2261 xdp->data - xdp->data_hard_start); 2262 skb_put(rxq->skb, xdp->data_end - xdp->data); 2263 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2264 2265 rxq->left_size = rx_desc->data_size - len; 2266 2267 out: 2268 rx_desc->buf_phys_addr = 0; 2269 2270 return ret; 2271 } 2272 2273 static void 2274 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2275 struct mvneta_rx_desc *rx_desc, 2276 struct mvneta_rx_queue *rxq, 2277 struct page *page) 2278 { 2279 struct net_device *dev = pp->dev; 2280 enum dma_data_direction dma_dir; 2281 int data_len, len; 2282 2283 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2284 len = MVNETA_MAX_RX_BUF_SIZE; 2285 data_len = len; 2286 } else { 2287 len = rxq->left_size; 2288 data_len = len - ETH_FCS_LEN; 2289 } 2290 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2291 dma_sync_single_for_cpu(dev->dev.parent, 2292 rx_desc->buf_phys_addr, 2293 len, dma_dir); 2294 if (data_len > 0) { 2295 /* refill descriptor with new buffer later */ 2296 skb_add_rx_frag(rxq->skb, 2297 skb_shinfo(rxq->skb)->nr_frags, 2298 page, pp->rx_offset_correction, data_len, 2299 PAGE_SIZE); 2300 } 2301 page_pool_release_page(rxq->page_pool, page); 2302 rx_desc->buf_phys_addr = 0; 2303 rxq->left_size -= len; 2304 } 2305 2306 /* Main rx processing when using software buffer management */ 2307 static int mvneta_rx_swbm(struct napi_struct *napi, 2308 struct mvneta_port *pp, int budget, 2309 struct mvneta_rx_queue *rxq) 2310 { 2311 int rx_proc = 0, rx_todo, refill; 2312 struct net_device *dev = pp->dev; 2313 struct mvneta_stats ps = {}; 2314 struct bpf_prog *xdp_prog; 2315 struct xdp_buff xdp_buf; 2316 2317 /* Get number of received packets */ 2318 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2319 2320 rcu_read_lock(); 2321 xdp_prog = READ_ONCE(pp->xdp_prog); 2322 xdp_buf.rxq = &rxq->xdp_rxq; 2323 2324 /* Fairness NAPI loop */ 2325 while (rx_proc < budget && rx_proc < rx_todo) { 2326 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2327 u32 rx_status, index; 2328 struct page *page; 2329 2330 index = rx_desc - rxq->descs; 2331 page = (struct page *)rxq->buf_virt_addr[index]; 2332 2333 rx_status = rx_desc->status; 2334 rx_proc++; 2335 rxq->refill_num++; 2336 2337 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2338 int err; 2339 2340 /* Check errors only for FIRST descriptor */ 2341 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2342 mvneta_rx_error(pp, rx_desc); 2343 /* leave the descriptor untouched */ 2344 continue; 2345 } 2346 2347 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2348 xdp_prog, page, &ps); 2349 if (err) 2350 continue; 2351 } else { 2352 if (unlikely(!rxq->skb)) { 2353 pr_debug("no skb for rx_status 0x%x\n", 2354 rx_status); 2355 continue; 2356 } 2357 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2358 } /* Middle or Last descriptor */ 2359 2360 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2361 /* no last descriptor this time */ 2362 continue; 2363 2364 if (rxq->left_size) { 2365 pr_err("get last desc, but left_size (%d) != 0\n", 2366 rxq->left_size); 2367 dev_kfree_skb_any(rxq->skb); 2368 rxq->left_size = 0; 2369 rxq->skb = NULL; 2370 continue; 2371 } 2372 2373 ps.rx_bytes += rxq->skb->len; 2374 ps.rx_packets++; 2375 2376 /* Linux processing */ 2377 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2378 2379 napi_gro_receive(napi, rxq->skb); 2380 2381 /* clean uncomplete skb pointer in queue */ 2382 rxq->skb = NULL; 2383 } 2384 rcu_read_unlock(); 2385 2386 if (ps.xdp_redirect) 2387 xdp_do_flush_map(); 2388 2389 if (ps.rx_packets) 2390 mvneta_update_stats(pp, &ps); 2391 2392 /* return some buffers to hardware queue, one at a time is too slow */ 2393 refill = mvneta_rx_refill_queue(pp, rxq); 2394 2395 /* Update rxq management counters */ 2396 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2397 2398 return ps.rx_packets; 2399 } 2400 2401 /* Main rx processing when using hardware buffer management */ 2402 static int mvneta_rx_hwbm(struct napi_struct *napi, 2403 struct mvneta_port *pp, int rx_todo, 2404 struct mvneta_rx_queue *rxq) 2405 { 2406 struct net_device *dev = pp->dev; 2407 int rx_done; 2408 u32 rcvd_pkts = 0; 2409 u32 rcvd_bytes = 0; 2410 2411 /* Get number of received packets */ 2412 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2413 2414 if (rx_todo > rx_done) 2415 rx_todo = rx_done; 2416 2417 rx_done = 0; 2418 2419 /* Fairness NAPI loop */ 2420 while (rx_done < rx_todo) { 2421 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2422 struct mvneta_bm_pool *bm_pool = NULL; 2423 struct sk_buff *skb; 2424 unsigned char *data; 2425 dma_addr_t phys_addr; 2426 u32 rx_status, frag_size; 2427 int rx_bytes, err; 2428 u8 pool_id; 2429 2430 rx_done++; 2431 rx_status = rx_desc->status; 2432 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2433 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2434 phys_addr = rx_desc->buf_phys_addr; 2435 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2436 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2437 2438 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2439 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2440 err_drop_frame_ret_pool: 2441 /* Return the buffer to the pool */ 2442 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2443 rx_desc->buf_phys_addr); 2444 err_drop_frame: 2445 mvneta_rx_error(pp, rx_desc); 2446 /* leave the descriptor untouched */ 2447 continue; 2448 } 2449 2450 if (rx_bytes <= rx_copybreak) { 2451 /* better copy a small frame and not unmap the DMA region */ 2452 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2453 if (unlikely(!skb)) 2454 goto err_drop_frame_ret_pool; 2455 2456 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2457 rx_desc->buf_phys_addr, 2458 MVNETA_MH_SIZE + NET_SKB_PAD, 2459 rx_bytes, 2460 DMA_FROM_DEVICE); 2461 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2462 rx_bytes); 2463 2464 skb->protocol = eth_type_trans(skb, dev); 2465 mvneta_rx_csum(pp, rx_status, skb); 2466 napi_gro_receive(napi, skb); 2467 2468 rcvd_pkts++; 2469 rcvd_bytes += rx_bytes; 2470 2471 /* Return the buffer to the pool */ 2472 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2473 rx_desc->buf_phys_addr); 2474 2475 /* leave the descriptor and buffer untouched */ 2476 continue; 2477 } 2478 2479 /* Refill processing */ 2480 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2481 if (err) { 2482 struct mvneta_pcpu_stats *stats; 2483 2484 netdev_err(dev, "Linux processing - Can't refill\n"); 2485 2486 stats = this_cpu_ptr(pp->stats); 2487 u64_stats_update_begin(&stats->syncp); 2488 stats->es.refill_error++; 2489 u64_stats_update_end(&stats->syncp); 2490 2491 goto err_drop_frame_ret_pool; 2492 } 2493 2494 frag_size = bm_pool->hwbm_pool.frag_size; 2495 2496 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2497 2498 /* After refill old buffer has to be unmapped regardless 2499 * the skb is successfully built or not. 2500 */ 2501 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2502 bm_pool->buf_size, DMA_FROM_DEVICE); 2503 if (!skb) 2504 goto err_drop_frame; 2505 2506 rcvd_pkts++; 2507 rcvd_bytes += rx_bytes; 2508 2509 /* Linux processing */ 2510 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2511 skb_put(skb, rx_bytes); 2512 2513 skb->protocol = eth_type_trans(skb, dev); 2514 2515 mvneta_rx_csum(pp, rx_status, skb); 2516 2517 napi_gro_receive(napi, skb); 2518 } 2519 2520 if (rcvd_pkts) { 2521 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2522 2523 u64_stats_update_begin(&stats->syncp); 2524 stats->es.ps.rx_packets += rcvd_pkts; 2525 stats->es.ps.rx_bytes += rcvd_bytes; 2526 u64_stats_update_end(&stats->syncp); 2527 } 2528 2529 /* Update rxq management counters */ 2530 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2531 2532 return rx_done; 2533 } 2534 2535 static inline void 2536 mvneta_tso_put_hdr(struct sk_buff *skb, 2537 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2538 { 2539 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2540 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2541 struct mvneta_tx_desc *tx_desc; 2542 2543 tx_desc = mvneta_txq_next_desc_get(txq); 2544 tx_desc->data_size = hdr_len; 2545 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2546 tx_desc->command |= MVNETA_TXD_F_DESC; 2547 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2548 txq->txq_put_index * TSO_HEADER_SIZE; 2549 buf->type = MVNETA_TYPE_SKB; 2550 buf->skb = NULL; 2551 2552 mvneta_txq_inc_put(txq); 2553 } 2554 2555 static inline int 2556 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2557 struct sk_buff *skb, char *data, int size, 2558 bool last_tcp, bool is_last) 2559 { 2560 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2561 struct mvneta_tx_desc *tx_desc; 2562 2563 tx_desc = mvneta_txq_next_desc_get(txq); 2564 tx_desc->data_size = size; 2565 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2566 size, DMA_TO_DEVICE); 2567 if (unlikely(dma_mapping_error(dev->dev.parent, 2568 tx_desc->buf_phys_addr))) { 2569 mvneta_txq_desc_put(txq); 2570 return -ENOMEM; 2571 } 2572 2573 tx_desc->command = 0; 2574 buf->type = MVNETA_TYPE_SKB; 2575 buf->skb = NULL; 2576 2577 if (last_tcp) { 2578 /* last descriptor in the TCP packet */ 2579 tx_desc->command = MVNETA_TXD_L_DESC; 2580 2581 /* last descriptor in SKB */ 2582 if (is_last) 2583 buf->skb = skb; 2584 } 2585 mvneta_txq_inc_put(txq); 2586 return 0; 2587 } 2588 2589 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2590 struct mvneta_tx_queue *txq) 2591 { 2592 int total_len, data_left; 2593 int desc_count = 0; 2594 struct mvneta_port *pp = netdev_priv(dev); 2595 struct tso_t tso; 2596 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2597 int i; 2598 2599 /* Count needed descriptors */ 2600 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2601 return 0; 2602 2603 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2604 pr_info("*** Is this even possible???!?!?\n"); 2605 return 0; 2606 } 2607 2608 /* Initialize the TSO handler, and prepare the first payload */ 2609 tso_start(skb, &tso); 2610 2611 total_len = skb->len - hdr_len; 2612 while (total_len > 0) { 2613 char *hdr; 2614 2615 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2616 total_len -= data_left; 2617 desc_count++; 2618 2619 /* prepare packet headers: MAC + IP + TCP */ 2620 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2621 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2622 2623 mvneta_tso_put_hdr(skb, pp, txq); 2624 2625 while (data_left > 0) { 2626 int size; 2627 desc_count++; 2628 2629 size = min_t(int, tso.size, data_left); 2630 2631 if (mvneta_tso_put_data(dev, txq, skb, 2632 tso.data, size, 2633 size == data_left, 2634 total_len == 0)) 2635 goto err_release; 2636 data_left -= size; 2637 2638 tso_build_data(skb, &tso, size); 2639 } 2640 } 2641 2642 return desc_count; 2643 2644 err_release: 2645 /* Release all used data descriptors; header descriptors must not 2646 * be DMA-unmapped. 2647 */ 2648 for (i = desc_count - 1; i >= 0; i--) { 2649 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2650 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2651 dma_unmap_single(pp->dev->dev.parent, 2652 tx_desc->buf_phys_addr, 2653 tx_desc->data_size, 2654 DMA_TO_DEVICE); 2655 mvneta_txq_desc_put(txq); 2656 } 2657 return 0; 2658 } 2659 2660 /* Handle tx fragmentation processing */ 2661 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2662 struct mvneta_tx_queue *txq) 2663 { 2664 struct mvneta_tx_desc *tx_desc; 2665 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2666 2667 for (i = 0; i < nr_frags; i++) { 2668 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2669 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2670 void *addr = skb_frag_address(frag); 2671 2672 tx_desc = mvneta_txq_next_desc_get(txq); 2673 tx_desc->data_size = skb_frag_size(frag); 2674 2675 tx_desc->buf_phys_addr = 2676 dma_map_single(pp->dev->dev.parent, addr, 2677 tx_desc->data_size, DMA_TO_DEVICE); 2678 2679 if (dma_mapping_error(pp->dev->dev.parent, 2680 tx_desc->buf_phys_addr)) { 2681 mvneta_txq_desc_put(txq); 2682 goto error; 2683 } 2684 2685 if (i == nr_frags - 1) { 2686 /* Last descriptor */ 2687 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2688 buf->skb = skb; 2689 } else { 2690 /* Descriptor in the middle: Not First, Not Last */ 2691 tx_desc->command = 0; 2692 buf->skb = NULL; 2693 } 2694 buf->type = MVNETA_TYPE_SKB; 2695 mvneta_txq_inc_put(txq); 2696 } 2697 2698 return 0; 2699 2700 error: 2701 /* Release all descriptors that were used to map fragments of 2702 * this packet, as well as the corresponding DMA mappings 2703 */ 2704 for (i = i - 1; i >= 0; i--) { 2705 tx_desc = txq->descs + i; 2706 dma_unmap_single(pp->dev->dev.parent, 2707 tx_desc->buf_phys_addr, 2708 tx_desc->data_size, 2709 DMA_TO_DEVICE); 2710 mvneta_txq_desc_put(txq); 2711 } 2712 2713 return -ENOMEM; 2714 } 2715 2716 /* Main tx processing */ 2717 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2718 { 2719 struct mvneta_port *pp = netdev_priv(dev); 2720 u16 txq_id = skb_get_queue_mapping(skb); 2721 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2722 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2723 struct mvneta_tx_desc *tx_desc; 2724 int len = skb->len; 2725 int frags = 0; 2726 u32 tx_cmd; 2727 2728 if (!netif_running(dev)) 2729 goto out; 2730 2731 if (skb_is_gso(skb)) { 2732 frags = mvneta_tx_tso(skb, dev, txq); 2733 goto out; 2734 } 2735 2736 frags = skb_shinfo(skb)->nr_frags + 1; 2737 2738 /* Get a descriptor for the first part of the packet */ 2739 tx_desc = mvneta_txq_next_desc_get(txq); 2740 2741 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2742 2743 tx_desc->data_size = skb_headlen(skb); 2744 2745 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2746 tx_desc->data_size, 2747 DMA_TO_DEVICE); 2748 if (unlikely(dma_mapping_error(dev->dev.parent, 2749 tx_desc->buf_phys_addr))) { 2750 mvneta_txq_desc_put(txq); 2751 frags = 0; 2752 goto out; 2753 } 2754 2755 buf->type = MVNETA_TYPE_SKB; 2756 if (frags == 1) { 2757 /* First and Last descriptor */ 2758 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2759 tx_desc->command = tx_cmd; 2760 buf->skb = skb; 2761 mvneta_txq_inc_put(txq); 2762 } else { 2763 /* First but not Last */ 2764 tx_cmd |= MVNETA_TXD_F_DESC; 2765 buf->skb = NULL; 2766 mvneta_txq_inc_put(txq); 2767 tx_desc->command = tx_cmd; 2768 /* Continue with other skb fragments */ 2769 if (mvneta_tx_frag_process(pp, skb, txq)) { 2770 dma_unmap_single(dev->dev.parent, 2771 tx_desc->buf_phys_addr, 2772 tx_desc->data_size, 2773 DMA_TO_DEVICE); 2774 mvneta_txq_desc_put(txq); 2775 frags = 0; 2776 goto out; 2777 } 2778 } 2779 2780 out: 2781 if (frags > 0) { 2782 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2783 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2784 2785 netdev_tx_sent_queue(nq, len); 2786 2787 txq->count += frags; 2788 if (txq->count >= txq->tx_stop_threshold) 2789 netif_tx_stop_queue(nq); 2790 2791 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2792 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2793 mvneta_txq_pend_desc_add(pp, txq, frags); 2794 else 2795 txq->pending += frags; 2796 2797 u64_stats_update_begin(&stats->syncp); 2798 stats->es.ps.tx_bytes += len; 2799 stats->es.ps.tx_packets++; 2800 u64_stats_update_end(&stats->syncp); 2801 } else { 2802 dev->stats.tx_dropped++; 2803 dev_kfree_skb_any(skb); 2804 } 2805 2806 return NETDEV_TX_OK; 2807 } 2808 2809 2810 /* Free tx resources, when resetting a port */ 2811 static void mvneta_txq_done_force(struct mvneta_port *pp, 2812 struct mvneta_tx_queue *txq) 2813 2814 { 2815 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2816 int tx_done = txq->count; 2817 2818 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2819 2820 /* reset txq */ 2821 txq->count = 0; 2822 txq->txq_put_index = 0; 2823 txq->txq_get_index = 0; 2824 } 2825 2826 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2827 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2828 */ 2829 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2830 { 2831 struct mvneta_tx_queue *txq; 2832 struct netdev_queue *nq; 2833 int cpu = smp_processor_id(); 2834 2835 while (cause_tx_done) { 2836 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2837 2838 nq = netdev_get_tx_queue(pp->dev, txq->id); 2839 __netif_tx_lock(nq, cpu); 2840 2841 if (txq->count) 2842 mvneta_txq_done(pp, txq); 2843 2844 __netif_tx_unlock(nq); 2845 cause_tx_done &= ~((1 << txq->id)); 2846 } 2847 } 2848 2849 /* Compute crc8 of the specified address, using a unique algorithm , 2850 * according to hw spec, different than generic crc8 algorithm 2851 */ 2852 static int mvneta_addr_crc(unsigned char *addr) 2853 { 2854 int crc = 0; 2855 int i; 2856 2857 for (i = 0; i < ETH_ALEN; i++) { 2858 int j; 2859 2860 crc = (crc ^ addr[i]) << 8; 2861 for (j = 7; j >= 0; j--) { 2862 if (crc & (0x100 << j)) 2863 crc ^= 0x107 << j; 2864 } 2865 } 2866 2867 return crc; 2868 } 2869 2870 /* This method controls the net device special MAC multicast support. 2871 * The Special Multicast Table for MAC addresses supports MAC of the form 2872 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2873 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2874 * Table entries in the DA-Filter table. This method set the Special 2875 * Multicast Table appropriate entry. 2876 */ 2877 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2878 unsigned char last_byte, 2879 int queue) 2880 { 2881 unsigned int smc_table_reg; 2882 unsigned int tbl_offset; 2883 unsigned int reg_offset; 2884 2885 /* Register offset from SMC table base */ 2886 tbl_offset = (last_byte / 4); 2887 /* Entry offset within the above reg */ 2888 reg_offset = last_byte % 4; 2889 2890 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2891 + tbl_offset * 4)); 2892 2893 if (queue == -1) 2894 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2895 else { 2896 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2897 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2898 } 2899 2900 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2901 smc_table_reg); 2902 } 2903 2904 /* This method controls the network device Other MAC multicast support. 2905 * The Other Multicast Table is used for multicast of another type. 2906 * A CRC-8 is used as an index to the Other Multicast Table entries 2907 * in the DA-Filter table. 2908 * The method gets the CRC-8 value from the calling routine and 2909 * sets the Other Multicast Table appropriate entry according to the 2910 * specified CRC-8 . 2911 */ 2912 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2913 unsigned char crc8, 2914 int queue) 2915 { 2916 unsigned int omc_table_reg; 2917 unsigned int tbl_offset; 2918 unsigned int reg_offset; 2919 2920 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2921 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2922 2923 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2924 2925 if (queue == -1) { 2926 /* Clear accepts frame bit at specified Other DA table entry */ 2927 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2928 } else { 2929 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2930 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2931 } 2932 2933 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2934 } 2935 2936 /* The network device supports multicast using two tables: 2937 * 1) Special Multicast Table for MAC addresses of the form 2938 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2939 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2940 * Table entries in the DA-Filter table. 2941 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2942 * is used as an index to the Other Multicast Table entries in the 2943 * DA-Filter table. 2944 */ 2945 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2946 int queue) 2947 { 2948 unsigned char crc_result = 0; 2949 2950 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2951 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2952 return 0; 2953 } 2954 2955 crc_result = mvneta_addr_crc(p_addr); 2956 if (queue == -1) { 2957 if (pp->mcast_count[crc_result] == 0) { 2958 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2959 crc_result); 2960 return -EINVAL; 2961 } 2962 2963 pp->mcast_count[crc_result]--; 2964 if (pp->mcast_count[crc_result] != 0) { 2965 netdev_info(pp->dev, 2966 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2967 pp->mcast_count[crc_result], crc_result); 2968 return -EINVAL; 2969 } 2970 } else 2971 pp->mcast_count[crc_result]++; 2972 2973 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2974 2975 return 0; 2976 } 2977 2978 /* Configure Fitering mode of Ethernet port */ 2979 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2980 int is_promisc) 2981 { 2982 u32 port_cfg_reg, val; 2983 2984 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2985 2986 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2987 2988 /* Set / Clear UPM bit in port configuration register */ 2989 if (is_promisc) { 2990 /* Accept all Unicast addresses */ 2991 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2992 val |= MVNETA_FORCE_UNI; 2993 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2994 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2995 } else { 2996 /* Reject all Unicast addresses */ 2997 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2998 val &= ~MVNETA_FORCE_UNI; 2999 } 3000 3001 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3002 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3003 } 3004 3005 /* register unicast and multicast addresses */ 3006 static void mvneta_set_rx_mode(struct net_device *dev) 3007 { 3008 struct mvneta_port *pp = netdev_priv(dev); 3009 struct netdev_hw_addr *ha; 3010 3011 if (dev->flags & IFF_PROMISC) { 3012 /* Accept all: Multicast + Unicast */ 3013 mvneta_rx_unicast_promisc_set(pp, 1); 3014 mvneta_set_ucast_table(pp, pp->rxq_def); 3015 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3016 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3017 } else { 3018 /* Accept single Unicast */ 3019 mvneta_rx_unicast_promisc_set(pp, 0); 3020 mvneta_set_ucast_table(pp, -1); 3021 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3022 3023 if (dev->flags & IFF_ALLMULTI) { 3024 /* Accept all multicast */ 3025 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3026 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3027 } else { 3028 /* Accept only initialized multicast */ 3029 mvneta_set_special_mcast_table(pp, -1); 3030 mvneta_set_other_mcast_table(pp, -1); 3031 3032 if (!netdev_mc_empty(dev)) { 3033 netdev_for_each_mc_addr(ha, dev) { 3034 mvneta_mcast_addr_set(pp, ha->addr, 3035 pp->rxq_def); 3036 } 3037 } 3038 } 3039 } 3040 } 3041 3042 /* Interrupt handling - the callback for request_irq() */ 3043 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3044 { 3045 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3046 3047 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3048 napi_schedule(&pp->napi); 3049 3050 return IRQ_HANDLED; 3051 } 3052 3053 /* Interrupt handling - the callback for request_percpu_irq() */ 3054 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3055 { 3056 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3057 3058 disable_percpu_irq(port->pp->dev->irq); 3059 napi_schedule(&port->napi); 3060 3061 return IRQ_HANDLED; 3062 } 3063 3064 static void mvneta_link_change(struct mvneta_port *pp) 3065 { 3066 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3067 3068 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3069 } 3070 3071 /* NAPI handler 3072 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3073 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3074 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3075 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3076 * Each CPU has its own causeRxTx register 3077 */ 3078 static int mvneta_poll(struct napi_struct *napi, int budget) 3079 { 3080 int rx_done = 0; 3081 u32 cause_rx_tx; 3082 int rx_queue; 3083 struct mvneta_port *pp = netdev_priv(napi->dev); 3084 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3085 3086 if (!netif_running(pp->dev)) { 3087 napi_complete(napi); 3088 return rx_done; 3089 } 3090 3091 /* Read cause register */ 3092 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3093 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3094 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3095 3096 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3097 3098 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3099 MVNETA_CAUSE_LINK_CHANGE)) 3100 mvneta_link_change(pp); 3101 } 3102 3103 /* Release Tx descriptors */ 3104 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3105 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3106 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3107 } 3108 3109 /* For the case where the last mvneta_poll did not process all 3110 * RX packets 3111 */ 3112 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3113 3114 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3115 port->cause_rx_tx; 3116 3117 if (rx_queue) { 3118 rx_queue = rx_queue - 1; 3119 if (pp->bm_priv) 3120 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3121 &pp->rxqs[rx_queue]); 3122 else 3123 rx_done = mvneta_rx_swbm(napi, pp, budget, 3124 &pp->rxqs[rx_queue]); 3125 } 3126 3127 if (rx_done < budget) { 3128 cause_rx_tx = 0; 3129 napi_complete_done(napi, rx_done); 3130 3131 if (pp->neta_armada3700) { 3132 unsigned long flags; 3133 3134 local_irq_save(flags); 3135 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3136 MVNETA_RX_INTR_MASK(rxq_number) | 3137 MVNETA_TX_INTR_MASK(txq_number) | 3138 MVNETA_MISCINTR_INTR_MASK); 3139 local_irq_restore(flags); 3140 } else { 3141 enable_percpu_irq(pp->dev->irq, 0); 3142 } 3143 } 3144 3145 if (pp->neta_armada3700) 3146 pp->cause_rx_tx = cause_rx_tx; 3147 else 3148 port->cause_rx_tx = cause_rx_tx; 3149 3150 return rx_done; 3151 } 3152 3153 static int mvneta_create_page_pool(struct mvneta_port *pp, 3154 struct mvneta_rx_queue *rxq, int size) 3155 { 3156 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3157 struct page_pool_params pp_params = { 3158 .order = 0, 3159 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3160 .pool_size = size, 3161 .nid = NUMA_NO_NODE, 3162 .dev = pp->dev->dev.parent, 3163 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3164 .offset = pp->rx_offset_correction, 3165 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3166 }; 3167 int err; 3168 3169 rxq->page_pool = page_pool_create(&pp_params); 3170 if (IS_ERR(rxq->page_pool)) { 3171 err = PTR_ERR(rxq->page_pool); 3172 rxq->page_pool = NULL; 3173 return err; 3174 } 3175 3176 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3177 if (err < 0) 3178 goto err_free_pp; 3179 3180 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3181 rxq->page_pool); 3182 if (err) 3183 goto err_unregister_rxq; 3184 3185 return 0; 3186 3187 err_unregister_rxq: 3188 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3189 err_free_pp: 3190 page_pool_destroy(rxq->page_pool); 3191 rxq->page_pool = NULL; 3192 return err; 3193 } 3194 3195 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3196 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3197 int num) 3198 { 3199 int i, err; 3200 3201 err = mvneta_create_page_pool(pp, rxq, num); 3202 if (err < 0) 3203 return err; 3204 3205 for (i = 0; i < num; i++) { 3206 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3207 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3208 GFP_KERNEL) != 0) { 3209 netdev_err(pp->dev, 3210 "%s:rxq %d, %d of %d buffs filled\n", 3211 __func__, rxq->id, i, num); 3212 break; 3213 } 3214 } 3215 3216 /* Add this number of RX descriptors as non occupied (ready to 3217 * get packets) 3218 */ 3219 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3220 3221 return i; 3222 } 3223 3224 /* Free all packets pending transmit from all TXQs and reset TX port */ 3225 static void mvneta_tx_reset(struct mvneta_port *pp) 3226 { 3227 int queue; 3228 3229 /* free the skb's in the tx ring */ 3230 for (queue = 0; queue < txq_number; queue++) 3231 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3232 3233 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3234 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3235 } 3236 3237 static void mvneta_rx_reset(struct mvneta_port *pp) 3238 { 3239 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3240 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3241 } 3242 3243 /* Rx/Tx queue initialization/cleanup methods */ 3244 3245 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3246 struct mvneta_rx_queue *rxq) 3247 { 3248 rxq->size = pp->rx_ring_size; 3249 3250 /* Allocate memory for RX descriptors */ 3251 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3252 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3253 &rxq->descs_phys, GFP_KERNEL); 3254 if (!rxq->descs) 3255 return -ENOMEM; 3256 3257 rxq->last_desc = rxq->size - 1; 3258 3259 return 0; 3260 } 3261 3262 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3263 struct mvneta_rx_queue *rxq) 3264 { 3265 /* Set Rx descriptors queue starting address */ 3266 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3267 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3268 3269 /* Set coalescing pkts and time */ 3270 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3271 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3272 3273 if (!pp->bm_priv) { 3274 /* Set Offset */ 3275 mvneta_rxq_offset_set(pp, rxq, 0); 3276 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3277 MVNETA_MAX_RX_BUF_SIZE : 3278 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3279 mvneta_rxq_bm_disable(pp, rxq); 3280 mvneta_rxq_fill(pp, rxq, rxq->size); 3281 } else { 3282 /* Set Offset */ 3283 mvneta_rxq_offset_set(pp, rxq, 3284 NET_SKB_PAD - pp->rx_offset_correction); 3285 3286 mvneta_rxq_bm_enable(pp, rxq); 3287 /* Fill RXQ with buffers from RX pool */ 3288 mvneta_rxq_long_pool_set(pp, rxq); 3289 mvneta_rxq_short_pool_set(pp, rxq); 3290 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3291 } 3292 } 3293 3294 /* Create a specified RX queue */ 3295 static int mvneta_rxq_init(struct mvneta_port *pp, 3296 struct mvneta_rx_queue *rxq) 3297 3298 { 3299 int ret; 3300 3301 ret = mvneta_rxq_sw_init(pp, rxq); 3302 if (ret < 0) 3303 return ret; 3304 3305 mvneta_rxq_hw_init(pp, rxq); 3306 3307 return 0; 3308 } 3309 3310 /* Cleanup Rx queue */ 3311 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3312 struct mvneta_rx_queue *rxq) 3313 { 3314 mvneta_rxq_drop_pkts(pp, rxq); 3315 3316 if (rxq->skb) 3317 dev_kfree_skb_any(rxq->skb); 3318 3319 if (rxq->descs) 3320 dma_free_coherent(pp->dev->dev.parent, 3321 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3322 rxq->descs, 3323 rxq->descs_phys); 3324 3325 rxq->descs = NULL; 3326 rxq->last_desc = 0; 3327 rxq->next_desc_to_proc = 0; 3328 rxq->descs_phys = 0; 3329 rxq->first_to_refill = 0; 3330 rxq->refill_num = 0; 3331 rxq->skb = NULL; 3332 rxq->left_size = 0; 3333 } 3334 3335 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3336 struct mvneta_tx_queue *txq) 3337 { 3338 int cpu; 3339 3340 txq->size = pp->tx_ring_size; 3341 3342 /* A queue must always have room for at least one skb. 3343 * Therefore, stop the queue when the free entries reaches 3344 * the maximum number of descriptors per skb. 3345 */ 3346 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3347 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3348 3349 /* Allocate memory for TX descriptors */ 3350 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3351 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3352 &txq->descs_phys, GFP_KERNEL); 3353 if (!txq->descs) 3354 return -ENOMEM; 3355 3356 txq->last_desc = txq->size - 1; 3357 3358 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3359 if (!txq->buf) { 3360 dma_free_coherent(pp->dev->dev.parent, 3361 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3362 txq->descs, txq->descs_phys); 3363 return -ENOMEM; 3364 } 3365 3366 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3367 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3368 txq->size * TSO_HEADER_SIZE, 3369 &txq->tso_hdrs_phys, GFP_KERNEL); 3370 if (!txq->tso_hdrs) { 3371 kfree(txq->buf); 3372 dma_free_coherent(pp->dev->dev.parent, 3373 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3374 txq->descs, txq->descs_phys); 3375 return -ENOMEM; 3376 } 3377 3378 /* Setup XPS mapping */ 3379 if (txq_number > 1) 3380 cpu = txq->id % num_present_cpus(); 3381 else 3382 cpu = pp->rxq_def % num_present_cpus(); 3383 cpumask_set_cpu(cpu, &txq->affinity_mask); 3384 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3385 3386 return 0; 3387 } 3388 3389 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3390 struct mvneta_tx_queue *txq) 3391 { 3392 /* Set maximum bandwidth for enabled TXQs */ 3393 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3394 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3395 3396 /* Set Tx descriptors queue starting address */ 3397 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3398 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3399 3400 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3401 } 3402 3403 /* Create and initialize a tx queue */ 3404 static int mvneta_txq_init(struct mvneta_port *pp, 3405 struct mvneta_tx_queue *txq) 3406 { 3407 int ret; 3408 3409 ret = mvneta_txq_sw_init(pp, txq); 3410 if (ret < 0) 3411 return ret; 3412 3413 mvneta_txq_hw_init(pp, txq); 3414 3415 return 0; 3416 } 3417 3418 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3419 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3420 struct mvneta_tx_queue *txq) 3421 { 3422 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3423 3424 kfree(txq->buf); 3425 3426 if (txq->tso_hdrs) 3427 dma_free_coherent(pp->dev->dev.parent, 3428 txq->size * TSO_HEADER_SIZE, 3429 txq->tso_hdrs, txq->tso_hdrs_phys); 3430 if (txq->descs) 3431 dma_free_coherent(pp->dev->dev.parent, 3432 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3433 txq->descs, txq->descs_phys); 3434 3435 netdev_tx_reset_queue(nq); 3436 3437 txq->descs = NULL; 3438 txq->last_desc = 0; 3439 txq->next_desc_to_proc = 0; 3440 txq->descs_phys = 0; 3441 } 3442 3443 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3444 struct mvneta_tx_queue *txq) 3445 { 3446 /* Set minimum bandwidth for disabled TXQs */ 3447 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3448 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3449 3450 /* Set Tx descriptors queue starting address and size */ 3451 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3452 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3453 } 3454 3455 static void mvneta_txq_deinit(struct mvneta_port *pp, 3456 struct mvneta_tx_queue *txq) 3457 { 3458 mvneta_txq_sw_deinit(pp, txq); 3459 mvneta_txq_hw_deinit(pp, txq); 3460 } 3461 3462 /* Cleanup all Tx queues */ 3463 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3464 { 3465 int queue; 3466 3467 for (queue = 0; queue < txq_number; queue++) 3468 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3469 } 3470 3471 /* Cleanup all Rx queues */ 3472 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3473 { 3474 int queue; 3475 3476 for (queue = 0; queue < rxq_number; queue++) 3477 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3478 } 3479 3480 3481 /* Init all Rx queues */ 3482 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3483 { 3484 int queue; 3485 3486 for (queue = 0; queue < rxq_number; queue++) { 3487 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3488 3489 if (err) { 3490 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3491 __func__, queue); 3492 mvneta_cleanup_rxqs(pp); 3493 return err; 3494 } 3495 } 3496 3497 return 0; 3498 } 3499 3500 /* Init all tx queues */ 3501 static int mvneta_setup_txqs(struct mvneta_port *pp) 3502 { 3503 int queue; 3504 3505 for (queue = 0; queue < txq_number; queue++) { 3506 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3507 if (err) { 3508 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3509 __func__, queue); 3510 mvneta_cleanup_txqs(pp); 3511 return err; 3512 } 3513 } 3514 3515 return 0; 3516 } 3517 3518 static int mvneta_comphy_init(struct mvneta_port *pp) 3519 { 3520 int ret; 3521 3522 if (!pp->comphy) 3523 return 0; 3524 3525 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3526 pp->phy_interface); 3527 if (ret) 3528 return ret; 3529 3530 return phy_power_on(pp->comphy); 3531 } 3532 3533 static void mvneta_start_dev(struct mvneta_port *pp) 3534 { 3535 int cpu; 3536 3537 WARN_ON(mvneta_comphy_init(pp)); 3538 3539 mvneta_max_rx_size_set(pp, pp->pkt_size); 3540 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3541 3542 /* start the Rx/Tx activity */ 3543 mvneta_port_enable(pp); 3544 3545 if (!pp->neta_armada3700) { 3546 /* Enable polling on the port */ 3547 for_each_online_cpu(cpu) { 3548 struct mvneta_pcpu_port *port = 3549 per_cpu_ptr(pp->ports, cpu); 3550 3551 napi_enable(&port->napi); 3552 } 3553 } else { 3554 napi_enable(&pp->napi); 3555 } 3556 3557 /* Unmask interrupts. It has to be done from each CPU */ 3558 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3559 3560 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3561 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3562 MVNETA_CAUSE_LINK_CHANGE); 3563 3564 phylink_start(pp->phylink); 3565 netif_tx_start_all_queues(pp->dev); 3566 } 3567 3568 static void mvneta_stop_dev(struct mvneta_port *pp) 3569 { 3570 unsigned int cpu; 3571 3572 phylink_stop(pp->phylink); 3573 3574 if (!pp->neta_armada3700) { 3575 for_each_online_cpu(cpu) { 3576 struct mvneta_pcpu_port *port = 3577 per_cpu_ptr(pp->ports, cpu); 3578 3579 napi_disable(&port->napi); 3580 } 3581 } else { 3582 napi_disable(&pp->napi); 3583 } 3584 3585 netif_carrier_off(pp->dev); 3586 3587 mvneta_port_down(pp); 3588 netif_tx_stop_all_queues(pp->dev); 3589 3590 /* Stop the port activity */ 3591 mvneta_port_disable(pp); 3592 3593 /* Clear all ethernet port interrupts */ 3594 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3595 3596 /* Mask all ethernet port interrupts */ 3597 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3598 3599 mvneta_tx_reset(pp); 3600 mvneta_rx_reset(pp); 3601 3602 WARN_ON(phy_power_off(pp->comphy)); 3603 } 3604 3605 static void mvneta_percpu_enable(void *arg) 3606 { 3607 struct mvneta_port *pp = arg; 3608 3609 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3610 } 3611 3612 static void mvneta_percpu_disable(void *arg) 3613 { 3614 struct mvneta_port *pp = arg; 3615 3616 disable_percpu_irq(pp->dev->irq); 3617 } 3618 3619 /* Change the device mtu */ 3620 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3621 { 3622 struct mvneta_port *pp = netdev_priv(dev); 3623 int ret; 3624 3625 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3626 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3627 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3628 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3629 } 3630 3631 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3632 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3633 return -EINVAL; 3634 } 3635 3636 dev->mtu = mtu; 3637 3638 if (!netif_running(dev)) { 3639 if (pp->bm_priv) 3640 mvneta_bm_update_mtu(pp, mtu); 3641 3642 netdev_update_features(dev); 3643 return 0; 3644 } 3645 3646 /* The interface is running, so we have to force a 3647 * reallocation of the queues 3648 */ 3649 mvneta_stop_dev(pp); 3650 on_each_cpu(mvneta_percpu_disable, pp, true); 3651 3652 mvneta_cleanup_txqs(pp); 3653 mvneta_cleanup_rxqs(pp); 3654 3655 if (pp->bm_priv) 3656 mvneta_bm_update_mtu(pp, mtu); 3657 3658 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3659 3660 ret = mvneta_setup_rxqs(pp); 3661 if (ret) { 3662 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3663 return ret; 3664 } 3665 3666 ret = mvneta_setup_txqs(pp); 3667 if (ret) { 3668 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3669 return ret; 3670 } 3671 3672 on_each_cpu(mvneta_percpu_enable, pp, true); 3673 mvneta_start_dev(pp); 3674 3675 netdev_update_features(dev); 3676 3677 return 0; 3678 } 3679 3680 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3681 netdev_features_t features) 3682 { 3683 struct mvneta_port *pp = netdev_priv(dev); 3684 3685 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3686 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3687 netdev_info(dev, 3688 "Disable IP checksum for MTU greater than %dB\n", 3689 pp->tx_csum_limit); 3690 } 3691 3692 return features; 3693 } 3694 3695 /* Get mac address */ 3696 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3697 { 3698 u32 mac_addr_l, mac_addr_h; 3699 3700 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3701 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3702 addr[0] = (mac_addr_h >> 24) & 0xFF; 3703 addr[1] = (mac_addr_h >> 16) & 0xFF; 3704 addr[2] = (mac_addr_h >> 8) & 0xFF; 3705 addr[3] = mac_addr_h & 0xFF; 3706 addr[4] = (mac_addr_l >> 8) & 0xFF; 3707 addr[5] = mac_addr_l & 0xFF; 3708 } 3709 3710 /* Handle setting mac address */ 3711 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3712 { 3713 struct mvneta_port *pp = netdev_priv(dev); 3714 struct sockaddr *sockaddr = addr; 3715 int ret; 3716 3717 ret = eth_prepare_mac_addr_change(dev, addr); 3718 if (ret < 0) 3719 return ret; 3720 /* Remove previous address table entry */ 3721 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3722 3723 /* Set new addr in hw */ 3724 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3725 3726 eth_commit_mac_addr_change(dev, addr); 3727 return 0; 3728 } 3729 3730 static void mvneta_validate(struct phylink_config *config, 3731 unsigned long *supported, 3732 struct phylink_link_state *state) 3733 { 3734 struct net_device *ndev = to_net_dev(config->dev); 3735 struct mvneta_port *pp = netdev_priv(ndev); 3736 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3737 3738 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3739 if (state->interface != PHY_INTERFACE_MODE_NA && 3740 state->interface != PHY_INTERFACE_MODE_QSGMII && 3741 state->interface != PHY_INTERFACE_MODE_SGMII && 3742 !phy_interface_mode_is_8023z(state->interface) && 3743 !phy_interface_mode_is_rgmii(state->interface)) { 3744 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3745 return; 3746 } 3747 3748 /* Allow all the expected bits */ 3749 phylink_set(mask, Autoneg); 3750 phylink_set_port_modes(mask); 3751 3752 /* Asymmetric pause is unsupported */ 3753 phylink_set(mask, Pause); 3754 3755 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3756 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3757 phylink_set(mask, 1000baseT_Full); 3758 phylink_set(mask, 1000baseX_Full); 3759 } 3760 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3761 phylink_set(mask, 2500baseT_Full); 3762 phylink_set(mask, 2500baseX_Full); 3763 } 3764 3765 if (!phy_interface_mode_is_8023z(state->interface)) { 3766 /* 10M and 100M are only supported in non-802.3z mode */ 3767 phylink_set(mask, 10baseT_Half); 3768 phylink_set(mask, 10baseT_Full); 3769 phylink_set(mask, 100baseT_Half); 3770 phylink_set(mask, 100baseT_Full); 3771 } 3772 3773 bitmap_and(supported, supported, mask, 3774 __ETHTOOL_LINK_MODE_MASK_NBITS); 3775 bitmap_and(state->advertising, state->advertising, mask, 3776 __ETHTOOL_LINK_MODE_MASK_NBITS); 3777 3778 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3779 * to advertise both, only report advertising at 2500BaseX. 3780 */ 3781 phylink_helper_basex_speed(state); 3782 } 3783 3784 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3785 struct phylink_link_state *state) 3786 { 3787 struct net_device *ndev = to_net_dev(config->dev); 3788 struct mvneta_port *pp = netdev_priv(ndev); 3789 u32 gmac_stat; 3790 3791 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3792 3793 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3794 state->speed = 3795 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3796 SPEED_2500 : SPEED_1000; 3797 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3798 state->speed = SPEED_100; 3799 else 3800 state->speed = SPEED_10; 3801 3802 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3803 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3804 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3805 3806 state->pause = 0; 3807 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3808 state->pause |= MLO_PAUSE_RX; 3809 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3810 state->pause |= MLO_PAUSE_TX; 3811 } 3812 3813 static void mvneta_mac_an_restart(struct phylink_config *config) 3814 { 3815 struct net_device *ndev = to_net_dev(config->dev); 3816 struct mvneta_port *pp = netdev_priv(ndev); 3817 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3818 3819 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3820 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3821 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3822 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3823 } 3824 3825 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3826 const struct phylink_link_state *state) 3827 { 3828 struct net_device *ndev = to_net_dev(config->dev); 3829 struct mvneta_port *pp = netdev_priv(ndev); 3830 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3831 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3832 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3833 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3834 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3835 3836 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3837 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3838 MVNETA_GMAC2_PORT_RESET); 3839 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3840 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3841 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3842 MVNETA_GMAC_INBAND_RESTART_AN | 3843 MVNETA_GMAC_AN_SPEED_EN | 3844 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3845 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3846 MVNETA_GMAC_AN_DUPLEX_EN); 3847 3848 /* Even though it might look weird, when we're configured in 3849 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3850 */ 3851 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3852 3853 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3854 state->interface == PHY_INTERFACE_MODE_SGMII || 3855 phy_interface_mode_is_8023z(state->interface)) 3856 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3857 3858 if (phylink_test(state->advertising, Pause)) 3859 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3860 3861 if (!phylink_autoneg_inband(mode)) { 3862 /* Phy or fixed speed - nothing to do, leave the 3863 * configured speed, duplex and flow control as-is. 3864 */ 3865 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3866 /* SGMII mode receives the state from the PHY */ 3867 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3868 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3869 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3870 MVNETA_GMAC_FORCE_LINK_PASS | 3871 MVNETA_GMAC_CONFIG_MII_SPEED | 3872 MVNETA_GMAC_CONFIG_GMII_SPEED | 3873 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3874 MVNETA_GMAC_INBAND_AN_ENABLE | 3875 MVNETA_GMAC_AN_SPEED_EN | 3876 MVNETA_GMAC_AN_DUPLEX_EN; 3877 } else { 3878 /* 802.3z negotiation - only 1000base-X */ 3879 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3880 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3881 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3882 MVNETA_GMAC_FORCE_LINK_PASS | 3883 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3884 MVNETA_GMAC_INBAND_AN_ENABLE | 3885 MVNETA_GMAC_CONFIG_GMII_SPEED | 3886 /* The MAC only supports FD mode */ 3887 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3888 3889 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3890 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3891 } 3892 3893 /* Armada 370 documentation says we can only change the port mode 3894 * and in-band enable when the link is down, so force it down 3895 * while making these changes. We also do this for GMAC_CTRL2 */ 3896 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3897 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3898 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3899 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3900 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3901 MVNETA_GMAC_FORCE_LINK_DOWN); 3902 } 3903 3904 3905 /* When at 2.5G, the link partner can send frames with shortened 3906 * preambles. 3907 */ 3908 if (state->speed == SPEED_2500) 3909 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3910 3911 if (pp->comphy && pp->phy_interface != state->interface && 3912 (state->interface == PHY_INTERFACE_MODE_SGMII || 3913 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3914 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3915 pp->phy_interface = state->interface; 3916 3917 WARN_ON(phy_power_off(pp->comphy)); 3918 WARN_ON(mvneta_comphy_init(pp)); 3919 } 3920 3921 if (new_ctrl0 != gmac_ctrl0) 3922 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3923 if (new_ctrl2 != gmac_ctrl2) 3924 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3925 if (new_ctrl4 != gmac_ctrl4) 3926 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3927 if (new_clk != gmac_clk) 3928 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3929 if (new_an != gmac_an) 3930 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3931 3932 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3933 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3934 MVNETA_GMAC2_PORT_RESET) != 0) 3935 continue; 3936 } 3937 } 3938 3939 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3940 { 3941 u32 lpi_ctl1; 3942 3943 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3944 if (enable) 3945 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3946 else 3947 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3948 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3949 } 3950 3951 static void mvneta_mac_link_down(struct phylink_config *config, 3952 unsigned int mode, phy_interface_t interface) 3953 { 3954 struct net_device *ndev = to_net_dev(config->dev); 3955 struct mvneta_port *pp = netdev_priv(ndev); 3956 u32 val; 3957 3958 mvneta_port_down(pp); 3959 3960 if (!phylink_autoneg_inband(mode)) { 3961 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3962 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3963 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3964 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3965 } 3966 3967 pp->eee_active = false; 3968 mvneta_set_eee(pp, false); 3969 } 3970 3971 static void mvneta_mac_link_up(struct phylink_config *config, 3972 struct phy_device *phy, 3973 unsigned int mode, phy_interface_t interface, 3974 int speed, int duplex, 3975 bool tx_pause, bool rx_pause) 3976 { 3977 struct net_device *ndev = to_net_dev(config->dev); 3978 struct mvneta_port *pp = netdev_priv(ndev); 3979 u32 val; 3980 3981 if (!phylink_autoneg_inband(mode)) { 3982 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3983 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3984 MVNETA_GMAC_CONFIG_MII_SPEED | 3985 MVNETA_GMAC_CONFIG_GMII_SPEED | 3986 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3987 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3988 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3989 3990 if (speed == SPEED_1000 || speed == SPEED_2500) 3991 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3992 else if (speed == SPEED_100) 3993 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3994 3995 if (duplex == DUPLEX_FULL) 3996 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3997 3998 if (tx_pause || rx_pause) 3999 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4000 4001 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4002 } else { 4003 /* When inband doesn't cover flow control or flow control is 4004 * disabled, we need to manually configure it. This bit will 4005 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4006 */ 4007 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4008 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4009 4010 if (tx_pause || rx_pause) 4011 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4012 4013 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4014 } 4015 4016 mvneta_port_up(pp); 4017 4018 if (phy && pp->eee_enabled) { 4019 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4020 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4021 } 4022 } 4023 4024 static const struct phylink_mac_ops mvneta_phylink_ops = { 4025 .validate = mvneta_validate, 4026 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4027 .mac_an_restart = mvneta_mac_an_restart, 4028 .mac_config = mvneta_mac_config, 4029 .mac_link_down = mvneta_mac_link_down, 4030 .mac_link_up = mvneta_mac_link_up, 4031 }; 4032 4033 static int mvneta_mdio_probe(struct mvneta_port *pp) 4034 { 4035 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4036 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4037 4038 if (err) 4039 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4040 4041 phylink_ethtool_get_wol(pp->phylink, &wol); 4042 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4043 4044 return err; 4045 } 4046 4047 static void mvneta_mdio_remove(struct mvneta_port *pp) 4048 { 4049 phylink_disconnect_phy(pp->phylink); 4050 } 4051 4052 /* Electing a CPU must be done in an atomic way: it should be done 4053 * after or before the removal/insertion of a CPU and this function is 4054 * not reentrant. 4055 */ 4056 static void mvneta_percpu_elect(struct mvneta_port *pp) 4057 { 4058 int elected_cpu = 0, max_cpu, cpu, i = 0; 4059 4060 /* Use the cpu associated to the rxq when it is online, in all 4061 * the other cases, use the cpu 0 which can't be offline. 4062 */ 4063 if (cpu_online(pp->rxq_def)) 4064 elected_cpu = pp->rxq_def; 4065 4066 max_cpu = num_present_cpus(); 4067 4068 for_each_online_cpu(cpu) { 4069 int rxq_map = 0, txq_map = 0; 4070 int rxq; 4071 4072 for (rxq = 0; rxq < rxq_number; rxq++) 4073 if ((rxq % max_cpu) == cpu) 4074 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4075 4076 if (cpu == elected_cpu) 4077 /* Map the default receive queue queue to the 4078 * elected CPU 4079 */ 4080 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4081 4082 /* We update the TX queue map only if we have one 4083 * queue. In this case we associate the TX queue to 4084 * the CPU bound to the default RX queue 4085 */ 4086 if (txq_number == 1) 4087 txq_map = (cpu == elected_cpu) ? 4088 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4089 else 4090 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4091 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4092 4093 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4094 4095 /* Update the interrupt mask on each CPU according the 4096 * new mapping 4097 */ 4098 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4099 pp, true); 4100 i++; 4101 4102 } 4103 }; 4104 4105 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4106 { 4107 int other_cpu; 4108 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4109 node_online); 4110 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4111 4112 4113 spin_lock(&pp->lock); 4114 /* 4115 * Configuring the driver for a new CPU while the driver is 4116 * stopping is racy, so just avoid it. 4117 */ 4118 if (pp->is_stopped) { 4119 spin_unlock(&pp->lock); 4120 return 0; 4121 } 4122 netif_tx_stop_all_queues(pp->dev); 4123 4124 /* 4125 * We have to synchronise on tha napi of each CPU except the one 4126 * just being woken up 4127 */ 4128 for_each_online_cpu(other_cpu) { 4129 if (other_cpu != cpu) { 4130 struct mvneta_pcpu_port *other_port = 4131 per_cpu_ptr(pp->ports, other_cpu); 4132 4133 napi_synchronize(&other_port->napi); 4134 } 4135 } 4136 4137 /* Mask all ethernet port interrupts */ 4138 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4139 napi_enable(&port->napi); 4140 4141 /* 4142 * Enable per-CPU interrupts on the CPU that is 4143 * brought up. 4144 */ 4145 mvneta_percpu_enable(pp); 4146 4147 /* 4148 * Enable per-CPU interrupt on the one CPU we care 4149 * about. 4150 */ 4151 mvneta_percpu_elect(pp); 4152 4153 /* Unmask all ethernet port interrupts */ 4154 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4155 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4156 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4157 MVNETA_CAUSE_LINK_CHANGE); 4158 netif_tx_start_all_queues(pp->dev); 4159 spin_unlock(&pp->lock); 4160 return 0; 4161 } 4162 4163 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4164 { 4165 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4166 node_online); 4167 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4168 4169 /* 4170 * Thanks to this lock we are sure that any pending cpu election is 4171 * done. 4172 */ 4173 spin_lock(&pp->lock); 4174 /* Mask all ethernet port interrupts */ 4175 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4176 spin_unlock(&pp->lock); 4177 4178 napi_synchronize(&port->napi); 4179 napi_disable(&port->napi); 4180 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4181 mvneta_percpu_disable(pp); 4182 return 0; 4183 } 4184 4185 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4186 { 4187 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4188 node_dead); 4189 4190 /* Check if a new CPU must be elected now this on is down */ 4191 spin_lock(&pp->lock); 4192 mvneta_percpu_elect(pp); 4193 spin_unlock(&pp->lock); 4194 /* Unmask all ethernet port interrupts */ 4195 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4196 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4197 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4198 MVNETA_CAUSE_LINK_CHANGE); 4199 netif_tx_start_all_queues(pp->dev); 4200 return 0; 4201 } 4202 4203 static int mvneta_open(struct net_device *dev) 4204 { 4205 struct mvneta_port *pp = netdev_priv(dev); 4206 int ret; 4207 4208 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4209 4210 ret = mvneta_setup_rxqs(pp); 4211 if (ret) 4212 return ret; 4213 4214 ret = mvneta_setup_txqs(pp); 4215 if (ret) 4216 goto err_cleanup_rxqs; 4217 4218 /* Connect to port interrupt line */ 4219 if (pp->neta_armada3700) 4220 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4221 dev->name, pp); 4222 else 4223 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4224 dev->name, pp->ports); 4225 if (ret) { 4226 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4227 goto err_cleanup_txqs; 4228 } 4229 4230 if (!pp->neta_armada3700) { 4231 /* Enable per-CPU interrupt on all the CPU to handle our RX 4232 * queue interrupts 4233 */ 4234 on_each_cpu(mvneta_percpu_enable, pp, true); 4235 4236 pp->is_stopped = false; 4237 /* Register a CPU notifier to handle the case where our CPU 4238 * might be taken offline. 4239 */ 4240 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4241 &pp->node_online); 4242 if (ret) 4243 goto err_free_irq; 4244 4245 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4246 &pp->node_dead); 4247 if (ret) 4248 goto err_free_online_hp; 4249 } 4250 4251 ret = mvneta_mdio_probe(pp); 4252 if (ret < 0) { 4253 netdev_err(dev, "cannot probe MDIO bus\n"); 4254 goto err_free_dead_hp; 4255 } 4256 4257 mvneta_start_dev(pp); 4258 4259 return 0; 4260 4261 err_free_dead_hp: 4262 if (!pp->neta_armada3700) 4263 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4264 &pp->node_dead); 4265 err_free_online_hp: 4266 if (!pp->neta_armada3700) 4267 cpuhp_state_remove_instance_nocalls(online_hpstate, 4268 &pp->node_online); 4269 err_free_irq: 4270 if (pp->neta_armada3700) { 4271 free_irq(pp->dev->irq, pp); 4272 } else { 4273 on_each_cpu(mvneta_percpu_disable, pp, true); 4274 free_percpu_irq(pp->dev->irq, pp->ports); 4275 } 4276 err_cleanup_txqs: 4277 mvneta_cleanup_txqs(pp); 4278 err_cleanup_rxqs: 4279 mvneta_cleanup_rxqs(pp); 4280 return ret; 4281 } 4282 4283 /* Stop the port, free port interrupt line */ 4284 static int mvneta_stop(struct net_device *dev) 4285 { 4286 struct mvneta_port *pp = netdev_priv(dev); 4287 4288 if (!pp->neta_armada3700) { 4289 /* Inform that we are stopping so we don't want to setup the 4290 * driver for new CPUs in the notifiers. The code of the 4291 * notifier for CPU online is protected by the same spinlock, 4292 * so when we get the lock, the notifer work is done. 4293 */ 4294 spin_lock(&pp->lock); 4295 pp->is_stopped = true; 4296 spin_unlock(&pp->lock); 4297 4298 mvneta_stop_dev(pp); 4299 mvneta_mdio_remove(pp); 4300 4301 cpuhp_state_remove_instance_nocalls(online_hpstate, 4302 &pp->node_online); 4303 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4304 &pp->node_dead); 4305 on_each_cpu(mvneta_percpu_disable, pp, true); 4306 free_percpu_irq(dev->irq, pp->ports); 4307 } else { 4308 mvneta_stop_dev(pp); 4309 mvneta_mdio_remove(pp); 4310 free_irq(dev->irq, pp); 4311 } 4312 4313 mvneta_cleanup_rxqs(pp); 4314 mvneta_cleanup_txqs(pp); 4315 4316 return 0; 4317 } 4318 4319 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4320 { 4321 struct mvneta_port *pp = netdev_priv(dev); 4322 4323 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4324 } 4325 4326 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4327 struct netlink_ext_ack *extack) 4328 { 4329 bool need_update, running = netif_running(dev); 4330 struct mvneta_port *pp = netdev_priv(dev); 4331 struct bpf_prog *old_prog; 4332 4333 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4334 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4335 return -EOPNOTSUPP; 4336 } 4337 4338 if (pp->bm_priv) { 4339 NL_SET_ERR_MSG_MOD(extack, 4340 "Hardware Buffer Management not supported on XDP"); 4341 return -EOPNOTSUPP; 4342 } 4343 4344 need_update = !!pp->xdp_prog != !!prog; 4345 if (running && need_update) 4346 mvneta_stop(dev); 4347 4348 old_prog = xchg(&pp->xdp_prog, prog); 4349 if (old_prog) 4350 bpf_prog_put(old_prog); 4351 4352 if (running && need_update) 4353 return mvneta_open(dev); 4354 4355 return 0; 4356 } 4357 4358 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4359 { 4360 struct mvneta_port *pp = netdev_priv(dev); 4361 4362 switch (xdp->command) { 4363 case XDP_SETUP_PROG: 4364 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4365 case XDP_QUERY_PROG: 4366 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4367 return 0; 4368 default: 4369 return -EINVAL; 4370 } 4371 } 4372 4373 /* Ethtool methods */ 4374 4375 /* Set link ksettings (phy address, speed) for ethtools */ 4376 static int 4377 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4378 const struct ethtool_link_ksettings *cmd) 4379 { 4380 struct mvneta_port *pp = netdev_priv(ndev); 4381 4382 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4383 } 4384 4385 /* Get link ksettings for ethtools */ 4386 static int 4387 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4388 struct ethtool_link_ksettings *cmd) 4389 { 4390 struct mvneta_port *pp = netdev_priv(ndev); 4391 4392 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4393 } 4394 4395 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4396 { 4397 struct mvneta_port *pp = netdev_priv(dev); 4398 4399 return phylink_ethtool_nway_reset(pp->phylink); 4400 } 4401 4402 /* Set interrupt coalescing for ethtools */ 4403 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4404 struct ethtool_coalesce *c) 4405 { 4406 struct mvneta_port *pp = netdev_priv(dev); 4407 int queue; 4408 4409 for (queue = 0; queue < rxq_number; queue++) { 4410 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4411 rxq->time_coal = c->rx_coalesce_usecs; 4412 rxq->pkts_coal = c->rx_max_coalesced_frames; 4413 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4414 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4415 } 4416 4417 for (queue = 0; queue < txq_number; queue++) { 4418 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4419 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4420 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4421 } 4422 4423 return 0; 4424 } 4425 4426 /* get coalescing for ethtools */ 4427 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4428 struct ethtool_coalesce *c) 4429 { 4430 struct mvneta_port *pp = netdev_priv(dev); 4431 4432 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4433 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4434 4435 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4436 return 0; 4437 } 4438 4439 4440 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4441 struct ethtool_drvinfo *drvinfo) 4442 { 4443 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4444 sizeof(drvinfo->driver)); 4445 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4446 sizeof(drvinfo->version)); 4447 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4448 sizeof(drvinfo->bus_info)); 4449 } 4450 4451 4452 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4453 struct ethtool_ringparam *ring) 4454 { 4455 struct mvneta_port *pp = netdev_priv(netdev); 4456 4457 ring->rx_max_pending = MVNETA_MAX_RXD; 4458 ring->tx_max_pending = MVNETA_MAX_TXD; 4459 ring->rx_pending = pp->rx_ring_size; 4460 ring->tx_pending = pp->tx_ring_size; 4461 } 4462 4463 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4464 struct ethtool_ringparam *ring) 4465 { 4466 struct mvneta_port *pp = netdev_priv(dev); 4467 4468 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4469 return -EINVAL; 4470 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4471 ring->rx_pending : MVNETA_MAX_RXD; 4472 4473 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4474 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4475 if (pp->tx_ring_size != ring->tx_pending) 4476 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4477 pp->tx_ring_size, ring->tx_pending); 4478 4479 if (netif_running(dev)) { 4480 mvneta_stop(dev); 4481 if (mvneta_open(dev)) { 4482 netdev_err(dev, 4483 "error on opening device after ring param change\n"); 4484 return -ENOMEM; 4485 } 4486 } 4487 4488 return 0; 4489 } 4490 4491 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4492 struct ethtool_pauseparam *pause) 4493 { 4494 struct mvneta_port *pp = netdev_priv(dev); 4495 4496 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4497 } 4498 4499 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4500 struct ethtool_pauseparam *pause) 4501 { 4502 struct mvneta_port *pp = netdev_priv(dev); 4503 4504 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4505 } 4506 4507 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4508 u8 *data) 4509 { 4510 if (sset == ETH_SS_STATS) { 4511 int i; 4512 4513 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4514 memcpy(data + i * ETH_GSTRING_LEN, 4515 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4516 } 4517 } 4518 4519 static void 4520 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4521 struct mvneta_ethtool_stats *es) 4522 { 4523 unsigned int start; 4524 int cpu; 4525 4526 for_each_possible_cpu(cpu) { 4527 struct mvneta_pcpu_stats *stats; 4528 u64 skb_alloc_error; 4529 u64 refill_error; 4530 u64 xdp_redirect; 4531 u64 xdp_xmit_err; 4532 u64 xdp_tx_err; 4533 u64 xdp_pass; 4534 u64 xdp_drop; 4535 u64 xdp_xmit; 4536 u64 xdp_tx; 4537 4538 stats = per_cpu_ptr(pp->stats, cpu); 4539 do { 4540 start = u64_stats_fetch_begin_irq(&stats->syncp); 4541 skb_alloc_error = stats->es.skb_alloc_error; 4542 refill_error = stats->es.refill_error; 4543 xdp_redirect = stats->es.ps.xdp_redirect; 4544 xdp_pass = stats->es.ps.xdp_pass; 4545 xdp_drop = stats->es.ps.xdp_drop; 4546 xdp_xmit = stats->es.ps.xdp_xmit; 4547 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4548 xdp_tx = stats->es.ps.xdp_tx; 4549 xdp_tx_err = stats->es.ps.xdp_tx_err; 4550 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4551 4552 es->skb_alloc_error += skb_alloc_error; 4553 es->refill_error += refill_error; 4554 es->ps.xdp_redirect += xdp_redirect; 4555 es->ps.xdp_pass += xdp_pass; 4556 es->ps.xdp_drop += xdp_drop; 4557 es->ps.xdp_xmit += xdp_xmit; 4558 es->ps.xdp_xmit_err += xdp_xmit_err; 4559 es->ps.xdp_tx += xdp_tx; 4560 es->ps.xdp_tx_err += xdp_tx_err; 4561 } 4562 } 4563 4564 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4565 { 4566 struct mvneta_ethtool_stats stats = {}; 4567 const struct mvneta_statistic *s; 4568 void __iomem *base = pp->base; 4569 u32 high, low; 4570 u64 val; 4571 int i; 4572 4573 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4574 for (i = 0, s = mvneta_statistics; 4575 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4576 s++, i++) { 4577 switch (s->type) { 4578 case T_REG_32: 4579 val = readl_relaxed(base + s->offset); 4580 pp->ethtool_stats[i] += val; 4581 break; 4582 case T_REG_64: 4583 /* Docs say to read low 32-bit then high */ 4584 low = readl_relaxed(base + s->offset); 4585 high = readl_relaxed(base + s->offset + 4); 4586 val = (u64)high << 32 | low; 4587 pp->ethtool_stats[i] += val; 4588 break; 4589 case T_SW: 4590 switch (s->offset) { 4591 case ETHTOOL_STAT_EEE_WAKEUP: 4592 val = phylink_get_eee_err(pp->phylink); 4593 pp->ethtool_stats[i] += val; 4594 break; 4595 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4596 pp->ethtool_stats[i] = stats.skb_alloc_error; 4597 break; 4598 case ETHTOOL_STAT_REFILL_ERR: 4599 pp->ethtool_stats[i] = stats.refill_error; 4600 break; 4601 case ETHTOOL_XDP_REDIRECT: 4602 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4603 break; 4604 case ETHTOOL_XDP_PASS: 4605 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4606 break; 4607 case ETHTOOL_XDP_DROP: 4608 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4609 break; 4610 case ETHTOOL_XDP_TX: 4611 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4612 break; 4613 case ETHTOOL_XDP_TX_ERR: 4614 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4615 break; 4616 case ETHTOOL_XDP_XMIT: 4617 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4618 break; 4619 case ETHTOOL_XDP_XMIT_ERR: 4620 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4621 break; 4622 } 4623 break; 4624 } 4625 } 4626 } 4627 4628 static void mvneta_ethtool_get_stats(struct net_device *dev, 4629 struct ethtool_stats *stats, u64 *data) 4630 { 4631 struct mvneta_port *pp = netdev_priv(dev); 4632 int i; 4633 4634 mvneta_ethtool_update_stats(pp); 4635 4636 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4637 *data++ = pp->ethtool_stats[i]; 4638 } 4639 4640 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4641 { 4642 if (sset == ETH_SS_STATS) 4643 return ARRAY_SIZE(mvneta_statistics); 4644 return -EOPNOTSUPP; 4645 } 4646 4647 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4648 { 4649 return MVNETA_RSS_LU_TABLE_SIZE; 4650 } 4651 4652 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4653 struct ethtool_rxnfc *info, 4654 u32 *rules __always_unused) 4655 { 4656 switch (info->cmd) { 4657 case ETHTOOL_GRXRINGS: 4658 info->data = rxq_number; 4659 return 0; 4660 case ETHTOOL_GRXFH: 4661 return -EOPNOTSUPP; 4662 default: 4663 return -EOPNOTSUPP; 4664 } 4665 } 4666 4667 static int mvneta_config_rss(struct mvneta_port *pp) 4668 { 4669 int cpu; 4670 u32 val; 4671 4672 netif_tx_stop_all_queues(pp->dev); 4673 4674 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4675 4676 if (!pp->neta_armada3700) { 4677 /* We have to synchronise on the napi of each CPU */ 4678 for_each_online_cpu(cpu) { 4679 struct mvneta_pcpu_port *pcpu_port = 4680 per_cpu_ptr(pp->ports, cpu); 4681 4682 napi_synchronize(&pcpu_port->napi); 4683 napi_disable(&pcpu_port->napi); 4684 } 4685 } else { 4686 napi_synchronize(&pp->napi); 4687 napi_disable(&pp->napi); 4688 } 4689 4690 pp->rxq_def = pp->indir[0]; 4691 4692 /* Update unicast mapping */ 4693 mvneta_set_rx_mode(pp->dev); 4694 4695 /* Update val of portCfg register accordingly with all RxQueue types */ 4696 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4697 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4698 4699 /* Update the elected CPU matching the new rxq_def */ 4700 spin_lock(&pp->lock); 4701 mvneta_percpu_elect(pp); 4702 spin_unlock(&pp->lock); 4703 4704 if (!pp->neta_armada3700) { 4705 /* We have to synchronise on the napi of each CPU */ 4706 for_each_online_cpu(cpu) { 4707 struct mvneta_pcpu_port *pcpu_port = 4708 per_cpu_ptr(pp->ports, cpu); 4709 4710 napi_enable(&pcpu_port->napi); 4711 } 4712 } else { 4713 napi_enable(&pp->napi); 4714 } 4715 4716 netif_tx_start_all_queues(pp->dev); 4717 4718 return 0; 4719 } 4720 4721 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4722 const u8 *key, const u8 hfunc) 4723 { 4724 struct mvneta_port *pp = netdev_priv(dev); 4725 4726 /* Current code for Armada 3700 doesn't support RSS features yet */ 4727 if (pp->neta_armada3700) 4728 return -EOPNOTSUPP; 4729 4730 /* We require at least one supported parameter to be changed 4731 * and no change in any of the unsupported parameters 4732 */ 4733 if (key || 4734 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4735 return -EOPNOTSUPP; 4736 4737 if (!indir) 4738 return 0; 4739 4740 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4741 4742 return mvneta_config_rss(pp); 4743 } 4744 4745 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4746 u8 *hfunc) 4747 { 4748 struct mvneta_port *pp = netdev_priv(dev); 4749 4750 /* Current code for Armada 3700 doesn't support RSS features yet */ 4751 if (pp->neta_armada3700) 4752 return -EOPNOTSUPP; 4753 4754 if (hfunc) 4755 *hfunc = ETH_RSS_HASH_TOP; 4756 4757 if (!indir) 4758 return 0; 4759 4760 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4761 4762 return 0; 4763 } 4764 4765 static void mvneta_ethtool_get_wol(struct net_device *dev, 4766 struct ethtool_wolinfo *wol) 4767 { 4768 struct mvneta_port *pp = netdev_priv(dev); 4769 4770 phylink_ethtool_get_wol(pp->phylink, wol); 4771 } 4772 4773 static int mvneta_ethtool_set_wol(struct net_device *dev, 4774 struct ethtool_wolinfo *wol) 4775 { 4776 struct mvneta_port *pp = netdev_priv(dev); 4777 int ret; 4778 4779 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4780 if (!ret) 4781 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4782 4783 return ret; 4784 } 4785 4786 static int mvneta_ethtool_get_eee(struct net_device *dev, 4787 struct ethtool_eee *eee) 4788 { 4789 struct mvneta_port *pp = netdev_priv(dev); 4790 u32 lpi_ctl0; 4791 4792 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4793 4794 eee->eee_enabled = pp->eee_enabled; 4795 eee->eee_active = pp->eee_active; 4796 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4797 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4798 4799 return phylink_ethtool_get_eee(pp->phylink, eee); 4800 } 4801 4802 static int mvneta_ethtool_set_eee(struct net_device *dev, 4803 struct ethtool_eee *eee) 4804 { 4805 struct mvneta_port *pp = netdev_priv(dev); 4806 u32 lpi_ctl0; 4807 4808 /* The Armada 37x documents do not give limits for this other than 4809 * it being an 8-bit register. */ 4810 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4811 return -EINVAL; 4812 4813 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4814 lpi_ctl0 &= ~(0xff << 8); 4815 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4816 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4817 4818 pp->eee_enabled = eee->eee_enabled; 4819 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4820 4821 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4822 4823 return phylink_ethtool_set_eee(pp->phylink, eee); 4824 } 4825 4826 static const struct net_device_ops mvneta_netdev_ops = { 4827 .ndo_open = mvneta_open, 4828 .ndo_stop = mvneta_stop, 4829 .ndo_start_xmit = mvneta_tx, 4830 .ndo_set_rx_mode = mvneta_set_rx_mode, 4831 .ndo_set_mac_address = mvneta_set_mac_addr, 4832 .ndo_change_mtu = mvneta_change_mtu, 4833 .ndo_fix_features = mvneta_fix_features, 4834 .ndo_get_stats64 = mvneta_get_stats64, 4835 .ndo_do_ioctl = mvneta_ioctl, 4836 .ndo_bpf = mvneta_xdp, 4837 .ndo_xdp_xmit = mvneta_xdp_xmit, 4838 }; 4839 4840 static const struct ethtool_ops mvneta_eth_tool_ops = { 4841 .nway_reset = mvneta_ethtool_nway_reset, 4842 .get_link = ethtool_op_get_link, 4843 .set_coalesce = mvneta_ethtool_set_coalesce, 4844 .get_coalesce = mvneta_ethtool_get_coalesce, 4845 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4846 .get_ringparam = mvneta_ethtool_get_ringparam, 4847 .set_ringparam = mvneta_ethtool_set_ringparam, 4848 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4849 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4850 .get_strings = mvneta_ethtool_get_strings, 4851 .get_ethtool_stats = mvneta_ethtool_get_stats, 4852 .get_sset_count = mvneta_ethtool_get_sset_count, 4853 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4854 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4855 .get_rxfh = mvneta_ethtool_get_rxfh, 4856 .set_rxfh = mvneta_ethtool_set_rxfh, 4857 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4858 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4859 .get_wol = mvneta_ethtool_get_wol, 4860 .set_wol = mvneta_ethtool_set_wol, 4861 .get_eee = mvneta_ethtool_get_eee, 4862 .set_eee = mvneta_ethtool_set_eee, 4863 }; 4864 4865 /* Initialize hw */ 4866 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4867 { 4868 int queue; 4869 4870 /* Disable port */ 4871 mvneta_port_disable(pp); 4872 4873 /* Set port default values */ 4874 mvneta_defaults_set(pp); 4875 4876 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4877 if (!pp->txqs) 4878 return -ENOMEM; 4879 4880 /* Initialize TX descriptor rings */ 4881 for (queue = 0; queue < txq_number; queue++) { 4882 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4883 txq->id = queue; 4884 txq->size = pp->tx_ring_size; 4885 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4886 } 4887 4888 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4889 if (!pp->rxqs) 4890 return -ENOMEM; 4891 4892 /* Create Rx descriptor rings */ 4893 for (queue = 0; queue < rxq_number; queue++) { 4894 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4895 rxq->id = queue; 4896 rxq->size = pp->rx_ring_size; 4897 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4898 rxq->time_coal = MVNETA_RX_COAL_USEC; 4899 rxq->buf_virt_addr 4900 = devm_kmalloc_array(pp->dev->dev.parent, 4901 rxq->size, 4902 sizeof(*rxq->buf_virt_addr), 4903 GFP_KERNEL); 4904 if (!rxq->buf_virt_addr) 4905 return -ENOMEM; 4906 } 4907 4908 return 0; 4909 } 4910 4911 /* platform glue : initialize decoding windows */ 4912 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4913 const struct mbus_dram_target_info *dram) 4914 { 4915 u32 win_enable; 4916 u32 win_protect; 4917 int i; 4918 4919 for (i = 0; i < 6; i++) { 4920 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4921 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4922 4923 if (i < 4) 4924 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4925 } 4926 4927 win_enable = 0x3f; 4928 win_protect = 0; 4929 4930 if (dram) { 4931 for (i = 0; i < dram->num_cs; i++) { 4932 const struct mbus_dram_window *cs = dram->cs + i; 4933 4934 mvreg_write(pp, MVNETA_WIN_BASE(i), 4935 (cs->base & 0xffff0000) | 4936 (cs->mbus_attr << 8) | 4937 dram->mbus_dram_target_id); 4938 4939 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4940 (cs->size - 1) & 0xffff0000); 4941 4942 win_enable &= ~(1 << i); 4943 win_protect |= 3 << (2 * i); 4944 } 4945 } else { 4946 /* For Armada3700 open default 4GB Mbus window, leaving 4947 * arbitration of target/attribute to a different layer 4948 * of configuration. 4949 */ 4950 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4951 win_enable &= ~BIT(0); 4952 win_protect = 3; 4953 } 4954 4955 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4956 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4957 } 4958 4959 /* Power up the port */ 4960 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4961 { 4962 /* MAC Cause register should be cleared */ 4963 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4964 4965 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4966 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4967 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4968 phy_interface_mode_is_8023z(phy_mode)) 4969 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4970 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4971 return -EINVAL; 4972 4973 return 0; 4974 } 4975 4976 /* Device initialization routine */ 4977 static int mvneta_probe(struct platform_device *pdev) 4978 { 4979 struct device_node *dn = pdev->dev.of_node; 4980 struct device_node *bm_node; 4981 struct mvneta_port *pp; 4982 struct net_device *dev; 4983 struct phylink *phylink; 4984 struct phy *comphy; 4985 const char *dt_mac_addr; 4986 char hw_mac_addr[ETH_ALEN]; 4987 phy_interface_t phy_mode; 4988 const char *mac_from; 4989 int tx_csum_limit; 4990 int err; 4991 int cpu; 4992 4993 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 4994 txq_number, rxq_number); 4995 if (!dev) 4996 return -ENOMEM; 4997 4998 dev->irq = irq_of_parse_and_map(dn, 0); 4999 if (dev->irq == 0) 5000 return -EINVAL; 5001 5002 err = of_get_phy_mode(dn, &phy_mode); 5003 if (err) { 5004 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5005 goto err_free_irq; 5006 } 5007 5008 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5009 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5010 err = -EPROBE_DEFER; 5011 goto err_free_irq; 5012 } else if (IS_ERR(comphy)) { 5013 comphy = NULL; 5014 } 5015 5016 pp = netdev_priv(dev); 5017 spin_lock_init(&pp->lock); 5018 5019 pp->phylink_config.dev = &dev->dev; 5020 pp->phylink_config.type = PHYLINK_NETDEV; 5021 5022 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5023 phy_mode, &mvneta_phylink_ops); 5024 if (IS_ERR(phylink)) { 5025 err = PTR_ERR(phylink); 5026 goto err_free_irq; 5027 } 5028 5029 dev->tx_queue_len = MVNETA_MAX_TXD; 5030 dev->watchdog_timeo = 5 * HZ; 5031 dev->netdev_ops = &mvneta_netdev_ops; 5032 5033 dev->ethtool_ops = &mvneta_eth_tool_ops; 5034 5035 pp->phylink = phylink; 5036 pp->comphy = comphy; 5037 pp->phy_interface = phy_mode; 5038 pp->dn = dn; 5039 5040 pp->rxq_def = rxq_def; 5041 pp->indir[0] = rxq_def; 5042 5043 /* Get special SoC configurations */ 5044 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5045 pp->neta_armada3700 = true; 5046 5047 pp->clk = devm_clk_get(&pdev->dev, "core"); 5048 if (IS_ERR(pp->clk)) 5049 pp->clk = devm_clk_get(&pdev->dev, NULL); 5050 if (IS_ERR(pp->clk)) { 5051 err = PTR_ERR(pp->clk); 5052 goto err_free_phylink; 5053 } 5054 5055 clk_prepare_enable(pp->clk); 5056 5057 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5058 if (!IS_ERR(pp->clk_bus)) 5059 clk_prepare_enable(pp->clk_bus); 5060 5061 pp->base = devm_platform_ioremap_resource(pdev, 0); 5062 if (IS_ERR(pp->base)) { 5063 err = PTR_ERR(pp->base); 5064 goto err_clk; 5065 } 5066 5067 /* Alloc per-cpu port structure */ 5068 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5069 if (!pp->ports) { 5070 err = -ENOMEM; 5071 goto err_clk; 5072 } 5073 5074 /* Alloc per-cpu stats */ 5075 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5076 if (!pp->stats) { 5077 err = -ENOMEM; 5078 goto err_free_ports; 5079 } 5080 5081 dt_mac_addr = of_get_mac_address(dn); 5082 if (!IS_ERR(dt_mac_addr)) { 5083 mac_from = "device tree"; 5084 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5085 } else { 5086 mvneta_get_mac_addr(pp, hw_mac_addr); 5087 if (is_valid_ether_addr(hw_mac_addr)) { 5088 mac_from = "hardware"; 5089 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5090 } else { 5091 mac_from = "random"; 5092 eth_hw_addr_random(dev); 5093 } 5094 } 5095 5096 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5097 if (tx_csum_limit < 0 || 5098 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5099 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5100 dev_info(&pdev->dev, 5101 "Wrong TX csum limit in DT, set to %dB\n", 5102 MVNETA_TX_CSUM_DEF_SIZE); 5103 } 5104 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5105 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5106 } else { 5107 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5108 } 5109 5110 pp->tx_csum_limit = tx_csum_limit; 5111 5112 pp->dram_target_info = mv_mbus_dram_info(); 5113 /* Armada3700 requires setting default configuration of Mbus 5114 * windows, however without using filled mbus_dram_target_info 5115 * structure. 5116 */ 5117 if (pp->dram_target_info || pp->neta_armada3700) 5118 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5119 5120 pp->tx_ring_size = MVNETA_MAX_TXD; 5121 pp->rx_ring_size = MVNETA_MAX_RXD; 5122 5123 pp->dev = dev; 5124 SET_NETDEV_DEV(dev, &pdev->dev); 5125 5126 pp->id = global_port_id++; 5127 5128 /* Obtain access to BM resources if enabled and already initialized */ 5129 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5130 if (bm_node) { 5131 pp->bm_priv = mvneta_bm_get(bm_node); 5132 if (pp->bm_priv) { 5133 err = mvneta_bm_port_init(pdev, pp); 5134 if (err < 0) { 5135 dev_info(&pdev->dev, 5136 "use SW buffer management\n"); 5137 mvneta_bm_put(pp->bm_priv); 5138 pp->bm_priv = NULL; 5139 } 5140 } 5141 /* Set RX packet offset correction for platforms, whose 5142 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5143 * platforms and 0B for 32-bit ones. 5144 */ 5145 pp->rx_offset_correction = max(0, 5146 NET_SKB_PAD - 5147 MVNETA_RX_PKT_OFFSET_CORRECTION); 5148 } 5149 of_node_put(bm_node); 5150 5151 /* sw buffer management */ 5152 if (!pp->bm_priv) 5153 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5154 5155 err = mvneta_init(&pdev->dev, pp); 5156 if (err < 0) 5157 goto err_netdev; 5158 5159 err = mvneta_port_power_up(pp, phy_mode); 5160 if (err < 0) { 5161 dev_err(&pdev->dev, "can't power up port\n"); 5162 goto err_netdev; 5163 } 5164 5165 /* Armada3700 network controller does not support per-cpu 5166 * operation, so only single NAPI should be initialized. 5167 */ 5168 if (pp->neta_armada3700) { 5169 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5170 } else { 5171 for_each_present_cpu(cpu) { 5172 struct mvneta_pcpu_port *port = 5173 per_cpu_ptr(pp->ports, cpu); 5174 5175 netif_napi_add(dev, &port->napi, mvneta_poll, 5176 NAPI_POLL_WEIGHT); 5177 port->pp = pp; 5178 } 5179 } 5180 5181 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5182 NETIF_F_TSO | NETIF_F_RXCSUM; 5183 dev->hw_features |= dev->features; 5184 dev->vlan_features |= dev->features; 5185 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5186 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5187 5188 /* MTU range: 68 - 9676 */ 5189 dev->min_mtu = ETH_MIN_MTU; 5190 /* 9676 == 9700 - 20 and rounding to 8 */ 5191 dev->max_mtu = 9676; 5192 5193 err = register_netdev(dev); 5194 if (err < 0) { 5195 dev_err(&pdev->dev, "failed to register\n"); 5196 goto err_netdev; 5197 } 5198 5199 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5200 dev->dev_addr); 5201 5202 platform_set_drvdata(pdev, pp->dev); 5203 5204 return 0; 5205 5206 err_netdev: 5207 if (pp->bm_priv) { 5208 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5209 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5210 1 << pp->id); 5211 mvneta_bm_put(pp->bm_priv); 5212 } 5213 free_percpu(pp->stats); 5214 err_free_ports: 5215 free_percpu(pp->ports); 5216 err_clk: 5217 clk_disable_unprepare(pp->clk_bus); 5218 clk_disable_unprepare(pp->clk); 5219 err_free_phylink: 5220 if (pp->phylink) 5221 phylink_destroy(pp->phylink); 5222 err_free_irq: 5223 irq_dispose_mapping(dev->irq); 5224 return err; 5225 } 5226 5227 /* Device removal routine */ 5228 static int mvneta_remove(struct platform_device *pdev) 5229 { 5230 struct net_device *dev = platform_get_drvdata(pdev); 5231 struct mvneta_port *pp = netdev_priv(dev); 5232 5233 unregister_netdev(dev); 5234 clk_disable_unprepare(pp->clk_bus); 5235 clk_disable_unprepare(pp->clk); 5236 free_percpu(pp->ports); 5237 free_percpu(pp->stats); 5238 irq_dispose_mapping(dev->irq); 5239 phylink_destroy(pp->phylink); 5240 5241 if (pp->bm_priv) { 5242 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5243 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5244 1 << pp->id); 5245 mvneta_bm_put(pp->bm_priv); 5246 } 5247 5248 return 0; 5249 } 5250 5251 #ifdef CONFIG_PM_SLEEP 5252 static int mvneta_suspend(struct device *device) 5253 { 5254 int queue; 5255 struct net_device *dev = dev_get_drvdata(device); 5256 struct mvneta_port *pp = netdev_priv(dev); 5257 5258 if (!netif_running(dev)) 5259 goto clean_exit; 5260 5261 if (!pp->neta_armada3700) { 5262 spin_lock(&pp->lock); 5263 pp->is_stopped = true; 5264 spin_unlock(&pp->lock); 5265 5266 cpuhp_state_remove_instance_nocalls(online_hpstate, 5267 &pp->node_online); 5268 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5269 &pp->node_dead); 5270 } 5271 5272 rtnl_lock(); 5273 mvneta_stop_dev(pp); 5274 rtnl_unlock(); 5275 5276 for (queue = 0; queue < rxq_number; queue++) { 5277 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5278 5279 mvneta_rxq_drop_pkts(pp, rxq); 5280 } 5281 5282 for (queue = 0; queue < txq_number; queue++) { 5283 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5284 5285 mvneta_txq_hw_deinit(pp, txq); 5286 } 5287 5288 clean_exit: 5289 netif_device_detach(dev); 5290 clk_disable_unprepare(pp->clk_bus); 5291 clk_disable_unprepare(pp->clk); 5292 5293 return 0; 5294 } 5295 5296 static int mvneta_resume(struct device *device) 5297 { 5298 struct platform_device *pdev = to_platform_device(device); 5299 struct net_device *dev = dev_get_drvdata(device); 5300 struct mvneta_port *pp = netdev_priv(dev); 5301 int err, queue; 5302 5303 clk_prepare_enable(pp->clk); 5304 if (!IS_ERR(pp->clk_bus)) 5305 clk_prepare_enable(pp->clk_bus); 5306 if (pp->dram_target_info || pp->neta_armada3700) 5307 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5308 if (pp->bm_priv) { 5309 err = mvneta_bm_port_init(pdev, pp); 5310 if (err < 0) { 5311 dev_info(&pdev->dev, "use SW buffer management\n"); 5312 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5313 pp->bm_priv = NULL; 5314 } 5315 } 5316 mvneta_defaults_set(pp); 5317 err = mvneta_port_power_up(pp, pp->phy_interface); 5318 if (err < 0) { 5319 dev_err(device, "can't power up port\n"); 5320 return err; 5321 } 5322 5323 netif_device_attach(dev); 5324 5325 if (!netif_running(dev)) 5326 return 0; 5327 5328 for (queue = 0; queue < rxq_number; queue++) { 5329 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5330 5331 rxq->next_desc_to_proc = 0; 5332 mvneta_rxq_hw_init(pp, rxq); 5333 } 5334 5335 for (queue = 0; queue < txq_number; queue++) { 5336 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5337 5338 txq->next_desc_to_proc = 0; 5339 mvneta_txq_hw_init(pp, txq); 5340 } 5341 5342 if (!pp->neta_armada3700) { 5343 spin_lock(&pp->lock); 5344 pp->is_stopped = false; 5345 spin_unlock(&pp->lock); 5346 cpuhp_state_add_instance_nocalls(online_hpstate, 5347 &pp->node_online); 5348 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5349 &pp->node_dead); 5350 } 5351 5352 rtnl_lock(); 5353 mvneta_start_dev(pp); 5354 rtnl_unlock(); 5355 mvneta_set_rx_mode(dev); 5356 5357 return 0; 5358 } 5359 #endif 5360 5361 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5362 5363 static const struct of_device_id mvneta_match[] = { 5364 { .compatible = "marvell,armada-370-neta" }, 5365 { .compatible = "marvell,armada-xp-neta" }, 5366 { .compatible = "marvell,armada-3700-neta" }, 5367 { } 5368 }; 5369 MODULE_DEVICE_TABLE(of, mvneta_match); 5370 5371 static struct platform_driver mvneta_driver = { 5372 .probe = mvneta_probe, 5373 .remove = mvneta_remove, 5374 .driver = { 5375 .name = MVNETA_DRIVER_NAME, 5376 .of_match_table = mvneta_match, 5377 .pm = &mvneta_pm_ops, 5378 }, 5379 }; 5380 5381 static int __init mvneta_driver_init(void) 5382 { 5383 int ret; 5384 5385 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 5386 mvneta_cpu_online, 5387 mvneta_cpu_down_prepare); 5388 if (ret < 0) 5389 goto out; 5390 online_hpstate = ret; 5391 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5392 NULL, mvneta_cpu_dead); 5393 if (ret) 5394 goto err_dead; 5395 5396 ret = platform_driver_register(&mvneta_driver); 5397 if (ret) 5398 goto err; 5399 return 0; 5400 5401 err: 5402 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5403 err_dead: 5404 cpuhp_remove_multi_state(online_hpstate); 5405 out: 5406 return ret; 5407 } 5408 module_init(mvneta_driver_init); 5409 5410 static void __exit mvneta_driver_exit(void) 5411 { 5412 platform_driver_unregister(&mvneta_driver); 5413 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5414 cpuhp_remove_multi_state(online_hpstate); 5415 } 5416 module_exit(mvneta_driver_exit); 5417 5418 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5419 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5420 MODULE_LICENSE("GPL"); 5421 5422 module_param(rxq_number, int, 0444); 5423 module_param(txq_number, int, 0444); 5424 5425 module_param(rxq_def, int, 0444); 5426 module_param(rx_copybreak, int, 0644); 5427