1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phylink.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
193 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
194 #define MVNETA_GMAC_CTRL_2                       0x2c08
195 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
196 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
197 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
198 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
199 #define MVNETA_GMAC_STATUS                       0x2c10
200 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
201 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
202 #define      MVNETA_GMAC_SPEED_100               BIT(2)
203 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
206 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
207 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
208 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
209 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
210 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
211 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
212 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
213 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
214 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
215 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
216 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
217 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
218 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
219 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
220 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
221 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
222 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
223 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
224 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
225 #define      MVNETA_MIB_LATE_COLLISION           0x7c
226 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
227 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
228 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
229 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
230 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
231 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
232 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
233 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
234 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
235 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
236 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
237 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
238 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
239 #define MVNETA_PORT_TX_RESET                     0x3cf0
240 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
241 #define MVNETA_TX_MTU                            0x3e0c
242 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
243 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
245 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
246 
247 #define MVNETA_LPI_CTRL_0                        0x2cc0
248 #define MVNETA_LPI_CTRL_1                        0x2cc4
249 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
250 #define MVNETA_LPI_CTRL_2                        0x2cc8
251 #define MVNETA_LPI_STATUS                        0x2ccc
252 
253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
254 
255 /* Descriptor ring Macros */
256 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
257 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
258 
259 /* Various constants */
260 
261 /* Coalescing */
262 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
263 #define MVNETA_RX_COAL_PKTS		32
264 #define MVNETA_RX_COAL_USEC		100
265 
266 /* The two bytes Marvell header. Either contains a special value used
267  * by Marvell switches when a specific hardware mode is enabled (not
268  * supported by this driver) or is filled automatically by zeroes on
269  * the RX side. Those two bytes being at the front of the Ethernet
270  * header, they allow to have the IP header aligned on a 4 bytes
271  * boundary automatically: the hardware skips those two bytes on its
272  * own.
273  */
274 #define MVNETA_MH_SIZE			2
275 
276 #define MVNETA_VLAN_TAG_LEN             4
277 
278 #define MVNETA_TX_CSUM_DEF_SIZE		1600
279 #define MVNETA_TX_CSUM_MAX_SIZE		9800
280 #define MVNETA_ACC_MODE_EXT1		1
281 #define MVNETA_ACC_MODE_EXT2		2
282 
283 #define MVNETA_MAX_DECODE_WIN		6
284 
285 /* Timeout constants */
286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
289 
290 #define MVNETA_TX_MTU_MAX		0x3ffff
291 
292 /* The RSS lookup table actually has 256 entries but we do not use
293  * them yet
294  */
295 #define MVNETA_RSS_LU_TABLE_SIZE	1
296 
297 /* Max number of Rx descriptors */
298 #define MVNETA_MAX_RXD 128
299 
300 /* Max number of Tx descriptors */
301 #define MVNETA_MAX_TXD 532
302 
303 /* Max number of allowed TCP segments for software TSO */
304 #define MVNETA_MAX_TSO_SEGS 100
305 
306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307 
308 /* descriptor aligned size */
309 #define MVNETA_DESC_ALIGNED_SIZE	32
310 
311 /* Number of bytes to be taken into account by HW when putting incoming data
312  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
313  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
314  */
315 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
316 
317 #define MVNETA_RX_PKT_SIZE(mtu) \
318 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
319 	      ETH_HLEN + ETH_FCS_LEN,			     \
320 	      cache_line_size())
321 
322 #define IS_TSO_HEADER(txq, addr) \
323 	((addr >= txq->tso_hdrs_phys) && \
324 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
325 
326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
327 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
328 
329 enum {
330 	ETHTOOL_STAT_EEE_WAKEUP,
331 	ETHTOOL_MAX_STATS,
332 };
333 
334 struct mvneta_statistic {
335 	unsigned short offset;
336 	unsigned short type;
337 	const char name[ETH_GSTRING_LEN];
338 };
339 
340 #define T_REG_32	32
341 #define T_REG_64	64
342 #define T_SW		1
343 
344 static const struct mvneta_statistic mvneta_statistics[] = {
345 	{ 0x3000, T_REG_64, "good_octets_received", },
346 	{ 0x3010, T_REG_32, "good_frames_received", },
347 	{ 0x3008, T_REG_32, "bad_octets_received", },
348 	{ 0x3014, T_REG_32, "bad_frames_received", },
349 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
350 	{ 0x301c, T_REG_32, "multicast_frames_received", },
351 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
352 	{ 0x3058, T_REG_32, "good_fc_received", },
353 	{ 0x305c, T_REG_32, "bad_fc_received", },
354 	{ 0x3060, T_REG_32, "undersize_received", },
355 	{ 0x3064, T_REG_32, "fragments_received", },
356 	{ 0x3068, T_REG_32, "oversize_received", },
357 	{ 0x306c, T_REG_32, "jabber_received", },
358 	{ 0x3070, T_REG_32, "mac_receive_error", },
359 	{ 0x3074, T_REG_32, "bad_crc_event", },
360 	{ 0x3078, T_REG_32, "collision", },
361 	{ 0x307c, T_REG_32, "late_collision", },
362 	{ 0x2484, T_REG_32, "rx_discard", },
363 	{ 0x2488, T_REG_32, "rx_overrun", },
364 	{ 0x3020, T_REG_32, "frames_64_octets", },
365 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
366 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
367 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
368 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
369 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
370 	{ 0x3038, T_REG_64, "good_octets_sent", },
371 	{ 0x3040, T_REG_32, "good_frames_sent", },
372 	{ 0x3044, T_REG_32, "excessive_collision", },
373 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
374 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
375 	{ 0x3054, T_REG_32, "fc_sent", },
376 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
377 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
378 };
379 
380 struct mvneta_pcpu_stats {
381 	struct	u64_stats_sync syncp;
382 	u64	rx_packets;
383 	u64	rx_bytes;
384 	u64	tx_packets;
385 	u64	tx_bytes;
386 };
387 
388 struct mvneta_pcpu_port {
389 	/* Pointer to the shared port */
390 	struct mvneta_port	*pp;
391 
392 	/* Pointer to the CPU-local NAPI struct */
393 	struct napi_struct	napi;
394 
395 	/* Cause of the previous interrupt */
396 	u32			cause_rx_tx;
397 };
398 
399 struct mvneta_port {
400 	u8 id;
401 	struct mvneta_pcpu_port __percpu	*ports;
402 	struct mvneta_pcpu_stats __percpu	*stats;
403 
404 	int pkt_size;
405 	unsigned int frag_size;
406 	void __iomem *base;
407 	struct mvneta_rx_queue *rxqs;
408 	struct mvneta_tx_queue *txqs;
409 	struct net_device *dev;
410 	struct hlist_node node_online;
411 	struct hlist_node node_dead;
412 	int rxq_def;
413 	/* Protect the access to the percpu interrupt registers,
414 	 * ensuring that the configuration remains coherent.
415 	 */
416 	spinlock_t lock;
417 	bool is_stopped;
418 
419 	u32 cause_rx_tx;
420 	struct napi_struct napi;
421 
422 	/* Core clock */
423 	struct clk *clk;
424 	/* AXI clock */
425 	struct clk *clk_bus;
426 	u8 mcast_count[256];
427 	u16 tx_ring_size;
428 	u16 rx_ring_size;
429 
430 	phy_interface_t phy_interface;
431 	struct device_node *dn;
432 	unsigned int tx_csum_limit;
433 	struct phylink *phylink;
434 
435 	struct mvneta_bm *bm_priv;
436 	struct mvneta_bm_pool *pool_long;
437 	struct mvneta_bm_pool *pool_short;
438 	int bm_win_id;
439 
440 	bool eee_enabled;
441 	bool eee_active;
442 	bool tx_lpi_enabled;
443 
444 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
445 
446 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
447 
448 	/* Flags for special SoC configurations */
449 	bool neta_armada3700;
450 	u16 rx_offset_correction;
451 	const struct mbus_dram_target_info *dram_target_info;
452 };
453 
454 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
455  * layout of the transmit and reception DMA descriptors, and their
456  * layout is therefore defined by the hardware design
457  */
458 
459 #define MVNETA_TX_L3_OFF_SHIFT	0
460 #define MVNETA_TX_IP_HLEN_SHIFT	8
461 #define MVNETA_TX_L4_UDP	BIT(16)
462 #define MVNETA_TX_L3_IP6	BIT(17)
463 #define MVNETA_TXD_IP_CSUM	BIT(18)
464 #define MVNETA_TXD_Z_PAD	BIT(19)
465 #define MVNETA_TXD_L_DESC	BIT(20)
466 #define MVNETA_TXD_F_DESC	BIT(21)
467 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
468 				 MVNETA_TXD_L_DESC | \
469 				 MVNETA_TXD_F_DESC)
470 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
471 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
472 
473 #define MVNETA_RXD_ERR_CRC		0x0
474 #define MVNETA_RXD_BM_POOL_SHIFT	13
475 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
476 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
477 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
478 #define MVNETA_RXD_ERR_LEN		BIT(18)
479 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
480 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
481 #define MVNETA_RXD_L3_IP4		BIT(25)
482 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
483 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
484 
485 #if defined(__LITTLE_ENDIAN)
486 struct mvneta_tx_desc {
487 	u32  command;		/* Options used by HW for packet transmitting.*/
488 	u16  reserverd1;	/* csum_l4 (for future use)		*/
489 	u16  data_size;		/* Data size of transmitted packet in bytes */
490 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
491 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
492 	u32  reserved3[4];	/* Reserved - (for future use)		*/
493 };
494 
495 struct mvneta_rx_desc {
496 	u32  status;		/* Info about received packet		*/
497 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
498 	u16  data_size;		/* Size of received packet in bytes	*/
499 
500 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
501 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
502 
503 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
504 	u16  reserved3;		/* prefetch_cmd, for future use		*/
505 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
506 
507 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
508 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
509 };
510 #else
511 struct mvneta_tx_desc {
512 	u16  data_size;		/* Data size of transmitted packet in bytes */
513 	u16  reserverd1;	/* csum_l4 (for future use)		*/
514 	u32  command;		/* Options used by HW for packet transmitting.*/
515 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
516 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
517 	u32  reserved3[4];	/* Reserved - (for future use)		*/
518 };
519 
520 struct mvneta_rx_desc {
521 	u16  data_size;		/* Size of received packet in bytes	*/
522 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
523 	u32  status;		/* Info about received packet		*/
524 
525 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
526 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
527 
528 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
529 	u16  reserved3;		/* prefetch_cmd, for future use		*/
530 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
531 
532 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
533 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
534 };
535 #endif
536 
537 struct mvneta_tx_queue {
538 	/* Number of this TX queue, in the range 0-7 */
539 	u8 id;
540 
541 	/* Number of TX DMA descriptors in the descriptor ring */
542 	int size;
543 
544 	/* Number of currently used TX DMA descriptor in the
545 	 * descriptor ring
546 	 */
547 	int count;
548 	int pending;
549 	int tx_stop_threshold;
550 	int tx_wake_threshold;
551 
552 	/* Array of transmitted skb */
553 	struct sk_buff **tx_skb;
554 
555 	/* Index of last TX DMA descriptor that was inserted */
556 	int txq_put_index;
557 
558 	/* Index of the TX DMA descriptor to be cleaned up */
559 	int txq_get_index;
560 
561 	u32 done_pkts_coal;
562 
563 	/* Virtual address of the TX DMA descriptors array */
564 	struct mvneta_tx_desc *descs;
565 
566 	/* DMA address of the TX DMA descriptors array */
567 	dma_addr_t descs_phys;
568 
569 	/* Index of the last TX DMA descriptor */
570 	int last_desc;
571 
572 	/* Index of the next TX DMA descriptor to process */
573 	int next_desc_to_proc;
574 
575 	/* DMA buffers for TSO headers */
576 	char *tso_hdrs;
577 
578 	/* DMA address of TSO headers */
579 	dma_addr_t tso_hdrs_phys;
580 
581 	/* Affinity mask for CPUs*/
582 	cpumask_t affinity_mask;
583 };
584 
585 struct mvneta_rx_queue {
586 	/* rx queue number, in the range 0-7 */
587 	u8 id;
588 
589 	/* num of rx descriptors in the rx descriptor ring */
590 	int size;
591 
592 	/* counter of times when mvneta_refill() failed */
593 	int missed;
594 
595 	u32 pkts_coal;
596 	u32 time_coal;
597 
598 	/* Virtual address of the RX buffer */
599 	void  **buf_virt_addr;
600 
601 	/* Virtual address of the RX DMA descriptors array */
602 	struct mvneta_rx_desc *descs;
603 
604 	/* DMA address of the RX DMA descriptors array */
605 	dma_addr_t descs_phys;
606 
607 	/* Index of the last RX DMA descriptor */
608 	int last_desc;
609 
610 	/* Index of the next RX DMA descriptor to process */
611 	int next_desc_to_proc;
612 };
613 
614 static enum cpuhp_state online_hpstate;
615 /* The hardware supports eight (8) rx queues, but we are only allowing
616  * the first one to be used. Therefore, let's just allocate one queue.
617  */
618 static int rxq_number = 8;
619 static int txq_number = 8;
620 
621 static int rxq_def;
622 
623 static int rx_copybreak __read_mostly = 256;
624 
625 /* HW BM need that each port be identify by a unique ID */
626 static int global_port_id;
627 
628 #define MVNETA_DRIVER_NAME "mvneta"
629 #define MVNETA_DRIVER_VERSION "1.0"
630 
631 /* Utility/helper methods */
632 
633 /* Write helper method */
634 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
635 {
636 	writel(data, pp->base + offset);
637 }
638 
639 /* Read helper method */
640 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
641 {
642 	return readl(pp->base + offset);
643 }
644 
645 /* Increment txq get counter */
646 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
647 {
648 	txq->txq_get_index++;
649 	if (txq->txq_get_index == txq->size)
650 		txq->txq_get_index = 0;
651 }
652 
653 /* Increment txq put counter */
654 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
655 {
656 	txq->txq_put_index++;
657 	if (txq->txq_put_index == txq->size)
658 		txq->txq_put_index = 0;
659 }
660 
661 
662 /* Clear all MIB counters */
663 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
664 {
665 	int i;
666 	u32 dummy;
667 
668 	/* Perform dummy reads from MIB counters */
669 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
670 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
671 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
672 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
673 }
674 
675 /* Get System Network Statistics */
676 static void
677 mvneta_get_stats64(struct net_device *dev,
678 		   struct rtnl_link_stats64 *stats)
679 {
680 	struct mvneta_port *pp = netdev_priv(dev);
681 	unsigned int start;
682 	int cpu;
683 
684 	for_each_possible_cpu(cpu) {
685 		struct mvneta_pcpu_stats *cpu_stats;
686 		u64 rx_packets;
687 		u64 rx_bytes;
688 		u64 tx_packets;
689 		u64 tx_bytes;
690 
691 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
692 		do {
693 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
694 			rx_packets = cpu_stats->rx_packets;
695 			rx_bytes   = cpu_stats->rx_bytes;
696 			tx_packets = cpu_stats->tx_packets;
697 			tx_bytes   = cpu_stats->tx_bytes;
698 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
699 
700 		stats->rx_packets += rx_packets;
701 		stats->rx_bytes   += rx_bytes;
702 		stats->tx_packets += tx_packets;
703 		stats->tx_bytes   += tx_bytes;
704 	}
705 
706 	stats->rx_errors	= dev->stats.rx_errors;
707 	stats->rx_dropped	= dev->stats.rx_dropped;
708 
709 	stats->tx_dropped	= dev->stats.tx_dropped;
710 }
711 
712 /* Rx descriptors helper methods */
713 
714 /* Checks whether the RX descriptor having this status is both the first
715  * and the last descriptor for the RX packet. Each RX packet is currently
716  * received through a single RX descriptor, so not having each RX
717  * descriptor with its first and last bits set is an error
718  */
719 static int mvneta_rxq_desc_is_first_last(u32 status)
720 {
721 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
722 		MVNETA_RXD_FIRST_LAST_DESC;
723 }
724 
725 /* Add number of descriptors ready to receive new packets */
726 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
727 					  struct mvneta_rx_queue *rxq,
728 					  int ndescs)
729 {
730 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
731 	 * be added at once
732 	 */
733 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
734 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
735 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
736 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
737 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
738 	}
739 
740 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
741 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
742 }
743 
744 /* Get number of RX descriptors occupied by received packets */
745 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
746 					struct mvneta_rx_queue *rxq)
747 {
748 	u32 val;
749 
750 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
751 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
752 }
753 
754 /* Update num of rx desc called upon return from rx path or
755  * from mvneta_rxq_drop_pkts().
756  */
757 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
758 				       struct mvneta_rx_queue *rxq,
759 				       int rx_done, int rx_filled)
760 {
761 	u32 val;
762 
763 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
764 		val = rx_done |
765 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
766 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
767 		return;
768 	}
769 
770 	/* Only 255 descriptors can be added at once */
771 	while ((rx_done > 0) || (rx_filled > 0)) {
772 		if (rx_done <= 0xff) {
773 			val = rx_done;
774 			rx_done = 0;
775 		} else {
776 			val = 0xff;
777 			rx_done -= 0xff;
778 		}
779 		if (rx_filled <= 0xff) {
780 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
781 			rx_filled = 0;
782 		} else {
783 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
784 			rx_filled -= 0xff;
785 		}
786 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
787 	}
788 }
789 
790 /* Get pointer to next RX descriptor to be processed by SW */
791 static struct mvneta_rx_desc *
792 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
793 {
794 	int rx_desc = rxq->next_desc_to_proc;
795 
796 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
797 	prefetch(rxq->descs + rxq->next_desc_to_proc);
798 	return rxq->descs + rx_desc;
799 }
800 
801 /* Change maximum receive size of the port. */
802 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
803 {
804 	u32 val;
805 
806 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
807 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
808 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
809 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
810 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
811 }
812 
813 
814 /* Set rx queue offset */
815 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
816 				  struct mvneta_rx_queue *rxq,
817 				  int offset)
818 {
819 	u32 val;
820 
821 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
822 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
823 
824 	/* Offset is in */
825 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
826 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
827 }
828 
829 
830 /* Tx descriptors helper methods */
831 
832 /* Update HW with number of TX descriptors to be sent */
833 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
834 				     struct mvneta_tx_queue *txq,
835 				     int pend_desc)
836 {
837 	u32 val;
838 
839 	pend_desc += txq->pending;
840 
841 	/* Only 255 Tx descriptors can be added at once */
842 	do {
843 		val = min(pend_desc, 255);
844 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
845 		pend_desc -= val;
846 	} while (pend_desc > 0);
847 	txq->pending = 0;
848 }
849 
850 /* Get pointer to next TX descriptor to be processed (send) by HW */
851 static struct mvneta_tx_desc *
852 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
853 {
854 	int tx_desc = txq->next_desc_to_proc;
855 
856 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
857 	return txq->descs + tx_desc;
858 }
859 
860 /* Release the last allocated TX descriptor. Useful to handle DMA
861  * mapping failures in the TX path.
862  */
863 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
864 {
865 	if (txq->next_desc_to_proc == 0)
866 		txq->next_desc_to_proc = txq->last_desc - 1;
867 	else
868 		txq->next_desc_to_proc--;
869 }
870 
871 /* Set rxq buf size */
872 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
873 				    struct mvneta_rx_queue *rxq,
874 				    int buf_size)
875 {
876 	u32 val;
877 
878 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
879 
880 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
881 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
882 
883 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
884 }
885 
886 /* Disable buffer management (BM) */
887 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
888 				  struct mvneta_rx_queue *rxq)
889 {
890 	u32 val;
891 
892 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
893 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
894 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
895 }
896 
897 /* Enable buffer management (BM) */
898 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
899 				 struct mvneta_rx_queue *rxq)
900 {
901 	u32 val;
902 
903 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
904 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
905 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
906 }
907 
908 /* Notify HW about port's assignment of pool for bigger packets */
909 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
910 				     struct mvneta_rx_queue *rxq)
911 {
912 	u32 val;
913 
914 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
915 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
916 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
917 
918 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
919 }
920 
921 /* Notify HW about port's assignment of pool for smaller packets */
922 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
923 				      struct mvneta_rx_queue *rxq)
924 {
925 	u32 val;
926 
927 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
928 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
929 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
930 
931 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
932 }
933 
934 /* Set port's receive buffer size for assigned BM pool */
935 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
936 					      int buf_size,
937 					      u8 pool_id)
938 {
939 	u32 val;
940 
941 	if (!IS_ALIGNED(buf_size, 8)) {
942 		dev_warn(pp->dev->dev.parent,
943 			 "illegal buf_size value %d, round to %d\n",
944 			 buf_size, ALIGN(buf_size, 8));
945 		buf_size = ALIGN(buf_size, 8);
946 	}
947 
948 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
949 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
950 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
951 }
952 
953 /* Configure MBUS window in order to enable access BM internal SRAM */
954 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
955 				  u8 target, u8 attr)
956 {
957 	u32 win_enable, win_protect;
958 	int i;
959 
960 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
961 
962 	if (pp->bm_win_id < 0) {
963 		/* Find first not occupied window */
964 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
965 			if (win_enable & (1 << i)) {
966 				pp->bm_win_id = i;
967 				break;
968 			}
969 		}
970 		if (i == MVNETA_MAX_DECODE_WIN)
971 			return -ENOMEM;
972 	} else {
973 		i = pp->bm_win_id;
974 	}
975 
976 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
977 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
978 
979 	if (i < 4)
980 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
981 
982 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
983 		    (attr << 8) | target);
984 
985 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
986 
987 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
988 	win_protect |= 3 << (2 * i);
989 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
990 
991 	win_enable &= ~(1 << i);
992 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
993 
994 	return 0;
995 }
996 
997 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
998 {
999 	u32 wsize;
1000 	u8 target, attr;
1001 	int err;
1002 
1003 	/* Get BM window information */
1004 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1005 					 &target, &attr);
1006 	if (err < 0)
1007 		return err;
1008 
1009 	pp->bm_win_id = -1;
1010 
1011 	/* Open NETA -> BM window */
1012 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1013 				     target, attr);
1014 	if (err < 0) {
1015 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1016 		return err;
1017 	}
1018 	return 0;
1019 }
1020 
1021 /* Assign and initialize pools for port. In case of fail
1022  * buffer manager will remain disabled for current port.
1023  */
1024 static int mvneta_bm_port_init(struct platform_device *pdev,
1025 			       struct mvneta_port *pp)
1026 {
1027 	struct device_node *dn = pdev->dev.of_node;
1028 	u32 long_pool_id, short_pool_id;
1029 
1030 	if (!pp->neta_armada3700) {
1031 		int ret;
1032 
1033 		ret = mvneta_bm_port_mbus_init(pp);
1034 		if (ret)
1035 			return ret;
1036 	}
1037 
1038 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1039 		netdev_info(pp->dev, "missing long pool id\n");
1040 		return -EINVAL;
1041 	}
1042 
1043 	/* Create port's long pool depending on mtu */
1044 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1045 					   MVNETA_BM_LONG, pp->id,
1046 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1047 	if (!pp->pool_long) {
1048 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1049 		return -ENOMEM;
1050 	}
1051 
1052 	pp->pool_long->port_map |= 1 << pp->id;
1053 
1054 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1055 				   pp->pool_long->id);
1056 
1057 	/* If short pool id is not defined, assume using single pool */
1058 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1059 		short_pool_id = long_pool_id;
1060 
1061 	/* Create port's short pool */
1062 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1063 					    MVNETA_BM_SHORT, pp->id,
1064 					    MVNETA_BM_SHORT_PKT_SIZE);
1065 	if (!pp->pool_short) {
1066 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1067 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	if (short_pool_id != long_pool_id) {
1072 		pp->pool_short->port_map |= 1 << pp->id;
1073 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1074 					   pp->pool_short->id);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /* Update settings of a pool for bigger packets */
1081 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1082 {
1083 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1084 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1085 	int num;
1086 
1087 	/* Release all buffers from long pool */
1088 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1089 	if (hwbm_pool->buf_num) {
1090 		WARN(1, "cannot free all buffers in pool %d\n",
1091 		     bm_pool->id);
1092 		goto bm_mtu_err;
1093 	}
1094 
1095 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1096 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1097 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1098 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1099 
1100 	/* Fill entire long pool */
1101 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1102 	if (num != hwbm_pool->size) {
1103 		WARN(1, "pool %d: %d of %d allocated\n",
1104 		     bm_pool->id, num, hwbm_pool->size);
1105 		goto bm_mtu_err;
1106 	}
1107 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1108 
1109 	return;
1110 
1111 bm_mtu_err:
1112 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1113 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1114 
1115 	pp->bm_priv = NULL;
1116 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1117 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1118 }
1119 
1120 /* Start the Ethernet port RX and TX activity */
1121 static void mvneta_port_up(struct mvneta_port *pp)
1122 {
1123 	int queue;
1124 	u32 q_map;
1125 
1126 	/* Enable all initialized TXs. */
1127 	q_map = 0;
1128 	for (queue = 0; queue < txq_number; queue++) {
1129 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1130 		if (txq->descs)
1131 			q_map |= (1 << queue);
1132 	}
1133 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1134 
1135 	/* Enable all initialized RXQs. */
1136 	for (queue = 0; queue < rxq_number; queue++) {
1137 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1138 
1139 		if (rxq->descs)
1140 			q_map |= (1 << queue);
1141 	}
1142 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1143 }
1144 
1145 /* Stop the Ethernet port activity */
1146 static void mvneta_port_down(struct mvneta_port *pp)
1147 {
1148 	u32 val;
1149 	int count;
1150 
1151 	/* Stop Rx port activity. Check port Rx activity. */
1152 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1153 
1154 	/* Issue stop command for active channels only */
1155 	if (val != 0)
1156 		mvreg_write(pp, MVNETA_RXQ_CMD,
1157 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1158 
1159 	/* Wait for all Rx activity to terminate. */
1160 	count = 0;
1161 	do {
1162 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1163 			netdev_warn(pp->dev,
1164 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1165 				    val);
1166 			break;
1167 		}
1168 		mdelay(1);
1169 
1170 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1171 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1172 
1173 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1174 	 * command for active channels only
1175 	 */
1176 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1177 
1178 	if (val != 0)
1179 		mvreg_write(pp, MVNETA_TXQ_CMD,
1180 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1181 
1182 	/* Wait for all Tx activity to terminate. */
1183 	count = 0;
1184 	do {
1185 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1186 			netdev_warn(pp->dev,
1187 				    "TIMEOUT for TX stopped status=0x%08x\n",
1188 				    val);
1189 			break;
1190 		}
1191 		mdelay(1);
1192 
1193 		/* Check TX Command reg that all Txqs are stopped */
1194 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1195 
1196 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1197 
1198 	/* Double check to verify that TX FIFO is empty */
1199 	count = 0;
1200 	do {
1201 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1202 			netdev_warn(pp->dev,
1203 				    "TX FIFO empty timeout status=0x%08x\n",
1204 				    val);
1205 			break;
1206 		}
1207 		mdelay(1);
1208 
1209 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1210 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1211 		 (val & MVNETA_TX_IN_PRGRS));
1212 
1213 	udelay(200);
1214 }
1215 
1216 /* Enable the port by setting the port enable bit of the MAC control register */
1217 static void mvneta_port_enable(struct mvneta_port *pp)
1218 {
1219 	u32 val;
1220 
1221 	/* Enable port */
1222 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1223 	val |= MVNETA_GMAC0_PORT_ENABLE;
1224 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1225 }
1226 
1227 /* Disable the port and wait for about 200 usec before retuning */
1228 static void mvneta_port_disable(struct mvneta_port *pp)
1229 {
1230 	u32 val;
1231 
1232 	/* Reset the Enable bit in the Serial Control Register */
1233 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1234 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1235 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1236 
1237 	udelay(200);
1238 }
1239 
1240 /* Multicast tables methods */
1241 
1242 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1243 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1244 {
1245 	int offset;
1246 	u32 val;
1247 
1248 	if (queue == -1) {
1249 		val = 0;
1250 	} else {
1251 		val = 0x1 | (queue << 1);
1252 		val |= (val << 24) | (val << 16) | (val << 8);
1253 	}
1254 
1255 	for (offset = 0; offset <= 0xc; offset += 4)
1256 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1257 }
1258 
1259 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1260 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1261 {
1262 	int offset;
1263 	u32 val;
1264 
1265 	if (queue == -1) {
1266 		val = 0;
1267 	} else {
1268 		val = 0x1 | (queue << 1);
1269 		val |= (val << 24) | (val << 16) | (val << 8);
1270 	}
1271 
1272 	for (offset = 0; offset <= 0xfc; offset += 4)
1273 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1274 
1275 }
1276 
1277 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1278 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1279 {
1280 	int offset;
1281 	u32 val;
1282 
1283 	if (queue == -1) {
1284 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1285 		val = 0;
1286 	} else {
1287 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1288 		val = 0x1 | (queue << 1);
1289 		val |= (val << 24) | (val << 16) | (val << 8);
1290 	}
1291 
1292 	for (offset = 0; offset <= 0xfc; offset += 4)
1293 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1294 }
1295 
1296 static void mvneta_percpu_unmask_interrupt(void *arg)
1297 {
1298 	struct mvneta_port *pp = arg;
1299 
1300 	/* All the queue are unmasked, but actually only the ones
1301 	 * mapped to this CPU will be unmasked
1302 	 */
1303 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1304 		    MVNETA_RX_INTR_MASK_ALL |
1305 		    MVNETA_TX_INTR_MASK_ALL |
1306 		    MVNETA_MISCINTR_INTR_MASK);
1307 }
1308 
1309 static void mvneta_percpu_mask_interrupt(void *arg)
1310 {
1311 	struct mvneta_port *pp = arg;
1312 
1313 	/* All the queue are masked, but actually only the ones
1314 	 * mapped to this CPU will be masked
1315 	 */
1316 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1317 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1318 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1319 }
1320 
1321 static void mvneta_percpu_clear_intr_cause(void *arg)
1322 {
1323 	struct mvneta_port *pp = arg;
1324 
1325 	/* All the queue are cleared, but actually only the ones
1326 	 * mapped to this CPU will be cleared
1327 	 */
1328 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1329 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1330 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1331 }
1332 
1333 /* This method sets defaults to the NETA port:
1334  *	Clears interrupt Cause and Mask registers.
1335  *	Clears all MAC tables.
1336  *	Sets defaults to all registers.
1337  *	Resets RX and TX descriptor rings.
1338  *	Resets PHY.
1339  * This method can be called after mvneta_port_down() to return the port
1340  *	settings to defaults.
1341  */
1342 static void mvneta_defaults_set(struct mvneta_port *pp)
1343 {
1344 	int cpu;
1345 	int queue;
1346 	u32 val;
1347 	int max_cpu = num_present_cpus();
1348 
1349 	/* Clear all Cause registers */
1350 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1351 
1352 	/* Mask all interrupts */
1353 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1354 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1355 
1356 	/* Enable MBUS Retry bit16 */
1357 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1358 
1359 	/* Set CPU queue access map. CPUs are assigned to the RX and
1360 	 * TX queues modulo their number. If there is only one TX
1361 	 * queue then it is assigned to the CPU associated to the
1362 	 * default RX queue.
1363 	 */
1364 	for_each_present_cpu(cpu) {
1365 		int rxq_map = 0, txq_map = 0;
1366 		int rxq, txq;
1367 		if (!pp->neta_armada3700) {
1368 			for (rxq = 0; rxq < rxq_number; rxq++)
1369 				if ((rxq % max_cpu) == cpu)
1370 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1371 
1372 			for (txq = 0; txq < txq_number; txq++)
1373 				if ((txq % max_cpu) == cpu)
1374 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1375 
1376 			/* With only one TX queue we configure a special case
1377 			 * which will allow to get all the irq on a single
1378 			 * CPU
1379 			 */
1380 			if (txq_number == 1)
1381 				txq_map = (cpu == pp->rxq_def) ?
1382 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1383 
1384 		} else {
1385 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1386 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1387 		}
1388 
1389 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1390 	}
1391 
1392 	/* Reset RX and TX DMAs */
1393 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1394 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1395 
1396 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1397 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1398 	for (queue = 0; queue < txq_number; queue++) {
1399 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1400 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1401 	}
1402 
1403 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1404 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1405 
1406 	/* Set Port Acceleration Mode */
1407 	if (pp->bm_priv)
1408 		/* HW buffer management + legacy parser */
1409 		val = MVNETA_ACC_MODE_EXT2;
1410 	else
1411 		/* SW buffer management + legacy parser */
1412 		val = MVNETA_ACC_MODE_EXT1;
1413 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1414 
1415 	if (pp->bm_priv)
1416 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1417 
1418 	/* Update val of portCfg register accordingly with all RxQueue types */
1419 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1420 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1421 
1422 	val = 0;
1423 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1424 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1425 
1426 	/* Build PORT_SDMA_CONFIG_REG */
1427 	val = 0;
1428 
1429 	/* Default burst size */
1430 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1431 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1432 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1433 
1434 #if defined(__BIG_ENDIAN)
1435 	val |= MVNETA_DESC_SWAP;
1436 #endif
1437 
1438 	/* Assign port SDMA configuration */
1439 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1440 
1441 	/* Disable PHY polling in hardware, since we're using the
1442 	 * kernel phylib to do this.
1443 	 */
1444 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1445 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1446 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1447 
1448 	mvneta_set_ucast_table(pp, -1);
1449 	mvneta_set_special_mcast_table(pp, -1);
1450 	mvneta_set_other_mcast_table(pp, -1);
1451 
1452 	/* Set port interrupt enable register - default enable all */
1453 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1454 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1455 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1456 
1457 	mvneta_mib_counters_clear(pp);
1458 }
1459 
1460 /* Set max sizes for tx queues */
1461 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1462 
1463 {
1464 	u32 val, size, mtu;
1465 	int queue;
1466 
1467 	mtu = max_tx_size * 8;
1468 	if (mtu > MVNETA_TX_MTU_MAX)
1469 		mtu = MVNETA_TX_MTU_MAX;
1470 
1471 	/* Set MTU */
1472 	val = mvreg_read(pp, MVNETA_TX_MTU);
1473 	val &= ~MVNETA_TX_MTU_MAX;
1474 	val |= mtu;
1475 	mvreg_write(pp, MVNETA_TX_MTU, val);
1476 
1477 	/* TX token size and all TXQs token size must be larger that MTU */
1478 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1479 
1480 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1481 	if (size < mtu) {
1482 		size = mtu;
1483 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1484 		val |= size;
1485 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1486 	}
1487 	for (queue = 0; queue < txq_number; queue++) {
1488 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1489 
1490 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1491 		if (size < mtu) {
1492 			size = mtu;
1493 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1494 			val |= size;
1495 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1496 		}
1497 	}
1498 }
1499 
1500 /* Set unicast address */
1501 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1502 				  int queue)
1503 {
1504 	unsigned int unicast_reg;
1505 	unsigned int tbl_offset;
1506 	unsigned int reg_offset;
1507 
1508 	/* Locate the Unicast table entry */
1509 	last_nibble = (0xf & last_nibble);
1510 
1511 	/* offset from unicast tbl base */
1512 	tbl_offset = (last_nibble / 4) * 4;
1513 
1514 	/* offset within the above reg  */
1515 	reg_offset = last_nibble % 4;
1516 
1517 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1518 
1519 	if (queue == -1) {
1520 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1521 		unicast_reg &= ~(0xff << (8 * reg_offset));
1522 	} else {
1523 		unicast_reg &= ~(0xff << (8 * reg_offset));
1524 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1525 	}
1526 
1527 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1528 }
1529 
1530 /* Set mac address */
1531 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1532 				int queue)
1533 {
1534 	unsigned int mac_h;
1535 	unsigned int mac_l;
1536 
1537 	if (queue != -1) {
1538 		mac_l = (addr[4] << 8) | (addr[5]);
1539 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1540 			(addr[2] << 8) | (addr[3] << 0);
1541 
1542 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1543 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1544 	}
1545 
1546 	/* Accept frames of this address */
1547 	mvneta_set_ucast_addr(pp, addr[5], queue);
1548 }
1549 
1550 /* Set the number of packets that will be received before RX interrupt
1551  * will be generated by HW.
1552  */
1553 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1554 				    struct mvneta_rx_queue *rxq, u32 value)
1555 {
1556 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1557 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1558 	rxq->pkts_coal = value;
1559 }
1560 
1561 /* Set the time delay in usec before RX interrupt will be generated by
1562  * HW.
1563  */
1564 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1565 				    struct mvneta_rx_queue *rxq, u32 value)
1566 {
1567 	u32 val;
1568 	unsigned long clk_rate;
1569 
1570 	clk_rate = clk_get_rate(pp->clk);
1571 	val = (clk_rate / 1000000) * value;
1572 
1573 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1574 	rxq->time_coal = value;
1575 }
1576 
1577 /* Set threshold for TX_DONE pkts coalescing */
1578 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1579 					 struct mvneta_tx_queue *txq, u32 value)
1580 {
1581 	u32 val;
1582 
1583 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1584 
1585 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1586 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1587 
1588 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1589 
1590 	txq->done_pkts_coal = value;
1591 }
1592 
1593 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1594 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1595 				u32 phys_addr, void *virt_addr,
1596 				struct mvneta_rx_queue *rxq)
1597 {
1598 	int i;
1599 
1600 	rx_desc->buf_phys_addr = phys_addr;
1601 	i = rx_desc - rxq->descs;
1602 	rxq->buf_virt_addr[i] = virt_addr;
1603 }
1604 
1605 /* Decrement sent descriptors counter */
1606 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1607 				     struct mvneta_tx_queue *txq,
1608 				     int sent_desc)
1609 {
1610 	u32 val;
1611 
1612 	/* Only 255 TX descriptors can be updated at once */
1613 	while (sent_desc > 0xff) {
1614 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1615 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1616 		sent_desc = sent_desc - 0xff;
1617 	}
1618 
1619 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1620 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1621 }
1622 
1623 /* Get number of TX descriptors already sent by HW */
1624 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1625 					struct mvneta_tx_queue *txq)
1626 {
1627 	u32 val;
1628 	int sent_desc;
1629 
1630 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1631 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1632 		MVNETA_TXQ_SENT_DESC_SHIFT;
1633 
1634 	return sent_desc;
1635 }
1636 
1637 /* Get number of sent descriptors and decrement counter.
1638  *  The number of sent descriptors is returned.
1639  */
1640 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1641 				     struct mvneta_tx_queue *txq)
1642 {
1643 	int sent_desc;
1644 
1645 	/* Get number of sent descriptors */
1646 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1647 
1648 	/* Decrement sent descriptors counter */
1649 	if (sent_desc)
1650 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1651 
1652 	return sent_desc;
1653 }
1654 
1655 /* Set TXQ descriptors fields relevant for CSUM calculation */
1656 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1657 				int ip_hdr_len, int l4_proto)
1658 {
1659 	u32 command;
1660 
1661 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1662 	 * G_L4_chk, L4_type; required only for checksum
1663 	 * calculation
1664 	 */
1665 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1666 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1667 
1668 	if (l3_proto == htons(ETH_P_IP))
1669 		command |= MVNETA_TXD_IP_CSUM;
1670 	else
1671 		command |= MVNETA_TX_L3_IP6;
1672 
1673 	if (l4_proto == IPPROTO_TCP)
1674 		command |=  MVNETA_TX_L4_CSUM_FULL;
1675 	else if (l4_proto == IPPROTO_UDP)
1676 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1677 	else
1678 		command |= MVNETA_TX_L4_CSUM_NOT;
1679 
1680 	return command;
1681 }
1682 
1683 
1684 /* Display more error info */
1685 static void mvneta_rx_error(struct mvneta_port *pp,
1686 			    struct mvneta_rx_desc *rx_desc)
1687 {
1688 	u32 status = rx_desc->status;
1689 
1690 	if (!mvneta_rxq_desc_is_first_last(status)) {
1691 		netdev_err(pp->dev,
1692 			   "bad rx status %08x (buffer oversize), size=%d\n",
1693 			   status, rx_desc->data_size);
1694 		return;
1695 	}
1696 
1697 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1698 	case MVNETA_RXD_ERR_CRC:
1699 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1700 			   status, rx_desc->data_size);
1701 		break;
1702 	case MVNETA_RXD_ERR_OVERRUN:
1703 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1704 			   status, rx_desc->data_size);
1705 		break;
1706 	case MVNETA_RXD_ERR_LEN:
1707 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1708 			   status, rx_desc->data_size);
1709 		break;
1710 	case MVNETA_RXD_ERR_RESOURCE:
1711 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1712 			   status, rx_desc->data_size);
1713 		break;
1714 	}
1715 }
1716 
1717 /* Handle RX checksum offload based on the descriptor's status */
1718 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1719 			   struct sk_buff *skb)
1720 {
1721 	if ((status & MVNETA_RXD_L3_IP4) &&
1722 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1723 		skb->csum = 0;
1724 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 		return;
1726 	}
1727 
1728 	skb->ip_summed = CHECKSUM_NONE;
1729 }
1730 
1731 /* Return tx queue pointer (find last set bit) according to <cause> returned
1732  * form tx_done reg. <cause> must not be null. The return value is always a
1733  * valid queue for matching the first one found in <cause>.
1734  */
1735 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1736 						     u32 cause)
1737 {
1738 	int queue = fls(cause) - 1;
1739 
1740 	return &pp->txqs[queue];
1741 }
1742 
1743 /* Free tx queue skbuffs */
1744 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1745 				 struct mvneta_tx_queue *txq, int num,
1746 				 struct netdev_queue *nq)
1747 {
1748 	unsigned int bytes_compl = 0, pkts_compl = 0;
1749 	int i;
1750 
1751 	for (i = 0; i < num; i++) {
1752 		struct mvneta_tx_desc *tx_desc = txq->descs +
1753 			txq->txq_get_index;
1754 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1755 
1756 		if (skb) {
1757 			bytes_compl += skb->len;
1758 			pkts_compl++;
1759 		}
1760 
1761 		mvneta_txq_inc_get(txq);
1762 
1763 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1764 			dma_unmap_single(pp->dev->dev.parent,
1765 					 tx_desc->buf_phys_addr,
1766 					 tx_desc->data_size, DMA_TO_DEVICE);
1767 		if (!skb)
1768 			continue;
1769 		dev_kfree_skb_any(skb);
1770 	}
1771 
1772 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1773 }
1774 
1775 /* Handle end of transmission */
1776 static void mvneta_txq_done(struct mvneta_port *pp,
1777 			   struct mvneta_tx_queue *txq)
1778 {
1779 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1780 	int tx_done;
1781 
1782 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1783 	if (!tx_done)
1784 		return;
1785 
1786 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1787 
1788 	txq->count -= tx_done;
1789 
1790 	if (netif_tx_queue_stopped(nq)) {
1791 		if (txq->count <= txq->tx_wake_threshold)
1792 			netif_tx_wake_queue(nq);
1793 	}
1794 }
1795 
1796 void *mvneta_frag_alloc(unsigned int frag_size)
1797 {
1798 	if (likely(frag_size <= PAGE_SIZE))
1799 		return netdev_alloc_frag(frag_size);
1800 	else
1801 		return kmalloc(frag_size, GFP_ATOMIC);
1802 }
1803 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1804 
1805 void mvneta_frag_free(unsigned int frag_size, void *data)
1806 {
1807 	if (likely(frag_size <= PAGE_SIZE))
1808 		skb_free_frag(data);
1809 	else
1810 		kfree(data);
1811 }
1812 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1813 
1814 /* Refill processing for SW buffer management */
1815 static int mvneta_rx_refill(struct mvneta_port *pp,
1816 			    struct mvneta_rx_desc *rx_desc,
1817 			    struct mvneta_rx_queue *rxq)
1818 
1819 {
1820 	dma_addr_t phys_addr;
1821 	void *data;
1822 
1823 	data = mvneta_frag_alloc(pp->frag_size);
1824 	if (!data)
1825 		return -ENOMEM;
1826 
1827 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1828 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1829 				   DMA_FROM_DEVICE);
1830 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1831 		mvneta_frag_free(pp->frag_size, data);
1832 		return -ENOMEM;
1833 	}
1834 
1835 	phys_addr += pp->rx_offset_correction;
1836 	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1837 	return 0;
1838 }
1839 
1840 /* Handle tx checksum */
1841 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1842 {
1843 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1844 		int ip_hdr_len = 0;
1845 		__be16 l3_proto = vlan_get_protocol(skb);
1846 		u8 l4_proto;
1847 
1848 		if (l3_proto == htons(ETH_P_IP)) {
1849 			struct iphdr *ip4h = ip_hdr(skb);
1850 
1851 			/* Calculate IPv4 checksum and L4 checksum */
1852 			ip_hdr_len = ip4h->ihl;
1853 			l4_proto = ip4h->protocol;
1854 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1855 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1856 
1857 			/* Read l4_protocol from one of IPv6 extra headers */
1858 			if (skb_network_header_len(skb) > 0)
1859 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1860 			l4_proto = ip6h->nexthdr;
1861 		} else
1862 			return MVNETA_TX_L4_CSUM_NOT;
1863 
1864 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1865 					    l3_proto, ip_hdr_len, l4_proto);
1866 	}
1867 
1868 	return MVNETA_TX_L4_CSUM_NOT;
1869 }
1870 
1871 /* Drop packets received by the RXQ and free buffers */
1872 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1873 				 struct mvneta_rx_queue *rxq)
1874 {
1875 	int rx_done, i;
1876 
1877 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1878 	if (rx_done)
1879 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1880 
1881 	if (pp->bm_priv) {
1882 		for (i = 0; i < rx_done; i++) {
1883 			struct mvneta_rx_desc *rx_desc =
1884 						  mvneta_rxq_next_desc_get(rxq);
1885 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1886 			struct mvneta_bm_pool *bm_pool;
1887 
1888 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1889 			/* Return dropped buffer to the pool */
1890 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1891 					      rx_desc->buf_phys_addr);
1892 		}
1893 		return;
1894 	}
1895 
1896 	for (i = 0; i < rxq->size; i++) {
1897 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1898 		void *data = rxq->buf_virt_addr[i];
1899 
1900 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1901 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1902 		mvneta_frag_free(pp->frag_size, data);
1903 	}
1904 }
1905 
1906 /* Main rx processing when using software buffer management */
1907 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1908 			  struct mvneta_rx_queue *rxq)
1909 {
1910 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1911 	struct net_device *dev = pp->dev;
1912 	int rx_done;
1913 	u32 rcvd_pkts = 0;
1914 	u32 rcvd_bytes = 0;
1915 
1916 	/* Get number of received packets */
1917 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1918 
1919 	if (rx_todo > rx_done)
1920 		rx_todo = rx_done;
1921 
1922 	rx_done = 0;
1923 
1924 	/* Fairness NAPI loop */
1925 	while (rx_done < rx_todo) {
1926 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1927 		struct sk_buff *skb;
1928 		unsigned char *data;
1929 		dma_addr_t phys_addr;
1930 		u32 rx_status, frag_size;
1931 		int rx_bytes, err, index;
1932 
1933 		rx_done++;
1934 		rx_status = rx_desc->status;
1935 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1936 		index = rx_desc - rxq->descs;
1937 		data = rxq->buf_virt_addr[index];
1938 		phys_addr = rx_desc->buf_phys_addr;
1939 
1940 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1941 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1942 			mvneta_rx_error(pp, rx_desc);
1943 err_drop_frame:
1944 			dev->stats.rx_errors++;
1945 			/* leave the descriptor untouched */
1946 			continue;
1947 		}
1948 
1949 		if (rx_bytes <= rx_copybreak) {
1950 		/* better copy a small frame and not unmap the DMA region */
1951 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1952 			if (unlikely(!skb))
1953 				goto err_drop_frame;
1954 
1955 			dma_sync_single_range_for_cpu(dev->dev.parent,
1956 						      phys_addr,
1957 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1958 						      rx_bytes,
1959 						      DMA_FROM_DEVICE);
1960 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1961 				     rx_bytes);
1962 
1963 			skb->protocol = eth_type_trans(skb, dev);
1964 			mvneta_rx_csum(pp, rx_status, skb);
1965 			napi_gro_receive(&port->napi, skb);
1966 
1967 			rcvd_pkts++;
1968 			rcvd_bytes += rx_bytes;
1969 
1970 			/* leave the descriptor and buffer untouched */
1971 			continue;
1972 		}
1973 
1974 		/* Refill processing */
1975 		err = mvneta_rx_refill(pp, rx_desc, rxq);
1976 		if (err) {
1977 			netdev_err(dev, "Linux processing - Can't refill\n");
1978 			rxq->missed++;
1979 			goto err_drop_frame;
1980 		}
1981 
1982 		frag_size = pp->frag_size;
1983 
1984 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1985 
1986 		/* After refill old buffer has to be unmapped regardless
1987 		 * the skb is successfully built or not.
1988 		 */
1989 		dma_unmap_single(dev->dev.parent, phys_addr,
1990 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1991 				 DMA_FROM_DEVICE);
1992 
1993 		if (!skb)
1994 			goto err_drop_frame;
1995 
1996 		rcvd_pkts++;
1997 		rcvd_bytes += rx_bytes;
1998 
1999 		/* Linux processing */
2000 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2001 		skb_put(skb, rx_bytes);
2002 
2003 		skb->protocol = eth_type_trans(skb, dev);
2004 
2005 		mvneta_rx_csum(pp, rx_status, skb);
2006 
2007 		napi_gro_receive(&port->napi, skb);
2008 	}
2009 
2010 	if (rcvd_pkts) {
2011 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2012 
2013 		u64_stats_update_begin(&stats->syncp);
2014 		stats->rx_packets += rcvd_pkts;
2015 		stats->rx_bytes   += rcvd_bytes;
2016 		u64_stats_update_end(&stats->syncp);
2017 	}
2018 
2019 	/* Update rxq management counters */
2020 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2021 
2022 	return rx_done;
2023 }
2024 
2025 /* Main rx processing when using hardware buffer management */
2026 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2027 			  struct mvneta_rx_queue *rxq)
2028 {
2029 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2030 	struct net_device *dev = pp->dev;
2031 	int rx_done;
2032 	u32 rcvd_pkts = 0;
2033 	u32 rcvd_bytes = 0;
2034 
2035 	/* Get number of received packets */
2036 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2037 
2038 	if (rx_todo > rx_done)
2039 		rx_todo = rx_done;
2040 
2041 	rx_done = 0;
2042 
2043 	/* Fairness NAPI loop */
2044 	while (rx_done < rx_todo) {
2045 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2046 		struct mvneta_bm_pool *bm_pool = NULL;
2047 		struct sk_buff *skb;
2048 		unsigned char *data;
2049 		dma_addr_t phys_addr;
2050 		u32 rx_status, frag_size;
2051 		int rx_bytes, err;
2052 		u8 pool_id;
2053 
2054 		rx_done++;
2055 		rx_status = rx_desc->status;
2056 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2057 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2058 		phys_addr = rx_desc->buf_phys_addr;
2059 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2060 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2061 
2062 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2063 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2064 err_drop_frame_ret_pool:
2065 			/* Return the buffer to the pool */
2066 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2067 					      rx_desc->buf_phys_addr);
2068 err_drop_frame:
2069 			dev->stats.rx_errors++;
2070 			mvneta_rx_error(pp, rx_desc);
2071 			/* leave the descriptor untouched */
2072 			continue;
2073 		}
2074 
2075 		if (rx_bytes <= rx_copybreak) {
2076 			/* better copy a small frame and not unmap the DMA region */
2077 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2078 			if (unlikely(!skb))
2079 				goto err_drop_frame_ret_pool;
2080 
2081 			dma_sync_single_range_for_cpu(dev->dev.parent,
2082 			                              rx_desc->buf_phys_addr,
2083 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2084 			                              rx_bytes,
2085 			                              DMA_FROM_DEVICE);
2086 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2087 				     rx_bytes);
2088 
2089 			skb->protocol = eth_type_trans(skb, dev);
2090 			mvneta_rx_csum(pp, rx_status, skb);
2091 			napi_gro_receive(&port->napi, skb);
2092 
2093 			rcvd_pkts++;
2094 			rcvd_bytes += rx_bytes;
2095 
2096 			/* Return the buffer to the pool */
2097 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2098 					      rx_desc->buf_phys_addr);
2099 
2100 			/* leave the descriptor and buffer untouched */
2101 			continue;
2102 		}
2103 
2104 		/* Refill processing */
2105 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2106 		if (err) {
2107 			netdev_err(dev, "Linux processing - Can't refill\n");
2108 			rxq->missed++;
2109 			goto err_drop_frame_ret_pool;
2110 		}
2111 
2112 		frag_size = bm_pool->hwbm_pool.frag_size;
2113 
2114 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2115 
2116 		/* After refill old buffer has to be unmapped regardless
2117 		 * the skb is successfully built or not.
2118 		 */
2119 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2120 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2121 		if (!skb)
2122 			goto err_drop_frame;
2123 
2124 		rcvd_pkts++;
2125 		rcvd_bytes += rx_bytes;
2126 
2127 		/* Linux processing */
2128 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2129 		skb_put(skb, rx_bytes);
2130 
2131 		skb->protocol = eth_type_trans(skb, dev);
2132 
2133 		mvneta_rx_csum(pp, rx_status, skb);
2134 
2135 		napi_gro_receive(&port->napi, skb);
2136 	}
2137 
2138 	if (rcvd_pkts) {
2139 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2140 
2141 		u64_stats_update_begin(&stats->syncp);
2142 		stats->rx_packets += rcvd_pkts;
2143 		stats->rx_bytes   += rcvd_bytes;
2144 		u64_stats_update_end(&stats->syncp);
2145 	}
2146 
2147 	/* Update rxq management counters */
2148 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2149 
2150 	return rx_done;
2151 }
2152 
2153 static inline void
2154 mvneta_tso_put_hdr(struct sk_buff *skb,
2155 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2156 {
2157 	struct mvneta_tx_desc *tx_desc;
2158 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2159 
2160 	txq->tx_skb[txq->txq_put_index] = NULL;
2161 	tx_desc = mvneta_txq_next_desc_get(txq);
2162 	tx_desc->data_size = hdr_len;
2163 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2164 	tx_desc->command |= MVNETA_TXD_F_DESC;
2165 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2166 				 txq->txq_put_index * TSO_HEADER_SIZE;
2167 	mvneta_txq_inc_put(txq);
2168 }
2169 
2170 static inline int
2171 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2172 		    struct sk_buff *skb, char *data, int size,
2173 		    bool last_tcp, bool is_last)
2174 {
2175 	struct mvneta_tx_desc *tx_desc;
2176 
2177 	tx_desc = mvneta_txq_next_desc_get(txq);
2178 	tx_desc->data_size = size;
2179 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2180 						size, DMA_TO_DEVICE);
2181 	if (unlikely(dma_mapping_error(dev->dev.parent,
2182 		     tx_desc->buf_phys_addr))) {
2183 		mvneta_txq_desc_put(txq);
2184 		return -ENOMEM;
2185 	}
2186 
2187 	tx_desc->command = 0;
2188 	txq->tx_skb[txq->txq_put_index] = NULL;
2189 
2190 	if (last_tcp) {
2191 		/* last descriptor in the TCP packet */
2192 		tx_desc->command = MVNETA_TXD_L_DESC;
2193 
2194 		/* last descriptor in SKB */
2195 		if (is_last)
2196 			txq->tx_skb[txq->txq_put_index] = skb;
2197 	}
2198 	mvneta_txq_inc_put(txq);
2199 	return 0;
2200 }
2201 
2202 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2203 			 struct mvneta_tx_queue *txq)
2204 {
2205 	int total_len, data_left;
2206 	int desc_count = 0;
2207 	struct mvneta_port *pp = netdev_priv(dev);
2208 	struct tso_t tso;
2209 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2210 	int i;
2211 
2212 	/* Count needed descriptors */
2213 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2214 		return 0;
2215 
2216 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2217 		pr_info("*** Is this even  possible???!?!?\n");
2218 		return 0;
2219 	}
2220 
2221 	/* Initialize the TSO handler, and prepare the first payload */
2222 	tso_start(skb, &tso);
2223 
2224 	total_len = skb->len - hdr_len;
2225 	while (total_len > 0) {
2226 		char *hdr;
2227 
2228 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2229 		total_len -= data_left;
2230 		desc_count++;
2231 
2232 		/* prepare packet headers: MAC + IP + TCP */
2233 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2234 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2235 
2236 		mvneta_tso_put_hdr(skb, pp, txq);
2237 
2238 		while (data_left > 0) {
2239 			int size;
2240 			desc_count++;
2241 
2242 			size = min_t(int, tso.size, data_left);
2243 
2244 			if (mvneta_tso_put_data(dev, txq, skb,
2245 						 tso.data, size,
2246 						 size == data_left,
2247 						 total_len == 0))
2248 				goto err_release;
2249 			data_left -= size;
2250 
2251 			tso_build_data(skb, &tso, size);
2252 		}
2253 	}
2254 
2255 	return desc_count;
2256 
2257 err_release:
2258 	/* Release all used data descriptors; header descriptors must not
2259 	 * be DMA-unmapped.
2260 	 */
2261 	for (i = desc_count - 1; i >= 0; i--) {
2262 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2263 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2264 			dma_unmap_single(pp->dev->dev.parent,
2265 					 tx_desc->buf_phys_addr,
2266 					 tx_desc->data_size,
2267 					 DMA_TO_DEVICE);
2268 		mvneta_txq_desc_put(txq);
2269 	}
2270 	return 0;
2271 }
2272 
2273 /* Handle tx fragmentation processing */
2274 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2275 				  struct mvneta_tx_queue *txq)
2276 {
2277 	struct mvneta_tx_desc *tx_desc;
2278 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2279 
2280 	for (i = 0; i < nr_frags; i++) {
2281 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2282 		void *addr = page_address(frag->page.p) + frag->page_offset;
2283 
2284 		tx_desc = mvneta_txq_next_desc_get(txq);
2285 		tx_desc->data_size = frag->size;
2286 
2287 		tx_desc->buf_phys_addr =
2288 			dma_map_single(pp->dev->dev.parent, addr,
2289 				       tx_desc->data_size, DMA_TO_DEVICE);
2290 
2291 		if (dma_mapping_error(pp->dev->dev.parent,
2292 				      tx_desc->buf_phys_addr)) {
2293 			mvneta_txq_desc_put(txq);
2294 			goto error;
2295 		}
2296 
2297 		if (i == nr_frags - 1) {
2298 			/* Last descriptor */
2299 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2300 			txq->tx_skb[txq->txq_put_index] = skb;
2301 		} else {
2302 			/* Descriptor in the middle: Not First, Not Last */
2303 			tx_desc->command = 0;
2304 			txq->tx_skb[txq->txq_put_index] = NULL;
2305 		}
2306 		mvneta_txq_inc_put(txq);
2307 	}
2308 
2309 	return 0;
2310 
2311 error:
2312 	/* Release all descriptors that were used to map fragments of
2313 	 * this packet, as well as the corresponding DMA mappings
2314 	 */
2315 	for (i = i - 1; i >= 0; i--) {
2316 		tx_desc = txq->descs + i;
2317 		dma_unmap_single(pp->dev->dev.parent,
2318 				 tx_desc->buf_phys_addr,
2319 				 tx_desc->data_size,
2320 				 DMA_TO_DEVICE);
2321 		mvneta_txq_desc_put(txq);
2322 	}
2323 
2324 	return -ENOMEM;
2325 }
2326 
2327 /* Main tx processing */
2328 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2329 {
2330 	struct mvneta_port *pp = netdev_priv(dev);
2331 	u16 txq_id = skb_get_queue_mapping(skb);
2332 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2333 	struct mvneta_tx_desc *tx_desc;
2334 	int len = skb->len;
2335 	int frags = 0;
2336 	u32 tx_cmd;
2337 
2338 	if (!netif_running(dev))
2339 		goto out;
2340 
2341 	if (skb_is_gso(skb)) {
2342 		frags = mvneta_tx_tso(skb, dev, txq);
2343 		goto out;
2344 	}
2345 
2346 	frags = skb_shinfo(skb)->nr_frags + 1;
2347 
2348 	/* Get a descriptor for the first part of the packet */
2349 	tx_desc = mvneta_txq_next_desc_get(txq);
2350 
2351 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2352 
2353 	tx_desc->data_size = skb_headlen(skb);
2354 
2355 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2356 						tx_desc->data_size,
2357 						DMA_TO_DEVICE);
2358 	if (unlikely(dma_mapping_error(dev->dev.parent,
2359 				       tx_desc->buf_phys_addr))) {
2360 		mvneta_txq_desc_put(txq);
2361 		frags = 0;
2362 		goto out;
2363 	}
2364 
2365 	if (frags == 1) {
2366 		/* First and Last descriptor */
2367 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2368 		tx_desc->command = tx_cmd;
2369 		txq->tx_skb[txq->txq_put_index] = skb;
2370 		mvneta_txq_inc_put(txq);
2371 	} else {
2372 		/* First but not Last */
2373 		tx_cmd |= MVNETA_TXD_F_DESC;
2374 		txq->tx_skb[txq->txq_put_index] = NULL;
2375 		mvneta_txq_inc_put(txq);
2376 		tx_desc->command = tx_cmd;
2377 		/* Continue with other skb fragments */
2378 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2379 			dma_unmap_single(dev->dev.parent,
2380 					 tx_desc->buf_phys_addr,
2381 					 tx_desc->data_size,
2382 					 DMA_TO_DEVICE);
2383 			mvneta_txq_desc_put(txq);
2384 			frags = 0;
2385 			goto out;
2386 		}
2387 	}
2388 
2389 out:
2390 	if (frags > 0) {
2391 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2392 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2393 
2394 		netdev_tx_sent_queue(nq, len);
2395 
2396 		txq->count += frags;
2397 		if (txq->count >= txq->tx_stop_threshold)
2398 			netif_tx_stop_queue(nq);
2399 
2400 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2401 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2402 			mvneta_txq_pend_desc_add(pp, txq, frags);
2403 		else
2404 			txq->pending += frags;
2405 
2406 		u64_stats_update_begin(&stats->syncp);
2407 		stats->tx_packets++;
2408 		stats->tx_bytes  += len;
2409 		u64_stats_update_end(&stats->syncp);
2410 	} else {
2411 		dev->stats.tx_dropped++;
2412 		dev_kfree_skb_any(skb);
2413 	}
2414 
2415 	return NETDEV_TX_OK;
2416 }
2417 
2418 
2419 /* Free tx resources, when resetting a port */
2420 static void mvneta_txq_done_force(struct mvneta_port *pp,
2421 				  struct mvneta_tx_queue *txq)
2422 
2423 {
2424 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2425 	int tx_done = txq->count;
2426 
2427 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2428 
2429 	/* reset txq */
2430 	txq->count = 0;
2431 	txq->txq_put_index = 0;
2432 	txq->txq_get_index = 0;
2433 }
2434 
2435 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2436  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2437  */
2438 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2439 {
2440 	struct mvneta_tx_queue *txq;
2441 	struct netdev_queue *nq;
2442 
2443 	while (cause_tx_done) {
2444 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2445 
2446 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2447 		__netif_tx_lock(nq, smp_processor_id());
2448 
2449 		if (txq->count)
2450 			mvneta_txq_done(pp, txq);
2451 
2452 		__netif_tx_unlock(nq);
2453 		cause_tx_done &= ~((1 << txq->id));
2454 	}
2455 }
2456 
2457 /* Compute crc8 of the specified address, using a unique algorithm ,
2458  * according to hw spec, different than generic crc8 algorithm
2459  */
2460 static int mvneta_addr_crc(unsigned char *addr)
2461 {
2462 	int crc = 0;
2463 	int i;
2464 
2465 	for (i = 0; i < ETH_ALEN; i++) {
2466 		int j;
2467 
2468 		crc = (crc ^ addr[i]) << 8;
2469 		for (j = 7; j >= 0; j--) {
2470 			if (crc & (0x100 << j))
2471 				crc ^= 0x107 << j;
2472 		}
2473 	}
2474 
2475 	return crc;
2476 }
2477 
2478 /* This method controls the net device special MAC multicast support.
2479  * The Special Multicast Table for MAC addresses supports MAC of the form
2480  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2481  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2482  * Table entries in the DA-Filter table. This method set the Special
2483  * Multicast Table appropriate entry.
2484  */
2485 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2486 					  unsigned char last_byte,
2487 					  int queue)
2488 {
2489 	unsigned int smc_table_reg;
2490 	unsigned int tbl_offset;
2491 	unsigned int reg_offset;
2492 
2493 	/* Register offset from SMC table base    */
2494 	tbl_offset = (last_byte / 4);
2495 	/* Entry offset within the above reg */
2496 	reg_offset = last_byte % 4;
2497 
2498 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2499 					+ tbl_offset * 4));
2500 
2501 	if (queue == -1)
2502 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2503 	else {
2504 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2505 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2506 	}
2507 
2508 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2509 		    smc_table_reg);
2510 }
2511 
2512 /* This method controls the network device Other MAC multicast support.
2513  * The Other Multicast Table is used for multicast of another type.
2514  * A CRC-8 is used as an index to the Other Multicast Table entries
2515  * in the DA-Filter table.
2516  * The method gets the CRC-8 value from the calling routine and
2517  * sets the Other Multicast Table appropriate entry according to the
2518  * specified CRC-8 .
2519  */
2520 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2521 					unsigned char crc8,
2522 					int queue)
2523 {
2524 	unsigned int omc_table_reg;
2525 	unsigned int tbl_offset;
2526 	unsigned int reg_offset;
2527 
2528 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2529 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2530 
2531 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2532 
2533 	if (queue == -1) {
2534 		/* Clear accepts frame bit at specified Other DA table entry */
2535 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2536 	} else {
2537 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2538 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2539 	}
2540 
2541 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2542 }
2543 
2544 /* The network device supports multicast using two tables:
2545  *    1) Special Multicast Table for MAC addresses of the form
2546  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2547  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2548  *       Table entries in the DA-Filter table.
2549  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2550  *       is used as an index to the Other Multicast Table entries in the
2551  *       DA-Filter table.
2552  */
2553 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2554 				 int queue)
2555 {
2556 	unsigned char crc_result = 0;
2557 
2558 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2559 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2560 		return 0;
2561 	}
2562 
2563 	crc_result = mvneta_addr_crc(p_addr);
2564 	if (queue == -1) {
2565 		if (pp->mcast_count[crc_result] == 0) {
2566 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2567 				    crc_result);
2568 			return -EINVAL;
2569 		}
2570 
2571 		pp->mcast_count[crc_result]--;
2572 		if (pp->mcast_count[crc_result] != 0) {
2573 			netdev_info(pp->dev,
2574 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2575 				    pp->mcast_count[crc_result], crc_result);
2576 			return -EINVAL;
2577 		}
2578 	} else
2579 		pp->mcast_count[crc_result]++;
2580 
2581 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2582 
2583 	return 0;
2584 }
2585 
2586 /* Configure Fitering mode of Ethernet port */
2587 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2588 					  int is_promisc)
2589 {
2590 	u32 port_cfg_reg, val;
2591 
2592 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2593 
2594 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2595 
2596 	/* Set / Clear UPM bit in port configuration register */
2597 	if (is_promisc) {
2598 		/* Accept all Unicast addresses */
2599 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2600 		val |= MVNETA_FORCE_UNI;
2601 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2602 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2603 	} else {
2604 		/* Reject all Unicast addresses */
2605 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2606 		val &= ~MVNETA_FORCE_UNI;
2607 	}
2608 
2609 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2610 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2611 }
2612 
2613 /* register unicast and multicast addresses */
2614 static void mvneta_set_rx_mode(struct net_device *dev)
2615 {
2616 	struct mvneta_port *pp = netdev_priv(dev);
2617 	struct netdev_hw_addr *ha;
2618 
2619 	if (dev->flags & IFF_PROMISC) {
2620 		/* Accept all: Multicast + Unicast */
2621 		mvneta_rx_unicast_promisc_set(pp, 1);
2622 		mvneta_set_ucast_table(pp, pp->rxq_def);
2623 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2624 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2625 	} else {
2626 		/* Accept single Unicast */
2627 		mvneta_rx_unicast_promisc_set(pp, 0);
2628 		mvneta_set_ucast_table(pp, -1);
2629 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2630 
2631 		if (dev->flags & IFF_ALLMULTI) {
2632 			/* Accept all multicast */
2633 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2634 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2635 		} else {
2636 			/* Accept only initialized multicast */
2637 			mvneta_set_special_mcast_table(pp, -1);
2638 			mvneta_set_other_mcast_table(pp, -1);
2639 
2640 			if (!netdev_mc_empty(dev)) {
2641 				netdev_for_each_mc_addr(ha, dev) {
2642 					mvneta_mcast_addr_set(pp, ha->addr,
2643 							      pp->rxq_def);
2644 				}
2645 			}
2646 		}
2647 	}
2648 }
2649 
2650 /* Interrupt handling - the callback for request_irq() */
2651 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2652 {
2653 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2654 
2655 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2656 	napi_schedule(&pp->napi);
2657 
2658 	return IRQ_HANDLED;
2659 }
2660 
2661 /* Interrupt handling - the callback for request_percpu_irq() */
2662 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2663 {
2664 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2665 
2666 	disable_percpu_irq(port->pp->dev->irq);
2667 	napi_schedule(&port->napi);
2668 
2669 	return IRQ_HANDLED;
2670 }
2671 
2672 static void mvneta_link_change(struct mvneta_port *pp)
2673 {
2674 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2675 
2676 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2677 }
2678 
2679 /* NAPI handler
2680  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2681  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2682  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2683  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2684  * Each CPU has its own causeRxTx register
2685  */
2686 static int mvneta_poll(struct napi_struct *napi, int budget)
2687 {
2688 	int rx_done = 0;
2689 	u32 cause_rx_tx;
2690 	int rx_queue;
2691 	struct mvneta_port *pp = netdev_priv(napi->dev);
2692 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2693 
2694 	if (!netif_running(pp->dev)) {
2695 		napi_complete(napi);
2696 		return rx_done;
2697 	}
2698 
2699 	/* Read cause register */
2700 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2701 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2702 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2703 
2704 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2705 
2706 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2707 				  MVNETA_CAUSE_LINK_CHANGE))
2708 			mvneta_link_change(pp);
2709 	}
2710 
2711 	/* Release Tx descriptors */
2712 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2713 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2714 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2715 	}
2716 
2717 	/* For the case where the last mvneta_poll did not process all
2718 	 * RX packets
2719 	 */
2720 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2721 
2722 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2723 		port->cause_rx_tx;
2724 
2725 	if (rx_queue) {
2726 		rx_queue = rx_queue - 1;
2727 		if (pp->bm_priv)
2728 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2729 		else
2730 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2731 	}
2732 
2733 	if (rx_done < budget) {
2734 		cause_rx_tx = 0;
2735 		napi_complete_done(napi, rx_done);
2736 
2737 		if (pp->neta_armada3700) {
2738 			unsigned long flags;
2739 
2740 			local_irq_save(flags);
2741 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2742 				    MVNETA_RX_INTR_MASK(rxq_number) |
2743 				    MVNETA_TX_INTR_MASK(txq_number) |
2744 				    MVNETA_MISCINTR_INTR_MASK);
2745 			local_irq_restore(flags);
2746 		} else {
2747 			enable_percpu_irq(pp->dev->irq, 0);
2748 		}
2749 	}
2750 
2751 	if (pp->neta_armada3700)
2752 		pp->cause_rx_tx = cause_rx_tx;
2753 	else
2754 		port->cause_rx_tx = cause_rx_tx;
2755 
2756 	return rx_done;
2757 }
2758 
2759 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2760 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2761 			   int num)
2762 {
2763 	int i;
2764 
2765 	for (i = 0; i < num; i++) {
2766 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2767 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2768 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2769 				__func__, rxq->id, i, num);
2770 			break;
2771 		}
2772 	}
2773 
2774 	/* Add this number of RX descriptors as non occupied (ready to
2775 	 * get packets)
2776 	 */
2777 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2778 
2779 	return i;
2780 }
2781 
2782 /* Free all packets pending transmit from all TXQs and reset TX port */
2783 static void mvneta_tx_reset(struct mvneta_port *pp)
2784 {
2785 	int queue;
2786 
2787 	/* free the skb's in the tx ring */
2788 	for (queue = 0; queue < txq_number; queue++)
2789 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2790 
2791 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2792 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2793 }
2794 
2795 static void mvneta_rx_reset(struct mvneta_port *pp)
2796 {
2797 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2798 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2799 }
2800 
2801 /* Rx/Tx queue initialization/cleanup methods */
2802 
2803 /* Create a specified RX queue */
2804 static int mvneta_rxq_init(struct mvneta_port *pp,
2805 			   struct mvneta_rx_queue *rxq)
2806 
2807 {
2808 	rxq->size = pp->rx_ring_size;
2809 
2810 	/* Allocate memory for RX descriptors */
2811 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2812 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2813 					&rxq->descs_phys, GFP_KERNEL);
2814 	if (!rxq->descs)
2815 		return -ENOMEM;
2816 
2817 	rxq->last_desc = rxq->size - 1;
2818 
2819 	/* Set Rx descriptors queue starting address */
2820 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2821 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2822 
2823 	/* Set Offset */
2824 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2825 
2826 	/* Set coalescing pkts and time */
2827 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2828 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2829 
2830 	if (!pp->bm_priv) {
2831 		/* Fill RXQ with buffers from RX pool */
2832 		mvneta_rxq_buf_size_set(pp, rxq,
2833 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2834 		mvneta_rxq_bm_disable(pp, rxq);
2835 		mvneta_rxq_fill(pp, rxq, rxq->size);
2836 	} else {
2837 		mvneta_rxq_bm_enable(pp, rxq);
2838 		mvneta_rxq_long_pool_set(pp, rxq);
2839 		mvneta_rxq_short_pool_set(pp, rxq);
2840 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2841 	}
2842 
2843 	return 0;
2844 }
2845 
2846 /* Cleanup Rx queue */
2847 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2848 			      struct mvneta_rx_queue *rxq)
2849 {
2850 	mvneta_rxq_drop_pkts(pp, rxq);
2851 
2852 	if (rxq->descs)
2853 		dma_free_coherent(pp->dev->dev.parent,
2854 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2855 				  rxq->descs,
2856 				  rxq->descs_phys);
2857 
2858 	rxq->descs             = NULL;
2859 	rxq->last_desc         = 0;
2860 	rxq->next_desc_to_proc = 0;
2861 	rxq->descs_phys        = 0;
2862 }
2863 
2864 /* Create and initialize a tx queue */
2865 static int mvneta_txq_init(struct mvneta_port *pp,
2866 			   struct mvneta_tx_queue *txq)
2867 {
2868 	int cpu;
2869 
2870 	txq->size = pp->tx_ring_size;
2871 
2872 	/* A queue must always have room for at least one skb.
2873 	 * Therefore, stop the queue when the free entries reaches
2874 	 * the maximum number of descriptors per skb.
2875 	 */
2876 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2877 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2878 
2879 
2880 	/* Allocate memory for TX descriptors */
2881 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2882 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2883 					&txq->descs_phys, GFP_KERNEL);
2884 	if (!txq->descs)
2885 		return -ENOMEM;
2886 
2887 	txq->last_desc = txq->size - 1;
2888 
2889 	/* Set maximum bandwidth for enabled TXQs */
2890 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2891 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2892 
2893 	/* Set Tx descriptors queue starting address */
2894 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2895 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2896 
2897 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2898 				    GFP_KERNEL);
2899 	if (!txq->tx_skb) {
2900 		dma_free_coherent(pp->dev->dev.parent,
2901 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2902 				  txq->descs, txq->descs_phys);
2903 		return -ENOMEM;
2904 	}
2905 
2906 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2907 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2908 					   txq->size * TSO_HEADER_SIZE,
2909 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2910 	if (!txq->tso_hdrs) {
2911 		kfree(txq->tx_skb);
2912 		dma_free_coherent(pp->dev->dev.parent,
2913 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2914 				  txq->descs, txq->descs_phys);
2915 		return -ENOMEM;
2916 	}
2917 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2918 
2919 	/* Setup XPS mapping */
2920 	if (txq_number > 1)
2921 		cpu = txq->id % num_present_cpus();
2922 	else
2923 		cpu = pp->rxq_def % num_present_cpus();
2924 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2925 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2926 
2927 	return 0;
2928 }
2929 
2930 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2931 static void mvneta_txq_deinit(struct mvneta_port *pp,
2932 			      struct mvneta_tx_queue *txq)
2933 {
2934 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2935 
2936 	kfree(txq->tx_skb);
2937 
2938 	if (txq->tso_hdrs)
2939 		dma_free_coherent(pp->dev->dev.parent,
2940 				  txq->size * TSO_HEADER_SIZE,
2941 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2942 	if (txq->descs)
2943 		dma_free_coherent(pp->dev->dev.parent,
2944 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2945 				  txq->descs, txq->descs_phys);
2946 
2947 	netdev_tx_reset_queue(nq);
2948 
2949 	txq->descs             = NULL;
2950 	txq->last_desc         = 0;
2951 	txq->next_desc_to_proc = 0;
2952 	txq->descs_phys        = 0;
2953 
2954 	/* Set minimum bandwidth for disabled TXQs */
2955 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2956 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2957 
2958 	/* Set Tx descriptors queue starting address and size */
2959 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2960 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2961 }
2962 
2963 /* Cleanup all Tx queues */
2964 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2965 {
2966 	int queue;
2967 
2968 	for (queue = 0; queue < txq_number; queue++)
2969 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2970 }
2971 
2972 /* Cleanup all Rx queues */
2973 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2974 {
2975 	int queue;
2976 
2977 	for (queue = 0; queue < rxq_number; queue++)
2978 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2979 }
2980 
2981 
2982 /* Init all Rx queues */
2983 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2984 {
2985 	int queue;
2986 
2987 	for (queue = 0; queue < rxq_number; queue++) {
2988 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2989 
2990 		if (err) {
2991 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2992 				   __func__, queue);
2993 			mvneta_cleanup_rxqs(pp);
2994 			return err;
2995 		}
2996 	}
2997 
2998 	return 0;
2999 }
3000 
3001 /* Init all tx queues */
3002 static int mvneta_setup_txqs(struct mvneta_port *pp)
3003 {
3004 	int queue;
3005 
3006 	for (queue = 0; queue < txq_number; queue++) {
3007 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3008 		if (err) {
3009 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3010 				   __func__, queue);
3011 			mvneta_cleanup_txqs(pp);
3012 			return err;
3013 		}
3014 	}
3015 
3016 	return 0;
3017 }
3018 
3019 static void mvneta_start_dev(struct mvneta_port *pp)
3020 {
3021 	int cpu;
3022 
3023 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3024 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3025 
3026 	/* start the Rx/Tx activity */
3027 	mvneta_port_enable(pp);
3028 
3029 	if (!pp->neta_armada3700) {
3030 		/* Enable polling on the port */
3031 		for_each_online_cpu(cpu) {
3032 			struct mvneta_pcpu_port *port =
3033 				per_cpu_ptr(pp->ports, cpu);
3034 
3035 			napi_enable(&port->napi);
3036 		}
3037 	} else {
3038 		napi_enable(&pp->napi);
3039 	}
3040 
3041 	/* Unmask interrupts. It has to be done from each CPU */
3042 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3043 
3044 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3045 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3046 		    MVNETA_CAUSE_LINK_CHANGE);
3047 
3048 	phylink_start(pp->phylink);
3049 	netif_tx_start_all_queues(pp->dev);
3050 }
3051 
3052 static void mvneta_stop_dev(struct mvneta_port *pp)
3053 {
3054 	unsigned int cpu;
3055 
3056 	phylink_stop(pp->phylink);
3057 
3058 	if (!pp->neta_armada3700) {
3059 		for_each_online_cpu(cpu) {
3060 			struct mvneta_pcpu_port *port =
3061 				per_cpu_ptr(pp->ports, cpu);
3062 
3063 			napi_disable(&port->napi);
3064 		}
3065 	} else {
3066 		napi_disable(&pp->napi);
3067 	}
3068 
3069 	netif_carrier_off(pp->dev);
3070 
3071 	mvneta_port_down(pp);
3072 	netif_tx_stop_all_queues(pp->dev);
3073 
3074 	/* Stop the port activity */
3075 	mvneta_port_disable(pp);
3076 
3077 	/* Clear all ethernet port interrupts */
3078 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3079 
3080 	/* Mask all ethernet port interrupts */
3081 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3082 
3083 	mvneta_tx_reset(pp);
3084 	mvneta_rx_reset(pp);
3085 }
3086 
3087 static void mvneta_percpu_enable(void *arg)
3088 {
3089 	struct mvneta_port *pp = arg;
3090 
3091 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3092 }
3093 
3094 static void mvneta_percpu_disable(void *arg)
3095 {
3096 	struct mvneta_port *pp = arg;
3097 
3098 	disable_percpu_irq(pp->dev->irq);
3099 }
3100 
3101 /* Change the device mtu */
3102 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3103 {
3104 	struct mvneta_port *pp = netdev_priv(dev);
3105 	int ret;
3106 
3107 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3108 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3109 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3110 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3111 	}
3112 
3113 	dev->mtu = mtu;
3114 
3115 	if (!netif_running(dev)) {
3116 		if (pp->bm_priv)
3117 			mvneta_bm_update_mtu(pp, mtu);
3118 
3119 		netdev_update_features(dev);
3120 		return 0;
3121 	}
3122 
3123 	/* The interface is running, so we have to force a
3124 	 * reallocation of the queues
3125 	 */
3126 	mvneta_stop_dev(pp);
3127 	on_each_cpu(mvneta_percpu_disable, pp, true);
3128 
3129 	mvneta_cleanup_txqs(pp);
3130 	mvneta_cleanup_rxqs(pp);
3131 
3132 	if (pp->bm_priv)
3133 		mvneta_bm_update_mtu(pp, mtu);
3134 
3135 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3136 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3137 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3138 
3139 	ret = mvneta_setup_rxqs(pp);
3140 	if (ret) {
3141 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3142 		return ret;
3143 	}
3144 
3145 	ret = mvneta_setup_txqs(pp);
3146 	if (ret) {
3147 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3148 		return ret;
3149 	}
3150 
3151 	on_each_cpu(mvneta_percpu_enable, pp, true);
3152 	mvneta_start_dev(pp);
3153 	mvneta_port_up(pp);
3154 
3155 	netdev_update_features(dev);
3156 
3157 	return 0;
3158 }
3159 
3160 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3161 					     netdev_features_t features)
3162 {
3163 	struct mvneta_port *pp = netdev_priv(dev);
3164 
3165 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3166 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3167 		netdev_info(dev,
3168 			    "Disable IP checksum for MTU greater than %dB\n",
3169 			    pp->tx_csum_limit);
3170 	}
3171 
3172 	return features;
3173 }
3174 
3175 /* Get mac address */
3176 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3177 {
3178 	u32 mac_addr_l, mac_addr_h;
3179 
3180 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3181 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3182 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3183 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3184 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3185 	addr[3] = mac_addr_h & 0xFF;
3186 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3187 	addr[5] = mac_addr_l & 0xFF;
3188 }
3189 
3190 /* Handle setting mac address */
3191 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3192 {
3193 	struct mvneta_port *pp = netdev_priv(dev);
3194 	struct sockaddr *sockaddr = addr;
3195 	int ret;
3196 
3197 	ret = eth_prepare_mac_addr_change(dev, addr);
3198 	if (ret < 0)
3199 		return ret;
3200 	/* Remove previous address table entry */
3201 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3202 
3203 	/* Set new addr in hw */
3204 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3205 
3206 	eth_commit_mac_addr_change(dev, addr);
3207 	return 0;
3208 }
3209 
3210 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3211 			    struct phylink_link_state *state)
3212 {
3213 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3214 
3215 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3216 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3217 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3218 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3219 	    !phy_interface_mode_is_8023z(state->interface) &&
3220 	    !phy_interface_mode_is_rgmii(state->interface)) {
3221 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3222 		return;
3223 	}
3224 
3225 	/* Allow all the expected bits */
3226 	phylink_set(mask, Autoneg);
3227 	phylink_set_port_modes(mask);
3228 
3229 	/* Asymmetric pause is unsupported */
3230 	phylink_set(mask, Pause);
3231 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3232 	phylink_set(mask, 1000baseT_Full);
3233 	phylink_set(mask, 1000baseX_Full);
3234 
3235 	if (!phy_interface_mode_is_8023z(state->interface)) {
3236 		/* 10M and 100M are only supported in non-802.3z mode */
3237 		phylink_set(mask, 10baseT_Half);
3238 		phylink_set(mask, 10baseT_Full);
3239 		phylink_set(mask, 100baseT_Half);
3240 		phylink_set(mask, 100baseT_Full);
3241 	}
3242 
3243 	bitmap_and(supported, supported, mask,
3244 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3245 	bitmap_and(state->advertising, state->advertising, mask,
3246 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3247 }
3248 
3249 static int mvneta_mac_link_state(struct net_device *ndev,
3250 				 struct phylink_link_state *state)
3251 {
3252 	struct mvneta_port *pp = netdev_priv(ndev);
3253 	u32 gmac_stat;
3254 
3255 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3256 
3257 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3258 		state->speed = SPEED_1000;
3259 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3260 		state->speed = SPEED_100;
3261 	else
3262 		state->speed = SPEED_10;
3263 
3264 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3265 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3266 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3267 
3268 	state->pause = 0;
3269 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3270 		state->pause |= MLO_PAUSE_RX;
3271 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3272 		state->pause |= MLO_PAUSE_TX;
3273 
3274 	return 1;
3275 }
3276 
3277 static void mvneta_mac_an_restart(struct net_device *ndev)
3278 {
3279 	struct mvneta_port *pp = netdev_priv(ndev);
3280 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3281 
3282 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3283 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3284 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3285 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3286 }
3287 
3288 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3289 	const struct phylink_link_state *state)
3290 {
3291 	struct mvneta_port *pp = netdev_priv(ndev);
3292 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3293 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3294 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3295 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3296 
3297 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3298 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3299 				   MVNETA_GMAC2_PORT_RESET);
3300 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3301 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3302 			     MVNETA_GMAC_INBAND_RESTART_AN |
3303 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3304 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3305 			     MVNETA_GMAC_AN_SPEED_EN |
3306 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3307 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3308 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3309 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3310 			     MVNETA_GMAC_AN_DUPLEX_EN);
3311 
3312 	/* Even though it might look weird, when we're configured in
3313 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3314 	 */
3315 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3316 
3317 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3318 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3319 	    phy_interface_mode_is_8023z(state->interface))
3320 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3321 
3322 	if (phylink_test(state->advertising, Pause))
3323 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3324 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3325 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3326 
3327 	if (!phylink_autoneg_inband(mode)) {
3328 		/* Phy or fixed speed */
3329 		if (state->duplex)
3330 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3331 
3332 		if (state->speed == SPEED_1000)
3333 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3334 		else if (state->speed == SPEED_100)
3335 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3336 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3337 		/* SGMII mode receives the state from the PHY */
3338 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3339 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3340 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3341 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3342 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3343 			 MVNETA_GMAC_AN_SPEED_EN |
3344 			 MVNETA_GMAC_AN_DUPLEX_EN;
3345 	} else {
3346 		/* 802.3z negotiation - only 1000base-X */
3347 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3348 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3349 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3350 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3351 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3352 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3353 			 /* The MAC only supports FD mode */
3354 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3355 
3356 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3357 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3358 	}
3359 
3360 	/* Armada 370 documentation says we can only change the port mode
3361 	 * and in-band enable when the link is down, so force it down
3362 	 * while making these changes. We also do this for GMAC_CTRL2 */
3363 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3364 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3365 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3366 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3367 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3368 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3369 	}
3370 
3371 	if (new_ctrl0 != gmac_ctrl0)
3372 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3373 	if (new_ctrl2 != gmac_ctrl2)
3374 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3375 	if (new_clk != gmac_clk)
3376 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3377 	if (new_an != gmac_an)
3378 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3379 
3380 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3381 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3382 			MVNETA_GMAC2_PORT_RESET) != 0)
3383 			continue;
3384 	}
3385 }
3386 
3387 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3388 {
3389 	u32 lpi_ctl1;
3390 
3391 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3392 	if (enable)
3393 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3394 	else
3395 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3396 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3397 }
3398 
3399 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode)
3400 {
3401 	struct mvneta_port *pp = netdev_priv(ndev);
3402 	u32 val;
3403 
3404 	mvneta_port_down(pp);
3405 
3406 	if (!phylink_autoneg_inband(mode)) {
3407 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3408 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3409 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3410 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3411 	}
3412 
3413 	pp->eee_active = false;
3414 	mvneta_set_eee(pp, false);
3415 }
3416 
3417 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3418 			       struct phy_device *phy)
3419 {
3420 	struct mvneta_port *pp = netdev_priv(ndev);
3421 	u32 val;
3422 
3423 	if (!phylink_autoneg_inband(mode)) {
3424 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3425 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3426 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3427 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3428 	}
3429 
3430 	mvneta_port_up(pp);
3431 
3432 	if (phy && pp->eee_enabled) {
3433 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3434 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3435 	}
3436 }
3437 
3438 static const struct phylink_mac_ops mvneta_phylink_ops = {
3439 	.validate = mvneta_validate,
3440 	.mac_link_state = mvneta_mac_link_state,
3441 	.mac_an_restart = mvneta_mac_an_restart,
3442 	.mac_config = mvneta_mac_config,
3443 	.mac_link_down = mvneta_mac_link_down,
3444 	.mac_link_up = mvneta_mac_link_up,
3445 };
3446 
3447 static int mvneta_mdio_probe(struct mvneta_port *pp)
3448 {
3449 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3450 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3451 
3452 	if (err)
3453 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3454 
3455 	phylink_ethtool_get_wol(pp->phylink, &wol);
3456 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3457 
3458 	return err;
3459 }
3460 
3461 static void mvneta_mdio_remove(struct mvneta_port *pp)
3462 {
3463 	phylink_disconnect_phy(pp->phylink);
3464 }
3465 
3466 /* Electing a CPU must be done in an atomic way: it should be done
3467  * after or before the removal/insertion of a CPU and this function is
3468  * not reentrant.
3469  */
3470 static void mvneta_percpu_elect(struct mvneta_port *pp)
3471 {
3472 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3473 
3474 	/* Use the cpu associated to the rxq when it is online, in all
3475 	 * the other cases, use the cpu 0 which can't be offline.
3476 	 */
3477 	if (cpu_online(pp->rxq_def))
3478 		elected_cpu = pp->rxq_def;
3479 
3480 	max_cpu = num_present_cpus();
3481 
3482 	for_each_online_cpu(cpu) {
3483 		int rxq_map = 0, txq_map = 0;
3484 		int rxq;
3485 
3486 		for (rxq = 0; rxq < rxq_number; rxq++)
3487 			if ((rxq % max_cpu) == cpu)
3488 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3489 
3490 		if (cpu == elected_cpu)
3491 			/* Map the default receive queue queue to the
3492 			 * elected CPU
3493 			 */
3494 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3495 
3496 		/* We update the TX queue map only if we have one
3497 		 * queue. In this case we associate the TX queue to
3498 		 * the CPU bound to the default RX queue
3499 		 */
3500 		if (txq_number == 1)
3501 			txq_map = (cpu == elected_cpu) ?
3502 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3503 		else
3504 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3505 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3506 
3507 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3508 
3509 		/* Update the interrupt mask on each CPU according the
3510 		 * new mapping
3511 		 */
3512 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3513 					 pp, true);
3514 		i++;
3515 
3516 	}
3517 };
3518 
3519 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3520 {
3521 	int other_cpu;
3522 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3523 						  node_online);
3524 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3525 
3526 
3527 	spin_lock(&pp->lock);
3528 	/*
3529 	 * Configuring the driver for a new CPU while the driver is
3530 	 * stopping is racy, so just avoid it.
3531 	 */
3532 	if (pp->is_stopped) {
3533 		spin_unlock(&pp->lock);
3534 		return 0;
3535 	}
3536 	netif_tx_stop_all_queues(pp->dev);
3537 
3538 	/*
3539 	 * We have to synchronise on tha napi of each CPU except the one
3540 	 * just being woken up
3541 	 */
3542 	for_each_online_cpu(other_cpu) {
3543 		if (other_cpu != cpu) {
3544 			struct mvneta_pcpu_port *other_port =
3545 				per_cpu_ptr(pp->ports, other_cpu);
3546 
3547 			napi_synchronize(&other_port->napi);
3548 		}
3549 	}
3550 
3551 	/* Mask all ethernet port interrupts */
3552 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3553 	napi_enable(&port->napi);
3554 
3555 	/*
3556 	 * Enable per-CPU interrupts on the CPU that is
3557 	 * brought up.
3558 	 */
3559 	mvneta_percpu_enable(pp);
3560 
3561 	/*
3562 	 * Enable per-CPU interrupt on the one CPU we care
3563 	 * about.
3564 	 */
3565 	mvneta_percpu_elect(pp);
3566 
3567 	/* Unmask all ethernet port interrupts */
3568 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3569 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3570 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3571 		    MVNETA_CAUSE_LINK_CHANGE);
3572 	netif_tx_start_all_queues(pp->dev);
3573 	spin_unlock(&pp->lock);
3574 	return 0;
3575 }
3576 
3577 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3578 {
3579 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3580 						  node_online);
3581 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3582 
3583 	/*
3584 	 * Thanks to this lock we are sure that any pending cpu election is
3585 	 * done.
3586 	 */
3587 	spin_lock(&pp->lock);
3588 	/* Mask all ethernet port interrupts */
3589 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3590 	spin_unlock(&pp->lock);
3591 
3592 	napi_synchronize(&port->napi);
3593 	napi_disable(&port->napi);
3594 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3595 	mvneta_percpu_disable(pp);
3596 	return 0;
3597 }
3598 
3599 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3600 {
3601 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3602 						  node_dead);
3603 
3604 	/* Check if a new CPU must be elected now this on is down */
3605 	spin_lock(&pp->lock);
3606 	mvneta_percpu_elect(pp);
3607 	spin_unlock(&pp->lock);
3608 	/* Unmask all ethernet port interrupts */
3609 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3610 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3611 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3612 		    MVNETA_CAUSE_LINK_CHANGE);
3613 	netif_tx_start_all_queues(pp->dev);
3614 	return 0;
3615 }
3616 
3617 static int mvneta_open(struct net_device *dev)
3618 {
3619 	struct mvneta_port *pp = netdev_priv(dev);
3620 	int ret;
3621 
3622 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3623 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3624 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3625 
3626 	ret = mvneta_setup_rxqs(pp);
3627 	if (ret)
3628 		return ret;
3629 
3630 	ret = mvneta_setup_txqs(pp);
3631 	if (ret)
3632 		goto err_cleanup_rxqs;
3633 
3634 	/* Connect to port interrupt line */
3635 	if (pp->neta_armada3700)
3636 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3637 				  dev->name, pp);
3638 	else
3639 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3640 					 dev->name, pp->ports);
3641 	if (ret) {
3642 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3643 		goto err_cleanup_txqs;
3644 	}
3645 
3646 	if (!pp->neta_armada3700) {
3647 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3648 		 * queue interrupts
3649 		 */
3650 		on_each_cpu(mvneta_percpu_enable, pp, true);
3651 
3652 		pp->is_stopped = false;
3653 		/* Register a CPU notifier to handle the case where our CPU
3654 		 * might be taken offline.
3655 		 */
3656 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3657 						       &pp->node_online);
3658 		if (ret)
3659 			goto err_free_irq;
3660 
3661 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3662 						       &pp->node_dead);
3663 		if (ret)
3664 			goto err_free_online_hp;
3665 	}
3666 
3667 	/* In default link is down */
3668 	netif_carrier_off(pp->dev);
3669 
3670 	ret = mvneta_mdio_probe(pp);
3671 	if (ret < 0) {
3672 		netdev_err(dev, "cannot probe MDIO bus\n");
3673 		goto err_free_dead_hp;
3674 	}
3675 
3676 	mvneta_start_dev(pp);
3677 
3678 	return 0;
3679 
3680 err_free_dead_hp:
3681 	if (!pp->neta_armada3700)
3682 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3683 						    &pp->node_dead);
3684 err_free_online_hp:
3685 	if (!pp->neta_armada3700)
3686 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3687 						    &pp->node_online);
3688 err_free_irq:
3689 	if (pp->neta_armada3700) {
3690 		free_irq(pp->dev->irq, pp);
3691 	} else {
3692 		on_each_cpu(mvneta_percpu_disable, pp, true);
3693 		free_percpu_irq(pp->dev->irq, pp->ports);
3694 	}
3695 err_cleanup_txqs:
3696 	mvneta_cleanup_txqs(pp);
3697 err_cleanup_rxqs:
3698 	mvneta_cleanup_rxqs(pp);
3699 	return ret;
3700 }
3701 
3702 /* Stop the port, free port interrupt line */
3703 static int mvneta_stop(struct net_device *dev)
3704 {
3705 	struct mvneta_port *pp = netdev_priv(dev);
3706 
3707 	if (!pp->neta_armada3700) {
3708 		/* Inform that we are stopping so we don't want to setup the
3709 		 * driver for new CPUs in the notifiers. The code of the
3710 		 * notifier for CPU online is protected by the same spinlock,
3711 		 * so when we get the lock, the notifer work is done.
3712 		 */
3713 		spin_lock(&pp->lock);
3714 		pp->is_stopped = true;
3715 		spin_unlock(&pp->lock);
3716 
3717 		mvneta_stop_dev(pp);
3718 		mvneta_mdio_remove(pp);
3719 
3720 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3721 						    &pp->node_online);
3722 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3723 						    &pp->node_dead);
3724 		on_each_cpu(mvneta_percpu_disable, pp, true);
3725 		free_percpu_irq(dev->irq, pp->ports);
3726 	} else {
3727 		mvneta_stop_dev(pp);
3728 		mvneta_mdio_remove(pp);
3729 		free_irq(dev->irq, pp);
3730 	}
3731 
3732 	mvneta_cleanup_rxqs(pp);
3733 	mvneta_cleanup_txqs(pp);
3734 
3735 	return 0;
3736 }
3737 
3738 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3739 {
3740 	struct mvneta_port *pp = netdev_priv(dev);
3741 
3742 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3743 }
3744 
3745 /* Ethtool methods */
3746 
3747 /* Set link ksettings (phy address, speed) for ethtools */
3748 static int
3749 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3750 				  const struct ethtool_link_ksettings *cmd)
3751 {
3752 	struct mvneta_port *pp = netdev_priv(ndev);
3753 
3754 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3755 }
3756 
3757 /* Get link ksettings for ethtools */
3758 static int
3759 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3760 				  struct ethtool_link_ksettings *cmd)
3761 {
3762 	struct mvneta_port *pp = netdev_priv(ndev);
3763 
3764 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3765 }
3766 
3767 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3768 {
3769 	struct mvneta_port *pp = netdev_priv(dev);
3770 
3771 	return phylink_ethtool_nway_reset(pp->phylink);
3772 }
3773 
3774 /* Set interrupt coalescing for ethtools */
3775 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3776 				       struct ethtool_coalesce *c)
3777 {
3778 	struct mvneta_port *pp = netdev_priv(dev);
3779 	int queue;
3780 
3781 	for (queue = 0; queue < rxq_number; queue++) {
3782 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3783 		rxq->time_coal = c->rx_coalesce_usecs;
3784 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3785 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3786 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3787 	}
3788 
3789 	for (queue = 0; queue < txq_number; queue++) {
3790 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3791 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3792 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 /* get coalescing for ethtools */
3799 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3800 				       struct ethtool_coalesce *c)
3801 {
3802 	struct mvneta_port *pp = netdev_priv(dev);
3803 
3804 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3805 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3806 
3807 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3808 	return 0;
3809 }
3810 
3811 
3812 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3813 				    struct ethtool_drvinfo *drvinfo)
3814 {
3815 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3816 		sizeof(drvinfo->driver));
3817 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3818 		sizeof(drvinfo->version));
3819 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3820 		sizeof(drvinfo->bus_info));
3821 }
3822 
3823 
3824 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3825 					 struct ethtool_ringparam *ring)
3826 {
3827 	struct mvneta_port *pp = netdev_priv(netdev);
3828 
3829 	ring->rx_max_pending = MVNETA_MAX_RXD;
3830 	ring->tx_max_pending = MVNETA_MAX_TXD;
3831 	ring->rx_pending = pp->rx_ring_size;
3832 	ring->tx_pending = pp->tx_ring_size;
3833 }
3834 
3835 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3836 					struct ethtool_ringparam *ring)
3837 {
3838 	struct mvneta_port *pp = netdev_priv(dev);
3839 
3840 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3841 		return -EINVAL;
3842 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3843 		ring->rx_pending : MVNETA_MAX_RXD;
3844 
3845 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3846 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3847 	if (pp->tx_ring_size != ring->tx_pending)
3848 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3849 			    pp->tx_ring_size, ring->tx_pending);
3850 
3851 	if (netif_running(dev)) {
3852 		mvneta_stop(dev);
3853 		if (mvneta_open(dev)) {
3854 			netdev_err(dev,
3855 				   "error on opening device after ring param change\n");
3856 			return -ENOMEM;
3857 		}
3858 	}
3859 
3860 	return 0;
3861 }
3862 
3863 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
3864 					  struct ethtool_pauseparam *pause)
3865 {
3866 	struct mvneta_port *pp = netdev_priv(dev);
3867 
3868 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
3869 }
3870 
3871 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
3872 					 struct ethtool_pauseparam *pause)
3873 {
3874 	struct mvneta_port *pp = netdev_priv(dev);
3875 
3876 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
3877 }
3878 
3879 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3880 				       u8 *data)
3881 {
3882 	if (sset == ETH_SS_STATS) {
3883 		int i;
3884 
3885 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3886 			memcpy(data + i * ETH_GSTRING_LEN,
3887 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3888 	}
3889 }
3890 
3891 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3892 {
3893 	const struct mvneta_statistic *s;
3894 	void __iomem *base = pp->base;
3895 	u32 high, low;
3896 	u64 val;
3897 	int i;
3898 
3899 	for (i = 0, s = mvneta_statistics;
3900 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3901 	     s++, i++) {
3902 		val = 0;
3903 
3904 		switch (s->type) {
3905 		case T_REG_32:
3906 			val = readl_relaxed(base + s->offset);
3907 			break;
3908 		case T_REG_64:
3909 			/* Docs say to read low 32-bit then high */
3910 			low = readl_relaxed(base + s->offset);
3911 			high = readl_relaxed(base + s->offset + 4);
3912 			val = (u64)high << 32 | low;
3913 			break;
3914 		case T_SW:
3915 			switch (s->offset) {
3916 			case ETHTOOL_STAT_EEE_WAKEUP:
3917 				val = phylink_get_eee_err(pp->phylink);
3918 				break;
3919 			}
3920 			break;
3921 		}
3922 
3923 		pp->ethtool_stats[i] += val;
3924 	}
3925 }
3926 
3927 static void mvneta_ethtool_get_stats(struct net_device *dev,
3928 				     struct ethtool_stats *stats, u64 *data)
3929 {
3930 	struct mvneta_port *pp = netdev_priv(dev);
3931 	int i;
3932 
3933 	mvneta_ethtool_update_stats(pp);
3934 
3935 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3936 		*data++ = pp->ethtool_stats[i];
3937 }
3938 
3939 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3940 {
3941 	if (sset == ETH_SS_STATS)
3942 		return ARRAY_SIZE(mvneta_statistics);
3943 	return -EOPNOTSUPP;
3944 }
3945 
3946 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3947 {
3948 	return MVNETA_RSS_LU_TABLE_SIZE;
3949 }
3950 
3951 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3952 				    struct ethtool_rxnfc *info,
3953 				    u32 *rules __always_unused)
3954 {
3955 	switch (info->cmd) {
3956 	case ETHTOOL_GRXRINGS:
3957 		info->data =  rxq_number;
3958 		return 0;
3959 	case ETHTOOL_GRXFH:
3960 		return -EOPNOTSUPP;
3961 	default:
3962 		return -EOPNOTSUPP;
3963 	}
3964 }
3965 
3966 static int  mvneta_config_rss(struct mvneta_port *pp)
3967 {
3968 	int cpu;
3969 	u32 val;
3970 
3971 	netif_tx_stop_all_queues(pp->dev);
3972 
3973 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3974 
3975 	/* We have to synchronise on the napi of each CPU */
3976 	for_each_online_cpu(cpu) {
3977 		struct mvneta_pcpu_port *pcpu_port =
3978 			per_cpu_ptr(pp->ports, cpu);
3979 
3980 		napi_synchronize(&pcpu_port->napi);
3981 		napi_disable(&pcpu_port->napi);
3982 	}
3983 
3984 	pp->rxq_def = pp->indir[0];
3985 
3986 	/* Update unicast mapping */
3987 	mvneta_set_rx_mode(pp->dev);
3988 
3989 	/* Update val of portCfg register accordingly with all RxQueue types */
3990 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3991 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3992 
3993 	/* Update the elected CPU matching the new rxq_def */
3994 	spin_lock(&pp->lock);
3995 	mvneta_percpu_elect(pp);
3996 	spin_unlock(&pp->lock);
3997 
3998 	/* We have to synchronise on the napi of each CPU */
3999 	for_each_online_cpu(cpu) {
4000 		struct mvneta_pcpu_port *pcpu_port =
4001 			per_cpu_ptr(pp->ports, cpu);
4002 
4003 		napi_enable(&pcpu_port->napi);
4004 	}
4005 
4006 	netif_tx_start_all_queues(pp->dev);
4007 
4008 	return 0;
4009 }
4010 
4011 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4012 				   const u8 *key, const u8 hfunc)
4013 {
4014 	struct mvneta_port *pp = netdev_priv(dev);
4015 
4016 	/* Current code for Armada 3700 doesn't support RSS features yet */
4017 	if (pp->neta_armada3700)
4018 		return -EOPNOTSUPP;
4019 
4020 	/* We require at least one supported parameter to be changed
4021 	 * and no change in any of the unsupported parameters
4022 	 */
4023 	if (key ||
4024 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4025 		return -EOPNOTSUPP;
4026 
4027 	if (!indir)
4028 		return 0;
4029 
4030 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4031 
4032 	return mvneta_config_rss(pp);
4033 }
4034 
4035 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4036 				   u8 *hfunc)
4037 {
4038 	struct mvneta_port *pp = netdev_priv(dev);
4039 
4040 	/* Current code for Armada 3700 doesn't support RSS features yet */
4041 	if (pp->neta_armada3700)
4042 		return -EOPNOTSUPP;
4043 
4044 	if (hfunc)
4045 		*hfunc = ETH_RSS_HASH_TOP;
4046 
4047 	if (!indir)
4048 		return 0;
4049 
4050 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4051 
4052 	return 0;
4053 }
4054 
4055 static void mvneta_ethtool_get_wol(struct net_device *dev,
4056 				   struct ethtool_wolinfo *wol)
4057 {
4058 	struct mvneta_port *pp = netdev_priv(dev);
4059 
4060 	phylink_ethtool_get_wol(pp->phylink, wol);
4061 }
4062 
4063 static int mvneta_ethtool_set_wol(struct net_device *dev,
4064 				  struct ethtool_wolinfo *wol)
4065 {
4066 	struct mvneta_port *pp = netdev_priv(dev);
4067 	int ret;
4068 
4069 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4070 	if (!ret)
4071 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4072 
4073 	return ret;
4074 }
4075 
4076 static int mvneta_ethtool_get_module_info(struct net_device *dev,
4077 					  struct ethtool_modinfo *modinfo)
4078 {
4079 	struct mvneta_port *pp = netdev_priv(dev);
4080 
4081 	return phylink_ethtool_get_module_info(pp->phylink, modinfo);
4082 }
4083 
4084 static int mvneta_ethtool_get_module_eeprom(struct net_device *dev,
4085 					    struct ethtool_eeprom *ee, u8 *buf)
4086 {
4087 	struct mvneta_port *pp = netdev_priv(dev);
4088 
4089 	return phylink_ethtool_get_module_eeprom(pp->phylink, ee, buf);
4090 }
4091 
4092 static int mvneta_ethtool_get_eee(struct net_device *dev,
4093 				  struct ethtool_eee *eee)
4094 {
4095 	struct mvneta_port *pp = netdev_priv(dev);
4096 	u32 lpi_ctl0;
4097 
4098 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4099 
4100 	eee->eee_enabled = pp->eee_enabled;
4101 	eee->eee_active = pp->eee_active;
4102 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4103 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4104 
4105 	return phylink_ethtool_get_eee(pp->phylink, eee);
4106 }
4107 
4108 static int mvneta_ethtool_set_eee(struct net_device *dev,
4109 				  struct ethtool_eee *eee)
4110 {
4111 	struct mvneta_port *pp = netdev_priv(dev);
4112 	u32 lpi_ctl0;
4113 
4114 	/* The Armada 37x documents do not give limits for this other than
4115 	 * it being an 8-bit register. */
4116 	if (eee->tx_lpi_enabled &&
4117 	    (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255))
4118 		return -EINVAL;
4119 
4120 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4121 	lpi_ctl0 &= ~(0xff << 8);
4122 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4123 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4124 
4125 	pp->eee_enabled = eee->eee_enabled;
4126 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4127 
4128 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4129 
4130 	return phylink_ethtool_set_eee(pp->phylink, eee);
4131 }
4132 
4133 static const struct net_device_ops mvneta_netdev_ops = {
4134 	.ndo_open            = mvneta_open,
4135 	.ndo_stop            = mvneta_stop,
4136 	.ndo_start_xmit      = mvneta_tx,
4137 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4138 	.ndo_set_mac_address = mvneta_set_mac_addr,
4139 	.ndo_change_mtu      = mvneta_change_mtu,
4140 	.ndo_fix_features    = mvneta_fix_features,
4141 	.ndo_get_stats64     = mvneta_get_stats64,
4142 	.ndo_do_ioctl        = mvneta_ioctl,
4143 };
4144 
4145 static const struct ethtool_ops mvneta_eth_tool_ops = {
4146 	.nway_reset	= mvneta_ethtool_nway_reset,
4147 	.get_link       = ethtool_op_get_link,
4148 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4149 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4150 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4151 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4152 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4153 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4154 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4155 	.get_strings	= mvneta_ethtool_get_strings,
4156 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4157 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4158 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4159 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4160 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4161 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4162 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4163 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4164 	.get_wol        = mvneta_ethtool_get_wol,
4165 	.set_wol        = mvneta_ethtool_set_wol,
4166 	.get_module_info = mvneta_ethtool_get_module_info,
4167 	.get_module_eeprom = mvneta_ethtool_get_module_eeprom,
4168 	.get_eee	= mvneta_ethtool_get_eee,
4169 	.set_eee	= mvneta_ethtool_set_eee,
4170 };
4171 
4172 /* Initialize hw */
4173 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4174 {
4175 	int queue;
4176 
4177 	/* Disable port */
4178 	mvneta_port_disable(pp);
4179 
4180 	/* Set port default values */
4181 	mvneta_defaults_set(pp);
4182 
4183 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4184 	if (!pp->txqs)
4185 		return -ENOMEM;
4186 
4187 	/* Initialize TX descriptor rings */
4188 	for (queue = 0; queue < txq_number; queue++) {
4189 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4190 		txq->id = queue;
4191 		txq->size = pp->tx_ring_size;
4192 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4193 	}
4194 
4195 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4196 	if (!pp->rxqs)
4197 		return -ENOMEM;
4198 
4199 	/* Create Rx descriptor rings */
4200 	for (queue = 0; queue < rxq_number; queue++) {
4201 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4202 		rxq->id = queue;
4203 		rxq->size = pp->rx_ring_size;
4204 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4205 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4206 		rxq->buf_virt_addr
4207 			= devm_kmalloc_array(pp->dev->dev.parent,
4208 					     rxq->size,
4209 					     sizeof(*rxq->buf_virt_addr),
4210 					     GFP_KERNEL);
4211 		if (!rxq->buf_virt_addr)
4212 			return -ENOMEM;
4213 	}
4214 
4215 	return 0;
4216 }
4217 
4218 /* platform glue : initialize decoding windows */
4219 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4220 				     const struct mbus_dram_target_info *dram)
4221 {
4222 	u32 win_enable;
4223 	u32 win_protect;
4224 	int i;
4225 
4226 	for (i = 0; i < 6; i++) {
4227 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4228 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4229 
4230 		if (i < 4)
4231 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4232 	}
4233 
4234 	win_enable = 0x3f;
4235 	win_protect = 0;
4236 
4237 	if (dram) {
4238 		for (i = 0; i < dram->num_cs; i++) {
4239 			const struct mbus_dram_window *cs = dram->cs + i;
4240 
4241 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4242 				    (cs->base & 0xffff0000) |
4243 				    (cs->mbus_attr << 8) |
4244 				    dram->mbus_dram_target_id);
4245 
4246 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4247 				    (cs->size - 1) & 0xffff0000);
4248 
4249 			win_enable &= ~(1 << i);
4250 			win_protect |= 3 << (2 * i);
4251 		}
4252 	} else {
4253 		/* For Armada3700 open default 4GB Mbus window, leaving
4254 		 * arbitration of target/attribute to a different layer
4255 		 * of configuration.
4256 		 */
4257 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4258 		win_enable &= ~BIT(0);
4259 		win_protect = 3;
4260 	}
4261 
4262 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4263 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4264 }
4265 
4266 /* Power up the port */
4267 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4268 {
4269 	/* MAC Cause register should be cleared */
4270 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4271 
4272 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4273 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4274 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4275 		 phy_mode == PHY_INTERFACE_MODE_1000BASEX)
4276 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4277 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4278 		return -EINVAL;
4279 
4280 	return 0;
4281 }
4282 
4283 /* Device initialization routine */
4284 static int mvneta_probe(struct platform_device *pdev)
4285 {
4286 	struct resource *res;
4287 	struct device_node *dn = pdev->dev.of_node;
4288 	struct device_node *bm_node;
4289 	struct mvneta_port *pp;
4290 	struct net_device *dev;
4291 	struct phylink *phylink;
4292 	const char *dt_mac_addr;
4293 	char hw_mac_addr[ETH_ALEN];
4294 	const char *mac_from;
4295 	int tx_csum_limit;
4296 	int phy_mode;
4297 	int err;
4298 	int cpu;
4299 
4300 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4301 	if (!dev)
4302 		return -ENOMEM;
4303 
4304 	dev->irq = irq_of_parse_and_map(dn, 0);
4305 	if (dev->irq == 0) {
4306 		err = -EINVAL;
4307 		goto err_free_netdev;
4308 	}
4309 
4310 	phy_mode = of_get_phy_mode(dn);
4311 	if (phy_mode < 0) {
4312 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4313 		err = -EINVAL;
4314 		goto err_free_irq;
4315 	}
4316 
4317 	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4318 				 &mvneta_phylink_ops);
4319 	if (IS_ERR(phylink)) {
4320 		err = PTR_ERR(phylink);
4321 		goto err_free_irq;
4322 	}
4323 
4324 	dev->tx_queue_len = MVNETA_MAX_TXD;
4325 	dev->watchdog_timeo = 5 * HZ;
4326 	dev->netdev_ops = &mvneta_netdev_ops;
4327 
4328 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4329 
4330 	pp = netdev_priv(dev);
4331 	spin_lock_init(&pp->lock);
4332 	pp->phylink = phylink;
4333 	pp->phy_interface = phy_mode;
4334 	pp->dn = dn;
4335 
4336 	pp->rxq_def = rxq_def;
4337 
4338 	/* Set RX packet offset correction for platforms, whose
4339 	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4340 	 * platforms and 0B for 32-bit ones.
4341 	 */
4342 	pp->rx_offset_correction =
4343 		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4344 
4345 	pp->indir[0] = rxq_def;
4346 
4347 	/* Get special SoC configurations */
4348 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4349 		pp->neta_armada3700 = true;
4350 
4351 	pp->clk = devm_clk_get(&pdev->dev, "core");
4352 	if (IS_ERR(pp->clk))
4353 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4354 	if (IS_ERR(pp->clk)) {
4355 		err = PTR_ERR(pp->clk);
4356 		goto err_free_phylink;
4357 	}
4358 
4359 	clk_prepare_enable(pp->clk);
4360 
4361 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4362 	if (!IS_ERR(pp->clk_bus))
4363 		clk_prepare_enable(pp->clk_bus);
4364 
4365 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4366 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4367 	if (IS_ERR(pp->base)) {
4368 		err = PTR_ERR(pp->base);
4369 		goto err_clk;
4370 	}
4371 
4372 	/* Alloc per-cpu port structure */
4373 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4374 	if (!pp->ports) {
4375 		err = -ENOMEM;
4376 		goto err_clk;
4377 	}
4378 
4379 	/* Alloc per-cpu stats */
4380 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4381 	if (!pp->stats) {
4382 		err = -ENOMEM;
4383 		goto err_free_ports;
4384 	}
4385 
4386 	dt_mac_addr = of_get_mac_address(dn);
4387 	if (dt_mac_addr) {
4388 		mac_from = "device tree";
4389 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4390 	} else {
4391 		mvneta_get_mac_addr(pp, hw_mac_addr);
4392 		if (is_valid_ether_addr(hw_mac_addr)) {
4393 			mac_from = "hardware";
4394 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4395 		} else {
4396 			mac_from = "random";
4397 			eth_hw_addr_random(dev);
4398 		}
4399 	}
4400 
4401 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4402 		if (tx_csum_limit < 0 ||
4403 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4404 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4405 			dev_info(&pdev->dev,
4406 				 "Wrong TX csum limit in DT, set to %dB\n",
4407 				 MVNETA_TX_CSUM_DEF_SIZE);
4408 		}
4409 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4410 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4411 	} else {
4412 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4413 	}
4414 
4415 	pp->tx_csum_limit = tx_csum_limit;
4416 
4417 	pp->dram_target_info = mv_mbus_dram_info();
4418 	/* Armada3700 requires setting default configuration of Mbus
4419 	 * windows, however without using filled mbus_dram_target_info
4420 	 * structure.
4421 	 */
4422 	if (pp->dram_target_info || pp->neta_armada3700)
4423 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4424 
4425 	pp->tx_ring_size = MVNETA_MAX_TXD;
4426 	pp->rx_ring_size = MVNETA_MAX_RXD;
4427 
4428 	pp->dev = dev;
4429 	SET_NETDEV_DEV(dev, &pdev->dev);
4430 
4431 	pp->id = global_port_id++;
4432 
4433 	/* Obtain access to BM resources if enabled and already initialized */
4434 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4435 	if (bm_node && bm_node->data) {
4436 		pp->bm_priv = bm_node->data;
4437 		err = mvneta_bm_port_init(pdev, pp);
4438 		if (err < 0) {
4439 			dev_info(&pdev->dev, "use SW buffer management\n");
4440 			pp->bm_priv = NULL;
4441 		}
4442 	}
4443 	of_node_put(bm_node);
4444 
4445 	err = mvneta_init(&pdev->dev, pp);
4446 	if (err < 0)
4447 		goto err_netdev;
4448 
4449 	err = mvneta_port_power_up(pp, phy_mode);
4450 	if (err < 0) {
4451 		dev_err(&pdev->dev, "can't power up port\n");
4452 		goto err_netdev;
4453 	}
4454 
4455 	/* Armada3700 network controller does not support per-cpu
4456 	 * operation, so only single NAPI should be initialized.
4457 	 */
4458 	if (pp->neta_armada3700) {
4459 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4460 	} else {
4461 		for_each_present_cpu(cpu) {
4462 			struct mvneta_pcpu_port *port =
4463 				per_cpu_ptr(pp->ports, cpu);
4464 
4465 			netif_napi_add(dev, &port->napi, mvneta_poll,
4466 				       NAPI_POLL_WEIGHT);
4467 			port->pp = pp;
4468 		}
4469 	}
4470 
4471 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO;
4472 	dev->hw_features |= dev->features;
4473 	dev->vlan_features |= dev->features;
4474 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4475 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4476 
4477 	/* MTU range: 68 - 9676 */
4478 	dev->min_mtu = ETH_MIN_MTU;
4479 	/* 9676 == 9700 - 20 and rounding to 8 */
4480 	dev->max_mtu = 9676;
4481 
4482 	err = register_netdev(dev);
4483 	if (err < 0) {
4484 		dev_err(&pdev->dev, "failed to register\n");
4485 		goto err_free_stats;
4486 	}
4487 
4488 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4489 		    dev->dev_addr);
4490 
4491 	platform_set_drvdata(pdev, pp->dev);
4492 
4493 	return 0;
4494 
4495 err_netdev:
4496 	unregister_netdev(dev);
4497 	if (pp->bm_priv) {
4498 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4499 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4500 				       1 << pp->id);
4501 	}
4502 err_free_stats:
4503 	free_percpu(pp->stats);
4504 err_free_ports:
4505 	free_percpu(pp->ports);
4506 err_clk:
4507 	clk_disable_unprepare(pp->clk_bus);
4508 	clk_disable_unprepare(pp->clk);
4509 err_free_phylink:
4510 	if (pp->phylink)
4511 		phylink_destroy(pp->phylink);
4512 err_free_irq:
4513 	irq_dispose_mapping(dev->irq);
4514 err_free_netdev:
4515 	free_netdev(dev);
4516 	return err;
4517 }
4518 
4519 /* Device removal routine */
4520 static int mvneta_remove(struct platform_device *pdev)
4521 {
4522 	struct net_device  *dev = platform_get_drvdata(pdev);
4523 	struct mvneta_port *pp = netdev_priv(dev);
4524 
4525 	unregister_netdev(dev);
4526 	clk_disable_unprepare(pp->clk_bus);
4527 	clk_disable_unprepare(pp->clk);
4528 	free_percpu(pp->ports);
4529 	free_percpu(pp->stats);
4530 	irq_dispose_mapping(dev->irq);
4531 	phylink_destroy(pp->phylink);
4532 	free_netdev(dev);
4533 
4534 	if (pp->bm_priv) {
4535 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4536 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4537 				       1 << pp->id);
4538 	}
4539 
4540 	return 0;
4541 }
4542 
4543 #ifdef CONFIG_PM_SLEEP
4544 static int mvneta_suspend(struct device *device)
4545 {
4546 	struct net_device *dev = dev_get_drvdata(device);
4547 	struct mvneta_port *pp = netdev_priv(dev);
4548 
4549 	rtnl_lock();
4550 	if (netif_running(dev))
4551 		mvneta_stop(dev);
4552 	rtnl_unlock();
4553 	netif_device_detach(dev);
4554 	clk_disable_unprepare(pp->clk_bus);
4555 	clk_disable_unprepare(pp->clk);
4556 	return 0;
4557 }
4558 
4559 static int mvneta_resume(struct device *device)
4560 {
4561 	struct platform_device *pdev = to_platform_device(device);
4562 	struct net_device *dev = dev_get_drvdata(device);
4563 	struct mvneta_port *pp = netdev_priv(dev);
4564 	int err;
4565 
4566 	clk_prepare_enable(pp->clk);
4567 	if (!IS_ERR(pp->clk_bus))
4568 		clk_prepare_enable(pp->clk_bus);
4569 	if (pp->dram_target_info || pp->neta_armada3700)
4570 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4571 	if (pp->bm_priv) {
4572 		err = mvneta_bm_port_init(pdev, pp);
4573 		if (err < 0) {
4574 			dev_info(&pdev->dev, "use SW buffer management\n");
4575 			pp->bm_priv = NULL;
4576 		}
4577 	}
4578 	mvneta_defaults_set(pp);
4579 	err = mvneta_port_power_up(pp, pp->phy_interface);
4580 	if (err < 0) {
4581 		dev_err(device, "can't power up port\n");
4582 		return err;
4583 	}
4584 
4585 	netif_device_attach(dev);
4586 	rtnl_lock();
4587 	if (netif_running(dev)) {
4588 		mvneta_open(dev);
4589 		mvneta_set_rx_mode(dev);
4590 	}
4591 	rtnl_unlock();
4592 
4593 	return 0;
4594 }
4595 #endif
4596 
4597 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4598 
4599 static const struct of_device_id mvneta_match[] = {
4600 	{ .compatible = "marvell,armada-370-neta" },
4601 	{ .compatible = "marvell,armada-xp-neta" },
4602 	{ .compatible = "marvell,armada-3700-neta" },
4603 	{ }
4604 };
4605 MODULE_DEVICE_TABLE(of, mvneta_match);
4606 
4607 static struct platform_driver mvneta_driver = {
4608 	.probe = mvneta_probe,
4609 	.remove = mvneta_remove,
4610 	.driver = {
4611 		.name = MVNETA_DRIVER_NAME,
4612 		.of_match_table = mvneta_match,
4613 		.pm = &mvneta_pm_ops,
4614 	},
4615 };
4616 
4617 static int __init mvneta_driver_init(void)
4618 {
4619 	int ret;
4620 
4621 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4622 				      mvneta_cpu_online,
4623 				      mvneta_cpu_down_prepare);
4624 	if (ret < 0)
4625 		goto out;
4626 	online_hpstate = ret;
4627 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4628 				      NULL, mvneta_cpu_dead);
4629 	if (ret)
4630 		goto err_dead;
4631 
4632 	ret = platform_driver_register(&mvneta_driver);
4633 	if (ret)
4634 		goto err;
4635 	return 0;
4636 
4637 err:
4638 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4639 err_dead:
4640 	cpuhp_remove_multi_state(online_hpstate);
4641 out:
4642 	return ret;
4643 }
4644 module_init(mvneta_driver_init);
4645 
4646 static void __exit mvneta_driver_exit(void)
4647 {
4648 	platform_driver_unregister(&mvneta_driver);
4649 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4650 	cpuhp_remove_multi_state(online_hpstate);
4651 }
4652 module_exit(mvneta_driver_exit);
4653 
4654 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4655 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4656 MODULE_LICENSE("GPL");
4657 
4658 module_param(rxq_number, int, S_IRUGO);
4659 module_param(txq_number, int, S_IRUGO);
4660 
4661 module_param(rxq_def, int, S_IRUGO);
4662 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4663