1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 #define MVNETA_SERDES_CFG			 0x24A0
110 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
111 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
112 #define MVNETA_TYPE_PRIO                         0x24bc
113 #define      MVNETA_FORCE_UNI                    BIT(21)
114 #define MVNETA_TXQ_CMD_1                         0x24e4
115 #define MVNETA_TXQ_CMD                           0x2448
116 #define      MVNETA_TXQ_DISABLE_SHIFT            8
117 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
118 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
119 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
120 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
121 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
122 #define MVNETA_ACC_MODE                          0x2500
123 #define MVNETA_BM_ADDRESS                        0x2504
124 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
125 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
126 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
127 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
128 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
129 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
130 
131 /* Exception Interrupt Port/Queue Cause register
132  *
133  * Their behavior depend of the mapping done using the PCPX2Q
134  * registers. For a given CPU if the bit associated to a queue is not
135  * set, then for the register a read from this CPU will always return
136  * 0 and a write won't do anything
137  */
138 
139 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
140 #define MVNETA_INTR_NEW_MASK                     0x25a4
141 
142 /* bits  0..7  = TXQ SENT, one bit per queue.
143  * bits  8..15 = RXQ OCCUP, one bit per queue.
144  * bits 16..23 = RXQ FREE, one bit per queue.
145  * bit  29 = OLD_REG_SUM, see old reg ?
146  * bit  30 = TX_ERR_SUM, one bit for 4 ports
147  * bit  31 = MISC_SUM,   one bit for 4 ports
148  */
149 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
150 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
151 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
152 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
153 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
154 
155 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
156 #define MVNETA_INTR_OLD_MASK                     0x25ac
157 
158 /* Data Path Port/Queue Cause Register */
159 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
160 #define MVNETA_INTR_MISC_MASK                    0x25b4
161 
162 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
163 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
164 #define      MVNETA_CAUSE_PTP                    BIT(4)
165 
166 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
167 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
168 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
169 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
170 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
171 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
172 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
173 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
174 
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
176 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
178 
179 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
180 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
181 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
182 
183 #define MVNETA_INTR_ENABLE                       0x25b8
184 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
185 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
186 
187 #define MVNETA_RXQ_CMD                           0x2680
188 #define      MVNETA_RXQ_DISABLE_SHIFT            8
189 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
190 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
191 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
192 #define MVNETA_GMAC_CTRL_0                       0x2c00
193 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
194 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
195 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
196 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
197 #define MVNETA_GMAC_CTRL_2                       0x2c08
198 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
199 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
200 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
201 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
202 #define MVNETA_GMAC_STATUS                       0x2c10
203 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
204 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
205 #define      MVNETA_GMAC_SPEED_100               BIT(2)
206 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
211 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
212 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
213 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
214 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
215 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
216 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
217 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
218 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
219 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
220 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
221 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
222 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
223 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
224 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
225 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
226 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
227 #define MVNETA_GMAC_CTRL_4                       0x2c90
228 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
229 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
230 #define      MVNETA_MIB_LATE_COLLISION           0x7c
231 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
232 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
233 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
234 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
235 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
236 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
237 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
238 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
239 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
240 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
241 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
242 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
243 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
244 #define MVNETA_PORT_TX_RESET                     0x3cf0
245 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
246 #define MVNETA_TX_MTU                            0x3e0c
247 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
248 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
250 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
251 
252 #define MVNETA_LPI_CTRL_0                        0x2cc0
253 #define MVNETA_LPI_CTRL_1                        0x2cc4
254 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
255 #define MVNETA_LPI_CTRL_2                        0x2cc8
256 #define MVNETA_LPI_STATUS                        0x2ccc
257 
258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
259 
260 /* Descriptor ring Macros */
261 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
262 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
263 
264 /* Various constants */
265 
266 /* Coalescing */
267 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
268 #define MVNETA_RX_COAL_PKTS		32
269 #define MVNETA_RX_COAL_USEC		100
270 
271 /* The two bytes Marvell header. Either contains a special value used
272  * by Marvell switches when a specific hardware mode is enabled (not
273  * supported by this driver) or is filled automatically by zeroes on
274  * the RX side. Those two bytes being at the front of the Ethernet
275  * header, they allow to have the IP header aligned on a 4 bytes
276  * boundary automatically: the hardware skips those two bytes on its
277  * own.
278  */
279 #define MVNETA_MH_SIZE			2
280 
281 #define MVNETA_VLAN_TAG_LEN             4
282 
283 #define MVNETA_TX_CSUM_DEF_SIZE		1600
284 #define MVNETA_TX_CSUM_MAX_SIZE		9800
285 #define MVNETA_ACC_MODE_EXT1		1
286 #define MVNETA_ACC_MODE_EXT2		2
287 
288 #define MVNETA_MAX_DECODE_WIN		6
289 
290 /* Timeout constants */
291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
294 
295 #define MVNETA_TX_MTU_MAX		0x3ffff
296 
297 /* The RSS lookup table actually has 256 entries but we do not use
298  * them yet
299  */
300 #define MVNETA_RSS_LU_TABLE_SIZE	1
301 
302 /* Max number of Rx descriptors */
303 #define MVNETA_MAX_RXD 512
304 
305 /* Max number of Tx descriptors */
306 #define MVNETA_MAX_TXD 1024
307 
308 /* Max number of allowed TCP segments for software TSO */
309 #define MVNETA_MAX_TSO_SEGS 100
310 
311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
312 
313 /* descriptor aligned size */
314 #define MVNETA_DESC_ALIGNED_SIZE	32
315 
316 /* Number of bytes to be taken into account by HW when putting incoming data
317  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
318  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
319  */
320 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
321 
322 #define MVNETA_RX_PKT_SIZE(mtu) \
323 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
324 	      ETH_HLEN + ETH_FCS_LEN,			     \
325 	      cache_line_size())
326 
327 /* Driver assumes that the last 3 bits are 0 */
328 #define MVNETA_SKB_HEADROOM	(max(XDP_PACKET_HEADROOM, NET_SKB_PAD) & ~0x7)
329 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
330 			 MVNETA_SKB_HEADROOM))
331 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
332 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
333 
334 #define IS_TSO_HEADER(txq, addr) \
335 	((addr >= txq->tso_hdrs_phys) && \
336 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
337 
338 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
339 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
340 
341 enum {
342 	ETHTOOL_STAT_EEE_WAKEUP,
343 	ETHTOOL_STAT_SKB_ALLOC_ERR,
344 	ETHTOOL_STAT_REFILL_ERR,
345 	ETHTOOL_XDP_REDIRECT,
346 	ETHTOOL_XDP_PASS,
347 	ETHTOOL_XDP_DROP,
348 	ETHTOOL_XDP_TX,
349 	ETHTOOL_XDP_TX_ERR,
350 	ETHTOOL_XDP_XMIT,
351 	ETHTOOL_XDP_XMIT_ERR,
352 	ETHTOOL_MAX_STATS,
353 };
354 
355 struct mvneta_statistic {
356 	unsigned short offset;
357 	unsigned short type;
358 	const char name[ETH_GSTRING_LEN];
359 };
360 
361 #define T_REG_32	32
362 #define T_REG_64	64
363 #define T_SW		1
364 
365 #define MVNETA_XDP_PASS		0
366 #define MVNETA_XDP_DROPPED	BIT(0)
367 #define MVNETA_XDP_TX		BIT(1)
368 #define MVNETA_XDP_REDIR	BIT(2)
369 
370 static const struct mvneta_statistic mvneta_statistics[] = {
371 	{ 0x3000, T_REG_64, "good_octets_received", },
372 	{ 0x3010, T_REG_32, "good_frames_received", },
373 	{ 0x3008, T_REG_32, "bad_octets_received", },
374 	{ 0x3014, T_REG_32, "bad_frames_received", },
375 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
376 	{ 0x301c, T_REG_32, "multicast_frames_received", },
377 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
378 	{ 0x3058, T_REG_32, "good_fc_received", },
379 	{ 0x305c, T_REG_32, "bad_fc_received", },
380 	{ 0x3060, T_REG_32, "undersize_received", },
381 	{ 0x3064, T_REG_32, "fragments_received", },
382 	{ 0x3068, T_REG_32, "oversize_received", },
383 	{ 0x306c, T_REG_32, "jabber_received", },
384 	{ 0x3070, T_REG_32, "mac_receive_error", },
385 	{ 0x3074, T_REG_32, "bad_crc_event", },
386 	{ 0x3078, T_REG_32, "collision", },
387 	{ 0x307c, T_REG_32, "late_collision", },
388 	{ 0x2484, T_REG_32, "rx_discard", },
389 	{ 0x2488, T_REG_32, "rx_overrun", },
390 	{ 0x3020, T_REG_32, "frames_64_octets", },
391 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
392 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
393 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
394 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
395 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
396 	{ 0x3038, T_REG_64, "good_octets_sent", },
397 	{ 0x3040, T_REG_32, "good_frames_sent", },
398 	{ 0x3044, T_REG_32, "excessive_collision", },
399 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
400 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
401 	{ 0x3054, T_REG_32, "fc_sent", },
402 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
403 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
404 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
405 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
406 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
407 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
408 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
409 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
410 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
411 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
412 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
413 };
414 
415 struct mvneta_stats {
416 	u64	rx_packets;
417 	u64	rx_bytes;
418 	u64	tx_packets;
419 	u64	tx_bytes;
420 	/* xdp */
421 	u64	xdp_redirect;
422 	u64	xdp_pass;
423 	u64	xdp_drop;
424 	u64	xdp_xmit;
425 	u64	xdp_xmit_err;
426 	u64	xdp_tx;
427 	u64	xdp_tx_err;
428 };
429 
430 struct mvneta_ethtool_stats {
431 	struct mvneta_stats ps;
432 	u64	skb_alloc_error;
433 	u64	refill_error;
434 };
435 
436 struct mvneta_pcpu_stats {
437 	struct u64_stats_sync syncp;
438 
439 	struct mvneta_ethtool_stats es;
440 	u64	rx_dropped;
441 	u64	rx_errors;
442 };
443 
444 struct mvneta_pcpu_port {
445 	/* Pointer to the shared port */
446 	struct mvneta_port	*pp;
447 
448 	/* Pointer to the CPU-local NAPI struct */
449 	struct napi_struct	napi;
450 
451 	/* Cause of the previous interrupt */
452 	u32			cause_rx_tx;
453 };
454 
455 struct mvneta_port {
456 	u8 id;
457 	struct mvneta_pcpu_port __percpu	*ports;
458 	struct mvneta_pcpu_stats __percpu	*stats;
459 
460 	int pkt_size;
461 	void __iomem *base;
462 	struct mvneta_rx_queue *rxqs;
463 	struct mvneta_tx_queue *txqs;
464 	struct net_device *dev;
465 	struct hlist_node node_online;
466 	struct hlist_node node_dead;
467 	int rxq_def;
468 	/* Protect the access to the percpu interrupt registers,
469 	 * ensuring that the configuration remains coherent.
470 	 */
471 	spinlock_t lock;
472 	bool is_stopped;
473 
474 	u32 cause_rx_tx;
475 	struct napi_struct napi;
476 
477 	struct bpf_prog *xdp_prog;
478 
479 	/* Core clock */
480 	struct clk *clk;
481 	/* AXI clock */
482 	struct clk *clk_bus;
483 	u8 mcast_count[256];
484 	u16 tx_ring_size;
485 	u16 rx_ring_size;
486 
487 	phy_interface_t phy_interface;
488 	struct device_node *dn;
489 	unsigned int tx_csum_limit;
490 	struct phylink *phylink;
491 	struct phylink_config phylink_config;
492 	struct phy *comphy;
493 
494 	struct mvneta_bm *bm_priv;
495 	struct mvneta_bm_pool *pool_long;
496 	struct mvneta_bm_pool *pool_short;
497 	int bm_win_id;
498 
499 	bool eee_enabled;
500 	bool eee_active;
501 	bool tx_lpi_enabled;
502 
503 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
504 
505 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
506 
507 	/* Flags for special SoC configurations */
508 	bool neta_armada3700;
509 	u16 rx_offset_correction;
510 	const struct mbus_dram_target_info *dram_target_info;
511 };
512 
513 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
514  * layout of the transmit and reception DMA descriptors, and their
515  * layout is therefore defined by the hardware design
516  */
517 
518 #define MVNETA_TX_L3_OFF_SHIFT	0
519 #define MVNETA_TX_IP_HLEN_SHIFT	8
520 #define MVNETA_TX_L4_UDP	BIT(16)
521 #define MVNETA_TX_L3_IP6	BIT(17)
522 #define MVNETA_TXD_IP_CSUM	BIT(18)
523 #define MVNETA_TXD_Z_PAD	BIT(19)
524 #define MVNETA_TXD_L_DESC	BIT(20)
525 #define MVNETA_TXD_F_DESC	BIT(21)
526 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
527 				 MVNETA_TXD_L_DESC | \
528 				 MVNETA_TXD_F_DESC)
529 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
530 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
531 
532 #define MVNETA_RXD_ERR_CRC		0x0
533 #define MVNETA_RXD_BM_POOL_SHIFT	13
534 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
535 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
536 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
537 #define MVNETA_RXD_ERR_LEN		BIT(18)
538 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
539 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
540 #define MVNETA_RXD_L3_IP4		BIT(25)
541 #define MVNETA_RXD_LAST_DESC		BIT(26)
542 #define MVNETA_RXD_FIRST_DESC		BIT(27)
543 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
544 					 MVNETA_RXD_LAST_DESC)
545 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
546 
547 #if defined(__LITTLE_ENDIAN)
548 struct mvneta_tx_desc {
549 	u32  command;		/* Options used by HW for packet transmitting.*/
550 	u16  reserved1;		/* csum_l4 (for future use)		*/
551 	u16  data_size;		/* Data size of transmitted packet in bytes */
552 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
553 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
554 	u32  reserved3[4];	/* Reserved - (for future use)		*/
555 };
556 
557 struct mvneta_rx_desc {
558 	u32  status;		/* Info about received packet		*/
559 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
560 	u16  data_size;		/* Size of received packet in bytes	*/
561 
562 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
563 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
564 
565 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
566 	u16  reserved3;		/* prefetch_cmd, for future use		*/
567 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
568 
569 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
570 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
571 };
572 #else
573 struct mvneta_tx_desc {
574 	u16  data_size;		/* Data size of transmitted packet in bytes */
575 	u16  reserved1;		/* csum_l4 (for future use)		*/
576 	u32  command;		/* Options used by HW for packet transmitting.*/
577 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
578 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
579 	u32  reserved3[4];	/* Reserved - (for future use)		*/
580 };
581 
582 struct mvneta_rx_desc {
583 	u16  data_size;		/* Size of received packet in bytes	*/
584 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
585 	u32  status;		/* Info about received packet		*/
586 
587 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
588 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
589 
590 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
591 	u16  reserved3;		/* prefetch_cmd, for future use		*/
592 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
593 
594 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
595 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
596 };
597 #endif
598 
599 enum mvneta_tx_buf_type {
600 	MVNETA_TYPE_SKB,
601 	MVNETA_TYPE_XDP_TX,
602 	MVNETA_TYPE_XDP_NDO,
603 };
604 
605 struct mvneta_tx_buf {
606 	enum mvneta_tx_buf_type type;
607 	union {
608 		struct xdp_frame *xdpf;
609 		struct sk_buff *skb;
610 	};
611 };
612 
613 struct mvneta_tx_queue {
614 	/* Number of this TX queue, in the range 0-7 */
615 	u8 id;
616 
617 	/* Number of TX DMA descriptors in the descriptor ring */
618 	int size;
619 
620 	/* Number of currently used TX DMA descriptor in the
621 	 * descriptor ring
622 	 */
623 	int count;
624 	int pending;
625 	int tx_stop_threshold;
626 	int tx_wake_threshold;
627 
628 	/* Array of transmitted buffers */
629 	struct mvneta_tx_buf *buf;
630 
631 	/* Index of last TX DMA descriptor that was inserted */
632 	int txq_put_index;
633 
634 	/* Index of the TX DMA descriptor to be cleaned up */
635 	int txq_get_index;
636 
637 	u32 done_pkts_coal;
638 
639 	/* Virtual address of the TX DMA descriptors array */
640 	struct mvneta_tx_desc *descs;
641 
642 	/* DMA address of the TX DMA descriptors array */
643 	dma_addr_t descs_phys;
644 
645 	/* Index of the last TX DMA descriptor */
646 	int last_desc;
647 
648 	/* Index of the next TX DMA descriptor to process */
649 	int next_desc_to_proc;
650 
651 	/* DMA buffers for TSO headers */
652 	char *tso_hdrs;
653 
654 	/* DMA address of TSO headers */
655 	dma_addr_t tso_hdrs_phys;
656 
657 	/* Affinity mask for CPUs*/
658 	cpumask_t affinity_mask;
659 };
660 
661 struct mvneta_rx_queue {
662 	/* rx queue number, in the range 0-7 */
663 	u8 id;
664 
665 	/* num of rx descriptors in the rx descriptor ring */
666 	int size;
667 
668 	u32 pkts_coal;
669 	u32 time_coal;
670 
671 	/* page_pool */
672 	struct page_pool *page_pool;
673 	struct xdp_rxq_info xdp_rxq;
674 
675 	/* Virtual address of the RX buffer */
676 	void  **buf_virt_addr;
677 
678 	/* Virtual address of the RX DMA descriptors array */
679 	struct mvneta_rx_desc *descs;
680 
681 	/* DMA address of the RX DMA descriptors array */
682 	dma_addr_t descs_phys;
683 
684 	/* Index of the last RX DMA descriptor */
685 	int last_desc;
686 
687 	/* Index of the next RX DMA descriptor to process */
688 	int next_desc_to_proc;
689 
690 	/* Index of first RX DMA descriptor to refill */
691 	int first_to_refill;
692 	u32 refill_num;
693 
694 	/* pointer to uncomplete skb buffer */
695 	struct sk_buff *skb;
696 	int left_size;
697 };
698 
699 static enum cpuhp_state online_hpstate;
700 /* The hardware supports eight (8) rx queues, but we are only allowing
701  * the first one to be used. Therefore, let's just allocate one queue.
702  */
703 static int rxq_number = 8;
704 static int txq_number = 8;
705 
706 static int rxq_def;
707 
708 static int rx_copybreak __read_mostly = 256;
709 
710 /* HW BM need that each port be identify by a unique ID */
711 static int global_port_id;
712 
713 #define MVNETA_DRIVER_NAME "mvneta"
714 #define MVNETA_DRIVER_VERSION "1.0"
715 
716 /* Utility/helper methods */
717 
718 /* Write helper method */
719 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
720 {
721 	writel(data, pp->base + offset);
722 }
723 
724 /* Read helper method */
725 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
726 {
727 	return readl(pp->base + offset);
728 }
729 
730 /* Increment txq get counter */
731 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
732 {
733 	txq->txq_get_index++;
734 	if (txq->txq_get_index == txq->size)
735 		txq->txq_get_index = 0;
736 }
737 
738 /* Increment txq put counter */
739 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
740 {
741 	txq->txq_put_index++;
742 	if (txq->txq_put_index == txq->size)
743 		txq->txq_put_index = 0;
744 }
745 
746 
747 /* Clear all MIB counters */
748 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
749 {
750 	int i;
751 	u32 dummy;
752 
753 	/* Perform dummy reads from MIB counters */
754 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
755 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
756 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
757 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
758 }
759 
760 /* Get System Network Statistics */
761 static void
762 mvneta_get_stats64(struct net_device *dev,
763 		   struct rtnl_link_stats64 *stats)
764 {
765 	struct mvneta_port *pp = netdev_priv(dev);
766 	unsigned int start;
767 	int cpu;
768 
769 	for_each_possible_cpu(cpu) {
770 		struct mvneta_pcpu_stats *cpu_stats;
771 		u64 rx_packets;
772 		u64 rx_bytes;
773 		u64 rx_dropped;
774 		u64 rx_errors;
775 		u64 tx_packets;
776 		u64 tx_bytes;
777 
778 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
779 		do {
780 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
781 			rx_packets = cpu_stats->es.ps.rx_packets;
782 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
783 			rx_dropped = cpu_stats->rx_dropped;
784 			rx_errors  = cpu_stats->rx_errors;
785 			tx_packets = cpu_stats->es.ps.tx_packets;
786 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
787 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
788 
789 		stats->rx_packets += rx_packets;
790 		stats->rx_bytes   += rx_bytes;
791 		stats->rx_dropped += rx_dropped;
792 		stats->rx_errors  += rx_errors;
793 		stats->tx_packets += tx_packets;
794 		stats->tx_bytes   += tx_bytes;
795 	}
796 
797 	stats->tx_dropped	= dev->stats.tx_dropped;
798 }
799 
800 /* Rx descriptors helper methods */
801 
802 /* Checks whether the RX descriptor having this status is both the first
803  * and the last descriptor for the RX packet. Each RX packet is currently
804  * received through a single RX descriptor, so not having each RX
805  * descriptor with its first and last bits set is an error
806  */
807 static int mvneta_rxq_desc_is_first_last(u32 status)
808 {
809 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
810 		MVNETA_RXD_FIRST_LAST_DESC;
811 }
812 
813 /* Add number of descriptors ready to receive new packets */
814 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
815 					  struct mvneta_rx_queue *rxq,
816 					  int ndescs)
817 {
818 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
819 	 * be added at once
820 	 */
821 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
822 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
823 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
824 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
825 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
826 	}
827 
828 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
829 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
830 }
831 
832 /* Get number of RX descriptors occupied by received packets */
833 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
834 					struct mvneta_rx_queue *rxq)
835 {
836 	u32 val;
837 
838 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
839 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
840 }
841 
842 /* Update num of rx desc called upon return from rx path or
843  * from mvneta_rxq_drop_pkts().
844  */
845 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
846 				       struct mvneta_rx_queue *rxq,
847 				       int rx_done, int rx_filled)
848 {
849 	u32 val;
850 
851 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
852 		val = rx_done |
853 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
854 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
855 		return;
856 	}
857 
858 	/* Only 255 descriptors can be added at once */
859 	while ((rx_done > 0) || (rx_filled > 0)) {
860 		if (rx_done <= 0xff) {
861 			val = rx_done;
862 			rx_done = 0;
863 		} else {
864 			val = 0xff;
865 			rx_done -= 0xff;
866 		}
867 		if (rx_filled <= 0xff) {
868 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
869 			rx_filled = 0;
870 		} else {
871 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
872 			rx_filled -= 0xff;
873 		}
874 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
875 	}
876 }
877 
878 /* Get pointer to next RX descriptor to be processed by SW */
879 static struct mvneta_rx_desc *
880 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
881 {
882 	int rx_desc = rxq->next_desc_to_proc;
883 
884 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
885 	prefetch(rxq->descs + rxq->next_desc_to_proc);
886 	return rxq->descs + rx_desc;
887 }
888 
889 /* Change maximum receive size of the port. */
890 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
891 {
892 	u32 val;
893 
894 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
895 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
896 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
897 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
898 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
899 }
900 
901 
902 /* Set rx queue offset */
903 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
904 				  struct mvneta_rx_queue *rxq,
905 				  int offset)
906 {
907 	u32 val;
908 
909 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
910 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
911 
912 	/* Offset is in */
913 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
914 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
915 }
916 
917 
918 /* Tx descriptors helper methods */
919 
920 /* Update HW with number of TX descriptors to be sent */
921 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
922 				     struct mvneta_tx_queue *txq,
923 				     int pend_desc)
924 {
925 	u32 val;
926 
927 	pend_desc += txq->pending;
928 
929 	/* Only 255 Tx descriptors can be added at once */
930 	do {
931 		val = min(pend_desc, 255);
932 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
933 		pend_desc -= val;
934 	} while (pend_desc > 0);
935 	txq->pending = 0;
936 }
937 
938 /* Get pointer to next TX descriptor to be processed (send) by HW */
939 static struct mvneta_tx_desc *
940 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
941 {
942 	int tx_desc = txq->next_desc_to_proc;
943 
944 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
945 	return txq->descs + tx_desc;
946 }
947 
948 /* Release the last allocated TX descriptor. Useful to handle DMA
949  * mapping failures in the TX path.
950  */
951 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
952 {
953 	if (txq->next_desc_to_proc == 0)
954 		txq->next_desc_to_proc = txq->last_desc - 1;
955 	else
956 		txq->next_desc_to_proc--;
957 }
958 
959 /* Set rxq buf size */
960 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
961 				    struct mvneta_rx_queue *rxq,
962 				    int buf_size)
963 {
964 	u32 val;
965 
966 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
967 
968 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
969 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
970 
971 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
972 }
973 
974 /* Disable buffer management (BM) */
975 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
976 				  struct mvneta_rx_queue *rxq)
977 {
978 	u32 val;
979 
980 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
981 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
982 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
983 }
984 
985 /* Enable buffer management (BM) */
986 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
987 				 struct mvneta_rx_queue *rxq)
988 {
989 	u32 val;
990 
991 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
992 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
993 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
994 }
995 
996 /* Notify HW about port's assignment of pool for bigger packets */
997 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
998 				     struct mvneta_rx_queue *rxq)
999 {
1000 	u32 val;
1001 
1002 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1003 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1004 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1005 
1006 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1007 }
1008 
1009 /* Notify HW about port's assignment of pool for smaller packets */
1010 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1011 				      struct mvneta_rx_queue *rxq)
1012 {
1013 	u32 val;
1014 
1015 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1016 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1017 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1018 
1019 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1020 }
1021 
1022 /* Set port's receive buffer size for assigned BM pool */
1023 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1024 					      int buf_size,
1025 					      u8 pool_id)
1026 {
1027 	u32 val;
1028 
1029 	if (!IS_ALIGNED(buf_size, 8)) {
1030 		dev_warn(pp->dev->dev.parent,
1031 			 "illegal buf_size value %d, round to %d\n",
1032 			 buf_size, ALIGN(buf_size, 8));
1033 		buf_size = ALIGN(buf_size, 8);
1034 	}
1035 
1036 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1037 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1038 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1039 }
1040 
1041 /* Configure MBUS window in order to enable access BM internal SRAM */
1042 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1043 				  u8 target, u8 attr)
1044 {
1045 	u32 win_enable, win_protect;
1046 	int i;
1047 
1048 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1049 
1050 	if (pp->bm_win_id < 0) {
1051 		/* Find first not occupied window */
1052 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1053 			if (win_enable & (1 << i)) {
1054 				pp->bm_win_id = i;
1055 				break;
1056 			}
1057 		}
1058 		if (i == MVNETA_MAX_DECODE_WIN)
1059 			return -ENOMEM;
1060 	} else {
1061 		i = pp->bm_win_id;
1062 	}
1063 
1064 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1065 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1066 
1067 	if (i < 4)
1068 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1069 
1070 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1071 		    (attr << 8) | target);
1072 
1073 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1074 
1075 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1076 	win_protect |= 3 << (2 * i);
1077 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1078 
1079 	win_enable &= ~(1 << i);
1080 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1081 
1082 	return 0;
1083 }
1084 
1085 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1086 {
1087 	u32 wsize;
1088 	u8 target, attr;
1089 	int err;
1090 
1091 	/* Get BM window information */
1092 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1093 					 &target, &attr);
1094 	if (err < 0)
1095 		return err;
1096 
1097 	pp->bm_win_id = -1;
1098 
1099 	/* Open NETA -> BM window */
1100 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1101 				     target, attr);
1102 	if (err < 0) {
1103 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1104 		return err;
1105 	}
1106 	return 0;
1107 }
1108 
1109 /* Assign and initialize pools for port. In case of fail
1110  * buffer manager will remain disabled for current port.
1111  */
1112 static int mvneta_bm_port_init(struct platform_device *pdev,
1113 			       struct mvneta_port *pp)
1114 {
1115 	struct device_node *dn = pdev->dev.of_node;
1116 	u32 long_pool_id, short_pool_id;
1117 
1118 	if (!pp->neta_armada3700) {
1119 		int ret;
1120 
1121 		ret = mvneta_bm_port_mbus_init(pp);
1122 		if (ret)
1123 			return ret;
1124 	}
1125 
1126 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1127 		netdev_info(pp->dev, "missing long pool id\n");
1128 		return -EINVAL;
1129 	}
1130 
1131 	/* Create port's long pool depending on mtu */
1132 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1133 					   MVNETA_BM_LONG, pp->id,
1134 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1135 	if (!pp->pool_long) {
1136 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1137 		return -ENOMEM;
1138 	}
1139 
1140 	pp->pool_long->port_map |= 1 << pp->id;
1141 
1142 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1143 				   pp->pool_long->id);
1144 
1145 	/* If short pool id is not defined, assume using single pool */
1146 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1147 		short_pool_id = long_pool_id;
1148 
1149 	/* Create port's short pool */
1150 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1151 					    MVNETA_BM_SHORT, pp->id,
1152 					    MVNETA_BM_SHORT_PKT_SIZE);
1153 	if (!pp->pool_short) {
1154 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1155 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1156 		return -ENOMEM;
1157 	}
1158 
1159 	if (short_pool_id != long_pool_id) {
1160 		pp->pool_short->port_map |= 1 << pp->id;
1161 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1162 					   pp->pool_short->id);
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 /* Update settings of a pool for bigger packets */
1169 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1170 {
1171 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1172 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1173 	int num;
1174 
1175 	/* Release all buffers from long pool */
1176 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1177 	if (hwbm_pool->buf_num) {
1178 		WARN(1, "cannot free all buffers in pool %d\n",
1179 		     bm_pool->id);
1180 		goto bm_mtu_err;
1181 	}
1182 
1183 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1184 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1185 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1186 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1187 
1188 	/* Fill entire long pool */
1189 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1190 	if (num != hwbm_pool->size) {
1191 		WARN(1, "pool %d: %d of %d allocated\n",
1192 		     bm_pool->id, num, hwbm_pool->size);
1193 		goto bm_mtu_err;
1194 	}
1195 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1196 
1197 	return;
1198 
1199 bm_mtu_err:
1200 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1201 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1202 
1203 	pp->bm_priv = NULL;
1204 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1205 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1206 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1207 }
1208 
1209 /* Start the Ethernet port RX and TX activity */
1210 static void mvneta_port_up(struct mvneta_port *pp)
1211 {
1212 	int queue;
1213 	u32 q_map;
1214 
1215 	/* Enable all initialized TXs. */
1216 	q_map = 0;
1217 	for (queue = 0; queue < txq_number; queue++) {
1218 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1219 		if (txq->descs)
1220 			q_map |= (1 << queue);
1221 	}
1222 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1223 
1224 	q_map = 0;
1225 	/* Enable all initialized RXQs. */
1226 	for (queue = 0; queue < rxq_number; queue++) {
1227 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1228 
1229 		if (rxq->descs)
1230 			q_map |= (1 << queue);
1231 	}
1232 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1233 }
1234 
1235 /* Stop the Ethernet port activity */
1236 static void mvneta_port_down(struct mvneta_port *pp)
1237 {
1238 	u32 val;
1239 	int count;
1240 
1241 	/* Stop Rx port activity. Check port Rx activity. */
1242 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1243 
1244 	/* Issue stop command for active channels only */
1245 	if (val != 0)
1246 		mvreg_write(pp, MVNETA_RXQ_CMD,
1247 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1248 
1249 	/* Wait for all Rx activity to terminate. */
1250 	count = 0;
1251 	do {
1252 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1253 			netdev_warn(pp->dev,
1254 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1255 				    val);
1256 			break;
1257 		}
1258 		mdelay(1);
1259 
1260 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1261 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1262 
1263 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1264 	 * command for active channels only
1265 	 */
1266 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1267 
1268 	if (val != 0)
1269 		mvreg_write(pp, MVNETA_TXQ_CMD,
1270 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1271 
1272 	/* Wait for all Tx activity to terminate. */
1273 	count = 0;
1274 	do {
1275 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1276 			netdev_warn(pp->dev,
1277 				    "TIMEOUT for TX stopped status=0x%08x\n",
1278 				    val);
1279 			break;
1280 		}
1281 		mdelay(1);
1282 
1283 		/* Check TX Command reg that all Txqs are stopped */
1284 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1285 
1286 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1287 
1288 	/* Double check to verify that TX FIFO is empty */
1289 	count = 0;
1290 	do {
1291 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1292 			netdev_warn(pp->dev,
1293 				    "TX FIFO empty timeout status=0x%08x\n",
1294 				    val);
1295 			break;
1296 		}
1297 		mdelay(1);
1298 
1299 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1300 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1301 		 (val & MVNETA_TX_IN_PRGRS));
1302 
1303 	udelay(200);
1304 }
1305 
1306 /* Enable the port by setting the port enable bit of the MAC control register */
1307 static void mvneta_port_enable(struct mvneta_port *pp)
1308 {
1309 	u32 val;
1310 
1311 	/* Enable port */
1312 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1313 	val |= MVNETA_GMAC0_PORT_ENABLE;
1314 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1315 }
1316 
1317 /* Disable the port and wait for about 200 usec before retuning */
1318 static void mvneta_port_disable(struct mvneta_port *pp)
1319 {
1320 	u32 val;
1321 
1322 	/* Reset the Enable bit in the Serial Control Register */
1323 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1324 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1325 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1326 
1327 	udelay(200);
1328 }
1329 
1330 /* Multicast tables methods */
1331 
1332 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1333 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1334 {
1335 	int offset;
1336 	u32 val;
1337 
1338 	if (queue == -1) {
1339 		val = 0;
1340 	} else {
1341 		val = 0x1 | (queue << 1);
1342 		val |= (val << 24) | (val << 16) | (val << 8);
1343 	}
1344 
1345 	for (offset = 0; offset <= 0xc; offset += 4)
1346 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1347 }
1348 
1349 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1350 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1351 {
1352 	int offset;
1353 	u32 val;
1354 
1355 	if (queue == -1) {
1356 		val = 0;
1357 	} else {
1358 		val = 0x1 | (queue << 1);
1359 		val |= (val << 24) | (val << 16) | (val << 8);
1360 	}
1361 
1362 	for (offset = 0; offset <= 0xfc; offset += 4)
1363 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1364 
1365 }
1366 
1367 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1368 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1369 {
1370 	int offset;
1371 	u32 val;
1372 
1373 	if (queue == -1) {
1374 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1375 		val = 0;
1376 	} else {
1377 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1378 		val = 0x1 | (queue << 1);
1379 		val |= (val << 24) | (val << 16) | (val << 8);
1380 	}
1381 
1382 	for (offset = 0; offset <= 0xfc; offset += 4)
1383 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1384 }
1385 
1386 static void mvneta_percpu_unmask_interrupt(void *arg)
1387 {
1388 	struct mvneta_port *pp = arg;
1389 
1390 	/* All the queue are unmasked, but actually only the ones
1391 	 * mapped to this CPU will be unmasked
1392 	 */
1393 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1394 		    MVNETA_RX_INTR_MASK_ALL |
1395 		    MVNETA_TX_INTR_MASK_ALL |
1396 		    MVNETA_MISCINTR_INTR_MASK);
1397 }
1398 
1399 static void mvneta_percpu_mask_interrupt(void *arg)
1400 {
1401 	struct mvneta_port *pp = arg;
1402 
1403 	/* All the queue are masked, but actually only the ones
1404 	 * mapped to this CPU will be masked
1405 	 */
1406 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1407 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1408 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1409 }
1410 
1411 static void mvneta_percpu_clear_intr_cause(void *arg)
1412 {
1413 	struct mvneta_port *pp = arg;
1414 
1415 	/* All the queue are cleared, but actually only the ones
1416 	 * mapped to this CPU will be cleared
1417 	 */
1418 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1419 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1420 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1421 }
1422 
1423 /* This method sets defaults to the NETA port:
1424  *	Clears interrupt Cause and Mask registers.
1425  *	Clears all MAC tables.
1426  *	Sets defaults to all registers.
1427  *	Resets RX and TX descriptor rings.
1428  *	Resets PHY.
1429  * This method can be called after mvneta_port_down() to return the port
1430  *	settings to defaults.
1431  */
1432 static void mvneta_defaults_set(struct mvneta_port *pp)
1433 {
1434 	int cpu;
1435 	int queue;
1436 	u32 val;
1437 	int max_cpu = num_present_cpus();
1438 
1439 	/* Clear all Cause registers */
1440 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1441 
1442 	/* Mask all interrupts */
1443 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1444 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1445 
1446 	/* Enable MBUS Retry bit16 */
1447 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1448 
1449 	/* Set CPU queue access map. CPUs are assigned to the RX and
1450 	 * TX queues modulo their number. If there is only one TX
1451 	 * queue then it is assigned to the CPU associated to the
1452 	 * default RX queue.
1453 	 */
1454 	for_each_present_cpu(cpu) {
1455 		int rxq_map = 0, txq_map = 0;
1456 		int rxq, txq;
1457 		if (!pp->neta_armada3700) {
1458 			for (rxq = 0; rxq < rxq_number; rxq++)
1459 				if ((rxq % max_cpu) == cpu)
1460 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1461 
1462 			for (txq = 0; txq < txq_number; txq++)
1463 				if ((txq % max_cpu) == cpu)
1464 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1465 
1466 			/* With only one TX queue we configure a special case
1467 			 * which will allow to get all the irq on a single
1468 			 * CPU
1469 			 */
1470 			if (txq_number == 1)
1471 				txq_map = (cpu == pp->rxq_def) ?
1472 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1473 
1474 		} else {
1475 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1476 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1477 		}
1478 
1479 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1480 	}
1481 
1482 	/* Reset RX and TX DMAs */
1483 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1484 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1485 
1486 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1487 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1488 	for (queue = 0; queue < txq_number; queue++) {
1489 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1490 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1491 	}
1492 
1493 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1494 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1495 
1496 	/* Set Port Acceleration Mode */
1497 	if (pp->bm_priv)
1498 		/* HW buffer management + legacy parser */
1499 		val = MVNETA_ACC_MODE_EXT2;
1500 	else
1501 		/* SW buffer management + legacy parser */
1502 		val = MVNETA_ACC_MODE_EXT1;
1503 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1504 
1505 	if (pp->bm_priv)
1506 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1507 
1508 	/* Update val of portCfg register accordingly with all RxQueue types */
1509 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1510 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1511 
1512 	val = 0;
1513 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1514 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1515 
1516 	/* Build PORT_SDMA_CONFIG_REG */
1517 	val = 0;
1518 
1519 	/* Default burst size */
1520 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1521 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1522 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1523 
1524 #if defined(__BIG_ENDIAN)
1525 	val |= MVNETA_DESC_SWAP;
1526 #endif
1527 
1528 	/* Assign port SDMA configuration */
1529 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1530 
1531 	/* Disable PHY polling in hardware, since we're using the
1532 	 * kernel phylib to do this.
1533 	 */
1534 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1535 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1536 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1537 
1538 	mvneta_set_ucast_table(pp, -1);
1539 	mvneta_set_special_mcast_table(pp, -1);
1540 	mvneta_set_other_mcast_table(pp, -1);
1541 
1542 	/* Set port interrupt enable register - default enable all */
1543 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1544 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1545 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1546 
1547 	mvneta_mib_counters_clear(pp);
1548 }
1549 
1550 /* Set max sizes for tx queues */
1551 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1552 
1553 {
1554 	u32 val, size, mtu;
1555 	int queue;
1556 
1557 	mtu = max_tx_size * 8;
1558 	if (mtu > MVNETA_TX_MTU_MAX)
1559 		mtu = MVNETA_TX_MTU_MAX;
1560 
1561 	/* Set MTU */
1562 	val = mvreg_read(pp, MVNETA_TX_MTU);
1563 	val &= ~MVNETA_TX_MTU_MAX;
1564 	val |= mtu;
1565 	mvreg_write(pp, MVNETA_TX_MTU, val);
1566 
1567 	/* TX token size and all TXQs token size must be larger that MTU */
1568 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1569 
1570 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1571 	if (size < mtu) {
1572 		size = mtu;
1573 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1574 		val |= size;
1575 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1576 	}
1577 	for (queue = 0; queue < txq_number; queue++) {
1578 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1579 
1580 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1581 		if (size < mtu) {
1582 			size = mtu;
1583 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1584 			val |= size;
1585 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1586 		}
1587 	}
1588 }
1589 
1590 /* Set unicast address */
1591 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1592 				  int queue)
1593 {
1594 	unsigned int unicast_reg;
1595 	unsigned int tbl_offset;
1596 	unsigned int reg_offset;
1597 
1598 	/* Locate the Unicast table entry */
1599 	last_nibble = (0xf & last_nibble);
1600 
1601 	/* offset from unicast tbl base */
1602 	tbl_offset = (last_nibble / 4) * 4;
1603 
1604 	/* offset within the above reg  */
1605 	reg_offset = last_nibble % 4;
1606 
1607 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1608 
1609 	if (queue == -1) {
1610 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1611 		unicast_reg &= ~(0xff << (8 * reg_offset));
1612 	} else {
1613 		unicast_reg &= ~(0xff << (8 * reg_offset));
1614 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1615 	}
1616 
1617 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1618 }
1619 
1620 /* Set mac address */
1621 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1622 				int queue)
1623 {
1624 	unsigned int mac_h;
1625 	unsigned int mac_l;
1626 
1627 	if (queue != -1) {
1628 		mac_l = (addr[4] << 8) | (addr[5]);
1629 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1630 			(addr[2] << 8) | (addr[3] << 0);
1631 
1632 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1633 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1634 	}
1635 
1636 	/* Accept frames of this address */
1637 	mvneta_set_ucast_addr(pp, addr[5], queue);
1638 }
1639 
1640 /* Set the number of packets that will be received before RX interrupt
1641  * will be generated by HW.
1642  */
1643 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1644 				    struct mvneta_rx_queue *rxq, u32 value)
1645 {
1646 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1647 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1648 }
1649 
1650 /* Set the time delay in usec before RX interrupt will be generated by
1651  * HW.
1652  */
1653 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1654 				    struct mvneta_rx_queue *rxq, u32 value)
1655 {
1656 	u32 val;
1657 	unsigned long clk_rate;
1658 
1659 	clk_rate = clk_get_rate(pp->clk);
1660 	val = (clk_rate / 1000000) * value;
1661 
1662 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1663 }
1664 
1665 /* Set threshold for TX_DONE pkts coalescing */
1666 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1667 					 struct mvneta_tx_queue *txq, u32 value)
1668 {
1669 	u32 val;
1670 
1671 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1672 
1673 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1674 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1675 
1676 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1677 }
1678 
1679 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1680 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1681 				u32 phys_addr, void *virt_addr,
1682 				struct mvneta_rx_queue *rxq)
1683 {
1684 	int i;
1685 
1686 	rx_desc->buf_phys_addr = phys_addr;
1687 	i = rx_desc - rxq->descs;
1688 	rxq->buf_virt_addr[i] = virt_addr;
1689 }
1690 
1691 /* Decrement sent descriptors counter */
1692 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1693 				     struct mvneta_tx_queue *txq,
1694 				     int sent_desc)
1695 {
1696 	u32 val;
1697 
1698 	/* Only 255 TX descriptors can be updated at once */
1699 	while (sent_desc > 0xff) {
1700 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1701 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1702 		sent_desc = sent_desc - 0xff;
1703 	}
1704 
1705 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1706 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1707 }
1708 
1709 /* Get number of TX descriptors already sent by HW */
1710 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1711 					struct mvneta_tx_queue *txq)
1712 {
1713 	u32 val;
1714 	int sent_desc;
1715 
1716 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1717 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1718 		MVNETA_TXQ_SENT_DESC_SHIFT;
1719 
1720 	return sent_desc;
1721 }
1722 
1723 /* Get number of sent descriptors and decrement counter.
1724  *  The number of sent descriptors is returned.
1725  */
1726 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1727 				     struct mvneta_tx_queue *txq)
1728 {
1729 	int sent_desc;
1730 
1731 	/* Get number of sent descriptors */
1732 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1733 
1734 	/* Decrement sent descriptors counter */
1735 	if (sent_desc)
1736 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1737 
1738 	return sent_desc;
1739 }
1740 
1741 /* Set TXQ descriptors fields relevant for CSUM calculation */
1742 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1743 				int ip_hdr_len, int l4_proto)
1744 {
1745 	u32 command;
1746 
1747 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1748 	 * G_L4_chk, L4_type; required only for checksum
1749 	 * calculation
1750 	 */
1751 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1752 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1753 
1754 	if (l3_proto == htons(ETH_P_IP))
1755 		command |= MVNETA_TXD_IP_CSUM;
1756 	else
1757 		command |= MVNETA_TX_L3_IP6;
1758 
1759 	if (l4_proto == IPPROTO_TCP)
1760 		command |=  MVNETA_TX_L4_CSUM_FULL;
1761 	else if (l4_proto == IPPROTO_UDP)
1762 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1763 	else
1764 		command |= MVNETA_TX_L4_CSUM_NOT;
1765 
1766 	return command;
1767 }
1768 
1769 
1770 /* Display more error info */
1771 static void mvneta_rx_error(struct mvneta_port *pp,
1772 			    struct mvneta_rx_desc *rx_desc)
1773 {
1774 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1775 	u32 status = rx_desc->status;
1776 
1777 	/* update per-cpu counter */
1778 	u64_stats_update_begin(&stats->syncp);
1779 	stats->rx_errors++;
1780 	u64_stats_update_end(&stats->syncp);
1781 
1782 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1783 	case MVNETA_RXD_ERR_CRC:
1784 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1785 			   status, rx_desc->data_size);
1786 		break;
1787 	case MVNETA_RXD_ERR_OVERRUN:
1788 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1789 			   status, rx_desc->data_size);
1790 		break;
1791 	case MVNETA_RXD_ERR_LEN:
1792 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1793 			   status, rx_desc->data_size);
1794 		break;
1795 	case MVNETA_RXD_ERR_RESOURCE:
1796 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1797 			   status, rx_desc->data_size);
1798 		break;
1799 	}
1800 }
1801 
1802 /* Handle RX checksum offload based on the descriptor's status */
1803 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1804 			   struct sk_buff *skb)
1805 {
1806 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1807 	    (status & MVNETA_RXD_L3_IP4) &&
1808 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1809 		skb->csum = 0;
1810 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1811 		return;
1812 	}
1813 
1814 	skb->ip_summed = CHECKSUM_NONE;
1815 }
1816 
1817 /* Return tx queue pointer (find last set bit) according to <cause> returned
1818  * form tx_done reg. <cause> must not be null. The return value is always a
1819  * valid queue for matching the first one found in <cause>.
1820  */
1821 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1822 						     u32 cause)
1823 {
1824 	int queue = fls(cause) - 1;
1825 
1826 	return &pp->txqs[queue];
1827 }
1828 
1829 /* Free tx queue skbuffs */
1830 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1831 				 struct mvneta_tx_queue *txq, int num,
1832 				 struct netdev_queue *nq)
1833 {
1834 	unsigned int bytes_compl = 0, pkts_compl = 0;
1835 	int i;
1836 
1837 	for (i = 0; i < num; i++) {
1838 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1839 		struct mvneta_tx_desc *tx_desc = txq->descs +
1840 			txq->txq_get_index;
1841 
1842 		mvneta_txq_inc_get(txq);
1843 
1844 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1845 		    buf->type != MVNETA_TYPE_XDP_TX)
1846 			dma_unmap_single(pp->dev->dev.parent,
1847 					 tx_desc->buf_phys_addr,
1848 					 tx_desc->data_size, DMA_TO_DEVICE);
1849 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1850 			bytes_compl += buf->skb->len;
1851 			pkts_compl++;
1852 			dev_kfree_skb_any(buf->skb);
1853 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1854 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1855 			xdp_return_frame(buf->xdpf);
1856 		}
1857 	}
1858 
1859 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1860 }
1861 
1862 /* Handle end of transmission */
1863 static void mvneta_txq_done(struct mvneta_port *pp,
1864 			   struct mvneta_tx_queue *txq)
1865 {
1866 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1867 	int tx_done;
1868 
1869 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1870 	if (!tx_done)
1871 		return;
1872 
1873 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1874 
1875 	txq->count -= tx_done;
1876 
1877 	if (netif_tx_queue_stopped(nq)) {
1878 		if (txq->count <= txq->tx_wake_threshold)
1879 			netif_tx_wake_queue(nq);
1880 	}
1881 }
1882 
1883 /* Refill processing for SW buffer management */
1884 /* Allocate page per descriptor */
1885 static int mvneta_rx_refill(struct mvneta_port *pp,
1886 			    struct mvneta_rx_desc *rx_desc,
1887 			    struct mvneta_rx_queue *rxq,
1888 			    gfp_t gfp_mask)
1889 {
1890 	dma_addr_t phys_addr;
1891 	struct page *page;
1892 
1893 	page = page_pool_alloc_pages(rxq->page_pool,
1894 				     gfp_mask | __GFP_NOWARN);
1895 	if (!page)
1896 		return -ENOMEM;
1897 
1898 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1899 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1900 
1901 	return 0;
1902 }
1903 
1904 /* Handle tx checksum */
1905 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1906 {
1907 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1908 		int ip_hdr_len = 0;
1909 		__be16 l3_proto = vlan_get_protocol(skb);
1910 		u8 l4_proto;
1911 
1912 		if (l3_proto == htons(ETH_P_IP)) {
1913 			struct iphdr *ip4h = ip_hdr(skb);
1914 
1915 			/* Calculate IPv4 checksum and L4 checksum */
1916 			ip_hdr_len = ip4h->ihl;
1917 			l4_proto = ip4h->protocol;
1918 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1919 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1920 
1921 			/* Read l4_protocol from one of IPv6 extra headers */
1922 			if (skb_network_header_len(skb) > 0)
1923 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1924 			l4_proto = ip6h->nexthdr;
1925 		} else
1926 			return MVNETA_TX_L4_CSUM_NOT;
1927 
1928 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1929 					    l3_proto, ip_hdr_len, l4_proto);
1930 	}
1931 
1932 	return MVNETA_TX_L4_CSUM_NOT;
1933 }
1934 
1935 /* Drop packets received by the RXQ and free buffers */
1936 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1937 				 struct mvneta_rx_queue *rxq)
1938 {
1939 	int rx_done, i;
1940 
1941 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1942 	if (rx_done)
1943 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1944 
1945 	if (pp->bm_priv) {
1946 		for (i = 0; i < rx_done; i++) {
1947 			struct mvneta_rx_desc *rx_desc =
1948 						  mvneta_rxq_next_desc_get(rxq);
1949 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1950 			struct mvneta_bm_pool *bm_pool;
1951 
1952 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1953 			/* Return dropped buffer to the pool */
1954 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1955 					      rx_desc->buf_phys_addr);
1956 		}
1957 		return;
1958 	}
1959 
1960 	for (i = 0; i < rxq->size; i++) {
1961 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1962 		void *data = rxq->buf_virt_addr[i];
1963 		if (!data || !(rx_desc->buf_phys_addr))
1964 			continue;
1965 
1966 		page_pool_put_full_page(rxq->page_pool, data, false);
1967 	}
1968 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1969 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1970 	page_pool_destroy(rxq->page_pool);
1971 	rxq->page_pool = NULL;
1972 }
1973 
1974 static void
1975 mvneta_update_stats(struct mvneta_port *pp,
1976 		    struct mvneta_stats *ps)
1977 {
1978 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1979 
1980 	u64_stats_update_begin(&stats->syncp);
1981 	stats->es.ps.rx_packets += ps->rx_packets;
1982 	stats->es.ps.rx_bytes += ps->rx_bytes;
1983 	/* xdp */
1984 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1985 	stats->es.ps.xdp_pass += ps->xdp_pass;
1986 	stats->es.ps.xdp_drop += ps->xdp_drop;
1987 	u64_stats_update_end(&stats->syncp);
1988 }
1989 
1990 static inline
1991 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1992 {
1993 	struct mvneta_rx_desc *rx_desc;
1994 	int curr_desc = rxq->first_to_refill;
1995 	int i;
1996 
1997 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1998 		rx_desc = rxq->descs + curr_desc;
1999 		if (!(rx_desc->buf_phys_addr)) {
2000 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2001 				struct mvneta_pcpu_stats *stats;
2002 
2003 				pr_err("Can't refill queue %d. Done %d from %d\n",
2004 				       rxq->id, i, rxq->refill_num);
2005 
2006 				stats = this_cpu_ptr(pp->stats);
2007 				u64_stats_update_begin(&stats->syncp);
2008 				stats->es.refill_error++;
2009 				u64_stats_update_end(&stats->syncp);
2010 				break;
2011 			}
2012 		}
2013 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2014 	}
2015 	rxq->refill_num -= i;
2016 	rxq->first_to_refill = curr_desc;
2017 
2018 	return i;
2019 }
2020 
2021 static int
2022 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2023 			struct xdp_frame *xdpf, bool dma_map)
2024 {
2025 	struct mvneta_tx_desc *tx_desc;
2026 	struct mvneta_tx_buf *buf;
2027 	dma_addr_t dma_addr;
2028 
2029 	if (txq->count >= txq->tx_stop_threshold)
2030 		return MVNETA_XDP_DROPPED;
2031 
2032 	tx_desc = mvneta_txq_next_desc_get(txq);
2033 
2034 	buf = &txq->buf[txq->txq_put_index];
2035 	if (dma_map) {
2036 		/* ndo_xdp_xmit */
2037 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2038 					  xdpf->len, DMA_TO_DEVICE);
2039 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2040 			mvneta_txq_desc_put(txq);
2041 			return MVNETA_XDP_DROPPED;
2042 		}
2043 		buf->type = MVNETA_TYPE_XDP_NDO;
2044 	} else {
2045 		struct page *page = virt_to_page(xdpf->data);
2046 
2047 		dma_addr = page_pool_get_dma_addr(page) +
2048 			   sizeof(*xdpf) + xdpf->headroom;
2049 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2050 					   xdpf->len, DMA_BIDIRECTIONAL);
2051 		buf->type = MVNETA_TYPE_XDP_TX;
2052 	}
2053 	buf->xdpf = xdpf;
2054 
2055 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2056 	tx_desc->buf_phys_addr = dma_addr;
2057 	tx_desc->data_size = xdpf->len;
2058 
2059 	mvneta_txq_inc_put(txq);
2060 	txq->pending++;
2061 	txq->count++;
2062 
2063 	return MVNETA_XDP_TX;
2064 }
2065 
2066 static int
2067 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2068 {
2069 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2070 	struct mvneta_tx_queue *txq;
2071 	struct netdev_queue *nq;
2072 	struct xdp_frame *xdpf;
2073 	int cpu;
2074 	u32 ret;
2075 
2076 	xdpf = xdp_convert_buff_to_frame(xdp);
2077 	if (unlikely(!xdpf))
2078 		return MVNETA_XDP_DROPPED;
2079 
2080 	cpu = smp_processor_id();
2081 	txq = &pp->txqs[cpu % txq_number];
2082 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2083 
2084 	__netif_tx_lock(nq, cpu);
2085 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2086 	if (ret == MVNETA_XDP_TX) {
2087 		u64_stats_update_begin(&stats->syncp);
2088 		stats->es.ps.tx_bytes += xdpf->len;
2089 		stats->es.ps.tx_packets++;
2090 		stats->es.ps.xdp_tx++;
2091 		u64_stats_update_end(&stats->syncp);
2092 
2093 		mvneta_txq_pend_desc_add(pp, txq, 0);
2094 	} else {
2095 		u64_stats_update_begin(&stats->syncp);
2096 		stats->es.ps.xdp_tx_err++;
2097 		u64_stats_update_end(&stats->syncp);
2098 	}
2099 	__netif_tx_unlock(nq);
2100 
2101 	return ret;
2102 }
2103 
2104 static int
2105 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2106 		struct xdp_frame **frames, u32 flags)
2107 {
2108 	struct mvneta_port *pp = netdev_priv(dev);
2109 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2110 	int i, nxmit_byte = 0, nxmit = num_frame;
2111 	int cpu = smp_processor_id();
2112 	struct mvneta_tx_queue *txq;
2113 	struct netdev_queue *nq;
2114 	u32 ret;
2115 
2116 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2117 		return -EINVAL;
2118 
2119 	txq = &pp->txqs[cpu % txq_number];
2120 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2121 
2122 	__netif_tx_lock(nq, cpu);
2123 	for (i = 0; i < num_frame; i++) {
2124 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2125 		if (ret == MVNETA_XDP_TX) {
2126 			nxmit_byte += frames[i]->len;
2127 		} else {
2128 			xdp_return_frame_rx_napi(frames[i]);
2129 			nxmit--;
2130 		}
2131 	}
2132 
2133 	if (unlikely(flags & XDP_XMIT_FLUSH))
2134 		mvneta_txq_pend_desc_add(pp, txq, 0);
2135 	__netif_tx_unlock(nq);
2136 
2137 	u64_stats_update_begin(&stats->syncp);
2138 	stats->es.ps.tx_bytes += nxmit_byte;
2139 	stats->es.ps.tx_packets += nxmit;
2140 	stats->es.ps.xdp_xmit += nxmit;
2141 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2142 	u64_stats_update_end(&stats->syncp);
2143 
2144 	return nxmit;
2145 }
2146 
2147 static int
2148 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2149 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2150 	       struct mvneta_stats *stats)
2151 {
2152 	unsigned int len, sync;
2153 	struct page *page;
2154 	u32 ret, act;
2155 
2156 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2157 	act = bpf_prog_run_xdp(prog, xdp);
2158 
2159 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2160 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2161 	sync = max(sync, len);
2162 
2163 	switch (act) {
2164 	case XDP_PASS:
2165 		stats->xdp_pass++;
2166 		return MVNETA_XDP_PASS;
2167 	case XDP_REDIRECT: {
2168 		int err;
2169 
2170 		err = xdp_do_redirect(pp->dev, xdp, prog);
2171 		if (unlikely(err)) {
2172 			ret = MVNETA_XDP_DROPPED;
2173 			page = virt_to_head_page(xdp->data);
2174 			page_pool_put_page(rxq->page_pool, page, sync, true);
2175 		} else {
2176 			ret = MVNETA_XDP_REDIR;
2177 			stats->xdp_redirect++;
2178 		}
2179 		break;
2180 	}
2181 	case XDP_TX:
2182 		ret = mvneta_xdp_xmit_back(pp, xdp);
2183 		if (ret != MVNETA_XDP_TX) {
2184 			page = virt_to_head_page(xdp->data);
2185 			page_pool_put_page(rxq->page_pool, page, sync, true);
2186 		}
2187 		break;
2188 	default:
2189 		bpf_warn_invalid_xdp_action(act);
2190 		/* fall through */
2191 	case XDP_ABORTED:
2192 		trace_xdp_exception(pp->dev, prog, act);
2193 		/* fall through */
2194 	case XDP_DROP:
2195 		page = virt_to_head_page(xdp->data);
2196 		page_pool_put_page(rxq->page_pool, page, sync, true);
2197 		ret = MVNETA_XDP_DROPPED;
2198 		stats->xdp_drop++;
2199 		break;
2200 	}
2201 
2202 	stats->rx_bytes += xdp->data_end - xdp->data;
2203 	stats->rx_packets++;
2204 
2205 	return ret;
2206 }
2207 
2208 static int
2209 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2210 		     struct mvneta_rx_desc *rx_desc,
2211 		     struct mvneta_rx_queue *rxq,
2212 		     struct xdp_buff *xdp,
2213 		     struct bpf_prog *xdp_prog,
2214 		     struct page *page,
2215 		     struct mvneta_stats *stats)
2216 {
2217 	unsigned char *data = page_address(page);
2218 	int data_len = -MVNETA_MH_SIZE, len;
2219 	struct net_device *dev = pp->dev;
2220 	enum dma_data_direction dma_dir;
2221 	int ret = 0;
2222 
2223 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2224 		len = MVNETA_MAX_RX_BUF_SIZE;
2225 		data_len += len;
2226 	} else {
2227 		len = rx_desc->data_size;
2228 		data_len += len - ETH_FCS_LEN;
2229 	}
2230 
2231 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2232 	dma_sync_single_for_cpu(dev->dev.parent,
2233 				rx_desc->buf_phys_addr,
2234 				len, dma_dir);
2235 
2236 	/* Prefetch header */
2237 	prefetch(data);
2238 
2239 	xdp->data_hard_start = data;
2240 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2241 	xdp->data_end = xdp->data + data_len;
2242 	xdp_set_data_meta_invalid(xdp);
2243 
2244 	if (xdp_prog) {
2245 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats);
2246 		if (ret)
2247 			goto out;
2248 	}
2249 
2250 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2251 	if (unlikely(!rxq->skb)) {
2252 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2253 
2254 		netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
2255 
2256 		u64_stats_update_begin(&stats->syncp);
2257 		stats->es.skb_alloc_error++;
2258 		stats->rx_dropped++;
2259 		u64_stats_update_end(&stats->syncp);
2260 
2261 		return -ENOMEM;
2262 	}
2263 	page_pool_release_page(rxq->page_pool, page);
2264 
2265 	skb_reserve(rxq->skb,
2266 		    xdp->data - xdp->data_hard_start);
2267 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2268 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2269 
2270 	rxq->left_size = rx_desc->data_size - len;
2271 
2272 out:
2273 	rx_desc->buf_phys_addr = 0;
2274 
2275 	return ret;
2276 }
2277 
2278 static void
2279 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2280 			    struct mvneta_rx_desc *rx_desc,
2281 			    struct mvneta_rx_queue *rxq,
2282 			    struct page *page)
2283 {
2284 	struct net_device *dev = pp->dev;
2285 	enum dma_data_direction dma_dir;
2286 	int data_len, len;
2287 
2288 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2289 		len = MVNETA_MAX_RX_BUF_SIZE;
2290 		data_len = len;
2291 	} else {
2292 		len = rxq->left_size;
2293 		data_len = len - ETH_FCS_LEN;
2294 	}
2295 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2296 	dma_sync_single_for_cpu(dev->dev.parent,
2297 				rx_desc->buf_phys_addr,
2298 				len, dma_dir);
2299 	if (data_len > 0) {
2300 		/* refill descriptor with new buffer later */
2301 		skb_add_rx_frag(rxq->skb,
2302 				skb_shinfo(rxq->skb)->nr_frags,
2303 				page, pp->rx_offset_correction, data_len,
2304 				PAGE_SIZE);
2305 	}
2306 	page_pool_release_page(rxq->page_pool, page);
2307 	rx_desc->buf_phys_addr = 0;
2308 	rxq->left_size -= len;
2309 }
2310 
2311 /* Main rx processing when using software buffer management */
2312 static int mvneta_rx_swbm(struct napi_struct *napi,
2313 			  struct mvneta_port *pp, int budget,
2314 			  struct mvneta_rx_queue *rxq)
2315 {
2316 	int rx_proc = 0, rx_todo, refill;
2317 	struct net_device *dev = pp->dev;
2318 	struct mvneta_stats ps = {};
2319 	struct bpf_prog *xdp_prog;
2320 	struct xdp_buff xdp_buf;
2321 
2322 	/* Get number of received packets */
2323 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2324 
2325 	rcu_read_lock();
2326 	xdp_prog = READ_ONCE(pp->xdp_prog);
2327 	xdp_buf.rxq = &rxq->xdp_rxq;
2328 	xdp_buf.frame_sz = PAGE_SIZE;
2329 
2330 	/* Fairness NAPI loop */
2331 	while (rx_proc < budget && rx_proc < rx_todo) {
2332 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2333 		u32 rx_status, index;
2334 		struct page *page;
2335 
2336 		index = rx_desc - rxq->descs;
2337 		page = (struct page *)rxq->buf_virt_addr[index];
2338 
2339 		rx_status = rx_desc->status;
2340 		rx_proc++;
2341 		rxq->refill_num++;
2342 
2343 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2344 			int err;
2345 
2346 			/* Check errors only for FIRST descriptor */
2347 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2348 				mvneta_rx_error(pp, rx_desc);
2349 				/* leave the descriptor untouched */
2350 				continue;
2351 			}
2352 
2353 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2354 						   xdp_prog, page, &ps);
2355 			if (err)
2356 				continue;
2357 		} else {
2358 			if (unlikely(!rxq->skb)) {
2359 				pr_debug("no skb for rx_status 0x%x\n",
2360 					 rx_status);
2361 				continue;
2362 			}
2363 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2364 		} /* Middle or Last descriptor */
2365 
2366 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2367 			/* no last descriptor this time */
2368 			continue;
2369 
2370 		if (rxq->left_size) {
2371 			pr_err("get last desc, but left_size (%d) != 0\n",
2372 			       rxq->left_size);
2373 			dev_kfree_skb_any(rxq->skb);
2374 			rxq->left_size = 0;
2375 			rxq->skb = NULL;
2376 			continue;
2377 		}
2378 
2379 		ps.rx_bytes += rxq->skb->len;
2380 		ps.rx_packets++;
2381 
2382 		/* Linux processing */
2383 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2384 
2385 		napi_gro_receive(napi, rxq->skb);
2386 
2387 		/* clean uncomplete skb pointer in queue */
2388 		rxq->skb = NULL;
2389 	}
2390 	rcu_read_unlock();
2391 
2392 	if (ps.xdp_redirect)
2393 		xdp_do_flush_map();
2394 
2395 	if (ps.rx_packets)
2396 		mvneta_update_stats(pp, &ps);
2397 
2398 	/* return some buffers to hardware queue, one at a time is too slow */
2399 	refill = mvneta_rx_refill_queue(pp, rxq);
2400 
2401 	/* Update rxq management counters */
2402 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2403 
2404 	return ps.rx_packets;
2405 }
2406 
2407 /* Main rx processing when using hardware buffer management */
2408 static int mvneta_rx_hwbm(struct napi_struct *napi,
2409 			  struct mvneta_port *pp, int rx_todo,
2410 			  struct mvneta_rx_queue *rxq)
2411 {
2412 	struct net_device *dev = pp->dev;
2413 	int rx_done;
2414 	u32 rcvd_pkts = 0;
2415 	u32 rcvd_bytes = 0;
2416 
2417 	/* Get number of received packets */
2418 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2419 
2420 	if (rx_todo > rx_done)
2421 		rx_todo = rx_done;
2422 
2423 	rx_done = 0;
2424 
2425 	/* Fairness NAPI loop */
2426 	while (rx_done < rx_todo) {
2427 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2428 		struct mvneta_bm_pool *bm_pool = NULL;
2429 		struct sk_buff *skb;
2430 		unsigned char *data;
2431 		dma_addr_t phys_addr;
2432 		u32 rx_status, frag_size;
2433 		int rx_bytes, err;
2434 		u8 pool_id;
2435 
2436 		rx_done++;
2437 		rx_status = rx_desc->status;
2438 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2439 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2440 		phys_addr = rx_desc->buf_phys_addr;
2441 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2442 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2443 
2444 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2445 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2446 err_drop_frame_ret_pool:
2447 			/* Return the buffer to the pool */
2448 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2449 					      rx_desc->buf_phys_addr);
2450 err_drop_frame:
2451 			mvneta_rx_error(pp, rx_desc);
2452 			/* leave the descriptor untouched */
2453 			continue;
2454 		}
2455 
2456 		if (rx_bytes <= rx_copybreak) {
2457 			/* better copy a small frame and not unmap the DMA region */
2458 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2459 			if (unlikely(!skb))
2460 				goto err_drop_frame_ret_pool;
2461 
2462 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2463 			                              rx_desc->buf_phys_addr,
2464 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2465 			                              rx_bytes,
2466 			                              DMA_FROM_DEVICE);
2467 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2468 				     rx_bytes);
2469 
2470 			skb->protocol = eth_type_trans(skb, dev);
2471 			mvneta_rx_csum(pp, rx_status, skb);
2472 			napi_gro_receive(napi, skb);
2473 
2474 			rcvd_pkts++;
2475 			rcvd_bytes += rx_bytes;
2476 
2477 			/* Return the buffer to the pool */
2478 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2479 					      rx_desc->buf_phys_addr);
2480 
2481 			/* leave the descriptor and buffer untouched */
2482 			continue;
2483 		}
2484 
2485 		/* Refill processing */
2486 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2487 		if (err) {
2488 			struct mvneta_pcpu_stats *stats;
2489 
2490 			netdev_err(dev, "Linux processing - Can't refill\n");
2491 
2492 			stats = this_cpu_ptr(pp->stats);
2493 			u64_stats_update_begin(&stats->syncp);
2494 			stats->es.refill_error++;
2495 			u64_stats_update_end(&stats->syncp);
2496 
2497 			goto err_drop_frame_ret_pool;
2498 		}
2499 
2500 		frag_size = bm_pool->hwbm_pool.frag_size;
2501 
2502 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2503 
2504 		/* After refill old buffer has to be unmapped regardless
2505 		 * the skb is successfully built or not.
2506 		 */
2507 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2508 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2509 		if (!skb)
2510 			goto err_drop_frame;
2511 
2512 		rcvd_pkts++;
2513 		rcvd_bytes += rx_bytes;
2514 
2515 		/* Linux processing */
2516 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2517 		skb_put(skb, rx_bytes);
2518 
2519 		skb->protocol = eth_type_trans(skb, dev);
2520 
2521 		mvneta_rx_csum(pp, rx_status, skb);
2522 
2523 		napi_gro_receive(napi, skb);
2524 	}
2525 
2526 	if (rcvd_pkts) {
2527 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2528 
2529 		u64_stats_update_begin(&stats->syncp);
2530 		stats->es.ps.rx_packets += rcvd_pkts;
2531 		stats->es.ps.rx_bytes += rcvd_bytes;
2532 		u64_stats_update_end(&stats->syncp);
2533 	}
2534 
2535 	/* Update rxq management counters */
2536 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2537 
2538 	return rx_done;
2539 }
2540 
2541 static inline void
2542 mvneta_tso_put_hdr(struct sk_buff *skb,
2543 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2544 {
2545 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2546 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2547 	struct mvneta_tx_desc *tx_desc;
2548 
2549 	tx_desc = mvneta_txq_next_desc_get(txq);
2550 	tx_desc->data_size = hdr_len;
2551 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2552 	tx_desc->command |= MVNETA_TXD_F_DESC;
2553 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2554 				 txq->txq_put_index * TSO_HEADER_SIZE;
2555 	buf->type = MVNETA_TYPE_SKB;
2556 	buf->skb = NULL;
2557 
2558 	mvneta_txq_inc_put(txq);
2559 }
2560 
2561 static inline int
2562 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2563 		    struct sk_buff *skb, char *data, int size,
2564 		    bool last_tcp, bool is_last)
2565 {
2566 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2567 	struct mvneta_tx_desc *tx_desc;
2568 
2569 	tx_desc = mvneta_txq_next_desc_get(txq);
2570 	tx_desc->data_size = size;
2571 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2572 						size, DMA_TO_DEVICE);
2573 	if (unlikely(dma_mapping_error(dev->dev.parent,
2574 		     tx_desc->buf_phys_addr))) {
2575 		mvneta_txq_desc_put(txq);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	tx_desc->command = 0;
2580 	buf->type = MVNETA_TYPE_SKB;
2581 	buf->skb = NULL;
2582 
2583 	if (last_tcp) {
2584 		/* last descriptor in the TCP packet */
2585 		tx_desc->command = MVNETA_TXD_L_DESC;
2586 
2587 		/* last descriptor in SKB */
2588 		if (is_last)
2589 			buf->skb = skb;
2590 	}
2591 	mvneta_txq_inc_put(txq);
2592 	return 0;
2593 }
2594 
2595 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2596 			 struct mvneta_tx_queue *txq)
2597 {
2598 	int total_len, data_left;
2599 	int desc_count = 0;
2600 	struct mvneta_port *pp = netdev_priv(dev);
2601 	struct tso_t tso;
2602 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2603 	int i;
2604 
2605 	/* Count needed descriptors */
2606 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2607 		return 0;
2608 
2609 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2610 		pr_info("*** Is this even  possible???!?!?\n");
2611 		return 0;
2612 	}
2613 
2614 	/* Initialize the TSO handler, and prepare the first payload */
2615 	tso_start(skb, &tso);
2616 
2617 	total_len = skb->len - hdr_len;
2618 	while (total_len > 0) {
2619 		char *hdr;
2620 
2621 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2622 		total_len -= data_left;
2623 		desc_count++;
2624 
2625 		/* prepare packet headers: MAC + IP + TCP */
2626 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2627 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2628 
2629 		mvneta_tso_put_hdr(skb, pp, txq);
2630 
2631 		while (data_left > 0) {
2632 			int size;
2633 			desc_count++;
2634 
2635 			size = min_t(int, tso.size, data_left);
2636 
2637 			if (mvneta_tso_put_data(dev, txq, skb,
2638 						 tso.data, size,
2639 						 size == data_left,
2640 						 total_len == 0))
2641 				goto err_release;
2642 			data_left -= size;
2643 
2644 			tso_build_data(skb, &tso, size);
2645 		}
2646 	}
2647 
2648 	return desc_count;
2649 
2650 err_release:
2651 	/* Release all used data descriptors; header descriptors must not
2652 	 * be DMA-unmapped.
2653 	 */
2654 	for (i = desc_count - 1; i >= 0; i--) {
2655 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2656 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2657 			dma_unmap_single(pp->dev->dev.parent,
2658 					 tx_desc->buf_phys_addr,
2659 					 tx_desc->data_size,
2660 					 DMA_TO_DEVICE);
2661 		mvneta_txq_desc_put(txq);
2662 	}
2663 	return 0;
2664 }
2665 
2666 /* Handle tx fragmentation processing */
2667 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2668 				  struct mvneta_tx_queue *txq)
2669 {
2670 	struct mvneta_tx_desc *tx_desc;
2671 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2672 
2673 	for (i = 0; i < nr_frags; i++) {
2674 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2675 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2676 		void *addr = skb_frag_address(frag);
2677 
2678 		tx_desc = mvneta_txq_next_desc_get(txq);
2679 		tx_desc->data_size = skb_frag_size(frag);
2680 
2681 		tx_desc->buf_phys_addr =
2682 			dma_map_single(pp->dev->dev.parent, addr,
2683 				       tx_desc->data_size, DMA_TO_DEVICE);
2684 
2685 		if (dma_mapping_error(pp->dev->dev.parent,
2686 				      tx_desc->buf_phys_addr)) {
2687 			mvneta_txq_desc_put(txq);
2688 			goto error;
2689 		}
2690 
2691 		if (i == nr_frags - 1) {
2692 			/* Last descriptor */
2693 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2694 			buf->skb = skb;
2695 		} else {
2696 			/* Descriptor in the middle: Not First, Not Last */
2697 			tx_desc->command = 0;
2698 			buf->skb = NULL;
2699 		}
2700 		buf->type = MVNETA_TYPE_SKB;
2701 		mvneta_txq_inc_put(txq);
2702 	}
2703 
2704 	return 0;
2705 
2706 error:
2707 	/* Release all descriptors that were used to map fragments of
2708 	 * this packet, as well as the corresponding DMA mappings
2709 	 */
2710 	for (i = i - 1; i >= 0; i--) {
2711 		tx_desc = txq->descs + i;
2712 		dma_unmap_single(pp->dev->dev.parent,
2713 				 tx_desc->buf_phys_addr,
2714 				 tx_desc->data_size,
2715 				 DMA_TO_DEVICE);
2716 		mvneta_txq_desc_put(txq);
2717 	}
2718 
2719 	return -ENOMEM;
2720 }
2721 
2722 /* Main tx processing */
2723 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2724 {
2725 	struct mvneta_port *pp = netdev_priv(dev);
2726 	u16 txq_id = skb_get_queue_mapping(skb);
2727 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2728 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2729 	struct mvneta_tx_desc *tx_desc;
2730 	int len = skb->len;
2731 	int frags = 0;
2732 	u32 tx_cmd;
2733 
2734 	if (!netif_running(dev))
2735 		goto out;
2736 
2737 	if (skb_is_gso(skb)) {
2738 		frags = mvneta_tx_tso(skb, dev, txq);
2739 		goto out;
2740 	}
2741 
2742 	frags = skb_shinfo(skb)->nr_frags + 1;
2743 
2744 	/* Get a descriptor for the first part of the packet */
2745 	tx_desc = mvneta_txq_next_desc_get(txq);
2746 
2747 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2748 
2749 	tx_desc->data_size = skb_headlen(skb);
2750 
2751 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2752 						tx_desc->data_size,
2753 						DMA_TO_DEVICE);
2754 	if (unlikely(dma_mapping_error(dev->dev.parent,
2755 				       tx_desc->buf_phys_addr))) {
2756 		mvneta_txq_desc_put(txq);
2757 		frags = 0;
2758 		goto out;
2759 	}
2760 
2761 	buf->type = MVNETA_TYPE_SKB;
2762 	if (frags == 1) {
2763 		/* First and Last descriptor */
2764 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2765 		tx_desc->command = tx_cmd;
2766 		buf->skb = skb;
2767 		mvneta_txq_inc_put(txq);
2768 	} else {
2769 		/* First but not Last */
2770 		tx_cmd |= MVNETA_TXD_F_DESC;
2771 		buf->skb = NULL;
2772 		mvneta_txq_inc_put(txq);
2773 		tx_desc->command = tx_cmd;
2774 		/* Continue with other skb fragments */
2775 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2776 			dma_unmap_single(dev->dev.parent,
2777 					 tx_desc->buf_phys_addr,
2778 					 tx_desc->data_size,
2779 					 DMA_TO_DEVICE);
2780 			mvneta_txq_desc_put(txq);
2781 			frags = 0;
2782 			goto out;
2783 		}
2784 	}
2785 
2786 out:
2787 	if (frags > 0) {
2788 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2789 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2790 
2791 		netdev_tx_sent_queue(nq, len);
2792 
2793 		txq->count += frags;
2794 		if (txq->count >= txq->tx_stop_threshold)
2795 			netif_tx_stop_queue(nq);
2796 
2797 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2798 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2799 			mvneta_txq_pend_desc_add(pp, txq, frags);
2800 		else
2801 			txq->pending += frags;
2802 
2803 		u64_stats_update_begin(&stats->syncp);
2804 		stats->es.ps.tx_bytes += len;
2805 		stats->es.ps.tx_packets++;
2806 		u64_stats_update_end(&stats->syncp);
2807 	} else {
2808 		dev->stats.tx_dropped++;
2809 		dev_kfree_skb_any(skb);
2810 	}
2811 
2812 	return NETDEV_TX_OK;
2813 }
2814 
2815 
2816 /* Free tx resources, when resetting a port */
2817 static void mvneta_txq_done_force(struct mvneta_port *pp,
2818 				  struct mvneta_tx_queue *txq)
2819 
2820 {
2821 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2822 	int tx_done = txq->count;
2823 
2824 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2825 
2826 	/* reset txq */
2827 	txq->count = 0;
2828 	txq->txq_put_index = 0;
2829 	txq->txq_get_index = 0;
2830 }
2831 
2832 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2833  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2834  */
2835 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2836 {
2837 	struct mvneta_tx_queue *txq;
2838 	struct netdev_queue *nq;
2839 	int cpu = smp_processor_id();
2840 
2841 	while (cause_tx_done) {
2842 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2843 
2844 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2845 		__netif_tx_lock(nq, cpu);
2846 
2847 		if (txq->count)
2848 			mvneta_txq_done(pp, txq);
2849 
2850 		__netif_tx_unlock(nq);
2851 		cause_tx_done &= ~((1 << txq->id));
2852 	}
2853 }
2854 
2855 /* Compute crc8 of the specified address, using a unique algorithm ,
2856  * according to hw spec, different than generic crc8 algorithm
2857  */
2858 static int mvneta_addr_crc(unsigned char *addr)
2859 {
2860 	int crc = 0;
2861 	int i;
2862 
2863 	for (i = 0; i < ETH_ALEN; i++) {
2864 		int j;
2865 
2866 		crc = (crc ^ addr[i]) << 8;
2867 		for (j = 7; j >= 0; j--) {
2868 			if (crc & (0x100 << j))
2869 				crc ^= 0x107 << j;
2870 		}
2871 	}
2872 
2873 	return crc;
2874 }
2875 
2876 /* This method controls the net device special MAC multicast support.
2877  * The Special Multicast Table for MAC addresses supports MAC of the form
2878  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2879  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2880  * Table entries in the DA-Filter table. This method set the Special
2881  * Multicast Table appropriate entry.
2882  */
2883 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2884 					  unsigned char last_byte,
2885 					  int queue)
2886 {
2887 	unsigned int smc_table_reg;
2888 	unsigned int tbl_offset;
2889 	unsigned int reg_offset;
2890 
2891 	/* Register offset from SMC table base    */
2892 	tbl_offset = (last_byte / 4);
2893 	/* Entry offset within the above reg */
2894 	reg_offset = last_byte % 4;
2895 
2896 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2897 					+ tbl_offset * 4));
2898 
2899 	if (queue == -1)
2900 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2901 	else {
2902 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2903 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2904 	}
2905 
2906 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2907 		    smc_table_reg);
2908 }
2909 
2910 /* This method controls the network device Other MAC multicast support.
2911  * The Other Multicast Table is used for multicast of another type.
2912  * A CRC-8 is used as an index to the Other Multicast Table entries
2913  * in the DA-Filter table.
2914  * The method gets the CRC-8 value from the calling routine and
2915  * sets the Other Multicast Table appropriate entry according to the
2916  * specified CRC-8 .
2917  */
2918 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2919 					unsigned char crc8,
2920 					int queue)
2921 {
2922 	unsigned int omc_table_reg;
2923 	unsigned int tbl_offset;
2924 	unsigned int reg_offset;
2925 
2926 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2927 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2928 
2929 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2930 
2931 	if (queue == -1) {
2932 		/* Clear accepts frame bit at specified Other DA table entry */
2933 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2934 	} else {
2935 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2936 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2937 	}
2938 
2939 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2940 }
2941 
2942 /* The network device supports multicast using two tables:
2943  *    1) Special Multicast Table for MAC addresses of the form
2944  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2945  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2946  *       Table entries in the DA-Filter table.
2947  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2948  *       is used as an index to the Other Multicast Table entries in the
2949  *       DA-Filter table.
2950  */
2951 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2952 				 int queue)
2953 {
2954 	unsigned char crc_result = 0;
2955 
2956 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2957 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2958 		return 0;
2959 	}
2960 
2961 	crc_result = mvneta_addr_crc(p_addr);
2962 	if (queue == -1) {
2963 		if (pp->mcast_count[crc_result] == 0) {
2964 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2965 				    crc_result);
2966 			return -EINVAL;
2967 		}
2968 
2969 		pp->mcast_count[crc_result]--;
2970 		if (pp->mcast_count[crc_result] != 0) {
2971 			netdev_info(pp->dev,
2972 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2973 				    pp->mcast_count[crc_result], crc_result);
2974 			return -EINVAL;
2975 		}
2976 	} else
2977 		pp->mcast_count[crc_result]++;
2978 
2979 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2980 
2981 	return 0;
2982 }
2983 
2984 /* Configure Fitering mode of Ethernet port */
2985 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2986 					  int is_promisc)
2987 {
2988 	u32 port_cfg_reg, val;
2989 
2990 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2991 
2992 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2993 
2994 	/* Set / Clear UPM bit in port configuration register */
2995 	if (is_promisc) {
2996 		/* Accept all Unicast addresses */
2997 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2998 		val |= MVNETA_FORCE_UNI;
2999 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3000 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3001 	} else {
3002 		/* Reject all Unicast addresses */
3003 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3004 		val &= ~MVNETA_FORCE_UNI;
3005 	}
3006 
3007 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3008 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3009 }
3010 
3011 /* register unicast and multicast addresses */
3012 static void mvneta_set_rx_mode(struct net_device *dev)
3013 {
3014 	struct mvneta_port *pp = netdev_priv(dev);
3015 	struct netdev_hw_addr *ha;
3016 
3017 	if (dev->flags & IFF_PROMISC) {
3018 		/* Accept all: Multicast + Unicast */
3019 		mvneta_rx_unicast_promisc_set(pp, 1);
3020 		mvneta_set_ucast_table(pp, pp->rxq_def);
3021 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3022 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3023 	} else {
3024 		/* Accept single Unicast */
3025 		mvneta_rx_unicast_promisc_set(pp, 0);
3026 		mvneta_set_ucast_table(pp, -1);
3027 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3028 
3029 		if (dev->flags & IFF_ALLMULTI) {
3030 			/* Accept all multicast */
3031 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3032 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3033 		} else {
3034 			/* Accept only initialized multicast */
3035 			mvneta_set_special_mcast_table(pp, -1);
3036 			mvneta_set_other_mcast_table(pp, -1);
3037 
3038 			if (!netdev_mc_empty(dev)) {
3039 				netdev_for_each_mc_addr(ha, dev) {
3040 					mvneta_mcast_addr_set(pp, ha->addr,
3041 							      pp->rxq_def);
3042 				}
3043 			}
3044 		}
3045 	}
3046 }
3047 
3048 /* Interrupt handling - the callback for request_irq() */
3049 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3050 {
3051 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3052 
3053 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3054 	napi_schedule(&pp->napi);
3055 
3056 	return IRQ_HANDLED;
3057 }
3058 
3059 /* Interrupt handling - the callback for request_percpu_irq() */
3060 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3061 {
3062 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3063 
3064 	disable_percpu_irq(port->pp->dev->irq);
3065 	napi_schedule(&port->napi);
3066 
3067 	return IRQ_HANDLED;
3068 }
3069 
3070 static void mvneta_link_change(struct mvneta_port *pp)
3071 {
3072 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3073 
3074 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3075 }
3076 
3077 /* NAPI handler
3078  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3079  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3080  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3081  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3082  * Each CPU has its own causeRxTx register
3083  */
3084 static int mvneta_poll(struct napi_struct *napi, int budget)
3085 {
3086 	int rx_done = 0;
3087 	u32 cause_rx_tx;
3088 	int rx_queue;
3089 	struct mvneta_port *pp = netdev_priv(napi->dev);
3090 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3091 
3092 	if (!netif_running(pp->dev)) {
3093 		napi_complete(napi);
3094 		return rx_done;
3095 	}
3096 
3097 	/* Read cause register */
3098 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3099 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3100 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3101 
3102 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3103 
3104 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3105 				  MVNETA_CAUSE_LINK_CHANGE))
3106 			mvneta_link_change(pp);
3107 	}
3108 
3109 	/* Release Tx descriptors */
3110 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3111 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3112 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3113 	}
3114 
3115 	/* For the case where the last mvneta_poll did not process all
3116 	 * RX packets
3117 	 */
3118 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3119 		port->cause_rx_tx;
3120 
3121 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3122 	if (rx_queue) {
3123 		rx_queue = rx_queue - 1;
3124 		if (pp->bm_priv)
3125 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3126 						 &pp->rxqs[rx_queue]);
3127 		else
3128 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3129 						 &pp->rxqs[rx_queue]);
3130 	}
3131 
3132 	if (rx_done < budget) {
3133 		cause_rx_tx = 0;
3134 		napi_complete_done(napi, rx_done);
3135 
3136 		if (pp->neta_armada3700) {
3137 			unsigned long flags;
3138 
3139 			local_irq_save(flags);
3140 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3141 				    MVNETA_RX_INTR_MASK(rxq_number) |
3142 				    MVNETA_TX_INTR_MASK(txq_number) |
3143 				    MVNETA_MISCINTR_INTR_MASK);
3144 			local_irq_restore(flags);
3145 		} else {
3146 			enable_percpu_irq(pp->dev->irq, 0);
3147 		}
3148 	}
3149 
3150 	if (pp->neta_armada3700)
3151 		pp->cause_rx_tx = cause_rx_tx;
3152 	else
3153 		port->cause_rx_tx = cause_rx_tx;
3154 
3155 	return rx_done;
3156 }
3157 
3158 static int mvneta_create_page_pool(struct mvneta_port *pp,
3159 				   struct mvneta_rx_queue *rxq, int size)
3160 {
3161 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3162 	struct page_pool_params pp_params = {
3163 		.order = 0,
3164 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3165 		.pool_size = size,
3166 		.nid = NUMA_NO_NODE,
3167 		.dev = pp->dev->dev.parent,
3168 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3169 		.offset = pp->rx_offset_correction,
3170 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3171 	};
3172 	int err;
3173 
3174 	rxq->page_pool = page_pool_create(&pp_params);
3175 	if (IS_ERR(rxq->page_pool)) {
3176 		err = PTR_ERR(rxq->page_pool);
3177 		rxq->page_pool = NULL;
3178 		return err;
3179 	}
3180 
3181 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3182 	if (err < 0)
3183 		goto err_free_pp;
3184 
3185 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3186 					 rxq->page_pool);
3187 	if (err)
3188 		goto err_unregister_rxq;
3189 
3190 	return 0;
3191 
3192 err_unregister_rxq:
3193 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3194 err_free_pp:
3195 	page_pool_destroy(rxq->page_pool);
3196 	rxq->page_pool = NULL;
3197 	return err;
3198 }
3199 
3200 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3201 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3202 			   int num)
3203 {
3204 	int i, err;
3205 
3206 	err = mvneta_create_page_pool(pp, rxq, num);
3207 	if (err < 0)
3208 		return err;
3209 
3210 	for (i = 0; i < num; i++) {
3211 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3212 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3213 				     GFP_KERNEL) != 0) {
3214 			netdev_err(pp->dev,
3215 				   "%s:rxq %d, %d of %d buffs  filled\n",
3216 				   __func__, rxq->id, i, num);
3217 			break;
3218 		}
3219 	}
3220 
3221 	/* Add this number of RX descriptors as non occupied (ready to
3222 	 * get packets)
3223 	 */
3224 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3225 
3226 	return i;
3227 }
3228 
3229 /* Free all packets pending transmit from all TXQs and reset TX port */
3230 static void mvneta_tx_reset(struct mvneta_port *pp)
3231 {
3232 	int queue;
3233 
3234 	/* free the skb's in the tx ring */
3235 	for (queue = 0; queue < txq_number; queue++)
3236 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3237 
3238 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3239 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3240 }
3241 
3242 static void mvneta_rx_reset(struct mvneta_port *pp)
3243 {
3244 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3245 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3246 }
3247 
3248 /* Rx/Tx queue initialization/cleanup methods */
3249 
3250 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3251 			      struct mvneta_rx_queue *rxq)
3252 {
3253 	rxq->size = pp->rx_ring_size;
3254 
3255 	/* Allocate memory for RX descriptors */
3256 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3257 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3258 					&rxq->descs_phys, GFP_KERNEL);
3259 	if (!rxq->descs)
3260 		return -ENOMEM;
3261 
3262 	rxq->last_desc = rxq->size - 1;
3263 
3264 	return 0;
3265 }
3266 
3267 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3268 			       struct mvneta_rx_queue *rxq)
3269 {
3270 	/* Set Rx descriptors queue starting address */
3271 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3272 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3273 
3274 	/* Set coalescing pkts and time */
3275 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3276 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3277 
3278 	if (!pp->bm_priv) {
3279 		/* Set Offset */
3280 		mvneta_rxq_offset_set(pp, rxq, 0);
3281 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3282 					MVNETA_MAX_RX_BUF_SIZE :
3283 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3284 		mvneta_rxq_bm_disable(pp, rxq);
3285 		mvneta_rxq_fill(pp, rxq, rxq->size);
3286 	} else {
3287 		/* Set Offset */
3288 		mvneta_rxq_offset_set(pp, rxq,
3289 				      NET_SKB_PAD - pp->rx_offset_correction);
3290 
3291 		mvneta_rxq_bm_enable(pp, rxq);
3292 		/* Fill RXQ with buffers from RX pool */
3293 		mvneta_rxq_long_pool_set(pp, rxq);
3294 		mvneta_rxq_short_pool_set(pp, rxq);
3295 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3296 	}
3297 }
3298 
3299 /* Create a specified RX queue */
3300 static int mvneta_rxq_init(struct mvneta_port *pp,
3301 			   struct mvneta_rx_queue *rxq)
3302 
3303 {
3304 	int ret;
3305 
3306 	ret = mvneta_rxq_sw_init(pp, rxq);
3307 	if (ret < 0)
3308 		return ret;
3309 
3310 	mvneta_rxq_hw_init(pp, rxq);
3311 
3312 	return 0;
3313 }
3314 
3315 /* Cleanup Rx queue */
3316 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3317 			      struct mvneta_rx_queue *rxq)
3318 {
3319 	mvneta_rxq_drop_pkts(pp, rxq);
3320 
3321 	if (rxq->skb)
3322 		dev_kfree_skb_any(rxq->skb);
3323 
3324 	if (rxq->descs)
3325 		dma_free_coherent(pp->dev->dev.parent,
3326 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3327 				  rxq->descs,
3328 				  rxq->descs_phys);
3329 
3330 	rxq->descs             = NULL;
3331 	rxq->last_desc         = 0;
3332 	rxq->next_desc_to_proc = 0;
3333 	rxq->descs_phys        = 0;
3334 	rxq->first_to_refill   = 0;
3335 	rxq->refill_num        = 0;
3336 	rxq->skb               = NULL;
3337 	rxq->left_size         = 0;
3338 }
3339 
3340 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3341 			      struct mvneta_tx_queue *txq)
3342 {
3343 	int cpu;
3344 
3345 	txq->size = pp->tx_ring_size;
3346 
3347 	/* A queue must always have room for at least one skb.
3348 	 * Therefore, stop the queue when the free entries reaches
3349 	 * the maximum number of descriptors per skb.
3350 	 */
3351 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3352 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3353 
3354 	/* Allocate memory for TX descriptors */
3355 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3356 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3357 					&txq->descs_phys, GFP_KERNEL);
3358 	if (!txq->descs)
3359 		return -ENOMEM;
3360 
3361 	txq->last_desc = txq->size - 1;
3362 
3363 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3364 	if (!txq->buf) {
3365 		dma_free_coherent(pp->dev->dev.parent,
3366 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3367 				  txq->descs, txq->descs_phys);
3368 		return -ENOMEM;
3369 	}
3370 
3371 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3372 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3373 					   txq->size * TSO_HEADER_SIZE,
3374 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3375 	if (!txq->tso_hdrs) {
3376 		kfree(txq->buf);
3377 		dma_free_coherent(pp->dev->dev.parent,
3378 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3379 				  txq->descs, txq->descs_phys);
3380 		return -ENOMEM;
3381 	}
3382 
3383 	/* Setup XPS mapping */
3384 	if (txq_number > 1)
3385 		cpu = txq->id % num_present_cpus();
3386 	else
3387 		cpu = pp->rxq_def % num_present_cpus();
3388 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3389 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3390 
3391 	return 0;
3392 }
3393 
3394 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3395 			       struct mvneta_tx_queue *txq)
3396 {
3397 	/* Set maximum bandwidth for enabled TXQs */
3398 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3399 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3400 
3401 	/* Set Tx descriptors queue starting address */
3402 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3403 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3404 
3405 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3406 }
3407 
3408 /* Create and initialize a tx queue */
3409 static int mvneta_txq_init(struct mvneta_port *pp,
3410 			   struct mvneta_tx_queue *txq)
3411 {
3412 	int ret;
3413 
3414 	ret = mvneta_txq_sw_init(pp, txq);
3415 	if (ret < 0)
3416 		return ret;
3417 
3418 	mvneta_txq_hw_init(pp, txq);
3419 
3420 	return 0;
3421 }
3422 
3423 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3424 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3425 				 struct mvneta_tx_queue *txq)
3426 {
3427 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3428 
3429 	kfree(txq->buf);
3430 
3431 	if (txq->tso_hdrs)
3432 		dma_free_coherent(pp->dev->dev.parent,
3433 				  txq->size * TSO_HEADER_SIZE,
3434 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3435 	if (txq->descs)
3436 		dma_free_coherent(pp->dev->dev.parent,
3437 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3438 				  txq->descs, txq->descs_phys);
3439 
3440 	netdev_tx_reset_queue(nq);
3441 
3442 	txq->descs             = NULL;
3443 	txq->last_desc         = 0;
3444 	txq->next_desc_to_proc = 0;
3445 	txq->descs_phys        = 0;
3446 }
3447 
3448 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3449 				 struct mvneta_tx_queue *txq)
3450 {
3451 	/* Set minimum bandwidth for disabled TXQs */
3452 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3453 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3454 
3455 	/* Set Tx descriptors queue starting address and size */
3456 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3457 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3458 }
3459 
3460 static void mvneta_txq_deinit(struct mvneta_port *pp,
3461 			      struct mvneta_tx_queue *txq)
3462 {
3463 	mvneta_txq_sw_deinit(pp, txq);
3464 	mvneta_txq_hw_deinit(pp, txq);
3465 }
3466 
3467 /* Cleanup all Tx queues */
3468 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3469 {
3470 	int queue;
3471 
3472 	for (queue = 0; queue < txq_number; queue++)
3473 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3474 }
3475 
3476 /* Cleanup all Rx queues */
3477 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3478 {
3479 	int queue;
3480 
3481 	for (queue = 0; queue < rxq_number; queue++)
3482 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3483 }
3484 
3485 
3486 /* Init all Rx queues */
3487 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3488 {
3489 	int queue;
3490 
3491 	for (queue = 0; queue < rxq_number; queue++) {
3492 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3493 
3494 		if (err) {
3495 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3496 				   __func__, queue);
3497 			mvneta_cleanup_rxqs(pp);
3498 			return err;
3499 		}
3500 	}
3501 
3502 	return 0;
3503 }
3504 
3505 /* Init all tx queues */
3506 static int mvneta_setup_txqs(struct mvneta_port *pp)
3507 {
3508 	int queue;
3509 
3510 	for (queue = 0; queue < txq_number; queue++) {
3511 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3512 		if (err) {
3513 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3514 				   __func__, queue);
3515 			mvneta_cleanup_txqs(pp);
3516 			return err;
3517 		}
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 static int mvneta_comphy_init(struct mvneta_port *pp)
3524 {
3525 	int ret;
3526 
3527 	if (!pp->comphy)
3528 		return 0;
3529 
3530 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3531 			       pp->phy_interface);
3532 	if (ret)
3533 		return ret;
3534 
3535 	return phy_power_on(pp->comphy);
3536 }
3537 
3538 static void mvneta_start_dev(struct mvneta_port *pp)
3539 {
3540 	int cpu;
3541 
3542 	WARN_ON(mvneta_comphy_init(pp));
3543 
3544 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3545 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3546 
3547 	/* start the Rx/Tx activity */
3548 	mvneta_port_enable(pp);
3549 
3550 	if (!pp->neta_armada3700) {
3551 		/* Enable polling on the port */
3552 		for_each_online_cpu(cpu) {
3553 			struct mvneta_pcpu_port *port =
3554 				per_cpu_ptr(pp->ports, cpu);
3555 
3556 			napi_enable(&port->napi);
3557 		}
3558 	} else {
3559 		napi_enable(&pp->napi);
3560 	}
3561 
3562 	/* Unmask interrupts. It has to be done from each CPU */
3563 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3564 
3565 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3566 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3567 		    MVNETA_CAUSE_LINK_CHANGE);
3568 
3569 	phylink_start(pp->phylink);
3570 	netif_tx_start_all_queues(pp->dev);
3571 }
3572 
3573 static void mvneta_stop_dev(struct mvneta_port *pp)
3574 {
3575 	unsigned int cpu;
3576 
3577 	phylink_stop(pp->phylink);
3578 
3579 	if (!pp->neta_armada3700) {
3580 		for_each_online_cpu(cpu) {
3581 			struct mvneta_pcpu_port *port =
3582 				per_cpu_ptr(pp->ports, cpu);
3583 
3584 			napi_disable(&port->napi);
3585 		}
3586 	} else {
3587 		napi_disable(&pp->napi);
3588 	}
3589 
3590 	netif_carrier_off(pp->dev);
3591 
3592 	mvneta_port_down(pp);
3593 	netif_tx_stop_all_queues(pp->dev);
3594 
3595 	/* Stop the port activity */
3596 	mvneta_port_disable(pp);
3597 
3598 	/* Clear all ethernet port interrupts */
3599 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3600 
3601 	/* Mask all ethernet port interrupts */
3602 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3603 
3604 	mvneta_tx_reset(pp);
3605 	mvneta_rx_reset(pp);
3606 
3607 	WARN_ON(phy_power_off(pp->comphy));
3608 }
3609 
3610 static void mvneta_percpu_enable(void *arg)
3611 {
3612 	struct mvneta_port *pp = arg;
3613 
3614 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3615 }
3616 
3617 static void mvneta_percpu_disable(void *arg)
3618 {
3619 	struct mvneta_port *pp = arg;
3620 
3621 	disable_percpu_irq(pp->dev->irq);
3622 }
3623 
3624 /* Change the device mtu */
3625 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3626 {
3627 	struct mvneta_port *pp = netdev_priv(dev);
3628 	int ret;
3629 
3630 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3631 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3632 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3633 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3634 	}
3635 
3636 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3637 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3638 		return -EINVAL;
3639 	}
3640 
3641 	dev->mtu = mtu;
3642 
3643 	if (!netif_running(dev)) {
3644 		if (pp->bm_priv)
3645 			mvneta_bm_update_mtu(pp, mtu);
3646 
3647 		netdev_update_features(dev);
3648 		return 0;
3649 	}
3650 
3651 	/* The interface is running, so we have to force a
3652 	 * reallocation of the queues
3653 	 */
3654 	mvneta_stop_dev(pp);
3655 	on_each_cpu(mvneta_percpu_disable, pp, true);
3656 
3657 	mvneta_cleanup_txqs(pp);
3658 	mvneta_cleanup_rxqs(pp);
3659 
3660 	if (pp->bm_priv)
3661 		mvneta_bm_update_mtu(pp, mtu);
3662 
3663 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3664 
3665 	ret = mvneta_setup_rxqs(pp);
3666 	if (ret) {
3667 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3668 		return ret;
3669 	}
3670 
3671 	ret = mvneta_setup_txqs(pp);
3672 	if (ret) {
3673 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3674 		return ret;
3675 	}
3676 
3677 	on_each_cpu(mvneta_percpu_enable, pp, true);
3678 	mvneta_start_dev(pp);
3679 
3680 	netdev_update_features(dev);
3681 
3682 	return 0;
3683 }
3684 
3685 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3686 					     netdev_features_t features)
3687 {
3688 	struct mvneta_port *pp = netdev_priv(dev);
3689 
3690 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3691 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3692 		netdev_info(dev,
3693 			    "Disable IP checksum for MTU greater than %dB\n",
3694 			    pp->tx_csum_limit);
3695 	}
3696 
3697 	return features;
3698 }
3699 
3700 /* Get mac address */
3701 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3702 {
3703 	u32 mac_addr_l, mac_addr_h;
3704 
3705 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3706 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3707 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3708 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3709 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3710 	addr[3] = mac_addr_h & 0xFF;
3711 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3712 	addr[5] = mac_addr_l & 0xFF;
3713 }
3714 
3715 /* Handle setting mac address */
3716 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3717 {
3718 	struct mvneta_port *pp = netdev_priv(dev);
3719 	struct sockaddr *sockaddr = addr;
3720 	int ret;
3721 
3722 	ret = eth_prepare_mac_addr_change(dev, addr);
3723 	if (ret < 0)
3724 		return ret;
3725 	/* Remove previous address table entry */
3726 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3727 
3728 	/* Set new addr in hw */
3729 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3730 
3731 	eth_commit_mac_addr_change(dev, addr);
3732 	return 0;
3733 }
3734 
3735 static void mvneta_validate(struct phylink_config *config,
3736 			    unsigned long *supported,
3737 			    struct phylink_link_state *state)
3738 {
3739 	struct net_device *ndev = to_net_dev(config->dev);
3740 	struct mvneta_port *pp = netdev_priv(ndev);
3741 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3742 
3743 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3744 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3745 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3746 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3747 	    !phy_interface_mode_is_8023z(state->interface) &&
3748 	    !phy_interface_mode_is_rgmii(state->interface)) {
3749 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3750 		return;
3751 	}
3752 
3753 	/* Allow all the expected bits */
3754 	phylink_set(mask, Autoneg);
3755 	phylink_set_port_modes(mask);
3756 
3757 	/* Asymmetric pause is unsupported */
3758 	phylink_set(mask, Pause);
3759 
3760 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3761 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3762 		phylink_set(mask, 1000baseT_Full);
3763 		phylink_set(mask, 1000baseX_Full);
3764 	}
3765 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3766 		phylink_set(mask, 2500baseT_Full);
3767 		phylink_set(mask, 2500baseX_Full);
3768 	}
3769 
3770 	if (!phy_interface_mode_is_8023z(state->interface)) {
3771 		/* 10M and 100M are only supported in non-802.3z mode */
3772 		phylink_set(mask, 10baseT_Half);
3773 		phylink_set(mask, 10baseT_Full);
3774 		phylink_set(mask, 100baseT_Half);
3775 		phylink_set(mask, 100baseT_Full);
3776 	}
3777 
3778 	bitmap_and(supported, supported, mask,
3779 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3780 	bitmap_and(state->advertising, state->advertising, mask,
3781 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3782 
3783 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3784 	 * to advertise both, only report advertising at 2500BaseX.
3785 	 */
3786 	phylink_helper_basex_speed(state);
3787 }
3788 
3789 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3790 				     struct phylink_link_state *state)
3791 {
3792 	struct net_device *ndev = to_net_dev(config->dev);
3793 	struct mvneta_port *pp = netdev_priv(ndev);
3794 	u32 gmac_stat;
3795 
3796 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3797 
3798 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3799 		state->speed =
3800 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3801 			SPEED_2500 : SPEED_1000;
3802 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3803 		state->speed = SPEED_100;
3804 	else
3805 		state->speed = SPEED_10;
3806 
3807 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3808 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3809 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3810 
3811 	state->pause = 0;
3812 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3813 		state->pause |= MLO_PAUSE_RX;
3814 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3815 		state->pause |= MLO_PAUSE_TX;
3816 }
3817 
3818 static void mvneta_mac_an_restart(struct phylink_config *config)
3819 {
3820 	struct net_device *ndev = to_net_dev(config->dev);
3821 	struct mvneta_port *pp = netdev_priv(ndev);
3822 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3823 
3824 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3825 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3826 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3827 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3828 }
3829 
3830 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3831 			      const struct phylink_link_state *state)
3832 {
3833 	struct net_device *ndev = to_net_dev(config->dev);
3834 	struct mvneta_port *pp = netdev_priv(ndev);
3835 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3836 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3837 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3838 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3839 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3840 
3841 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3842 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3843 				   MVNETA_GMAC2_PORT_RESET);
3844 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3845 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3846 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3847 			     MVNETA_GMAC_INBAND_RESTART_AN |
3848 			     MVNETA_GMAC_AN_SPEED_EN |
3849 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3850 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3851 			     MVNETA_GMAC_AN_DUPLEX_EN);
3852 
3853 	/* Even though it might look weird, when we're configured in
3854 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3855 	 */
3856 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3857 
3858 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3859 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3860 	    phy_interface_mode_is_8023z(state->interface))
3861 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3862 
3863 	if (phylink_test(state->advertising, Pause))
3864 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3865 
3866 	if (!phylink_autoneg_inband(mode)) {
3867 		/* Phy or fixed speed - nothing to do, leave the
3868 		 * configured speed, duplex and flow control as-is.
3869 		 */
3870 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3871 		/* SGMII mode receives the state from the PHY */
3872 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3873 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3874 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3875 				     MVNETA_GMAC_FORCE_LINK_PASS |
3876 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3877 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3878 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3879 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3880 			 MVNETA_GMAC_AN_SPEED_EN |
3881 			 MVNETA_GMAC_AN_DUPLEX_EN;
3882 	} else {
3883 		/* 802.3z negotiation - only 1000base-X */
3884 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3885 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3886 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3887 				     MVNETA_GMAC_FORCE_LINK_PASS |
3888 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3889 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3890 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3891 			 /* The MAC only supports FD mode */
3892 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3893 
3894 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3895 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3896 	}
3897 
3898 	/* Armada 370 documentation says we can only change the port mode
3899 	 * and in-band enable when the link is down, so force it down
3900 	 * while making these changes. We also do this for GMAC_CTRL2 */
3901 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3902 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3903 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3904 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3905 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3906 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3907 	}
3908 
3909 
3910 	/* When at 2.5G, the link partner can send frames with shortened
3911 	 * preambles.
3912 	 */
3913 	if (state->speed == SPEED_2500)
3914 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3915 
3916 	if (pp->comphy && pp->phy_interface != state->interface &&
3917 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3918 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3919 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3920 		pp->phy_interface = state->interface;
3921 
3922 		WARN_ON(phy_power_off(pp->comphy));
3923 		WARN_ON(mvneta_comphy_init(pp));
3924 	}
3925 
3926 	if (new_ctrl0 != gmac_ctrl0)
3927 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3928 	if (new_ctrl2 != gmac_ctrl2)
3929 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3930 	if (new_ctrl4 != gmac_ctrl4)
3931 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3932 	if (new_clk != gmac_clk)
3933 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3934 	if (new_an != gmac_an)
3935 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3936 
3937 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3938 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3939 			MVNETA_GMAC2_PORT_RESET) != 0)
3940 			continue;
3941 	}
3942 }
3943 
3944 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3945 {
3946 	u32 lpi_ctl1;
3947 
3948 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3949 	if (enable)
3950 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3951 	else
3952 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3953 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3954 }
3955 
3956 static void mvneta_mac_link_down(struct phylink_config *config,
3957 				 unsigned int mode, phy_interface_t interface)
3958 {
3959 	struct net_device *ndev = to_net_dev(config->dev);
3960 	struct mvneta_port *pp = netdev_priv(ndev);
3961 	u32 val;
3962 
3963 	mvneta_port_down(pp);
3964 
3965 	if (!phylink_autoneg_inband(mode)) {
3966 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3967 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3968 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3969 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3970 	}
3971 
3972 	pp->eee_active = false;
3973 	mvneta_set_eee(pp, false);
3974 }
3975 
3976 static void mvneta_mac_link_up(struct phylink_config *config,
3977 			       struct phy_device *phy,
3978 			       unsigned int mode, phy_interface_t interface,
3979 			       int speed, int duplex,
3980 			       bool tx_pause, bool rx_pause)
3981 {
3982 	struct net_device *ndev = to_net_dev(config->dev);
3983 	struct mvneta_port *pp = netdev_priv(ndev);
3984 	u32 val;
3985 
3986 	if (!phylink_autoneg_inband(mode)) {
3987 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3988 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3989 			 MVNETA_GMAC_CONFIG_MII_SPEED |
3990 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3991 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
3992 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3993 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3994 
3995 		if (speed == SPEED_1000 || speed == SPEED_2500)
3996 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3997 		else if (speed == SPEED_100)
3998 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3999 
4000 		if (duplex == DUPLEX_FULL)
4001 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4002 
4003 		if (tx_pause || rx_pause)
4004 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4005 
4006 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4007 	} else {
4008 		/* When inband doesn't cover flow control or flow control is
4009 		 * disabled, we need to manually configure it. This bit will
4010 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4011 		 */
4012 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4013 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4014 
4015 		if (tx_pause || rx_pause)
4016 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4017 
4018 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4019 	}
4020 
4021 	mvneta_port_up(pp);
4022 
4023 	if (phy && pp->eee_enabled) {
4024 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4025 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4026 	}
4027 }
4028 
4029 static const struct phylink_mac_ops mvneta_phylink_ops = {
4030 	.validate = mvneta_validate,
4031 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4032 	.mac_an_restart = mvneta_mac_an_restart,
4033 	.mac_config = mvneta_mac_config,
4034 	.mac_link_down = mvneta_mac_link_down,
4035 	.mac_link_up = mvneta_mac_link_up,
4036 };
4037 
4038 static int mvneta_mdio_probe(struct mvneta_port *pp)
4039 {
4040 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4041 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4042 
4043 	if (err)
4044 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4045 
4046 	phylink_ethtool_get_wol(pp->phylink, &wol);
4047 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4048 
4049 	return err;
4050 }
4051 
4052 static void mvneta_mdio_remove(struct mvneta_port *pp)
4053 {
4054 	phylink_disconnect_phy(pp->phylink);
4055 }
4056 
4057 /* Electing a CPU must be done in an atomic way: it should be done
4058  * after or before the removal/insertion of a CPU and this function is
4059  * not reentrant.
4060  */
4061 static void mvneta_percpu_elect(struct mvneta_port *pp)
4062 {
4063 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4064 
4065 	/* Use the cpu associated to the rxq when it is online, in all
4066 	 * the other cases, use the cpu 0 which can't be offline.
4067 	 */
4068 	if (cpu_online(pp->rxq_def))
4069 		elected_cpu = pp->rxq_def;
4070 
4071 	max_cpu = num_present_cpus();
4072 
4073 	for_each_online_cpu(cpu) {
4074 		int rxq_map = 0, txq_map = 0;
4075 		int rxq;
4076 
4077 		for (rxq = 0; rxq < rxq_number; rxq++)
4078 			if ((rxq % max_cpu) == cpu)
4079 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4080 
4081 		if (cpu == elected_cpu)
4082 			/* Map the default receive queue queue to the
4083 			 * elected CPU
4084 			 */
4085 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4086 
4087 		/* We update the TX queue map only if we have one
4088 		 * queue. In this case we associate the TX queue to
4089 		 * the CPU bound to the default RX queue
4090 		 */
4091 		if (txq_number == 1)
4092 			txq_map = (cpu == elected_cpu) ?
4093 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4094 		else
4095 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4096 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4097 
4098 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4099 
4100 		/* Update the interrupt mask on each CPU according the
4101 		 * new mapping
4102 		 */
4103 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4104 					 pp, true);
4105 		i++;
4106 
4107 	}
4108 };
4109 
4110 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4111 {
4112 	int other_cpu;
4113 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4114 						  node_online);
4115 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4116 
4117 
4118 	spin_lock(&pp->lock);
4119 	/*
4120 	 * Configuring the driver for a new CPU while the driver is
4121 	 * stopping is racy, so just avoid it.
4122 	 */
4123 	if (pp->is_stopped) {
4124 		spin_unlock(&pp->lock);
4125 		return 0;
4126 	}
4127 	netif_tx_stop_all_queues(pp->dev);
4128 
4129 	/*
4130 	 * We have to synchronise on tha napi of each CPU except the one
4131 	 * just being woken up
4132 	 */
4133 	for_each_online_cpu(other_cpu) {
4134 		if (other_cpu != cpu) {
4135 			struct mvneta_pcpu_port *other_port =
4136 				per_cpu_ptr(pp->ports, other_cpu);
4137 
4138 			napi_synchronize(&other_port->napi);
4139 		}
4140 	}
4141 
4142 	/* Mask all ethernet port interrupts */
4143 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4144 	napi_enable(&port->napi);
4145 
4146 	/*
4147 	 * Enable per-CPU interrupts on the CPU that is
4148 	 * brought up.
4149 	 */
4150 	mvneta_percpu_enable(pp);
4151 
4152 	/*
4153 	 * Enable per-CPU interrupt on the one CPU we care
4154 	 * about.
4155 	 */
4156 	mvneta_percpu_elect(pp);
4157 
4158 	/* Unmask all ethernet port interrupts */
4159 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4160 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4161 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4162 		    MVNETA_CAUSE_LINK_CHANGE);
4163 	netif_tx_start_all_queues(pp->dev);
4164 	spin_unlock(&pp->lock);
4165 	return 0;
4166 }
4167 
4168 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4169 {
4170 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4171 						  node_online);
4172 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4173 
4174 	/*
4175 	 * Thanks to this lock we are sure that any pending cpu election is
4176 	 * done.
4177 	 */
4178 	spin_lock(&pp->lock);
4179 	/* Mask all ethernet port interrupts */
4180 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4181 	spin_unlock(&pp->lock);
4182 
4183 	napi_synchronize(&port->napi);
4184 	napi_disable(&port->napi);
4185 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4186 	mvneta_percpu_disable(pp);
4187 	return 0;
4188 }
4189 
4190 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4191 {
4192 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4193 						  node_dead);
4194 
4195 	/* Check if a new CPU must be elected now this on is down */
4196 	spin_lock(&pp->lock);
4197 	mvneta_percpu_elect(pp);
4198 	spin_unlock(&pp->lock);
4199 	/* Unmask all ethernet port interrupts */
4200 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4201 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4202 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4203 		    MVNETA_CAUSE_LINK_CHANGE);
4204 	netif_tx_start_all_queues(pp->dev);
4205 	return 0;
4206 }
4207 
4208 static int mvneta_open(struct net_device *dev)
4209 {
4210 	struct mvneta_port *pp = netdev_priv(dev);
4211 	int ret;
4212 
4213 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4214 
4215 	ret = mvneta_setup_rxqs(pp);
4216 	if (ret)
4217 		return ret;
4218 
4219 	ret = mvneta_setup_txqs(pp);
4220 	if (ret)
4221 		goto err_cleanup_rxqs;
4222 
4223 	/* Connect to port interrupt line */
4224 	if (pp->neta_armada3700)
4225 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4226 				  dev->name, pp);
4227 	else
4228 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4229 					 dev->name, pp->ports);
4230 	if (ret) {
4231 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4232 		goto err_cleanup_txqs;
4233 	}
4234 
4235 	if (!pp->neta_armada3700) {
4236 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4237 		 * queue interrupts
4238 		 */
4239 		on_each_cpu(mvneta_percpu_enable, pp, true);
4240 
4241 		pp->is_stopped = false;
4242 		/* Register a CPU notifier to handle the case where our CPU
4243 		 * might be taken offline.
4244 		 */
4245 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4246 						       &pp->node_online);
4247 		if (ret)
4248 			goto err_free_irq;
4249 
4250 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4251 						       &pp->node_dead);
4252 		if (ret)
4253 			goto err_free_online_hp;
4254 	}
4255 
4256 	ret = mvneta_mdio_probe(pp);
4257 	if (ret < 0) {
4258 		netdev_err(dev, "cannot probe MDIO bus\n");
4259 		goto err_free_dead_hp;
4260 	}
4261 
4262 	mvneta_start_dev(pp);
4263 
4264 	return 0;
4265 
4266 err_free_dead_hp:
4267 	if (!pp->neta_armada3700)
4268 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4269 						    &pp->node_dead);
4270 err_free_online_hp:
4271 	if (!pp->neta_armada3700)
4272 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4273 						    &pp->node_online);
4274 err_free_irq:
4275 	if (pp->neta_armada3700) {
4276 		free_irq(pp->dev->irq, pp);
4277 	} else {
4278 		on_each_cpu(mvneta_percpu_disable, pp, true);
4279 		free_percpu_irq(pp->dev->irq, pp->ports);
4280 	}
4281 err_cleanup_txqs:
4282 	mvneta_cleanup_txqs(pp);
4283 err_cleanup_rxqs:
4284 	mvneta_cleanup_rxqs(pp);
4285 	return ret;
4286 }
4287 
4288 /* Stop the port, free port interrupt line */
4289 static int mvneta_stop(struct net_device *dev)
4290 {
4291 	struct mvneta_port *pp = netdev_priv(dev);
4292 
4293 	if (!pp->neta_armada3700) {
4294 		/* Inform that we are stopping so we don't want to setup the
4295 		 * driver for new CPUs in the notifiers. The code of the
4296 		 * notifier for CPU online is protected by the same spinlock,
4297 		 * so when we get the lock, the notifer work is done.
4298 		 */
4299 		spin_lock(&pp->lock);
4300 		pp->is_stopped = true;
4301 		spin_unlock(&pp->lock);
4302 
4303 		mvneta_stop_dev(pp);
4304 		mvneta_mdio_remove(pp);
4305 
4306 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4307 						    &pp->node_online);
4308 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4309 						    &pp->node_dead);
4310 		on_each_cpu(mvneta_percpu_disable, pp, true);
4311 		free_percpu_irq(dev->irq, pp->ports);
4312 	} else {
4313 		mvneta_stop_dev(pp);
4314 		mvneta_mdio_remove(pp);
4315 		free_irq(dev->irq, pp);
4316 	}
4317 
4318 	mvneta_cleanup_rxqs(pp);
4319 	mvneta_cleanup_txqs(pp);
4320 
4321 	return 0;
4322 }
4323 
4324 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4325 {
4326 	struct mvneta_port *pp = netdev_priv(dev);
4327 
4328 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4329 }
4330 
4331 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4332 			    struct netlink_ext_ack *extack)
4333 {
4334 	bool need_update, running = netif_running(dev);
4335 	struct mvneta_port *pp = netdev_priv(dev);
4336 	struct bpf_prog *old_prog;
4337 
4338 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4339 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4340 		return -EOPNOTSUPP;
4341 	}
4342 
4343 	if (pp->bm_priv) {
4344 		NL_SET_ERR_MSG_MOD(extack,
4345 				   "Hardware Buffer Management not supported on XDP");
4346 		return -EOPNOTSUPP;
4347 	}
4348 
4349 	need_update = !!pp->xdp_prog != !!prog;
4350 	if (running && need_update)
4351 		mvneta_stop(dev);
4352 
4353 	old_prog = xchg(&pp->xdp_prog, prog);
4354 	if (old_prog)
4355 		bpf_prog_put(old_prog);
4356 
4357 	if (running && need_update)
4358 		return mvneta_open(dev);
4359 
4360 	return 0;
4361 }
4362 
4363 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4364 {
4365 	struct mvneta_port *pp = netdev_priv(dev);
4366 
4367 	switch (xdp->command) {
4368 	case XDP_SETUP_PROG:
4369 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4370 	case XDP_QUERY_PROG:
4371 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4372 		return 0;
4373 	default:
4374 		return -EINVAL;
4375 	}
4376 }
4377 
4378 /* Ethtool methods */
4379 
4380 /* Set link ksettings (phy address, speed) for ethtools */
4381 static int
4382 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4383 				  const struct ethtool_link_ksettings *cmd)
4384 {
4385 	struct mvneta_port *pp = netdev_priv(ndev);
4386 
4387 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4388 }
4389 
4390 /* Get link ksettings for ethtools */
4391 static int
4392 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4393 				  struct ethtool_link_ksettings *cmd)
4394 {
4395 	struct mvneta_port *pp = netdev_priv(ndev);
4396 
4397 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4398 }
4399 
4400 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4401 {
4402 	struct mvneta_port *pp = netdev_priv(dev);
4403 
4404 	return phylink_ethtool_nway_reset(pp->phylink);
4405 }
4406 
4407 /* Set interrupt coalescing for ethtools */
4408 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4409 				       struct ethtool_coalesce *c)
4410 {
4411 	struct mvneta_port *pp = netdev_priv(dev);
4412 	int queue;
4413 
4414 	for (queue = 0; queue < rxq_number; queue++) {
4415 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4416 		rxq->time_coal = c->rx_coalesce_usecs;
4417 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4418 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4419 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4420 	}
4421 
4422 	for (queue = 0; queue < txq_number; queue++) {
4423 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4424 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4425 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 /* get coalescing for ethtools */
4432 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4433 				       struct ethtool_coalesce *c)
4434 {
4435 	struct mvneta_port *pp = netdev_priv(dev);
4436 
4437 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4438 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4439 
4440 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4441 	return 0;
4442 }
4443 
4444 
4445 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4446 				    struct ethtool_drvinfo *drvinfo)
4447 {
4448 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4449 		sizeof(drvinfo->driver));
4450 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4451 		sizeof(drvinfo->version));
4452 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4453 		sizeof(drvinfo->bus_info));
4454 }
4455 
4456 
4457 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4458 					 struct ethtool_ringparam *ring)
4459 {
4460 	struct mvneta_port *pp = netdev_priv(netdev);
4461 
4462 	ring->rx_max_pending = MVNETA_MAX_RXD;
4463 	ring->tx_max_pending = MVNETA_MAX_TXD;
4464 	ring->rx_pending = pp->rx_ring_size;
4465 	ring->tx_pending = pp->tx_ring_size;
4466 }
4467 
4468 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4469 					struct ethtool_ringparam *ring)
4470 {
4471 	struct mvneta_port *pp = netdev_priv(dev);
4472 
4473 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4474 		return -EINVAL;
4475 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4476 		ring->rx_pending : MVNETA_MAX_RXD;
4477 
4478 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4479 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4480 	if (pp->tx_ring_size != ring->tx_pending)
4481 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4482 			    pp->tx_ring_size, ring->tx_pending);
4483 
4484 	if (netif_running(dev)) {
4485 		mvneta_stop(dev);
4486 		if (mvneta_open(dev)) {
4487 			netdev_err(dev,
4488 				   "error on opening device after ring param change\n");
4489 			return -ENOMEM;
4490 		}
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4497 					  struct ethtool_pauseparam *pause)
4498 {
4499 	struct mvneta_port *pp = netdev_priv(dev);
4500 
4501 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4502 }
4503 
4504 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4505 					 struct ethtool_pauseparam *pause)
4506 {
4507 	struct mvneta_port *pp = netdev_priv(dev);
4508 
4509 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4510 }
4511 
4512 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4513 				       u8 *data)
4514 {
4515 	if (sset == ETH_SS_STATS) {
4516 		int i;
4517 
4518 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4519 			memcpy(data + i * ETH_GSTRING_LEN,
4520 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4521 	}
4522 }
4523 
4524 static void
4525 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4526 				 struct mvneta_ethtool_stats *es)
4527 {
4528 	unsigned int start;
4529 	int cpu;
4530 
4531 	for_each_possible_cpu(cpu) {
4532 		struct mvneta_pcpu_stats *stats;
4533 		u64 skb_alloc_error;
4534 		u64 refill_error;
4535 		u64 xdp_redirect;
4536 		u64 xdp_xmit_err;
4537 		u64 xdp_tx_err;
4538 		u64 xdp_pass;
4539 		u64 xdp_drop;
4540 		u64 xdp_xmit;
4541 		u64 xdp_tx;
4542 
4543 		stats = per_cpu_ptr(pp->stats, cpu);
4544 		do {
4545 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4546 			skb_alloc_error = stats->es.skb_alloc_error;
4547 			refill_error = stats->es.refill_error;
4548 			xdp_redirect = stats->es.ps.xdp_redirect;
4549 			xdp_pass = stats->es.ps.xdp_pass;
4550 			xdp_drop = stats->es.ps.xdp_drop;
4551 			xdp_xmit = stats->es.ps.xdp_xmit;
4552 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4553 			xdp_tx = stats->es.ps.xdp_tx;
4554 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4555 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4556 
4557 		es->skb_alloc_error += skb_alloc_error;
4558 		es->refill_error += refill_error;
4559 		es->ps.xdp_redirect += xdp_redirect;
4560 		es->ps.xdp_pass += xdp_pass;
4561 		es->ps.xdp_drop += xdp_drop;
4562 		es->ps.xdp_xmit += xdp_xmit;
4563 		es->ps.xdp_xmit_err += xdp_xmit_err;
4564 		es->ps.xdp_tx += xdp_tx;
4565 		es->ps.xdp_tx_err += xdp_tx_err;
4566 	}
4567 }
4568 
4569 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4570 {
4571 	struct mvneta_ethtool_stats stats = {};
4572 	const struct mvneta_statistic *s;
4573 	void __iomem *base = pp->base;
4574 	u32 high, low;
4575 	u64 val;
4576 	int i;
4577 
4578 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4579 	for (i = 0, s = mvneta_statistics;
4580 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4581 	     s++, i++) {
4582 		switch (s->type) {
4583 		case T_REG_32:
4584 			val = readl_relaxed(base + s->offset);
4585 			pp->ethtool_stats[i] += val;
4586 			break;
4587 		case T_REG_64:
4588 			/* Docs say to read low 32-bit then high */
4589 			low = readl_relaxed(base + s->offset);
4590 			high = readl_relaxed(base + s->offset + 4);
4591 			val = (u64)high << 32 | low;
4592 			pp->ethtool_stats[i] += val;
4593 			break;
4594 		case T_SW:
4595 			switch (s->offset) {
4596 			case ETHTOOL_STAT_EEE_WAKEUP:
4597 				val = phylink_get_eee_err(pp->phylink);
4598 				pp->ethtool_stats[i] += val;
4599 				break;
4600 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4601 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4602 				break;
4603 			case ETHTOOL_STAT_REFILL_ERR:
4604 				pp->ethtool_stats[i] = stats.refill_error;
4605 				break;
4606 			case ETHTOOL_XDP_REDIRECT:
4607 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4608 				break;
4609 			case ETHTOOL_XDP_PASS:
4610 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4611 				break;
4612 			case ETHTOOL_XDP_DROP:
4613 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4614 				break;
4615 			case ETHTOOL_XDP_TX:
4616 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4617 				break;
4618 			case ETHTOOL_XDP_TX_ERR:
4619 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4620 				break;
4621 			case ETHTOOL_XDP_XMIT:
4622 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4623 				break;
4624 			case ETHTOOL_XDP_XMIT_ERR:
4625 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4626 				break;
4627 			}
4628 			break;
4629 		}
4630 	}
4631 }
4632 
4633 static void mvneta_ethtool_get_stats(struct net_device *dev,
4634 				     struct ethtool_stats *stats, u64 *data)
4635 {
4636 	struct mvneta_port *pp = netdev_priv(dev);
4637 	int i;
4638 
4639 	mvneta_ethtool_update_stats(pp);
4640 
4641 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4642 		*data++ = pp->ethtool_stats[i];
4643 }
4644 
4645 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4646 {
4647 	if (sset == ETH_SS_STATS)
4648 		return ARRAY_SIZE(mvneta_statistics);
4649 	return -EOPNOTSUPP;
4650 }
4651 
4652 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4653 {
4654 	return MVNETA_RSS_LU_TABLE_SIZE;
4655 }
4656 
4657 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4658 				    struct ethtool_rxnfc *info,
4659 				    u32 *rules __always_unused)
4660 {
4661 	switch (info->cmd) {
4662 	case ETHTOOL_GRXRINGS:
4663 		info->data =  rxq_number;
4664 		return 0;
4665 	case ETHTOOL_GRXFH:
4666 		return -EOPNOTSUPP;
4667 	default:
4668 		return -EOPNOTSUPP;
4669 	}
4670 }
4671 
4672 static int  mvneta_config_rss(struct mvneta_port *pp)
4673 {
4674 	int cpu;
4675 	u32 val;
4676 
4677 	netif_tx_stop_all_queues(pp->dev);
4678 
4679 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4680 
4681 	if (!pp->neta_armada3700) {
4682 		/* We have to synchronise on the napi of each CPU */
4683 		for_each_online_cpu(cpu) {
4684 			struct mvneta_pcpu_port *pcpu_port =
4685 				per_cpu_ptr(pp->ports, cpu);
4686 
4687 			napi_synchronize(&pcpu_port->napi);
4688 			napi_disable(&pcpu_port->napi);
4689 		}
4690 	} else {
4691 		napi_synchronize(&pp->napi);
4692 		napi_disable(&pp->napi);
4693 	}
4694 
4695 	pp->rxq_def = pp->indir[0];
4696 
4697 	/* Update unicast mapping */
4698 	mvneta_set_rx_mode(pp->dev);
4699 
4700 	/* Update val of portCfg register accordingly with all RxQueue types */
4701 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4702 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4703 
4704 	/* Update the elected CPU matching the new rxq_def */
4705 	spin_lock(&pp->lock);
4706 	mvneta_percpu_elect(pp);
4707 	spin_unlock(&pp->lock);
4708 
4709 	if (!pp->neta_armada3700) {
4710 		/* We have to synchronise on the napi of each CPU */
4711 		for_each_online_cpu(cpu) {
4712 			struct mvneta_pcpu_port *pcpu_port =
4713 				per_cpu_ptr(pp->ports, cpu);
4714 
4715 			napi_enable(&pcpu_port->napi);
4716 		}
4717 	} else {
4718 		napi_enable(&pp->napi);
4719 	}
4720 
4721 	netif_tx_start_all_queues(pp->dev);
4722 
4723 	return 0;
4724 }
4725 
4726 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4727 				   const u8 *key, const u8 hfunc)
4728 {
4729 	struct mvneta_port *pp = netdev_priv(dev);
4730 
4731 	/* Current code for Armada 3700 doesn't support RSS features yet */
4732 	if (pp->neta_armada3700)
4733 		return -EOPNOTSUPP;
4734 
4735 	/* We require at least one supported parameter to be changed
4736 	 * and no change in any of the unsupported parameters
4737 	 */
4738 	if (key ||
4739 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4740 		return -EOPNOTSUPP;
4741 
4742 	if (!indir)
4743 		return 0;
4744 
4745 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4746 
4747 	return mvneta_config_rss(pp);
4748 }
4749 
4750 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4751 				   u8 *hfunc)
4752 {
4753 	struct mvneta_port *pp = netdev_priv(dev);
4754 
4755 	/* Current code for Armada 3700 doesn't support RSS features yet */
4756 	if (pp->neta_armada3700)
4757 		return -EOPNOTSUPP;
4758 
4759 	if (hfunc)
4760 		*hfunc = ETH_RSS_HASH_TOP;
4761 
4762 	if (!indir)
4763 		return 0;
4764 
4765 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4766 
4767 	return 0;
4768 }
4769 
4770 static void mvneta_ethtool_get_wol(struct net_device *dev,
4771 				   struct ethtool_wolinfo *wol)
4772 {
4773 	struct mvneta_port *pp = netdev_priv(dev);
4774 
4775 	phylink_ethtool_get_wol(pp->phylink, wol);
4776 }
4777 
4778 static int mvneta_ethtool_set_wol(struct net_device *dev,
4779 				  struct ethtool_wolinfo *wol)
4780 {
4781 	struct mvneta_port *pp = netdev_priv(dev);
4782 	int ret;
4783 
4784 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4785 	if (!ret)
4786 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4787 
4788 	return ret;
4789 }
4790 
4791 static int mvneta_ethtool_get_eee(struct net_device *dev,
4792 				  struct ethtool_eee *eee)
4793 {
4794 	struct mvneta_port *pp = netdev_priv(dev);
4795 	u32 lpi_ctl0;
4796 
4797 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4798 
4799 	eee->eee_enabled = pp->eee_enabled;
4800 	eee->eee_active = pp->eee_active;
4801 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4802 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4803 
4804 	return phylink_ethtool_get_eee(pp->phylink, eee);
4805 }
4806 
4807 static int mvneta_ethtool_set_eee(struct net_device *dev,
4808 				  struct ethtool_eee *eee)
4809 {
4810 	struct mvneta_port *pp = netdev_priv(dev);
4811 	u32 lpi_ctl0;
4812 
4813 	/* The Armada 37x documents do not give limits for this other than
4814 	 * it being an 8-bit register. */
4815 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4816 		return -EINVAL;
4817 
4818 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4819 	lpi_ctl0 &= ~(0xff << 8);
4820 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4821 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4822 
4823 	pp->eee_enabled = eee->eee_enabled;
4824 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4825 
4826 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4827 
4828 	return phylink_ethtool_set_eee(pp->phylink, eee);
4829 }
4830 
4831 static const struct net_device_ops mvneta_netdev_ops = {
4832 	.ndo_open            = mvneta_open,
4833 	.ndo_stop            = mvneta_stop,
4834 	.ndo_start_xmit      = mvneta_tx,
4835 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4836 	.ndo_set_mac_address = mvneta_set_mac_addr,
4837 	.ndo_change_mtu      = mvneta_change_mtu,
4838 	.ndo_fix_features    = mvneta_fix_features,
4839 	.ndo_get_stats64     = mvneta_get_stats64,
4840 	.ndo_do_ioctl        = mvneta_ioctl,
4841 	.ndo_bpf	     = mvneta_xdp,
4842 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4843 };
4844 
4845 static const struct ethtool_ops mvneta_eth_tool_ops = {
4846 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4847 				     ETHTOOL_COALESCE_MAX_FRAMES,
4848 	.nway_reset	= mvneta_ethtool_nway_reset,
4849 	.get_link       = ethtool_op_get_link,
4850 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4851 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4852 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4853 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4854 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4855 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4856 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4857 	.get_strings	= mvneta_ethtool_get_strings,
4858 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4859 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4860 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4861 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4862 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4863 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4864 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4865 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4866 	.get_wol        = mvneta_ethtool_get_wol,
4867 	.set_wol        = mvneta_ethtool_set_wol,
4868 	.get_eee	= mvneta_ethtool_get_eee,
4869 	.set_eee	= mvneta_ethtool_set_eee,
4870 };
4871 
4872 /* Initialize hw */
4873 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4874 {
4875 	int queue;
4876 
4877 	/* Disable port */
4878 	mvneta_port_disable(pp);
4879 
4880 	/* Set port default values */
4881 	mvneta_defaults_set(pp);
4882 
4883 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4884 	if (!pp->txqs)
4885 		return -ENOMEM;
4886 
4887 	/* Initialize TX descriptor rings */
4888 	for (queue = 0; queue < txq_number; queue++) {
4889 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4890 		txq->id = queue;
4891 		txq->size = pp->tx_ring_size;
4892 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4893 	}
4894 
4895 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4896 	if (!pp->rxqs)
4897 		return -ENOMEM;
4898 
4899 	/* Create Rx descriptor rings */
4900 	for (queue = 0; queue < rxq_number; queue++) {
4901 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4902 		rxq->id = queue;
4903 		rxq->size = pp->rx_ring_size;
4904 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4905 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4906 		rxq->buf_virt_addr
4907 			= devm_kmalloc_array(pp->dev->dev.parent,
4908 					     rxq->size,
4909 					     sizeof(*rxq->buf_virt_addr),
4910 					     GFP_KERNEL);
4911 		if (!rxq->buf_virt_addr)
4912 			return -ENOMEM;
4913 	}
4914 
4915 	return 0;
4916 }
4917 
4918 /* platform glue : initialize decoding windows */
4919 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4920 				     const struct mbus_dram_target_info *dram)
4921 {
4922 	u32 win_enable;
4923 	u32 win_protect;
4924 	int i;
4925 
4926 	for (i = 0; i < 6; i++) {
4927 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4928 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4929 
4930 		if (i < 4)
4931 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4932 	}
4933 
4934 	win_enable = 0x3f;
4935 	win_protect = 0;
4936 
4937 	if (dram) {
4938 		for (i = 0; i < dram->num_cs; i++) {
4939 			const struct mbus_dram_window *cs = dram->cs + i;
4940 
4941 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4942 				    (cs->base & 0xffff0000) |
4943 				    (cs->mbus_attr << 8) |
4944 				    dram->mbus_dram_target_id);
4945 
4946 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4947 				    (cs->size - 1) & 0xffff0000);
4948 
4949 			win_enable &= ~(1 << i);
4950 			win_protect |= 3 << (2 * i);
4951 		}
4952 	} else {
4953 		/* For Armada3700 open default 4GB Mbus window, leaving
4954 		 * arbitration of target/attribute to a different layer
4955 		 * of configuration.
4956 		 */
4957 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4958 		win_enable &= ~BIT(0);
4959 		win_protect = 3;
4960 	}
4961 
4962 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4963 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4964 }
4965 
4966 /* Power up the port */
4967 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4968 {
4969 	/* MAC Cause register should be cleared */
4970 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4971 
4972 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4973 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4974 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4975 		 phy_interface_mode_is_8023z(phy_mode))
4976 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4977 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4978 		return -EINVAL;
4979 
4980 	return 0;
4981 }
4982 
4983 /* Device initialization routine */
4984 static int mvneta_probe(struct platform_device *pdev)
4985 {
4986 	struct device_node *dn = pdev->dev.of_node;
4987 	struct device_node *bm_node;
4988 	struct mvneta_port *pp;
4989 	struct net_device *dev;
4990 	struct phylink *phylink;
4991 	struct phy *comphy;
4992 	const char *dt_mac_addr;
4993 	char hw_mac_addr[ETH_ALEN];
4994 	phy_interface_t phy_mode;
4995 	const char *mac_from;
4996 	int tx_csum_limit;
4997 	int err;
4998 	int cpu;
4999 
5000 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5001 				      txq_number, rxq_number);
5002 	if (!dev)
5003 		return -ENOMEM;
5004 
5005 	dev->irq = irq_of_parse_and_map(dn, 0);
5006 	if (dev->irq == 0)
5007 		return -EINVAL;
5008 
5009 	err = of_get_phy_mode(dn, &phy_mode);
5010 	if (err) {
5011 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5012 		goto err_free_irq;
5013 	}
5014 
5015 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5016 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5017 		err = -EPROBE_DEFER;
5018 		goto err_free_irq;
5019 	} else if (IS_ERR(comphy)) {
5020 		comphy = NULL;
5021 	}
5022 
5023 	pp = netdev_priv(dev);
5024 	spin_lock_init(&pp->lock);
5025 
5026 	pp->phylink_config.dev = &dev->dev;
5027 	pp->phylink_config.type = PHYLINK_NETDEV;
5028 
5029 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5030 				 phy_mode, &mvneta_phylink_ops);
5031 	if (IS_ERR(phylink)) {
5032 		err = PTR_ERR(phylink);
5033 		goto err_free_irq;
5034 	}
5035 
5036 	dev->tx_queue_len = MVNETA_MAX_TXD;
5037 	dev->watchdog_timeo = 5 * HZ;
5038 	dev->netdev_ops = &mvneta_netdev_ops;
5039 
5040 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5041 
5042 	pp->phylink = phylink;
5043 	pp->comphy = comphy;
5044 	pp->phy_interface = phy_mode;
5045 	pp->dn = dn;
5046 
5047 	pp->rxq_def = rxq_def;
5048 	pp->indir[0] = rxq_def;
5049 
5050 	/* Get special SoC configurations */
5051 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5052 		pp->neta_armada3700 = true;
5053 
5054 	pp->clk = devm_clk_get(&pdev->dev, "core");
5055 	if (IS_ERR(pp->clk))
5056 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5057 	if (IS_ERR(pp->clk)) {
5058 		err = PTR_ERR(pp->clk);
5059 		goto err_free_phylink;
5060 	}
5061 
5062 	clk_prepare_enable(pp->clk);
5063 
5064 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5065 	if (!IS_ERR(pp->clk_bus))
5066 		clk_prepare_enable(pp->clk_bus);
5067 
5068 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5069 	if (IS_ERR(pp->base)) {
5070 		err = PTR_ERR(pp->base);
5071 		goto err_clk;
5072 	}
5073 
5074 	/* Alloc per-cpu port structure */
5075 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5076 	if (!pp->ports) {
5077 		err = -ENOMEM;
5078 		goto err_clk;
5079 	}
5080 
5081 	/* Alloc per-cpu stats */
5082 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5083 	if (!pp->stats) {
5084 		err = -ENOMEM;
5085 		goto err_free_ports;
5086 	}
5087 
5088 	dt_mac_addr = of_get_mac_address(dn);
5089 	if (!IS_ERR(dt_mac_addr)) {
5090 		mac_from = "device tree";
5091 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5092 	} else {
5093 		mvneta_get_mac_addr(pp, hw_mac_addr);
5094 		if (is_valid_ether_addr(hw_mac_addr)) {
5095 			mac_from = "hardware";
5096 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5097 		} else {
5098 			mac_from = "random";
5099 			eth_hw_addr_random(dev);
5100 		}
5101 	}
5102 
5103 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5104 		if (tx_csum_limit < 0 ||
5105 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5106 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5107 			dev_info(&pdev->dev,
5108 				 "Wrong TX csum limit in DT, set to %dB\n",
5109 				 MVNETA_TX_CSUM_DEF_SIZE);
5110 		}
5111 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5112 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5113 	} else {
5114 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5115 	}
5116 
5117 	pp->tx_csum_limit = tx_csum_limit;
5118 
5119 	pp->dram_target_info = mv_mbus_dram_info();
5120 	/* Armada3700 requires setting default configuration of Mbus
5121 	 * windows, however without using filled mbus_dram_target_info
5122 	 * structure.
5123 	 */
5124 	if (pp->dram_target_info || pp->neta_armada3700)
5125 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5126 
5127 	pp->tx_ring_size = MVNETA_MAX_TXD;
5128 	pp->rx_ring_size = MVNETA_MAX_RXD;
5129 
5130 	pp->dev = dev;
5131 	SET_NETDEV_DEV(dev, &pdev->dev);
5132 
5133 	pp->id = global_port_id++;
5134 
5135 	/* Obtain access to BM resources if enabled and already initialized */
5136 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5137 	if (bm_node) {
5138 		pp->bm_priv = mvneta_bm_get(bm_node);
5139 		if (pp->bm_priv) {
5140 			err = mvneta_bm_port_init(pdev, pp);
5141 			if (err < 0) {
5142 				dev_info(&pdev->dev,
5143 					 "use SW buffer management\n");
5144 				mvneta_bm_put(pp->bm_priv);
5145 				pp->bm_priv = NULL;
5146 			}
5147 		}
5148 		/* Set RX packet offset correction for platforms, whose
5149 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5150 		 * platforms and 0B for 32-bit ones.
5151 		 */
5152 		pp->rx_offset_correction = max(0,
5153 					       NET_SKB_PAD -
5154 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5155 	}
5156 	of_node_put(bm_node);
5157 
5158 	/* sw buffer management */
5159 	if (!pp->bm_priv)
5160 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5161 
5162 	err = mvneta_init(&pdev->dev, pp);
5163 	if (err < 0)
5164 		goto err_netdev;
5165 
5166 	err = mvneta_port_power_up(pp, phy_mode);
5167 	if (err < 0) {
5168 		dev_err(&pdev->dev, "can't power up port\n");
5169 		goto err_netdev;
5170 	}
5171 
5172 	/* Armada3700 network controller does not support per-cpu
5173 	 * operation, so only single NAPI should be initialized.
5174 	 */
5175 	if (pp->neta_armada3700) {
5176 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5177 	} else {
5178 		for_each_present_cpu(cpu) {
5179 			struct mvneta_pcpu_port *port =
5180 				per_cpu_ptr(pp->ports, cpu);
5181 
5182 			netif_napi_add(dev, &port->napi, mvneta_poll,
5183 				       NAPI_POLL_WEIGHT);
5184 			port->pp = pp;
5185 		}
5186 	}
5187 
5188 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5189 			NETIF_F_TSO | NETIF_F_RXCSUM;
5190 	dev->hw_features |= dev->features;
5191 	dev->vlan_features |= dev->features;
5192 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5193 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5194 
5195 	/* MTU range: 68 - 9676 */
5196 	dev->min_mtu = ETH_MIN_MTU;
5197 	/* 9676 == 9700 - 20 and rounding to 8 */
5198 	dev->max_mtu = 9676;
5199 
5200 	err = register_netdev(dev);
5201 	if (err < 0) {
5202 		dev_err(&pdev->dev, "failed to register\n");
5203 		goto err_netdev;
5204 	}
5205 
5206 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5207 		    dev->dev_addr);
5208 
5209 	platform_set_drvdata(pdev, pp->dev);
5210 
5211 	return 0;
5212 
5213 err_netdev:
5214 	if (pp->bm_priv) {
5215 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5216 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5217 				       1 << pp->id);
5218 		mvneta_bm_put(pp->bm_priv);
5219 	}
5220 	free_percpu(pp->stats);
5221 err_free_ports:
5222 	free_percpu(pp->ports);
5223 err_clk:
5224 	clk_disable_unprepare(pp->clk_bus);
5225 	clk_disable_unprepare(pp->clk);
5226 err_free_phylink:
5227 	if (pp->phylink)
5228 		phylink_destroy(pp->phylink);
5229 err_free_irq:
5230 	irq_dispose_mapping(dev->irq);
5231 	return err;
5232 }
5233 
5234 /* Device removal routine */
5235 static int mvneta_remove(struct platform_device *pdev)
5236 {
5237 	struct net_device  *dev = platform_get_drvdata(pdev);
5238 	struct mvneta_port *pp = netdev_priv(dev);
5239 
5240 	unregister_netdev(dev);
5241 	clk_disable_unprepare(pp->clk_bus);
5242 	clk_disable_unprepare(pp->clk);
5243 	free_percpu(pp->ports);
5244 	free_percpu(pp->stats);
5245 	irq_dispose_mapping(dev->irq);
5246 	phylink_destroy(pp->phylink);
5247 
5248 	if (pp->bm_priv) {
5249 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5250 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5251 				       1 << pp->id);
5252 		mvneta_bm_put(pp->bm_priv);
5253 	}
5254 
5255 	return 0;
5256 }
5257 
5258 #ifdef CONFIG_PM_SLEEP
5259 static int mvneta_suspend(struct device *device)
5260 {
5261 	int queue;
5262 	struct net_device *dev = dev_get_drvdata(device);
5263 	struct mvneta_port *pp = netdev_priv(dev);
5264 
5265 	if (!netif_running(dev))
5266 		goto clean_exit;
5267 
5268 	if (!pp->neta_armada3700) {
5269 		spin_lock(&pp->lock);
5270 		pp->is_stopped = true;
5271 		spin_unlock(&pp->lock);
5272 
5273 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5274 						    &pp->node_online);
5275 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5276 						    &pp->node_dead);
5277 	}
5278 
5279 	rtnl_lock();
5280 	mvneta_stop_dev(pp);
5281 	rtnl_unlock();
5282 
5283 	for (queue = 0; queue < rxq_number; queue++) {
5284 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5285 
5286 		mvneta_rxq_drop_pkts(pp, rxq);
5287 	}
5288 
5289 	for (queue = 0; queue < txq_number; queue++) {
5290 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5291 
5292 		mvneta_txq_hw_deinit(pp, txq);
5293 	}
5294 
5295 clean_exit:
5296 	netif_device_detach(dev);
5297 	clk_disable_unprepare(pp->clk_bus);
5298 	clk_disable_unprepare(pp->clk);
5299 
5300 	return 0;
5301 }
5302 
5303 static int mvneta_resume(struct device *device)
5304 {
5305 	struct platform_device *pdev = to_platform_device(device);
5306 	struct net_device *dev = dev_get_drvdata(device);
5307 	struct mvneta_port *pp = netdev_priv(dev);
5308 	int err, queue;
5309 
5310 	clk_prepare_enable(pp->clk);
5311 	if (!IS_ERR(pp->clk_bus))
5312 		clk_prepare_enable(pp->clk_bus);
5313 	if (pp->dram_target_info || pp->neta_armada3700)
5314 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5315 	if (pp->bm_priv) {
5316 		err = mvneta_bm_port_init(pdev, pp);
5317 		if (err < 0) {
5318 			dev_info(&pdev->dev, "use SW buffer management\n");
5319 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5320 			pp->bm_priv = NULL;
5321 		}
5322 	}
5323 	mvneta_defaults_set(pp);
5324 	err = mvneta_port_power_up(pp, pp->phy_interface);
5325 	if (err < 0) {
5326 		dev_err(device, "can't power up port\n");
5327 		return err;
5328 	}
5329 
5330 	netif_device_attach(dev);
5331 
5332 	if (!netif_running(dev))
5333 		return 0;
5334 
5335 	for (queue = 0; queue < rxq_number; queue++) {
5336 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5337 
5338 		rxq->next_desc_to_proc = 0;
5339 		mvneta_rxq_hw_init(pp, rxq);
5340 	}
5341 
5342 	for (queue = 0; queue < txq_number; queue++) {
5343 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5344 
5345 		txq->next_desc_to_proc = 0;
5346 		mvneta_txq_hw_init(pp, txq);
5347 	}
5348 
5349 	if (!pp->neta_armada3700) {
5350 		spin_lock(&pp->lock);
5351 		pp->is_stopped = false;
5352 		spin_unlock(&pp->lock);
5353 		cpuhp_state_add_instance_nocalls(online_hpstate,
5354 						 &pp->node_online);
5355 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5356 						 &pp->node_dead);
5357 	}
5358 
5359 	rtnl_lock();
5360 	mvneta_start_dev(pp);
5361 	rtnl_unlock();
5362 	mvneta_set_rx_mode(dev);
5363 
5364 	return 0;
5365 }
5366 #endif
5367 
5368 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5369 
5370 static const struct of_device_id mvneta_match[] = {
5371 	{ .compatible = "marvell,armada-370-neta" },
5372 	{ .compatible = "marvell,armada-xp-neta" },
5373 	{ .compatible = "marvell,armada-3700-neta" },
5374 	{ }
5375 };
5376 MODULE_DEVICE_TABLE(of, mvneta_match);
5377 
5378 static struct platform_driver mvneta_driver = {
5379 	.probe = mvneta_probe,
5380 	.remove = mvneta_remove,
5381 	.driver = {
5382 		.name = MVNETA_DRIVER_NAME,
5383 		.of_match_table = mvneta_match,
5384 		.pm = &mvneta_pm_ops,
5385 	},
5386 };
5387 
5388 static int __init mvneta_driver_init(void)
5389 {
5390 	int ret;
5391 
5392 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5393 				      mvneta_cpu_online,
5394 				      mvneta_cpu_down_prepare);
5395 	if (ret < 0)
5396 		goto out;
5397 	online_hpstate = ret;
5398 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5399 				      NULL, mvneta_cpu_dead);
5400 	if (ret)
5401 		goto err_dead;
5402 
5403 	ret = platform_driver_register(&mvneta_driver);
5404 	if (ret)
5405 		goto err;
5406 	return 0;
5407 
5408 err:
5409 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5410 err_dead:
5411 	cpuhp_remove_multi_state(online_hpstate);
5412 out:
5413 	return ret;
5414 }
5415 module_init(mvneta_driver_init);
5416 
5417 static void __exit mvneta_driver_exit(void)
5418 {
5419 	platform_driver_unregister(&mvneta_driver);
5420 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5421 	cpuhp_remove_multi_state(online_hpstate);
5422 }
5423 module_exit(mvneta_driver_exit);
5424 
5425 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5426 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5427 MODULE_LICENSE("GPL");
5428 
5429 module_param(rxq_number, int, 0444);
5430 module_param(txq_number, int, 0444);
5431 
5432 module_param(rxq_def, int, 0444);
5433 module_param(rx_copybreak, int, 0644);
5434