1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_net.h>
29 #include <linux/of_address.h>
30 #include <linux/phy.h>
31 #include <linux/clk.h>
32 
33 /* Registers */
34 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
35 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
36 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
37 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
38 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
39 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
40 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
41 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
42 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
43 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
44 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
45 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
46 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
47 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
49 #define MVNETA_PORT_RX_RESET                    0x1cc0
50 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
51 #define MVNETA_PHY_ADDR                         0x2000
52 #define      MVNETA_PHY_ADDR_MASK               0x1f
53 #define MVNETA_MBUS_RETRY                       0x2010
54 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
55 #define MVNETA_UNIT_CONTROL                     0x20B0
56 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
57 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
58 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
59 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
60 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
61 #define MVNETA_PORT_CONFIG                      0x2400
62 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
63 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
64 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
65 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
66 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
67 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
68 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
69 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
70 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
71 						 MVNETA_DEF_RXQ_ARP(q)	 | \
72 						 MVNETA_DEF_RXQ_TCP(q)	 | \
73 						 MVNETA_DEF_RXQ_UDP(q)	 | \
74 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
75 						 MVNETA_TX_UNSET_ERR_SUM | \
76 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
77 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
78 #define MVNETA_MAC_ADDR_LOW                      0x2414
79 #define MVNETA_MAC_ADDR_HIGH                     0x2418
80 #define MVNETA_SDMA_CONFIG                       0x241c
81 #define      MVNETA_SDMA_BRST_SIZE_16            4
82 #define      MVNETA_NO_DESC_SWAP                 0x0
83 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
84 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
85 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
86 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
87 #define MVNETA_PORT_STATUS                       0x2444
88 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
89 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
90 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
91 #define MVNETA_SGMII_SERDES_CFG			 0x24A0
92 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
93 #define MVNETA_TYPE_PRIO                         0x24bc
94 #define      MVNETA_FORCE_UNI                    BIT(21)
95 #define MVNETA_TXQ_CMD_1                         0x24e4
96 #define MVNETA_TXQ_CMD                           0x2448
97 #define      MVNETA_TXQ_DISABLE_SHIFT            8
98 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
99 #define MVNETA_ACC_MODE                          0x2500
100 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
101 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
102 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
103 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
104 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
105 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
106 #define MVNETA_INTR_NEW_MASK                     0x25a4
107 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
108 #define MVNETA_INTR_OLD_MASK                     0x25ac
109 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
110 #define MVNETA_INTR_MISC_MASK                    0x25b4
111 #define MVNETA_INTR_ENABLE                       0x25b8
112 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
113 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000
114 #define MVNETA_RXQ_CMD                           0x2680
115 #define      MVNETA_RXQ_DISABLE_SHIFT            8
116 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
117 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
118 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
119 #define MVNETA_GMAC_CTRL_0                       0x2c00
120 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
121 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
122 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
123 #define MVNETA_GMAC_CTRL_2                       0x2c08
124 #define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
125 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
126 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
127 #define MVNETA_GMAC_STATUS                       0x2c10
128 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
129 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
130 #define      MVNETA_GMAC_SPEED_100               BIT(2)
131 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
132 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
133 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
134 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
135 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
136 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
137 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
138 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
139 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
140 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
141 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
142 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
143 #define      MVNETA_MIB_LATE_COLLISION           0x7c
144 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
145 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
146 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
147 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
148 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
149 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
150 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
151 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
152 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
153 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
154 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
155 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
156 #define MVNETA_PORT_TX_RESET                     0x3cf0
157 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
158 #define MVNETA_TX_MTU                            0x3e0c
159 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
160 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
161 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
162 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
163 
164 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
165 
166 /* Descriptor ring Macros */
167 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
168 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
169 
170 /* Various constants */
171 
172 /* Coalescing */
173 #define MVNETA_TXDONE_COAL_PKTS		16
174 #define MVNETA_RX_COAL_PKTS		32
175 #define MVNETA_RX_COAL_USEC		100
176 
177 /* Timer */
178 #define MVNETA_TX_DONE_TIMER_PERIOD	10
179 
180 /* Napi polling weight */
181 #define MVNETA_RX_POLL_WEIGHT		64
182 
183 /* The two bytes Marvell header. Either contains a special value used
184  * by Marvell switches when a specific hardware mode is enabled (not
185  * supported by this driver) or is filled automatically by zeroes on
186  * the RX side. Those two bytes being at the front of the Ethernet
187  * header, they allow to have the IP header aligned on a 4 bytes
188  * boundary automatically: the hardware skips those two bytes on its
189  * own.
190  */
191 #define MVNETA_MH_SIZE			2
192 
193 #define MVNETA_VLAN_TAG_LEN             4
194 
195 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
196 #define MVNETA_TX_CSUM_MAX_SIZE		9800
197 #define MVNETA_ACC_MODE_EXT		1
198 
199 /* Timeout constants */
200 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
201 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
202 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
203 
204 #define MVNETA_TX_MTU_MAX		0x3ffff
205 
206 /* Max number of Rx descriptors */
207 #define MVNETA_MAX_RXD 128
208 
209 /* Max number of Tx descriptors */
210 #define MVNETA_MAX_TXD 532
211 
212 /* descriptor aligned size */
213 #define MVNETA_DESC_ALIGNED_SIZE	32
214 
215 #define MVNETA_RX_PKT_SIZE(mtu) \
216 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
217 	      ETH_HLEN + ETH_FCS_LEN,			     \
218 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
219 
220 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
221 
222 struct mvneta_stats {
223 	struct	u64_stats_sync syncp;
224 	u64	packets;
225 	u64	bytes;
226 };
227 
228 struct mvneta_port {
229 	int pkt_size;
230 	void __iomem *base;
231 	struct mvneta_rx_queue *rxqs;
232 	struct mvneta_tx_queue *txqs;
233 	struct timer_list tx_done_timer;
234 	struct net_device *dev;
235 
236 	u32 cause_rx_tx;
237 	struct napi_struct napi;
238 
239 	/* Flags */
240 	unsigned long flags;
241 #define MVNETA_F_TX_DONE_TIMER_BIT  0
242 
243 	/* Napi weight */
244 	int weight;
245 
246 	/* Core clock */
247 	struct clk *clk;
248 	u8 mcast_count[256];
249 	u16 tx_ring_size;
250 	u16 rx_ring_size;
251 	struct mvneta_stats tx_stats;
252 	struct mvneta_stats rx_stats;
253 
254 	struct mii_bus *mii_bus;
255 	struct phy_device *phy_dev;
256 	phy_interface_t phy_interface;
257 	struct device_node *phy_node;
258 	unsigned int link;
259 	unsigned int duplex;
260 	unsigned int speed;
261 };
262 
263 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
264  * layout of the transmit and reception DMA descriptors, and their
265  * layout is therefore defined by the hardware design
266  */
267 struct mvneta_tx_desc {
268 	u32  command;		/* Options used by HW for packet transmitting.*/
269 #define MVNETA_TX_L3_OFF_SHIFT	0
270 #define MVNETA_TX_IP_HLEN_SHIFT	8
271 #define MVNETA_TX_L4_UDP	BIT(16)
272 #define MVNETA_TX_L3_IP6	BIT(17)
273 #define MVNETA_TXD_IP_CSUM	BIT(18)
274 #define MVNETA_TXD_Z_PAD	BIT(19)
275 #define MVNETA_TXD_L_DESC	BIT(20)
276 #define MVNETA_TXD_F_DESC	BIT(21)
277 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
278 				 MVNETA_TXD_L_DESC | \
279 				 MVNETA_TXD_F_DESC)
280 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
281 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
282 
283 	u16  reserverd1;	/* csum_l4 (for future use)		*/
284 	u16  data_size;		/* Data size of transmitted packet in bytes */
285 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
286 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
287 	u32  reserved3[4];	/* Reserved - (for future use)		*/
288 };
289 
290 struct mvneta_rx_desc {
291 	u32  status;		/* Info about received packet		*/
292 #define MVNETA_RXD_ERR_CRC		0x0
293 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
294 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
295 #define MVNETA_RXD_ERR_LEN		BIT(18)
296 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
297 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
298 #define MVNETA_RXD_L3_IP4		BIT(25)
299 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
300 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
301 
302 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
303 	u16  data_size;		/* Size of received packet in bytes	*/
304 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
305 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
306 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
307 	u16  reserved3;		/* prefetch_cmd, for future use		*/
308 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
309 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
310 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
311 };
312 
313 struct mvneta_tx_queue {
314 	/* Number of this TX queue, in the range 0-7 */
315 	u8 id;
316 
317 	/* Number of TX DMA descriptors in the descriptor ring */
318 	int size;
319 
320 	/* Number of currently used TX DMA descriptor in the
321 	 * descriptor ring
322 	 */
323 	int count;
324 
325 	/* Array of transmitted skb */
326 	struct sk_buff **tx_skb;
327 
328 	/* Index of last TX DMA descriptor that was inserted */
329 	int txq_put_index;
330 
331 	/* Index of the TX DMA descriptor to be cleaned up */
332 	int txq_get_index;
333 
334 	u32 done_pkts_coal;
335 
336 	/* Virtual address of the TX DMA descriptors array */
337 	struct mvneta_tx_desc *descs;
338 
339 	/* DMA address of the TX DMA descriptors array */
340 	dma_addr_t descs_phys;
341 
342 	/* Index of the last TX DMA descriptor */
343 	int last_desc;
344 
345 	/* Index of the next TX DMA descriptor to process */
346 	int next_desc_to_proc;
347 };
348 
349 struct mvneta_rx_queue {
350 	/* rx queue number, in the range 0-7 */
351 	u8 id;
352 
353 	/* num of rx descriptors in the rx descriptor ring */
354 	int size;
355 
356 	/* counter of times when mvneta_refill() failed */
357 	int missed;
358 
359 	u32 pkts_coal;
360 	u32 time_coal;
361 
362 	/* Virtual address of the RX DMA descriptors array */
363 	struct mvneta_rx_desc *descs;
364 
365 	/* DMA address of the RX DMA descriptors array */
366 	dma_addr_t descs_phys;
367 
368 	/* Index of the last RX DMA descriptor */
369 	int last_desc;
370 
371 	/* Index of the next RX DMA descriptor to process */
372 	int next_desc_to_proc;
373 };
374 
375 static int rxq_number = 8;
376 static int txq_number = 8;
377 
378 static int rxq_def;
379 
380 #define MVNETA_DRIVER_NAME "mvneta"
381 #define MVNETA_DRIVER_VERSION "1.0"
382 
383 /* Utility/helper methods */
384 
385 /* Write helper method */
386 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
387 {
388 	writel(data, pp->base + offset);
389 }
390 
391 /* Read helper method */
392 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
393 {
394 	return readl(pp->base + offset);
395 }
396 
397 /* Increment txq get counter */
398 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
399 {
400 	txq->txq_get_index++;
401 	if (txq->txq_get_index == txq->size)
402 		txq->txq_get_index = 0;
403 }
404 
405 /* Increment txq put counter */
406 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
407 {
408 	txq->txq_put_index++;
409 	if (txq->txq_put_index == txq->size)
410 		txq->txq_put_index = 0;
411 }
412 
413 
414 /* Clear all MIB counters */
415 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
416 {
417 	int i;
418 	u32 dummy;
419 
420 	/* Perform dummy reads from MIB counters */
421 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
422 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
423 }
424 
425 /* Get System Network Statistics */
426 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
427 					     struct rtnl_link_stats64 *stats)
428 {
429 	struct mvneta_port *pp = netdev_priv(dev);
430 	unsigned int start;
431 
432 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
433 
434 	do {
435 		start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
436 		stats->rx_packets = pp->rx_stats.packets;
437 		stats->rx_bytes	= pp->rx_stats.bytes;
438 	} while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
439 
440 
441 	do {
442 		start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
443 		stats->tx_packets = pp->tx_stats.packets;
444 		stats->tx_bytes	= pp->tx_stats.bytes;
445 	} while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
446 
447 	stats->rx_errors	= dev->stats.rx_errors;
448 	stats->rx_dropped	= dev->stats.rx_dropped;
449 
450 	stats->tx_dropped	= dev->stats.tx_dropped;
451 
452 	return stats;
453 }
454 
455 /* Rx descriptors helper methods */
456 
457 /* Checks whether the given RX descriptor is both the first and the
458  * last descriptor for the RX packet. Each RX packet is currently
459  * received through a single RX descriptor, so not having each RX
460  * descriptor with its first and last bits set is an error
461  */
462 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
463 {
464 	return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
465 		MVNETA_RXD_FIRST_LAST_DESC;
466 }
467 
468 /* Add number of descriptors ready to receive new packets */
469 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
470 					  struct mvneta_rx_queue *rxq,
471 					  int ndescs)
472 {
473 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
474 	 * be added at once
475 	 */
476 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
477 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
478 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
479 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
480 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
481 	}
482 
483 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
484 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
485 }
486 
487 /* Get number of RX descriptors occupied by received packets */
488 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
489 					struct mvneta_rx_queue *rxq)
490 {
491 	u32 val;
492 
493 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
494 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
495 }
496 
497 /* Update num of rx desc called upon return from rx path or
498  * from mvneta_rxq_drop_pkts().
499  */
500 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
501 				       struct mvneta_rx_queue *rxq,
502 				       int rx_done, int rx_filled)
503 {
504 	u32 val;
505 
506 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
507 		val = rx_done |
508 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
509 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
510 		return;
511 	}
512 
513 	/* Only 255 descriptors can be added at once */
514 	while ((rx_done > 0) || (rx_filled > 0)) {
515 		if (rx_done <= 0xff) {
516 			val = rx_done;
517 			rx_done = 0;
518 		} else {
519 			val = 0xff;
520 			rx_done -= 0xff;
521 		}
522 		if (rx_filled <= 0xff) {
523 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
524 			rx_filled = 0;
525 		} else {
526 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
527 			rx_filled -= 0xff;
528 		}
529 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
530 	}
531 }
532 
533 /* Get pointer to next RX descriptor to be processed by SW */
534 static struct mvneta_rx_desc *
535 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
536 {
537 	int rx_desc = rxq->next_desc_to_proc;
538 
539 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
540 	return rxq->descs + rx_desc;
541 }
542 
543 /* Change maximum receive size of the port. */
544 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
545 {
546 	u32 val;
547 
548 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
549 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
550 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
551 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
552 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
553 }
554 
555 
556 /* Set rx queue offset */
557 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
558 				  struct mvneta_rx_queue *rxq,
559 				  int offset)
560 {
561 	u32 val;
562 
563 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
564 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
565 
566 	/* Offset is in */
567 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
568 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
569 }
570 
571 
572 /* Tx descriptors helper methods */
573 
574 /* Update HW with number of TX descriptors to be sent */
575 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
576 				     struct mvneta_tx_queue *txq,
577 				     int pend_desc)
578 {
579 	u32 val;
580 
581 	/* Only 255 descriptors can be added at once ; Assume caller
582 	 * process TX desriptors in quanta less than 256
583 	 */
584 	val = pend_desc;
585 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
586 }
587 
588 /* Get pointer to next TX descriptor to be processed (send) by HW */
589 static struct mvneta_tx_desc *
590 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
591 {
592 	int tx_desc = txq->next_desc_to_proc;
593 
594 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
595 	return txq->descs + tx_desc;
596 }
597 
598 /* Release the last allocated TX descriptor. Useful to handle DMA
599  * mapping failures in the TX path.
600  */
601 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
602 {
603 	if (txq->next_desc_to_proc == 0)
604 		txq->next_desc_to_proc = txq->last_desc - 1;
605 	else
606 		txq->next_desc_to_proc--;
607 }
608 
609 /* Set rxq buf size */
610 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
611 				    struct mvneta_rx_queue *rxq,
612 				    int buf_size)
613 {
614 	u32 val;
615 
616 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
617 
618 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
619 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
620 
621 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
622 }
623 
624 /* Disable buffer management (BM) */
625 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
626 				  struct mvneta_rx_queue *rxq)
627 {
628 	u32 val;
629 
630 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
631 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
632 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
633 }
634 
635 
636 
637 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
638 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
639 {
640 	u32  val;
641 
642 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
643 
644 	if (enable)
645 		val |= MVNETA_GMAC2_PORT_RGMII;
646 	else
647 		val &= ~MVNETA_GMAC2_PORT_RGMII;
648 
649 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
650 }
651 
652 /* Config SGMII port */
653 static void mvneta_port_sgmii_config(struct mvneta_port *pp)
654 {
655 	u32 val;
656 
657 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
658 	val |= MVNETA_GMAC2_PSC_ENABLE;
659 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
660 
661 	mvreg_write(pp, MVNETA_SGMII_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
662 }
663 
664 /* Start the Ethernet port RX and TX activity */
665 static void mvneta_port_up(struct mvneta_port *pp)
666 {
667 	int queue;
668 	u32 q_map;
669 
670 	/* Enable all initialized TXs. */
671 	mvneta_mib_counters_clear(pp);
672 	q_map = 0;
673 	for (queue = 0; queue < txq_number; queue++) {
674 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
675 		if (txq->descs != NULL)
676 			q_map |= (1 << queue);
677 	}
678 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
679 
680 	/* Enable all initialized RXQs. */
681 	q_map = 0;
682 	for (queue = 0; queue < rxq_number; queue++) {
683 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
684 		if (rxq->descs != NULL)
685 			q_map |= (1 << queue);
686 	}
687 
688 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
689 }
690 
691 /* Stop the Ethernet port activity */
692 static void mvneta_port_down(struct mvneta_port *pp)
693 {
694 	u32 val;
695 	int count;
696 
697 	/* Stop Rx port activity. Check port Rx activity. */
698 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
699 
700 	/* Issue stop command for active channels only */
701 	if (val != 0)
702 		mvreg_write(pp, MVNETA_RXQ_CMD,
703 			    val << MVNETA_RXQ_DISABLE_SHIFT);
704 
705 	/* Wait for all Rx activity to terminate. */
706 	count = 0;
707 	do {
708 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
709 			netdev_warn(pp->dev,
710 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
711 				    val);
712 			break;
713 		}
714 		mdelay(1);
715 
716 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
717 	} while (val & 0xff);
718 
719 	/* Stop Tx port activity. Check port Tx activity. Issue stop
720 	 * command for active channels only
721 	 */
722 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
723 
724 	if (val != 0)
725 		mvreg_write(pp, MVNETA_TXQ_CMD,
726 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
727 
728 	/* Wait for all Tx activity to terminate. */
729 	count = 0;
730 	do {
731 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
732 			netdev_warn(pp->dev,
733 				    "TIMEOUT for TX stopped status=0x%08x\n",
734 				    val);
735 			break;
736 		}
737 		mdelay(1);
738 
739 		/* Check TX Command reg that all Txqs are stopped */
740 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
741 
742 	} while (val & 0xff);
743 
744 	/* Double check to verify that TX FIFO is empty */
745 	count = 0;
746 	do {
747 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
748 			netdev_warn(pp->dev,
749 				    "TX FIFO empty timeout status=0x08%x\n",
750 				    val);
751 			break;
752 		}
753 		mdelay(1);
754 
755 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
756 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
757 		 (val & MVNETA_TX_IN_PRGRS));
758 
759 	udelay(200);
760 }
761 
762 /* Enable the port by setting the port enable bit of the MAC control register */
763 static void mvneta_port_enable(struct mvneta_port *pp)
764 {
765 	u32 val;
766 
767 	/* Enable port */
768 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
769 	val |= MVNETA_GMAC0_PORT_ENABLE;
770 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
771 }
772 
773 /* Disable the port and wait for about 200 usec before retuning */
774 static void mvneta_port_disable(struct mvneta_port *pp)
775 {
776 	u32 val;
777 
778 	/* Reset the Enable bit in the Serial Control Register */
779 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
780 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
781 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
782 
783 	udelay(200);
784 }
785 
786 /* Multicast tables methods */
787 
788 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
789 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
790 {
791 	int offset;
792 	u32 val;
793 
794 	if (queue == -1) {
795 		val = 0;
796 	} else {
797 		val = 0x1 | (queue << 1);
798 		val |= (val << 24) | (val << 16) | (val << 8);
799 	}
800 
801 	for (offset = 0; offset <= 0xc; offset += 4)
802 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
803 }
804 
805 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
806 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
807 {
808 	int offset;
809 	u32 val;
810 
811 	if (queue == -1) {
812 		val = 0;
813 	} else {
814 		val = 0x1 | (queue << 1);
815 		val |= (val << 24) | (val << 16) | (val << 8);
816 	}
817 
818 	for (offset = 0; offset <= 0xfc; offset += 4)
819 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
820 
821 }
822 
823 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
824 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
825 {
826 	int offset;
827 	u32 val;
828 
829 	if (queue == -1) {
830 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
831 		val = 0;
832 	} else {
833 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
834 		val = 0x1 | (queue << 1);
835 		val |= (val << 24) | (val << 16) | (val << 8);
836 	}
837 
838 	for (offset = 0; offset <= 0xfc; offset += 4)
839 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
840 }
841 
842 /* This method sets defaults to the NETA port:
843  *	Clears interrupt Cause and Mask registers.
844  *	Clears all MAC tables.
845  *	Sets defaults to all registers.
846  *	Resets RX and TX descriptor rings.
847  *	Resets PHY.
848  * This method can be called after mvneta_port_down() to return the port
849  *	settings to defaults.
850  */
851 static void mvneta_defaults_set(struct mvneta_port *pp)
852 {
853 	int cpu;
854 	int queue;
855 	u32 val;
856 
857 	/* Clear all Cause registers */
858 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
859 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
860 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
861 
862 	/* Mask all interrupts */
863 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
864 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
865 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
866 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
867 
868 	/* Enable MBUS Retry bit16 */
869 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
870 
871 	/* Set CPU queue access map - all CPUs have access to all RX
872 	 * queues and to all TX queues
873 	 */
874 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
875 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
876 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
877 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
878 
879 	/* Reset RX and TX DMAs */
880 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
881 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
882 
883 	/* Disable Legacy WRR, Disable EJP, Release from reset */
884 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
885 	for (queue = 0; queue < txq_number; queue++) {
886 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
887 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
888 	}
889 
890 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
891 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
892 
893 	/* Set Port Acceleration Mode */
894 	val = MVNETA_ACC_MODE_EXT;
895 	mvreg_write(pp, MVNETA_ACC_MODE, val);
896 
897 	/* Update val of portCfg register accordingly with all RxQueue types */
898 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
899 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
900 
901 	val = 0;
902 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
903 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
904 
905 	/* Build PORT_SDMA_CONFIG_REG */
906 	val = 0;
907 
908 	/* Default burst size */
909 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
910 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
911 
912 	val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
913 		MVNETA_NO_DESC_SWAP);
914 
915 	/* Assign port SDMA configuration */
916 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
917 
918 	mvneta_set_ucast_table(pp, -1);
919 	mvneta_set_special_mcast_table(pp, -1);
920 	mvneta_set_other_mcast_table(pp, -1);
921 
922 	/* Set port interrupt enable register - default enable all */
923 	mvreg_write(pp, MVNETA_INTR_ENABLE,
924 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
925 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
926 }
927 
928 /* Set max sizes for tx queues */
929 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
930 
931 {
932 	u32 val, size, mtu;
933 	int queue;
934 
935 	mtu = max_tx_size * 8;
936 	if (mtu > MVNETA_TX_MTU_MAX)
937 		mtu = MVNETA_TX_MTU_MAX;
938 
939 	/* Set MTU */
940 	val = mvreg_read(pp, MVNETA_TX_MTU);
941 	val &= ~MVNETA_TX_MTU_MAX;
942 	val |= mtu;
943 	mvreg_write(pp, MVNETA_TX_MTU, val);
944 
945 	/* TX token size and all TXQs token size must be larger that MTU */
946 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
947 
948 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
949 	if (size < mtu) {
950 		size = mtu;
951 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
952 		val |= size;
953 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
954 	}
955 	for (queue = 0; queue < txq_number; queue++) {
956 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
957 
958 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
959 		if (size < mtu) {
960 			size = mtu;
961 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
962 			val |= size;
963 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
964 		}
965 	}
966 }
967 
968 /* Set unicast address */
969 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
970 				  int queue)
971 {
972 	unsigned int unicast_reg;
973 	unsigned int tbl_offset;
974 	unsigned int reg_offset;
975 
976 	/* Locate the Unicast table entry */
977 	last_nibble = (0xf & last_nibble);
978 
979 	/* offset from unicast tbl base */
980 	tbl_offset = (last_nibble / 4) * 4;
981 
982 	/* offset within the above reg  */
983 	reg_offset = last_nibble % 4;
984 
985 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
986 
987 	if (queue == -1) {
988 		/* Clear accepts frame bit at specified unicast DA tbl entry */
989 		unicast_reg &= ~(0xff << (8 * reg_offset));
990 	} else {
991 		unicast_reg &= ~(0xff << (8 * reg_offset));
992 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
993 	}
994 
995 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
996 }
997 
998 /* Set mac address */
999 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1000 				int queue)
1001 {
1002 	unsigned int mac_h;
1003 	unsigned int mac_l;
1004 
1005 	if (queue != -1) {
1006 		mac_l = (addr[4] << 8) | (addr[5]);
1007 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1008 			(addr[2] << 8) | (addr[3] << 0);
1009 
1010 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1011 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1012 	}
1013 
1014 	/* Accept frames of this address */
1015 	mvneta_set_ucast_addr(pp, addr[5], queue);
1016 }
1017 
1018 /* Set the number of packets that will be received before RX interrupt
1019  * will be generated by HW.
1020  */
1021 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1022 				    struct mvneta_rx_queue *rxq, u32 value)
1023 {
1024 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1025 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1026 	rxq->pkts_coal = value;
1027 }
1028 
1029 /* Set the time delay in usec before RX interrupt will be generated by
1030  * HW.
1031  */
1032 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1033 				    struct mvneta_rx_queue *rxq, u32 value)
1034 {
1035 	u32 val;
1036 	unsigned long clk_rate;
1037 
1038 	clk_rate = clk_get_rate(pp->clk);
1039 	val = (clk_rate / 1000000) * value;
1040 
1041 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1042 	rxq->time_coal = value;
1043 }
1044 
1045 /* Set threshold for TX_DONE pkts coalescing */
1046 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1047 					 struct mvneta_tx_queue *txq, u32 value)
1048 {
1049 	u32 val;
1050 
1051 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1052 
1053 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1054 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1055 
1056 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1057 
1058 	txq->done_pkts_coal = value;
1059 }
1060 
1061 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1062 static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1063 {
1064 	if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1065 		pp->tx_done_timer.expires = jiffies +
1066 			msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1067 		add_timer(&pp->tx_done_timer);
1068 	}
1069 }
1070 
1071 
1072 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1073 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1074 				u32 phys_addr, u32 cookie)
1075 {
1076 	rx_desc->buf_cookie = cookie;
1077 	rx_desc->buf_phys_addr = phys_addr;
1078 }
1079 
1080 /* Decrement sent descriptors counter */
1081 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1082 				     struct mvneta_tx_queue *txq,
1083 				     int sent_desc)
1084 {
1085 	u32 val;
1086 
1087 	/* Only 255 TX descriptors can be updated at once */
1088 	while (sent_desc > 0xff) {
1089 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1090 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1091 		sent_desc = sent_desc - 0xff;
1092 	}
1093 
1094 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1095 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1096 }
1097 
1098 /* Get number of TX descriptors already sent by HW */
1099 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1100 					struct mvneta_tx_queue *txq)
1101 {
1102 	u32 val;
1103 	int sent_desc;
1104 
1105 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1106 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1107 		MVNETA_TXQ_SENT_DESC_SHIFT;
1108 
1109 	return sent_desc;
1110 }
1111 
1112 /* Get number of sent descriptors and decrement counter.
1113  *  The number of sent descriptors is returned.
1114  */
1115 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1116 				     struct mvneta_tx_queue *txq)
1117 {
1118 	int sent_desc;
1119 
1120 	/* Get number of sent descriptors */
1121 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1122 
1123 	/* Decrement sent descriptors counter */
1124 	if (sent_desc)
1125 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1126 
1127 	return sent_desc;
1128 }
1129 
1130 /* Set TXQ descriptors fields relevant for CSUM calculation */
1131 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1132 				int ip_hdr_len, int l4_proto)
1133 {
1134 	u32 command;
1135 
1136 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1137 	 * G_L4_chk, L4_type; required only for checksum
1138 	 * calculation
1139 	 */
1140 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1141 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1142 
1143 	if (l3_proto == swab16(ETH_P_IP))
1144 		command |= MVNETA_TXD_IP_CSUM;
1145 	else
1146 		command |= MVNETA_TX_L3_IP6;
1147 
1148 	if (l4_proto == IPPROTO_TCP)
1149 		command |=  MVNETA_TX_L4_CSUM_FULL;
1150 	else if (l4_proto == IPPROTO_UDP)
1151 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1152 	else
1153 		command |= MVNETA_TX_L4_CSUM_NOT;
1154 
1155 	return command;
1156 }
1157 
1158 
1159 /* Display more error info */
1160 static void mvneta_rx_error(struct mvneta_port *pp,
1161 			    struct mvneta_rx_desc *rx_desc)
1162 {
1163 	u32 status = rx_desc->status;
1164 
1165 	if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1166 		netdev_err(pp->dev,
1167 			   "bad rx status %08x (buffer oversize), size=%d\n",
1168 			   rx_desc->status, rx_desc->data_size);
1169 		return;
1170 	}
1171 
1172 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1173 	case MVNETA_RXD_ERR_CRC:
1174 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1175 			   status, rx_desc->data_size);
1176 		break;
1177 	case MVNETA_RXD_ERR_OVERRUN:
1178 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1179 			   status, rx_desc->data_size);
1180 		break;
1181 	case MVNETA_RXD_ERR_LEN:
1182 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1183 			   status, rx_desc->data_size);
1184 		break;
1185 	case MVNETA_RXD_ERR_RESOURCE:
1186 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1187 			   status, rx_desc->data_size);
1188 		break;
1189 	}
1190 }
1191 
1192 /* Handle RX checksum offload */
1193 static void mvneta_rx_csum(struct mvneta_port *pp,
1194 			   struct mvneta_rx_desc *rx_desc,
1195 			   struct sk_buff *skb)
1196 {
1197 	if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1198 	    (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1199 		skb->csum = 0;
1200 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1201 		return;
1202 	}
1203 
1204 	skb->ip_summed = CHECKSUM_NONE;
1205 }
1206 
1207 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1208 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1209 						     u32 cause)
1210 {
1211 	int queue = fls(cause) - 1;
1212 
1213 	return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1214 }
1215 
1216 /* Free tx queue skbuffs */
1217 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1218 				 struct mvneta_tx_queue *txq, int num)
1219 {
1220 	int i;
1221 
1222 	for (i = 0; i < num; i++) {
1223 		struct mvneta_tx_desc *tx_desc = txq->descs +
1224 			txq->txq_get_index;
1225 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1226 
1227 		mvneta_txq_inc_get(txq);
1228 
1229 		if (!skb)
1230 			continue;
1231 
1232 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1233 				 tx_desc->data_size, DMA_TO_DEVICE);
1234 		dev_kfree_skb_any(skb);
1235 	}
1236 }
1237 
1238 /* Handle end of transmission */
1239 static int mvneta_txq_done(struct mvneta_port *pp,
1240 			   struct mvneta_tx_queue *txq)
1241 {
1242 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1243 	int tx_done;
1244 
1245 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1246 	if (tx_done == 0)
1247 		return tx_done;
1248 	mvneta_txq_bufs_free(pp, txq, tx_done);
1249 
1250 	txq->count -= tx_done;
1251 
1252 	if (netif_tx_queue_stopped(nq)) {
1253 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1254 			netif_tx_wake_queue(nq);
1255 	}
1256 
1257 	return tx_done;
1258 }
1259 
1260 /* Refill processing */
1261 static int mvneta_rx_refill(struct mvneta_port *pp,
1262 			    struct mvneta_rx_desc *rx_desc)
1263 
1264 {
1265 	dma_addr_t phys_addr;
1266 	struct sk_buff *skb;
1267 
1268 	skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1269 	if (!skb)
1270 		return -ENOMEM;
1271 
1272 	phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1273 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1274 				   DMA_FROM_DEVICE);
1275 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1276 		dev_kfree_skb(skb);
1277 		return -ENOMEM;
1278 	}
1279 
1280 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1281 
1282 	return 0;
1283 }
1284 
1285 /* Handle tx checksum */
1286 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1287 {
1288 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1289 		int ip_hdr_len = 0;
1290 		u8 l4_proto;
1291 
1292 		if (skb->protocol == htons(ETH_P_IP)) {
1293 			struct iphdr *ip4h = ip_hdr(skb);
1294 
1295 			/* Calculate IPv4 checksum and L4 checksum */
1296 			ip_hdr_len = ip4h->ihl;
1297 			l4_proto = ip4h->protocol;
1298 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1299 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1300 
1301 			/* Read l4_protocol from one of IPv6 extra headers */
1302 			if (skb_network_header_len(skb) > 0)
1303 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1304 			l4_proto = ip6h->nexthdr;
1305 		} else
1306 			return MVNETA_TX_L4_CSUM_NOT;
1307 
1308 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1309 				skb->protocol, ip_hdr_len, l4_proto);
1310 	}
1311 
1312 	return MVNETA_TX_L4_CSUM_NOT;
1313 }
1314 
1315 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1316  * value
1317  */
1318 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1319 						u32 cause)
1320 {
1321 	int queue = fls(cause >> 8) - 1;
1322 
1323 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1324 }
1325 
1326 /* Drop packets received by the RXQ and free buffers */
1327 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1328 				 struct mvneta_rx_queue *rxq)
1329 {
1330 	int rx_done, i;
1331 
1332 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1333 	for (i = 0; i < rxq->size; i++) {
1334 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1335 		struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1336 
1337 		dev_kfree_skb_any(skb);
1338 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1339 				 rx_desc->data_size, DMA_FROM_DEVICE);
1340 	}
1341 
1342 	if (rx_done)
1343 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1344 }
1345 
1346 /* Main rx processing */
1347 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1348 		     struct mvneta_rx_queue *rxq)
1349 {
1350 	struct net_device *dev = pp->dev;
1351 	int rx_done, rx_filled;
1352 
1353 	/* Get number of received packets */
1354 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1355 
1356 	if (rx_todo > rx_done)
1357 		rx_todo = rx_done;
1358 
1359 	rx_done = 0;
1360 	rx_filled = 0;
1361 
1362 	/* Fairness NAPI loop */
1363 	while (rx_done < rx_todo) {
1364 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1365 		struct sk_buff *skb;
1366 		u32 rx_status;
1367 		int rx_bytes, err;
1368 
1369 		prefetch(rx_desc);
1370 		rx_done++;
1371 		rx_filled++;
1372 		rx_status = rx_desc->status;
1373 		skb = (struct sk_buff *)rx_desc->buf_cookie;
1374 
1375 		if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1376 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1377 			dev->stats.rx_errors++;
1378 			mvneta_rx_error(pp, rx_desc);
1379 			mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1380 					    (u32)skb);
1381 			continue;
1382 		}
1383 
1384 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1385 				 rx_desc->data_size, DMA_FROM_DEVICE);
1386 
1387 		rx_bytes = rx_desc->data_size -
1388 			(ETH_FCS_LEN + MVNETA_MH_SIZE);
1389 		u64_stats_update_begin(&pp->rx_stats.syncp);
1390 		pp->rx_stats.packets++;
1391 		pp->rx_stats.bytes += rx_bytes;
1392 		u64_stats_update_end(&pp->rx_stats.syncp);
1393 
1394 		/* Linux processing */
1395 		skb_reserve(skb, MVNETA_MH_SIZE);
1396 		skb_put(skb, rx_bytes);
1397 
1398 		skb->protocol = eth_type_trans(skb, dev);
1399 
1400 		mvneta_rx_csum(pp, rx_desc, skb);
1401 
1402 		napi_gro_receive(&pp->napi, skb);
1403 
1404 		/* Refill processing */
1405 		err = mvneta_rx_refill(pp, rx_desc);
1406 		if (err) {
1407 			netdev_err(pp->dev, "Linux processing - Can't refill\n");
1408 			rxq->missed++;
1409 			rx_filled--;
1410 		}
1411 	}
1412 
1413 	/* Update rxq management counters */
1414 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1415 
1416 	return rx_done;
1417 }
1418 
1419 /* Handle tx fragmentation processing */
1420 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1421 				  struct mvneta_tx_queue *txq)
1422 {
1423 	struct mvneta_tx_desc *tx_desc;
1424 	int i;
1425 
1426 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1427 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1428 		void *addr = page_address(frag->page.p) + frag->page_offset;
1429 
1430 		tx_desc = mvneta_txq_next_desc_get(txq);
1431 		tx_desc->data_size = frag->size;
1432 
1433 		tx_desc->buf_phys_addr =
1434 			dma_map_single(pp->dev->dev.parent, addr,
1435 				       tx_desc->data_size, DMA_TO_DEVICE);
1436 
1437 		if (dma_mapping_error(pp->dev->dev.parent,
1438 				      tx_desc->buf_phys_addr)) {
1439 			mvneta_txq_desc_put(txq);
1440 			goto error;
1441 		}
1442 
1443 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1444 			/* Last descriptor */
1445 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1446 
1447 			txq->tx_skb[txq->txq_put_index] = skb;
1448 
1449 			mvneta_txq_inc_put(txq);
1450 		} else {
1451 			/* Descriptor in the middle: Not First, Not Last */
1452 			tx_desc->command = 0;
1453 
1454 			txq->tx_skb[txq->txq_put_index] = NULL;
1455 			mvneta_txq_inc_put(txq);
1456 		}
1457 	}
1458 
1459 	return 0;
1460 
1461 error:
1462 	/* Release all descriptors that were used to map fragments of
1463 	 * this packet, as well as the corresponding DMA mappings
1464 	 */
1465 	for (i = i - 1; i >= 0; i--) {
1466 		tx_desc = txq->descs + i;
1467 		dma_unmap_single(pp->dev->dev.parent,
1468 				 tx_desc->buf_phys_addr,
1469 				 tx_desc->data_size,
1470 				 DMA_TO_DEVICE);
1471 		mvneta_txq_desc_put(txq);
1472 	}
1473 
1474 	return -ENOMEM;
1475 }
1476 
1477 /* Main tx processing */
1478 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1479 {
1480 	struct mvneta_port *pp = netdev_priv(dev);
1481 	u16 txq_id = skb_get_queue_mapping(skb);
1482 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1483 	struct mvneta_tx_desc *tx_desc;
1484 	struct netdev_queue *nq;
1485 	int frags = 0;
1486 	u32 tx_cmd;
1487 
1488 	if (!netif_running(dev))
1489 		goto out;
1490 
1491 	frags = skb_shinfo(skb)->nr_frags + 1;
1492 	nq    = netdev_get_tx_queue(dev, txq_id);
1493 
1494 	/* Get a descriptor for the first part of the packet */
1495 	tx_desc = mvneta_txq_next_desc_get(txq);
1496 
1497 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1498 
1499 	tx_desc->data_size = skb_headlen(skb);
1500 
1501 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1502 						tx_desc->data_size,
1503 						DMA_TO_DEVICE);
1504 	if (unlikely(dma_mapping_error(dev->dev.parent,
1505 				       tx_desc->buf_phys_addr))) {
1506 		mvneta_txq_desc_put(txq);
1507 		frags = 0;
1508 		goto out;
1509 	}
1510 
1511 	if (frags == 1) {
1512 		/* First and Last descriptor */
1513 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1514 		tx_desc->command = tx_cmd;
1515 		txq->tx_skb[txq->txq_put_index] = skb;
1516 		mvneta_txq_inc_put(txq);
1517 	} else {
1518 		/* First but not Last */
1519 		tx_cmd |= MVNETA_TXD_F_DESC;
1520 		txq->tx_skb[txq->txq_put_index] = NULL;
1521 		mvneta_txq_inc_put(txq);
1522 		tx_desc->command = tx_cmd;
1523 		/* Continue with other skb fragments */
1524 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1525 			dma_unmap_single(dev->dev.parent,
1526 					 tx_desc->buf_phys_addr,
1527 					 tx_desc->data_size,
1528 					 DMA_TO_DEVICE);
1529 			mvneta_txq_desc_put(txq);
1530 			frags = 0;
1531 			goto out;
1532 		}
1533 	}
1534 
1535 	txq->count += frags;
1536 	mvneta_txq_pend_desc_add(pp, txq, frags);
1537 
1538 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1539 		netif_tx_stop_queue(nq);
1540 
1541 out:
1542 	if (frags > 0) {
1543 		u64_stats_update_begin(&pp->tx_stats.syncp);
1544 		pp->tx_stats.packets++;
1545 		pp->tx_stats.bytes += skb->len;
1546 		u64_stats_update_end(&pp->tx_stats.syncp);
1547 
1548 	} else {
1549 		dev->stats.tx_dropped++;
1550 		dev_kfree_skb_any(skb);
1551 	}
1552 
1553 	if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1554 		mvneta_txq_done(pp, txq);
1555 
1556 	/* If after calling mvneta_txq_done, count equals
1557 	 * frags, we need to set the timer
1558 	 */
1559 	if (txq->count == frags && frags > 0)
1560 		mvneta_add_tx_done_timer(pp);
1561 
1562 	return NETDEV_TX_OK;
1563 }
1564 
1565 
1566 /* Free tx resources, when resetting a port */
1567 static void mvneta_txq_done_force(struct mvneta_port *pp,
1568 				  struct mvneta_tx_queue *txq)
1569 
1570 {
1571 	int tx_done = txq->count;
1572 
1573 	mvneta_txq_bufs_free(pp, txq, tx_done);
1574 
1575 	/* reset txq */
1576 	txq->count = 0;
1577 	txq->txq_put_index = 0;
1578 	txq->txq_get_index = 0;
1579 }
1580 
1581 /* handle tx done - called from tx done timer callback */
1582 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1583 			      int *tx_todo)
1584 {
1585 	struct mvneta_tx_queue *txq;
1586 	u32 tx_done = 0;
1587 	struct netdev_queue *nq;
1588 
1589 	*tx_todo = 0;
1590 	while (cause_tx_done != 0) {
1591 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1592 		if (!txq)
1593 			break;
1594 
1595 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1596 		__netif_tx_lock(nq, smp_processor_id());
1597 
1598 		if (txq->count) {
1599 			tx_done += mvneta_txq_done(pp, txq);
1600 			*tx_todo += txq->count;
1601 		}
1602 
1603 		__netif_tx_unlock(nq);
1604 		cause_tx_done &= ~((1 << txq->id));
1605 	}
1606 
1607 	return tx_done;
1608 }
1609 
1610 /* Compute crc8 of the specified address, using a unique algorithm ,
1611  * according to hw spec, different than generic crc8 algorithm
1612  */
1613 static int mvneta_addr_crc(unsigned char *addr)
1614 {
1615 	int crc = 0;
1616 	int i;
1617 
1618 	for (i = 0; i < ETH_ALEN; i++) {
1619 		int j;
1620 
1621 		crc = (crc ^ addr[i]) << 8;
1622 		for (j = 7; j >= 0; j--) {
1623 			if (crc & (0x100 << j))
1624 				crc ^= 0x107 << j;
1625 		}
1626 	}
1627 
1628 	return crc;
1629 }
1630 
1631 /* This method controls the net device special MAC multicast support.
1632  * The Special Multicast Table for MAC addresses supports MAC of the form
1633  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1634  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1635  * Table entries in the DA-Filter table. This method set the Special
1636  * Multicast Table appropriate entry.
1637  */
1638 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1639 					  unsigned char last_byte,
1640 					  int queue)
1641 {
1642 	unsigned int smc_table_reg;
1643 	unsigned int tbl_offset;
1644 	unsigned int reg_offset;
1645 
1646 	/* Register offset from SMC table base    */
1647 	tbl_offset = (last_byte / 4);
1648 	/* Entry offset within the above reg */
1649 	reg_offset = last_byte % 4;
1650 
1651 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1652 					+ tbl_offset * 4));
1653 
1654 	if (queue == -1)
1655 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1656 	else {
1657 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1658 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1659 	}
1660 
1661 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1662 		    smc_table_reg);
1663 }
1664 
1665 /* This method controls the network device Other MAC multicast support.
1666  * The Other Multicast Table is used for multicast of another type.
1667  * A CRC-8 is used as an index to the Other Multicast Table entries
1668  * in the DA-Filter table.
1669  * The method gets the CRC-8 value from the calling routine and
1670  * sets the Other Multicast Table appropriate entry according to the
1671  * specified CRC-8 .
1672  */
1673 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1674 					unsigned char crc8,
1675 					int queue)
1676 {
1677 	unsigned int omc_table_reg;
1678 	unsigned int tbl_offset;
1679 	unsigned int reg_offset;
1680 
1681 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1682 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1683 
1684 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1685 
1686 	if (queue == -1) {
1687 		/* Clear accepts frame bit at specified Other DA table entry */
1688 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1689 	} else {
1690 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1691 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1692 	}
1693 
1694 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1695 }
1696 
1697 /* The network device supports multicast using two tables:
1698  *    1) Special Multicast Table for MAC addresses of the form
1699  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1700  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1701  *       Table entries in the DA-Filter table.
1702  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1703  *       is used as an index to the Other Multicast Table entries in the
1704  *       DA-Filter table.
1705  */
1706 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1707 				 int queue)
1708 {
1709 	unsigned char crc_result = 0;
1710 
1711 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1712 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1713 		return 0;
1714 	}
1715 
1716 	crc_result = mvneta_addr_crc(p_addr);
1717 	if (queue == -1) {
1718 		if (pp->mcast_count[crc_result] == 0) {
1719 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1720 				    crc_result);
1721 			return -EINVAL;
1722 		}
1723 
1724 		pp->mcast_count[crc_result]--;
1725 		if (pp->mcast_count[crc_result] != 0) {
1726 			netdev_info(pp->dev,
1727 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1728 				    pp->mcast_count[crc_result], crc_result);
1729 			return -EINVAL;
1730 		}
1731 	} else
1732 		pp->mcast_count[crc_result]++;
1733 
1734 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1735 
1736 	return 0;
1737 }
1738 
1739 /* Configure Fitering mode of Ethernet port */
1740 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1741 					  int is_promisc)
1742 {
1743 	u32 port_cfg_reg, val;
1744 
1745 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1746 
1747 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1748 
1749 	/* Set / Clear UPM bit in port configuration register */
1750 	if (is_promisc) {
1751 		/* Accept all Unicast addresses */
1752 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1753 		val |= MVNETA_FORCE_UNI;
1754 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1755 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1756 	} else {
1757 		/* Reject all Unicast addresses */
1758 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1759 		val &= ~MVNETA_FORCE_UNI;
1760 	}
1761 
1762 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1763 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1764 }
1765 
1766 /* register unicast and multicast addresses */
1767 static void mvneta_set_rx_mode(struct net_device *dev)
1768 {
1769 	struct mvneta_port *pp = netdev_priv(dev);
1770 	struct netdev_hw_addr *ha;
1771 
1772 	if (dev->flags & IFF_PROMISC) {
1773 		/* Accept all: Multicast + Unicast */
1774 		mvneta_rx_unicast_promisc_set(pp, 1);
1775 		mvneta_set_ucast_table(pp, rxq_def);
1776 		mvneta_set_special_mcast_table(pp, rxq_def);
1777 		mvneta_set_other_mcast_table(pp, rxq_def);
1778 	} else {
1779 		/* Accept single Unicast */
1780 		mvneta_rx_unicast_promisc_set(pp, 0);
1781 		mvneta_set_ucast_table(pp, -1);
1782 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1783 
1784 		if (dev->flags & IFF_ALLMULTI) {
1785 			/* Accept all multicast */
1786 			mvneta_set_special_mcast_table(pp, rxq_def);
1787 			mvneta_set_other_mcast_table(pp, rxq_def);
1788 		} else {
1789 			/* Accept only initialized multicast */
1790 			mvneta_set_special_mcast_table(pp, -1);
1791 			mvneta_set_other_mcast_table(pp, -1);
1792 
1793 			if (!netdev_mc_empty(dev)) {
1794 				netdev_for_each_mc_addr(ha, dev) {
1795 					mvneta_mcast_addr_set(pp, ha->addr,
1796 							      rxq_def);
1797 				}
1798 			}
1799 		}
1800 	}
1801 }
1802 
1803 /* Interrupt handling - the callback for request_irq() */
1804 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1805 {
1806 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1807 
1808 	/* Mask all interrupts */
1809 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1810 
1811 	napi_schedule(&pp->napi);
1812 
1813 	return IRQ_HANDLED;
1814 }
1815 
1816 /* NAPI handler
1817  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1818  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1819  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1820  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1821  * Each CPU has its own causeRxTx register
1822  */
1823 static int mvneta_poll(struct napi_struct *napi, int budget)
1824 {
1825 	int rx_done = 0;
1826 	u32 cause_rx_tx;
1827 	unsigned long flags;
1828 	struct mvneta_port *pp = netdev_priv(napi->dev);
1829 
1830 	if (!netif_running(pp->dev)) {
1831 		napi_complete(napi);
1832 		return rx_done;
1833 	}
1834 
1835 	/* Read cause register */
1836 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1837 		MVNETA_RX_INTR_MASK(rxq_number);
1838 
1839 	/* For the case where the last mvneta_poll did not process all
1840 	 * RX packets
1841 	 */
1842 	cause_rx_tx |= pp->cause_rx_tx;
1843 	if (rxq_number > 1) {
1844 		while ((cause_rx_tx != 0) && (budget > 0)) {
1845 			int count;
1846 			struct mvneta_rx_queue *rxq;
1847 			/* get rx queue number from cause_rx_tx */
1848 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1849 			if (!rxq)
1850 				break;
1851 
1852 			/* process the packet in that rx queue */
1853 			count = mvneta_rx(pp, budget, rxq);
1854 			rx_done += count;
1855 			budget -= count;
1856 			if (budget > 0) {
1857 				/* set off the rx bit of the
1858 				 * corresponding bit in the cause rx
1859 				 * tx register, so that next iteration
1860 				 * will find the next rx queue where
1861 				 * packets are received on
1862 				 */
1863 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1864 			}
1865 		}
1866 	} else {
1867 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1868 		budget -= rx_done;
1869 	}
1870 
1871 	if (budget > 0) {
1872 		cause_rx_tx = 0;
1873 		napi_complete(napi);
1874 		local_irq_save(flags);
1875 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1876 			    MVNETA_RX_INTR_MASK(rxq_number));
1877 		local_irq_restore(flags);
1878 	}
1879 
1880 	pp->cause_rx_tx = cause_rx_tx;
1881 	return rx_done;
1882 }
1883 
1884 /* tx done timer callback */
1885 static void mvneta_tx_done_timer_callback(unsigned long data)
1886 {
1887 	struct net_device *dev = (struct net_device *)data;
1888 	struct mvneta_port *pp = netdev_priv(dev);
1889 	int tx_done = 0, tx_todo = 0;
1890 
1891 	if (!netif_running(dev))
1892 		return ;
1893 
1894 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1895 
1896 	tx_done = mvneta_tx_done_gbe(pp,
1897 				     (((1 << txq_number) - 1) &
1898 				      MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1899 				     &tx_todo);
1900 	if (tx_todo > 0)
1901 		mvneta_add_tx_done_timer(pp);
1902 }
1903 
1904 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1905 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1906 			   int num)
1907 {
1908 	struct net_device *dev = pp->dev;
1909 	int i;
1910 
1911 	for (i = 0; i < num; i++) {
1912 		struct sk_buff *skb;
1913 		struct mvneta_rx_desc *rx_desc;
1914 		unsigned long phys_addr;
1915 
1916 		skb = dev_alloc_skb(pp->pkt_size);
1917 		if (!skb) {
1918 			netdev_err(dev, "%s:rxq %d, %d of %d buffs  filled\n",
1919 				__func__, rxq->id, i, num);
1920 			break;
1921 		}
1922 
1923 		rx_desc = rxq->descs + i;
1924 		memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1925 		phys_addr = dma_map_single(dev->dev.parent, skb->head,
1926 					   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1927 					   DMA_FROM_DEVICE);
1928 		if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1929 			dev_kfree_skb(skb);
1930 			break;
1931 		}
1932 
1933 		mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1934 	}
1935 
1936 	/* Add this number of RX descriptors as non occupied (ready to
1937 	 * get packets)
1938 	 */
1939 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1940 
1941 	return i;
1942 }
1943 
1944 /* Free all packets pending transmit from all TXQs and reset TX port */
1945 static void mvneta_tx_reset(struct mvneta_port *pp)
1946 {
1947 	int queue;
1948 
1949 	/* free the skb's in the hal tx ring */
1950 	for (queue = 0; queue < txq_number; queue++)
1951 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
1952 
1953 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1954 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1955 }
1956 
1957 static void mvneta_rx_reset(struct mvneta_port *pp)
1958 {
1959 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1960 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1961 }
1962 
1963 /* Rx/Tx queue initialization/cleanup methods */
1964 
1965 /* Create a specified RX queue */
1966 static int mvneta_rxq_init(struct mvneta_port *pp,
1967 			   struct mvneta_rx_queue *rxq)
1968 
1969 {
1970 	rxq->size = pp->rx_ring_size;
1971 
1972 	/* Allocate memory for RX descriptors */
1973 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1974 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1975 					&rxq->descs_phys, GFP_KERNEL);
1976 	if (rxq->descs == NULL)
1977 		return -ENOMEM;
1978 
1979 	BUG_ON(rxq->descs !=
1980 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
1981 
1982 	rxq->last_desc = rxq->size - 1;
1983 
1984 	/* Set Rx descriptors queue starting address */
1985 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1986 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1987 
1988 	/* Set Offset */
1989 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
1990 
1991 	/* Set coalescing pkts and time */
1992 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
1993 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
1994 
1995 	/* Fill RXQ with buffers from RX pool */
1996 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
1997 	mvneta_rxq_bm_disable(pp, rxq);
1998 	mvneta_rxq_fill(pp, rxq, rxq->size);
1999 
2000 	return 0;
2001 }
2002 
2003 /* Cleanup Rx queue */
2004 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2005 			      struct mvneta_rx_queue *rxq)
2006 {
2007 	mvneta_rxq_drop_pkts(pp, rxq);
2008 
2009 	if (rxq->descs)
2010 		dma_free_coherent(pp->dev->dev.parent,
2011 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2012 				  rxq->descs,
2013 				  rxq->descs_phys);
2014 
2015 	rxq->descs             = NULL;
2016 	rxq->last_desc         = 0;
2017 	rxq->next_desc_to_proc = 0;
2018 	rxq->descs_phys        = 0;
2019 }
2020 
2021 /* Create and initialize a tx queue */
2022 static int mvneta_txq_init(struct mvneta_port *pp,
2023 			   struct mvneta_tx_queue *txq)
2024 {
2025 	txq->size = pp->tx_ring_size;
2026 
2027 	/* Allocate memory for TX descriptors */
2028 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2029 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2030 					&txq->descs_phys, GFP_KERNEL);
2031 	if (txq->descs == NULL)
2032 		return -ENOMEM;
2033 
2034 	/* Make sure descriptor address is cache line size aligned  */
2035 	BUG_ON(txq->descs !=
2036 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2037 
2038 	txq->last_desc = txq->size - 1;
2039 
2040 	/* Set maximum bandwidth for enabled TXQs */
2041 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2042 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2043 
2044 	/* Set Tx descriptors queue starting address */
2045 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2046 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2047 
2048 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2049 	if (txq->tx_skb == NULL) {
2050 		dma_free_coherent(pp->dev->dev.parent,
2051 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2052 				  txq->descs, txq->descs_phys);
2053 		return -ENOMEM;
2054 	}
2055 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2056 
2057 	return 0;
2058 }
2059 
2060 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2061 static void mvneta_txq_deinit(struct mvneta_port *pp,
2062 			      struct mvneta_tx_queue *txq)
2063 {
2064 	kfree(txq->tx_skb);
2065 
2066 	if (txq->descs)
2067 		dma_free_coherent(pp->dev->dev.parent,
2068 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2069 				  txq->descs, txq->descs_phys);
2070 
2071 	txq->descs             = NULL;
2072 	txq->last_desc         = 0;
2073 	txq->next_desc_to_proc = 0;
2074 	txq->descs_phys        = 0;
2075 
2076 	/* Set minimum bandwidth for disabled TXQs */
2077 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2078 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2079 
2080 	/* Set Tx descriptors queue starting address and size */
2081 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2082 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2083 }
2084 
2085 /* Cleanup all Tx queues */
2086 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2087 {
2088 	int queue;
2089 
2090 	for (queue = 0; queue < txq_number; queue++)
2091 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2092 }
2093 
2094 /* Cleanup all Rx queues */
2095 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2096 {
2097 	int queue;
2098 
2099 	for (queue = 0; queue < rxq_number; queue++)
2100 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2101 }
2102 
2103 
2104 /* Init all Rx queues */
2105 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2106 {
2107 	int queue;
2108 
2109 	for (queue = 0; queue < rxq_number; queue++) {
2110 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2111 		if (err) {
2112 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2113 				   __func__, queue);
2114 			mvneta_cleanup_rxqs(pp);
2115 			return err;
2116 		}
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /* Init all tx queues */
2123 static int mvneta_setup_txqs(struct mvneta_port *pp)
2124 {
2125 	int queue;
2126 
2127 	for (queue = 0; queue < txq_number; queue++) {
2128 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2129 		if (err) {
2130 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2131 				   __func__, queue);
2132 			mvneta_cleanup_txqs(pp);
2133 			return err;
2134 		}
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 static void mvneta_start_dev(struct mvneta_port *pp)
2141 {
2142 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2143 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2144 
2145 	/* start the Rx/Tx activity */
2146 	mvneta_port_enable(pp);
2147 
2148 	/* Enable polling on the port */
2149 	napi_enable(&pp->napi);
2150 
2151 	/* Unmask interrupts */
2152 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2153 		    MVNETA_RX_INTR_MASK(rxq_number));
2154 
2155 	phy_start(pp->phy_dev);
2156 	netif_tx_start_all_queues(pp->dev);
2157 }
2158 
2159 static void mvneta_stop_dev(struct mvneta_port *pp)
2160 {
2161 	phy_stop(pp->phy_dev);
2162 
2163 	napi_disable(&pp->napi);
2164 
2165 	netif_carrier_off(pp->dev);
2166 
2167 	mvneta_port_down(pp);
2168 	netif_tx_stop_all_queues(pp->dev);
2169 
2170 	/* Stop the port activity */
2171 	mvneta_port_disable(pp);
2172 
2173 	/* Clear all ethernet port interrupts */
2174 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2175 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2176 
2177 	/* Mask all ethernet port interrupts */
2178 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2179 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2180 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2181 
2182 	mvneta_tx_reset(pp);
2183 	mvneta_rx_reset(pp);
2184 }
2185 
2186 /* tx timeout callback - display a message and stop/start the network device */
2187 static void mvneta_tx_timeout(struct net_device *dev)
2188 {
2189 	struct mvneta_port *pp = netdev_priv(dev);
2190 
2191 	netdev_info(dev, "tx timeout\n");
2192 	mvneta_stop_dev(pp);
2193 	mvneta_start_dev(pp);
2194 }
2195 
2196 /* Return positive if MTU is valid */
2197 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2198 {
2199 	if (mtu < 68) {
2200 		netdev_err(dev, "cannot change mtu to less than 68\n");
2201 		return -EINVAL;
2202 	}
2203 
2204 	/* 9676 == 9700 - 20 and rounding to 8 */
2205 	if (mtu > 9676) {
2206 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2207 		mtu = 9676;
2208 	}
2209 
2210 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2211 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2212 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2213 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2214 	}
2215 
2216 	return mtu;
2217 }
2218 
2219 /* Change the device mtu */
2220 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2221 {
2222 	struct mvneta_port *pp = netdev_priv(dev);
2223 	int ret;
2224 
2225 	mtu = mvneta_check_mtu_valid(dev, mtu);
2226 	if (mtu < 0)
2227 		return -EINVAL;
2228 
2229 	dev->mtu = mtu;
2230 
2231 	if (!netif_running(dev))
2232 		return 0;
2233 
2234 	/* The interface is running, so we have to force a
2235 	 * reallocation of the RXQs
2236 	 */
2237 	mvneta_stop_dev(pp);
2238 
2239 	mvneta_cleanup_txqs(pp);
2240 	mvneta_cleanup_rxqs(pp);
2241 
2242 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2243 
2244 	ret = mvneta_setup_rxqs(pp);
2245 	if (ret) {
2246 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2247 		return ret;
2248 	}
2249 
2250 	mvneta_setup_txqs(pp);
2251 
2252 	mvneta_start_dev(pp);
2253 	mvneta_port_up(pp);
2254 
2255 	return 0;
2256 }
2257 
2258 /* Get mac address */
2259 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2260 {
2261 	u32 mac_addr_l, mac_addr_h;
2262 
2263 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2264 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2265 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2266 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2267 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2268 	addr[3] = mac_addr_h & 0xFF;
2269 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2270 	addr[5] = mac_addr_l & 0xFF;
2271 }
2272 
2273 /* Handle setting mac address */
2274 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2275 {
2276 	struct mvneta_port *pp = netdev_priv(dev);
2277 	u8 *mac = addr + 2;
2278 	int i;
2279 
2280 	if (netif_running(dev))
2281 		return -EBUSY;
2282 
2283 	/* Remove previous address table entry */
2284 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2285 
2286 	/* Set new addr in hw */
2287 	mvneta_mac_addr_set(pp, mac, rxq_def);
2288 
2289 	/* Set addr in the device */
2290 	for (i = 0; i < ETH_ALEN; i++)
2291 		dev->dev_addr[i] = mac[i];
2292 
2293 	return 0;
2294 }
2295 
2296 static void mvneta_adjust_link(struct net_device *ndev)
2297 {
2298 	struct mvneta_port *pp = netdev_priv(ndev);
2299 	struct phy_device *phydev = pp->phy_dev;
2300 	int status_change = 0;
2301 
2302 	if (phydev->link) {
2303 		if ((pp->speed != phydev->speed) ||
2304 		    (pp->duplex != phydev->duplex)) {
2305 			u32 val;
2306 
2307 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2308 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2309 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2310 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2311 
2312 			if (phydev->duplex)
2313 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2314 
2315 			if (phydev->speed == SPEED_1000)
2316 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2317 			else
2318 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2319 
2320 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2321 
2322 			pp->duplex = phydev->duplex;
2323 			pp->speed  = phydev->speed;
2324 		}
2325 	}
2326 
2327 	if (phydev->link != pp->link) {
2328 		if (!phydev->link) {
2329 			pp->duplex = -1;
2330 			pp->speed = 0;
2331 		}
2332 
2333 		pp->link = phydev->link;
2334 		status_change = 1;
2335 	}
2336 
2337 	if (status_change) {
2338 		if (phydev->link) {
2339 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2340 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2341 				MVNETA_GMAC_FORCE_LINK_DOWN);
2342 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2343 			mvneta_port_up(pp);
2344 			netdev_info(pp->dev, "link up\n");
2345 		} else {
2346 			mvneta_port_down(pp);
2347 			netdev_info(pp->dev, "link down\n");
2348 		}
2349 	}
2350 }
2351 
2352 static int mvneta_mdio_probe(struct mvneta_port *pp)
2353 {
2354 	struct phy_device *phy_dev;
2355 
2356 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2357 				 pp->phy_interface);
2358 	if (!phy_dev) {
2359 		netdev_err(pp->dev, "could not find the PHY\n");
2360 		return -ENODEV;
2361 	}
2362 
2363 	phy_dev->supported &= PHY_GBIT_FEATURES;
2364 	phy_dev->advertising = phy_dev->supported;
2365 
2366 	pp->phy_dev = phy_dev;
2367 	pp->link    = 0;
2368 	pp->duplex  = 0;
2369 	pp->speed   = 0;
2370 
2371 	return 0;
2372 }
2373 
2374 static void mvneta_mdio_remove(struct mvneta_port *pp)
2375 {
2376 	phy_disconnect(pp->phy_dev);
2377 	pp->phy_dev = NULL;
2378 }
2379 
2380 static int mvneta_open(struct net_device *dev)
2381 {
2382 	struct mvneta_port *pp = netdev_priv(dev);
2383 	int ret;
2384 
2385 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2386 
2387 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2388 
2389 	ret = mvneta_setup_rxqs(pp);
2390 	if (ret)
2391 		return ret;
2392 
2393 	ret = mvneta_setup_txqs(pp);
2394 	if (ret)
2395 		goto err_cleanup_rxqs;
2396 
2397 	/* Connect to port interrupt line */
2398 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2399 			  MVNETA_DRIVER_NAME, pp);
2400 	if (ret) {
2401 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2402 		goto err_cleanup_txqs;
2403 	}
2404 
2405 	/* In default link is down */
2406 	netif_carrier_off(pp->dev);
2407 
2408 	ret = mvneta_mdio_probe(pp);
2409 	if (ret < 0) {
2410 		netdev_err(dev, "cannot probe MDIO bus\n");
2411 		goto err_free_irq;
2412 	}
2413 
2414 	mvneta_start_dev(pp);
2415 
2416 	return 0;
2417 
2418 err_free_irq:
2419 	free_irq(pp->dev->irq, pp);
2420 err_cleanup_txqs:
2421 	mvneta_cleanup_txqs(pp);
2422 err_cleanup_rxqs:
2423 	mvneta_cleanup_rxqs(pp);
2424 	return ret;
2425 }
2426 
2427 /* Stop the port, free port interrupt line */
2428 static int mvneta_stop(struct net_device *dev)
2429 {
2430 	struct mvneta_port *pp = netdev_priv(dev);
2431 
2432 	mvneta_stop_dev(pp);
2433 	mvneta_mdio_remove(pp);
2434 	free_irq(dev->irq, pp);
2435 	mvneta_cleanup_rxqs(pp);
2436 	mvneta_cleanup_txqs(pp);
2437 	del_timer(&pp->tx_done_timer);
2438 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2439 
2440 	return 0;
2441 }
2442 
2443 /* Ethtool methods */
2444 
2445 /* Get settings (phy address, speed) for ethtools */
2446 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2447 {
2448 	struct mvneta_port *pp = netdev_priv(dev);
2449 
2450 	if (!pp->phy_dev)
2451 		return -ENODEV;
2452 
2453 	return phy_ethtool_gset(pp->phy_dev, cmd);
2454 }
2455 
2456 /* Set settings (phy address, speed) for ethtools */
2457 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2458 {
2459 	struct mvneta_port *pp = netdev_priv(dev);
2460 
2461 	if (!pp->phy_dev)
2462 		return -ENODEV;
2463 
2464 	return phy_ethtool_sset(pp->phy_dev, cmd);
2465 }
2466 
2467 /* Set interrupt coalescing for ethtools */
2468 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2469 				       struct ethtool_coalesce *c)
2470 {
2471 	struct mvneta_port *pp = netdev_priv(dev);
2472 	int queue;
2473 
2474 	for (queue = 0; queue < rxq_number; queue++) {
2475 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2476 		rxq->time_coal = c->rx_coalesce_usecs;
2477 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2478 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2479 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2480 	}
2481 
2482 	for (queue = 0; queue < txq_number; queue++) {
2483 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2484 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2485 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2486 	}
2487 
2488 	return 0;
2489 }
2490 
2491 /* get coalescing for ethtools */
2492 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2493 				       struct ethtool_coalesce *c)
2494 {
2495 	struct mvneta_port *pp = netdev_priv(dev);
2496 
2497 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2498 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2499 
2500 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2501 	return 0;
2502 }
2503 
2504 
2505 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2506 				    struct ethtool_drvinfo *drvinfo)
2507 {
2508 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2509 		sizeof(drvinfo->driver));
2510 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2511 		sizeof(drvinfo->version));
2512 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2513 		sizeof(drvinfo->bus_info));
2514 }
2515 
2516 
2517 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2518 					 struct ethtool_ringparam *ring)
2519 {
2520 	struct mvneta_port *pp = netdev_priv(netdev);
2521 
2522 	ring->rx_max_pending = MVNETA_MAX_RXD;
2523 	ring->tx_max_pending = MVNETA_MAX_TXD;
2524 	ring->rx_pending = pp->rx_ring_size;
2525 	ring->tx_pending = pp->tx_ring_size;
2526 }
2527 
2528 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2529 					struct ethtool_ringparam *ring)
2530 {
2531 	struct mvneta_port *pp = netdev_priv(dev);
2532 
2533 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2534 		return -EINVAL;
2535 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2536 		ring->rx_pending : MVNETA_MAX_RXD;
2537 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2538 		ring->tx_pending : MVNETA_MAX_TXD;
2539 
2540 	if (netif_running(dev)) {
2541 		mvneta_stop(dev);
2542 		if (mvneta_open(dev)) {
2543 			netdev_err(dev,
2544 				   "error on opening device after ring param change\n");
2545 			return -ENOMEM;
2546 		}
2547 	}
2548 
2549 	return 0;
2550 }
2551 
2552 static const struct net_device_ops mvneta_netdev_ops = {
2553 	.ndo_open            = mvneta_open,
2554 	.ndo_stop            = mvneta_stop,
2555 	.ndo_start_xmit      = mvneta_tx,
2556 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2557 	.ndo_set_mac_address = mvneta_set_mac_addr,
2558 	.ndo_change_mtu      = mvneta_change_mtu,
2559 	.ndo_tx_timeout      = mvneta_tx_timeout,
2560 	.ndo_get_stats64     = mvneta_get_stats64,
2561 };
2562 
2563 const struct ethtool_ops mvneta_eth_tool_ops = {
2564 	.get_link       = ethtool_op_get_link,
2565 	.get_settings   = mvneta_ethtool_get_settings,
2566 	.set_settings   = mvneta_ethtool_set_settings,
2567 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2568 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2569 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2570 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2571 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2572 };
2573 
2574 /* Initialize hw */
2575 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2576 {
2577 	int queue;
2578 
2579 	/* Disable port */
2580 	mvneta_port_disable(pp);
2581 
2582 	/* Set port default values */
2583 	mvneta_defaults_set(pp);
2584 
2585 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2586 			   GFP_KERNEL);
2587 	if (!pp->txqs)
2588 		return -ENOMEM;
2589 
2590 	/* Initialize TX descriptor rings */
2591 	for (queue = 0; queue < txq_number; queue++) {
2592 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2593 		txq->id = queue;
2594 		txq->size = pp->tx_ring_size;
2595 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2596 	}
2597 
2598 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2599 			   GFP_KERNEL);
2600 	if (!pp->rxqs) {
2601 		kfree(pp->txqs);
2602 		return -ENOMEM;
2603 	}
2604 
2605 	/* Create Rx descriptor rings */
2606 	for (queue = 0; queue < rxq_number; queue++) {
2607 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2608 		rxq->id = queue;
2609 		rxq->size = pp->rx_ring_size;
2610 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2611 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 static void mvneta_deinit(struct mvneta_port *pp)
2618 {
2619 	kfree(pp->txqs);
2620 	kfree(pp->rxqs);
2621 }
2622 
2623 /* platform glue : initialize decoding windows */
2624 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2625 				     const struct mbus_dram_target_info *dram)
2626 {
2627 	u32 win_enable;
2628 	u32 win_protect;
2629 	int i;
2630 
2631 	for (i = 0; i < 6; i++) {
2632 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2633 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2634 
2635 		if (i < 4)
2636 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2637 	}
2638 
2639 	win_enable = 0x3f;
2640 	win_protect = 0;
2641 
2642 	for (i = 0; i < dram->num_cs; i++) {
2643 		const struct mbus_dram_window *cs = dram->cs + i;
2644 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2645 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2646 
2647 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2648 			    (cs->size - 1) & 0xffff0000);
2649 
2650 		win_enable &= ~(1 << i);
2651 		win_protect |= 3 << (2 * i);
2652 	}
2653 
2654 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2655 }
2656 
2657 /* Power up the port */
2658 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2659 {
2660 	u32 val;
2661 
2662 	/* MAC Cause register should be cleared */
2663 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2664 
2665 	if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2666 		mvneta_port_sgmii_config(pp);
2667 
2668 	mvneta_gmac_rgmii_set(pp, 1);
2669 
2670 	/* Cancel Port Reset */
2671 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2672 	val &= ~MVNETA_GMAC2_PORT_RESET;
2673 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2674 
2675 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2676 		MVNETA_GMAC2_PORT_RESET) != 0)
2677 		continue;
2678 }
2679 
2680 /* Device initialization routine */
2681 static int mvneta_probe(struct platform_device *pdev)
2682 {
2683 	const struct mbus_dram_target_info *dram_target_info;
2684 	struct device_node *dn = pdev->dev.of_node;
2685 	struct device_node *phy_node;
2686 	u32 phy_addr;
2687 	struct mvneta_port *pp;
2688 	struct net_device *dev;
2689 	const char *dt_mac_addr;
2690 	char hw_mac_addr[ETH_ALEN];
2691 	const char *mac_from;
2692 	int phy_mode;
2693 	int err;
2694 
2695 	/* Our multiqueue support is not complete, so for now, only
2696 	 * allow the usage of the first RX queue
2697 	 */
2698 	if (rxq_def != 0) {
2699 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2700 		return -EINVAL;
2701 	}
2702 
2703 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2704 	if (!dev)
2705 		return -ENOMEM;
2706 
2707 	dev->irq = irq_of_parse_and_map(dn, 0);
2708 	if (dev->irq == 0) {
2709 		err = -EINVAL;
2710 		goto err_free_netdev;
2711 	}
2712 
2713 	phy_node = of_parse_phandle(dn, "phy", 0);
2714 	if (!phy_node) {
2715 		dev_err(&pdev->dev, "no associated PHY\n");
2716 		err = -ENODEV;
2717 		goto err_free_irq;
2718 	}
2719 
2720 	phy_mode = of_get_phy_mode(dn);
2721 	if (phy_mode < 0) {
2722 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2723 		err = -EINVAL;
2724 		goto err_free_irq;
2725 	}
2726 
2727 	dev->tx_queue_len = MVNETA_MAX_TXD;
2728 	dev->watchdog_timeo = 5 * HZ;
2729 	dev->netdev_ops = &mvneta_netdev_ops;
2730 
2731 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2732 
2733 	pp = netdev_priv(dev);
2734 
2735 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2736 	pp->phy_node = phy_node;
2737 	pp->phy_interface = phy_mode;
2738 
2739 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2740 	if (IS_ERR(pp->clk)) {
2741 		err = PTR_ERR(pp->clk);
2742 		goto err_free_irq;
2743 	}
2744 
2745 	clk_prepare_enable(pp->clk);
2746 
2747 	pp->base = of_iomap(dn, 0);
2748 	if (pp->base == NULL) {
2749 		err = -ENOMEM;
2750 		goto err_clk;
2751 	}
2752 
2753 	dt_mac_addr = of_get_mac_address(dn);
2754 	if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
2755 		mac_from = "device tree";
2756 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
2757 	} else {
2758 		mvneta_get_mac_addr(pp, hw_mac_addr);
2759 		if (is_valid_ether_addr(hw_mac_addr)) {
2760 			mac_from = "hardware";
2761 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
2762 		} else {
2763 			mac_from = "random";
2764 			eth_hw_addr_random(dev);
2765 		}
2766 	}
2767 
2768 	pp->tx_done_timer.data = (unsigned long)dev;
2769 	pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2770 	init_timer(&pp->tx_done_timer);
2771 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2772 
2773 	pp->tx_ring_size = MVNETA_MAX_TXD;
2774 	pp->rx_ring_size = MVNETA_MAX_RXD;
2775 
2776 	pp->dev = dev;
2777 	SET_NETDEV_DEV(dev, &pdev->dev);
2778 
2779 	err = mvneta_init(pp, phy_addr);
2780 	if (err < 0) {
2781 		dev_err(&pdev->dev, "can't init eth hal\n");
2782 		goto err_unmap;
2783 	}
2784 	mvneta_port_power_up(pp, phy_mode);
2785 
2786 	dram_target_info = mv_mbus_dram_info();
2787 	if (dram_target_info)
2788 		mvneta_conf_mbus_windows(pp, dram_target_info);
2789 
2790 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2791 
2792 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2793 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2794 	dev->vlan_features |= NETIF_F_SG | NETIF_F_IP_CSUM;
2795 	dev->priv_flags |= IFF_UNICAST_FLT;
2796 
2797 	err = register_netdev(dev);
2798 	if (err < 0) {
2799 		dev_err(&pdev->dev, "failed to register\n");
2800 		goto err_deinit;
2801 	}
2802 
2803 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
2804 		    dev->dev_addr);
2805 
2806 	platform_set_drvdata(pdev, pp->dev);
2807 
2808 	return 0;
2809 
2810 err_deinit:
2811 	mvneta_deinit(pp);
2812 err_unmap:
2813 	iounmap(pp->base);
2814 err_clk:
2815 	clk_disable_unprepare(pp->clk);
2816 err_free_irq:
2817 	irq_dispose_mapping(dev->irq);
2818 err_free_netdev:
2819 	free_netdev(dev);
2820 	return err;
2821 }
2822 
2823 /* Device removal routine */
2824 static int mvneta_remove(struct platform_device *pdev)
2825 {
2826 	struct net_device  *dev = platform_get_drvdata(pdev);
2827 	struct mvneta_port *pp = netdev_priv(dev);
2828 
2829 	unregister_netdev(dev);
2830 	mvneta_deinit(pp);
2831 	clk_disable_unprepare(pp->clk);
2832 	iounmap(pp->base);
2833 	irq_dispose_mapping(dev->irq);
2834 	free_netdev(dev);
2835 
2836 	return 0;
2837 }
2838 
2839 static const struct of_device_id mvneta_match[] = {
2840 	{ .compatible = "marvell,armada-370-neta" },
2841 	{ }
2842 };
2843 MODULE_DEVICE_TABLE(of, mvneta_match);
2844 
2845 static struct platform_driver mvneta_driver = {
2846 	.probe = mvneta_probe,
2847 	.remove = mvneta_remove,
2848 	.driver = {
2849 		.name = MVNETA_DRIVER_NAME,
2850 		.of_match_table = mvneta_match,
2851 	},
2852 };
2853 
2854 module_platform_driver(mvneta_driver);
2855 
2856 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2857 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2858 MODULE_LICENSE("GPL");
2859 
2860 module_param(rxq_number, int, S_IRUGO);
2861 module_param(txq_number, int, S_IRUGO);
2862 
2863 module_param(rxq_def, int, S_IRUGO);
2864