1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 #define MVNETA_SERDES_CFG			 0x24A0
110 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
111 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
112 #define MVNETA_TYPE_PRIO                         0x24bc
113 #define      MVNETA_FORCE_UNI                    BIT(21)
114 #define MVNETA_TXQ_CMD_1                         0x24e4
115 #define MVNETA_TXQ_CMD                           0x2448
116 #define      MVNETA_TXQ_DISABLE_SHIFT            8
117 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
118 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
119 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
120 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
121 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
122 #define MVNETA_ACC_MODE                          0x2500
123 #define MVNETA_BM_ADDRESS                        0x2504
124 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
125 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
126 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
127 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
128 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
129 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
130 
131 /* Exception Interrupt Port/Queue Cause register
132  *
133  * Their behavior depend of the mapping done using the PCPX2Q
134  * registers. For a given CPU if the bit associated to a queue is not
135  * set, then for the register a read from this CPU will always return
136  * 0 and a write won't do anything
137  */
138 
139 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
140 #define MVNETA_INTR_NEW_MASK                     0x25a4
141 
142 /* bits  0..7  = TXQ SENT, one bit per queue.
143  * bits  8..15 = RXQ OCCUP, one bit per queue.
144  * bits 16..23 = RXQ FREE, one bit per queue.
145  * bit  29 = OLD_REG_SUM, see old reg ?
146  * bit  30 = TX_ERR_SUM, one bit for 4 ports
147  * bit  31 = MISC_SUM,   one bit for 4 ports
148  */
149 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
150 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
151 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
152 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
153 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
154 
155 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
156 #define MVNETA_INTR_OLD_MASK                     0x25ac
157 
158 /* Data Path Port/Queue Cause Register */
159 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
160 #define MVNETA_INTR_MISC_MASK                    0x25b4
161 
162 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
163 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
164 #define      MVNETA_CAUSE_PTP                    BIT(4)
165 
166 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
167 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
168 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
169 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
170 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
171 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
172 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
173 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
174 
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
176 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
178 
179 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
180 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
181 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
182 
183 #define MVNETA_INTR_ENABLE                       0x25b8
184 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
185 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
186 
187 #define MVNETA_RXQ_CMD                           0x2680
188 #define      MVNETA_RXQ_DISABLE_SHIFT            8
189 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
190 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
191 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
192 #define MVNETA_GMAC_CTRL_0                       0x2c00
193 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
194 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
195 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
196 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
197 #define MVNETA_GMAC_CTRL_2                       0x2c08
198 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
199 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
200 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
201 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
202 #define MVNETA_GMAC_STATUS                       0x2c10
203 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
204 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
205 #define      MVNETA_GMAC_SPEED_100               BIT(2)
206 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
211 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
212 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
213 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
214 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
215 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
216 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
217 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
218 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
219 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
220 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
221 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
222 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
223 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
224 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
225 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
226 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
227 #define MVNETA_GMAC_CTRL_4                       0x2c90
228 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
229 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
230 #define      MVNETA_MIB_LATE_COLLISION           0x7c
231 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
232 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
233 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
234 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
235 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
236 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
237 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
238 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
239 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
240 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
241 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
242 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
243 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
244 #define MVNETA_PORT_TX_RESET                     0x3cf0
245 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
246 #define MVNETA_TX_MTU                            0x3e0c
247 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
248 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
250 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
251 
252 #define MVNETA_LPI_CTRL_0                        0x2cc0
253 #define MVNETA_LPI_CTRL_1                        0x2cc4
254 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
255 #define MVNETA_LPI_CTRL_2                        0x2cc8
256 #define MVNETA_LPI_STATUS                        0x2ccc
257 
258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
259 
260 /* Descriptor ring Macros */
261 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
262 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
263 
264 /* Various constants */
265 
266 /* Coalescing */
267 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
268 #define MVNETA_RX_COAL_PKTS		32
269 #define MVNETA_RX_COAL_USEC		100
270 
271 /* The two bytes Marvell header. Either contains a special value used
272  * by Marvell switches when a specific hardware mode is enabled (not
273  * supported by this driver) or is filled automatically by zeroes on
274  * the RX side. Those two bytes being at the front of the Ethernet
275  * header, they allow to have the IP header aligned on a 4 bytes
276  * boundary automatically: the hardware skips those two bytes on its
277  * own.
278  */
279 #define MVNETA_MH_SIZE			2
280 
281 #define MVNETA_VLAN_TAG_LEN             4
282 
283 #define MVNETA_TX_CSUM_DEF_SIZE		1600
284 #define MVNETA_TX_CSUM_MAX_SIZE		9800
285 #define MVNETA_ACC_MODE_EXT1		1
286 #define MVNETA_ACC_MODE_EXT2		2
287 
288 #define MVNETA_MAX_DECODE_WIN		6
289 
290 /* Timeout constants */
291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
294 
295 #define MVNETA_TX_MTU_MAX		0x3ffff
296 
297 /* The RSS lookup table actually has 256 entries but we do not use
298  * them yet
299  */
300 #define MVNETA_RSS_LU_TABLE_SIZE	1
301 
302 /* Max number of Rx descriptors */
303 #define MVNETA_MAX_RXD 512
304 
305 /* Max number of Tx descriptors */
306 #define MVNETA_MAX_TXD 1024
307 
308 /* Max number of allowed TCP segments for software TSO */
309 #define MVNETA_MAX_TSO_SEGS 100
310 
311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
312 
313 /* descriptor aligned size */
314 #define MVNETA_DESC_ALIGNED_SIZE	32
315 
316 /* Number of bytes to be taken into account by HW when putting incoming data
317  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
318  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
319  */
320 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
321 
322 #define MVNETA_RX_PKT_SIZE(mtu) \
323 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
324 	      ETH_HLEN + ETH_FCS_LEN,			     \
325 	      cache_line_size())
326 
327 #define MVNETA_SKB_HEADROOM	max(XDP_PACKET_HEADROOM, NET_SKB_PAD)
328 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
329 			 MVNETA_SKB_HEADROOM))
330 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
331 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
332 
333 #define IS_TSO_HEADER(txq, addr) \
334 	((addr >= txq->tso_hdrs_phys) && \
335 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
336 
337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
338 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
339 
340 enum {
341 	ETHTOOL_STAT_EEE_WAKEUP,
342 	ETHTOOL_STAT_SKB_ALLOC_ERR,
343 	ETHTOOL_STAT_REFILL_ERR,
344 	ETHTOOL_XDP_REDIRECT,
345 	ETHTOOL_XDP_PASS,
346 	ETHTOOL_XDP_DROP,
347 	ETHTOOL_XDP_TX,
348 	ETHTOOL_XDP_TX_ERR,
349 	ETHTOOL_XDP_XMIT,
350 	ETHTOOL_XDP_XMIT_ERR,
351 	ETHTOOL_MAX_STATS,
352 };
353 
354 struct mvneta_statistic {
355 	unsigned short offset;
356 	unsigned short type;
357 	const char name[ETH_GSTRING_LEN];
358 };
359 
360 #define T_REG_32	32
361 #define T_REG_64	64
362 #define T_SW		1
363 
364 #define MVNETA_XDP_PASS		0
365 #define MVNETA_XDP_DROPPED	BIT(0)
366 #define MVNETA_XDP_TX		BIT(1)
367 #define MVNETA_XDP_REDIR	BIT(2)
368 
369 static const struct mvneta_statistic mvneta_statistics[] = {
370 	{ 0x3000, T_REG_64, "good_octets_received", },
371 	{ 0x3010, T_REG_32, "good_frames_received", },
372 	{ 0x3008, T_REG_32, "bad_octets_received", },
373 	{ 0x3014, T_REG_32, "bad_frames_received", },
374 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
375 	{ 0x301c, T_REG_32, "multicast_frames_received", },
376 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
377 	{ 0x3058, T_REG_32, "good_fc_received", },
378 	{ 0x305c, T_REG_32, "bad_fc_received", },
379 	{ 0x3060, T_REG_32, "undersize_received", },
380 	{ 0x3064, T_REG_32, "fragments_received", },
381 	{ 0x3068, T_REG_32, "oversize_received", },
382 	{ 0x306c, T_REG_32, "jabber_received", },
383 	{ 0x3070, T_REG_32, "mac_receive_error", },
384 	{ 0x3074, T_REG_32, "bad_crc_event", },
385 	{ 0x3078, T_REG_32, "collision", },
386 	{ 0x307c, T_REG_32, "late_collision", },
387 	{ 0x2484, T_REG_32, "rx_discard", },
388 	{ 0x2488, T_REG_32, "rx_overrun", },
389 	{ 0x3020, T_REG_32, "frames_64_octets", },
390 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
391 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
392 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
393 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
394 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
395 	{ 0x3038, T_REG_64, "good_octets_sent", },
396 	{ 0x3040, T_REG_32, "good_frames_sent", },
397 	{ 0x3044, T_REG_32, "excessive_collision", },
398 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
399 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
400 	{ 0x3054, T_REG_32, "fc_sent", },
401 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
402 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
403 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
404 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
405 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
406 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
407 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
408 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
409 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
410 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
411 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
412 };
413 
414 struct mvneta_stats {
415 	u64	rx_packets;
416 	u64	rx_bytes;
417 	u64	tx_packets;
418 	u64	tx_bytes;
419 	/* xdp */
420 	u64	xdp_redirect;
421 	u64	xdp_pass;
422 	u64	xdp_drop;
423 	u64	xdp_xmit;
424 	u64	xdp_xmit_err;
425 	u64	xdp_tx;
426 	u64	xdp_tx_err;
427 };
428 
429 struct mvneta_ethtool_stats {
430 	struct mvneta_stats ps;
431 	u64	skb_alloc_error;
432 	u64	refill_error;
433 };
434 
435 struct mvneta_pcpu_stats {
436 	struct u64_stats_sync syncp;
437 
438 	struct mvneta_ethtool_stats es;
439 	u64	rx_dropped;
440 	u64	rx_errors;
441 };
442 
443 struct mvneta_pcpu_port {
444 	/* Pointer to the shared port */
445 	struct mvneta_port	*pp;
446 
447 	/* Pointer to the CPU-local NAPI struct */
448 	struct napi_struct	napi;
449 
450 	/* Cause of the previous interrupt */
451 	u32			cause_rx_tx;
452 };
453 
454 struct mvneta_port {
455 	u8 id;
456 	struct mvneta_pcpu_port __percpu	*ports;
457 	struct mvneta_pcpu_stats __percpu	*stats;
458 
459 	int pkt_size;
460 	void __iomem *base;
461 	struct mvneta_rx_queue *rxqs;
462 	struct mvneta_tx_queue *txqs;
463 	struct net_device *dev;
464 	struct hlist_node node_online;
465 	struct hlist_node node_dead;
466 	int rxq_def;
467 	/* Protect the access to the percpu interrupt registers,
468 	 * ensuring that the configuration remains coherent.
469 	 */
470 	spinlock_t lock;
471 	bool is_stopped;
472 
473 	u32 cause_rx_tx;
474 	struct napi_struct napi;
475 
476 	struct bpf_prog *xdp_prog;
477 
478 	/* Core clock */
479 	struct clk *clk;
480 	/* AXI clock */
481 	struct clk *clk_bus;
482 	u8 mcast_count[256];
483 	u16 tx_ring_size;
484 	u16 rx_ring_size;
485 
486 	phy_interface_t phy_interface;
487 	struct device_node *dn;
488 	unsigned int tx_csum_limit;
489 	struct phylink *phylink;
490 	struct phylink_config phylink_config;
491 	struct phy *comphy;
492 
493 	struct mvneta_bm *bm_priv;
494 	struct mvneta_bm_pool *pool_long;
495 	struct mvneta_bm_pool *pool_short;
496 	int bm_win_id;
497 
498 	bool eee_enabled;
499 	bool eee_active;
500 	bool tx_lpi_enabled;
501 
502 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
503 
504 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
505 
506 	/* Flags for special SoC configurations */
507 	bool neta_armada3700;
508 	u16 rx_offset_correction;
509 	const struct mbus_dram_target_info *dram_target_info;
510 };
511 
512 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
513  * layout of the transmit and reception DMA descriptors, and their
514  * layout is therefore defined by the hardware design
515  */
516 
517 #define MVNETA_TX_L3_OFF_SHIFT	0
518 #define MVNETA_TX_IP_HLEN_SHIFT	8
519 #define MVNETA_TX_L4_UDP	BIT(16)
520 #define MVNETA_TX_L3_IP6	BIT(17)
521 #define MVNETA_TXD_IP_CSUM	BIT(18)
522 #define MVNETA_TXD_Z_PAD	BIT(19)
523 #define MVNETA_TXD_L_DESC	BIT(20)
524 #define MVNETA_TXD_F_DESC	BIT(21)
525 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
526 				 MVNETA_TXD_L_DESC | \
527 				 MVNETA_TXD_F_DESC)
528 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
529 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
530 
531 #define MVNETA_RXD_ERR_CRC		0x0
532 #define MVNETA_RXD_BM_POOL_SHIFT	13
533 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
534 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
535 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
536 #define MVNETA_RXD_ERR_LEN		BIT(18)
537 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
538 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
539 #define MVNETA_RXD_L3_IP4		BIT(25)
540 #define MVNETA_RXD_LAST_DESC		BIT(26)
541 #define MVNETA_RXD_FIRST_DESC		BIT(27)
542 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
543 					 MVNETA_RXD_LAST_DESC)
544 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
545 
546 #if defined(__LITTLE_ENDIAN)
547 struct mvneta_tx_desc {
548 	u32  command;		/* Options used by HW for packet transmitting.*/
549 	u16  reserved1;		/* csum_l4 (for future use)		*/
550 	u16  data_size;		/* Data size of transmitted packet in bytes */
551 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
552 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
553 	u32  reserved3[4];	/* Reserved - (for future use)		*/
554 };
555 
556 struct mvneta_rx_desc {
557 	u32  status;		/* Info about received packet		*/
558 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
559 	u16  data_size;		/* Size of received packet in bytes	*/
560 
561 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
562 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
563 
564 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
565 	u16  reserved3;		/* prefetch_cmd, for future use		*/
566 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
567 
568 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
569 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
570 };
571 #else
572 struct mvneta_tx_desc {
573 	u16  data_size;		/* Data size of transmitted packet in bytes */
574 	u16  reserved1;		/* csum_l4 (for future use)		*/
575 	u32  command;		/* Options used by HW for packet transmitting.*/
576 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
577 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
578 	u32  reserved3[4];	/* Reserved - (for future use)		*/
579 };
580 
581 struct mvneta_rx_desc {
582 	u16  data_size;		/* Size of received packet in bytes	*/
583 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
584 	u32  status;		/* Info about received packet		*/
585 
586 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
587 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
588 
589 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
590 	u16  reserved3;		/* prefetch_cmd, for future use		*/
591 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
592 
593 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
594 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
595 };
596 #endif
597 
598 enum mvneta_tx_buf_type {
599 	MVNETA_TYPE_SKB,
600 	MVNETA_TYPE_XDP_TX,
601 	MVNETA_TYPE_XDP_NDO,
602 };
603 
604 struct mvneta_tx_buf {
605 	enum mvneta_tx_buf_type type;
606 	union {
607 		struct xdp_frame *xdpf;
608 		struct sk_buff *skb;
609 	};
610 };
611 
612 struct mvneta_tx_queue {
613 	/* Number of this TX queue, in the range 0-7 */
614 	u8 id;
615 
616 	/* Number of TX DMA descriptors in the descriptor ring */
617 	int size;
618 
619 	/* Number of currently used TX DMA descriptor in the
620 	 * descriptor ring
621 	 */
622 	int count;
623 	int pending;
624 	int tx_stop_threshold;
625 	int tx_wake_threshold;
626 
627 	/* Array of transmitted buffers */
628 	struct mvneta_tx_buf *buf;
629 
630 	/* Index of last TX DMA descriptor that was inserted */
631 	int txq_put_index;
632 
633 	/* Index of the TX DMA descriptor to be cleaned up */
634 	int txq_get_index;
635 
636 	u32 done_pkts_coal;
637 
638 	/* Virtual address of the TX DMA descriptors array */
639 	struct mvneta_tx_desc *descs;
640 
641 	/* DMA address of the TX DMA descriptors array */
642 	dma_addr_t descs_phys;
643 
644 	/* Index of the last TX DMA descriptor */
645 	int last_desc;
646 
647 	/* Index of the next TX DMA descriptor to process */
648 	int next_desc_to_proc;
649 
650 	/* DMA buffers for TSO headers */
651 	char *tso_hdrs;
652 
653 	/* DMA address of TSO headers */
654 	dma_addr_t tso_hdrs_phys;
655 
656 	/* Affinity mask for CPUs*/
657 	cpumask_t affinity_mask;
658 };
659 
660 struct mvneta_rx_queue {
661 	/* rx queue number, in the range 0-7 */
662 	u8 id;
663 
664 	/* num of rx descriptors in the rx descriptor ring */
665 	int size;
666 
667 	u32 pkts_coal;
668 	u32 time_coal;
669 
670 	/* page_pool */
671 	struct page_pool *page_pool;
672 	struct xdp_rxq_info xdp_rxq;
673 
674 	/* Virtual address of the RX buffer */
675 	void  **buf_virt_addr;
676 
677 	/* Virtual address of the RX DMA descriptors array */
678 	struct mvneta_rx_desc *descs;
679 
680 	/* DMA address of the RX DMA descriptors array */
681 	dma_addr_t descs_phys;
682 
683 	/* Index of the last RX DMA descriptor */
684 	int last_desc;
685 
686 	/* Index of the next RX DMA descriptor to process */
687 	int next_desc_to_proc;
688 
689 	/* Index of first RX DMA descriptor to refill */
690 	int first_to_refill;
691 	u32 refill_num;
692 
693 	/* pointer to uncomplete skb buffer */
694 	struct sk_buff *skb;
695 	int left_size;
696 };
697 
698 static enum cpuhp_state online_hpstate;
699 /* The hardware supports eight (8) rx queues, but we are only allowing
700  * the first one to be used. Therefore, let's just allocate one queue.
701  */
702 static int rxq_number = 8;
703 static int txq_number = 8;
704 
705 static int rxq_def;
706 
707 static int rx_copybreak __read_mostly = 256;
708 
709 /* HW BM need that each port be identify by a unique ID */
710 static int global_port_id;
711 
712 #define MVNETA_DRIVER_NAME "mvneta"
713 #define MVNETA_DRIVER_VERSION "1.0"
714 
715 /* Utility/helper methods */
716 
717 /* Write helper method */
718 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
719 {
720 	writel(data, pp->base + offset);
721 }
722 
723 /* Read helper method */
724 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
725 {
726 	return readl(pp->base + offset);
727 }
728 
729 /* Increment txq get counter */
730 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
731 {
732 	txq->txq_get_index++;
733 	if (txq->txq_get_index == txq->size)
734 		txq->txq_get_index = 0;
735 }
736 
737 /* Increment txq put counter */
738 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
739 {
740 	txq->txq_put_index++;
741 	if (txq->txq_put_index == txq->size)
742 		txq->txq_put_index = 0;
743 }
744 
745 
746 /* Clear all MIB counters */
747 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
748 {
749 	int i;
750 	u32 dummy;
751 
752 	/* Perform dummy reads from MIB counters */
753 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
754 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
755 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
756 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
757 }
758 
759 /* Get System Network Statistics */
760 static void
761 mvneta_get_stats64(struct net_device *dev,
762 		   struct rtnl_link_stats64 *stats)
763 {
764 	struct mvneta_port *pp = netdev_priv(dev);
765 	unsigned int start;
766 	int cpu;
767 
768 	for_each_possible_cpu(cpu) {
769 		struct mvneta_pcpu_stats *cpu_stats;
770 		u64 rx_packets;
771 		u64 rx_bytes;
772 		u64 rx_dropped;
773 		u64 rx_errors;
774 		u64 tx_packets;
775 		u64 tx_bytes;
776 
777 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
778 		do {
779 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
780 			rx_packets = cpu_stats->es.ps.rx_packets;
781 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
782 			rx_dropped = cpu_stats->rx_dropped;
783 			rx_errors  = cpu_stats->rx_errors;
784 			tx_packets = cpu_stats->es.ps.tx_packets;
785 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
786 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
787 
788 		stats->rx_packets += rx_packets;
789 		stats->rx_bytes   += rx_bytes;
790 		stats->rx_dropped += rx_dropped;
791 		stats->rx_errors  += rx_errors;
792 		stats->tx_packets += tx_packets;
793 		stats->tx_bytes   += tx_bytes;
794 	}
795 
796 	stats->tx_dropped	= dev->stats.tx_dropped;
797 }
798 
799 /* Rx descriptors helper methods */
800 
801 /* Checks whether the RX descriptor having this status is both the first
802  * and the last descriptor for the RX packet. Each RX packet is currently
803  * received through a single RX descriptor, so not having each RX
804  * descriptor with its first and last bits set is an error
805  */
806 static int mvneta_rxq_desc_is_first_last(u32 status)
807 {
808 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
809 		MVNETA_RXD_FIRST_LAST_DESC;
810 }
811 
812 /* Add number of descriptors ready to receive new packets */
813 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
814 					  struct mvneta_rx_queue *rxq,
815 					  int ndescs)
816 {
817 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
818 	 * be added at once
819 	 */
820 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
821 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
822 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
823 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
824 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
825 	}
826 
827 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
828 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
829 }
830 
831 /* Get number of RX descriptors occupied by received packets */
832 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
833 					struct mvneta_rx_queue *rxq)
834 {
835 	u32 val;
836 
837 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
838 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
839 }
840 
841 /* Update num of rx desc called upon return from rx path or
842  * from mvneta_rxq_drop_pkts().
843  */
844 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
845 				       struct mvneta_rx_queue *rxq,
846 				       int rx_done, int rx_filled)
847 {
848 	u32 val;
849 
850 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
851 		val = rx_done |
852 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
853 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
854 		return;
855 	}
856 
857 	/* Only 255 descriptors can be added at once */
858 	while ((rx_done > 0) || (rx_filled > 0)) {
859 		if (rx_done <= 0xff) {
860 			val = rx_done;
861 			rx_done = 0;
862 		} else {
863 			val = 0xff;
864 			rx_done -= 0xff;
865 		}
866 		if (rx_filled <= 0xff) {
867 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
868 			rx_filled = 0;
869 		} else {
870 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871 			rx_filled -= 0xff;
872 		}
873 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
874 	}
875 }
876 
877 /* Get pointer to next RX descriptor to be processed by SW */
878 static struct mvneta_rx_desc *
879 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
880 {
881 	int rx_desc = rxq->next_desc_to_proc;
882 
883 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
884 	prefetch(rxq->descs + rxq->next_desc_to_proc);
885 	return rxq->descs + rx_desc;
886 }
887 
888 /* Change maximum receive size of the port. */
889 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
890 {
891 	u32 val;
892 
893 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
894 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
895 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
896 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
897 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
898 }
899 
900 
901 /* Set rx queue offset */
902 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
903 				  struct mvneta_rx_queue *rxq,
904 				  int offset)
905 {
906 	u32 val;
907 
908 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
909 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
910 
911 	/* Offset is in */
912 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
913 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
914 }
915 
916 
917 /* Tx descriptors helper methods */
918 
919 /* Update HW with number of TX descriptors to be sent */
920 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
921 				     struct mvneta_tx_queue *txq,
922 				     int pend_desc)
923 {
924 	u32 val;
925 
926 	pend_desc += txq->pending;
927 
928 	/* Only 255 Tx descriptors can be added at once */
929 	do {
930 		val = min(pend_desc, 255);
931 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
932 		pend_desc -= val;
933 	} while (pend_desc > 0);
934 	txq->pending = 0;
935 }
936 
937 /* Get pointer to next TX descriptor to be processed (send) by HW */
938 static struct mvneta_tx_desc *
939 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
940 {
941 	int tx_desc = txq->next_desc_to_proc;
942 
943 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
944 	return txq->descs + tx_desc;
945 }
946 
947 /* Release the last allocated TX descriptor. Useful to handle DMA
948  * mapping failures in the TX path.
949  */
950 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
951 {
952 	if (txq->next_desc_to_proc == 0)
953 		txq->next_desc_to_proc = txq->last_desc - 1;
954 	else
955 		txq->next_desc_to_proc--;
956 }
957 
958 /* Set rxq buf size */
959 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
960 				    struct mvneta_rx_queue *rxq,
961 				    int buf_size)
962 {
963 	u32 val;
964 
965 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
966 
967 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
968 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
969 
970 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
971 }
972 
973 /* Disable buffer management (BM) */
974 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
975 				  struct mvneta_rx_queue *rxq)
976 {
977 	u32 val;
978 
979 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
980 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
981 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
982 }
983 
984 /* Enable buffer management (BM) */
985 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
986 				 struct mvneta_rx_queue *rxq)
987 {
988 	u32 val;
989 
990 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
991 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
992 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
993 }
994 
995 /* Notify HW about port's assignment of pool for bigger packets */
996 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
997 				     struct mvneta_rx_queue *rxq)
998 {
999 	u32 val;
1000 
1001 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1002 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1003 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1004 
1005 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1006 }
1007 
1008 /* Notify HW about port's assignment of pool for smaller packets */
1009 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1010 				      struct mvneta_rx_queue *rxq)
1011 {
1012 	u32 val;
1013 
1014 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1015 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1016 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1017 
1018 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1019 }
1020 
1021 /* Set port's receive buffer size for assigned BM pool */
1022 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1023 					      int buf_size,
1024 					      u8 pool_id)
1025 {
1026 	u32 val;
1027 
1028 	if (!IS_ALIGNED(buf_size, 8)) {
1029 		dev_warn(pp->dev->dev.parent,
1030 			 "illegal buf_size value %d, round to %d\n",
1031 			 buf_size, ALIGN(buf_size, 8));
1032 		buf_size = ALIGN(buf_size, 8);
1033 	}
1034 
1035 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1036 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1037 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1038 }
1039 
1040 /* Configure MBUS window in order to enable access BM internal SRAM */
1041 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1042 				  u8 target, u8 attr)
1043 {
1044 	u32 win_enable, win_protect;
1045 	int i;
1046 
1047 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1048 
1049 	if (pp->bm_win_id < 0) {
1050 		/* Find first not occupied window */
1051 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1052 			if (win_enable & (1 << i)) {
1053 				pp->bm_win_id = i;
1054 				break;
1055 			}
1056 		}
1057 		if (i == MVNETA_MAX_DECODE_WIN)
1058 			return -ENOMEM;
1059 	} else {
1060 		i = pp->bm_win_id;
1061 	}
1062 
1063 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1064 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1065 
1066 	if (i < 4)
1067 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1068 
1069 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1070 		    (attr << 8) | target);
1071 
1072 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1073 
1074 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1075 	win_protect |= 3 << (2 * i);
1076 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1077 
1078 	win_enable &= ~(1 << i);
1079 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1080 
1081 	return 0;
1082 }
1083 
1084 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1085 {
1086 	u32 wsize;
1087 	u8 target, attr;
1088 	int err;
1089 
1090 	/* Get BM window information */
1091 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1092 					 &target, &attr);
1093 	if (err < 0)
1094 		return err;
1095 
1096 	pp->bm_win_id = -1;
1097 
1098 	/* Open NETA -> BM window */
1099 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1100 				     target, attr);
1101 	if (err < 0) {
1102 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1103 		return err;
1104 	}
1105 	return 0;
1106 }
1107 
1108 /* Assign and initialize pools for port. In case of fail
1109  * buffer manager will remain disabled for current port.
1110  */
1111 static int mvneta_bm_port_init(struct platform_device *pdev,
1112 			       struct mvneta_port *pp)
1113 {
1114 	struct device_node *dn = pdev->dev.of_node;
1115 	u32 long_pool_id, short_pool_id;
1116 
1117 	if (!pp->neta_armada3700) {
1118 		int ret;
1119 
1120 		ret = mvneta_bm_port_mbus_init(pp);
1121 		if (ret)
1122 			return ret;
1123 	}
1124 
1125 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1126 		netdev_info(pp->dev, "missing long pool id\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	/* Create port's long pool depending on mtu */
1131 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1132 					   MVNETA_BM_LONG, pp->id,
1133 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1134 	if (!pp->pool_long) {
1135 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1136 		return -ENOMEM;
1137 	}
1138 
1139 	pp->pool_long->port_map |= 1 << pp->id;
1140 
1141 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1142 				   pp->pool_long->id);
1143 
1144 	/* If short pool id is not defined, assume using single pool */
1145 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1146 		short_pool_id = long_pool_id;
1147 
1148 	/* Create port's short pool */
1149 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1150 					    MVNETA_BM_SHORT, pp->id,
1151 					    MVNETA_BM_SHORT_PKT_SIZE);
1152 	if (!pp->pool_short) {
1153 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1154 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1155 		return -ENOMEM;
1156 	}
1157 
1158 	if (short_pool_id != long_pool_id) {
1159 		pp->pool_short->port_map |= 1 << pp->id;
1160 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1161 					   pp->pool_short->id);
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /* Update settings of a pool for bigger packets */
1168 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1169 {
1170 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1171 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1172 	int num;
1173 
1174 	/* Release all buffers from long pool */
1175 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1176 	if (hwbm_pool->buf_num) {
1177 		WARN(1, "cannot free all buffers in pool %d\n",
1178 		     bm_pool->id);
1179 		goto bm_mtu_err;
1180 	}
1181 
1182 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1183 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1184 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1185 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1186 
1187 	/* Fill entire long pool */
1188 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1189 	if (num != hwbm_pool->size) {
1190 		WARN(1, "pool %d: %d of %d allocated\n",
1191 		     bm_pool->id, num, hwbm_pool->size);
1192 		goto bm_mtu_err;
1193 	}
1194 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1195 
1196 	return;
1197 
1198 bm_mtu_err:
1199 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1200 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1201 
1202 	pp->bm_priv = NULL;
1203 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1204 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1205 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1206 }
1207 
1208 /* Start the Ethernet port RX and TX activity */
1209 static void mvneta_port_up(struct mvneta_port *pp)
1210 {
1211 	int queue;
1212 	u32 q_map;
1213 
1214 	/* Enable all initialized TXs. */
1215 	q_map = 0;
1216 	for (queue = 0; queue < txq_number; queue++) {
1217 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1218 		if (txq->descs)
1219 			q_map |= (1 << queue);
1220 	}
1221 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1222 
1223 	q_map = 0;
1224 	/* Enable all initialized RXQs. */
1225 	for (queue = 0; queue < rxq_number; queue++) {
1226 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1227 
1228 		if (rxq->descs)
1229 			q_map |= (1 << queue);
1230 	}
1231 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1232 }
1233 
1234 /* Stop the Ethernet port activity */
1235 static void mvneta_port_down(struct mvneta_port *pp)
1236 {
1237 	u32 val;
1238 	int count;
1239 
1240 	/* Stop Rx port activity. Check port Rx activity. */
1241 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1242 
1243 	/* Issue stop command for active channels only */
1244 	if (val != 0)
1245 		mvreg_write(pp, MVNETA_RXQ_CMD,
1246 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1247 
1248 	/* Wait for all Rx activity to terminate. */
1249 	count = 0;
1250 	do {
1251 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1252 			netdev_warn(pp->dev,
1253 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1254 				    val);
1255 			break;
1256 		}
1257 		mdelay(1);
1258 
1259 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1260 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1261 
1262 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1263 	 * command for active channels only
1264 	 */
1265 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1266 
1267 	if (val != 0)
1268 		mvreg_write(pp, MVNETA_TXQ_CMD,
1269 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1270 
1271 	/* Wait for all Tx activity to terminate. */
1272 	count = 0;
1273 	do {
1274 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1275 			netdev_warn(pp->dev,
1276 				    "TIMEOUT for TX stopped status=0x%08x\n",
1277 				    val);
1278 			break;
1279 		}
1280 		mdelay(1);
1281 
1282 		/* Check TX Command reg that all Txqs are stopped */
1283 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1284 
1285 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1286 
1287 	/* Double check to verify that TX FIFO is empty */
1288 	count = 0;
1289 	do {
1290 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1291 			netdev_warn(pp->dev,
1292 				    "TX FIFO empty timeout status=0x%08x\n",
1293 				    val);
1294 			break;
1295 		}
1296 		mdelay(1);
1297 
1298 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1299 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1300 		 (val & MVNETA_TX_IN_PRGRS));
1301 
1302 	udelay(200);
1303 }
1304 
1305 /* Enable the port by setting the port enable bit of the MAC control register */
1306 static void mvneta_port_enable(struct mvneta_port *pp)
1307 {
1308 	u32 val;
1309 
1310 	/* Enable port */
1311 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1312 	val |= MVNETA_GMAC0_PORT_ENABLE;
1313 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1314 }
1315 
1316 /* Disable the port and wait for about 200 usec before retuning */
1317 static void mvneta_port_disable(struct mvneta_port *pp)
1318 {
1319 	u32 val;
1320 
1321 	/* Reset the Enable bit in the Serial Control Register */
1322 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1323 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1324 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1325 
1326 	udelay(200);
1327 }
1328 
1329 /* Multicast tables methods */
1330 
1331 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1332 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1333 {
1334 	int offset;
1335 	u32 val;
1336 
1337 	if (queue == -1) {
1338 		val = 0;
1339 	} else {
1340 		val = 0x1 | (queue << 1);
1341 		val |= (val << 24) | (val << 16) | (val << 8);
1342 	}
1343 
1344 	for (offset = 0; offset <= 0xc; offset += 4)
1345 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1346 }
1347 
1348 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1349 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1350 {
1351 	int offset;
1352 	u32 val;
1353 
1354 	if (queue == -1) {
1355 		val = 0;
1356 	} else {
1357 		val = 0x1 | (queue << 1);
1358 		val |= (val << 24) | (val << 16) | (val << 8);
1359 	}
1360 
1361 	for (offset = 0; offset <= 0xfc; offset += 4)
1362 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1363 
1364 }
1365 
1366 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1367 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1368 {
1369 	int offset;
1370 	u32 val;
1371 
1372 	if (queue == -1) {
1373 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1374 		val = 0;
1375 	} else {
1376 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1377 		val = 0x1 | (queue << 1);
1378 		val |= (val << 24) | (val << 16) | (val << 8);
1379 	}
1380 
1381 	for (offset = 0; offset <= 0xfc; offset += 4)
1382 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1383 }
1384 
1385 static void mvneta_percpu_unmask_interrupt(void *arg)
1386 {
1387 	struct mvneta_port *pp = arg;
1388 
1389 	/* All the queue are unmasked, but actually only the ones
1390 	 * mapped to this CPU will be unmasked
1391 	 */
1392 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1393 		    MVNETA_RX_INTR_MASK_ALL |
1394 		    MVNETA_TX_INTR_MASK_ALL |
1395 		    MVNETA_MISCINTR_INTR_MASK);
1396 }
1397 
1398 static void mvneta_percpu_mask_interrupt(void *arg)
1399 {
1400 	struct mvneta_port *pp = arg;
1401 
1402 	/* All the queue are masked, but actually only the ones
1403 	 * mapped to this CPU will be masked
1404 	 */
1405 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1406 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1407 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1408 }
1409 
1410 static void mvneta_percpu_clear_intr_cause(void *arg)
1411 {
1412 	struct mvneta_port *pp = arg;
1413 
1414 	/* All the queue are cleared, but actually only the ones
1415 	 * mapped to this CPU will be cleared
1416 	 */
1417 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1418 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1419 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1420 }
1421 
1422 /* This method sets defaults to the NETA port:
1423  *	Clears interrupt Cause and Mask registers.
1424  *	Clears all MAC tables.
1425  *	Sets defaults to all registers.
1426  *	Resets RX and TX descriptor rings.
1427  *	Resets PHY.
1428  * This method can be called after mvneta_port_down() to return the port
1429  *	settings to defaults.
1430  */
1431 static void mvneta_defaults_set(struct mvneta_port *pp)
1432 {
1433 	int cpu;
1434 	int queue;
1435 	u32 val;
1436 	int max_cpu = num_present_cpus();
1437 
1438 	/* Clear all Cause registers */
1439 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1440 
1441 	/* Mask all interrupts */
1442 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1443 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1444 
1445 	/* Enable MBUS Retry bit16 */
1446 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1447 
1448 	/* Set CPU queue access map. CPUs are assigned to the RX and
1449 	 * TX queues modulo their number. If there is only one TX
1450 	 * queue then it is assigned to the CPU associated to the
1451 	 * default RX queue.
1452 	 */
1453 	for_each_present_cpu(cpu) {
1454 		int rxq_map = 0, txq_map = 0;
1455 		int rxq, txq;
1456 		if (!pp->neta_armada3700) {
1457 			for (rxq = 0; rxq < rxq_number; rxq++)
1458 				if ((rxq % max_cpu) == cpu)
1459 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1460 
1461 			for (txq = 0; txq < txq_number; txq++)
1462 				if ((txq % max_cpu) == cpu)
1463 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1464 
1465 			/* With only one TX queue we configure a special case
1466 			 * which will allow to get all the irq on a single
1467 			 * CPU
1468 			 */
1469 			if (txq_number == 1)
1470 				txq_map = (cpu == pp->rxq_def) ?
1471 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1472 
1473 		} else {
1474 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1475 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1476 		}
1477 
1478 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1479 	}
1480 
1481 	/* Reset RX and TX DMAs */
1482 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1483 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1484 
1485 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1486 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1487 	for (queue = 0; queue < txq_number; queue++) {
1488 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1489 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1490 	}
1491 
1492 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1493 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1494 
1495 	/* Set Port Acceleration Mode */
1496 	if (pp->bm_priv)
1497 		/* HW buffer management + legacy parser */
1498 		val = MVNETA_ACC_MODE_EXT2;
1499 	else
1500 		/* SW buffer management + legacy parser */
1501 		val = MVNETA_ACC_MODE_EXT1;
1502 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1503 
1504 	if (pp->bm_priv)
1505 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1506 
1507 	/* Update val of portCfg register accordingly with all RxQueue types */
1508 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1509 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1510 
1511 	val = 0;
1512 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1513 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1514 
1515 	/* Build PORT_SDMA_CONFIG_REG */
1516 	val = 0;
1517 
1518 	/* Default burst size */
1519 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1520 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1521 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1522 
1523 #if defined(__BIG_ENDIAN)
1524 	val |= MVNETA_DESC_SWAP;
1525 #endif
1526 
1527 	/* Assign port SDMA configuration */
1528 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1529 
1530 	/* Disable PHY polling in hardware, since we're using the
1531 	 * kernel phylib to do this.
1532 	 */
1533 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1534 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1535 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1536 
1537 	mvneta_set_ucast_table(pp, -1);
1538 	mvneta_set_special_mcast_table(pp, -1);
1539 	mvneta_set_other_mcast_table(pp, -1);
1540 
1541 	/* Set port interrupt enable register - default enable all */
1542 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1543 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1544 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1545 
1546 	mvneta_mib_counters_clear(pp);
1547 }
1548 
1549 /* Set max sizes for tx queues */
1550 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1551 
1552 {
1553 	u32 val, size, mtu;
1554 	int queue;
1555 
1556 	mtu = max_tx_size * 8;
1557 	if (mtu > MVNETA_TX_MTU_MAX)
1558 		mtu = MVNETA_TX_MTU_MAX;
1559 
1560 	/* Set MTU */
1561 	val = mvreg_read(pp, MVNETA_TX_MTU);
1562 	val &= ~MVNETA_TX_MTU_MAX;
1563 	val |= mtu;
1564 	mvreg_write(pp, MVNETA_TX_MTU, val);
1565 
1566 	/* TX token size and all TXQs token size must be larger that MTU */
1567 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1568 
1569 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1570 	if (size < mtu) {
1571 		size = mtu;
1572 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1573 		val |= size;
1574 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1575 	}
1576 	for (queue = 0; queue < txq_number; queue++) {
1577 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1578 
1579 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1580 		if (size < mtu) {
1581 			size = mtu;
1582 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1583 			val |= size;
1584 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1585 		}
1586 	}
1587 }
1588 
1589 /* Set unicast address */
1590 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1591 				  int queue)
1592 {
1593 	unsigned int unicast_reg;
1594 	unsigned int tbl_offset;
1595 	unsigned int reg_offset;
1596 
1597 	/* Locate the Unicast table entry */
1598 	last_nibble = (0xf & last_nibble);
1599 
1600 	/* offset from unicast tbl base */
1601 	tbl_offset = (last_nibble / 4) * 4;
1602 
1603 	/* offset within the above reg  */
1604 	reg_offset = last_nibble % 4;
1605 
1606 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1607 
1608 	if (queue == -1) {
1609 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1610 		unicast_reg &= ~(0xff << (8 * reg_offset));
1611 	} else {
1612 		unicast_reg &= ~(0xff << (8 * reg_offset));
1613 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1614 	}
1615 
1616 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1617 }
1618 
1619 /* Set mac address */
1620 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1621 				int queue)
1622 {
1623 	unsigned int mac_h;
1624 	unsigned int mac_l;
1625 
1626 	if (queue != -1) {
1627 		mac_l = (addr[4] << 8) | (addr[5]);
1628 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1629 			(addr[2] << 8) | (addr[3] << 0);
1630 
1631 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1632 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1633 	}
1634 
1635 	/* Accept frames of this address */
1636 	mvneta_set_ucast_addr(pp, addr[5], queue);
1637 }
1638 
1639 /* Set the number of packets that will be received before RX interrupt
1640  * will be generated by HW.
1641  */
1642 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1643 				    struct mvneta_rx_queue *rxq, u32 value)
1644 {
1645 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1646 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1647 }
1648 
1649 /* Set the time delay in usec before RX interrupt will be generated by
1650  * HW.
1651  */
1652 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1653 				    struct mvneta_rx_queue *rxq, u32 value)
1654 {
1655 	u32 val;
1656 	unsigned long clk_rate;
1657 
1658 	clk_rate = clk_get_rate(pp->clk);
1659 	val = (clk_rate / 1000000) * value;
1660 
1661 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1662 }
1663 
1664 /* Set threshold for TX_DONE pkts coalescing */
1665 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1666 					 struct mvneta_tx_queue *txq, u32 value)
1667 {
1668 	u32 val;
1669 
1670 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1671 
1672 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1673 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1674 
1675 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1676 }
1677 
1678 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1679 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1680 				u32 phys_addr, void *virt_addr,
1681 				struct mvneta_rx_queue *rxq)
1682 {
1683 	int i;
1684 
1685 	rx_desc->buf_phys_addr = phys_addr;
1686 	i = rx_desc - rxq->descs;
1687 	rxq->buf_virt_addr[i] = virt_addr;
1688 }
1689 
1690 /* Decrement sent descriptors counter */
1691 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1692 				     struct mvneta_tx_queue *txq,
1693 				     int sent_desc)
1694 {
1695 	u32 val;
1696 
1697 	/* Only 255 TX descriptors can be updated at once */
1698 	while (sent_desc > 0xff) {
1699 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1700 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1701 		sent_desc = sent_desc - 0xff;
1702 	}
1703 
1704 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1705 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1706 }
1707 
1708 /* Get number of TX descriptors already sent by HW */
1709 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1710 					struct mvneta_tx_queue *txq)
1711 {
1712 	u32 val;
1713 	int sent_desc;
1714 
1715 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1716 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1717 		MVNETA_TXQ_SENT_DESC_SHIFT;
1718 
1719 	return sent_desc;
1720 }
1721 
1722 /* Get number of sent descriptors and decrement counter.
1723  *  The number of sent descriptors is returned.
1724  */
1725 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1726 				     struct mvneta_tx_queue *txq)
1727 {
1728 	int sent_desc;
1729 
1730 	/* Get number of sent descriptors */
1731 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1732 
1733 	/* Decrement sent descriptors counter */
1734 	if (sent_desc)
1735 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1736 
1737 	return sent_desc;
1738 }
1739 
1740 /* Set TXQ descriptors fields relevant for CSUM calculation */
1741 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1742 				int ip_hdr_len, int l4_proto)
1743 {
1744 	u32 command;
1745 
1746 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1747 	 * G_L4_chk, L4_type; required only for checksum
1748 	 * calculation
1749 	 */
1750 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1751 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1752 
1753 	if (l3_proto == htons(ETH_P_IP))
1754 		command |= MVNETA_TXD_IP_CSUM;
1755 	else
1756 		command |= MVNETA_TX_L3_IP6;
1757 
1758 	if (l4_proto == IPPROTO_TCP)
1759 		command |=  MVNETA_TX_L4_CSUM_FULL;
1760 	else if (l4_proto == IPPROTO_UDP)
1761 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1762 	else
1763 		command |= MVNETA_TX_L4_CSUM_NOT;
1764 
1765 	return command;
1766 }
1767 
1768 
1769 /* Display more error info */
1770 static void mvneta_rx_error(struct mvneta_port *pp,
1771 			    struct mvneta_rx_desc *rx_desc)
1772 {
1773 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1774 	u32 status = rx_desc->status;
1775 
1776 	/* update per-cpu counter */
1777 	u64_stats_update_begin(&stats->syncp);
1778 	stats->rx_errors++;
1779 	u64_stats_update_end(&stats->syncp);
1780 
1781 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1782 	case MVNETA_RXD_ERR_CRC:
1783 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1784 			   status, rx_desc->data_size);
1785 		break;
1786 	case MVNETA_RXD_ERR_OVERRUN:
1787 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1788 			   status, rx_desc->data_size);
1789 		break;
1790 	case MVNETA_RXD_ERR_LEN:
1791 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1792 			   status, rx_desc->data_size);
1793 		break;
1794 	case MVNETA_RXD_ERR_RESOURCE:
1795 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1796 			   status, rx_desc->data_size);
1797 		break;
1798 	}
1799 }
1800 
1801 /* Handle RX checksum offload based on the descriptor's status */
1802 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1803 			   struct sk_buff *skb)
1804 {
1805 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1806 	    (status & MVNETA_RXD_L3_IP4) &&
1807 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1808 		skb->csum = 0;
1809 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1810 		return;
1811 	}
1812 
1813 	skb->ip_summed = CHECKSUM_NONE;
1814 }
1815 
1816 /* Return tx queue pointer (find last set bit) according to <cause> returned
1817  * form tx_done reg. <cause> must not be null. The return value is always a
1818  * valid queue for matching the first one found in <cause>.
1819  */
1820 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1821 						     u32 cause)
1822 {
1823 	int queue = fls(cause) - 1;
1824 
1825 	return &pp->txqs[queue];
1826 }
1827 
1828 /* Free tx queue skbuffs */
1829 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1830 				 struct mvneta_tx_queue *txq, int num,
1831 				 struct netdev_queue *nq)
1832 {
1833 	unsigned int bytes_compl = 0, pkts_compl = 0;
1834 	int i;
1835 
1836 	for (i = 0; i < num; i++) {
1837 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1838 		struct mvneta_tx_desc *tx_desc = txq->descs +
1839 			txq->txq_get_index;
1840 
1841 		mvneta_txq_inc_get(txq);
1842 
1843 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1844 		    buf->type != MVNETA_TYPE_XDP_TX)
1845 			dma_unmap_single(pp->dev->dev.parent,
1846 					 tx_desc->buf_phys_addr,
1847 					 tx_desc->data_size, DMA_TO_DEVICE);
1848 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1849 			bytes_compl += buf->skb->len;
1850 			pkts_compl++;
1851 			dev_kfree_skb_any(buf->skb);
1852 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1853 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1854 			xdp_return_frame(buf->xdpf);
1855 		}
1856 	}
1857 
1858 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1859 }
1860 
1861 /* Handle end of transmission */
1862 static void mvneta_txq_done(struct mvneta_port *pp,
1863 			   struct mvneta_tx_queue *txq)
1864 {
1865 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1866 	int tx_done;
1867 
1868 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1869 	if (!tx_done)
1870 		return;
1871 
1872 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1873 
1874 	txq->count -= tx_done;
1875 
1876 	if (netif_tx_queue_stopped(nq)) {
1877 		if (txq->count <= txq->tx_wake_threshold)
1878 			netif_tx_wake_queue(nq);
1879 	}
1880 }
1881 
1882 /* Refill processing for SW buffer management */
1883 /* Allocate page per descriptor */
1884 static int mvneta_rx_refill(struct mvneta_port *pp,
1885 			    struct mvneta_rx_desc *rx_desc,
1886 			    struct mvneta_rx_queue *rxq,
1887 			    gfp_t gfp_mask)
1888 {
1889 	dma_addr_t phys_addr;
1890 	struct page *page;
1891 
1892 	page = page_pool_alloc_pages(rxq->page_pool,
1893 				     gfp_mask | __GFP_NOWARN);
1894 	if (!page)
1895 		return -ENOMEM;
1896 
1897 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1898 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1899 
1900 	return 0;
1901 }
1902 
1903 /* Handle tx checksum */
1904 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1905 {
1906 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1907 		int ip_hdr_len = 0;
1908 		__be16 l3_proto = vlan_get_protocol(skb);
1909 		u8 l4_proto;
1910 
1911 		if (l3_proto == htons(ETH_P_IP)) {
1912 			struct iphdr *ip4h = ip_hdr(skb);
1913 
1914 			/* Calculate IPv4 checksum and L4 checksum */
1915 			ip_hdr_len = ip4h->ihl;
1916 			l4_proto = ip4h->protocol;
1917 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1918 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1919 
1920 			/* Read l4_protocol from one of IPv6 extra headers */
1921 			if (skb_network_header_len(skb) > 0)
1922 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1923 			l4_proto = ip6h->nexthdr;
1924 		} else
1925 			return MVNETA_TX_L4_CSUM_NOT;
1926 
1927 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1928 					    l3_proto, ip_hdr_len, l4_proto);
1929 	}
1930 
1931 	return MVNETA_TX_L4_CSUM_NOT;
1932 }
1933 
1934 /* Drop packets received by the RXQ and free buffers */
1935 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1936 				 struct mvneta_rx_queue *rxq)
1937 {
1938 	int rx_done, i;
1939 
1940 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1941 	if (rx_done)
1942 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1943 
1944 	if (pp->bm_priv) {
1945 		for (i = 0; i < rx_done; i++) {
1946 			struct mvneta_rx_desc *rx_desc =
1947 						  mvneta_rxq_next_desc_get(rxq);
1948 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1949 			struct mvneta_bm_pool *bm_pool;
1950 
1951 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1952 			/* Return dropped buffer to the pool */
1953 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1954 					      rx_desc->buf_phys_addr);
1955 		}
1956 		return;
1957 	}
1958 
1959 	for (i = 0; i < rxq->size; i++) {
1960 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1961 		void *data = rxq->buf_virt_addr[i];
1962 		if (!data || !(rx_desc->buf_phys_addr))
1963 			continue;
1964 
1965 		page_pool_put_full_page(rxq->page_pool, data, false);
1966 	}
1967 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1968 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1969 	page_pool_destroy(rxq->page_pool);
1970 	rxq->page_pool = NULL;
1971 }
1972 
1973 static void
1974 mvneta_update_stats(struct mvneta_port *pp,
1975 		    struct mvneta_stats *ps)
1976 {
1977 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1978 
1979 	u64_stats_update_begin(&stats->syncp);
1980 	stats->es.ps.rx_packets += ps->rx_packets;
1981 	stats->es.ps.rx_bytes += ps->rx_bytes;
1982 	/* xdp */
1983 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1984 	stats->es.ps.xdp_pass += ps->xdp_pass;
1985 	stats->es.ps.xdp_drop += ps->xdp_drop;
1986 	u64_stats_update_end(&stats->syncp);
1987 }
1988 
1989 static inline
1990 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1991 {
1992 	struct mvneta_rx_desc *rx_desc;
1993 	int curr_desc = rxq->first_to_refill;
1994 	int i;
1995 
1996 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1997 		rx_desc = rxq->descs + curr_desc;
1998 		if (!(rx_desc->buf_phys_addr)) {
1999 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2000 				struct mvneta_pcpu_stats *stats;
2001 
2002 				pr_err("Can't refill queue %d. Done %d from %d\n",
2003 				       rxq->id, i, rxq->refill_num);
2004 
2005 				stats = this_cpu_ptr(pp->stats);
2006 				u64_stats_update_begin(&stats->syncp);
2007 				stats->es.refill_error++;
2008 				u64_stats_update_end(&stats->syncp);
2009 				break;
2010 			}
2011 		}
2012 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2013 	}
2014 	rxq->refill_num -= i;
2015 	rxq->first_to_refill = curr_desc;
2016 
2017 	return i;
2018 }
2019 
2020 static int
2021 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2022 			struct xdp_frame *xdpf, bool dma_map)
2023 {
2024 	struct mvneta_tx_desc *tx_desc;
2025 	struct mvneta_tx_buf *buf;
2026 	dma_addr_t dma_addr;
2027 
2028 	if (txq->count >= txq->tx_stop_threshold)
2029 		return MVNETA_XDP_DROPPED;
2030 
2031 	tx_desc = mvneta_txq_next_desc_get(txq);
2032 
2033 	buf = &txq->buf[txq->txq_put_index];
2034 	if (dma_map) {
2035 		/* ndo_xdp_xmit */
2036 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2037 					  xdpf->len, DMA_TO_DEVICE);
2038 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2039 			mvneta_txq_desc_put(txq);
2040 			return MVNETA_XDP_DROPPED;
2041 		}
2042 		buf->type = MVNETA_TYPE_XDP_NDO;
2043 	} else {
2044 		struct page *page = virt_to_page(xdpf->data);
2045 
2046 		dma_addr = page_pool_get_dma_addr(page) +
2047 			   sizeof(*xdpf) + xdpf->headroom;
2048 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2049 					   xdpf->len, DMA_BIDIRECTIONAL);
2050 		buf->type = MVNETA_TYPE_XDP_TX;
2051 	}
2052 	buf->xdpf = xdpf;
2053 
2054 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2055 	tx_desc->buf_phys_addr = dma_addr;
2056 	tx_desc->data_size = xdpf->len;
2057 
2058 	mvneta_txq_inc_put(txq);
2059 	txq->pending++;
2060 	txq->count++;
2061 
2062 	return MVNETA_XDP_TX;
2063 }
2064 
2065 static int
2066 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2067 {
2068 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2069 	struct mvneta_tx_queue *txq;
2070 	struct netdev_queue *nq;
2071 	struct xdp_frame *xdpf;
2072 	int cpu;
2073 	u32 ret;
2074 
2075 	xdpf = convert_to_xdp_frame(xdp);
2076 	if (unlikely(!xdpf))
2077 		return MVNETA_XDP_DROPPED;
2078 
2079 	cpu = smp_processor_id();
2080 	txq = &pp->txqs[cpu % txq_number];
2081 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2082 
2083 	__netif_tx_lock(nq, cpu);
2084 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2085 	if (ret == MVNETA_XDP_TX) {
2086 		u64_stats_update_begin(&stats->syncp);
2087 		stats->es.ps.tx_bytes += xdpf->len;
2088 		stats->es.ps.tx_packets++;
2089 		stats->es.ps.xdp_tx++;
2090 		u64_stats_update_end(&stats->syncp);
2091 
2092 		mvneta_txq_pend_desc_add(pp, txq, 0);
2093 	} else {
2094 		u64_stats_update_begin(&stats->syncp);
2095 		stats->es.ps.xdp_tx_err++;
2096 		u64_stats_update_end(&stats->syncp);
2097 	}
2098 	__netif_tx_unlock(nq);
2099 
2100 	return ret;
2101 }
2102 
2103 static int
2104 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2105 		struct xdp_frame **frames, u32 flags)
2106 {
2107 	struct mvneta_port *pp = netdev_priv(dev);
2108 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2109 	int i, nxmit_byte = 0, nxmit = num_frame;
2110 	int cpu = smp_processor_id();
2111 	struct mvneta_tx_queue *txq;
2112 	struct netdev_queue *nq;
2113 	u32 ret;
2114 
2115 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2116 		return -EINVAL;
2117 
2118 	txq = &pp->txqs[cpu % txq_number];
2119 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2120 
2121 	__netif_tx_lock(nq, cpu);
2122 	for (i = 0; i < num_frame; i++) {
2123 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2124 		if (ret == MVNETA_XDP_TX) {
2125 			nxmit_byte += frames[i]->len;
2126 		} else {
2127 			xdp_return_frame_rx_napi(frames[i]);
2128 			nxmit--;
2129 		}
2130 	}
2131 
2132 	if (unlikely(flags & XDP_XMIT_FLUSH))
2133 		mvneta_txq_pend_desc_add(pp, txq, 0);
2134 	__netif_tx_unlock(nq);
2135 
2136 	u64_stats_update_begin(&stats->syncp);
2137 	stats->es.ps.tx_bytes += nxmit_byte;
2138 	stats->es.ps.tx_packets += nxmit;
2139 	stats->es.ps.xdp_xmit += nxmit;
2140 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2141 	u64_stats_update_end(&stats->syncp);
2142 
2143 	return nxmit;
2144 }
2145 
2146 static int
2147 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2148 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2149 	       struct mvneta_stats *stats)
2150 {
2151 	unsigned int len;
2152 	u32 ret, act;
2153 
2154 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2155 	act = bpf_prog_run_xdp(prog, xdp);
2156 
2157 	switch (act) {
2158 	case XDP_PASS:
2159 		stats->xdp_pass++;
2160 		return MVNETA_XDP_PASS;
2161 	case XDP_REDIRECT: {
2162 		int err;
2163 
2164 		err = xdp_do_redirect(pp->dev, xdp, prog);
2165 		if (unlikely(err)) {
2166 			ret = MVNETA_XDP_DROPPED;
2167 			page_pool_put_page(rxq->page_pool,
2168 					   virt_to_head_page(xdp->data), len,
2169 					   true);
2170 		} else {
2171 			ret = MVNETA_XDP_REDIR;
2172 			stats->xdp_redirect++;
2173 		}
2174 		break;
2175 	}
2176 	case XDP_TX:
2177 		ret = mvneta_xdp_xmit_back(pp, xdp);
2178 		if (ret != MVNETA_XDP_TX)
2179 			page_pool_put_page(rxq->page_pool,
2180 					   virt_to_head_page(xdp->data), len,
2181 					   true);
2182 		break;
2183 	default:
2184 		bpf_warn_invalid_xdp_action(act);
2185 		/* fall through */
2186 	case XDP_ABORTED:
2187 		trace_xdp_exception(pp->dev, prog, act);
2188 		/* fall through */
2189 	case XDP_DROP:
2190 		page_pool_put_page(rxq->page_pool,
2191 				   virt_to_head_page(xdp->data), len, true);
2192 		ret = MVNETA_XDP_DROPPED;
2193 		stats->xdp_drop++;
2194 		break;
2195 	}
2196 
2197 	stats->rx_bytes += xdp->data_end - xdp->data;
2198 	stats->rx_packets++;
2199 
2200 	return ret;
2201 }
2202 
2203 static int
2204 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2205 		     struct mvneta_rx_desc *rx_desc,
2206 		     struct mvneta_rx_queue *rxq,
2207 		     struct xdp_buff *xdp,
2208 		     struct bpf_prog *xdp_prog,
2209 		     struct page *page,
2210 		     struct mvneta_stats *stats)
2211 {
2212 	unsigned char *data = page_address(page);
2213 	int data_len = -MVNETA_MH_SIZE, len;
2214 	struct net_device *dev = pp->dev;
2215 	enum dma_data_direction dma_dir;
2216 	int ret = 0;
2217 
2218 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2219 		len = MVNETA_MAX_RX_BUF_SIZE;
2220 		data_len += len;
2221 	} else {
2222 		len = rx_desc->data_size;
2223 		data_len += len - ETH_FCS_LEN;
2224 	}
2225 
2226 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2227 	dma_sync_single_for_cpu(dev->dev.parent,
2228 				rx_desc->buf_phys_addr,
2229 				len, dma_dir);
2230 
2231 	/* Prefetch header */
2232 	prefetch(data);
2233 
2234 	xdp->data_hard_start = data;
2235 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2236 	xdp->data_end = xdp->data + data_len;
2237 	xdp_set_data_meta_invalid(xdp);
2238 
2239 	if (xdp_prog) {
2240 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats);
2241 		if (ret)
2242 			goto out;
2243 	}
2244 
2245 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2246 	if (unlikely(!rxq->skb)) {
2247 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2248 
2249 		netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
2250 
2251 		u64_stats_update_begin(&stats->syncp);
2252 		stats->es.skb_alloc_error++;
2253 		stats->rx_dropped++;
2254 		u64_stats_update_end(&stats->syncp);
2255 
2256 		return -ENOMEM;
2257 	}
2258 	page_pool_release_page(rxq->page_pool, page);
2259 
2260 	skb_reserve(rxq->skb,
2261 		    xdp->data - xdp->data_hard_start);
2262 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2263 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2264 
2265 	rxq->left_size = rx_desc->data_size - len;
2266 
2267 out:
2268 	rx_desc->buf_phys_addr = 0;
2269 
2270 	return ret;
2271 }
2272 
2273 static void
2274 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2275 			    struct mvneta_rx_desc *rx_desc,
2276 			    struct mvneta_rx_queue *rxq,
2277 			    struct page *page)
2278 {
2279 	struct net_device *dev = pp->dev;
2280 	enum dma_data_direction dma_dir;
2281 	int data_len, len;
2282 
2283 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2284 		len = MVNETA_MAX_RX_BUF_SIZE;
2285 		data_len = len;
2286 	} else {
2287 		len = rxq->left_size;
2288 		data_len = len - ETH_FCS_LEN;
2289 	}
2290 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2291 	dma_sync_single_for_cpu(dev->dev.parent,
2292 				rx_desc->buf_phys_addr,
2293 				len, dma_dir);
2294 	if (data_len > 0) {
2295 		/* refill descriptor with new buffer later */
2296 		skb_add_rx_frag(rxq->skb,
2297 				skb_shinfo(rxq->skb)->nr_frags,
2298 				page, pp->rx_offset_correction, data_len,
2299 				PAGE_SIZE);
2300 	}
2301 	page_pool_release_page(rxq->page_pool, page);
2302 	rx_desc->buf_phys_addr = 0;
2303 	rxq->left_size -= len;
2304 }
2305 
2306 /* Main rx processing when using software buffer management */
2307 static int mvneta_rx_swbm(struct napi_struct *napi,
2308 			  struct mvneta_port *pp, int budget,
2309 			  struct mvneta_rx_queue *rxq)
2310 {
2311 	int rx_proc = 0, rx_todo, refill;
2312 	struct net_device *dev = pp->dev;
2313 	struct mvneta_stats ps = {};
2314 	struct bpf_prog *xdp_prog;
2315 	struct xdp_buff xdp_buf;
2316 
2317 	/* Get number of received packets */
2318 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2319 
2320 	rcu_read_lock();
2321 	xdp_prog = READ_ONCE(pp->xdp_prog);
2322 	xdp_buf.rxq = &rxq->xdp_rxq;
2323 
2324 	/* Fairness NAPI loop */
2325 	while (rx_proc < budget && rx_proc < rx_todo) {
2326 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2327 		u32 rx_status, index;
2328 		struct page *page;
2329 
2330 		index = rx_desc - rxq->descs;
2331 		page = (struct page *)rxq->buf_virt_addr[index];
2332 
2333 		rx_status = rx_desc->status;
2334 		rx_proc++;
2335 		rxq->refill_num++;
2336 
2337 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2338 			int err;
2339 
2340 			/* Check errors only for FIRST descriptor */
2341 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2342 				mvneta_rx_error(pp, rx_desc);
2343 				/* leave the descriptor untouched */
2344 				continue;
2345 			}
2346 
2347 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2348 						   xdp_prog, page, &ps);
2349 			if (err)
2350 				continue;
2351 		} else {
2352 			if (unlikely(!rxq->skb)) {
2353 				pr_debug("no skb for rx_status 0x%x\n",
2354 					 rx_status);
2355 				continue;
2356 			}
2357 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2358 		} /* Middle or Last descriptor */
2359 
2360 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2361 			/* no last descriptor this time */
2362 			continue;
2363 
2364 		if (rxq->left_size) {
2365 			pr_err("get last desc, but left_size (%d) != 0\n",
2366 			       rxq->left_size);
2367 			dev_kfree_skb_any(rxq->skb);
2368 			rxq->left_size = 0;
2369 			rxq->skb = NULL;
2370 			continue;
2371 		}
2372 
2373 		ps.rx_bytes += rxq->skb->len;
2374 		ps.rx_packets++;
2375 
2376 		/* Linux processing */
2377 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2378 
2379 		napi_gro_receive(napi, rxq->skb);
2380 
2381 		/* clean uncomplete skb pointer in queue */
2382 		rxq->skb = NULL;
2383 	}
2384 	rcu_read_unlock();
2385 
2386 	if (ps.xdp_redirect)
2387 		xdp_do_flush_map();
2388 
2389 	if (ps.rx_packets)
2390 		mvneta_update_stats(pp, &ps);
2391 
2392 	/* return some buffers to hardware queue, one at a time is too slow */
2393 	refill = mvneta_rx_refill_queue(pp, rxq);
2394 
2395 	/* Update rxq management counters */
2396 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2397 
2398 	return ps.rx_packets;
2399 }
2400 
2401 /* Main rx processing when using hardware buffer management */
2402 static int mvneta_rx_hwbm(struct napi_struct *napi,
2403 			  struct mvneta_port *pp, int rx_todo,
2404 			  struct mvneta_rx_queue *rxq)
2405 {
2406 	struct net_device *dev = pp->dev;
2407 	int rx_done;
2408 	u32 rcvd_pkts = 0;
2409 	u32 rcvd_bytes = 0;
2410 
2411 	/* Get number of received packets */
2412 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2413 
2414 	if (rx_todo > rx_done)
2415 		rx_todo = rx_done;
2416 
2417 	rx_done = 0;
2418 
2419 	/* Fairness NAPI loop */
2420 	while (rx_done < rx_todo) {
2421 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2422 		struct mvneta_bm_pool *bm_pool = NULL;
2423 		struct sk_buff *skb;
2424 		unsigned char *data;
2425 		dma_addr_t phys_addr;
2426 		u32 rx_status, frag_size;
2427 		int rx_bytes, err;
2428 		u8 pool_id;
2429 
2430 		rx_done++;
2431 		rx_status = rx_desc->status;
2432 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2433 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2434 		phys_addr = rx_desc->buf_phys_addr;
2435 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2436 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2437 
2438 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2439 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2440 err_drop_frame_ret_pool:
2441 			/* Return the buffer to the pool */
2442 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2443 					      rx_desc->buf_phys_addr);
2444 err_drop_frame:
2445 			mvneta_rx_error(pp, rx_desc);
2446 			/* leave the descriptor untouched */
2447 			continue;
2448 		}
2449 
2450 		if (rx_bytes <= rx_copybreak) {
2451 			/* better copy a small frame and not unmap the DMA region */
2452 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2453 			if (unlikely(!skb))
2454 				goto err_drop_frame_ret_pool;
2455 
2456 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2457 			                              rx_desc->buf_phys_addr,
2458 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2459 			                              rx_bytes,
2460 			                              DMA_FROM_DEVICE);
2461 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2462 				     rx_bytes);
2463 
2464 			skb->protocol = eth_type_trans(skb, dev);
2465 			mvneta_rx_csum(pp, rx_status, skb);
2466 			napi_gro_receive(napi, skb);
2467 
2468 			rcvd_pkts++;
2469 			rcvd_bytes += rx_bytes;
2470 
2471 			/* Return the buffer to the pool */
2472 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2473 					      rx_desc->buf_phys_addr);
2474 
2475 			/* leave the descriptor and buffer untouched */
2476 			continue;
2477 		}
2478 
2479 		/* Refill processing */
2480 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2481 		if (err) {
2482 			struct mvneta_pcpu_stats *stats;
2483 
2484 			netdev_err(dev, "Linux processing - Can't refill\n");
2485 
2486 			stats = this_cpu_ptr(pp->stats);
2487 			u64_stats_update_begin(&stats->syncp);
2488 			stats->es.refill_error++;
2489 			u64_stats_update_end(&stats->syncp);
2490 
2491 			goto err_drop_frame_ret_pool;
2492 		}
2493 
2494 		frag_size = bm_pool->hwbm_pool.frag_size;
2495 
2496 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2497 
2498 		/* After refill old buffer has to be unmapped regardless
2499 		 * the skb is successfully built or not.
2500 		 */
2501 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2502 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2503 		if (!skb)
2504 			goto err_drop_frame;
2505 
2506 		rcvd_pkts++;
2507 		rcvd_bytes += rx_bytes;
2508 
2509 		/* Linux processing */
2510 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2511 		skb_put(skb, rx_bytes);
2512 
2513 		skb->protocol = eth_type_trans(skb, dev);
2514 
2515 		mvneta_rx_csum(pp, rx_status, skb);
2516 
2517 		napi_gro_receive(napi, skb);
2518 	}
2519 
2520 	if (rcvd_pkts) {
2521 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2522 
2523 		u64_stats_update_begin(&stats->syncp);
2524 		stats->es.ps.rx_packets += rcvd_pkts;
2525 		stats->es.ps.rx_bytes += rcvd_bytes;
2526 		u64_stats_update_end(&stats->syncp);
2527 	}
2528 
2529 	/* Update rxq management counters */
2530 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2531 
2532 	return rx_done;
2533 }
2534 
2535 static inline void
2536 mvneta_tso_put_hdr(struct sk_buff *skb,
2537 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2538 {
2539 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2540 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2541 	struct mvneta_tx_desc *tx_desc;
2542 
2543 	tx_desc = mvneta_txq_next_desc_get(txq);
2544 	tx_desc->data_size = hdr_len;
2545 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2546 	tx_desc->command |= MVNETA_TXD_F_DESC;
2547 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2548 				 txq->txq_put_index * TSO_HEADER_SIZE;
2549 	buf->type = MVNETA_TYPE_SKB;
2550 	buf->skb = NULL;
2551 
2552 	mvneta_txq_inc_put(txq);
2553 }
2554 
2555 static inline int
2556 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2557 		    struct sk_buff *skb, char *data, int size,
2558 		    bool last_tcp, bool is_last)
2559 {
2560 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2561 	struct mvneta_tx_desc *tx_desc;
2562 
2563 	tx_desc = mvneta_txq_next_desc_get(txq);
2564 	tx_desc->data_size = size;
2565 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2566 						size, DMA_TO_DEVICE);
2567 	if (unlikely(dma_mapping_error(dev->dev.parent,
2568 		     tx_desc->buf_phys_addr))) {
2569 		mvneta_txq_desc_put(txq);
2570 		return -ENOMEM;
2571 	}
2572 
2573 	tx_desc->command = 0;
2574 	buf->type = MVNETA_TYPE_SKB;
2575 	buf->skb = NULL;
2576 
2577 	if (last_tcp) {
2578 		/* last descriptor in the TCP packet */
2579 		tx_desc->command = MVNETA_TXD_L_DESC;
2580 
2581 		/* last descriptor in SKB */
2582 		if (is_last)
2583 			buf->skb = skb;
2584 	}
2585 	mvneta_txq_inc_put(txq);
2586 	return 0;
2587 }
2588 
2589 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2590 			 struct mvneta_tx_queue *txq)
2591 {
2592 	int total_len, data_left;
2593 	int desc_count = 0;
2594 	struct mvneta_port *pp = netdev_priv(dev);
2595 	struct tso_t tso;
2596 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2597 	int i;
2598 
2599 	/* Count needed descriptors */
2600 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2601 		return 0;
2602 
2603 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2604 		pr_info("*** Is this even  possible???!?!?\n");
2605 		return 0;
2606 	}
2607 
2608 	/* Initialize the TSO handler, and prepare the first payload */
2609 	tso_start(skb, &tso);
2610 
2611 	total_len = skb->len - hdr_len;
2612 	while (total_len > 0) {
2613 		char *hdr;
2614 
2615 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2616 		total_len -= data_left;
2617 		desc_count++;
2618 
2619 		/* prepare packet headers: MAC + IP + TCP */
2620 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2621 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2622 
2623 		mvneta_tso_put_hdr(skb, pp, txq);
2624 
2625 		while (data_left > 0) {
2626 			int size;
2627 			desc_count++;
2628 
2629 			size = min_t(int, tso.size, data_left);
2630 
2631 			if (mvneta_tso_put_data(dev, txq, skb,
2632 						 tso.data, size,
2633 						 size == data_left,
2634 						 total_len == 0))
2635 				goto err_release;
2636 			data_left -= size;
2637 
2638 			tso_build_data(skb, &tso, size);
2639 		}
2640 	}
2641 
2642 	return desc_count;
2643 
2644 err_release:
2645 	/* Release all used data descriptors; header descriptors must not
2646 	 * be DMA-unmapped.
2647 	 */
2648 	for (i = desc_count - 1; i >= 0; i--) {
2649 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2650 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2651 			dma_unmap_single(pp->dev->dev.parent,
2652 					 tx_desc->buf_phys_addr,
2653 					 tx_desc->data_size,
2654 					 DMA_TO_DEVICE);
2655 		mvneta_txq_desc_put(txq);
2656 	}
2657 	return 0;
2658 }
2659 
2660 /* Handle tx fragmentation processing */
2661 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2662 				  struct mvneta_tx_queue *txq)
2663 {
2664 	struct mvneta_tx_desc *tx_desc;
2665 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2666 
2667 	for (i = 0; i < nr_frags; i++) {
2668 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2669 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2670 		void *addr = skb_frag_address(frag);
2671 
2672 		tx_desc = mvneta_txq_next_desc_get(txq);
2673 		tx_desc->data_size = skb_frag_size(frag);
2674 
2675 		tx_desc->buf_phys_addr =
2676 			dma_map_single(pp->dev->dev.parent, addr,
2677 				       tx_desc->data_size, DMA_TO_DEVICE);
2678 
2679 		if (dma_mapping_error(pp->dev->dev.parent,
2680 				      tx_desc->buf_phys_addr)) {
2681 			mvneta_txq_desc_put(txq);
2682 			goto error;
2683 		}
2684 
2685 		if (i == nr_frags - 1) {
2686 			/* Last descriptor */
2687 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2688 			buf->skb = skb;
2689 		} else {
2690 			/* Descriptor in the middle: Not First, Not Last */
2691 			tx_desc->command = 0;
2692 			buf->skb = NULL;
2693 		}
2694 		buf->type = MVNETA_TYPE_SKB;
2695 		mvneta_txq_inc_put(txq);
2696 	}
2697 
2698 	return 0;
2699 
2700 error:
2701 	/* Release all descriptors that were used to map fragments of
2702 	 * this packet, as well as the corresponding DMA mappings
2703 	 */
2704 	for (i = i - 1; i >= 0; i--) {
2705 		tx_desc = txq->descs + i;
2706 		dma_unmap_single(pp->dev->dev.parent,
2707 				 tx_desc->buf_phys_addr,
2708 				 tx_desc->data_size,
2709 				 DMA_TO_DEVICE);
2710 		mvneta_txq_desc_put(txq);
2711 	}
2712 
2713 	return -ENOMEM;
2714 }
2715 
2716 /* Main tx processing */
2717 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2718 {
2719 	struct mvneta_port *pp = netdev_priv(dev);
2720 	u16 txq_id = skb_get_queue_mapping(skb);
2721 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2722 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2723 	struct mvneta_tx_desc *tx_desc;
2724 	int len = skb->len;
2725 	int frags = 0;
2726 	u32 tx_cmd;
2727 
2728 	if (!netif_running(dev))
2729 		goto out;
2730 
2731 	if (skb_is_gso(skb)) {
2732 		frags = mvneta_tx_tso(skb, dev, txq);
2733 		goto out;
2734 	}
2735 
2736 	frags = skb_shinfo(skb)->nr_frags + 1;
2737 
2738 	/* Get a descriptor for the first part of the packet */
2739 	tx_desc = mvneta_txq_next_desc_get(txq);
2740 
2741 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2742 
2743 	tx_desc->data_size = skb_headlen(skb);
2744 
2745 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2746 						tx_desc->data_size,
2747 						DMA_TO_DEVICE);
2748 	if (unlikely(dma_mapping_error(dev->dev.parent,
2749 				       tx_desc->buf_phys_addr))) {
2750 		mvneta_txq_desc_put(txq);
2751 		frags = 0;
2752 		goto out;
2753 	}
2754 
2755 	buf->type = MVNETA_TYPE_SKB;
2756 	if (frags == 1) {
2757 		/* First and Last descriptor */
2758 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2759 		tx_desc->command = tx_cmd;
2760 		buf->skb = skb;
2761 		mvneta_txq_inc_put(txq);
2762 	} else {
2763 		/* First but not Last */
2764 		tx_cmd |= MVNETA_TXD_F_DESC;
2765 		buf->skb = NULL;
2766 		mvneta_txq_inc_put(txq);
2767 		tx_desc->command = tx_cmd;
2768 		/* Continue with other skb fragments */
2769 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2770 			dma_unmap_single(dev->dev.parent,
2771 					 tx_desc->buf_phys_addr,
2772 					 tx_desc->data_size,
2773 					 DMA_TO_DEVICE);
2774 			mvneta_txq_desc_put(txq);
2775 			frags = 0;
2776 			goto out;
2777 		}
2778 	}
2779 
2780 out:
2781 	if (frags > 0) {
2782 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2783 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2784 
2785 		netdev_tx_sent_queue(nq, len);
2786 
2787 		txq->count += frags;
2788 		if (txq->count >= txq->tx_stop_threshold)
2789 			netif_tx_stop_queue(nq);
2790 
2791 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2792 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2793 			mvneta_txq_pend_desc_add(pp, txq, frags);
2794 		else
2795 			txq->pending += frags;
2796 
2797 		u64_stats_update_begin(&stats->syncp);
2798 		stats->es.ps.tx_bytes += len;
2799 		stats->es.ps.tx_packets++;
2800 		u64_stats_update_end(&stats->syncp);
2801 	} else {
2802 		dev->stats.tx_dropped++;
2803 		dev_kfree_skb_any(skb);
2804 	}
2805 
2806 	return NETDEV_TX_OK;
2807 }
2808 
2809 
2810 /* Free tx resources, when resetting a port */
2811 static void mvneta_txq_done_force(struct mvneta_port *pp,
2812 				  struct mvneta_tx_queue *txq)
2813 
2814 {
2815 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2816 	int tx_done = txq->count;
2817 
2818 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2819 
2820 	/* reset txq */
2821 	txq->count = 0;
2822 	txq->txq_put_index = 0;
2823 	txq->txq_get_index = 0;
2824 }
2825 
2826 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2827  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2828  */
2829 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2830 {
2831 	struct mvneta_tx_queue *txq;
2832 	struct netdev_queue *nq;
2833 	int cpu = smp_processor_id();
2834 
2835 	while (cause_tx_done) {
2836 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2837 
2838 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2839 		__netif_tx_lock(nq, cpu);
2840 
2841 		if (txq->count)
2842 			mvneta_txq_done(pp, txq);
2843 
2844 		__netif_tx_unlock(nq);
2845 		cause_tx_done &= ~((1 << txq->id));
2846 	}
2847 }
2848 
2849 /* Compute crc8 of the specified address, using a unique algorithm ,
2850  * according to hw spec, different than generic crc8 algorithm
2851  */
2852 static int mvneta_addr_crc(unsigned char *addr)
2853 {
2854 	int crc = 0;
2855 	int i;
2856 
2857 	for (i = 0; i < ETH_ALEN; i++) {
2858 		int j;
2859 
2860 		crc = (crc ^ addr[i]) << 8;
2861 		for (j = 7; j >= 0; j--) {
2862 			if (crc & (0x100 << j))
2863 				crc ^= 0x107 << j;
2864 		}
2865 	}
2866 
2867 	return crc;
2868 }
2869 
2870 /* This method controls the net device special MAC multicast support.
2871  * The Special Multicast Table for MAC addresses supports MAC of the form
2872  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2873  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2874  * Table entries in the DA-Filter table. This method set the Special
2875  * Multicast Table appropriate entry.
2876  */
2877 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2878 					  unsigned char last_byte,
2879 					  int queue)
2880 {
2881 	unsigned int smc_table_reg;
2882 	unsigned int tbl_offset;
2883 	unsigned int reg_offset;
2884 
2885 	/* Register offset from SMC table base    */
2886 	tbl_offset = (last_byte / 4);
2887 	/* Entry offset within the above reg */
2888 	reg_offset = last_byte % 4;
2889 
2890 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2891 					+ tbl_offset * 4));
2892 
2893 	if (queue == -1)
2894 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2895 	else {
2896 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2897 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2898 	}
2899 
2900 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2901 		    smc_table_reg);
2902 }
2903 
2904 /* This method controls the network device Other MAC multicast support.
2905  * The Other Multicast Table is used for multicast of another type.
2906  * A CRC-8 is used as an index to the Other Multicast Table entries
2907  * in the DA-Filter table.
2908  * The method gets the CRC-8 value from the calling routine and
2909  * sets the Other Multicast Table appropriate entry according to the
2910  * specified CRC-8 .
2911  */
2912 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2913 					unsigned char crc8,
2914 					int queue)
2915 {
2916 	unsigned int omc_table_reg;
2917 	unsigned int tbl_offset;
2918 	unsigned int reg_offset;
2919 
2920 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2921 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2922 
2923 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2924 
2925 	if (queue == -1) {
2926 		/* Clear accepts frame bit at specified Other DA table entry */
2927 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2928 	} else {
2929 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2930 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2931 	}
2932 
2933 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2934 }
2935 
2936 /* The network device supports multicast using two tables:
2937  *    1) Special Multicast Table for MAC addresses of the form
2938  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2939  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2940  *       Table entries in the DA-Filter table.
2941  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2942  *       is used as an index to the Other Multicast Table entries in the
2943  *       DA-Filter table.
2944  */
2945 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2946 				 int queue)
2947 {
2948 	unsigned char crc_result = 0;
2949 
2950 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2951 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2952 		return 0;
2953 	}
2954 
2955 	crc_result = mvneta_addr_crc(p_addr);
2956 	if (queue == -1) {
2957 		if (pp->mcast_count[crc_result] == 0) {
2958 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2959 				    crc_result);
2960 			return -EINVAL;
2961 		}
2962 
2963 		pp->mcast_count[crc_result]--;
2964 		if (pp->mcast_count[crc_result] != 0) {
2965 			netdev_info(pp->dev,
2966 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2967 				    pp->mcast_count[crc_result], crc_result);
2968 			return -EINVAL;
2969 		}
2970 	} else
2971 		pp->mcast_count[crc_result]++;
2972 
2973 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2974 
2975 	return 0;
2976 }
2977 
2978 /* Configure Fitering mode of Ethernet port */
2979 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2980 					  int is_promisc)
2981 {
2982 	u32 port_cfg_reg, val;
2983 
2984 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2985 
2986 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2987 
2988 	/* Set / Clear UPM bit in port configuration register */
2989 	if (is_promisc) {
2990 		/* Accept all Unicast addresses */
2991 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2992 		val |= MVNETA_FORCE_UNI;
2993 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2994 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2995 	} else {
2996 		/* Reject all Unicast addresses */
2997 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2998 		val &= ~MVNETA_FORCE_UNI;
2999 	}
3000 
3001 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3002 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3003 }
3004 
3005 /* register unicast and multicast addresses */
3006 static void mvneta_set_rx_mode(struct net_device *dev)
3007 {
3008 	struct mvneta_port *pp = netdev_priv(dev);
3009 	struct netdev_hw_addr *ha;
3010 
3011 	if (dev->flags & IFF_PROMISC) {
3012 		/* Accept all: Multicast + Unicast */
3013 		mvneta_rx_unicast_promisc_set(pp, 1);
3014 		mvneta_set_ucast_table(pp, pp->rxq_def);
3015 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3016 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3017 	} else {
3018 		/* Accept single Unicast */
3019 		mvneta_rx_unicast_promisc_set(pp, 0);
3020 		mvneta_set_ucast_table(pp, -1);
3021 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3022 
3023 		if (dev->flags & IFF_ALLMULTI) {
3024 			/* Accept all multicast */
3025 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3026 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3027 		} else {
3028 			/* Accept only initialized multicast */
3029 			mvneta_set_special_mcast_table(pp, -1);
3030 			mvneta_set_other_mcast_table(pp, -1);
3031 
3032 			if (!netdev_mc_empty(dev)) {
3033 				netdev_for_each_mc_addr(ha, dev) {
3034 					mvneta_mcast_addr_set(pp, ha->addr,
3035 							      pp->rxq_def);
3036 				}
3037 			}
3038 		}
3039 	}
3040 }
3041 
3042 /* Interrupt handling - the callback for request_irq() */
3043 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3044 {
3045 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3046 
3047 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3048 	napi_schedule(&pp->napi);
3049 
3050 	return IRQ_HANDLED;
3051 }
3052 
3053 /* Interrupt handling - the callback for request_percpu_irq() */
3054 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3055 {
3056 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3057 
3058 	disable_percpu_irq(port->pp->dev->irq);
3059 	napi_schedule(&port->napi);
3060 
3061 	return IRQ_HANDLED;
3062 }
3063 
3064 static void mvneta_link_change(struct mvneta_port *pp)
3065 {
3066 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3067 
3068 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3069 }
3070 
3071 /* NAPI handler
3072  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3073  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3074  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3075  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3076  * Each CPU has its own causeRxTx register
3077  */
3078 static int mvneta_poll(struct napi_struct *napi, int budget)
3079 {
3080 	int rx_done = 0;
3081 	u32 cause_rx_tx;
3082 	int rx_queue;
3083 	struct mvneta_port *pp = netdev_priv(napi->dev);
3084 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3085 
3086 	if (!netif_running(pp->dev)) {
3087 		napi_complete(napi);
3088 		return rx_done;
3089 	}
3090 
3091 	/* Read cause register */
3092 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3093 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3094 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3095 
3096 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3097 
3098 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3099 				  MVNETA_CAUSE_LINK_CHANGE))
3100 			mvneta_link_change(pp);
3101 	}
3102 
3103 	/* Release Tx descriptors */
3104 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3105 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3106 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3107 	}
3108 
3109 	/* For the case where the last mvneta_poll did not process all
3110 	 * RX packets
3111 	 */
3112 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3113 
3114 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3115 		port->cause_rx_tx;
3116 
3117 	if (rx_queue) {
3118 		rx_queue = rx_queue - 1;
3119 		if (pp->bm_priv)
3120 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3121 						 &pp->rxqs[rx_queue]);
3122 		else
3123 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3124 						 &pp->rxqs[rx_queue]);
3125 	}
3126 
3127 	if (rx_done < budget) {
3128 		cause_rx_tx = 0;
3129 		napi_complete_done(napi, rx_done);
3130 
3131 		if (pp->neta_armada3700) {
3132 			unsigned long flags;
3133 
3134 			local_irq_save(flags);
3135 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3136 				    MVNETA_RX_INTR_MASK(rxq_number) |
3137 				    MVNETA_TX_INTR_MASK(txq_number) |
3138 				    MVNETA_MISCINTR_INTR_MASK);
3139 			local_irq_restore(flags);
3140 		} else {
3141 			enable_percpu_irq(pp->dev->irq, 0);
3142 		}
3143 	}
3144 
3145 	if (pp->neta_armada3700)
3146 		pp->cause_rx_tx = cause_rx_tx;
3147 	else
3148 		port->cause_rx_tx = cause_rx_tx;
3149 
3150 	return rx_done;
3151 }
3152 
3153 static int mvneta_create_page_pool(struct mvneta_port *pp,
3154 				   struct mvneta_rx_queue *rxq, int size)
3155 {
3156 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3157 	struct page_pool_params pp_params = {
3158 		.order = 0,
3159 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3160 		.pool_size = size,
3161 		.nid = NUMA_NO_NODE,
3162 		.dev = pp->dev->dev.parent,
3163 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3164 		.offset = pp->rx_offset_correction,
3165 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3166 	};
3167 	int err;
3168 
3169 	rxq->page_pool = page_pool_create(&pp_params);
3170 	if (IS_ERR(rxq->page_pool)) {
3171 		err = PTR_ERR(rxq->page_pool);
3172 		rxq->page_pool = NULL;
3173 		return err;
3174 	}
3175 
3176 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3177 	if (err < 0)
3178 		goto err_free_pp;
3179 
3180 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3181 					 rxq->page_pool);
3182 	if (err)
3183 		goto err_unregister_rxq;
3184 
3185 	return 0;
3186 
3187 err_unregister_rxq:
3188 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3189 err_free_pp:
3190 	page_pool_destroy(rxq->page_pool);
3191 	rxq->page_pool = NULL;
3192 	return err;
3193 }
3194 
3195 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3196 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3197 			   int num)
3198 {
3199 	int i, err;
3200 
3201 	err = mvneta_create_page_pool(pp, rxq, num);
3202 	if (err < 0)
3203 		return err;
3204 
3205 	for (i = 0; i < num; i++) {
3206 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3207 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3208 				     GFP_KERNEL) != 0) {
3209 			netdev_err(pp->dev,
3210 				   "%s:rxq %d, %d of %d buffs  filled\n",
3211 				   __func__, rxq->id, i, num);
3212 			break;
3213 		}
3214 	}
3215 
3216 	/* Add this number of RX descriptors as non occupied (ready to
3217 	 * get packets)
3218 	 */
3219 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3220 
3221 	return i;
3222 }
3223 
3224 /* Free all packets pending transmit from all TXQs and reset TX port */
3225 static void mvneta_tx_reset(struct mvneta_port *pp)
3226 {
3227 	int queue;
3228 
3229 	/* free the skb's in the tx ring */
3230 	for (queue = 0; queue < txq_number; queue++)
3231 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3232 
3233 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3234 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3235 }
3236 
3237 static void mvneta_rx_reset(struct mvneta_port *pp)
3238 {
3239 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3240 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3241 }
3242 
3243 /* Rx/Tx queue initialization/cleanup methods */
3244 
3245 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3246 			      struct mvneta_rx_queue *rxq)
3247 {
3248 	rxq->size = pp->rx_ring_size;
3249 
3250 	/* Allocate memory for RX descriptors */
3251 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3252 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3253 					&rxq->descs_phys, GFP_KERNEL);
3254 	if (!rxq->descs)
3255 		return -ENOMEM;
3256 
3257 	rxq->last_desc = rxq->size - 1;
3258 
3259 	return 0;
3260 }
3261 
3262 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3263 			       struct mvneta_rx_queue *rxq)
3264 {
3265 	/* Set Rx descriptors queue starting address */
3266 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3267 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3268 
3269 	/* Set coalescing pkts and time */
3270 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3271 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3272 
3273 	if (!pp->bm_priv) {
3274 		/* Set Offset */
3275 		mvneta_rxq_offset_set(pp, rxq, 0);
3276 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3277 					MVNETA_MAX_RX_BUF_SIZE :
3278 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3279 		mvneta_rxq_bm_disable(pp, rxq);
3280 		mvneta_rxq_fill(pp, rxq, rxq->size);
3281 	} else {
3282 		/* Set Offset */
3283 		mvneta_rxq_offset_set(pp, rxq,
3284 				      NET_SKB_PAD - pp->rx_offset_correction);
3285 
3286 		mvneta_rxq_bm_enable(pp, rxq);
3287 		/* Fill RXQ with buffers from RX pool */
3288 		mvneta_rxq_long_pool_set(pp, rxq);
3289 		mvneta_rxq_short_pool_set(pp, rxq);
3290 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3291 	}
3292 }
3293 
3294 /* Create a specified RX queue */
3295 static int mvneta_rxq_init(struct mvneta_port *pp,
3296 			   struct mvneta_rx_queue *rxq)
3297 
3298 {
3299 	int ret;
3300 
3301 	ret = mvneta_rxq_sw_init(pp, rxq);
3302 	if (ret < 0)
3303 		return ret;
3304 
3305 	mvneta_rxq_hw_init(pp, rxq);
3306 
3307 	return 0;
3308 }
3309 
3310 /* Cleanup Rx queue */
3311 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3312 			      struct mvneta_rx_queue *rxq)
3313 {
3314 	mvneta_rxq_drop_pkts(pp, rxq);
3315 
3316 	if (rxq->skb)
3317 		dev_kfree_skb_any(rxq->skb);
3318 
3319 	if (rxq->descs)
3320 		dma_free_coherent(pp->dev->dev.parent,
3321 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3322 				  rxq->descs,
3323 				  rxq->descs_phys);
3324 
3325 	rxq->descs             = NULL;
3326 	rxq->last_desc         = 0;
3327 	rxq->next_desc_to_proc = 0;
3328 	rxq->descs_phys        = 0;
3329 	rxq->first_to_refill   = 0;
3330 	rxq->refill_num        = 0;
3331 	rxq->skb               = NULL;
3332 	rxq->left_size         = 0;
3333 }
3334 
3335 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3336 			      struct mvneta_tx_queue *txq)
3337 {
3338 	int cpu;
3339 
3340 	txq->size = pp->tx_ring_size;
3341 
3342 	/* A queue must always have room for at least one skb.
3343 	 * Therefore, stop the queue when the free entries reaches
3344 	 * the maximum number of descriptors per skb.
3345 	 */
3346 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3347 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3348 
3349 	/* Allocate memory for TX descriptors */
3350 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3351 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3352 					&txq->descs_phys, GFP_KERNEL);
3353 	if (!txq->descs)
3354 		return -ENOMEM;
3355 
3356 	txq->last_desc = txq->size - 1;
3357 
3358 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3359 	if (!txq->buf) {
3360 		dma_free_coherent(pp->dev->dev.parent,
3361 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3362 				  txq->descs, txq->descs_phys);
3363 		return -ENOMEM;
3364 	}
3365 
3366 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3367 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3368 					   txq->size * TSO_HEADER_SIZE,
3369 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3370 	if (!txq->tso_hdrs) {
3371 		kfree(txq->buf);
3372 		dma_free_coherent(pp->dev->dev.parent,
3373 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3374 				  txq->descs, txq->descs_phys);
3375 		return -ENOMEM;
3376 	}
3377 
3378 	/* Setup XPS mapping */
3379 	if (txq_number > 1)
3380 		cpu = txq->id % num_present_cpus();
3381 	else
3382 		cpu = pp->rxq_def % num_present_cpus();
3383 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3384 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3385 
3386 	return 0;
3387 }
3388 
3389 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3390 			       struct mvneta_tx_queue *txq)
3391 {
3392 	/* Set maximum bandwidth for enabled TXQs */
3393 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3394 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3395 
3396 	/* Set Tx descriptors queue starting address */
3397 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3398 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3399 
3400 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3401 }
3402 
3403 /* Create and initialize a tx queue */
3404 static int mvneta_txq_init(struct mvneta_port *pp,
3405 			   struct mvneta_tx_queue *txq)
3406 {
3407 	int ret;
3408 
3409 	ret = mvneta_txq_sw_init(pp, txq);
3410 	if (ret < 0)
3411 		return ret;
3412 
3413 	mvneta_txq_hw_init(pp, txq);
3414 
3415 	return 0;
3416 }
3417 
3418 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3419 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3420 				 struct mvneta_tx_queue *txq)
3421 {
3422 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3423 
3424 	kfree(txq->buf);
3425 
3426 	if (txq->tso_hdrs)
3427 		dma_free_coherent(pp->dev->dev.parent,
3428 				  txq->size * TSO_HEADER_SIZE,
3429 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3430 	if (txq->descs)
3431 		dma_free_coherent(pp->dev->dev.parent,
3432 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3433 				  txq->descs, txq->descs_phys);
3434 
3435 	netdev_tx_reset_queue(nq);
3436 
3437 	txq->descs             = NULL;
3438 	txq->last_desc         = 0;
3439 	txq->next_desc_to_proc = 0;
3440 	txq->descs_phys        = 0;
3441 }
3442 
3443 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3444 				 struct mvneta_tx_queue *txq)
3445 {
3446 	/* Set minimum bandwidth for disabled TXQs */
3447 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3448 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3449 
3450 	/* Set Tx descriptors queue starting address and size */
3451 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3452 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3453 }
3454 
3455 static void mvneta_txq_deinit(struct mvneta_port *pp,
3456 			      struct mvneta_tx_queue *txq)
3457 {
3458 	mvneta_txq_sw_deinit(pp, txq);
3459 	mvneta_txq_hw_deinit(pp, txq);
3460 }
3461 
3462 /* Cleanup all Tx queues */
3463 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3464 {
3465 	int queue;
3466 
3467 	for (queue = 0; queue < txq_number; queue++)
3468 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3469 }
3470 
3471 /* Cleanup all Rx queues */
3472 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3473 {
3474 	int queue;
3475 
3476 	for (queue = 0; queue < rxq_number; queue++)
3477 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3478 }
3479 
3480 
3481 /* Init all Rx queues */
3482 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3483 {
3484 	int queue;
3485 
3486 	for (queue = 0; queue < rxq_number; queue++) {
3487 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3488 
3489 		if (err) {
3490 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3491 				   __func__, queue);
3492 			mvneta_cleanup_rxqs(pp);
3493 			return err;
3494 		}
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 /* Init all tx queues */
3501 static int mvneta_setup_txqs(struct mvneta_port *pp)
3502 {
3503 	int queue;
3504 
3505 	for (queue = 0; queue < txq_number; queue++) {
3506 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3507 		if (err) {
3508 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3509 				   __func__, queue);
3510 			mvneta_cleanup_txqs(pp);
3511 			return err;
3512 		}
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 static int mvneta_comphy_init(struct mvneta_port *pp)
3519 {
3520 	int ret;
3521 
3522 	if (!pp->comphy)
3523 		return 0;
3524 
3525 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3526 			       pp->phy_interface);
3527 	if (ret)
3528 		return ret;
3529 
3530 	return phy_power_on(pp->comphy);
3531 }
3532 
3533 static void mvneta_start_dev(struct mvneta_port *pp)
3534 {
3535 	int cpu;
3536 
3537 	WARN_ON(mvneta_comphy_init(pp));
3538 
3539 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3540 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3541 
3542 	/* start the Rx/Tx activity */
3543 	mvneta_port_enable(pp);
3544 
3545 	if (!pp->neta_armada3700) {
3546 		/* Enable polling on the port */
3547 		for_each_online_cpu(cpu) {
3548 			struct mvneta_pcpu_port *port =
3549 				per_cpu_ptr(pp->ports, cpu);
3550 
3551 			napi_enable(&port->napi);
3552 		}
3553 	} else {
3554 		napi_enable(&pp->napi);
3555 	}
3556 
3557 	/* Unmask interrupts. It has to be done from each CPU */
3558 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3559 
3560 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3561 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3562 		    MVNETA_CAUSE_LINK_CHANGE);
3563 
3564 	phylink_start(pp->phylink);
3565 	netif_tx_start_all_queues(pp->dev);
3566 }
3567 
3568 static void mvneta_stop_dev(struct mvneta_port *pp)
3569 {
3570 	unsigned int cpu;
3571 
3572 	phylink_stop(pp->phylink);
3573 
3574 	if (!pp->neta_armada3700) {
3575 		for_each_online_cpu(cpu) {
3576 			struct mvneta_pcpu_port *port =
3577 				per_cpu_ptr(pp->ports, cpu);
3578 
3579 			napi_disable(&port->napi);
3580 		}
3581 	} else {
3582 		napi_disable(&pp->napi);
3583 	}
3584 
3585 	netif_carrier_off(pp->dev);
3586 
3587 	mvneta_port_down(pp);
3588 	netif_tx_stop_all_queues(pp->dev);
3589 
3590 	/* Stop the port activity */
3591 	mvneta_port_disable(pp);
3592 
3593 	/* Clear all ethernet port interrupts */
3594 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3595 
3596 	/* Mask all ethernet port interrupts */
3597 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3598 
3599 	mvneta_tx_reset(pp);
3600 	mvneta_rx_reset(pp);
3601 
3602 	WARN_ON(phy_power_off(pp->comphy));
3603 }
3604 
3605 static void mvneta_percpu_enable(void *arg)
3606 {
3607 	struct mvneta_port *pp = arg;
3608 
3609 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3610 }
3611 
3612 static void mvneta_percpu_disable(void *arg)
3613 {
3614 	struct mvneta_port *pp = arg;
3615 
3616 	disable_percpu_irq(pp->dev->irq);
3617 }
3618 
3619 /* Change the device mtu */
3620 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3621 {
3622 	struct mvneta_port *pp = netdev_priv(dev);
3623 	int ret;
3624 
3625 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3626 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3627 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3628 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3629 	}
3630 
3631 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3632 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3633 		return -EINVAL;
3634 	}
3635 
3636 	dev->mtu = mtu;
3637 
3638 	if (!netif_running(dev)) {
3639 		if (pp->bm_priv)
3640 			mvneta_bm_update_mtu(pp, mtu);
3641 
3642 		netdev_update_features(dev);
3643 		return 0;
3644 	}
3645 
3646 	/* The interface is running, so we have to force a
3647 	 * reallocation of the queues
3648 	 */
3649 	mvneta_stop_dev(pp);
3650 	on_each_cpu(mvneta_percpu_disable, pp, true);
3651 
3652 	mvneta_cleanup_txqs(pp);
3653 	mvneta_cleanup_rxqs(pp);
3654 
3655 	if (pp->bm_priv)
3656 		mvneta_bm_update_mtu(pp, mtu);
3657 
3658 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3659 
3660 	ret = mvneta_setup_rxqs(pp);
3661 	if (ret) {
3662 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3663 		return ret;
3664 	}
3665 
3666 	ret = mvneta_setup_txqs(pp);
3667 	if (ret) {
3668 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3669 		return ret;
3670 	}
3671 
3672 	on_each_cpu(mvneta_percpu_enable, pp, true);
3673 	mvneta_start_dev(pp);
3674 
3675 	netdev_update_features(dev);
3676 
3677 	return 0;
3678 }
3679 
3680 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3681 					     netdev_features_t features)
3682 {
3683 	struct mvneta_port *pp = netdev_priv(dev);
3684 
3685 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3686 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3687 		netdev_info(dev,
3688 			    "Disable IP checksum for MTU greater than %dB\n",
3689 			    pp->tx_csum_limit);
3690 	}
3691 
3692 	return features;
3693 }
3694 
3695 /* Get mac address */
3696 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3697 {
3698 	u32 mac_addr_l, mac_addr_h;
3699 
3700 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3701 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3702 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3703 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3704 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3705 	addr[3] = mac_addr_h & 0xFF;
3706 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3707 	addr[5] = mac_addr_l & 0xFF;
3708 }
3709 
3710 /* Handle setting mac address */
3711 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3712 {
3713 	struct mvneta_port *pp = netdev_priv(dev);
3714 	struct sockaddr *sockaddr = addr;
3715 	int ret;
3716 
3717 	ret = eth_prepare_mac_addr_change(dev, addr);
3718 	if (ret < 0)
3719 		return ret;
3720 	/* Remove previous address table entry */
3721 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3722 
3723 	/* Set new addr in hw */
3724 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3725 
3726 	eth_commit_mac_addr_change(dev, addr);
3727 	return 0;
3728 }
3729 
3730 static void mvneta_validate(struct phylink_config *config,
3731 			    unsigned long *supported,
3732 			    struct phylink_link_state *state)
3733 {
3734 	struct net_device *ndev = to_net_dev(config->dev);
3735 	struct mvneta_port *pp = netdev_priv(ndev);
3736 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3737 
3738 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3739 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3740 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3741 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3742 	    !phy_interface_mode_is_8023z(state->interface) &&
3743 	    !phy_interface_mode_is_rgmii(state->interface)) {
3744 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3745 		return;
3746 	}
3747 
3748 	/* Allow all the expected bits */
3749 	phylink_set(mask, Autoneg);
3750 	phylink_set_port_modes(mask);
3751 
3752 	/* Asymmetric pause is unsupported */
3753 	phylink_set(mask, Pause);
3754 
3755 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3756 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3757 		phylink_set(mask, 1000baseT_Full);
3758 		phylink_set(mask, 1000baseX_Full);
3759 	}
3760 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3761 		phylink_set(mask, 2500baseT_Full);
3762 		phylink_set(mask, 2500baseX_Full);
3763 	}
3764 
3765 	if (!phy_interface_mode_is_8023z(state->interface)) {
3766 		/* 10M and 100M are only supported in non-802.3z mode */
3767 		phylink_set(mask, 10baseT_Half);
3768 		phylink_set(mask, 10baseT_Full);
3769 		phylink_set(mask, 100baseT_Half);
3770 		phylink_set(mask, 100baseT_Full);
3771 	}
3772 
3773 	bitmap_and(supported, supported, mask,
3774 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3775 	bitmap_and(state->advertising, state->advertising, mask,
3776 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3777 
3778 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3779 	 * to advertise both, only report advertising at 2500BaseX.
3780 	 */
3781 	phylink_helper_basex_speed(state);
3782 }
3783 
3784 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3785 				     struct phylink_link_state *state)
3786 {
3787 	struct net_device *ndev = to_net_dev(config->dev);
3788 	struct mvneta_port *pp = netdev_priv(ndev);
3789 	u32 gmac_stat;
3790 
3791 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3792 
3793 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3794 		state->speed =
3795 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3796 			SPEED_2500 : SPEED_1000;
3797 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3798 		state->speed = SPEED_100;
3799 	else
3800 		state->speed = SPEED_10;
3801 
3802 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3803 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3804 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3805 
3806 	state->pause = 0;
3807 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3808 		state->pause |= MLO_PAUSE_RX;
3809 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3810 		state->pause |= MLO_PAUSE_TX;
3811 }
3812 
3813 static void mvneta_mac_an_restart(struct phylink_config *config)
3814 {
3815 	struct net_device *ndev = to_net_dev(config->dev);
3816 	struct mvneta_port *pp = netdev_priv(ndev);
3817 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3818 
3819 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3820 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3821 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3822 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3823 }
3824 
3825 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3826 			      const struct phylink_link_state *state)
3827 {
3828 	struct net_device *ndev = to_net_dev(config->dev);
3829 	struct mvneta_port *pp = netdev_priv(ndev);
3830 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3831 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3832 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3833 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3834 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3835 
3836 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3837 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3838 				   MVNETA_GMAC2_PORT_RESET);
3839 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3840 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3841 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3842 			     MVNETA_GMAC_INBAND_RESTART_AN |
3843 			     MVNETA_GMAC_AN_SPEED_EN |
3844 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3845 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3846 			     MVNETA_GMAC_AN_DUPLEX_EN);
3847 
3848 	/* Even though it might look weird, when we're configured in
3849 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3850 	 */
3851 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3852 
3853 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3854 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3855 	    phy_interface_mode_is_8023z(state->interface))
3856 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3857 
3858 	if (phylink_test(state->advertising, Pause))
3859 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3860 
3861 	if (!phylink_autoneg_inband(mode)) {
3862 		/* Phy or fixed speed - nothing to do, leave the
3863 		 * configured speed, duplex and flow control as-is.
3864 		 */
3865 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3866 		/* SGMII mode receives the state from the PHY */
3867 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3868 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3869 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3870 				     MVNETA_GMAC_FORCE_LINK_PASS |
3871 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3872 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3873 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3874 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3875 			 MVNETA_GMAC_AN_SPEED_EN |
3876 			 MVNETA_GMAC_AN_DUPLEX_EN;
3877 	} else {
3878 		/* 802.3z negotiation - only 1000base-X */
3879 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3880 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3881 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3882 				     MVNETA_GMAC_FORCE_LINK_PASS |
3883 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3884 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3885 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3886 			 /* The MAC only supports FD mode */
3887 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3888 
3889 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3890 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3891 	}
3892 
3893 	/* Armada 370 documentation says we can only change the port mode
3894 	 * and in-band enable when the link is down, so force it down
3895 	 * while making these changes. We also do this for GMAC_CTRL2 */
3896 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3897 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3898 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3899 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3900 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3901 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3902 	}
3903 
3904 
3905 	/* When at 2.5G, the link partner can send frames with shortened
3906 	 * preambles.
3907 	 */
3908 	if (state->speed == SPEED_2500)
3909 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3910 
3911 	if (pp->comphy && pp->phy_interface != state->interface &&
3912 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3913 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3914 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3915 		pp->phy_interface = state->interface;
3916 
3917 		WARN_ON(phy_power_off(pp->comphy));
3918 		WARN_ON(mvneta_comphy_init(pp));
3919 	}
3920 
3921 	if (new_ctrl0 != gmac_ctrl0)
3922 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3923 	if (new_ctrl2 != gmac_ctrl2)
3924 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3925 	if (new_ctrl4 != gmac_ctrl4)
3926 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3927 	if (new_clk != gmac_clk)
3928 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3929 	if (new_an != gmac_an)
3930 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3931 
3932 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3933 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3934 			MVNETA_GMAC2_PORT_RESET) != 0)
3935 			continue;
3936 	}
3937 }
3938 
3939 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3940 {
3941 	u32 lpi_ctl1;
3942 
3943 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3944 	if (enable)
3945 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3946 	else
3947 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3948 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3949 }
3950 
3951 static void mvneta_mac_link_down(struct phylink_config *config,
3952 				 unsigned int mode, phy_interface_t interface)
3953 {
3954 	struct net_device *ndev = to_net_dev(config->dev);
3955 	struct mvneta_port *pp = netdev_priv(ndev);
3956 	u32 val;
3957 
3958 	mvneta_port_down(pp);
3959 
3960 	if (!phylink_autoneg_inband(mode)) {
3961 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3962 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3963 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3964 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3965 	}
3966 
3967 	pp->eee_active = false;
3968 	mvneta_set_eee(pp, false);
3969 }
3970 
3971 static void mvneta_mac_link_up(struct phylink_config *config,
3972 			       struct phy_device *phy,
3973 			       unsigned int mode, phy_interface_t interface,
3974 			       int speed, int duplex,
3975 			       bool tx_pause, bool rx_pause)
3976 {
3977 	struct net_device *ndev = to_net_dev(config->dev);
3978 	struct mvneta_port *pp = netdev_priv(ndev);
3979 	u32 val;
3980 
3981 	if (!phylink_autoneg_inband(mode)) {
3982 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3983 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3984 			 MVNETA_GMAC_CONFIG_MII_SPEED |
3985 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3986 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3987 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3988 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3989 
3990 		if (speed == SPEED_1000 || speed == SPEED_2500)
3991 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3992 		else if (speed == SPEED_100)
3993 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3994 
3995 		if (duplex == DUPLEX_FULL)
3996 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3997 
3998 		if (tx_pause || rx_pause)
3999 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4000 
4001 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4002 	} else {
4003 		/* When inband doesn't cover flow control or flow control is
4004 		 * disabled, we need to manually configure it. This bit will
4005 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4006 		 */
4007 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4008 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4009 
4010 		if (tx_pause || rx_pause)
4011 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4012 
4013 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4014 	}
4015 
4016 	mvneta_port_up(pp);
4017 
4018 	if (phy && pp->eee_enabled) {
4019 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4020 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4021 	}
4022 }
4023 
4024 static const struct phylink_mac_ops mvneta_phylink_ops = {
4025 	.validate = mvneta_validate,
4026 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4027 	.mac_an_restart = mvneta_mac_an_restart,
4028 	.mac_config = mvneta_mac_config,
4029 	.mac_link_down = mvneta_mac_link_down,
4030 	.mac_link_up = mvneta_mac_link_up,
4031 };
4032 
4033 static int mvneta_mdio_probe(struct mvneta_port *pp)
4034 {
4035 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4036 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4037 
4038 	if (err)
4039 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4040 
4041 	phylink_ethtool_get_wol(pp->phylink, &wol);
4042 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4043 
4044 	return err;
4045 }
4046 
4047 static void mvneta_mdio_remove(struct mvneta_port *pp)
4048 {
4049 	phylink_disconnect_phy(pp->phylink);
4050 }
4051 
4052 /* Electing a CPU must be done in an atomic way: it should be done
4053  * after or before the removal/insertion of a CPU and this function is
4054  * not reentrant.
4055  */
4056 static void mvneta_percpu_elect(struct mvneta_port *pp)
4057 {
4058 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4059 
4060 	/* Use the cpu associated to the rxq when it is online, in all
4061 	 * the other cases, use the cpu 0 which can't be offline.
4062 	 */
4063 	if (cpu_online(pp->rxq_def))
4064 		elected_cpu = pp->rxq_def;
4065 
4066 	max_cpu = num_present_cpus();
4067 
4068 	for_each_online_cpu(cpu) {
4069 		int rxq_map = 0, txq_map = 0;
4070 		int rxq;
4071 
4072 		for (rxq = 0; rxq < rxq_number; rxq++)
4073 			if ((rxq % max_cpu) == cpu)
4074 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4075 
4076 		if (cpu == elected_cpu)
4077 			/* Map the default receive queue queue to the
4078 			 * elected CPU
4079 			 */
4080 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4081 
4082 		/* We update the TX queue map only if we have one
4083 		 * queue. In this case we associate the TX queue to
4084 		 * the CPU bound to the default RX queue
4085 		 */
4086 		if (txq_number == 1)
4087 			txq_map = (cpu == elected_cpu) ?
4088 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4089 		else
4090 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4091 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4092 
4093 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4094 
4095 		/* Update the interrupt mask on each CPU according the
4096 		 * new mapping
4097 		 */
4098 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4099 					 pp, true);
4100 		i++;
4101 
4102 	}
4103 };
4104 
4105 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4106 {
4107 	int other_cpu;
4108 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4109 						  node_online);
4110 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4111 
4112 
4113 	spin_lock(&pp->lock);
4114 	/*
4115 	 * Configuring the driver for a new CPU while the driver is
4116 	 * stopping is racy, so just avoid it.
4117 	 */
4118 	if (pp->is_stopped) {
4119 		spin_unlock(&pp->lock);
4120 		return 0;
4121 	}
4122 	netif_tx_stop_all_queues(pp->dev);
4123 
4124 	/*
4125 	 * We have to synchronise on tha napi of each CPU except the one
4126 	 * just being woken up
4127 	 */
4128 	for_each_online_cpu(other_cpu) {
4129 		if (other_cpu != cpu) {
4130 			struct mvneta_pcpu_port *other_port =
4131 				per_cpu_ptr(pp->ports, other_cpu);
4132 
4133 			napi_synchronize(&other_port->napi);
4134 		}
4135 	}
4136 
4137 	/* Mask all ethernet port interrupts */
4138 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4139 	napi_enable(&port->napi);
4140 
4141 	/*
4142 	 * Enable per-CPU interrupts on the CPU that is
4143 	 * brought up.
4144 	 */
4145 	mvneta_percpu_enable(pp);
4146 
4147 	/*
4148 	 * Enable per-CPU interrupt on the one CPU we care
4149 	 * about.
4150 	 */
4151 	mvneta_percpu_elect(pp);
4152 
4153 	/* Unmask all ethernet port interrupts */
4154 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4155 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4156 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4157 		    MVNETA_CAUSE_LINK_CHANGE);
4158 	netif_tx_start_all_queues(pp->dev);
4159 	spin_unlock(&pp->lock);
4160 	return 0;
4161 }
4162 
4163 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4164 {
4165 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4166 						  node_online);
4167 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4168 
4169 	/*
4170 	 * Thanks to this lock we are sure that any pending cpu election is
4171 	 * done.
4172 	 */
4173 	spin_lock(&pp->lock);
4174 	/* Mask all ethernet port interrupts */
4175 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4176 	spin_unlock(&pp->lock);
4177 
4178 	napi_synchronize(&port->napi);
4179 	napi_disable(&port->napi);
4180 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4181 	mvneta_percpu_disable(pp);
4182 	return 0;
4183 }
4184 
4185 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4186 {
4187 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4188 						  node_dead);
4189 
4190 	/* Check if a new CPU must be elected now this on is down */
4191 	spin_lock(&pp->lock);
4192 	mvneta_percpu_elect(pp);
4193 	spin_unlock(&pp->lock);
4194 	/* Unmask all ethernet port interrupts */
4195 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4196 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4197 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4198 		    MVNETA_CAUSE_LINK_CHANGE);
4199 	netif_tx_start_all_queues(pp->dev);
4200 	return 0;
4201 }
4202 
4203 static int mvneta_open(struct net_device *dev)
4204 {
4205 	struct mvneta_port *pp = netdev_priv(dev);
4206 	int ret;
4207 
4208 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4209 
4210 	ret = mvneta_setup_rxqs(pp);
4211 	if (ret)
4212 		return ret;
4213 
4214 	ret = mvneta_setup_txqs(pp);
4215 	if (ret)
4216 		goto err_cleanup_rxqs;
4217 
4218 	/* Connect to port interrupt line */
4219 	if (pp->neta_armada3700)
4220 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4221 				  dev->name, pp);
4222 	else
4223 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4224 					 dev->name, pp->ports);
4225 	if (ret) {
4226 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4227 		goto err_cleanup_txqs;
4228 	}
4229 
4230 	if (!pp->neta_armada3700) {
4231 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4232 		 * queue interrupts
4233 		 */
4234 		on_each_cpu(mvneta_percpu_enable, pp, true);
4235 
4236 		pp->is_stopped = false;
4237 		/* Register a CPU notifier to handle the case where our CPU
4238 		 * might be taken offline.
4239 		 */
4240 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4241 						       &pp->node_online);
4242 		if (ret)
4243 			goto err_free_irq;
4244 
4245 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4246 						       &pp->node_dead);
4247 		if (ret)
4248 			goto err_free_online_hp;
4249 	}
4250 
4251 	ret = mvneta_mdio_probe(pp);
4252 	if (ret < 0) {
4253 		netdev_err(dev, "cannot probe MDIO bus\n");
4254 		goto err_free_dead_hp;
4255 	}
4256 
4257 	mvneta_start_dev(pp);
4258 
4259 	return 0;
4260 
4261 err_free_dead_hp:
4262 	if (!pp->neta_armada3700)
4263 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4264 						    &pp->node_dead);
4265 err_free_online_hp:
4266 	if (!pp->neta_armada3700)
4267 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4268 						    &pp->node_online);
4269 err_free_irq:
4270 	if (pp->neta_armada3700) {
4271 		free_irq(pp->dev->irq, pp);
4272 	} else {
4273 		on_each_cpu(mvneta_percpu_disable, pp, true);
4274 		free_percpu_irq(pp->dev->irq, pp->ports);
4275 	}
4276 err_cleanup_txqs:
4277 	mvneta_cleanup_txqs(pp);
4278 err_cleanup_rxqs:
4279 	mvneta_cleanup_rxqs(pp);
4280 	return ret;
4281 }
4282 
4283 /* Stop the port, free port interrupt line */
4284 static int mvneta_stop(struct net_device *dev)
4285 {
4286 	struct mvneta_port *pp = netdev_priv(dev);
4287 
4288 	if (!pp->neta_armada3700) {
4289 		/* Inform that we are stopping so we don't want to setup the
4290 		 * driver for new CPUs in the notifiers. The code of the
4291 		 * notifier for CPU online is protected by the same spinlock,
4292 		 * so when we get the lock, the notifer work is done.
4293 		 */
4294 		spin_lock(&pp->lock);
4295 		pp->is_stopped = true;
4296 		spin_unlock(&pp->lock);
4297 
4298 		mvneta_stop_dev(pp);
4299 		mvneta_mdio_remove(pp);
4300 
4301 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4302 						    &pp->node_online);
4303 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4304 						    &pp->node_dead);
4305 		on_each_cpu(mvneta_percpu_disable, pp, true);
4306 		free_percpu_irq(dev->irq, pp->ports);
4307 	} else {
4308 		mvneta_stop_dev(pp);
4309 		mvneta_mdio_remove(pp);
4310 		free_irq(dev->irq, pp);
4311 	}
4312 
4313 	mvneta_cleanup_rxqs(pp);
4314 	mvneta_cleanup_txqs(pp);
4315 
4316 	return 0;
4317 }
4318 
4319 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4320 {
4321 	struct mvneta_port *pp = netdev_priv(dev);
4322 
4323 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4324 }
4325 
4326 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4327 			    struct netlink_ext_ack *extack)
4328 {
4329 	bool need_update, running = netif_running(dev);
4330 	struct mvneta_port *pp = netdev_priv(dev);
4331 	struct bpf_prog *old_prog;
4332 
4333 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4334 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4335 		return -EOPNOTSUPP;
4336 	}
4337 
4338 	if (pp->bm_priv) {
4339 		NL_SET_ERR_MSG_MOD(extack,
4340 				   "Hardware Buffer Management not supported on XDP");
4341 		return -EOPNOTSUPP;
4342 	}
4343 
4344 	need_update = !!pp->xdp_prog != !!prog;
4345 	if (running && need_update)
4346 		mvneta_stop(dev);
4347 
4348 	old_prog = xchg(&pp->xdp_prog, prog);
4349 	if (old_prog)
4350 		bpf_prog_put(old_prog);
4351 
4352 	if (running && need_update)
4353 		return mvneta_open(dev);
4354 
4355 	return 0;
4356 }
4357 
4358 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4359 {
4360 	struct mvneta_port *pp = netdev_priv(dev);
4361 
4362 	switch (xdp->command) {
4363 	case XDP_SETUP_PROG:
4364 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4365 	case XDP_QUERY_PROG:
4366 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4367 		return 0;
4368 	default:
4369 		return -EINVAL;
4370 	}
4371 }
4372 
4373 /* Ethtool methods */
4374 
4375 /* Set link ksettings (phy address, speed) for ethtools */
4376 static int
4377 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4378 				  const struct ethtool_link_ksettings *cmd)
4379 {
4380 	struct mvneta_port *pp = netdev_priv(ndev);
4381 
4382 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4383 }
4384 
4385 /* Get link ksettings for ethtools */
4386 static int
4387 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4388 				  struct ethtool_link_ksettings *cmd)
4389 {
4390 	struct mvneta_port *pp = netdev_priv(ndev);
4391 
4392 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4393 }
4394 
4395 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4396 {
4397 	struct mvneta_port *pp = netdev_priv(dev);
4398 
4399 	return phylink_ethtool_nway_reset(pp->phylink);
4400 }
4401 
4402 /* Set interrupt coalescing for ethtools */
4403 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4404 				       struct ethtool_coalesce *c)
4405 {
4406 	struct mvneta_port *pp = netdev_priv(dev);
4407 	int queue;
4408 
4409 	for (queue = 0; queue < rxq_number; queue++) {
4410 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4411 		rxq->time_coal = c->rx_coalesce_usecs;
4412 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4413 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4414 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4415 	}
4416 
4417 	for (queue = 0; queue < txq_number; queue++) {
4418 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4419 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4420 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4421 	}
4422 
4423 	return 0;
4424 }
4425 
4426 /* get coalescing for ethtools */
4427 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4428 				       struct ethtool_coalesce *c)
4429 {
4430 	struct mvneta_port *pp = netdev_priv(dev);
4431 
4432 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4433 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4434 
4435 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4436 	return 0;
4437 }
4438 
4439 
4440 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4441 				    struct ethtool_drvinfo *drvinfo)
4442 {
4443 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4444 		sizeof(drvinfo->driver));
4445 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4446 		sizeof(drvinfo->version));
4447 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4448 		sizeof(drvinfo->bus_info));
4449 }
4450 
4451 
4452 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4453 					 struct ethtool_ringparam *ring)
4454 {
4455 	struct mvneta_port *pp = netdev_priv(netdev);
4456 
4457 	ring->rx_max_pending = MVNETA_MAX_RXD;
4458 	ring->tx_max_pending = MVNETA_MAX_TXD;
4459 	ring->rx_pending = pp->rx_ring_size;
4460 	ring->tx_pending = pp->tx_ring_size;
4461 }
4462 
4463 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4464 					struct ethtool_ringparam *ring)
4465 {
4466 	struct mvneta_port *pp = netdev_priv(dev);
4467 
4468 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4469 		return -EINVAL;
4470 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4471 		ring->rx_pending : MVNETA_MAX_RXD;
4472 
4473 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4474 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4475 	if (pp->tx_ring_size != ring->tx_pending)
4476 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4477 			    pp->tx_ring_size, ring->tx_pending);
4478 
4479 	if (netif_running(dev)) {
4480 		mvneta_stop(dev);
4481 		if (mvneta_open(dev)) {
4482 			netdev_err(dev,
4483 				   "error on opening device after ring param change\n");
4484 			return -ENOMEM;
4485 		}
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4492 					  struct ethtool_pauseparam *pause)
4493 {
4494 	struct mvneta_port *pp = netdev_priv(dev);
4495 
4496 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4497 }
4498 
4499 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4500 					 struct ethtool_pauseparam *pause)
4501 {
4502 	struct mvneta_port *pp = netdev_priv(dev);
4503 
4504 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4505 }
4506 
4507 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4508 				       u8 *data)
4509 {
4510 	if (sset == ETH_SS_STATS) {
4511 		int i;
4512 
4513 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4514 			memcpy(data + i * ETH_GSTRING_LEN,
4515 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4516 	}
4517 }
4518 
4519 static void
4520 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4521 				 struct mvneta_ethtool_stats *es)
4522 {
4523 	unsigned int start;
4524 	int cpu;
4525 
4526 	for_each_possible_cpu(cpu) {
4527 		struct mvneta_pcpu_stats *stats;
4528 		u64 skb_alloc_error;
4529 		u64 refill_error;
4530 		u64 xdp_redirect;
4531 		u64 xdp_xmit_err;
4532 		u64 xdp_tx_err;
4533 		u64 xdp_pass;
4534 		u64 xdp_drop;
4535 		u64 xdp_xmit;
4536 		u64 xdp_tx;
4537 
4538 		stats = per_cpu_ptr(pp->stats, cpu);
4539 		do {
4540 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4541 			skb_alloc_error = stats->es.skb_alloc_error;
4542 			refill_error = stats->es.refill_error;
4543 			xdp_redirect = stats->es.ps.xdp_redirect;
4544 			xdp_pass = stats->es.ps.xdp_pass;
4545 			xdp_drop = stats->es.ps.xdp_drop;
4546 			xdp_xmit = stats->es.ps.xdp_xmit;
4547 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4548 			xdp_tx = stats->es.ps.xdp_tx;
4549 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4550 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4551 
4552 		es->skb_alloc_error += skb_alloc_error;
4553 		es->refill_error += refill_error;
4554 		es->ps.xdp_redirect += xdp_redirect;
4555 		es->ps.xdp_pass += xdp_pass;
4556 		es->ps.xdp_drop += xdp_drop;
4557 		es->ps.xdp_xmit += xdp_xmit;
4558 		es->ps.xdp_xmit_err += xdp_xmit_err;
4559 		es->ps.xdp_tx += xdp_tx;
4560 		es->ps.xdp_tx_err += xdp_tx_err;
4561 	}
4562 }
4563 
4564 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4565 {
4566 	struct mvneta_ethtool_stats stats = {};
4567 	const struct mvneta_statistic *s;
4568 	void __iomem *base = pp->base;
4569 	u32 high, low;
4570 	u64 val;
4571 	int i;
4572 
4573 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4574 	for (i = 0, s = mvneta_statistics;
4575 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4576 	     s++, i++) {
4577 		switch (s->type) {
4578 		case T_REG_32:
4579 			val = readl_relaxed(base + s->offset);
4580 			pp->ethtool_stats[i] += val;
4581 			break;
4582 		case T_REG_64:
4583 			/* Docs say to read low 32-bit then high */
4584 			low = readl_relaxed(base + s->offset);
4585 			high = readl_relaxed(base + s->offset + 4);
4586 			val = (u64)high << 32 | low;
4587 			pp->ethtool_stats[i] += val;
4588 			break;
4589 		case T_SW:
4590 			switch (s->offset) {
4591 			case ETHTOOL_STAT_EEE_WAKEUP:
4592 				val = phylink_get_eee_err(pp->phylink);
4593 				pp->ethtool_stats[i] += val;
4594 				break;
4595 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4596 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4597 				break;
4598 			case ETHTOOL_STAT_REFILL_ERR:
4599 				pp->ethtool_stats[i] = stats.refill_error;
4600 				break;
4601 			case ETHTOOL_XDP_REDIRECT:
4602 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4603 				break;
4604 			case ETHTOOL_XDP_PASS:
4605 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4606 				break;
4607 			case ETHTOOL_XDP_DROP:
4608 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4609 				break;
4610 			case ETHTOOL_XDP_TX:
4611 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4612 				break;
4613 			case ETHTOOL_XDP_TX_ERR:
4614 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4615 				break;
4616 			case ETHTOOL_XDP_XMIT:
4617 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4618 				break;
4619 			case ETHTOOL_XDP_XMIT_ERR:
4620 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4621 				break;
4622 			}
4623 			break;
4624 		}
4625 	}
4626 }
4627 
4628 static void mvneta_ethtool_get_stats(struct net_device *dev,
4629 				     struct ethtool_stats *stats, u64 *data)
4630 {
4631 	struct mvneta_port *pp = netdev_priv(dev);
4632 	int i;
4633 
4634 	mvneta_ethtool_update_stats(pp);
4635 
4636 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4637 		*data++ = pp->ethtool_stats[i];
4638 }
4639 
4640 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4641 {
4642 	if (sset == ETH_SS_STATS)
4643 		return ARRAY_SIZE(mvneta_statistics);
4644 	return -EOPNOTSUPP;
4645 }
4646 
4647 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4648 {
4649 	return MVNETA_RSS_LU_TABLE_SIZE;
4650 }
4651 
4652 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4653 				    struct ethtool_rxnfc *info,
4654 				    u32 *rules __always_unused)
4655 {
4656 	switch (info->cmd) {
4657 	case ETHTOOL_GRXRINGS:
4658 		info->data =  rxq_number;
4659 		return 0;
4660 	case ETHTOOL_GRXFH:
4661 		return -EOPNOTSUPP;
4662 	default:
4663 		return -EOPNOTSUPP;
4664 	}
4665 }
4666 
4667 static int  mvneta_config_rss(struct mvneta_port *pp)
4668 {
4669 	int cpu;
4670 	u32 val;
4671 
4672 	netif_tx_stop_all_queues(pp->dev);
4673 
4674 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4675 
4676 	if (!pp->neta_armada3700) {
4677 		/* We have to synchronise on the napi of each CPU */
4678 		for_each_online_cpu(cpu) {
4679 			struct mvneta_pcpu_port *pcpu_port =
4680 				per_cpu_ptr(pp->ports, cpu);
4681 
4682 			napi_synchronize(&pcpu_port->napi);
4683 			napi_disable(&pcpu_port->napi);
4684 		}
4685 	} else {
4686 		napi_synchronize(&pp->napi);
4687 		napi_disable(&pp->napi);
4688 	}
4689 
4690 	pp->rxq_def = pp->indir[0];
4691 
4692 	/* Update unicast mapping */
4693 	mvneta_set_rx_mode(pp->dev);
4694 
4695 	/* Update val of portCfg register accordingly with all RxQueue types */
4696 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4697 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4698 
4699 	/* Update the elected CPU matching the new rxq_def */
4700 	spin_lock(&pp->lock);
4701 	mvneta_percpu_elect(pp);
4702 	spin_unlock(&pp->lock);
4703 
4704 	if (!pp->neta_armada3700) {
4705 		/* We have to synchronise on the napi of each CPU */
4706 		for_each_online_cpu(cpu) {
4707 			struct mvneta_pcpu_port *pcpu_port =
4708 				per_cpu_ptr(pp->ports, cpu);
4709 
4710 			napi_enable(&pcpu_port->napi);
4711 		}
4712 	} else {
4713 		napi_enable(&pp->napi);
4714 	}
4715 
4716 	netif_tx_start_all_queues(pp->dev);
4717 
4718 	return 0;
4719 }
4720 
4721 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4722 				   const u8 *key, const u8 hfunc)
4723 {
4724 	struct mvneta_port *pp = netdev_priv(dev);
4725 
4726 	/* Current code for Armada 3700 doesn't support RSS features yet */
4727 	if (pp->neta_armada3700)
4728 		return -EOPNOTSUPP;
4729 
4730 	/* We require at least one supported parameter to be changed
4731 	 * and no change in any of the unsupported parameters
4732 	 */
4733 	if (key ||
4734 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4735 		return -EOPNOTSUPP;
4736 
4737 	if (!indir)
4738 		return 0;
4739 
4740 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4741 
4742 	return mvneta_config_rss(pp);
4743 }
4744 
4745 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4746 				   u8 *hfunc)
4747 {
4748 	struct mvneta_port *pp = netdev_priv(dev);
4749 
4750 	/* Current code for Armada 3700 doesn't support RSS features yet */
4751 	if (pp->neta_armada3700)
4752 		return -EOPNOTSUPP;
4753 
4754 	if (hfunc)
4755 		*hfunc = ETH_RSS_HASH_TOP;
4756 
4757 	if (!indir)
4758 		return 0;
4759 
4760 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4761 
4762 	return 0;
4763 }
4764 
4765 static void mvneta_ethtool_get_wol(struct net_device *dev,
4766 				   struct ethtool_wolinfo *wol)
4767 {
4768 	struct mvneta_port *pp = netdev_priv(dev);
4769 
4770 	phylink_ethtool_get_wol(pp->phylink, wol);
4771 }
4772 
4773 static int mvneta_ethtool_set_wol(struct net_device *dev,
4774 				  struct ethtool_wolinfo *wol)
4775 {
4776 	struct mvneta_port *pp = netdev_priv(dev);
4777 	int ret;
4778 
4779 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4780 	if (!ret)
4781 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4782 
4783 	return ret;
4784 }
4785 
4786 static int mvneta_ethtool_get_eee(struct net_device *dev,
4787 				  struct ethtool_eee *eee)
4788 {
4789 	struct mvneta_port *pp = netdev_priv(dev);
4790 	u32 lpi_ctl0;
4791 
4792 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4793 
4794 	eee->eee_enabled = pp->eee_enabled;
4795 	eee->eee_active = pp->eee_active;
4796 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4797 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4798 
4799 	return phylink_ethtool_get_eee(pp->phylink, eee);
4800 }
4801 
4802 static int mvneta_ethtool_set_eee(struct net_device *dev,
4803 				  struct ethtool_eee *eee)
4804 {
4805 	struct mvneta_port *pp = netdev_priv(dev);
4806 	u32 lpi_ctl0;
4807 
4808 	/* The Armada 37x documents do not give limits for this other than
4809 	 * it being an 8-bit register. */
4810 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4811 		return -EINVAL;
4812 
4813 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4814 	lpi_ctl0 &= ~(0xff << 8);
4815 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4816 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4817 
4818 	pp->eee_enabled = eee->eee_enabled;
4819 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4820 
4821 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4822 
4823 	return phylink_ethtool_set_eee(pp->phylink, eee);
4824 }
4825 
4826 static const struct net_device_ops mvneta_netdev_ops = {
4827 	.ndo_open            = mvneta_open,
4828 	.ndo_stop            = mvneta_stop,
4829 	.ndo_start_xmit      = mvneta_tx,
4830 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4831 	.ndo_set_mac_address = mvneta_set_mac_addr,
4832 	.ndo_change_mtu      = mvneta_change_mtu,
4833 	.ndo_fix_features    = mvneta_fix_features,
4834 	.ndo_get_stats64     = mvneta_get_stats64,
4835 	.ndo_do_ioctl        = mvneta_ioctl,
4836 	.ndo_bpf	     = mvneta_xdp,
4837 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4838 };
4839 
4840 static const struct ethtool_ops mvneta_eth_tool_ops = {
4841 	.nway_reset	= mvneta_ethtool_nway_reset,
4842 	.get_link       = ethtool_op_get_link,
4843 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4844 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4845 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4846 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4847 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4848 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4849 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4850 	.get_strings	= mvneta_ethtool_get_strings,
4851 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4852 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4853 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4854 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4855 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4856 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4857 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4858 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4859 	.get_wol        = mvneta_ethtool_get_wol,
4860 	.set_wol        = mvneta_ethtool_set_wol,
4861 	.get_eee	= mvneta_ethtool_get_eee,
4862 	.set_eee	= mvneta_ethtool_set_eee,
4863 };
4864 
4865 /* Initialize hw */
4866 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4867 {
4868 	int queue;
4869 
4870 	/* Disable port */
4871 	mvneta_port_disable(pp);
4872 
4873 	/* Set port default values */
4874 	mvneta_defaults_set(pp);
4875 
4876 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4877 	if (!pp->txqs)
4878 		return -ENOMEM;
4879 
4880 	/* Initialize TX descriptor rings */
4881 	for (queue = 0; queue < txq_number; queue++) {
4882 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4883 		txq->id = queue;
4884 		txq->size = pp->tx_ring_size;
4885 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4886 	}
4887 
4888 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4889 	if (!pp->rxqs)
4890 		return -ENOMEM;
4891 
4892 	/* Create Rx descriptor rings */
4893 	for (queue = 0; queue < rxq_number; queue++) {
4894 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4895 		rxq->id = queue;
4896 		rxq->size = pp->rx_ring_size;
4897 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4898 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4899 		rxq->buf_virt_addr
4900 			= devm_kmalloc_array(pp->dev->dev.parent,
4901 					     rxq->size,
4902 					     sizeof(*rxq->buf_virt_addr),
4903 					     GFP_KERNEL);
4904 		if (!rxq->buf_virt_addr)
4905 			return -ENOMEM;
4906 	}
4907 
4908 	return 0;
4909 }
4910 
4911 /* platform glue : initialize decoding windows */
4912 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4913 				     const struct mbus_dram_target_info *dram)
4914 {
4915 	u32 win_enable;
4916 	u32 win_protect;
4917 	int i;
4918 
4919 	for (i = 0; i < 6; i++) {
4920 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4921 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4922 
4923 		if (i < 4)
4924 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4925 	}
4926 
4927 	win_enable = 0x3f;
4928 	win_protect = 0;
4929 
4930 	if (dram) {
4931 		for (i = 0; i < dram->num_cs; i++) {
4932 			const struct mbus_dram_window *cs = dram->cs + i;
4933 
4934 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4935 				    (cs->base & 0xffff0000) |
4936 				    (cs->mbus_attr << 8) |
4937 				    dram->mbus_dram_target_id);
4938 
4939 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4940 				    (cs->size - 1) & 0xffff0000);
4941 
4942 			win_enable &= ~(1 << i);
4943 			win_protect |= 3 << (2 * i);
4944 		}
4945 	} else {
4946 		/* For Armada3700 open default 4GB Mbus window, leaving
4947 		 * arbitration of target/attribute to a different layer
4948 		 * of configuration.
4949 		 */
4950 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4951 		win_enable &= ~BIT(0);
4952 		win_protect = 3;
4953 	}
4954 
4955 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4956 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4957 }
4958 
4959 /* Power up the port */
4960 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4961 {
4962 	/* MAC Cause register should be cleared */
4963 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4964 
4965 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4966 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4967 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4968 		 phy_interface_mode_is_8023z(phy_mode))
4969 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4970 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4971 		return -EINVAL;
4972 
4973 	return 0;
4974 }
4975 
4976 /* Device initialization routine */
4977 static int mvneta_probe(struct platform_device *pdev)
4978 {
4979 	struct device_node *dn = pdev->dev.of_node;
4980 	struct device_node *bm_node;
4981 	struct mvneta_port *pp;
4982 	struct net_device *dev;
4983 	struct phylink *phylink;
4984 	struct phy *comphy;
4985 	const char *dt_mac_addr;
4986 	char hw_mac_addr[ETH_ALEN];
4987 	phy_interface_t phy_mode;
4988 	const char *mac_from;
4989 	int tx_csum_limit;
4990 	int err;
4991 	int cpu;
4992 
4993 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4994 				      txq_number, rxq_number);
4995 	if (!dev)
4996 		return -ENOMEM;
4997 
4998 	dev->irq = irq_of_parse_and_map(dn, 0);
4999 	if (dev->irq == 0)
5000 		return -EINVAL;
5001 
5002 	err = of_get_phy_mode(dn, &phy_mode);
5003 	if (err) {
5004 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5005 		goto err_free_irq;
5006 	}
5007 
5008 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5009 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5010 		err = -EPROBE_DEFER;
5011 		goto err_free_irq;
5012 	} else if (IS_ERR(comphy)) {
5013 		comphy = NULL;
5014 	}
5015 
5016 	pp = netdev_priv(dev);
5017 	spin_lock_init(&pp->lock);
5018 
5019 	pp->phylink_config.dev = &dev->dev;
5020 	pp->phylink_config.type = PHYLINK_NETDEV;
5021 
5022 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5023 				 phy_mode, &mvneta_phylink_ops);
5024 	if (IS_ERR(phylink)) {
5025 		err = PTR_ERR(phylink);
5026 		goto err_free_irq;
5027 	}
5028 
5029 	dev->tx_queue_len = MVNETA_MAX_TXD;
5030 	dev->watchdog_timeo = 5 * HZ;
5031 	dev->netdev_ops = &mvneta_netdev_ops;
5032 
5033 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5034 
5035 	pp->phylink = phylink;
5036 	pp->comphy = comphy;
5037 	pp->phy_interface = phy_mode;
5038 	pp->dn = dn;
5039 
5040 	pp->rxq_def = rxq_def;
5041 	pp->indir[0] = rxq_def;
5042 
5043 	/* Get special SoC configurations */
5044 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5045 		pp->neta_armada3700 = true;
5046 
5047 	pp->clk = devm_clk_get(&pdev->dev, "core");
5048 	if (IS_ERR(pp->clk))
5049 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5050 	if (IS_ERR(pp->clk)) {
5051 		err = PTR_ERR(pp->clk);
5052 		goto err_free_phylink;
5053 	}
5054 
5055 	clk_prepare_enable(pp->clk);
5056 
5057 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5058 	if (!IS_ERR(pp->clk_bus))
5059 		clk_prepare_enable(pp->clk_bus);
5060 
5061 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5062 	if (IS_ERR(pp->base)) {
5063 		err = PTR_ERR(pp->base);
5064 		goto err_clk;
5065 	}
5066 
5067 	/* Alloc per-cpu port structure */
5068 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5069 	if (!pp->ports) {
5070 		err = -ENOMEM;
5071 		goto err_clk;
5072 	}
5073 
5074 	/* Alloc per-cpu stats */
5075 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5076 	if (!pp->stats) {
5077 		err = -ENOMEM;
5078 		goto err_free_ports;
5079 	}
5080 
5081 	dt_mac_addr = of_get_mac_address(dn);
5082 	if (!IS_ERR(dt_mac_addr)) {
5083 		mac_from = "device tree";
5084 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5085 	} else {
5086 		mvneta_get_mac_addr(pp, hw_mac_addr);
5087 		if (is_valid_ether_addr(hw_mac_addr)) {
5088 			mac_from = "hardware";
5089 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5090 		} else {
5091 			mac_from = "random";
5092 			eth_hw_addr_random(dev);
5093 		}
5094 	}
5095 
5096 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5097 		if (tx_csum_limit < 0 ||
5098 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5099 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5100 			dev_info(&pdev->dev,
5101 				 "Wrong TX csum limit in DT, set to %dB\n",
5102 				 MVNETA_TX_CSUM_DEF_SIZE);
5103 		}
5104 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5105 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5106 	} else {
5107 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5108 	}
5109 
5110 	pp->tx_csum_limit = tx_csum_limit;
5111 
5112 	pp->dram_target_info = mv_mbus_dram_info();
5113 	/* Armada3700 requires setting default configuration of Mbus
5114 	 * windows, however without using filled mbus_dram_target_info
5115 	 * structure.
5116 	 */
5117 	if (pp->dram_target_info || pp->neta_armada3700)
5118 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5119 
5120 	pp->tx_ring_size = MVNETA_MAX_TXD;
5121 	pp->rx_ring_size = MVNETA_MAX_RXD;
5122 
5123 	pp->dev = dev;
5124 	SET_NETDEV_DEV(dev, &pdev->dev);
5125 
5126 	pp->id = global_port_id++;
5127 
5128 	/* Obtain access to BM resources if enabled and already initialized */
5129 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5130 	if (bm_node) {
5131 		pp->bm_priv = mvneta_bm_get(bm_node);
5132 		if (pp->bm_priv) {
5133 			err = mvneta_bm_port_init(pdev, pp);
5134 			if (err < 0) {
5135 				dev_info(&pdev->dev,
5136 					 "use SW buffer management\n");
5137 				mvneta_bm_put(pp->bm_priv);
5138 				pp->bm_priv = NULL;
5139 			}
5140 		}
5141 		/* Set RX packet offset correction for platforms, whose
5142 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5143 		 * platforms and 0B for 32-bit ones.
5144 		 */
5145 		pp->rx_offset_correction = max(0,
5146 					       NET_SKB_PAD -
5147 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5148 	}
5149 	of_node_put(bm_node);
5150 
5151 	/* sw buffer management */
5152 	if (!pp->bm_priv)
5153 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5154 
5155 	err = mvneta_init(&pdev->dev, pp);
5156 	if (err < 0)
5157 		goto err_netdev;
5158 
5159 	err = mvneta_port_power_up(pp, phy_mode);
5160 	if (err < 0) {
5161 		dev_err(&pdev->dev, "can't power up port\n");
5162 		goto err_netdev;
5163 	}
5164 
5165 	/* Armada3700 network controller does not support per-cpu
5166 	 * operation, so only single NAPI should be initialized.
5167 	 */
5168 	if (pp->neta_armada3700) {
5169 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5170 	} else {
5171 		for_each_present_cpu(cpu) {
5172 			struct mvneta_pcpu_port *port =
5173 				per_cpu_ptr(pp->ports, cpu);
5174 
5175 			netif_napi_add(dev, &port->napi, mvneta_poll,
5176 				       NAPI_POLL_WEIGHT);
5177 			port->pp = pp;
5178 		}
5179 	}
5180 
5181 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5182 			NETIF_F_TSO | NETIF_F_RXCSUM;
5183 	dev->hw_features |= dev->features;
5184 	dev->vlan_features |= dev->features;
5185 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5186 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5187 
5188 	/* MTU range: 68 - 9676 */
5189 	dev->min_mtu = ETH_MIN_MTU;
5190 	/* 9676 == 9700 - 20 and rounding to 8 */
5191 	dev->max_mtu = 9676;
5192 
5193 	err = register_netdev(dev);
5194 	if (err < 0) {
5195 		dev_err(&pdev->dev, "failed to register\n");
5196 		goto err_netdev;
5197 	}
5198 
5199 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5200 		    dev->dev_addr);
5201 
5202 	platform_set_drvdata(pdev, pp->dev);
5203 
5204 	return 0;
5205 
5206 err_netdev:
5207 	if (pp->bm_priv) {
5208 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5209 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5210 				       1 << pp->id);
5211 		mvneta_bm_put(pp->bm_priv);
5212 	}
5213 	free_percpu(pp->stats);
5214 err_free_ports:
5215 	free_percpu(pp->ports);
5216 err_clk:
5217 	clk_disable_unprepare(pp->clk_bus);
5218 	clk_disable_unprepare(pp->clk);
5219 err_free_phylink:
5220 	if (pp->phylink)
5221 		phylink_destroy(pp->phylink);
5222 err_free_irq:
5223 	irq_dispose_mapping(dev->irq);
5224 	return err;
5225 }
5226 
5227 /* Device removal routine */
5228 static int mvneta_remove(struct platform_device *pdev)
5229 {
5230 	struct net_device  *dev = platform_get_drvdata(pdev);
5231 	struct mvneta_port *pp = netdev_priv(dev);
5232 
5233 	unregister_netdev(dev);
5234 	clk_disable_unprepare(pp->clk_bus);
5235 	clk_disable_unprepare(pp->clk);
5236 	free_percpu(pp->ports);
5237 	free_percpu(pp->stats);
5238 	irq_dispose_mapping(dev->irq);
5239 	phylink_destroy(pp->phylink);
5240 
5241 	if (pp->bm_priv) {
5242 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5243 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5244 				       1 << pp->id);
5245 		mvneta_bm_put(pp->bm_priv);
5246 	}
5247 
5248 	return 0;
5249 }
5250 
5251 #ifdef CONFIG_PM_SLEEP
5252 static int mvneta_suspend(struct device *device)
5253 {
5254 	int queue;
5255 	struct net_device *dev = dev_get_drvdata(device);
5256 	struct mvneta_port *pp = netdev_priv(dev);
5257 
5258 	if (!netif_running(dev))
5259 		goto clean_exit;
5260 
5261 	if (!pp->neta_armada3700) {
5262 		spin_lock(&pp->lock);
5263 		pp->is_stopped = true;
5264 		spin_unlock(&pp->lock);
5265 
5266 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5267 						    &pp->node_online);
5268 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5269 						    &pp->node_dead);
5270 	}
5271 
5272 	rtnl_lock();
5273 	mvneta_stop_dev(pp);
5274 	rtnl_unlock();
5275 
5276 	for (queue = 0; queue < rxq_number; queue++) {
5277 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5278 
5279 		mvneta_rxq_drop_pkts(pp, rxq);
5280 	}
5281 
5282 	for (queue = 0; queue < txq_number; queue++) {
5283 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5284 
5285 		mvneta_txq_hw_deinit(pp, txq);
5286 	}
5287 
5288 clean_exit:
5289 	netif_device_detach(dev);
5290 	clk_disable_unprepare(pp->clk_bus);
5291 	clk_disable_unprepare(pp->clk);
5292 
5293 	return 0;
5294 }
5295 
5296 static int mvneta_resume(struct device *device)
5297 {
5298 	struct platform_device *pdev = to_platform_device(device);
5299 	struct net_device *dev = dev_get_drvdata(device);
5300 	struct mvneta_port *pp = netdev_priv(dev);
5301 	int err, queue;
5302 
5303 	clk_prepare_enable(pp->clk);
5304 	if (!IS_ERR(pp->clk_bus))
5305 		clk_prepare_enable(pp->clk_bus);
5306 	if (pp->dram_target_info || pp->neta_armada3700)
5307 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5308 	if (pp->bm_priv) {
5309 		err = mvneta_bm_port_init(pdev, pp);
5310 		if (err < 0) {
5311 			dev_info(&pdev->dev, "use SW buffer management\n");
5312 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5313 			pp->bm_priv = NULL;
5314 		}
5315 	}
5316 	mvneta_defaults_set(pp);
5317 	err = mvneta_port_power_up(pp, pp->phy_interface);
5318 	if (err < 0) {
5319 		dev_err(device, "can't power up port\n");
5320 		return err;
5321 	}
5322 
5323 	netif_device_attach(dev);
5324 
5325 	if (!netif_running(dev))
5326 		return 0;
5327 
5328 	for (queue = 0; queue < rxq_number; queue++) {
5329 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5330 
5331 		rxq->next_desc_to_proc = 0;
5332 		mvneta_rxq_hw_init(pp, rxq);
5333 	}
5334 
5335 	for (queue = 0; queue < txq_number; queue++) {
5336 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5337 
5338 		txq->next_desc_to_proc = 0;
5339 		mvneta_txq_hw_init(pp, txq);
5340 	}
5341 
5342 	if (!pp->neta_armada3700) {
5343 		spin_lock(&pp->lock);
5344 		pp->is_stopped = false;
5345 		spin_unlock(&pp->lock);
5346 		cpuhp_state_add_instance_nocalls(online_hpstate,
5347 						 &pp->node_online);
5348 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5349 						 &pp->node_dead);
5350 	}
5351 
5352 	rtnl_lock();
5353 	mvneta_start_dev(pp);
5354 	rtnl_unlock();
5355 	mvneta_set_rx_mode(dev);
5356 
5357 	return 0;
5358 }
5359 #endif
5360 
5361 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5362 
5363 static const struct of_device_id mvneta_match[] = {
5364 	{ .compatible = "marvell,armada-370-neta" },
5365 	{ .compatible = "marvell,armada-xp-neta" },
5366 	{ .compatible = "marvell,armada-3700-neta" },
5367 	{ }
5368 };
5369 MODULE_DEVICE_TABLE(of, mvneta_match);
5370 
5371 static struct platform_driver mvneta_driver = {
5372 	.probe = mvneta_probe,
5373 	.remove = mvneta_remove,
5374 	.driver = {
5375 		.name = MVNETA_DRIVER_NAME,
5376 		.of_match_table = mvneta_match,
5377 		.pm = &mvneta_pm_ops,
5378 	},
5379 };
5380 
5381 static int __init mvneta_driver_init(void)
5382 {
5383 	int ret;
5384 
5385 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
5386 				      mvneta_cpu_online,
5387 				      mvneta_cpu_down_prepare);
5388 	if (ret < 0)
5389 		goto out;
5390 	online_hpstate = ret;
5391 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5392 				      NULL, mvneta_cpu_dead);
5393 	if (ret)
5394 		goto err_dead;
5395 
5396 	ret = platform_driver_register(&mvneta_driver);
5397 	if (ret)
5398 		goto err;
5399 	return 0;
5400 
5401 err:
5402 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5403 err_dead:
5404 	cpuhp_remove_multi_state(online_hpstate);
5405 out:
5406 	return ret;
5407 }
5408 module_init(mvneta_driver_init);
5409 
5410 static void __exit mvneta_driver_exit(void)
5411 {
5412 	platform_driver_unregister(&mvneta_driver);
5413 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5414 	cpuhp_remove_multi_state(online_hpstate);
5415 }
5416 module_exit(mvneta_driver_exit);
5417 
5418 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5419 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5420 MODULE_LICENSE("GPL");
5421 
5422 module_param(rxq_number, int, 0444);
5423 module_param(txq_number, int, 0444);
5424 
5425 module_param(rxq_def, int, 0444);
5426 module_param(rx_copybreak, int, 0644);
5427