1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/platform_device.h> 32 #include <linux/skbuff.h> 33 #include <net/ip.h> 34 #include <net/ipv6.h> 35 #include <net/tso.h> 36 37 /* Registers */ 38 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 39 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 40 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 41 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 42 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 43 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 44 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 45 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 46 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 47 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 48 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 49 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 52 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 53 #define MVNETA_PORT_RX_RESET 0x1cc0 54 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 55 #define MVNETA_PHY_ADDR 0x2000 56 #define MVNETA_PHY_ADDR_MASK 0x1f 57 #define MVNETA_MBUS_RETRY 0x2010 58 #define MVNETA_UNIT_INTR_CAUSE 0x2080 59 #define MVNETA_UNIT_CONTROL 0x20B0 60 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 61 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 62 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 63 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 64 #define MVNETA_BASE_ADDR_ENABLE 0x2290 65 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 66 #define MVNETA_PORT_CONFIG 0x2400 67 #define MVNETA_UNI_PROMISC_MODE BIT(0) 68 #define MVNETA_DEF_RXQ(q) ((q) << 1) 69 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 70 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 71 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 72 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 73 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 74 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 75 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 76 MVNETA_DEF_RXQ_ARP(q) | \ 77 MVNETA_DEF_RXQ_TCP(q) | \ 78 MVNETA_DEF_RXQ_UDP(q) | \ 79 MVNETA_DEF_RXQ_BPDU(q) | \ 80 MVNETA_TX_UNSET_ERR_SUM | \ 81 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 82 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 83 #define MVNETA_MAC_ADDR_LOW 0x2414 84 #define MVNETA_MAC_ADDR_HIGH 0x2418 85 #define MVNETA_SDMA_CONFIG 0x241c 86 #define MVNETA_SDMA_BRST_SIZE_16 4 87 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 88 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 89 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 90 #define MVNETA_DESC_SWAP BIT(6) 91 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 92 #define MVNETA_PORT_STATUS 0x2444 93 #define MVNETA_TX_IN_PRGRS BIT(1) 94 #define MVNETA_TX_FIFO_EMPTY BIT(8) 95 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 96 #define MVNETA_SERDES_CFG 0x24A0 97 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 98 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 99 #define MVNETA_TYPE_PRIO 0x24bc 100 #define MVNETA_FORCE_UNI BIT(21) 101 #define MVNETA_TXQ_CMD_1 0x24e4 102 #define MVNETA_TXQ_CMD 0x2448 103 #define MVNETA_TXQ_DISABLE_SHIFT 8 104 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 105 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 106 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 107 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 108 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 109 #define MVNETA_ACC_MODE 0x2500 110 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 111 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 112 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 113 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 114 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 115 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 116 117 /* Exception Interrupt Port/Queue Cause register 118 * 119 * Their behavior depend of the mapping done using the PCPX2Q 120 * registers. For a given CPU if the bit associated to a queue is not 121 * set, then for the register a read from this CPU will always return 122 * 0 and a write won't do anything 123 */ 124 125 #define MVNETA_INTR_NEW_CAUSE 0x25a0 126 #define MVNETA_INTR_NEW_MASK 0x25a4 127 128 /* bits 0..7 = TXQ SENT, one bit per queue. 129 * bits 8..15 = RXQ OCCUP, one bit per queue. 130 * bits 16..23 = RXQ FREE, one bit per queue. 131 * bit 29 = OLD_REG_SUM, see old reg ? 132 * bit 30 = TX_ERR_SUM, one bit for 4 ports 133 * bit 31 = MISC_SUM, one bit for 4 ports 134 */ 135 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 136 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 137 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 138 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 139 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 140 141 #define MVNETA_INTR_OLD_CAUSE 0x25a8 142 #define MVNETA_INTR_OLD_MASK 0x25ac 143 144 /* Data Path Port/Queue Cause Register */ 145 #define MVNETA_INTR_MISC_CAUSE 0x25b0 146 #define MVNETA_INTR_MISC_MASK 0x25b4 147 148 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 149 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 150 #define MVNETA_CAUSE_PTP BIT(4) 151 152 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 153 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 154 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 155 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 156 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 157 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 158 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 159 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 160 161 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 162 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 163 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 164 165 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 166 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 167 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 168 169 #define MVNETA_INTR_ENABLE 0x25b8 170 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 171 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 172 173 #define MVNETA_RXQ_CMD 0x2680 174 #define MVNETA_RXQ_DISABLE_SHIFT 8 175 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 176 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 177 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 178 #define MVNETA_GMAC_CTRL_0 0x2c00 179 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 180 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 181 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 182 #define MVNETA_GMAC_CTRL_2 0x2c08 183 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 184 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 185 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 186 #define MVNETA_GMAC2_PORT_RESET BIT(6) 187 #define MVNETA_GMAC_STATUS 0x2c10 188 #define MVNETA_GMAC_LINK_UP BIT(0) 189 #define MVNETA_GMAC_SPEED_1000 BIT(1) 190 #define MVNETA_GMAC_SPEED_100 BIT(2) 191 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 192 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 193 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 194 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 195 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 196 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 197 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 198 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 199 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 200 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 201 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 202 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 203 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 204 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 205 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 206 #define MVNETA_MIB_COUNTERS_BASE 0x3000 207 #define MVNETA_MIB_LATE_COLLISION 0x7c 208 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 209 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 210 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 211 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 212 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 213 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 214 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 215 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 216 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 217 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 218 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 219 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 220 #define MVNETA_PORT_TX_RESET 0x3cf0 221 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 222 #define MVNETA_TX_MTU 0x3e0c 223 #define MVNETA_TX_TOKEN_SIZE 0x3e14 224 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 226 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 227 228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 229 230 /* Descriptor ring Macros */ 231 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 232 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 233 234 /* Various constants */ 235 236 /* Coalescing */ 237 #define MVNETA_TXDONE_COAL_PKTS 1 238 #define MVNETA_RX_COAL_PKTS 32 239 #define MVNETA_RX_COAL_USEC 100 240 241 /* The two bytes Marvell header. Either contains a special value used 242 * by Marvell switches when a specific hardware mode is enabled (not 243 * supported by this driver) or is filled automatically by zeroes on 244 * the RX side. Those two bytes being at the front of the Ethernet 245 * header, they allow to have the IP header aligned on a 4 bytes 246 * boundary automatically: the hardware skips those two bytes on its 247 * own. 248 */ 249 #define MVNETA_MH_SIZE 2 250 251 #define MVNETA_VLAN_TAG_LEN 4 252 253 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 254 #define MVNETA_TX_CSUM_DEF_SIZE 1600 255 #define MVNETA_TX_CSUM_MAX_SIZE 9800 256 #define MVNETA_ACC_MODE_EXT 1 257 258 /* Timeout constants */ 259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 262 263 #define MVNETA_TX_MTU_MAX 0x3ffff 264 265 /* The RSS lookup table actually has 256 entries but we do not use 266 * them yet 267 */ 268 #define MVNETA_RSS_LU_TABLE_SIZE 1 269 270 /* TSO header size */ 271 #define TSO_HEADER_SIZE 128 272 273 /* Max number of Rx descriptors */ 274 #define MVNETA_MAX_RXD 128 275 276 /* Max number of Tx descriptors */ 277 #define MVNETA_MAX_TXD 532 278 279 /* Max number of allowed TCP segments for software TSO */ 280 #define MVNETA_MAX_TSO_SEGS 100 281 282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 283 284 /* descriptor aligned size */ 285 #define MVNETA_DESC_ALIGNED_SIZE 32 286 287 #define MVNETA_RX_PKT_SIZE(mtu) \ 288 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 289 ETH_HLEN + ETH_FCS_LEN, \ 290 MVNETA_CPU_D_CACHE_LINE_SIZE) 291 292 #define IS_TSO_HEADER(txq, addr) \ 293 ((addr >= txq->tso_hdrs_phys) && \ 294 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 295 296 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 297 298 struct mvneta_statistic { 299 unsigned short offset; 300 unsigned short type; 301 const char name[ETH_GSTRING_LEN]; 302 }; 303 304 #define T_REG_32 32 305 #define T_REG_64 64 306 307 static const struct mvneta_statistic mvneta_statistics[] = { 308 { 0x3000, T_REG_64, "good_octets_received", }, 309 { 0x3010, T_REG_32, "good_frames_received", }, 310 { 0x3008, T_REG_32, "bad_octets_received", }, 311 { 0x3014, T_REG_32, "bad_frames_received", }, 312 { 0x3018, T_REG_32, "broadcast_frames_received", }, 313 { 0x301c, T_REG_32, "multicast_frames_received", }, 314 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 315 { 0x3058, T_REG_32, "good_fc_received", }, 316 { 0x305c, T_REG_32, "bad_fc_received", }, 317 { 0x3060, T_REG_32, "undersize_received", }, 318 { 0x3064, T_REG_32, "fragments_received", }, 319 { 0x3068, T_REG_32, "oversize_received", }, 320 { 0x306c, T_REG_32, "jabber_received", }, 321 { 0x3070, T_REG_32, "mac_receive_error", }, 322 { 0x3074, T_REG_32, "bad_crc_event", }, 323 { 0x3078, T_REG_32, "collision", }, 324 { 0x307c, T_REG_32, "late_collision", }, 325 { 0x2484, T_REG_32, "rx_discard", }, 326 { 0x2488, T_REG_32, "rx_overrun", }, 327 { 0x3020, T_REG_32, "frames_64_octets", }, 328 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 329 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 330 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 331 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 332 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 333 { 0x3038, T_REG_64, "good_octets_sent", }, 334 { 0x3040, T_REG_32, "good_frames_sent", }, 335 { 0x3044, T_REG_32, "excessive_collision", }, 336 { 0x3048, T_REG_32, "multicast_frames_sent", }, 337 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 338 { 0x3054, T_REG_32, "fc_sent", }, 339 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 340 }; 341 342 struct mvneta_pcpu_stats { 343 struct u64_stats_sync syncp; 344 u64 rx_packets; 345 u64 rx_bytes; 346 u64 tx_packets; 347 u64 tx_bytes; 348 }; 349 350 struct mvneta_pcpu_port { 351 /* Pointer to the shared port */ 352 struct mvneta_port *pp; 353 354 /* Pointer to the CPU-local NAPI struct */ 355 struct napi_struct napi; 356 357 /* Cause of the previous interrupt */ 358 u32 cause_rx_tx; 359 }; 360 361 struct mvneta_port { 362 struct mvneta_pcpu_port __percpu *ports; 363 struct mvneta_pcpu_stats __percpu *stats; 364 365 int pkt_size; 366 unsigned int frag_size; 367 void __iomem *base; 368 struct mvneta_rx_queue *rxqs; 369 struct mvneta_tx_queue *txqs; 370 struct net_device *dev; 371 struct notifier_block cpu_notifier; 372 int rxq_def; 373 374 /* Core clock */ 375 struct clk *clk; 376 /* AXI clock */ 377 struct clk *clk_bus; 378 u8 mcast_count[256]; 379 u16 tx_ring_size; 380 u16 rx_ring_size; 381 382 struct mii_bus *mii_bus; 383 struct phy_device *phy_dev; 384 phy_interface_t phy_interface; 385 struct device_node *phy_node; 386 unsigned int link; 387 unsigned int duplex; 388 unsigned int speed; 389 unsigned int tx_csum_limit; 390 unsigned int use_inband_status:1; 391 392 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 393 394 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 395 }; 396 397 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 398 * layout of the transmit and reception DMA descriptors, and their 399 * layout is therefore defined by the hardware design 400 */ 401 402 #define MVNETA_TX_L3_OFF_SHIFT 0 403 #define MVNETA_TX_IP_HLEN_SHIFT 8 404 #define MVNETA_TX_L4_UDP BIT(16) 405 #define MVNETA_TX_L3_IP6 BIT(17) 406 #define MVNETA_TXD_IP_CSUM BIT(18) 407 #define MVNETA_TXD_Z_PAD BIT(19) 408 #define MVNETA_TXD_L_DESC BIT(20) 409 #define MVNETA_TXD_F_DESC BIT(21) 410 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 411 MVNETA_TXD_L_DESC | \ 412 MVNETA_TXD_F_DESC) 413 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 414 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 415 416 #define MVNETA_RXD_ERR_CRC 0x0 417 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 418 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 419 #define MVNETA_RXD_ERR_LEN BIT(18) 420 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 421 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 422 #define MVNETA_RXD_L3_IP4 BIT(25) 423 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 424 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 425 426 #if defined(__LITTLE_ENDIAN) 427 struct mvneta_tx_desc { 428 u32 command; /* Options used by HW for packet transmitting.*/ 429 u16 reserverd1; /* csum_l4 (for future use) */ 430 u16 data_size; /* Data size of transmitted packet in bytes */ 431 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 432 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 433 u32 reserved3[4]; /* Reserved - (for future use) */ 434 }; 435 436 struct mvneta_rx_desc { 437 u32 status; /* Info about received packet */ 438 u16 reserved1; /* pnc_info - (for future use, PnC) */ 439 u16 data_size; /* Size of received packet in bytes */ 440 441 u32 buf_phys_addr; /* Physical address of the buffer */ 442 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 443 444 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 445 u16 reserved3; /* prefetch_cmd, for future use */ 446 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 447 448 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 449 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 450 }; 451 #else 452 struct mvneta_tx_desc { 453 u16 data_size; /* Data size of transmitted packet in bytes */ 454 u16 reserverd1; /* csum_l4 (for future use) */ 455 u32 command; /* Options used by HW for packet transmitting.*/ 456 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 457 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 458 u32 reserved3[4]; /* Reserved - (for future use) */ 459 }; 460 461 struct mvneta_rx_desc { 462 u16 data_size; /* Size of received packet in bytes */ 463 u16 reserved1; /* pnc_info - (for future use, PnC) */ 464 u32 status; /* Info about received packet */ 465 466 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 467 u32 buf_phys_addr; /* Physical address of the buffer */ 468 469 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 470 u16 reserved3; /* prefetch_cmd, for future use */ 471 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 472 473 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 474 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 475 }; 476 #endif 477 478 struct mvneta_tx_queue { 479 /* Number of this TX queue, in the range 0-7 */ 480 u8 id; 481 482 /* Number of TX DMA descriptors in the descriptor ring */ 483 int size; 484 485 /* Number of currently used TX DMA descriptor in the 486 * descriptor ring 487 */ 488 int count; 489 int tx_stop_threshold; 490 int tx_wake_threshold; 491 492 /* Array of transmitted skb */ 493 struct sk_buff **tx_skb; 494 495 /* Index of last TX DMA descriptor that was inserted */ 496 int txq_put_index; 497 498 /* Index of the TX DMA descriptor to be cleaned up */ 499 int txq_get_index; 500 501 u32 done_pkts_coal; 502 503 /* Virtual address of the TX DMA descriptors array */ 504 struct mvneta_tx_desc *descs; 505 506 /* DMA address of the TX DMA descriptors array */ 507 dma_addr_t descs_phys; 508 509 /* Index of the last TX DMA descriptor */ 510 int last_desc; 511 512 /* Index of the next TX DMA descriptor to process */ 513 int next_desc_to_proc; 514 515 /* DMA buffers for TSO headers */ 516 char *tso_hdrs; 517 518 /* DMA address of TSO headers */ 519 dma_addr_t tso_hdrs_phys; 520 521 /* Affinity mask for CPUs*/ 522 cpumask_t affinity_mask; 523 }; 524 525 struct mvneta_rx_queue { 526 /* rx queue number, in the range 0-7 */ 527 u8 id; 528 529 /* num of rx descriptors in the rx descriptor ring */ 530 int size; 531 532 /* counter of times when mvneta_refill() failed */ 533 int missed; 534 535 u32 pkts_coal; 536 u32 time_coal; 537 538 /* Virtual address of the RX DMA descriptors array */ 539 struct mvneta_rx_desc *descs; 540 541 /* DMA address of the RX DMA descriptors array */ 542 dma_addr_t descs_phys; 543 544 /* Index of the last RX DMA descriptor */ 545 int last_desc; 546 547 /* Index of the next RX DMA descriptor to process */ 548 int next_desc_to_proc; 549 }; 550 551 /* The hardware supports eight (8) rx queues, but we are only allowing 552 * the first one to be used. Therefore, let's just allocate one queue. 553 */ 554 static int rxq_number = 8; 555 static int txq_number = 8; 556 557 static int rxq_def; 558 559 static int rx_copybreak __read_mostly = 256; 560 561 #define MVNETA_DRIVER_NAME "mvneta" 562 #define MVNETA_DRIVER_VERSION "1.0" 563 564 /* Utility/helper methods */ 565 566 /* Write helper method */ 567 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 568 { 569 writel(data, pp->base + offset); 570 } 571 572 /* Read helper method */ 573 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 574 { 575 return readl(pp->base + offset); 576 } 577 578 /* Increment txq get counter */ 579 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 580 { 581 txq->txq_get_index++; 582 if (txq->txq_get_index == txq->size) 583 txq->txq_get_index = 0; 584 } 585 586 /* Increment txq put counter */ 587 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 588 { 589 txq->txq_put_index++; 590 if (txq->txq_put_index == txq->size) 591 txq->txq_put_index = 0; 592 } 593 594 595 /* Clear all MIB counters */ 596 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 597 { 598 int i; 599 u32 dummy; 600 601 /* Perform dummy reads from MIB counters */ 602 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 603 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 604 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 605 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 606 } 607 608 /* Get System Network Statistics */ 609 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 610 struct rtnl_link_stats64 *stats) 611 { 612 struct mvneta_port *pp = netdev_priv(dev); 613 unsigned int start; 614 int cpu; 615 616 for_each_possible_cpu(cpu) { 617 struct mvneta_pcpu_stats *cpu_stats; 618 u64 rx_packets; 619 u64 rx_bytes; 620 u64 tx_packets; 621 u64 tx_bytes; 622 623 cpu_stats = per_cpu_ptr(pp->stats, cpu); 624 do { 625 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 626 rx_packets = cpu_stats->rx_packets; 627 rx_bytes = cpu_stats->rx_bytes; 628 tx_packets = cpu_stats->tx_packets; 629 tx_bytes = cpu_stats->tx_bytes; 630 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 631 632 stats->rx_packets += rx_packets; 633 stats->rx_bytes += rx_bytes; 634 stats->tx_packets += tx_packets; 635 stats->tx_bytes += tx_bytes; 636 } 637 638 stats->rx_errors = dev->stats.rx_errors; 639 stats->rx_dropped = dev->stats.rx_dropped; 640 641 stats->tx_dropped = dev->stats.tx_dropped; 642 643 return stats; 644 } 645 646 /* Rx descriptors helper methods */ 647 648 /* Checks whether the RX descriptor having this status is both the first 649 * and the last descriptor for the RX packet. Each RX packet is currently 650 * received through a single RX descriptor, so not having each RX 651 * descriptor with its first and last bits set is an error 652 */ 653 static int mvneta_rxq_desc_is_first_last(u32 status) 654 { 655 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 656 MVNETA_RXD_FIRST_LAST_DESC; 657 } 658 659 /* Add number of descriptors ready to receive new packets */ 660 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 661 struct mvneta_rx_queue *rxq, 662 int ndescs) 663 { 664 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 665 * be added at once 666 */ 667 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 668 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 669 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 670 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 671 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 672 } 673 674 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 675 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 676 } 677 678 /* Get number of RX descriptors occupied by received packets */ 679 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 680 struct mvneta_rx_queue *rxq) 681 { 682 u32 val; 683 684 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 685 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 686 } 687 688 /* Update num of rx desc called upon return from rx path or 689 * from mvneta_rxq_drop_pkts(). 690 */ 691 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 692 struct mvneta_rx_queue *rxq, 693 int rx_done, int rx_filled) 694 { 695 u32 val; 696 697 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 698 val = rx_done | 699 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 700 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 701 return; 702 } 703 704 /* Only 255 descriptors can be added at once */ 705 while ((rx_done > 0) || (rx_filled > 0)) { 706 if (rx_done <= 0xff) { 707 val = rx_done; 708 rx_done = 0; 709 } else { 710 val = 0xff; 711 rx_done -= 0xff; 712 } 713 if (rx_filled <= 0xff) { 714 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 715 rx_filled = 0; 716 } else { 717 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 718 rx_filled -= 0xff; 719 } 720 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 721 } 722 } 723 724 /* Get pointer to next RX descriptor to be processed by SW */ 725 static struct mvneta_rx_desc * 726 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 727 { 728 int rx_desc = rxq->next_desc_to_proc; 729 730 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 731 prefetch(rxq->descs + rxq->next_desc_to_proc); 732 return rxq->descs + rx_desc; 733 } 734 735 /* Change maximum receive size of the port. */ 736 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 737 { 738 u32 val; 739 740 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 741 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 742 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 743 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 744 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 745 } 746 747 748 /* Set rx queue offset */ 749 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 750 struct mvneta_rx_queue *rxq, 751 int offset) 752 { 753 u32 val; 754 755 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 756 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 757 758 /* Offset is in */ 759 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 760 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 761 } 762 763 764 /* Tx descriptors helper methods */ 765 766 /* Update HW with number of TX descriptors to be sent */ 767 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 768 struct mvneta_tx_queue *txq, 769 int pend_desc) 770 { 771 u32 val; 772 773 /* Only 255 descriptors can be added at once ; Assume caller 774 * process TX desriptors in quanta less than 256 775 */ 776 val = pend_desc; 777 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 778 } 779 780 /* Get pointer to next TX descriptor to be processed (send) by HW */ 781 static struct mvneta_tx_desc * 782 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 783 { 784 int tx_desc = txq->next_desc_to_proc; 785 786 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 787 return txq->descs + tx_desc; 788 } 789 790 /* Release the last allocated TX descriptor. Useful to handle DMA 791 * mapping failures in the TX path. 792 */ 793 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 794 { 795 if (txq->next_desc_to_proc == 0) 796 txq->next_desc_to_proc = txq->last_desc - 1; 797 else 798 txq->next_desc_to_proc--; 799 } 800 801 /* Set rxq buf size */ 802 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 803 struct mvneta_rx_queue *rxq, 804 int buf_size) 805 { 806 u32 val; 807 808 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 809 810 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 811 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 812 813 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 814 } 815 816 /* Disable buffer management (BM) */ 817 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 818 struct mvneta_rx_queue *rxq) 819 { 820 u32 val; 821 822 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 823 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 824 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 825 } 826 827 /* Start the Ethernet port RX and TX activity */ 828 static void mvneta_port_up(struct mvneta_port *pp) 829 { 830 int queue; 831 u32 q_map; 832 833 /* Enable all initialized TXs. */ 834 q_map = 0; 835 for (queue = 0; queue < txq_number; queue++) { 836 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 837 if (txq->descs != NULL) 838 q_map |= (1 << queue); 839 } 840 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 841 842 /* Enable all initialized RXQs. */ 843 for (queue = 0; queue < rxq_number; queue++) { 844 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 845 846 if (rxq->descs != NULL) 847 q_map |= (1 << queue); 848 } 849 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 850 } 851 852 /* Stop the Ethernet port activity */ 853 static void mvneta_port_down(struct mvneta_port *pp) 854 { 855 u32 val; 856 int count; 857 858 /* Stop Rx port activity. Check port Rx activity. */ 859 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 860 861 /* Issue stop command for active channels only */ 862 if (val != 0) 863 mvreg_write(pp, MVNETA_RXQ_CMD, 864 val << MVNETA_RXQ_DISABLE_SHIFT); 865 866 /* Wait for all Rx activity to terminate. */ 867 count = 0; 868 do { 869 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 870 netdev_warn(pp->dev, 871 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 872 val); 873 break; 874 } 875 mdelay(1); 876 877 val = mvreg_read(pp, MVNETA_RXQ_CMD); 878 } while (val & 0xff); 879 880 /* Stop Tx port activity. Check port Tx activity. Issue stop 881 * command for active channels only 882 */ 883 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 884 885 if (val != 0) 886 mvreg_write(pp, MVNETA_TXQ_CMD, 887 (val << MVNETA_TXQ_DISABLE_SHIFT)); 888 889 /* Wait for all Tx activity to terminate. */ 890 count = 0; 891 do { 892 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 893 netdev_warn(pp->dev, 894 "TIMEOUT for TX stopped status=0x%08x\n", 895 val); 896 break; 897 } 898 mdelay(1); 899 900 /* Check TX Command reg that all Txqs are stopped */ 901 val = mvreg_read(pp, MVNETA_TXQ_CMD); 902 903 } while (val & 0xff); 904 905 /* Double check to verify that TX FIFO is empty */ 906 count = 0; 907 do { 908 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 909 netdev_warn(pp->dev, 910 "TX FIFO empty timeout status=0x08%x\n", 911 val); 912 break; 913 } 914 mdelay(1); 915 916 val = mvreg_read(pp, MVNETA_PORT_STATUS); 917 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 918 (val & MVNETA_TX_IN_PRGRS)); 919 920 udelay(200); 921 } 922 923 /* Enable the port by setting the port enable bit of the MAC control register */ 924 static void mvneta_port_enable(struct mvneta_port *pp) 925 { 926 u32 val; 927 928 /* Enable port */ 929 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 930 val |= MVNETA_GMAC0_PORT_ENABLE; 931 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 932 } 933 934 /* Disable the port and wait for about 200 usec before retuning */ 935 static void mvneta_port_disable(struct mvneta_port *pp) 936 { 937 u32 val; 938 939 /* Reset the Enable bit in the Serial Control Register */ 940 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 941 val &= ~MVNETA_GMAC0_PORT_ENABLE; 942 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 943 944 udelay(200); 945 } 946 947 /* Multicast tables methods */ 948 949 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 950 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 951 { 952 int offset; 953 u32 val; 954 955 if (queue == -1) { 956 val = 0; 957 } else { 958 val = 0x1 | (queue << 1); 959 val |= (val << 24) | (val << 16) | (val << 8); 960 } 961 962 for (offset = 0; offset <= 0xc; offset += 4) 963 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 964 } 965 966 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 967 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 968 { 969 int offset; 970 u32 val; 971 972 if (queue == -1) { 973 val = 0; 974 } else { 975 val = 0x1 | (queue << 1); 976 val |= (val << 24) | (val << 16) | (val << 8); 977 } 978 979 for (offset = 0; offset <= 0xfc; offset += 4) 980 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 981 982 } 983 984 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 985 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 986 { 987 int offset; 988 u32 val; 989 990 if (queue == -1) { 991 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 992 val = 0; 993 } else { 994 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 995 val = 0x1 | (queue << 1); 996 val |= (val << 24) | (val << 16) | (val << 8); 997 } 998 999 for (offset = 0; offset <= 0xfc; offset += 4) 1000 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1001 } 1002 1003 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1004 { 1005 u32 val; 1006 1007 if (enable) { 1008 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1009 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1010 MVNETA_GMAC_FORCE_LINK_DOWN | 1011 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1012 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1013 MVNETA_GMAC_AN_SPEED_EN | 1014 MVNETA_GMAC_AN_DUPLEX_EN; 1015 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1016 1017 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1018 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1019 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1020 1021 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1022 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1023 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1024 } else { 1025 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1026 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1027 MVNETA_GMAC_AN_SPEED_EN | 1028 MVNETA_GMAC_AN_DUPLEX_EN); 1029 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1030 1031 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1032 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1033 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1034 1035 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1036 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1037 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1038 } 1039 } 1040 1041 /* This method sets defaults to the NETA port: 1042 * Clears interrupt Cause and Mask registers. 1043 * Clears all MAC tables. 1044 * Sets defaults to all registers. 1045 * Resets RX and TX descriptor rings. 1046 * Resets PHY. 1047 * This method can be called after mvneta_port_down() to return the port 1048 * settings to defaults. 1049 */ 1050 static void mvneta_defaults_set(struct mvneta_port *pp) 1051 { 1052 int cpu; 1053 int queue; 1054 u32 val; 1055 int max_cpu = num_present_cpus(); 1056 1057 /* Clear all Cause registers */ 1058 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1059 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1060 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1061 1062 /* Mask all interrupts */ 1063 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1064 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1065 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1066 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1067 1068 /* Enable MBUS Retry bit16 */ 1069 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1070 1071 /* Set CPU queue access map. CPUs are assigned to the RX and 1072 * TX queues modulo their number. If there is only one TX 1073 * queue then it is assigned to the CPU associated to the 1074 * default RX queue. 1075 */ 1076 for_each_present_cpu(cpu) { 1077 int rxq_map = 0, txq_map = 0; 1078 int rxq, txq; 1079 1080 for (rxq = 0; rxq < rxq_number; rxq++) 1081 if ((rxq % max_cpu) == cpu) 1082 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1083 1084 for (txq = 0; txq < txq_number; txq++) 1085 if ((txq % max_cpu) == cpu) 1086 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1087 1088 /* With only one TX queue we configure a special case 1089 * which will allow to get all the irq on a single 1090 * CPU 1091 */ 1092 if (txq_number == 1) 1093 txq_map = (cpu == pp->rxq_def) ? 1094 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1095 1096 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1097 } 1098 1099 /* Reset RX and TX DMAs */ 1100 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1101 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1102 1103 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1104 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1105 for (queue = 0; queue < txq_number; queue++) { 1106 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1107 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1108 } 1109 1110 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1111 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1112 1113 /* Set Port Acceleration Mode */ 1114 val = MVNETA_ACC_MODE_EXT; 1115 mvreg_write(pp, MVNETA_ACC_MODE, val); 1116 1117 /* Update val of portCfg register accordingly with all RxQueue types */ 1118 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1119 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1120 1121 val = 0; 1122 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1123 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1124 1125 /* Build PORT_SDMA_CONFIG_REG */ 1126 val = 0; 1127 1128 /* Default burst size */ 1129 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1130 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1131 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1132 1133 #if defined(__BIG_ENDIAN) 1134 val |= MVNETA_DESC_SWAP; 1135 #endif 1136 1137 /* Assign port SDMA configuration */ 1138 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1139 1140 /* Disable PHY polling in hardware, since we're using the 1141 * kernel phylib to do this. 1142 */ 1143 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1144 val &= ~MVNETA_PHY_POLLING_ENABLE; 1145 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1146 1147 mvneta_set_autoneg(pp, pp->use_inband_status); 1148 mvneta_set_ucast_table(pp, -1); 1149 mvneta_set_special_mcast_table(pp, -1); 1150 mvneta_set_other_mcast_table(pp, -1); 1151 1152 /* Set port interrupt enable register - default enable all */ 1153 mvreg_write(pp, MVNETA_INTR_ENABLE, 1154 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1155 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1156 1157 mvneta_mib_counters_clear(pp); 1158 } 1159 1160 /* Set max sizes for tx queues */ 1161 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1162 1163 { 1164 u32 val, size, mtu; 1165 int queue; 1166 1167 mtu = max_tx_size * 8; 1168 if (mtu > MVNETA_TX_MTU_MAX) 1169 mtu = MVNETA_TX_MTU_MAX; 1170 1171 /* Set MTU */ 1172 val = mvreg_read(pp, MVNETA_TX_MTU); 1173 val &= ~MVNETA_TX_MTU_MAX; 1174 val |= mtu; 1175 mvreg_write(pp, MVNETA_TX_MTU, val); 1176 1177 /* TX token size and all TXQs token size must be larger that MTU */ 1178 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1179 1180 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1181 if (size < mtu) { 1182 size = mtu; 1183 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1184 val |= size; 1185 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1186 } 1187 for (queue = 0; queue < txq_number; queue++) { 1188 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1189 1190 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1191 if (size < mtu) { 1192 size = mtu; 1193 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1194 val |= size; 1195 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1196 } 1197 } 1198 } 1199 1200 /* Set unicast address */ 1201 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1202 int queue) 1203 { 1204 unsigned int unicast_reg; 1205 unsigned int tbl_offset; 1206 unsigned int reg_offset; 1207 1208 /* Locate the Unicast table entry */ 1209 last_nibble = (0xf & last_nibble); 1210 1211 /* offset from unicast tbl base */ 1212 tbl_offset = (last_nibble / 4) * 4; 1213 1214 /* offset within the above reg */ 1215 reg_offset = last_nibble % 4; 1216 1217 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1218 1219 if (queue == -1) { 1220 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1221 unicast_reg &= ~(0xff << (8 * reg_offset)); 1222 } else { 1223 unicast_reg &= ~(0xff << (8 * reg_offset)); 1224 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1225 } 1226 1227 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1228 } 1229 1230 /* Set mac address */ 1231 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1232 int queue) 1233 { 1234 unsigned int mac_h; 1235 unsigned int mac_l; 1236 1237 if (queue != -1) { 1238 mac_l = (addr[4] << 8) | (addr[5]); 1239 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1240 (addr[2] << 8) | (addr[3] << 0); 1241 1242 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1243 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1244 } 1245 1246 /* Accept frames of this address */ 1247 mvneta_set_ucast_addr(pp, addr[5], queue); 1248 } 1249 1250 /* Set the number of packets that will be received before RX interrupt 1251 * will be generated by HW. 1252 */ 1253 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1254 struct mvneta_rx_queue *rxq, u32 value) 1255 { 1256 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1257 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1258 rxq->pkts_coal = value; 1259 } 1260 1261 /* Set the time delay in usec before RX interrupt will be generated by 1262 * HW. 1263 */ 1264 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1265 struct mvneta_rx_queue *rxq, u32 value) 1266 { 1267 u32 val; 1268 unsigned long clk_rate; 1269 1270 clk_rate = clk_get_rate(pp->clk); 1271 val = (clk_rate / 1000000) * value; 1272 1273 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1274 rxq->time_coal = value; 1275 } 1276 1277 /* Set threshold for TX_DONE pkts coalescing */ 1278 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1279 struct mvneta_tx_queue *txq, u32 value) 1280 { 1281 u32 val; 1282 1283 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1284 1285 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1286 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1287 1288 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1289 1290 txq->done_pkts_coal = value; 1291 } 1292 1293 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1294 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1295 u32 phys_addr, u32 cookie) 1296 { 1297 rx_desc->buf_cookie = cookie; 1298 rx_desc->buf_phys_addr = phys_addr; 1299 } 1300 1301 /* Decrement sent descriptors counter */ 1302 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1303 struct mvneta_tx_queue *txq, 1304 int sent_desc) 1305 { 1306 u32 val; 1307 1308 /* Only 255 TX descriptors can be updated at once */ 1309 while (sent_desc > 0xff) { 1310 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1311 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1312 sent_desc = sent_desc - 0xff; 1313 } 1314 1315 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1316 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1317 } 1318 1319 /* Get number of TX descriptors already sent by HW */ 1320 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1321 struct mvneta_tx_queue *txq) 1322 { 1323 u32 val; 1324 int sent_desc; 1325 1326 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1327 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1328 MVNETA_TXQ_SENT_DESC_SHIFT; 1329 1330 return sent_desc; 1331 } 1332 1333 /* Get number of sent descriptors and decrement counter. 1334 * The number of sent descriptors is returned. 1335 */ 1336 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1337 struct mvneta_tx_queue *txq) 1338 { 1339 int sent_desc; 1340 1341 /* Get number of sent descriptors */ 1342 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1343 1344 /* Decrement sent descriptors counter */ 1345 if (sent_desc) 1346 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1347 1348 return sent_desc; 1349 } 1350 1351 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1352 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1353 int ip_hdr_len, int l4_proto) 1354 { 1355 u32 command; 1356 1357 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1358 * G_L4_chk, L4_type; required only for checksum 1359 * calculation 1360 */ 1361 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1362 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1363 1364 if (l3_proto == htons(ETH_P_IP)) 1365 command |= MVNETA_TXD_IP_CSUM; 1366 else 1367 command |= MVNETA_TX_L3_IP6; 1368 1369 if (l4_proto == IPPROTO_TCP) 1370 command |= MVNETA_TX_L4_CSUM_FULL; 1371 else if (l4_proto == IPPROTO_UDP) 1372 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1373 else 1374 command |= MVNETA_TX_L4_CSUM_NOT; 1375 1376 return command; 1377 } 1378 1379 1380 /* Display more error info */ 1381 static void mvneta_rx_error(struct mvneta_port *pp, 1382 struct mvneta_rx_desc *rx_desc) 1383 { 1384 u32 status = rx_desc->status; 1385 1386 if (!mvneta_rxq_desc_is_first_last(status)) { 1387 netdev_err(pp->dev, 1388 "bad rx status %08x (buffer oversize), size=%d\n", 1389 status, rx_desc->data_size); 1390 return; 1391 } 1392 1393 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1394 case MVNETA_RXD_ERR_CRC: 1395 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1396 status, rx_desc->data_size); 1397 break; 1398 case MVNETA_RXD_ERR_OVERRUN: 1399 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1400 status, rx_desc->data_size); 1401 break; 1402 case MVNETA_RXD_ERR_LEN: 1403 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1404 status, rx_desc->data_size); 1405 break; 1406 case MVNETA_RXD_ERR_RESOURCE: 1407 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1408 status, rx_desc->data_size); 1409 break; 1410 } 1411 } 1412 1413 /* Handle RX checksum offload based on the descriptor's status */ 1414 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1415 struct sk_buff *skb) 1416 { 1417 if ((status & MVNETA_RXD_L3_IP4) && 1418 (status & MVNETA_RXD_L4_CSUM_OK)) { 1419 skb->csum = 0; 1420 skb->ip_summed = CHECKSUM_UNNECESSARY; 1421 return; 1422 } 1423 1424 skb->ip_summed = CHECKSUM_NONE; 1425 } 1426 1427 /* Return tx queue pointer (find last set bit) according to <cause> returned 1428 * form tx_done reg. <cause> must not be null. The return value is always a 1429 * valid queue for matching the first one found in <cause>. 1430 */ 1431 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1432 u32 cause) 1433 { 1434 int queue = fls(cause) - 1; 1435 1436 return &pp->txqs[queue]; 1437 } 1438 1439 /* Free tx queue skbuffs */ 1440 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1441 struct mvneta_tx_queue *txq, int num) 1442 { 1443 int i; 1444 1445 for (i = 0; i < num; i++) { 1446 struct mvneta_tx_desc *tx_desc = txq->descs + 1447 txq->txq_get_index; 1448 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1449 1450 mvneta_txq_inc_get(txq); 1451 1452 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1453 dma_unmap_single(pp->dev->dev.parent, 1454 tx_desc->buf_phys_addr, 1455 tx_desc->data_size, DMA_TO_DEVICE); 1456 if (!skb) 1457 continue; 1458 dev_kfree_skb_any(skb); 1459 } 1460 } 1461 1462 /* Handle end of transmission */ 1463 static void mvneta_txq_done(struct mvneta_port *pp, 1464 struct mvneta_tx_queue *txq) 1465 { 1466 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1467 int tx_done; 1468 1469 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1470 if (!tx_done) 1471 return; 1472 1473 mvneta_txq_bufs_free(pp, txq, tx_done); 1474 1475 txq->count -= tx_done; 1476 1477 if (netif_tx_queue_stopped(nq)) { 1478 if (txq->count <= txq->tx_wake_threshold) 1479 netif_tx_wake_queue(nq); 1480 } 1481 } 1482 1483 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1484 { 1485 if (likely(pp->frag_size <= PAGE_SIZE)) 1486 return netdev_alloc_frag(pp->frag_size); 1487 else 1488 return kmalloc(pp->frag_size, GFP_ATOMIC); 1489 } 1490 1491 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1492 { 1493 if (likely(pp->frag_size <= PAGE_SIZE)) 1494 skb_free_frag(data); 1495 else 1496 kfree(data); 1497 } 1498 1499 /* Refill processing */ 1500 static int mvneta_rx_refill(struct mvneta_port *pp, 1501 struct mvneta_rx_desc *rx_desc) 1502 1503 { 1504 dma_addr_t phys_addr; 1505 void *data; 1506 1507 data = mvneta_frag_alloc(pp); 1508 if (!data) 1509 return -ENOMEM; 1510 1511 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1512 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1513 DMA_FROM_DEVICE); 1514 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1515 mvneta_frag_free(pp, data); 1516 return -ENOMEM; 1517 } 1518 1519 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1520 return 0; 1521 } 1522 1523 /* Handle tx checksum */ 1524 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1525 { 1526 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1527 int ip_hdr_len = 0; 1528 __be16 l3_proto = vlan_get_protocol(skb); 1529 u8 l4_proto; 1530 1531 if (l3_proto == htons(ETH_P_IP)) { 1532 struct iphdr *ip4h = ip_hdr(skb); 1533 1534 /* Calculate IPv4 checksum and L4 checksum */ 1535 ip_hdr_len = ip4h->ihl; 1536 l4_proto = ip4h->protocol; 1537 } else if (l3_proto == htons(ETH_P_IPV6)) { 1538 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1539 1540 /* Read l4_protocol from one of IPv6 extra headers */ 1541 if (skb_network_header_len(skb) > 0) 1542 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1543 l4_proto = ip6h->nexthdr; 1544 } else 1545 return MVNETA_TX_L4_CSUM_NOT; 1546 1547 return mvneta_txq_desc_csum(skb_network_offset(skb), 1548 l3_proto, ip_hdr_len, l4_proto); 1549 } 1550 1551 return MVNETA_TX_L4_CSUM_NOT; 1552 } 1553 1554 /* Drop packets received by the RXQ and free buffers */ 1555 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1556 struct mvneta_rx_queue *rxq) 1557 { 1558 int rx_done, i; 1559 1560 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1561 for (i = 0; i < rxq->size; i++) { 1562 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1563 void *data = (void *)rx_desc->buf_cookie; 1564 1565 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1566 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1567 mvneta_frag_free(pp, data); 1568 } 1569 1570 if (rx_done) 1571 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1572 } 1573 1574 /* Main rx processing */ 1575 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1576 struct mvneta_rx_queue *rxq) 1577 { 1578 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1579 struct net_device *dev = pp->dev; 1580 int rx_done; 1581 u32 rcvd_pkts = 0; 1582 u32 rcvd_bytes = 0; 1583 1584 /* Get number of received packets */ 1585 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1586 1587 if (rx_todo > rx_done) 1588 rx_todo = rx_done; 1589 1590 rx_done = 0; 1591 1592 /* Fairness NAPI loop */ 1593 while (rx_done < rx_todo) { 1594 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1595 struct sk_buff *skb; 1596 unsigned char *data; 1597 dma_addr_t phys_addr; 1598 u32 rx_status; 1599 int rx_bytes, err; 1600 1601 rx_done++; 1602 rx_status = rx_desc->status; 1603 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1604 data = (unsigned char *)rx_desc->buf_cookie; 1605 phys_addr = rx_desc->buf_phys_addr; 1606 1607 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1608 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1609 err_drop_frame: 1610 dev->stats.rx_errors++; 1611 mvneta_rx_error(pp, rx_desc); 1612 /* leave the descriptor untouched */ 1613 continue; 1614 } 1615 1616 if (rx_bytes <= rx_copybreak) { 1617 /* better copy a small frame and not unmap the DMA region */ 1618 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1619 if (unlikely(!skb)) 1620 goto err_drop_frame; 1621 1622 dma_sync_single_range_for_cpu(dev->dev.parent, 1623 rx_desc->buf_phys_addr, 1624 MVNETA_MH_SIZE + NET_SKB_PAD, 1625 rx_bytes, 1626 DMA_FROM_DEVICE); 1627 memcpy(skb_put(skb, rx_bytes), 1628 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1629 rx_bytes); 1630 1631 skb->protocol = eth_type_trans(skb, dev); 1632 mvneta_rx_csum(pp, rx_status, skb); 1633 napi_gro_receive(&port->napi, skb); 1634 1635 rcvd_pkts++; 1636 rcvd_bytes += rx_bytes; 1637 1638 /* leave the descriptor and buffer untouched */ 1639 continue; 1640 } 1641 1642 /* Refill processing */ 1643 err = mvneta_rx_refill(pp, rx_desc); 1644 if (err) { 1645 netdev_err(dev, "Linux processing - Can't refill\n"); 1646 rxq->missed++; 1647 goto err_drop_frame; 1648 } 1649 1650 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1651 1652 /* After refill old buffer has to be unmapped regardless 1653 * the skb is successfully built or not. 1654 */ 1655 dma_unmap_single(dev->dev.parent, phys_addr, 1656 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1657 1658 if (!skb) 1659 goto err_drop_frame; 1660 1661 rcvd_pkts++; 1662 rcvd_bytes += rx_bytes; 1663 1664 /* Linux processing */ 1665 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1666 skb_put(skb, rx_bytes); 1667 1668 skb->protocol = eth_type_trans(skb, dev); 1669 1670 mvneta_rx_csum(pp, rx_status, skb); 1671 1672 napi_gro_receive(&port->napi, skb); 1673 } 1674 1675 if (rcvd_pkts) { 1676 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1677 1678 u64_stats_update_begin(&stats->syncp); 1679 stats->rx_packets += rcvd_pkts; 1680 stats->rx_bytes += rcvd_bytes; 1681 u64_stats_update_end(&stats->syncp); 1682 } 1683 1684 /* Update rxq management counters */ 1685 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1686 1687 return rx_done; 1688 } 1689 1690 static inline void 1691 mvneta_tso_put_hdr(struct sk_buff *skb, 1692 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1693 { 1694 struct mvneta_tx_desc *tx_desc; 1695 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1696 1697 txq->tx_skb[txq->txq_put_index] = NULL; 1698 tx_desc = mvneta_txq_next_desc_get(txq); 1699 tx_desc->data_size = hdr_len; 1700 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1701 tx_desc->command |= MVNETA_TXD_F_DESC; 1702 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1703 txq->txq_put_index * TSO_HEADER_SIZE; 1704 mvneta_txq_inc_put(txq); 1705 } 1706 1707 static inline int 1708 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1709 struct sk_buff *skb, char *data, int size, 1710 bool last_tcp, bool is_last) 1711 { 1712 struct mvneta_tx_desc *tx_desc; 1713 1714 tx_desc = mvneta_txq_next_desc_get(txq); 1715 tx_desc->data_size = size; 1716 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1717 size, DMA_TO_DEVICE); 1718 if (unlikely(dma_mapping_error(dev->dev.parent, 1719 tx_desc->buf_phys_addr))) { 1720 mvneta_txq_desc_put(txq); 1721 return -ENOMEM; 1722 } 1723 1724 tx_desc->command = 0; 1725 txq->tx_skb[txq->txq_put_index] = NULL; 1726 1727 if (last_tcp) { 1728 /* last descriptor in the TCP packet */ 1729 tx_desc->command = MVNETA_TXD_L_DESC; 1730 1731 /* last descriptor in SKB */ 1732 if (is_last) 1733 txq->tx_skb[txq->txq_put_index] = skb; 1734 } 1735 mvneta_txq_inc_put(txq); 1736 return 0; 1737 } 1738 1739 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1740 struct mvneta_tx_queue *txq) 1741 { 1742 int total_len, data_left; 1743 int desc_count = 0; 1744 struct mvneta_port *pp = netdev_priv(dev); 1745 struct tso_t tso; 1746 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1747 int i; 1748 1749 /* Count needed descriptors */ 1750 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1751 return 0; 1752 1753 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1754 pr_info("*** Is this even possible???!?!?\n"); 1755 return 0; 1756 } 1757 1758 /* Initialize the TSO handler, and prepare the first payload */ 1759 tso_start(skb, &tso); 1760 1761 total_len = skb->len - hdr_len; 1762 while (total_len > 0) { 1763 char *hdr; 1764 1765 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1766 total_len -= data_left; 1767 desc_count++; 1768 1769 /* prepare packet headers: MAC + IP + TCP */ 1770 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1771 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1772 1773 mvneta_tso_put_hdr(skb, pp, txq); 1774 1775 while (data_left > 0) { 1776 int size; 1777 desc_count++; 1778 1779 size = min_t(int, tso.size, data_left); 1780 1781 if (mvneta_tso_put_data(dev, txq, skb, 1782 tso.data, size, 1783 size == data_left, 1784 total_len == 0)) 1785 goto err_release; 1786 data_left -= size; 1787 1788 tso_build_data(skb, &tso, size); 1789 } 1790 } 1791 1792 return desc_count; 1793 1794 err_release: 1795 /* Release all used data descriptors; header descriptors must not 1796 * be DMA-unmapped. 1797 */ 1798 for (i = desc_count - 1; i >= 0; i--) { 1799 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1800 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1801 dma_unmap_single(pp->dev->dev.parent, 1802 tx_desc->buf_phys_addr, 1803 tx_desc->data_size, 1804 DMA_TO_DEVICE); 1805 mvneta_txq_desc_put(txq); 1806 } 1807 return 0; 1808 } 1809 1810 /* Handle tx fragmentation processing */ 1811 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1812 struct mvneta_tx_queue *txq) 1813 { 1814 struct mvneta_tx_desc *tx_desc; 1815 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1816 1817 for (i = 0; i < nr_frags; i++) { 1818 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1819 void *addr = page_address(frag->page.p) + frag->page_offset; 1820 1821 tx_desc = mvneta_txq_next_desc_get(txq); 1822 tx_desc->data_size = frag->size; 1823 1824 tx_desc->buf_phys_addr = 1825 dma_map_single(pp->dev->dev.parent, addr, 1826 tx_desc->data_size, DMA_TO_DEVICE); 1827 1828 if (dma_mapping_error(pp->dev->dev.parent, 1829 tx_desc->buf_phys_addr)) { 1830 mvneta_txq_desc_put(txq); 1831 goto error; 1832 } 1833 1834 if (i == nr_frags - 1) { 1835 /* Last descriptor */ 1836 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1837 txq->tx_skb[txq->txq_put_index] = skb; 1838 } else { 1839 /* Descriptor in the middle: Not First, Not Last */ 1840 tx_desc->command = 0; 1841 txq->tx_skb[txq->txq_put_index] = NULL; 1842 } 1843 mvneta_txq_inc_put(txq); 1844 } 1845 1846 return 0; 1847 1848 error: 1849 /* Release all descriptors that were used to map fragments of 1850 * this packet, as well as the corresponding DMA mappings 1851 */ 1852 for (i = i - 1; i >= 0; i--) { 1853 tx_desc = txq->descs + i; 1854 dma_unmap_single(pp->dev->dev.parent, 1855 tx_desc->buf_phys_addr, 1856 tx_desc->data_size, 1857 DMA_TO_DEVICE); 1858 mvneta_txq_desc_put(txq); 1859 } 1860 1861 return -ENOMEM; 1862 } 1863 1864 /* Main tx processing */ 1865 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1866 { 1867 struct mvneta_port *pp = netdev_priv(dev); 1868 u16 txq_id = skb_get_queue_mapping(skb); 1869 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1870 struct mvneta_tx_desc *tx_desc; 1871 int len = skb->len; 1872 int frags = 0; 1873 u32 tx_cmd; 1874 1875 if (!netif_running(dev)) 1876 goto out; 1877 1878 if (skb_is_gso(skb)) { 1879 frags = mvneta_tx_tso(skb, dev, txq); 1880 goto out; 1881 } 1882 1883 frags = skb_shinfo(skb)->nr_frags + 1; 1884 1885 /* Get a descriptor for the first part of the packet */ 1886 tx_desc = mvneta_txq_next_desc_get(txq); 1887 1888 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1889 1890 tx_desc->data_size = skb_headlen(skb); 1891 1892 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1893 tx_desc->data_size, 1894 DMA_TO_DEVICE); 1895 if (unlikely(dma_mapping_error(dev->dev.parent, 1896 tx_desc->buf_phys_addr))) { 1897 mvneta_txq_desc_put(txq); 1898 frags = 0; 1899 goto out; 1900 } 1901 1902 if (frags == 1) { 1903 /* First and Last descriptor */ 1904 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1905 tx_desc->command = tx_cmd; 1906 txq->tx_skb[txq->txq_put_index] = skb; 1907 mvneta_txq_inc_put(txq); 1908 } else { 1909 /* First but not Last */ 1910 tx_cmd |= MVNETA_TXD_F_DESC; 1911 txq->tx_skb[txq->txq_put_index] = NULL; 1912 mvneta_txq_inc_put(txq); 1913 tx_desc->command = tx_cmd; 1914 /* Continue with other skb fragments */ 1915 if (mvneta_tx_frag_process(pp, skb, txq)) { 1916 dma_unmap_single(dev->dev.parent, 1917 tx_desc->buf_phys_addr, 1918 tx_desc->data_size, 1919 DMA_TO_DEVICE); 1920 mvneta_txq_desc_put(txq); 1921 frags = 0; 1922 goto out; 1923 } 1924 } 1925 1926 out: 1927 if (frags > 0) { 1928 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1929 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1930 1931 txq->count += frags; 1932 mvneta_txq_pend_desc_add(pp, txq, frags); 1933 1934 if (txq->count >= txq->tx_stop_threshold) 1935 netif_tx_stop_queue(nq); 1936 1937 u64_stats_update_begin(&stats->syncp); 1938 stats->tx_packets++; 1939 stats->tx_bytes += len; 1940 u64_stats_update_end(&stats->syncp); 1941 } else { 1942 dev->stats.tx_dropped++; 1943 dev_kfree_skb_any(skb); 1944 } 1945 1946 return NETDEV_TX_OK; 1947 } 1948 1949 1950 /* Free tx resources, when resetting a port */ 1951 static void mvneta_txq_done_force(struct mvneta_port *pp, 1952 struct mvneta_tx_queue *txq) 1953 1954 { 1955 int tx_done = txq->count; 1956 1957 mvneta_txq_bufs_free(pp, txq, tx_done); 1958 1959 /* reset txq */ 1960 txq->count = 0; 1961 txq->txq_put_index = 0; 1962 txq->txq_get_index = 0; 1963 } 1964 1965 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1966 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1967 */ 1968 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1969 { 1970 struct mvneta_tx_queue *txq; 1971 struct netdev_queue *nq; 1972 1973 while (cause_tx_done) { 1974 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1975 1976 nq = netdev_get_tx_queue(pp->dev, txq->id); 1977 __netif_tx_lock(nq, smp_processor_id()); 1978 1979 if (txq->count) 1980 mvneta_txq_done(pp, txq); 1981 1982 __netif_tx_unlock(nq); 1983 cause_tx_done &= ~((1 << txq->id)); 1984 } 1985 } 1986 1987 /* Compute crc8 of the specified address, using a unique algorithm , 1988 * according to hw spec, different than generic crc8 algorithm 1989 */ 1990 static int mvneta_addr_crc(unsigned char *addr) 1991 { 1992 int crc = 0; 1993 int i; 1994 1995 for (i = 0; i < ETH_ALEN; i++) { 1996 int j; 1997 1998 crc = (crc ^ addr[i]) << 8; 1999 for (j = 7; j >= 0; j--) { 2000 if (crc & (0x100 << j)) 2001 crc ^= 0x107 << j; 2002 } 2003 } 2004 2005 return crc; 2006 } 2007 2008 /* This method controls the net device special MAC multicast support. 2009 * The Special Multicast Table for MAC addresses supports MAC of the form 2010 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2011 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2012 * Table entries in the DA-Filter table. This method set the Special 2013 * Multicast Table appropriate entry. 2014 */ 2015 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2016 unsigned char last_byte, 2017 int queue) 2018 { 2019 unsigned int smc_table_reg; 2020 unsigned int tbl_offset; 2021 unsigned int reg_offset; 2022 2023 /* Register offset from SMC table base */ 2024 tbl_offset = (last_byte / 4); 2025 /* Entry offset within the above reg */ 2026 reg_offset = last_byte % 4; 2027 2028 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2029 + tbl_offset * 4)); 2030 2031 if (queue == -1) 2032 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2033 else { 2034 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2035 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2036 } 2037 2038 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2039 smc_table_reg); 2040 } 2041 2042 /* This method controls the network device Other MAC multicast support. 2043 * The Other Multicast Table is used for multicast of another type. 2044 * A CRC-8 is used as an index to the Other Multicast Table entries 2045 * in the DA-Filter table. 2046 * The method gets the CRC-8 value from the calling routine and 2047 * sets the Other Multicast Table appropriate entry according to the 2048 * specified CRC-8 . 2049 */ 2050 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2051 unsigned char crc8, 2052 int queue) 2053 { 2054 unsigned int omc_table_reg; 2055 unsigned int tbl_offset; 2056 unsigned int reg_offset; 2057 2058 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2059 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2060 2061 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2062 2063 if (queue == -1) { 2064 /* Clear accepts frame bit at specified Other DA table entry */ 2065 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2066 } else { 2067 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2068 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2069 } 2070 2071 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2072 } 2073 2074 /* The network device supports multicast using two tables: 2075 * 1) Special Multicast Table for MAC addresses of the form 2076 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2077 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2078 * Table entries in the DA-Filter table. 2079 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2080 * is used as an index to the Other Multicast Table entries in the 2081 * DA-Filter table. 2082 */ 2083 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2084 int queue) 2085 { 2086 unsigned char crc_result = 0; 2087 2088 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2089 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2090 return 0; 2091 } 2092 2093 crc_result = mvneta_addr_crc(p_addr); 2094 if (queue == -1) { 2095 if (pp->mcast_count[crc_result] == 0) { 2096 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2097 crc_result); 2098 return -EINVAL; 2099 } 2100 2101 pp->mcast_count[crc_result]--; 2102 if (pp->mcast_count[crc_result] != 0) { 2103 netdev_info(pp->dev, 2104 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2105 pp->mcast_count[crc_result], crc_result); 2106 return -EINVAL; 2107 } 2108 } else 2109 pp->mcast_count[crc_result]++; 2110 2111 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2112 2113 return 0; 2114 } 2115 2116 /* Configure Fitering mode of Ethernet port */ 2117 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2118 int is_promisc) 2119 { 2120 u32 port_cfg_reg, val; 2121 2122 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2123 2124 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2125 2126 /* Set / Clear UPM bit in port configuration register */ 2127 if (is_promisc) { 2128 /* Accept all Unicast addresses */ 2129 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2130 val |= MVNETA_FORCE_UNI; 2131 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2132 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2133 } else { 2134 /* Reject all Unicast addresses */ 2135 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2136 val &= ~MVNETA_FORCE_UNI; 2137 } 2138 2139 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2140 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2141 } 2142 2143 /* register unicast and multicast addresses */ 2144 static void mvneta_set_rx_mode(struct net_device *dev) 2145 { 2146 struct mvneta_port *pp = netdev_priv(dev); 2147 struct netdev_hw_addr *ha; 2148 2149 if (dev->flags & IFF_PROMISC) { 2150 /* Accept all: Multicast + Unicast */ 2151 mvneta_rx_unicast_promisc_set(pp, 1); 2152 mvneta_set_ucast_table(pp, pp->rxq_def); 2153 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2154 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2155 } else { 2156 /* Accept single Unicast */ 2157 mvneta_rx_unicast_promisc_set(pp, 0); 2158 mvneta_set_ucast_table(pp, -1); 2159 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2160 2161 if (dev->flags & IFF_ALLMULTI) { 2162 /* Accept all multicast */ 2163 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2164 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2165 } else { 2166 /* Accept only initialized multicast */ 2167 mvneta_set_special_mcast_table(pp, -1); 2168 mvneta_set_other_mcast_table(pp, -1); 2169 2170 if (!netdev_mc_empty(dev)) { 2171 netdev_for_each_mc_addr(ha, dev) { 2172 mvneta_mcast_addr_set(pp, ha->addr, 2173 pp->rxq_def); 2174 } 2175 } 2176 } 2177 } 2178 } 2179 2180 /* Interrupt handling - the callback for request_irq() */ 2181 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2182 { 2183 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2184 2185 disable_percpu_irq(port->pp->dev->irq); 2186 napi_schedule(&port->napi); 2187 2188 return IRQ_HANDLED; 2189 } 2190 2191 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2192 struct phy_device *phy) 2193 { 2194 struct fixed_phy_status status; 2195 struct fixed_phy_status changed = {}; 2196 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2197 2198 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2199 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2200 status.speed = SPEED_1000; 2201 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2202 status.speed = SPEED_100; 2203 else 2204 status.speed = SPEED_10; 2205 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2206 changed.link = 1; 2207 changed.speed = 1; 2208 changed.duplex = 1; 2209 fixed_phy_update_state(phy, &status, &changed); 2210 return 0; 2211 } 2212 2213 /* NAPI handler 2214 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2215 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2216 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2217 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2218 * Each CPU has its own causeRxTx register 2219 */ 2220 static int mvneta_poll(struct napi_struct *napi, int budget) 2221 { 2222 int rx_done = 0; 2223 u32 cause_rx_tx; 2224 int rx_queue; 2225 struct mvneta_port *pp = netdev_priv(napi->dev); 2226 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2227 2228 if (!netif_running(pp->dev)) { 2229 napi_complete(&port->napi); 2230 return rx_done; 2231 } 2232 2233 /* Read cause register */ 2234 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2235 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2236 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2237 2238 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2239 if (pp->use_inband_status && (cause_misc & 2240 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2241 MVNETA_CAUSE_LINK_CHANGE | 2242 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2243 mvneta_fixed_link_update(pp, pp->phy_dev); 2244 } 2245 } 2246 2247 /* Release Tx descriptors */ 2248 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2249 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2250 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2251 } 2252 2253 /* For the case where the last mvneta_poll did not process all 2254 * RX packets 2255 */ 2256 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2257 2258 cause_rx_tx |= port->cause_rx_tx; 2259 2260 if (rx_queue) { 2261 rx_queue = rx_queue - 1; 2262 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]); 2263 } 2264 2265 budget -= rx_done; 2266 2267 if (budget > 0) { 2268 cause_rx_tx = 0; 2269 napi_complete(&port->napi); 2270 enable_percpu_irq(pp->dev->irq, 0); 2271 } 2272 2273 port->cause_rx_tx = cause_rx_tx; 2274 return rx_done; 2275 } 2276 2277 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2278 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2279 int num) 2280 { 2281 int i; 2282 2283 for (i = 0; i < num; i++) { 2284 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2285 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2286 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2287 __func__, rxq->id, i, num); 2288 break; 2289 } 2290 } 2291 2292 /* Add this number of RX descriptors as non occupied (ready to 2293 * get packets) 2294 */ 2295 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2296 2297 return i; 2298 } 2299 2300 /* Free all packets pending transmit from all TXQs and reset TX port */ 2301 static void mvneta_tx_reset(struct mvneta_port *pp) 2302 { 2303 int queue; 2304 2305 /* free the skb's in the tx ring */ 2306 for (queue = 0; queue < txq_number; queue++) 2307 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2308 2309 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2310 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2311 } 2312 2313 static void mvneta_rx_reset(struct mvneta_port *pp) 2314 { 2315 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2316 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2317 } 2318 2319 /* Rx/Tx queue initialization/cleanup methods */ 2320 2321 /* Create a specified RX queue */ 2322 static int mvneta_rxq_init(struct mvneta_port *pp, 2323 struct mvneta_rx_queue *rxq) 2324 2325 { 2326 rxq->size = pp->rx_ring_size; 2327 2328 /* Allocate memory for RX descriptors */ 2329 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2330 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2331 &rxq->descs_phys, GFP_KERNEL); 2332 if (rxq->descs == NULL) 2333 return -ENOMEM; 2334 2335 BUG_ON(rxq->descs != 2336 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2337 2338 rxq->last_desc = rxq->size - 1; 2339 2340 /* Set Rx descriptors queue starting address */ 2341 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2342 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2343 2344 /* Set Offset */ 2345 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2346 2347 /* Set coalescing pkts and time */ 2348 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2349 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2350 2351 /* Fill RXQ with buffers from RX pool */ 2352 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2353 mvneta_rxq_bm_disable(pp, rxq); 2354 mvneta_rxq_fill(pp, rxq, rxq->size); 2355 2356 return 0; 2357 } 2358 2359 /* Cleanup Rx queue */ 2360 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2361 struct mvneta_rx_queue *rxq) 2362 { 2363 mvneta_rxq_drop_pkts(pp, rxq); 2364 2365 if (rxq->descs) 2366 dma_free_coherent(pp->dev->dev.parent, 2367 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2368 rxq->descs, 2369 rxq->descs_phys); 2370 2371 rxq->descs = NULL; 2372 rxq->last_desc = 0; 2373 rxq->next_desc_to_proc = 0; 2374 rxq->descs_phys = 0; 2375 } 2376 2377 /* Create and initialize a tx queue */ 2378 static int mvneta_txq_init(struct mvneta_port *pp, 2379 struct mvneta_tx_queue *txq) 2380 { 2381 int cpu; 2382 2383 txq->size = pp->tx_ring_size; 2384 2385 /* A queue must always have room for at least one skb. 2386 * Therefore, stop the queue when the free entries reaches 2387 * the maximum number of descriptors per skb. 2388 */ 2389 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2390 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2391 2392 2393 /* Allocate memory for TX descriptors */ 2394 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2395 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2396 &txq->descs_phys, GFP_KERNEL); 2397 if (txq->descs == NULL) 2398 return -ENOMEM; 2399 2400 /* Make sure descriptor address is cache line size aligned */ 2401 BUG_ON(txq->descs != 2402 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2403 2404 txq->last_desc = txq->size - 1; 2405 2406 /* Set maximum bandwidth for enabled TXQs */ 2407 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2408 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2409 2410 /* Set Tx descriptors queue starting address */ 2411 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2412 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2413 2414 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2415 if (txq->tx_skb == NULL) { 2416 dma_free_coherent(pp->dev->dev.parent, 2417 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2418 txq->descs, txq->descs_phys); 2419 return -ENOMEM; 2420 } 2421 2422 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2423 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2424 txq->size * TSO_HEADER_SIZE, 2425 &txq->tso_hdrs_phys, GFP_KERNEL); 2426 if (txq->tso_hdrs == NULL) { 2427 kfree(txq->tx_skb); 2428 dma_free_coherent(pp->dev->dev.parent, 2429 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2430 txq->descs, txq->descs_phys); 2431 return -ENOMEM; 2432 } 2433 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2434 2435 /* Setup XPS mapping */ 2436 if (txq_number > 1) 2437 cpu = txq->id % num_present_cpus(); 2438 else 2439 cpu = pp->rxq_def % num_present_cpus(); 2440 cpumask_set_cpu(cpu, &txq->affinity_mask); 2441 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2442 2443 return 0; 2444 } 2445 2446 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2447 static void mvneta_txq_deinit(struct mvneta_port *pp, 2448 struct mvneta_tx_queue *txq) 2449 { 2450 kfree(txq->tx_skb); 2451 2452 if (txq->tso_hdrs) 2453 dma_free_coherent(pp->dev->dev.parent, 2454 txq->size * TSO_HEADER_SIZE, 2455 txq->tso_hdrs, txq->tso_hdrs_phys); 2456 if (txq->descs) 2457 dma_free_coherent(pp->dev->dev.parent, 2458 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2459 txq->descs, txq->descs_phys); 2460 2461 txq->descs = NULL; 2462 txq->last_desc = 0; 2463 txq->next_desc_to_proc = 0; 2464 txq->descs_phys = 0; 2465 2466 /* Set minimum bandwidth for disabled TXQs */ 2467 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2468 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2469 2470 /* Set Tx descriptors queue starting address and size */ 2471 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2472 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2473 } 2474 2475 /* Cleanup all Tx queues */ 2476 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2477 { 2478 int queue; 2479 2480 for (queue = 0; queue < txq_number; queue++) 2481 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2482 } 2483 2484 /* Cleanup all Rx queues */ 2485 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2486 { 2487 int queue; 2488 2489 for (queue = 0; queue < txq_number; queue++) 2490 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2491 } 2492 2493 2494 /* Init all Rx queues */ 2495 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2496 { 2497 int queue; 2498 2499 for (queue = 0; queue < rxq_number; queue++) { 2500 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2501 2502 if (err) { 2503 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2504 __func__, queue); 2505 mvneta_cleanup_rxqs(pp); 2506 return err; 2507 } 2508 } 2509 2510 return 0; 2511 } 2512 2513 /* Init all tx queues */ 2514 static int mvneta_setup_txqs(struct mvneta_port *pp) 2515 { 2516 int queue; 2517 2518 for (queue = 0; queue < txq_number; queue++) { 2519 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2520 if (err) { 2521 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2522 __func__, queue); 2523 mvneta_cleanup_txqs(pp); 2524 return err; 2525 } 2526 } 2527 2528 return 0; 2529 } 2530 2531 static void mvneta_percpu_unmask_interrupt(void *arg) 2532 { 2533 struct mvneta_port *pp = arg; 2534 2535 /* All the queue are unmasked, but actually only the ones 2536 * maped to this CPU will be unmasked 2537 */ 2538 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2539 MVNETA_RX_INTR_MASK_ALL | 2540 MVNETA_TX_INTR_MASK_ALL | 2541 MVNETA_MISCINTR_INTR_MASK); 2542 } 2543 2544 static void mvneta_percpu_mask_interrupt(void *arg) 2545 { 2546 struct mvneta_port *pp = arg; 2547 2548 /* All the queue are masked, but actually only the ones 2549 * maped to this CPU will be masked 2550 */ 2551 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2552 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2553 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2554 } 2555 2556 static void mvneta_start_dev(struct mvneta_port *pp) 2557 { 2558 unsigned int cpu; 2559 2560 mvneta_max_rx_size_set(pp, pp->pkt_size); 2561 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2562 2563 /* start the Rx/Tx activity */ 2564 mvneta_port_enable(pp); 2565 2566 /* Enable polling on the port */ 2567 for_each_present_cpu(cpu) { 2568 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2569 2570 napi_enable(&port->napi); 2571 } 2572 2573 /* Unmask interrupts. It has to be done from each CPU */ 2574 for_each_online_cpu(cpu) 2575 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 2576 pp, true); 2577 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2578 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2579 MVNETA_CAUSE_LINK_CHANGE | 2580 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2581 2582 phy_start(pp->phy_dev); 2583 netif_tx_start_all_queues(pp->dev); 2584 } 2585 2586 static void mvneta_stop_dev(struct mvneta_port *pp) 2587 { 2588 unsigned int cpu; 2589 2590 phy_stop(pp->phy_dev); 2591 2592 for_each_present_cpu(cpu) { 2593 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2594 2595 napi_disable(&port->napi); 2596 } 2597 2598 netif_carrier_off(pp->dev); 2599 2600 mvneta_port_down(pp); 2601 netif_tx_stop_all_queues(pp->dev); 2602 2603 /* Stop the port activity */ 2604 mvneta_port_disable(pp); 2605 2606 /* Clear all ethernet port interrupts */ 2607 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2608 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2609 2610 /* Mask all ethernet port interrupts */ 2611 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2612 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2613 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2614 2615 mvneta_tx_reset(pp); 2616 mvneta_rx_reset(pp); 2617 } 2618 2619 /* Return positive if MTU is valid */ 2620 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2621 { 2622 if (mtu < 68) { 2623 netdev_err(dev, "cannot change mtu to less than 68\n"); 2624 return -EINVAL; 2625 } 2626 2627 /* 9676 == 9700 - 20 and rounding to 8 */ 2628 if (mtu > 9676) { 2629 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2630 mtu = 9676; 2631 } 2632 2633 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2634 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2635 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2636 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2637 } 2638 2639 return mtu; 2640 } 2641 2642 /* Change the device mtu */ 2643 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2644 { 2645 struct mvneta_port *pp = netdev_priv(dev); 2646 int ret; 2647 2648 mtu = mvneta_check_mtu_valid(dev, mtu); 2649 if (mtu < 0) 2650 return -EINVAL; 2651 2652 dev->mtu = mtu; 2653 2654 if (!netif_running(dev)) { 2655 netdev_update_features(dev); 2656 return 0; 2657 } 2658 2659 /* The interface is running, so we have to force a 2660 * reallocation of the queues 2661 */ 2662 mvneta_stop_dev(pp); 2663 2664 mvneta_cleanup_txqs(pp); 2665 mvneta_cleanup_rxqs(pp); 2666 2667 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2668 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2669 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2670 2671 ret = mvneta_setup_rxqs(pp); 2672 if (ret) { 2673 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2674 return ret; 2675 } 2676 2677 ret = mvneta_setup_txqs(pp); 2678 if (ret) { 2679 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2680 return ret; 2681 } 2682 2683 mvneta_start_dev(pp); 2684 mvneta_port_up(pp); 2685 2686 netdev_update_features(dev); 2687 2688 return 0; 2689 } 2690 2691 static netdev_features_t mvneta_fix_features(struct net_device *dev, 2692 netdev_features_t features) 2693 { 2694 struct mvneta_port *pp = netdev_priv(dev); 2695 2696 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2697 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2698 netdev_info(dev, 2699 "Disable IP checksum for MTU greater than %dB\n", 2700 pp->tx_csum_limit); 2701 } 2702 2703 return features; 2704 } 2705 2706 /* Get mac address */ 2707 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2708 { 2709 u32 mac_addr_l, mac_addr_h; 2710 2711 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2712 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2713 addr[0] = (mac_addr_h >> 24) & 0xFF; 2714 addr[1] = (mac_addr_h >> 16) & 0xFF; 2715 addr[2] = (mac_addr_h >> 8) & 0xFF; 2716 addr[3] = mac_addr_h & 0xFF; 2717 addr[4] = (mac_addr_l >> 8) & 0xFF; 2718 addr[5] = mac_addr_l & 0xFF; 2719 } 2720 2721 /* Handle setting mac address */ 2722 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2723 { 2724 struct mvneta_port *pp = netdev_priv(dev); 2725 struct sockaddr *sockaddr = addr; 2726 int ret; 2727 2728 ret = eth_prepare_mac_addr_change(dev, addr); 2729 if (ret < 0) 2730 return ret; 2731 /* Remove previous address table entry */ 2732 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2733 2734 /* Set new addr in hw */ 2735 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 2736 2737 eth_commit_mac_addr_change(dev, addr); 2738 return 0; 2739 } 2740 2741 static void mvneta_adjust_link(struct net_device *ndev) 2742 { 2743 struct mvneta_port *pp = netdev_priv(ndev); 2744 struct phy_device *phydev = pp->phy_dev; 2745 int status_change = 0; 2746 2747 if (phydev->link) { 2748 if ((pp->speed != phydev->speed) || 2749 (pp->duplex != phydev->duplex)) { 2750 u32 val; 2751 2752 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2753 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2754 MVNETA_GMAC_CONFIG_GMII_SPEED | 2755 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2756 2757 if (phydev->duplex) 2758 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2759 2760 if (phydev->speed == SPEED_1000) 2761 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2762 else if (phydev->speed == SPEED_100) 2763 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2764 2765 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2766 2767 pp->duplex = phydev->duplex; 2768 pp->speed = phydev->speed; 2769 } 2770 } 2771 2772 if (phydev->link != pp->link) { 2773 if (!phydev->link) { 2774 pp->duplex = -1; 2775 pp->speed = 0; 2776 } 2777 2778 pp->link = phydev->link; 2779 status_change = 1; 2780 } 2781 2782 if (status_change) { 2783 if (phydev->link) { 2784 if (!pp->use_inband_status) { 2785 u32 val = mvreg_read(pp, 2786 MVNETA_GMAC_AUTONEG_CONFIG); 2787 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2788 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2789 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2790 val); 2791 } 2792 mvneta_port_up(pp); 2793 } else { 2794 if (!pp->use_inband_status) { 2795 u32 val = mvreg_read(pp, 2796 MVNETA_GMAC_AUTONEG_CONFIG); 2797 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2798 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2799 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2800 val); 2801 } 2802 mvneta_port_down(pp); 2803 } 2804 phy_print_status(phydev); 2805 } 2806 } 2807 2808 static int mvneta_mdio_probe(struct mvneta_port *pp) 2809 { 2810 struct phy_device *phy_dev; 2811 2812 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2813 pp->phy_interface); 2814 if (!phy_dev) { 2815 netdev_err(pp->dev, "could not find the PHY\n"); 2816 return -ENODEV; 2817 } 2818 2819 phy_dev->supported &= PHY_GBIT_FEATURES; 2820 phy_dev->advertising = phy_dev->supported; 2821 2822 pp->phy_dev = phy_dev; 2823 pp->link = 0; 2824 pp->duplex = 0; 2825 pp->speed = 0; 2826 2827 return 0; 2828 } 2829 2830 static void mvneta_mdio_remove(struct mvneta_port *pp) 2831 { 2832 phy_disconnect(pp->phy_dev); 2833 pp->phy_dev = NULL; 2834 } 2835 2836 static void mvneta_percpu_enable(void *arg) 2837 { 2838 struct mvneta_port *pp = arg; 2839 2840 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 2841 } 2842 2843 static void mvneta_percpu_disable(void *arg) 2844 { 2845 struct mvneta_port *pp = arg; 2846 2847 disable_percpu_irq(pp->dev->irq); 2848 } 2849 2850 static void mvneta_percpu_elect(struct mvneta_port *pp) 2851 { 2852 int online_cpu_idx, max_cpu, cpu, i = 0; 2853 2854 online_cpu_idx = pp->rxq_def % num_online_cpus(); 2855 max_cpu = num_present_cpus(); 2856 2857 for_each_online_cpu(cpu) { 2858 int rxq_map = 0, txq_map = 0; 2859 int rxq; 2860 2861 for (rxq = 0; rxq < rxq_number; rxq++) 2862 if ((rxq % max_cpu) == cpu) 2863 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 2864 2865 if (i == online_cpu_idx) 2866 /* Map the default receive queue queue to the 2867 * elected CPU 2868 */ 2869 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 2870 2871 /* We update the TX queue map only if we have one 2872 * queue. In this case we associate the TX queue to 2873 * the CPU bound to the default RX queue 2874 */ 2875 if (txq_number == 1) 2876 txq_map = (i == online_cpu_idx) ? 2877 MVNETA_CPU_TXQ_ACCESS(1) : 0; 2878 else 2879 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 2880 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 2881 2882 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 2883 2884 /* Update the interrupt mask on each CPU according the 2885 * new mapping 2886 */ 2887 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 2888 pp, true); 2889 i++; 2890 2891 } 2892 }; 2893 2894 static int mvneta_percpu_notifier(struct notifier_block *nfb, 2895 unsigned long action, void *hcpu) 2896 { 2897 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 2898 cpu_notifier); 2899 int cpu = (unsigned long)hcpu, other_cpu; 2900 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2901 2902 switch (action) { 2903 case CPU_ONLINE: 2904 case CPU_ONLINE_FROZEN: 2905 netif_tx_stop_all_queues(pp->dev); 2906 2907 /* We have to synchronise on tha napi of each CPU 2908 * except the one just being waked up 2909 */ 2910 for_each_online_cpu(other_cpu) { 2911 if (other_cpu != cpu) { 2912 struct mvneta_pcpu_port *other_port = 2913 per_cpu_ptr(pp->ports, other_cpu); 2914 2915 napi_synchronize(&other_port->napi); 2916 } 2917 } 2918 2919 /* Mask all ethernet port interrupts */ 2920 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2921 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2922 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2923 napi_enable(&port->napi); 2924 2925 2926 /* Enable per-CPU interrupts on the CPU that is 2927 * brought up. 2928 */ 2929 smp_call_function_single(cpu, mvneta_percpu_enable, 2930 pp, true); 2931 2932 /* Enable per-CPU interrupt on the one CPU we care 2933 * about. 2934 */ 2935 mvneta_percpu_elect(pp); 2936 2937 /* Unmask all ethernet port interrupts, as this 2938 * notifier is called for each CPU then the CPU to 2939 * Queue mapping is applied 2940 */ 2941 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2942 MVNETA_RX_INTR_MASK(rxq_number) | 2943 MVNETA_TX_INTR_MASK(txq_number) | 2944 MVNETA_MISCINTR_INTR_MASK); 2945 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2946 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2947 MVNETA_CAUSE_LINK_CHANGE | 2948 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2949 netif_tx_start_all_queues(pp->dev); 2950 break; 2951 case CPU_DOWN_PREPARE: 2952 case CPU_DOWN_PREPARE_FROZEN: 2953 netif_tx_stop_all_queues(pp->dev); 2954 /* Mask all ethernet port interrupts */ 2955 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2956 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2957 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2958 2959 napi_synchronize(&port->napi); 2960 napi_disable(&port->napi); 2961 /* Disable per-CPU interrupts on the CPU that is 2962 * brought down. 2963 */ 2964 smp_call_function_single(cpu, mvneta_percpu_disable, 2965 pp, true); 2966 2967 break; 2968 case CPU_DEAD: 2969 case CPU_DEAD_FROZEN: 2970 /* Check if a new CPU must be elected now this on is down */ 2971 mvneta_percpu_elect(pp); 2972 /* Unmask all ethernet port interrupts */ 2973 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2974 MVNETA_RX_INTR_MASK(rxq_number) | 2975 MVNETA_TX_INTR_MASK(txq_number) | 2976 MVNETA_MISCINTR_INTR_MASK); 2977 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2978 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2979 MVNETA_CAUSE_LINK_CHANGE | 2980 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2981 netif_tx_start_all_queues(pp->dev); 2982 break; 2983 } 2984 2985 return NOTIFY_OK; 2986 } 2987 2988 static int mvneta_open(struct net_device *dev) 2989 { 2990 struct mvneta_port *pp = netdev_priv(dev); 2991 int ret, cpu; 2992 2993 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2994 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2995 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2996 2997 ret = mvneta_setup_rxqs(pp); 2998 if (ret) 2999 return ret; 3000 3001 ret = mvneta_setup_txqs(pp); 3002 if (ret) 3003 goto err_cleanup_rxqs; 3004 3005 /* Connect to port interrupt line */ 3006 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 3007 MVNETA_DRIVER_NAME, pp->ports); 3008 if (ret) { 3009 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3010 goto err_cleanup_txqs; 3011 } 3012 3013 /* Even though the documentation says that request_percpu_irq 3014 * doesn't enable the interrupts automatically, it actually 3015 * does so on the local CPU. 3016 * 3017 * Make sure it's disabled. 3018 */ 3019 mvneta_percpu_disable(pp); 3020 3021 /* Enable per-CPU interrupt on all the CPU to handle our RX 3022 * queue interrupts 3023 */ 3024 for_each_online_cpu(cpu) 3025 smp_call_function_single(cpu, mvneta_percpu_enable, 3026 pp, true); 3027 3028 3029 /* Register a CPU notifier to handle the case where our CPU 3030 * might be taken offline. 3031 */ 3032 register_cpu_notifier(&pp->cpu_notifier); 3033 3034 /* In default link is down */ 3035 netif_carrier_off(pp->dev); 3036 3037 ret = mvneta_mdio_probe(pp); 3038 if (ret < 0) { 3039 netdev_err(dev, "cannot probe MDIO bus\n"); 3040 goto err_free_irq; 3041 } 3042 3043 mvneta_start_dev(pp); 3044 3045 return 0; 3046 3047 err_free_irq: 3048 free_percpu_irq(pp->dev->irq, pp->ports); 3049 err_cleanup_txqs: 3050 mvneta_cleanup_txqs(pp); 3051 err_cleanup_rxqs: 3052 mvneta_cleanup_rxqs(pp); 3053 return ret; 3054 } 3055 3056 /* Stop the port, free port interrupt line */ 3057 static int mvneta_stop(struct net_device *dev) 3058 { 3059 struct mvneta_port *pp = netdev_priv(dev); 3060 int cpu; 3061 3062 mvneta_stop_dev(pp); 3063 mvneta_mdio_remove(pp); 3064 unregister_cpu_notifier(&pp->cpu_notifier); 3065 for_each_present_cpu(cpu) 3066 smp_call_function_single(cpu, mvneta_percpu_disable, pp, true); 3067 free_percpu_irq(dev->irq, pp->ports); 3068 mvneta_cleanup_rxqs(pp); 3069 mvneta_cleanup_txqs(pp); 3070 3071 return 0; 3072 } 3073 3074 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3075 { 3076 struct mvneta_port *pp = netdev_priv(dev); 3077 3078 if (!pp->phy_dev) 3079 return -ENOTSUPP; 3080 3081 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 3082 } 3083 3084 /* Ethtool methods */ 3085 3086 /* Get settings (phy address, speed) for ethtools */ 3087 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3088 { 3089 struct mvneta_port *pp = netdev_priv(dev); 3090 3091 if (!pp->phy_dev) 3092 return -ENODEV; 3093 3094 return phy_ethtool_gset(pp->phy_dev, cmd); 3095 } 3096 3097 /* Set settings (phy address, speed) for ethtools */ 3098 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3099 { 3100 struct mvneta_port *pp = netdev_priv(dev); 3101 struct phy_device *phydev = pp->phy_dev; 3102 3103 if (!phydev) 3104 return -ENODEV; 3105 3106 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3107 u32 val; 3108 3109 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE); 3110 3111 if (cmd->autoneg == AUTONEG_DISABLE) { 3112 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3113 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3114 MVNETA_GMAC_CONFIG_GMII_SPEED | 3115 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3116 3117 if (phydev->duplex) 3118 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3119 3120 if (phydev->speed == SPEED_1000) 3121 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3122 else if (phydev->speed == SPEED_100) 3123 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3124 3125 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3126 } 3127 3128 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE); 3129 netdev_info(pp->dev, "autoneg status set to %i\n", 3130 pp->use_inband_status); 3131 3132 if (netif_running(dev)) { 3133 mvneta_port_down(pp); 3134 mvneta_port_up(pp); 3135 } 3136 } 3137 3138 return phy_ethtool_sset(pp->phy_dev, cmd); 3139 } 3140 3141 /* Set interrupt coalescing for ethtools */ 3142 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3143 struct ethtool_coalesce *c) 3144 { 3145 struct mvneta_port *pp = netdev_priv(dev); 3146 int queue; 3147 3148 for (queue = 0; queue < rxq_number; queue++) { 3149 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3150 rxq->time_coal = c->rx_coalesce_usecs; 3151 rxq->pkts_coal = c->rx_max_coalesced_frames; 3152 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3153 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3154 } 3155 3156 for (queue = 0; queue < txq_number; queue++) { 3157 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3158 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3159 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3160 } 3161 3162 return 0; 3163 } 3164 3165 /* get coalescing for ethtools */ 3166 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3167 struct ethtool_coalesce *c) 3168 { 3169 struct mvneta_port *pp = netdev_priv(dev); 3170 3171 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3172 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3173 3174 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3175 return 0; 3176 } 3177 3178 3179 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3180 struct ethtool_drvinfo *drvinfo) 3181 { 3182 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3183 sizeof(drvinfo->driver)); 3184 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3185 sizeof(drvinfo->version)); 3186 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3187 sizeof(drvinfo->bus_info)); 3188 } 3189 3190 3191 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3192 struct ethtool_ringparam *ring) 3193 { 3194 struct mvneta_port *pp = netdev_priv(netdev); 3195 3196 ring->rx_max_pending = MVNETA_MAX_RXD; 3197 ring->tx_max_pending = MVNETA_MAX_TXD; 3198 ring->rx_pending = pp->rx_ring_size; 3199 ring->tx_pending = pp->tx_ring_size; 3200 } 3201 3202 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3203 struct ethtool_ringparam *ring) 3204 { 3205 struct mvneta_port *pp = netdev_priv(dev); 3206 3207 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3208 return -EINVAL; 3209 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3210 ring->rx_pending : MVNETA_MAX_RXD; 3211 3212 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3213 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3214 if (pp->tx_ring_size != ring->tx_pending) 3215 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3216 pp->tx_ring_size, ring->tx_pending); 3217 3218 if (netif_running(dev)) { 3219 mvneta_stop(dev); 3220 if (mvneta_open(dev)) { 3221 netdev_err(dev, 3222 "error on opening device after ring param change\n"); 3223 return -ENOMEM; 3224 } 3225 } 3226 3227 return 0; 3228 } 3229 3230 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3231 u8 *data) 3232 { 3233 if (sset == ETH_SS_STATS) { 3234 int i; 3235 3236 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3237 memcpy(data + i * ETH_GSTRING_LEN, 3238 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3239 } 3240 } 3241 3242 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3243 { 3244 const struct mvneta_statistic *s; 3245 void __iomem *base = pp->base; 3246 u32 high, low, val; 3247 u64 val64; 3248 int i; 3249 3250 for (i = 0, s = mvneta_statistics; 3251 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3252 s++, i++) { 3253 switch (s->type) { 3254 case T_REG_32: 3255 val = readl_relaxed(base + s->offset); 3256 pp->ethtool_stats[i] += val; 3257 break; 3258 case T_REG_64: 3259 /* Docs say to read low 32-bit then high */ 3260 low = readl_relaxed(base + s->offset); 3261 high = readl_relaxed(base + s->offset + 4); 3262 val64 = (u64)high << 32 | low; 3263 pp->ethtool_stats[i] += val64; 3264 break; 3265 } 3266 } 3267 } 3268 3269 static void mvneta_ethtool_get_stats(struct net_device *dev, 3270 struct ethtool_stats *stats, u64 *data) 3271 { 3272 struct mvneta_port *pp = netdev_priv(dev); 3273 int i; 3274 3275 mvneta_ethtool_update_stats(pp); 3276 3277 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3278 *data++ = pp->ethtool_stats[i]; 3279 } 3280 3281 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3282 { 3283 if (sset == ETH_SS_STATS) 3284 return ARRAY_SIZE(mvneta_statistics); 3285 return -EOPNOTSUPP; 3286 } 3287 3288 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3289 { 3290 return MVNETA_RSS_LU_TABLE_SIZE; 3291 } 3292 3293 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3294 struct ethtool_rxnfc *info, 3295 u32 *rules __always_unused) 3296 { 3297 switch (info->cmd) { 3298 case ETHTOOL_GRXRINGS: 3299 info->data = rxq_number; 3300 return 0; 3301 case ETHTOOL_GRXFH: 3302 return -EOPNOTSUPP; 3303 default: 3304 return -EOPNOTSUPP; 3305 } 3306 } 3307 3308 static int mvneta_config_rss(struct mvneta_port *pp) 3309 { 3310 int cpu; 3311 u32 val; 3312 3313 netif_tx_stop_all_queues(pp->dev); 3314 3315 for_each_online_cpu(cpu) 3316 smp_call_function_single(cpu, mvneta_percpu_mask_interrupt, 3317 pp, true); 3318 3319 /* We have to synchronise on the napi of each CPU */ 3320 for_each_online_cpu(cpu) { 3321 struct mvneta_pcpu_port *pcpu_port = 3322 per_cpu_ptr(pp->ports, cpu); 3323 3324 napi_synchronize(&pcpu_port->napi); 3325 napi_disable(&pcpu_port->napi); 3326 } 3327 3328 pp->rxq_def = pp->indir[0]; 3329 3330 /* Update unicast mapping */ 3331 mvneta_set_rx_mode(pp->dev); 3332 3333 /* Update val of portCfg register accordingly with all RxQueue types */ 3334 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3335 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3336 3337 /* Update the elected CPU matching the new rxq_def */ 3338 mvneta_percpu_elect(pp); 3339 3340 /* We have to synchronise on the napi of each CPU */ 3341 for_each_online_cpu(cpu) { 3342 struct mvneta_pcpu_port *pcpu_port = 3343 per_cpu_ptr(pp->ports, cpu); 3344 3345 napi_enable(&pcpu_port->napi); 3346 } 3347 3348 netif_tx_start_all_queues(pp->dev); 3349 3350 return 0; 3351 } 3352 3353 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3354 const u8 *key, const u8 hfunc) 3355 { 3356 struct mvneta_port *pp = netdev_priv(dev); 3357 /* We require at least one supported parameter to be changed 3358 * and no change in any of the unsupported parameters 3359 */ 3360 if (key || 3361 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3362 return -EOPNOTSUPP; 3363 3364 if (!indir) 3365 return 0; 3366 3367 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3368 3369 return mvneta_config_rss(pp); 3370 } 3371 3372 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3373 u8 *hfunc) 3374 { 3375 struct mvneta_port *pp = netdev_priv(dev); 3376 3377 if (hfunc) 3378 *hfunc = ETH_RSS_HASH_TOP; 3379 3380 if (!indir) 3381 return 0; 3382 3383 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3384 3385 return 0; 3386 } 3387 3388 static const struct net_device_ops mvneta_netdev_ops = { 3389 .ndo_open = mvneta_open, 3390 .ndo_stop = mvneta_stop, 3391 .ndo_start_xmit = mvneta_tx, 3392 .ndo_set_rx_mode = mvneta_set_rx_mode, 3393 .ndo_set_mac_address = mvneta_set_mac_addr, 3394 .ndo_change_mtu = mvneta_change_mtu, 3395 .ndo_fix_features = mvneta_fix_features, 3396 .ndo_get_stats64 = mvneta_get_stats64, 3397 .ndo_do_ioctl = mvneta_ioctl, 3398 }; 3399 3400 const struct ethtool_ops mvneta_eth_tool_ops = { 3401 .get_link = ethtool_op_get_link, 3402 .get_settings = mvneta_ethtool_get_settings, 3403 .set_settings = mvneta_ethtool_set_settings, 3404 .set_coalesce = mvneta_ethtool_set_coalesce, 3405 .get_coalesce = mvneta_ethtool_get_coalesce, 3406 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3407 .get_ringparam = mvneta_ethtool_get_ringparam, 3408 .set_ringparam = mvneta_ethtool_set_ringparam, 3409 .get_strings = mvneta_ethtool_get_strings, 3410 .get_ethtool_stats = mvneta_ethtool_get_stats, 3411 .get_sset_count = mvneta_ethtool_get_sset_count, 3412 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3413 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3414 .get_rxfh = mvneta_ethtool_get_rxfh, 3415 .set_rxfh = mvneta_ethtool_set_rxfh, 3416 }; 3417 3418 /* Initialize hw */ 3419 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3420 { 3421 int queue; 3422 3423 /* Disable port */ 3424 mvneta_port_disable(pp); 3425 3426 /* Set port default values */ 3427 mvneta_defaults_set(pp); 3428 3429 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3430 GFP_KERNEL); 3431 if (!pp->txqs) 3432 return -ENOMEM; 3433 3434 /* Initialize TX descriptor rings */ 3435 for (queue = 0; queue < txq_number; queue++) { 3436 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3437 txq->id = queue; 3438 txq->size = pp->tx_ring_size; 3439 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3440 } 3441 3442 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3443 GFP_KERNEL); 3444 if (!pp->rxqs) 3445 return -ENOMEM; 3446 3447 /* Create Rx descriptor rings */ 3448 for (queue = 0; queue < rxq_number; queue++) { 3449 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3450 rxq->id = queue; 3451 rxq->size = pp->rx_ring_size; 3452 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3453 rxq->time_coal = MVNETA_RX_COAL_USEC; 3454 } 3455 3456 return 0; 3457 } 3458 3459 /* platform glue : initialize decoding windows */ 3460 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3461 const struct mbus_dram_target_info *dram) 3462 { 3463 u32 win_enable; 3464 u32 win_protect; 3465 int i; 3466 3467 for (i = 0; i < 6; i++) { 3468 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3469 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3470 3471 if (i < 4) 3472 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3473 } 3474 3475 win_enable = 0x3f; 3476 win_protect = 0; 3477 3478 for (i = 0; i < dram->num_cs; i++) { 3479 const struct mbus_dram_window *cs = dram->cs + i; 3480 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3481 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3482 3483 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3484 (cs->size - 1) & 0xffff0000); 3485 3486 win_enable &= ~(1 << i); 3487 win_protect |= 3 << (2 * i); 3488 } 3489 3490 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3491 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3492 } 3493 3494 /* Power up the port */ 3495 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3496 { 3497 u32 ctrl; 3498 3499 /* MAC Cause register should be cleared */ 3500 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3501 3502 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3503 3504 /* Even though it might look weird, when we're configured in 3505 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3506 */ 3507 switch(phy_mode) { 3508 case PHY_INTERFACE_MODE_QSGMII: 3509 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3510 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3511 break; 3512 case PHY_INTERFACE_MODE_SGMII: 3513 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3514 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3515 break; 3516 case PHY_INTERFACE_MODE_RGMII: 3517 case PHY_INTERFACE_MODE_RGMII_ID: 3518 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3519 break; 3520 default: 3521 return -EINVAL; 3522 } 3523 3524 /* Cancel Port Reset */ 3525 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3526 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3527 3528 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3529 MVNETA_GMAC2_PORT_RESET) != 0) 3530 continue; 3531 3532 return 0; 3533 } 3534 3535 /* Device initialization routine */ 3536 static int mvneta_probe(struct platform_device *pdev) 3537 { 3538 const struct mbus_dram_target_info *dram_target_info; 3539 struct resource *res; 3540 struct device_node *dn = pdev->dev.of_node; 3541 struct device_node *phy_node; 3542 struct mvneta_port *pp; 3543 struct net_device *dev; 3544 const char *dt_mac_addr; 3545 char hw_mac_addr[ETH_ALEN]; 3546 const char *mac_from; 3547 const char *managed; 3548 int tx_csum_limit; 3549 int phy_mode; 3550 int err; 3551 int cpu; 3552 3553 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3554 if (!dev) 3555 return -ENOMEM; 3556 3557 dev->irq = irq_of_parse_and_map(dn, 0); 3558 if (dev->irq == 0) { 3559 err = -EINVAL; 3560 goto err_free_netdev; 3561 } 3562 3563 phy_node = of_parse_phandle(dn, "phy", 0); 3564 if (!phy_node) { 3565 if (!of_phy_is_fixed_link(dn)) { 3566 dev_err(&pdev->dev, "no PHY specified\n"); 3567 err = -ENODEV; 3568 goto err_free_irq; 3569 } 3570 3571 err = of_phy_register_fixed_link(dn); 3572 if (err < 0) { 3573 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3574 goto err_free_irq; 3575 } 3576 3577 /* In the case of a fixed PHY, the DT node associated 3578 * to the PHY is the Ethernet MAC DT node. 3579 */ 3580 phy_node = of_node_get(dn); 3581 } 3582 3583 phy_mode = of_get_phy_mode(dn); 3584 if (phy_mode < 0) { 3585 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3586 err = -EINVAL; 3587 goto err_put_phy_node; 3588 } 3589 3590 dev->tx_queue_len = MVNETA_MAX_TXD; 3591 dev->watchdog_timeo = 5 * HZ; 3592 dev->netdev_ops = &mvneta_netdev_ops; 3593 3594 dev->ethtool_ops = &mvneta_eth_tool_ops; 3595 3596 pp = netdev_priv(dev); 3597 pp->phy_node = phy_node; 3598 pp->phy_interface = phy_mode; 3599 3600 err = of_property_read_string(dn, "managed", &managed); 3601 pp->use_inband_status = (err == 0 && 3602 strcmp(managed, "in-band-status") == 0); 3603 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 3604 3605 pp->rxq_def = rxq_def; 3606 3607 pp->indir[0] = rxq_def; 3608 3609 pp->clk = devm_clk_get(&pdev->dev, "core"); 3610 if (IS_ERR(pp->clk)) 3611 pp->clk = devm_clk_get(&pdev->dev, NULL); 3612 if (IS_ERR(pp->clk)) { 3613 err = PTR_ERR(pp->clk); 3614 goto err_put_phy_node; 3615 } 3616 3617 clk_prepare_enable(pp->clk); 3618 3619 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 3620 if (!IS_ERR(pp->clk_bus)) 3621 clk_prepare_enable(pp->clk_bus); 3622 3623 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3624 pp->base = devm_ioremap_resource(&pdev->dev, res); 3625 if (IS_ERR(pp->base)) { 3626 err = PTR_ERR(pp->base); 3627 goto err_clk; 3628 } 3629 3630 /* Alloc per-cpu port structure */ 3631 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 3632 if (!pp->ports) { 3633 err = -ENOMEM; 3634 goto err_clk; 3635 } 3636 3637 /* Alloc per-cpu stats */ 3638 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3639 if (!pp->stats) { 3640 err = -ENOMEM; 3641 goto err_free_ports; 3642 } 3643 3644 dt_mac_addr = of_get_mac_address(dn); 3645 if (dt_mac_addr) { 3646 mac_from = "device tree"; 3647 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3648 } else { 3649 mvneta_get_mac_addr(pp, hw_mac_addr); 3650 if (is_valid_ether_addr(hw_mac_addr)) { 3651 mac_from = "hardware"; 3652 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3653 } else { 3654 mac_from = "random"; 3655 eth_hw_addr_random(dev); 3656 } 3657 } 3658 3659 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 3660 if (tx_csum_limit < 0 || 3661 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 3662 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3663 dev_info(&pdev->dev, 3664 "Wrong TX csum limit in DT, set to %dB\n", 3665 MVNETA_TX_CSUM_DEF_SIZE); 3666 } 3667 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 3668 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3669 } else { 3670 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 3671 } 3672 3673 pp->tx_csum_limit = tx_csum_limit; 3674 3675 pp->tx_ring_size = MVNETA_MAX_TXD; 3676 pp->rx_ring_size = MVNETA_MAX_RXD; 3677 3678 pp->dev = dev; 3679 SET_NETDEV_DEV(dev, &pdev->dev); 3680 3681 err = mvneta_init(&pdev->dev, pp); 3682 if (err < 0) 3683 goto err_free_stats; 3684 3685 err = mvneta_port_power_up(pp, phy_mode); 3686 if (err < 0) { 3687 dev_err(&pdev->dev, "can't power up port\n"); 3688 goto err_free_stats; 3689 } 3690 3691 dram_target_info = mv_mbus_dram_info(); 3692 if (dram_target_info) 3693 mvneta_conf_mbus_windows(pp, dram_target_info); 3694 3695 for_each_present_cpu(cpu) { 3696 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3697 3698 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3699 port->pp = pp; 3700 } 3701 3702 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3703 dev->hw_features |= dev->features; 3704 dev->vlan_features |= dev->features; 3705 dev->priv_flags |= IFF_UNICAST_FLT; 3706 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3707 3708 err = register_netdev(dev); 3709 if (err < 0) { 3710 dev_err(&pdev->dev, "failed to register\n"); 3711 goto err_free_stats; 3712 } 3713 3714 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3715 dev->dev_addr); 3716 3717 platform_set_drvdata(pdev, pp->dev); 3718 3719 if (pp->use_inband_status) { 3720 struct phy_device *phy = of_phy_find_device(dn); 3721 3722 mvneta_fixed_link_update(pp, phy); 3723 3724 put_device(&phy->mdio.dev); 3725 } 3726 3727 return 0; 3728 3729 err_free_stats: 3730 free_percpu(pp->stats); 3731 err_free_ports: 3732 free_percpu(pp->ports); 3733 err_clk: 3734 clk_disable_unprepare(pp->clk_bus); 3735 clk_disable_unprepare(pp->clk); 3736 err_put_phy_node: 3737 of_node_put(phy_node); 3738 err_free_irq: 3739 irq_dispose_mapping(dev->irq); 3740 err_free_netdev: 3741 free_netdev(dev); 3742 return err; 3743 } 3744 3745 /* Device removal routine */ 3746 static int mvneta_remove(struct platform_device *pdev) 3747 { 3748 struct net_device *dev = platform_get_drvdata(pdev); 3749 struct mvneta_port *pp = netdev_priv(dev); 3750 3751 unregister_netdev(dev); 3752 clk_disable_unprepare(pp->clk_bus); 3753 clk_disable_unprepare(pp->clk); 3754 free_percpu(pp->ports); 3755 free_percpu(pp->stats); 3756 irq_dispose_mapping(dev->irq); 3757 of_node_put(pp->phy_node); 3758 free_netdev(dev); 3759 3760 return 0; 3761 } 3762 3763 static const struct of_device_id mvneta_match[] = { 3764 { .compatible = "marvell,armada-370-neta" }, 3765 { .compatible = "marvell,armada-xp-neta" }, 3766 { } 3767 }; 3768 MODULE_DEVICE_TABLE(of, mvneta_match); 3769 3770 static struct platform_driver mvneta_driver = { 3771 .probe = mvneta_probe, 3772 .remove = mvneta_remove, 3773 .driver = { 3774 .name = MVNETA_DRIVER_NAME, 3775 .of_match_table = mvneta_match, 3776 }, 3777 }; 3778 3779 module_platform_driver(mvneta_driver); 3780 3781 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3782 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3783 MODULE_LICENSE("GPL"); 3784 3785 module_param(rxq_number, int, S_IRUGO); 3786 module_param(txq_number, int, S_IRUGO); 3787 3788 module_param(rxq_def, int, S_IRUGO); 3789 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3790