1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <net/ip.h> 24 #include <net/ipv6.h> 25 #include <linux/of.h> 26 #include <linux/of_irq.h> 27 #include <linux/of_mdio.h> 28 #include <linux/of_net.h> 29 #include <linux/of_address.h> 30 #include <linux/phy.h> 31 #include <linux/clk.h> 32 33 /* Registers */ 34 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 35 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 36 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 37 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 38 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 39 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 40 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 41 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 42 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 43 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 44 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 45 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 47 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 48 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 49 #define MVNETA_PORT_RX_RESET 0x1cc0 50 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 51 #define MVNETA_PHY_ADDR 0x2000 52 #define MVNETA_PHY_ADDR_MASK 0x1f 53 #define MVNETA_MBUS_RETRY 0x2010 54 #define MVNETA_UNIT_INTR_CAUSE 0x2080 55 #define MVNETA_UNIT_CONTROL 0x20B0 56 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 57 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 58 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 59 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 60 #define MVNETA_BASE_ADDR_ENABLE 0x2290 61 #define MVNETA_PORT_CONFIG 0x2400 62 #define MVNETA_UNI_PROMISC_MODE BIT(0) 63 #define MVNETA_DEF_RXQ(q) ((q) << 1) 64 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 65 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 66 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 67 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 68 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 69 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 70 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 71 MVNETA_DEF_RXQ_ARP(q) | \ 72 MVNETA_DEF_RXQ_TCP(q) | \ 73 MVNETA_DEF_RXQ_UDP(q) | \ 74 MVNETA_DEF_RXQ_BPDU(q) | \ 75 MVNETA_TX_UNSET_ERR_SUM | \ 76 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 77 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 78 #define MVNETA_MAC_ADDR_LOW 0x2414 79 #define MVNETA_MAC_ADDR_HIGH 0x2418 80 #define MVNETA_SDMA_CONFIG 0x241c 81 #define MVNETA_SDMA_BRST_SIZE_16 4 82 #define MVNETA_NO_DESC_SWAP 0x0 83 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 84 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 85 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 86 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 87 #define MVNETA_PORT_STATUS 0x2444 88 #define MVNETA_TX_IN_PRGRS BIT(1) 89 #define MVNETA_TX_FIFO_EMPTY BIT(8) 90 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 91 #define MVNETA_SGMII_SERDES_CFG 0x24A0 92 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 93 #define MVNETA_TYPE_PRIO 0x24bc 94 #define MVNETA_FORCE_UNI BIT(21) 95 #define MVNETA_TXQ_CMD_1 0x24e4 96 #define MVNETA_TXQ_CMD 0x2448 97 #define MVNETA_TXQ_DISABLE_SHIFT 8 98 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 99 #define MVNETA_ACC_MODE 0x2500 100 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 101 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 102 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 103 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 104 #define MVNETA_INTR_NEW_CAUSE 0x25a0 105 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 106 #define MVNETA_INTR_NEW_MASK 0x25a4 107 #define MVNETA_INTR_OLD_CAUSE 0x25a8 108 #define MVNETA_INTR_OLD_MASK 0x25ac 109 #define MVNETA_INTR_MISC_CAUSE 0x25b0 110 #define MVNETA_INTR_MISC_MASK 0x25b4 111 #define MVNETA_INTR_ENABLE 0x25b8 112 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 113 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 114 #define MVNETA_RXQ_CMD 0x2680 115 #define MVNETA_RXQ_DISABLE_SHIFT 8 116 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 117 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 118 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 119 #define MVNETA_GMAC_CTRL_0 0x2c00 120 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 121 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 122 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 123 #define MVNETA_GMAC_CTRL_2 0x2c08 124 #define MVNETA_GMAC2_PSC_ENABLE BIT(3) 125 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 126 #define MVNETA_GMAC2_PORT_RESET BIT(6) 127 #define MVNETA_GMAC_STATUS 0x2c10 128 #define MVNETA_GMAC_LINK_UP BIT(0) 129 #define MVNETA_GMAC_SPEED_1000 BIT(1) 130 #define MVNETA_GMAC_SPEED_100 BIT(2) 131 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 132 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 133 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 134 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 135 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 136 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 137 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 138 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 139 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 140 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 141 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 142 #define MVNETA_MIB_COUNTERS_BASE 0x3080 143 #define MVNETA_MIB_LATE_COLLISION 0x7c 144 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 145 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 146 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 147 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 148 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 149 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 150 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 151 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 152 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 153 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 154 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 155 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 156 #define MVNETA_PORT_TX_RESET 0x3cf0 157 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 158 #define MVNETA_TX_MTU 0x3e0c 159 #define MVNETA_TX_TOKEN_SIZE 0x3e14 160 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 161 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 162 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 163 164 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 165 166 /* Descriptor ring Macros */ 167 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 168 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 169 170 /* Various constants */ 171 172 /* Coalescing */ 173 #define MVNETA_TXDONE_COAL_PKTS 16 174 #define MVNETA_RX_COAL_PKTS 32 175 #define MVNETA_RX_COAL_USEC 100 176 177 /* Timer */ 178 #define MVNETA_TX_DONE_TIMER_PERIOD 10 179 180 /* Napi polling weight */ 181 #define MVNETA_RX_POLL_WEIGHT 64 182 183 /* The two bytes Marvell header. Either contains a special value used 184 * by Marvell switches when a specific hardware mode is enabled (not 185 * supported by this driver) or is filled automatically by zeroes on 186 * the RX side. Those two bytes being at the front of the Ethernet 187 * header, they allow to have the IP header aligned on a 4 bytes 188 * boundary automatically: the hardware skips those two bytes on its 189 * own. 190 */ 191 #define MVNETA_MH_SIZE 2 192 193 #define MVNETA_VLAN_TAG_LEN 4 194 195 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 196 #define MVNETA_TX_CSUM_MAX_SIZE 9800 197 #define MVNETA_ACC_MODE_EXT 1 198 199 /* Timeout constants */ 200 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 201 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 202 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 203 204 #define MVNETA_TX_MTU_MAX 0x3ffff 205 206 /* Max number of Rx descriptors */ 207 #define MVNETA_MAX_RXD 128 208 209 /* Max number of Tx descriptors */ 210 #define MVNETA_MAX_TXD 532 211 212 /* descriptor aligned size */ 213 #define MVNETA_DESC_ALIGNED_SIZE 32 214 215 #define MVNETA_RX_PKT_SIZE(mtu) \ 216 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 217 ETH_HLEN + ETH_FCS_LEN, \ 218 MVNETA_CPU_D_CACHE_LINE_SIZE) 219 220 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 221 222 struct mvneta_stats { 223 struct u64_stats_sync syncp; 224 u64 packets; 225 u64 bytes; 226 }; 227 228 struct mvneta_port { 229 int pkt_size; 230 void __iomem *base; 231 struct mvneta_rx_queue *rxqs; 232 struct mvneta_tx_queue *txqs; 233 struct timer_list tx_done_timer; 234 struct net_device *dev; 235 236 u32 cause_rx_tx; 237 struct napi_struct napi; 238 239 /* Flags */ 240 unsigned long flags; 241 #define MVNETA_F_TX_DONE_TIMER_BIT 0 242 243 /* Napi weight */ 244 int weight; 245 246 /* Core clock */ 247 struct clk *clk; 248 u8 mcast_count[256]; 249 u16 tx_ring_size; 250 u16 rx_ring_size; 251 struct mvneta_stats tx_stats; 252 struct mvneta_stats rx_stats; 253 254 struct mii_bus *mii_bus; 255 struct phy_device *phy_dev; 256 phy_interface_t phy_interface; 257 struct device_node *phy_node; 258 unsigned int link; 259 unsigned int duplex; 260 unsigned int speed; 261 }; 262 263 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 264 * layout of the transmit and reception DMA descriptors, and their 265 * layout is therefore defined by the hardware design 266 */ 267 struct mvneta_tx_desc { 268 u32 command; /* Options used by HW for packet transmitting.*/ 269 #define MVNETA_TX_L3_OFF_SHIFT 0 270 #define MVNETA_TX_IP_HLEN_SHIFT 8 271 #define MVNETA_TX_L4_UDP BIT(16) 272 #define MVNETA_TX_L3_IP6 BIT(17) 273 #define MVNETA_TXD_IP_CSUM BIT(18) 274 #define MVNETA_TXD_Z_PAD BIT(19) 275 #define MVNETA_TXD_L_DESC BIT(20) 276 #define MVNETA_TXD_F_DESC BIT(21) 277 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 278 MVNETA_TXD_L_DESC | \ 279 MVNETA_TXD_F_DESC) 280 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 281 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 282 283 u16 reserverd1; /* csum_l4 (for future use) */ 284 u16 data_size; /* Data size of transmitted packet in bytes */ 285 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 286 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 287 u32 reserved3[4]; /* Reserved - (for future use) */ 288 }; 289 290 struct mvneta_rx_desc { 291 u32 status; /* Info about received packet */ 292 #define MVNETA_RXD_ERR_CRC 0x0 293 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 294 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 295 #define MVNETA_RXD_ERR_LEN BIT(18) 296 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 297 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 298 #define MVNETA_RXD_L3_IP4 BIT(25) 299 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 300 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 301 302 u16 reserved1; /* pnc_info - (for future use, PnC) */ 303 u16 data_size; /* Size of received packet in bytes */ 304 u32 buf_phys_addr; /* Physical address of the buffer */ 305 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 306 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 307 u16 reserved3; /* prefetch_cmd, for future use */ 308 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 309 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 310 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 311 }; 312 313 struct mvneta_tx_queue { 314 /* Number of this TX queue, in the range 0-7 */ 315 u8 id; 316 317 /* Number of TX DMA descriptors in the descriptor ring */ 318 int size; 319 320 /* Number of currently used TX DMA descriptor in the 321 * descriptor ring 322 */ 323 int count; 324 325 /* Array of transmitted skb */ 326 struct sk_buff **tx_skb; 327 328 /* Index of last TX DMA descriptor that was inserted */ 329 int txq_put_index; 330 331 /* Index of the TX DMA descriptor to be cleaned up */ 332 int txq_get_index; 333 334 u32 done_pkts_coal; 335 336 /* Virtual address of the TX DMA descriptors array */ 337 struct mvneta_tx_desc *descs; 338 339 /* DMA address of the TX DMA descriptors array */ 340 dma_addr_t descs_phys; 341 342 /* Index of the last TX DMA descriptor */ 343 int last_desc; 344 345 /* Index of the next TX DMA descriptor to process */ 346 int next_desc_to_proc; 347 }; 348 349 struct mvneta_rx_queue { 350 /* rx queue number, in the range 0-7 */ 351 u8 id; 352 353 /* num of rx descriptors in the rx descriptor ring */ 354 int size; 355 356 /* counter of times when mvneta_refill() failed */ 357 int missed; 358 359 u32 pkts_coal; 360 u32 time_coal; 361 362 /* Virtual address of the RX DMA descriptors array */ 363 struct mvneta_rx_desc *descs; 364 365 /* DMA address of the RX DMA descriptors array */ 366 dma_addr_t descs_phys; 367 368 /* Index of the last RX DMA descriptor */ 369 int last_desc; 370 371 /* Index of the next RX DMA descriptor to process */ 372 int next_desc_to_proc; 373 }; 374 375 static int rxq_number = 8; 376 static int txq_number = 8; 377 378 static int rxq_def; 379 380 #define MVNETA_DRIVER_NAME "mvneta" 381 #define MVNETA_DRIVER_VERSION "1.0" 382 383 /* Utility/helper methods */ 384 385 /* Write helper method */ 386 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 387 { 388 writel(data, pp->base + offset); 389 } 390 391 /* Read helper method */ 392 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 393 { 394 return readl(pp->base + offset); 395 } 396 397 /* Increment txq get counter */ 398 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 399 { 400 txq->txq_get_index++; 401 if (txq->txq_get_index == txq->size) 402 txq->txq_get_index = 0; 403 } 404 405 /* Increment txq put counter */ 406 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 407 { 408 txq->txq_put_index++; 409 if (txq->txq_put_index == txq->size) 410 txq->txq_put_index = 0; 411 } 412 413 414 /* Clear all MIB counters */ 415 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 416 { 417 int i; 418 u32 dummy; 419 420 /* Perform dummy reads from MIB counters */ 421 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 422 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 423 } 424 425 /* Get System Network Statistics */ 426 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 427 struct rtnl_link_stats64 *stats) 428 { 429 struct mvneta_port *pp = netdev_priv(dev); 430 unsigned int start; 431 432 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 433 434 do { 435 start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp); 436 stats->rx_packets = pp->rx_stats.packets; 437 stats->rx_bytes = pp->rx_stats.bytes; 438 } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start)); 439 440 441 do { 442 start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp); 443 stats->tx_packets = pp->tx_stats.packets; 444 stats->tx_bytes = pp->tx_stats.bytes; 445 } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start)); 446 447 stats->rx_errors = dev->stats.rx_errors; 448 stats->rx_dropped = dev->stats.rx_dropped; 449 450 stats->tx_dropped = dev->stats.tx_dropped; 451 452 return stats; 453 } 454 455 /* Rx descriptors helper methods */ 456 457 /* Checks whether the given RX descriptor is both the first and the 458 * last descriptor for the RX packet. Each RX packet is currently 459 * received through a single RX descriptor, so not having each RX 460 * descriptor with its first and last bits set is an error 461 */ 462 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc) 463 { 464 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) == 465 MVNETA_RXD_FIRST_LAST_DESC; 466 } 467 468 /* Add number of descriptors ready to receive new packets */ 469 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 470 struct mvneta_rx_queue *rxq, 471 int ndescs) 472 { 473 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 474 * be added at once 475 */ 476 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 477 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 478 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 479 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 480 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 481 } 482 483 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 484 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 485 } 486 487 /* Get number of RX descriptors occupied by received packets */ 488 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 489 struct mvneta_rx_queue *rxq) 490 { 491 u32 val; 492 493 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 494 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 495 } 496 497 /* Update num of rx desc called upon return from rx path or 498 * from mvneta_rxq_drop_pkts(). 499 */ 500 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 501 struct mvneta_rx_queue *rxq, 502 int rx_done, int rx_filled) 503 { 504 u32 val; 505 506 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 507 val = rx_done | 508 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 509 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 510 return; 511 } 512 513 /* Only 255 descriptors can be added at once */ 514 while ((rx_done > 0) || (rx_filled > 0)) { 515 if (rx_done <= 0xff) { 516 val = rx_done; 517 rx_done = 0; 518 } else { 519 val = 0xff; 520 rx_done -= 0xff; 521 } 522 if (rx_filled <= 0xff) { 523 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 524 rx_filled = 0; 525 } else { 526 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 527 rx_filled -= 0xff; 528 } 529 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 530 } 531 } 532 533 /* Get pointer to next RX descriptor to be processed by SW */ 534 static struct mvneta_rx_desc * 535 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 536 { 537 int rx_desc = rxq->next_desc_to_proc; 538 539 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 540 return rxq->descs + rx_desc; 541 } 542 543 /* Change maximum receive size of the port. */ 544 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 545 { 546 u32 val; 547 548 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 549 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 550 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 551 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 552 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 553 } 554 555 556 /* Set rx queue offset */ 557 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 558 struct mvneta_rx_queue *rxq, 559 int offset) 560 { 561 u32 val; 562 563 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 564 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 565 566 /* Offset is in */ 567 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 568 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 569 } 570 571 572 /* Tx descriptors helper methods */ 573 574 /* Update HW with number of TX descriptors to be sent */ 575 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 576 struct mvneta_tx_queue *txq, 577 int pend_desc) 578 { 579 u32 val; 580 581 /* Only 255 descriptors can be added at once ; Assume caller 582 * process TX desriptors in quanta less than 256 583 */ 584 val = pend_desc; 585 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 586 } 587 588 /* Get pointer to next TX descriptor to be processed (send) by HW */ 589 static struct mvneta_tx_desc * 590 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 591 { 592 int tx_desc = txq->next_desc_to_proc; 593 594 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 595 return txq->descs + tx_desc; 596 } 597 598 /* Release the last allocated TX descriptor. Useful to handle DMA 599 * mapping failures in the TX path. 600 */ 601 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 602 { 603 if (txq->next_desc_to_proc == 0) 604 txq->next_desc_to_proc = txq->last_desc - 1; 605 else 606 txq->next_desc_to_proc--; 607 } 608 609 /* Set rxq buf size */ 610 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 611 struct mvneta_rx_queue *rxq, 612 int buf_size) 613 { 614 u32 val; 615 616 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 617 618 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 619 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 620 621 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 622 } 623 624 /* Disable buffer management (BM) */ 625 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 626 struct mvneta_rx_queue *rxq) 627 { 628 u32 val; 629 630 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 631 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 632 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 633 } 634 635 636 637 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */ 638 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable) 639 { 640 u32 val; 641 642 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 643 644 if (enable) 645 val |= MVNETA_GMAC2_PORT_RGMII; 646 else 647 val &= ~MVNETA_GMAC2_PORT_RGMII; 648 649 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 650 } 651 652 /* Config SGMII port */ 653 static void mvneta_port_sgmii_config(struct mvneta_port *pp) 654 { 655 u32 val; 656 657 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 658 val |= MVNETA_GMAC2_PSC_ENABLE; 659 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 660 661 mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 662 } 663 664 /* Start the Ethernet port RX and TX activity */ 665 static void mvneta_port_up(struct mvneta_port *pp) 666 { 667 int queue; 668 u32 q_map; 669 670 /* Enable all initialized TXs. */ 671 mvneta_mib_counters_clear(pp); 672 q_map = 0; 673 for (queue = 0; queue < txq_number; queue++) { 674 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 675 if (txq->descs != NULL) 676 q_map |= (1 << queue); 677 } 678 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 679 680 /* Enable all initialized RXQs. */ 681 q_map = 0; 682 for (queue = 0; queue < rxq_number; queue++) { 683 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 684 if (rxq->descs != NULL) 685 q_map |= (1 << queue); 686 } 687 688 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 689 } 690 691 /* Stop the Ethernet port activity */ 692 static void mvneta_port_down(struct mvneta_port *pp) 693 { 694 u32 val; 695 int count; 696 697 /* Stop Rx port activity. Check port Rx activity. */ 698 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 699 700 /* Issue stop command for active channels only */ 701 if (val != 0) 702 mvreg_write(pp, MVNETA_RXQ_CMD, 703 val << MVNETA_RXQ_DISABLE_SHIFT); 704 705 /* Wait for all Rx activity to terminate. */ 706 count = 0; 707 do { 708 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 709 netdev_warn(pp->dev, 710 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 711 val); 712 break; 713 } 714 mdelay(1); 715 716 val = mvreg_read(pp, MVNETA_RXQ_CMD); 717 } while (val & 0xff); 718 719 /* Stop Tx port activity. Check port Tx activity. Issue stop 720 * command for active channels only 721 */ 722 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 723 724 if (val != 0) 725 mvreg_write(pp, MVNETA_TXQ_CMD, 726 (val << MVNETA_TXQ_DISABLE_SHIFT)); 727 728 /* Wait for all Tx activity to terminate. */ 729 count = 0; 730 do { 731 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 732 netdev_warn(pp->dev, 733 "TIMEOUT for TX stopped status=0x%08x\n", 734 val); 735 break; 736 } 737 mdelay(1); 738 739 /* Check TX Command reg that all Txqs are stopped */ 740 val = mvreg_read(pp, MVNETA_TXQ_CMD); 741 742 } while (val & 0xff); 743 744 /* Double check to verify that TX FIFO is empty */ 745 count = 0; 746 do { 747 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 748 netdev_warn(pp->dev, 749 "TX FIFO empty timeout status=0x08%x\n", 750 val); 751 break; 752 } 753 mdelay(1); 754 755 val = mvreg_read(pp, MVNETA_PORT_STATUS); 756 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 757 (val & MVNETA_TX_IN_PRGRS)); 758 759 udelay(200); 760 } 761 762 /* Enable the port by setting the port enable bit of the MAC control register */ 763 static void mvneta_port_enable(struct mvneta_port *pp) 764 { 765 u32 val; 766 767 /* Enable port */ 768 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 769 val |= MVNETA_GMAC0_PORT_ENABLE; 770 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 771 } 772 773 /* Disable the port and wait for about 200 usec before retuning */ 774 static void mvneta_port_disable(struct mvneta_port *pp) 775 { 776 u32 val; 777 778 /* Reset the Enable bit in the Serial Control Register */ 779 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 780 val &= ~MVNETA_GMAC0_PORT_ENABLE; 781 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 782 783 udelay(200); 784 } 785 786 /* Multicast tables methods */ 787 788 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 789 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 790 { 791 int offset; 792 u32 val; 793 794 if (queue == -1) { 795 val = 0; 796 } else { 797 val = 0x1 | (queue << 1); 798 val |= (val << 24) | (val << 16) | (val << 8); 799 } 800 801 for (offset = 0; offset <= 0xc; offset += 4) 802 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 803 } 804 805 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 806 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 807 { 808 int offset; 809 u32 val; 810 811 if (queue == -1) { 812 val = 0; 813 } else { 814 val = 0x1 | (queue << 1); 815 val |= (val << 24) | (val << 16) | (val << 8); 816 } 817 818 for (offset = 0; offset <= 0xfc; offset += 4) 819 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 820 821 } 822 823 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 824 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 825 { 826 int offset; 827 u32 val; 828 829 if (queue == -1) { 830 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 831 val = 0; 832 } else { 833 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 834 val = 0x1 | (queue << 1); 835 val |= (val << 24) | (val << 16) | (val << 8); 836 } 837 838 for (offset = 0; offset <= 0xfc; offset += 4) 839 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 840 } 841 842 /* This method sets defaults to the NETA port: 843 * Clears interrupt Cause and Mask registers. 844 * Clears all MAC tables. 845 * Sets defaults to all registers. 846 * Resets RX and TX descriptor rings. 847 * Resets PHY. 848 * This method can be called after mvneta_port_down() to return the port 849 * settings to defaults. 850 */ 851 static void mvneta_defaults_set(struct mvneta_port *pp) 852 { 853 int cpu; 854 int queue; 855 u32 val; 856 857 /* Clear all Cause registers */ 858 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 859 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 860 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 861 862 /* Mask all interrupts */ 863 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 864 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 865 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 866 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 867 868 /* Enable MBUS Retry bit16 */ 869 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 870 871 /* Set CPU queue access map - all CPUs have access to all RX 872 * queues and to all TX queues 873 */ 874 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 875 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 876 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 877 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 878 879 /* Reset RX and TX DMAs */ 880 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 881 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 882 883 /* Disable Legacy WRR, Disable EJP, Release from reset */ 884 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 885 for (queue = 0; queue < txq_number; queue++) { 886 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 887 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 888 } 889 890 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 891 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 892 893 /* Set Port Acceleration Mode */ 894 val = MVNETA_ACC_MODE_EXT; 895 mvreg_write(pp, MVNETA_ACC_MODE, val); 896 897 /* Update val of portCfg register accordingly with all RxQueue types */ 898 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 899 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 900 901 val = 0; 902 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 903 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 904 905 /* Build PORT_SDMA_CONFIG_REG */ 906 val = 0; 907 908 /* Default burst size */ 909 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 910 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 911 912 val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP | 913 MVNETA_NO_DESC_SWAP); 914 915 /* Assign port SDMA configuration */ 916 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 917 918 mvneta_set_ucast_table(pp, -1); 919 mvneta_set_special_mcast_table(pp, -1); 920 mvneta_set_other_mcast_table(pp, -1); 921 922 /* Set port interrupt enable register - default enable all */ 923 mvreg_write(pp, MVNETA_INTR_ENABLE, 924 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 925 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 926 } 927 928 /* Set max sizes for tx queues */ 929 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 930 931 { 932 u32 val, size, mtu; 933 int queue; 934 935 mtu = max_tx_size * 8; 936 if (mtu > MVNETA_TX_MTU_MAX) 937 mtu = MVNETA_TX_MTU_MAX; 938 939 /* Set MTU */ 940 val = mvreg_read(pp, MVNETA_TX_MTU); 941 val &= ~MVNETA_TX_MTU_MAX; 942 val |= mtu; 943 mvreg_write(pp, MVNETA_TX_MTU, val); 944 945 /* TX token size and all TXQs token size must be larger that MTU */ 946 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 947 948 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 949 if (size < mtu) { 950 size = mtu; 951 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 952 val |= size; 953 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 954 } 955 for (queue = 0; queue < txq_number; queue++) { 956 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 957 958 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 959 if (size < mtu) { 960 size = mtu; 961 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 962 val |= size; 963 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 964 } 965 } 966 } 967 968 /* Set unicast address */ 969 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 970 int queue) 971 { 972 unsigned int unicast_reg; 973 unsigned int tbl_offset; 974 unsigned int reg_offset; 975 976 /* Locate the Unicast table entry */ 977 last_nibble = (0xf & last_nibble); 978 979 /* offset from unicast tbl base */ 980 tbl_offset = (last_nibble / 4) * 4; 981 982 /* offset within the above reg */ 983 reg_offset = last_nibble % 4; 984 985 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 986 987 if (queue == -1) { 988 /* Clear accepts frame bit at specified unicast DA tbl entry */ 989 unicast_reg &= ~(0xff << (8 * reg_offset)); 990 } else { 991 unicast_reg &= ~(0xff << (8 * reg_offset)); 992 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 993 } 994 995 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 996 } 997 998 /* Set mac address */ 999 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1000 int queue) 1001 { 1002 unsigned int mac_h; 1003 unsigned int mac_l; 1004 1005 if (queue != -1) { 1006 mac_l = (addr[4] << 8) | (addr[5]); 1007 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1008 (addr[2] << 8) | (addr[3] << 0); 1009 1010 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1011 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1012 } 1013 1014 /* Accept frames of this address */ 1015 mvneta_set_ucast_addr(pp, addr[5], queue); 1016 } 1017 1018 /* Set the number of packets that will be received before RX interrupt 1019 * will be generated by HW. 1020 */ 1021 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1022 struct mvneta_rx_queue *rxq, u32 value) 1023 { 1024 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1025 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1026 rxq->pkts_coal = value; 1027 } 1028 1029 /* Set the time delay in usec before RX interrupt will be generated by 1030 * HW. 1031 */ 1032 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1033 struct mvneta_rx_queue *rxq, u32 value) 1034 { 1035 u32 val; 1036 unsigned long clk_rate; 1037 1038 clk_rate = clk_get_rate(pp->clk); 1039 val = (clk_rate / 1000000) * value; 1040 1041 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1042 rxq->time_coal = value; 1043 } 1044 1045 /* Set threshold for TX_DONE pkts coalescing */ 1046 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1047 struct mvneta_tx_queue *txq, u32 value) 1048 { 1049 u32 val; 1050 1051 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1052 1053 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1054 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1055 1056 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1057 1058 txq->done_pkts_coal = value; 1059 } 1060 1061 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */ 1062 static void mvneta_add_tx_done_timer(struct mvneta_port *pp) 1063 { 1064 if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) { 1065 pp->tx_done_timer.expires = jiffies + 1066 msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD); 1067 add_timer(&pp->tx_done_timer); 1068 } 1069 } 1070 1071 1072 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1073 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1074 u32 phys_addr, u32 cookie) 1075 { 1076 rx_desc->buf_cookie = cookie; 1077 rx_desc->buf_phys_addr = phys_addr; 1078 } 1079 1080 /* Decrement sent descriptors counter */ 1081 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1082 struct mvneta_tx_queue *txq, 1083 int sent_desc) 1084 { 1085 u32 val; 1086 1087 /* Only 255 TX descriptors can be updated at once */ 1088 while (sent_desc > 0xff) { 1089 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1090 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1091 sent_desc = sent_desc - 0xff; 1092 } 1093 1094 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1095 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1096 } 1097 1098 /* Get number of TX descriptors already sent by HW */ 1099 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1100 struct mvneta_tx_queue *txq) 1101 { 1102 u32 val; 1103 int sent_desc; 1104 1105 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1106 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1107 MVNETA_TXQ_SENT_DESC_SHIFT; 1108 1109 return sent_desc; 1110 } 1111 1112 /* Get number of sent descriptors and decrement counter. 1113 * The number of sent descriptors is returned. 1114 */ 1115 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1116 struct mvneta_tx_queue *txq) 1117 { 1118 int sent_desc; 1119 1120 /* Get number of sent descriptors */ 1121 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1122 1123 /* Decrement sent descriptors counter */ 1124 if (sent_desc) 1125 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1126 1127 return sent_desc; 1128 } 1129 1130 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1131 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1132 int ip_hdr_len, int l4_proto) 1133 { 1134 u32 command; 1135 1136 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1137 * G_L4_chk, L4_type; required only for checksum 1138 * calculation 1139 */ 1140 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1141 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1142 1143 if (l3_proto == swab16(ETH_P_IP)) 1144 command |= MVNETA_TXD_IP_CSUM; 1145 else 1146 command |= MVNETA_TX_L3_IP6; 1147 1148 if (l4_proto == IPPROTO_TCP) 1149 command |= MVNETA_TX_L4_CSUM_FULL; 1150 else if (l4_proto == IPPROTO_UDP) 1151 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1152 else 1153 command |= MVNETA_TX_L4_CSUM_NOT; 1154 1155 return command; 1156 } 1157 1158 1159 /* Display more error info */ 1160 static void mvneta_rx_error(struct mvneta_port *pp, 1161 struct mvneta_rx_desc *rx_desc) 1162 { 1163 u32 status = rx_desc->status; 1164 1165 if (!mvneta_rxq_desc_is_first_last(rx_desc)) { 1166 netdev_err(pp->dev, 1167 "bad rx status %08x (buffer oversize), size=%d\n", 1168 rx_desc->status, rx_desc->data_size); 1169 return; 1170 } 1171 1172 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1173 case MVNETA_RXD_ERR_CRC: 1174 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1175 status, rx_desc->data_size); 1176 break; 1177 case MVNETA_RXD_ERR_OVERRUN: 1178 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1179 status, rx_desc->data_size); 1180 break; 1181 case MVNETA_RXD_ERR_LEN: 1182 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1183 status, rx_desc->data_size); 1184 break; 1185 case MVNETA_RXD_ERR_RESOURCE: 1186 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1187 status, rx_desc->data_size); 1188 break; 1189 } 1190 } 1191 1192 /* Handle RX checksum offload */ 1193 static void mvneta_rx_csum(struct mvneta_port *pp, 1194 struct mvneta_rx_desc *rx_desc, 1195 struct sk_buff *skb) 1196 { 1197 if ((rx_desc->status & MVNETA_RXD_L3_IP4) && 1198 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) { 1199 skb->csum = 0; 1200 skb->ip_summed = CHECKSUM_UNNECESSARY; 1201 return; 1202 } 1203 1204 skb->ip_summed = CHECKSUM_NONE; 1205 } 1206 1207 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */ 1208 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1209 u32 cause) 1210 { 1211 int queue = fls(cause) - 1; 1212 1213 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue]; 1214 } 1215 1216 /* Free tx queue skbuffs */ 1217 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1218 struct mvneta_tx_queue *txq, int num) 1219 { 1220 int i; 1221 1222 for (i = 0; i < num; i++) { 1223 struct mvneta_tx_desc *tx_desc = txq->descs + 1224 txq->txq_get_index; 1225 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1226 1227 mvneta_txq_inc_get(txq); 1228 1229 if (!skb) 1230 continue; 1231 1232 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, 1233 tx_desc->data_size, DMA_TO_DEVICE); 1234 dev_kfree_skb_any(skb); 1235 } 1236 } 1237 1238 /* Handle end of transmission */ 1239 static int mvneta_txq_done(struct mvneta_port *pp, 1240 struct mvneta_tx_queue *txq) 1241 { 1242 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1243 int tx_done; 1244 1245 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1246 if (tx_done == 0) 1247 return tx_done; 1248 mvneta_txq_bufs_free(pp, txq, tx_done); 1249 1250 txq->count -= tx_done; 1251 1252 if (netif_tx_queue_stopped(nq)) { 1253 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1) 1254 netif_tx_wake_queue(nq); 1255 } 1256 1257 return tx_done; 1258 } 1259 1260 /* Refill processing */ 1261 static int mvneta_rx_refill(struct mvneta_port *pp, 1262 struct mvneta_rx_desc *rx_desc) 1263 1264 { 1265 dma_addr_t phys_addr; 1266 struct sk_buff *skb; 1267 1268 skb = netdev_alloc_skb(pp->dev, pp->pkt_size); 1269 if (!skb) 1270 return -ENOMEM; 1271 1272 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head, 1273 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1274 DMA_FROM_DEVICE); 1275 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1276 dev_kfree_skb(skb); 1277 return -ENOMEM; 1278 } 1279 1280 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1281 1282 return 0; 1283 } 1284 1285 /* Handle tx checksum */ 1286 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1287 { 1288 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1289 int ip_hdr_len = 0; 1290 u8 l4_proto; 1291 1292 if (skb->protocol == htons(ETH_P_IP)) { 1293 struct iphdr *ip4h = ip_hdr(skb); 1294 1295 /* Calculate IPv4 checksum and L4 checksum */ 1296 ip_hdr_len = ip4h->ihl; 1297 l4_proto = ip4h->protocol; 1298 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1299 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1300 1301 /* Read l4_protocol from one of IPv6 extra headers */ 1302 if (skb_network_header_len(skb) > 0) 1303 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1304 l4_proto = ip6h->nexthdr; 1305 } else 1306 return MVNETA_TX_L4_CSUM_NOT; 1307 1308 return mvneta_txq_desc_csum(skb_network_offset(skb), 1309 skb->protocol, ip_hdr_len, l4_proto); 1310 } 1311 1312 return MVNETA_TX_L4_CSUM_NOT; 1313 } 1314 1315 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1316 * value 1317 */ 1318 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1319 u32 cause) 1320 { 1321 int queue = fls(cause >> 8) - 1; 1322 1323 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1324 } 1325 1326 /* Drop packets received by the RXQ and free buffers */ 1327 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1328 struct mvneta_rx_queue *rxq) 1329 { 1330 int rx_done, i; 1331 1332 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1333 for (i = 0; i < rxq->size; i++) { 1334 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1335 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie; 1336 1337 dev_kfree_skb_any(skb); 1338 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1339 rx_desc->data_size, DMA_FROM_DEVICE); 1340 } 1341 1342 if (rx_done) 1343 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1344 } 1345 1346 /* Main rx processing */ 1347 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1348 struct mvneta_rx_queue *rxq) 1349 { 1350 struct net_device *dev = pp->dev; 1351 int rx_done, rx_filled; 1352 1353 /* Get number of received packets */ 1354 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1355 1356 if (rx_todo > rx_done) 1357 rx_todo = rx_done; 1358 1359 rx_done = 0; 1360 rx_filled = 0; 1361 1362 /* Fairness NAPI loop */ 1363 while (rx_done < rx_todo) { 1364 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1365 struct sk_buff *skb; 1366 u32 rx_status; 1367 int rx_bytes, err; 1368 1369 prefetch(rx_desc); 1370 rx_done++; 1371 rx_filled++; 1372 rx_status = rx_desc->status; 1373 skb = (struct sk_buff *)rx_desc->buf_cookie; 1374 1375 if (!mvneta_rxq_desc_is_first_last(rx_desc) || 1376 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1377 dev->stats.rx_errors++; 1378 mvneta_rx_error(pp, rx_desc); 1379 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr, 1380 (u32)skb); 1381 continue; 1382 } 1383 1384 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1385 rx_desc->data_size, DMA_FROM_DEVICE); 1386 1387 rx_bytes = rx_desc->data_size - 1388 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1389 u64_stats_update_begin(&pp->rx_stats.syncp); 1390 pp->rx_stats.packets++; 1391 pp->rx_stats.bytes += rx_bytes; 1392 u64_stats_update_end(&pp->rx_stats.syncp); 1393 1394 /* Linux processing */ 1395 skb_reserve(skb, MVNETA_MH_SIZE); 1396 skb_put(skb, rx_bytes); 1397 1398 skb->protocol = eth_type_trans(skb, dev); 1399 1400 mvneta_rx_csum(pp, rx_desc, skb); 1401 1402 napi_gro_receive(&pp->napi, skb); 1403 1404 /* Refill processing */ 1405 err = mvneta_rx_refill(pp, rx_desc); 1406 if (err) { 1407 netdev_err(pp->dev, "Linux processing - Can't refill\n"); 1408 rxq->missed++; 1409 rx_filled--; 1410 } 1411 } 1412 1413 /* Update rxq management counters */ 1414 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1415 1416 return rx_done; 1417 } 1418 1419 /* Handle tx fragmentation processing */ 1420 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1421 struct mvneta_tx_queue *txq) 1422 { 1423 struct mvneta_tx_desc *tx_desc; 1424 int i; 1425 1426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1428 void *addr = page_address(frag->page.p) + frag->page_offset; 1429 1430 tx_desc = mvneta_txq_next_desc_get(txq); 1431 tx_desc->data_size = frag->size; 1432 1433 tx_desc->buf_phys_addr = 1434 dma_map_single(pp->dev->dev.parent, addr, 1435 tx_desc->data_size, DMA_TO_DEVICE); 1436 1437 if (dma_mapping_error(pp->dev->dev.parent, 1438 tx_desc->buf_phys_addr)) { 1439 mvneta_txq_desc_put(txq); 1440 goto error; 1441 } 1442 1443 if (i == (skb_shinfo(skb)->nr_frags - 1)) { 1444 /* Last descriptor */ 1445 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1446 1447 txq->tx_skb[txq->txq_put_index] = skb; 1448 1449 mvneta_txq_inc_put(txq); 1450 } else { 1451 /* Descriptor in the middle: Not First, Not Last */ 1452 tx_desc->command = 0; 1453 1454 txq->tx_skb[txq->txq_put_index] = NULL; 1455 mvneta_txq_inc_put(txq); 1456 } 1457 } 1458 1459 return 0; 1460 1461 error: 1462 /* Release all descriptors that were used to map fragments of 1463 * this packet, as well as the corresponding DMA mappings 1464 */ 1465 for (i = i - 1; i >= 0; i--) { 1466 tx_desc = txq->descs + i; 1467 dma_unmap_single(pp->dev->dev.parent, 1468 tx_desc->buf_phys_addr, 1469 tx_desc->data_size, 1470 DMA_TO_DEVICE); 1471 mvneta_txq_desc_put(txq); 1472 } 1473 1474 return -ENOMEM; 1475 } 1476 1477 /* Main tx processing */ 1478 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1479 { 1480 struct mvneta_port *pp = netdev_priv(dev); 1481 u16 txq_id = skb_get_queue_mapping(skb); 1482 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1483 struct mvneta_tx_desc *tx_desc; 1484 struct netdev_queue *nq; 1485 int frags = 0; 1486 u32 tx_cmd; 1487 1488 if (!netif_running(dev)) 1489 goto out; 1490 1491 frags = skb_shinfo(skb)->nr_frags + 1; 1492 nq = netdev_get_tx_queue(dev, txq_id); 1493 1494 /* Get a descriptor for the first part of the packet */ 1495 tx_desc = mvneta_txq_next_desc_get(txq); 1496 1497 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1498 1499 tx_desc->data_size = skb_headlen(skb); 1500 1501 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1502 tx_desc->data_size, 1503 DMA_TO_DEVICE); 1504 if (unlikely(dma_mapping_error(dev->dev.parent, 1505 tx_desc->buf_phys_addr))) { 1506 mvneta_txq_desc_put(txq); 1507 frags = 0; 1508 goto out; 1509 } 1510 1511 if (frags == 1) { 1512 /* First and Last descriptor */ 1513 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1514 tx_desc->command = tx_cmd; 1515 txq->tx_skb[txq->txq_put_index] = skb; 1516 mvneta_txq_inc_put(txq); 1517 } else { 1518 /* First but not Last */ 1519 tx_cmd |= MVNETA_TXD_F_DESC; 1520 txq->tx_skb[txq->txq_put_index] = NULL; 1521 mvneta_txq_inc_put(txq); 1522 tx_desc->command = tx_cmd; 1523 /* Continue with other skb fragments */ 1524 if (mvneta_tx_frag_process(pp, skb, txq)) { 1525 dma_unmap_single(dev->dev.parent, 1526 tx_desc->buf_phys_addr, 1527 tx_desc->data_size, 1528 DMA_TO_DEVICE); 1529 mvneta_txq_desc_put(txq); 1530 frags = 0; 1531 goto out; 1532 } 1533 } 1534 1535 txq->count += frags; 1536 mvneta_txq_pend_desc_add(pp, txq, frags); 1537 1538 if (txq->size - txq->count < MAX_SKB_FRAGS + 1) 1539 netif_tx_stop_queue(nq); 1540 1541 out: 1542 if (frags > 0) { 1543 u64_stats_update_begin(&pp->tx_stats.syncp); 1544 pp->tx_stats.packets++; 1545 pp->tx_stats.bytes += skb->len; 1546 u64_stats_update_end(&pp->tx_stats.syncp); 1547 1548 } else { 1549 dev->stats.tx_dropped++; 1550 dev_kfree_skb_any(skb); 1551 } 1552 1553 if (txq->count >= MVNETA_TXDONE_COAL_PKTS) 1554 mvneta_txq_done(pp, txq); 1555 1556 /* If after calling mvneta_txq_done, count equals 1557 * frags, we need to set the timer 1558 */ 1559 if (txq->count == frags && frags > 0) 1560 mvneta_add_tx_done_timer(pp); 1561 1562 return NETDEV_TX_OK; 1563 } 1564 1565 1566 /* Free tx resources, when resetting a port */ 1567 static void mvneta_txq_done_force(struct mvneta_port *pp, 1568 struct mvneta_tx_queue *txq) 1569 1570 { 1571 int tx_done = txq->count; 1572 1573 mvneta_txq_bufs_free(pp, txq, tx_done); 1574 1575 /* reset txq */ 1576 txq->count = 0; 1577 txq->txq_put_index = 0; 1578 txq->txq_get_index = 0; 1579 } 1580 1581 /* handle tx done - called from tx done timer callback */ 1582 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done, 1583 int *tx_todo) 1584 { 1585 struct mvneta_tx_queue *txq; 1586 u32 tx_done = 0; 1587 struct netdev_queue *nq; 1588 1589 *tx_todo = 0; 1590 while (cause_tx_done != 0) { 1591 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1592 if (!txq) 1593 break; 1594 1595 nq = netdev_get_tx_queue(pp->dev, txq->id); 1596 __netif_tx_lock(nq, smp_processor_id()); 1597 1598 if (txq->count) { 1599 tx_done += mvneta_txq_done(pp, txq); 1600 *tx_todo += txq->count; 1601 } 1602 1603 __netif_tx_unlock(nq); 1604 cause_tx_done &= ~((1 << txq->id)); 1605 } 1606 1607 return tx_done; 1608 } 1609 1610 /* Compute crc8 of the specified address, using a unique algorithm , 1611 * according to hw spec, different than generic crc8 algorithm 1612 */ 1613 static int mvneta_addr_crc(unsigned char *addr) 1614 { 1615 int crc = 0; 1616 int i; 1617 1618 for (i = 0; i < ETH_ALEN; i++) { 1619 int j; 1620 1621 crc = (crc ^ addr[i]) << 8; 1622 for (j = 7; j >= 0; j--) { 1623 if (crc & (0x100 << j)) 1624 crc ^= 0x107 << j; 1625 } 1626 } 1627 1628 return crc; 1629 } 1630 1631 /* This method controls the net device special MAC multicast support. 1632 * The Special Multicast Table for MAC addresses supports MAC of the form 1633 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1634 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1635 * Table entries in the DA-Filter table. This method set the Special 1636 * Multicast Table appropriate entry. 1637 */ 1638 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1639 unsigned char last_byte, 1640 int queue) 1641 { 1642 unsigned int smc_table_reg; 1643 unsigned int tbl_offset; 1644 unsigned int reg_offset; 1645 1646 /* Register offset from SMC table base */ 1647 tbl_offset = (last_byte / 4); 1648 /* Entry offset within the above reg */ 1649 reg_offset = last_byte % 4; 1650 1651 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1652 + tbl_offset * 4)); 1653 1654 if (queue == -1) 1655 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1656 else { 1657 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1658 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1659 } 1660 1661 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1662 smc_table_reg); 1663 } 1664 1665 /* This method controls the network device Other MAC multicast support. 1666 * The Other Multicast Table is used for multicast of another type. 1667 * A CRC-8 is used as an index to the Other Multicast Table entries 1668 * in the DA-Filter table. 1669 * The method gets the CRC-8 value from the calling routine and 1670 * sets the Other Multicast Table appropriate entry according to the 1671 * specified CRC-8 . 1672 */ 1673 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1674 unsigned char crc8, 1675 int queue) 1676 { 1677 unsigned int omc_table_reg; 1678 unsigned int tbl_offset; 1679 unsigned int reg_offset; 1680 1681 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1682 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1683 1684 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1685 1686 if (queue == -1) { 1687 /* Clear accepts frame bit at specified Other DA table entry */ 1688 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1689 } else { 1690 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1691 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1692 } 1693 1694 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1695 } 1696 1697 /* The network device supports multicast using two tables: 1698 * 1) Special Multicast Table for MAC addresses of the form 1699 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1700 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1701 * Table entries in the DA-Filter table. 1702 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1703 * is used as an index to the Other Multicast Table entries in the 1704 * DA-Filter table. 1705 */ 1706 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1707 int queue) 1708 { 1709 unsigned char crc_result = 0; 1710 1711 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1712 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1713 return 0; 1714 } 1715 1716 crc_result = mvneta_addr_crc(p_addr); 1717 if (queue == -1) { 1718 if (pp->mcast_count[crc_result] == 0) { 1719 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1720 crc_result); 1721 return -EINVAL; 1722 } 1723 1724 pp->mcast_count[crc_result]--; 1725 if (pp->mcast_count[crc_result] != 0) { 1726 netdev_info(pp->dev, 1727 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1728 pp->mcast_count[crc_result], crc_result); 1729 return -EINVAL; 1730 } 1731 } else 1732 pp->mcast_count[crc_result]++; 1733 1734 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1735 1736 return 0; 1737 } 1738 1739 /* Configure Fitering mode of Ethernet port */ 1740 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1741 int is_promisc) 1742 { 1743 u32 port_cfg_reg, val; 1744 1745 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1746 1747 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1748 1749 /* Set / Clear UPM bit in port configuration register */ 1750 if (is_promisc) { 1751 /* Accept all Unicast addresses */ 1752 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 1753 val |= MVNETA_FORCE_UNI; 1754 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 1755 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 1756 } else { 1757 /* Reject all Unicast addresses */ 1758 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 1759 val &= ~MVNETA_FORCE_UNI; 1760 } 1761 1762 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 1763 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 1764 } 1765 1766 /* register unicast and multicast addresses */ 1767 static void mvneta_set_rx_mode(struct net_device *dev) 1768 { 1769 struct mvneta_port *pp = netdev_priv(dev); 1770 struct netdev_hw_addr *ha; 1771 1772 if (dev->flags & IFF_PROMISC) { 1773 /* Accept all: Multicast + Unicast */ 1774 mvneta_rx_unicast_promisc_set(pp, 1); 1775 mvneta_set_ucast_table(pp, rxq_def); 1776 mvneta_set_special_mcast_table(pp, rxq_def); 1777 mvneta_set_other_mcast_table(pp, rxq_def); 1778 } else { 1779 /* Accept single Unicast */ 1780 mvneta_rx_unicast_promisc_set(pp, 0); 1781 mvneta_set_ucast_table(pp, -1); 1782 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 1783 1784 if (dev->flags & IFF_ALLMULTI) { 1785 /* Accept all multicast */ 1786 mvneta_set_special_mcast_table(pp, rxq_def); 1787 mvneta_set_other_mcast_table(pp, rxq_def); 1788 } else { 1789 /* Accept only initialized multicast */ 1790 mvneta_set_special_mcast_table(pp, -1); 1791 mvneta_set_other_mcast_table(pp, -1); 1792 1793 if (!netdev_mc_empty(dev)) { 1794 netdev_for_each_mc_addr(ha, dev) { 1795 mvneta_mcast_addr_set(pp, ha->addr, 1796 rxq_def); 1797 } 1798 } 1799 } 1800 } 1801 } 1802 1803 /* Interrupt handling - the callback for request_irq() */ 1804 static irqreturn_t mvneta_isr(int irq, void *dev_id) 1805 { 1806 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 1807 1808 /* Mask all interrupts */ 1809 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1810 1811 napi_schedule(&pp->napi); 1812 1813 return IRQ_HANDLED; 1814 } 1815 1816 /* NAPI handler 1817 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 1818 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 1819 * Bits 8 -15 of the cause Rx Tx register indicate that are received 1820 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 1821 * Each CPU has its own causeRxTx register 1822 */ 1823 static int mvneta_poll(struct napi_struct *napi, int budget) 1824 { 1825 int rx_done = 0; 1826 u32 cause_rx_tx; 1827 unsigned long flags; 1828 struct mvneta_port *pp = netdev_priv(napi->dev); 1829 1830 if (!netif_running(pp->dev)) { 1831 napi_complete(napi); 1832 return rx_done; 1833 } 1834 1835 /* Read cause register */ 1836 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) & 1837 MVNETA_RX_INTR_MASK(rxq_number); 1838 1839 /* For the case where the last mvneta_poll did not process all 1840 * RX packets 1841 */ 1842 cause_rx_tx |= pp->cause_rx_tx; 1843 if (rxq_number > 1) { 1844 while ((cause_rx_tx != 0) && (budget > 0)) { 1845 int count; 1846 struct mvneta_rx_queue *rxq; 1847 /* get rx queue number from cause_rx_tx */ 1848 rxq = mvneta_rx_policy(pp, cause_rx_tx); 1849 if (!rxq) 1850 break; 1851 1852 /* process the packet in that rx queue */ 1853 count = mvneta_rx(pp, budget, rxq); 1854 rx_done += count; 1855 budget -= count; 1856 if (budget > 0) { 1857 /* set off the rx bit of the 1858 * corresponding bit in the cause rx 1859 * tx register, so that next iteration 1860 * will find the next rx queue where 1861 * packets are received on 1862 */ 1863 cause_rx_tx &= ~((1 << rxq->id) << 8); 1864 } 1865 } 1866 } else { 1867 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 1868 budget -= rx_done; 1869 } 1870 1871 if (budget > 0) { 1872 cause_rx_tx = 0; 1873 napi_complete(napi); 1874 local_irq_save(flags); 1875 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1876 MVNETA_RX_INTR_MASK(rxq_number)); 1877 local_irq_restore(flags); 1878 } 1879 1880 pp->cause_rx_tx = cause_rx_tx; 1881 return rx_done; 1882 } 1883 1884 /* tx done timer callback */ 1885 static void mvneta_tx_done_timer_callback(unsigned long data) 1886 { 1887 struct net_device *dev = (struct net_device *)data; 1888 struct mvneta_port *pp = netdev_priv(dev); 1889 int tx_done = 0, tx_todo = 0; 1890 1891 if (!netif_running(dev)) 1892 return ; 1893 1894 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 1895 1896 tx_done = mvneta_tx_done_gbe(pp, 1897 (((1 << txq_number) - 1) & 1898 MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK), 1899 &tx_todo); 1900 if (tx_todo > 0) 1901 mvneta_add_tx_done_timer(pp); 1902 } 1903 1904 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 1905 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 1906 int num) 1907 { 1908 struct net_device *dev = pp->dev; 1909 int i; 1910 1911 for (i = 0; i < num; i++) { 1912 struct sk_buff *skb; 1913 struct mvneta_rx_desc *rx_desc; 1914 unsigned long phys_addr; 1915 1916 skb = dev_alloc_skb(pp->pkt_size); 1917 if (!skb) { 1918 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n", 1919 __func__, rxq->id, i, num); 1920 break; 1921 } 1922 1923 rx_desc = rxq->descs + i; 1924 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc)); 1925 phys_addr = dma_map_single(dev->dev.parent, skb->head, 1926 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1927 DMA_FROM_DEVICE); 1928 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) { 1929 dev_kfree_skb(skb); 1930 break; 1931 } 1932 1933 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1934 } 1935 1936 /* Add this number of RX descriptors as non occupied (ready to 1937 * get packets) 1938 */ 1939 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 1940 1941 return i; 1942 } 1943 1944 /* Free all packets pending transmit from all TXQs and reset TX port */ 1945 static void mvneta_tx_reset(struct mvneta_port *pp) 1946 { 1947 int queue; 1948 1949 /* free the skb's in the hal tx ring */ 1950 for (queue = 0; queue < txq_number; queue++) 1951 mvneta_txq_done_force(pp, &pp->txqs[queue]); 1952 1953 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1954 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1955 } 1956 1957 static void mvneta_rx_reset(struct mvneta_port *pp) 1958 { 1959 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1960 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1961 } 1962 1963 /* Rx/Tx queue initialization/cleanup methods */ 1964 1965 /* Create a specified RX queue */ 1966 static int mvneta_rxq_init(struct mvneta_port *pp, 1967 struct mvneta_rx_queue *rxq) 1968 1969 { 1970 rxq->size = pp->rx_ring_size; 1971 1972 /* Allocate memory for RX descriptors */ 1973 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 1974 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 1975 &rxq->descs_phys, GFP_KERNEL); 1976 if (rxq->descs == NULL) 1977 return -ENOMEM; 1978 1979 BUG_ON(rxq->descs != 1980 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 1981 1982 rxq->last_desc = rxq->size - 1; 1983 1984 /* Set Rx descriptors queue starting address */ 1985 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 1986 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 1987 1988 /* Set Offset */ 1989 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 1990 1991 /* Set coalescing pkts and time */ 1992 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 1993 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 1994 1995 /* Fill RXQ with buffers from RX pool */ 1996 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 1997 mvneta_rxq_bm_disable(pp, rxq); 1998 mvneta_rxq_fill(pp, rxq, rxq->size); 1999 2000 return 0; 2001 } 2002 2003 /* Cleanup Rx queue */ 2004 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2005 struct mvneta_rx_queue *rxq) 2006 { 2007 mvneta_rxq_drop_pkts(pp, rxq); 2008 2009 if (rxq->descs) 2010 dma_free_coherent(pp->dev->dev.parent, 2011 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2012 rxq->descs, 2013 rxq->descs_phys); 2014 2015 rxq->descs = NULL; 2016 rxq->last_desc = 0; 2017 rxq->next_desc_to_proc = 0; 2018 rxq->descs_phys = 0; 2019 } 2020 2021 /* Create and initialize a tx queue */ 2022 static int mvneta_txq_init(struct mvneta_port *pp, 2023 struct mvneta_tx_queue *txq) 2024 { 2025 txq->size = pp->tx_ring_size; 2026 2027 /* Allocate memory for TX descriptors */ 2028 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2029 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2030 &txq->descs_phys, GFP_KERNEL); 2031 if (txq->descs == NULL) 2032 return -ENOMEM; 2033 2034 /* Make sure descriptor address is cache line size aligned */ 2035 BUG_ON(txq->descs != 2036 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2037 2038 txq->last_desc = txq->size - 1; 2039 2040 /* Set maximum bandwidth for enabled TXQs */ 2041 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2042 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2043 2044 /* Set Tx descriptors queue starting address */ 2045 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2046 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2047 2048 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2049 if (txq->tx_skb == NULL) { 2050 dma_free_coherent(pp->dev->dev.parent, 2051 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2052 txq->descs, txq->descs_phys); 2053 return -ENOMEM; 2054 } 2055 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2056 2057 return 0; 2058 } 2059 2060 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2061 static void mvneta_txq_deinit(struct mvneta_port *pp, 2062 struct mvneta_tx_queue *txq) 2063 { 2064 kfree(txq->tx_skb); 2065 2066 if (txq->descs) 2067 dma_free_coherent(pp->dev->dev.parent, 2068 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2069 txq->descs, txq->descs_phys); 2070 2071 txq->descs = NULL; 2072 txq->last_desc = 0; 2073 txq->next_desc_to_proc = 0; 2074 txq->descs_phys = 0; 2075 2076 /* Set minimum bandwidth for disabled TXQs */ 2077 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2078 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2079 2080 /* Set Tx descriptors queue starting address and size */ 2081 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2082 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2083 } 2084 2085 /* Cleanup all Tx queues */ 2086 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2087 { 2088 int queue; 2089 2090 for (queue = 0; queue < txq_number; queue++) 2091 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2092 } 2093 2094 /* Cleanup all Rx queues */ 2095 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2096 { 2097 int queue; 2098 2099 for (queue = 0; queue < rxq_number; queue++) 2100 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2101 } 2102 2103 2104 /* Init all Rx queues */ 2105 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2106 { 2107 int queue; 2108 2109 for (queue = 0; queue < rxq_number; queue++) { 2110 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2111 if (err) { 2112 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2113 __func__, queue); 2114 mvneta_cleanup_rxqs(pp); 2115 return err; 2116 } 2117 } 2118 2119 return 0; 2120 } 2121 2122 /* Init all tx queues */ 2123 static int mvneta_setup_txqs(struct mvneta_port *pp) 2124 { 2125 int queue; 2126 2127 for (queue = 0; queue < txq_number; queue++) { 2128 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2129 if (err) { 2130 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2131 __func__, queue); 2132 mvneta_cleanup_txqs(pp); 2133 return err; 2134 } 2135 } 2136 2137 return 0; 2138 } 2139 2140 static void mvneta_start_dev(struct mvneta_port *pp) 2141 { 2142 mvneta_max_rx_size_set(pp, pp->pkt_size); 2143 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2144 2145 /* start the Rx/Tx activity */ 2146 mvneta_port_enable(pp); 2147 2148 /* Enable polling on the port */ 2149 napi_enable(&pp->napi); 2150 2151 /* Unmask interrupts */ 2152 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2153 MVNETA_RX_INTR_MASK(rxq_number)); 2154 2155 phy_start(pp->phy_dev); 2156 netif_tx_start_all_queues(pp->dev); 2157 } 2158 2159 static void mvneta_stop_dev(struct mvneta_port *pp) 2160 { 2161 phy_stop(pp->phy_dev); 2162 2163 napi_disable(&pp->napi); 2164 2165 netif_carrier_off(pp->dev); 2166 2167 mvneta_port_down(pp); 2168 netif_tx_stop_all_queues(pp->dev); 2169 2170 /* Stop the port activity */ 2171 mvneta_port_disable(pp); 2172 2173 /* Clear all ethernet port interrupts */ 2174 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2175 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2176 2177 /* Mask all ethernet port interrupts */ 2178 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2179 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2180 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2181 2182 mvneta_tx_reset(pp); 2183 mvneta_rx_reset(pp); 2184 } 2185 2186 /* tx timeout callback - display a message and stop/start the network device */ 2187 static void mvneta_tx_timeout(struct net_device *dev) 2188 { 2189 struct mvneta_port *pp = netdev_priv(dev); 2190 2191 netdev_info(dev, "tx timeout\n"); 2192 mvneta_stop_dev(pp); 2193 mvneta_start_dev(pp); 2194 } 2195 2196 /* Return positive if MTU is valid */ 2197 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2198 { 2199 if (mtu < 68) { 2200 netdev_err(dev, "cannot change mtu to less than 68\n"); 2201 return -EINVAL; 2202 } 2203 2204 /* 9676 == 9700 - 20 and rounding to 8 */ 2205 if (mtu > 9676) { 2206 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2207 mtu = 9676; 2208 } 2209 2210 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2211 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2212 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2213 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2214 } 2215 2216 return mtu; 2217 } 2218 2219 /* Change the device mtu */ 2220 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2221 { 2222 struct mvneta_port *pp = netdev_priv(dev); 2223 int ret; 2224 2225 mtu = mvneta_check_mtu_valid(dev, mtu); 2226 if (mtu < 0) 2227 return -EINVAL; 2228 2229 dev->mtu = mtu; 2230 2231 if (!netif_running(dev)) 2232 return 0; 2233 2234 /* The interface is running, so we have to force a 2235 * reallocation of the RXQs 2236 */ 2237 mvneta_stop_dev(pp); 2238 2239 mvneta_cleanup_txqs(pp); 2240 mvneta_cleanup_rxqs(pp); 2241 2242 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2243 2244 ret = mvneta_setup_rxqs(pp); 2245 if (ret) { 2246 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n"); 2247 return ret; 2248 } 2249 2250 mvneta_setup_txqs(pp); 2251 2252 mvneta_start_dev(pp); 2253 mvneta_port_up(pp); 2254 2255 return 0; 2256 } 2257 2258 /* Get mac address */ 2259 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2260 { 2261 u32 mac_addr_l, mac_addr_h; 2262 2263 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2264 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2265 addr[0] = (mac_addr_h >> 24) & 0xFF; 2266 addr[1] = (mac_addr_h >> 16) & 0xFF; 2267 addr[2] = (mac_addr_h >> 8) & 0xFF; 2268 addr[3] = mac_addr_h & 0xFF; 2269 addr[4] = (mac_addr_l >> 8) & 0xFF; 2270 addr[5] = mac_addr_l & 0xFF; 2271 } 2272 2273 /* Handle setting mac address */ 2274 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2275 { 2276 struct mvneta_port *pp = netdev_priv(dev); 2277 u8 *mac = addr + 2; 2278 int i; 2279 2280 if (netif_running(dev)) 2281 return -EBUSY; 2282 2283 /* Remove previous address table entry */ 2284 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2285 2286 /* Set new addr in hw */ 2287 mvneta_mac_addr_set(pp, mac, rxq_def); 2288 2289 /* Set addr in the device */ 2290 for (i = 0; i < ETH_ALEN; i++) 2291 dev->dev_addr[i] = mac[i]; 2292 2293 return 0; 2294 } 2295 2296 static void mvneta_adjust_link(struct net_device *ndev) 2297 { 2298 struct mvneta_port *pp = netdev_priv(ndev); 2299 struct phy_device *phydev = pp->phy_dev; 2300 int status_change = 0; 2301 2302 if (phydev->link) { 2303 if ((pp->speed != phydev->speed) || 2304 (pp->duplex != phydev->duplex)) { 2305 u32 val; 2306 2307 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2308 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2309 MVNETA_GMAC_CONFIG_GMII_SPEED | 2310 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2311 2312 if (phydev->duplex) 2313 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2314 2315 if (phydev->speed == SPEED_1000) 2316 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2317 else 2318 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2319 2320 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2321 2322 pp->duplex = phydev->duplex; 2323 pp->speed = phydev->speed; 2324 } 2325 } 2326 2327 if (phydev->link != pp->link) { 2328 if (!phydev->link) { 2329 pp->duplex = -1; 2330 pp->speed = 0; 2331 } 2332 2333 pp->link = phydev->link; 2334 status_change = 1; 2335 } 2336 2337 if (status_change) { 2338 if (phydev->link) { 2339 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2340 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 2341 MVNETA_GMAC_FORCE_LINK_DOWN); 2342 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2343 mvneta_port_up(pp); 2344 netdev_info(pp->dev, "link up\n"); 2345 } else { 2346 mvneta_port_down(pp); 2347 netdev_info(pp->dev, "link down\n"); 2348 } 2349 } 2350 } 2351 2352 static int mvneta_mdio_probe(struct mvneta_port *pp) 2353 { 2354 struct phy_device *phy_dev; 2355 2356 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2357 pp->phy_interface); 2358 if (!phy_dev) { 2359 netdev_err(pp->dev, "could not find the PHY\n"); 2360 return -ENODEV; 2361 } 2362 2363 phy_dev->supported &= PHY_GBIT_FEATURES; 2364 phy_dev->advertising = phy_dev->supported; 2365 2366 pp->phy_dev = phy_dev; 2367 pp->link = 0; 2368 pp->duplex = 0; 2369 pp->speed = 0; 2370 2371 return 0; 2372 } 2373 2374 static void mvneta_mdio_remove(struct mvneta_port *pp) 2375 { 2376 phy_disconnect(pp->phy_dev); 2377 pp->phy_dev = NULL; 2378 } 2379 2380 static int mvneta_open(struct net_device *dev) 2381 { 2382 struct mvneta_port *pp = netdev_priv(dev); 2383 int ret; 2384 2385 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2386 2387 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2388 2389 ret = mvneta_setup_rxqs(pp); 2390 if (ret) 2391 return ret; 2392 2393 ret = mvneta_setup_txqs(pp); 2394 if (ret) 2395 goto err_cleanup_rxqs; 2396 2397 /* Connect to port interrupt line */ 2398 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2399 MVNETA_DRIVER_NAME, pp); 2400 if (ret) { 2401 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2402 goto err_cleanup_txqs; 2403 } 2404 2405 /* In default link is down */ 2406 netif_carrier_off(pp->dev); 2407 2408 ret = mvneta_mdio_probe(pp); 2409 if (ret < 0) { 2410 netdev_err(dev, "cannot probe MDIO bus\n"); 2411 goto err_free_irq; 2412 } 2413 2414 mvneta_start_dev(pp); 2415 2416 return 0; 2417 2418 err_free_irq: 2419 free_irq(pp->dev->irq, pp); 2420 err_cleanup_txqs: 2421 mvneta_cleanup_txqs(pp); 2422 err_cleanup_rxqs: 2423 mvneta_cleanup_rxqs(pp); 2424 return ret; 2425 } 2426 2427 /* Stop the port, free port interrupt line */ 2428 static int mvneta_stop(struct net_device *dev) 2429 { 2430 struct mvneta_port *pp = netdev_priv(dev); 2431 2432 mvneta_stop_dev(pp); 2433 mvneta_mdio_remove(pp); 2434 free_irq(dev->irq, pp); 2435 mvneta_cleanup_rxqs(pp); 2436 mvneta_cleanup_txqs(pp); 2437 del_timer(&pp->tx_done_timer); 2438 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2439 2440 return 0; 2441 } 2442 2443 /* Ethtool methods */ 2444 2445 /* Get settings (phy address, speed) for ethtools */ 2446 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2447 { 2448 struct mvneta_port *pp = netdev_priv(dev); 2449 2450 if (!pp->phy_dev) 2451 return -ENODEV; 2452 2453 return phy_ethtool_gset(pp->phy_dev, cmd); 2454 } 2455 2456 /* Set settings (phy address, speed) for ethtools */ 2457 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2458 { 2459 struct mvneta_port *pp = netdev_priv(dev); 2460 2461 if (!pp->phy_dev) 2462 return -ENODEV; 2463 2464 return phy_ethtool_sset(pp->phy_dev, cmd); 2465 } 2466 2467 /* Set interrupt coalescing for ethtools */ 2468 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2469 struct ethtool_coalesce *c) 2470 { 2471 struct mvneta_port *pp = netdev_priv(dev); 2472 int queue; 2473 2474 for (queue = 0; queue < rxq_number; queue++) { 2475 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2476 rxq->time_coal = c->rx_coalesce_usecs; 2477 rxq->pkts_coal = c->rx_max_coalesced_frames; 2478 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2479 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2480 } 2481 2482 for (queue = 0; queue < txq_number; queue++) { 2483 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2484 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2485 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2486 } 2487 2488 return 0; 2489 } 2490 2491 /* get coalescing for ethtools */ 2492 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2493 struct ethtool_coalesce *c) 2494 { 2495 struct mvneta_port *pp = netdev_priv(dev); 2496 2497 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2498 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2499 2500 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2501 return 0; 2502 } 2503 2504 2505 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2506 struct ethtool_drvinfo *drvinfo) 2507 { 2508 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2509 sizeof(drvinfo->driver)); 2510 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2511 sizeof(drvinfo->version)); 2512 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2513 sizeof(drvinfo->bus_info)); 2514 } 2515 2516 2517 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2518 struct ethtool_ringparam *ring) 2519 { 2520 struct mvneta_port *pp = netdev_priv(netdev); 2521 2522 ring->rx_max_pending = MVNETA_MAX_RXD; 2523 ring->tx_max_pending = MVNETA_MAX_TXD; 2524 ring->rx_pending = pp->rx_ring_size; 2525 ring->tx_pending = pp->tx_ring_size; 2526 } 2527 2528 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2529 struct ethtool_ringparam *ring) 2530 { 2531 struct mvneta_port *pp = netdev_priv(dev); 2532 2533 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2534 return -EINVAL; 2535 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2536 ring->rx_pending : MVNETA_MAX_RXD; 2537 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ? 2538 ring->tx_pending : MVNETA_MAX_TXD; 2539 2540 if (netif_running(dev)) { 2541 mvneta_stop(dev); 2542 if (mvneta_open(dev)) { 2543 netdev_err(dev, 2544 "error on opening device after ring param change\n"); 2545 return -ENOMEM; 2546 } 2547 } 2548 2549 return 0; 2550 } 2551 2552 static const struct net_device_ops mvneta_netdev_ops = { 2553 .ndo_open = mvneta_open, 2554 .ndo_stop = mvneta_stop, 2555 .ndo_start_xmit = mvneta_tx, 2556 .ndo_set_rx_mode = mvneta_set_rx_mode, 2557 .ndo_set_mac_address = mvneta_set_mac_addr, 2558 .ndo_change_mtu = mvneta_change_mtu, 2559 .ndo_tx_timeout = mvneta_tx_timeout, 2560 .ndo_get_stats64 = mvneta_get_stats64, 2561 }; 2562 2563 const struct ethtool_ops mvneta_eth_tool_ops = { 2564 .get_link = ethtool_op_get_link, 2565 .get_settings = mvneta_ethtool_get_settings, 2566 .set_settings = mvneta_ethtool_set_settings, 2567 .set_coalesce = mvneta_ethtool_set_coalesce, 2568 .get_coalesce = mvneta_ethtool_get_coalesce, 2569 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2570 .get_ringparam = mvneta_ethtool_get_ringparam, 2571 .set_ringparam = mvneta_ethtool_set_ringparam, 2572 }; 2573 2574 /* Initialize hw */ 2575 static int mvneta_init(struct mvneta_port *pp, int phy_addr) 2576 { 2577 int queue; 2578 2579 /* Disable port */ 2580 mvneta_port_disable(pp); 2581 2582 /* Set port default values */ 2583 mvneta_defaults_set(pp); 2584 2585 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), 2586 GFP_KERNEL); 2587 if (!pp->txqs) 2588 return -ENOMEM; 2589 2590 /* Initialize TX descriptor rings */ 2591 for (queue = 0; queue < txq_number; queue++) { 2592 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2593 txq->id = queue; 2594 txq->size = pp->tx_ring_size; 2595 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2596 } 2597 2598 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), 2599 GFP_KERNEL); 2600 if (!pp->rxqs) { 2601 kfree(pp->txqs); 2602 return -ENOMEM; 2603 } 2604 2605 /* Create Rx descriptor rings */ 2606 for (queue = 0; queue < rxq_number; queue++) { 2607 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2608 rxq->id = queue; 2609 rxq->size = pp->rx_ring_size; 2610 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2611 rxq->time_coal = MVNETA_RX_COAL_USEC; 2612 } 2613 2614 return 0; 2615 } 2616 2617 static void mvneta_deinit(struct mvneta_port *pp) 2618 { 2619 kfree(pp->txqs); 2620 kfree(pp->rxqs); 2621 } 2622 2623 /* platform glue : initialize decoding windows */ 2624 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2625 const struct mbus_dram_target_info *dram) 2626 { 2627 u32 win_enable; 2628 u32 win_protect; 2629 int i; 2630 2631 for (i = 0; i < 6; i++) { 2632 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2633 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2634 2635 if (i < 4) 2636 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2637 } 2638 2639 win_enable = 0x3f; 2640 win_protect = 0; 2641 2642 for (i = 0; i < dram->num_cs; i++) { 2643 const struct mbus_dram_window *cs = dram->cs + i; 2644 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2645 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2646 2647 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2648 (cs->size - 1) & 0xffff0000); 2649 2650 win_enable &= ~(1 << i); 2651 win_protect |= 3 << (2 * i); 2652 } 2653 2654 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2655 } 2656 2657 /* Power up the port */ 2658 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2659 { 2660 u32 val; 2661 2662 /* MAC Cause register should be cleared */ 2663 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2664 2665 if (phy_mode == PHY_INTERFACE_MODE_SGMII) 2666 mvneta_port_sgmii_config(pp); 2667 2668 mvneta_gmac_rgmii_set(pp, 1); 2669 2670 /* Cancel Port Reset */ 2671 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2672 val &= ~MVNETA_GMAC2_PORT_RESET; 2673 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 2674 2675 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2676 MVNETA_GMAC2_PORT_RESET) != 0) 2677 continue; 2678 } 2679 2680 /* Device initialization routine */ 2681 static int mvneta_probe(struct platform_device *pdev) 2682 { 2683 const struct mbus_dram_target_info *dram_target_info; 2684 struct device_node *dn = pdev->dev.of_node; 2685 struct device_node *phy_node; 2686 u32 phy_addr; 2687 struct mvneta_port *pp; 2688 struct net_device *dev; 2689 const char *dt_mac_addr; 2690 char hw_mac_addr[ETH_ALEN]; 2691 const char *mac_from; 2692 int phy_mode; 2693 int err; 2694 2695 /* Our multiqueue support is not complete, so for now, only 2696 * allow the usage of the first RX queue 2697 */ 2698 if (rxq_def != 0) { 2699 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 2700 return -EINVAL; 2701 } 2702 2703 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 2704 if (!dev) 2705 return -ENOMEM; 2706 2707 dev->irq = irq_of_parse_and_map(dn, 0); 2708 if (dev->irq == 0) { 2709 err = -EINVAL; 2710 goto err_free_netdev; 2711 } 2712 2713 phy_node = of_parse_phandle(dn, "phy", 0); 2714 if (!phy_node) { 2715 dev_err(&pdev->dev, "no associated PHY\n"); 2716 err = -ENODEV; 2717 goto err_free_irq; 2718 } 2719 2720 phy_mode = of_get_phy_mode(dn); 2721 if (phy_mode < 0) { 2722 dev_err(&pdev->dev, "incorrect phy-mode\n"); 2723 err = -EINVAL; 2724 goto err_free_irq; 2725 } 2726 2727 dev->tx_queue_len = MVNETA_MAX_TXD; 2728 dev->watchdog_timeo = 5 * HZ; 2729 dev->netdev_ops = &mvneta_netdev_ops; 2730 2731 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops); 2732 2733 pp = netdev_priv(dev); 2734 2735 pp->weight = MVNETA_RX_POLL_WEIGHT; 2736 pp->phy_node = phy_node; 2737 pp->phy_interface = phy_mode; 2738 2739 pp->clk = devm_clk_get(&pdev->dev, NULL); 2740 if (IS_ERR(pp->clk)) { 2741 err = PTR_ERR(pp->clk); 2742 goto err_free_irq; 2743 } 2744 2745 clk_prepare_enable(pp->clk); 2746 2747 pp->base = of_iomap(dn, 0); 2748 if (pp->base == NULL) { 2749 err = -ENOMEM; 2750 goto err_clk; 2751 } 2752 2753 dt_mac_addr = of_get_mac_address(dn); 2754 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) { 2755 mac_from = "device tree"; 2756 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 2757 } else { 2758 mvneta_get_mac_addr(pp, hw_mac_addr); 2759 if (is_valid_ether_addr(hw_mac_addr)) { 2760 mac_from = "hardware"; 2761 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 2762 } else { 2763 mac_from = "random"; 2764 eth_hw_addr_random(dev); 2765 } 2766 } 2767 2768 pp->tx_done_timer.data = (unsigned long)dev; 2769 pp->tx_done_timer.function = mvneta_tx_done_timer_callback; 2770 init_timer(&pp->tx_done_timer); 2771 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2772 2773 pp->tx_ring_size = MVNETA_MAX_TXD; 2774 pp->rx_ring_size = MVNETA_MAX_RXD; 2775 2776 pp->dev = dev; 2777 SET_NETDEV_DEV(dev, &pdev->dev); 2778 2779 err = mvneta_init(pp, phy_addr); 2780 if (err < 0) { 2781 dev_err(&pdev->dev, "can't init eth hal\n"); 2782 goto err_unmap; 2783 } 2784 mvneta_port_power_up(pp, phy_mode); 2785 2786 dram_target_info = mv_mbus_dram_info(); 2787 if (dram_target_info) 2788 mvneta_conf_mbus_windows(pp, dram_target_info); 2789 2790 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight); 2791 2792 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; 2793 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2794 dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM; 2795 dev->priv_flags |= IFF_UNICAST_FLT; 2796 2797 err = register_netdev(dev); 2798 if (err < 0) { 2799 dev_err(&pdev->dev, "failed to register\n"); 2800 goto err_deinit; 2801 } 2802 2803 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 2804 dev->dev_addr); 2805 2806 platform_set_drvdata(pdev, pp->dev); 2807 2808 return 0; 2809 2810 err_deinit: 2811 mvneta_deinit(pp); 2812 err_unmap: 2813 iounmap(pp->base); 2814 err_clk: 2815 clk_disable_unprepare(pp->clk); 2816 err_free_irq: 2817 irq_dispose_mapping(dev->irq); 2818 err_free_netdev: 2819 free_netdev(dev); 2820 return err; 2821 } 2822 2823 /* Device removal routine */ 2824 static int mvneta_remove(struct platform_device *pdev) 2825 { 2826 struct net_device *dev = platform_get_drvdata(pdev); 2827 struct mvneta_port *pp = netdev_priv(dev); 2828 2829 unregister_netdev(dev); 2830 mvneta_deinit(pp); 2831 clk_disable_unprepare(pp->clk); 2832 iounmap(pp->base); 2833 irq_dispose_mapping(dev->irq); 2834 free_netdev(dev); 2835 2836 return 0; 2837 } 2838 2839 static const struct of_device_id mvneta_match[] = { 2840 { .compatible = "marvell,armada-370-neta" }, 2841 { } 2842 }; 2843 MODULE_DEVICE_TABLE(of, mvneta_match); 2844 2845 static struct platform_driver mvneta_driver = { 2846 .probe = mvneta_probe, 2847 .remove = mvneta_remove, 2848 .driver = { 2849 .name = MVNETA_DRIVER_NAME, 2850 .of_match_table = mvneta_match, 2851 }, 2852 }; 2853 2854 module_platform_driver(mvneta_driver); 2855 2856 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 2857 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 2858 MODULE_LICENSE("GPL"); 2859 2860 module_param(rxq_number, int, S_IRUGO); 2861 module_param(txq_number, int, S_IRUGO); 2862 2863 module_param(rxq_def, int, S_IRUGO); 2864