1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 /* Driver assumes that the last 3 bits are 0 */ 328 #define MVNETA_SKB_HEADROOM (max(XDP_PACKET_HEADROOM, NET_SKB_PAD) & ~0x7) 329 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 330 MVNETA_SKB_HEADROOM)) 331 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 332 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 333 334 #define IS_TSO_HEADER(txq, addr) \ 335 ((addr >= txq->tso_hdrs_phys) && \ 336 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 337 338 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 339 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 340 341 enum { 342 ETHTOOL_STAT_EEE_WAKEUP, 343 ETHTOOL_STAT_SKB_ALLOC_ERR, 344 ETHTOOL_STAT_REFILL_ERR, 345 ETHTOOL_XDP_REDIRECT, 346 ETHTOOL_XDP_PASS, 347 ETHTOOL_XDP_DROP, 348 ETHTOOL_XDP_TX, 349 ETHTOOL_XDP_TX_ERR, 350 ETHTOOL_XDP_XMIT, 351 ETHTOOL_XDP_XMIT_ERR, 352 ETHTOOL_MAX_STATS, 353 }; 354 355 struct mvneta_statistic { 356 unsigned short offset; 357 unsigned short type; 358 const char name[ETH_GSTRING_LEN]; 359 }; 360 361 #define T_REG_32 32 362 #define T_REG_64 64 363 #define T_SW 1 364 365 #define MVNETA_XDP_PASS 0 366 #define MVNETA_XDP_DROPPED BIT(0) 367 #define MVNETA_XDP_TX BIT(1) 368 #define MVNETA_XDP_REDIR BIT(2) 369 370 static const struct mvneta_statistic mvneta_statistics[] = { 371 { 0x3000, T_REG_64, "good_octets_received", }, 372 { 0x3010, T_REG_32, "good_frames_received", }, 373 { 0x3008, T_REG_32, "bad_octets_received", }, 374 { 0x3014, T_REG_32, "bad_frames_received", }, 375 { 0x3018, T_REG_32, "broadcast_frames_received", }, 376 { 0x301c, T_REG_32, "multicast_frames_received", }, 377 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 378 { 0x3058, T_REG_32, "good_fc_received", }, 379 { 0x305c, T_REG_32, "bad_fc_received", }, 380 { 0x3060, T_REG_32, "undersize_received", }, 381 { 0x3064, T_REG_32, "fragments_received", }, 382 { 0x3068, T_REG_32, "oversize_received", }, 383 { 0x306c, T_REG_32, "jabber_received", }, 384 { 0x3070, T_REG_32, "mac_receive_error", }, 385 { 0x3074, T_REG_32, "bad_crc_event", }, 386 { 0x3078, T_REG_32, "collision", }, 387 { 0x307c, T_REG_32, "late_collision", }, 388 { 0x2484, T_REG_32, "rx_discard", }, 389 { 0x2488, T_REG_32, "rx_overrun", }, 390 { 0x3020, T_REG_32, "frames_64_octets", }, 391 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 392 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 393 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 394 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 395 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 396 { 0x3038, T_REG_64, "good_octets_sent", }, 397 { 0x3040, T_REG_32, "good_frames_sent", }, 398 { 0x3044, T_REG_32, "excessive_collision", }, 399 { 0x3048, T_REG_32, "multicast_frames_sent", }, 400 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 401 { 0x3054, T_REG_32, "fc_sent", }, 402 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 403 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 404 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 405 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 406 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 407 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 408 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 409 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 410 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 411 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 412 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 413 }; 414 415 struct mvneta_stats { 416 u64 rx_packets; 417 u64 rx_bytes; 418 u64 tx_packets; 419 u64 tx_bytes; 420 /* xdp */ 421 u64 xdp_redirect; 422 u64 xdp_pass; 423 u64 xdp_drop; 424 u64 xdp_xmit; 425 u64 xdp_xmit_err; 426 u64 xdp_tx; 427 u64 xdp_tx_err; 428 }; 429 430 struct mvneta_ethtool_stats { 431 struct mvneta_stats ps; 432 u64 skb_alloc_error; 433 u64 refill_error; 434 }; 435 436 struct mvneta_pcpu_stats { 437 struct u64_stats_sync syncp; 438 439 struct mvneta_ethtool_stats es; 440 u64 rx_dropped; 441 u64 rx_errors; 442 }; 443 444 struct mvneta_pcpu_port { 445 /* Pointer to the shared port */ 446 struct mvneta_port *pp; 447 448 /* Pointer to the CPU-local NAPI struct */ 449 struct napi_struct napi; 450 451 /* Cause of the previous interrupt */ 452 u32 cause_rx_tx; 453 }; 454 455 struct mvneta_port { 456 u8 id; 457 struct mvneta_pcpu_port __percpu *ports; 458 struct mvneta_pcpu_stats __percpu *stats; 459 460 int pkt_size; 461 void __iomem *base; 462 struct mvneta_rx_queue *rxqs; 463 struct mvneta_tx_queue *txqs; 464 struct net_device *dev; 465 struct hlist_node node_online; 466 struct hlist_node node_dead; 467 int rxq_def; 468 /* Protect the access to the percpu interrupt registers, 469 * ensuring that the configuration remains coherent. 470 */ 471 spinlock_t lock; 472 bool is_stopped; 473 474 u32 cause_rx_tx; 475 struct napi_struct napi; 476 477 struct bpf_prog *xdp_prog; 478 479 /* Core clock */ 480 struct clk *clk; 481 /* AXI clock */ 482 struct clk *clk_bus; 483 u8 mcast_count[256]; 484 u16 tx_ring_size; 485 u16 rx_ring_size; 486 487 phy_interface_t phy_interface; 488 struct device_node *dn; 489 unsigned int tx_csum_limit; 490 struct phylink *phylink; 491 struct phylink_config phylink_config; 492 struct phy *comphy; 493 494 struct mvneta_bm *bm_priv; 495 struct mvneta_bm_pool *pool_long; 496 struct mvneta_bm_pool *pool_short; 497 int bm_win_id; 498 499 bool eee_enabled; 500 bool eee_active; 501 bool tx_lpi_enabled; 502 503 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 504 505 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 506 507 /* Flags for special SoC configurations */ 508 bool neta_armada3700; 509 u16 rx_offset_correction; 510 const struct mbus_dram_target_info *dram_target_info; 511 }; 512 513 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 514 * layout of the transmit and reception DMA descriptors, and their 515 * layout is therefore defined by the hardware design 516 */ 517 518 #define MVNETA_TX_L3_OFF_SHIFT 0 519 #define MVNETA_TX_IP_HLEN_SHIFT 8 520 #define MVNETA_TX_L4_UDP BIT(16) 521 #define MVNETA_TX_L3_IP6 BIT(17) 522 #define MVNETA_TXD_IP_CSUM BIT(18) 523 #define MVNETA_TXD_Z_PAD BIT(19) 524 #define MVNETA_TXD_L_DESC BIT(20) 525 #define MVNETA_TXD_F_DESC BIT(21) 526 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 527 MVNETA_TXD_L_DESC | \ 528 MVNETA_TXD_F_DESC) 529 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 530 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 531 532 #define MVNETA_RXD_ERR_CRC 0x0 533 #define MVNETA_RXD_BM_POOL_SHIFT 13 534 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 535 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 536 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 537 #define MVNETA_RXD_ERR_LEN BIT(18) 538 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 539 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 540 #define MVNETA_RXD_L3_IP4 BIT(25) 541 #define MVNETA_RXD_LAST_DESC BIT(26) 542 #define MVNETA_RXD_FIRST_DESC BIT(27) 543 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 544 MVNETA_RXD_LAST_DESC) 545 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 546 547 #if defined(__LITTLE_ENDIAN) 548 struct mvneta_tx_desc { 549 u32 command; /* Options used by HW for packet transmitting.*/ 550 u16 reserved1; /* csum_l4 (for future use) */ 551 u16 data_size; /* Data size of transmitted packet in bytes */ 552 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 553 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 554 u32 reserved3[4]; /* Reserved - (for future use) */ 555 }; 556 557 struct mvneta_rx_desc { 558 u32 status; /* Info about received packet */ 559 u16 reserved1; /* pnc_info - (for future use, PnC) */ 560 u16 data_size; /* Size of received packet in bytes */ 561 562 u32 buf_phys_addr; /* Physical address of the buffer */ 563 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 564 565 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 566 u16 reserved3; /* prefetch_cmd, for future use */ 567 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 568 569 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 570 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 571 }; 572 #else 573 struct mvneta_tx_desc { 574 u16 data_size; /* Data size of transmitted packet in bytes */ 575 u16 reserved1; /* csum_l4 (for future use) */ 576 u32 command; /* Options used by HW for packet transmitting.*/ 577 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 578 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 579 u32 reserved3[4]; /* Reserved - (for future use) */ 580 }; 581 582 struct mvneta_rx_desc { 583 u16 data_size; /* Size of received packet in bytes */ 584 u16 reserved1; /* pnc_info - (for future use, PnC) */ 585 u32 status; /* Info about received packet */ 586 587 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 588 u32 buf_phys_addr; /* Physical address of the buffer */ 589 590 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 591 u16 reserved3; /* prefetch_cmd, for future use */ 592 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 593 594 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 595 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 596 }; 597 #endif 598 599 enum mvneta_tx_buf_type { 600 MVNETA_TYPE_SKB, 601 MVNETA_TYPE_XDP_TX, 602 MVNETA_TYPE_XDP_NDO, 603 }; 604 605 struct mvneta_tx_buf { 606 enum mvneta_tx_buf_type type; 607 union { 608 struct xdp_frame *xdpf; 609 struct sk_buff *skb; 610 }; 611 }; 612 613 struct mvneta_tx_queue { 614 /* Number of this TX queue, in the range 0-7 */ 615 u8 id; 616 617 /* Number of TX DMA descriptors in the descriptor ring */ 618 int size; 619 620 /* Number of currently used TX DMA descriptor in the 621 * descriptor ring 622 */ 623 int count; 624 int pending; 625 int tx_stop_threshold; 626 int tx_wake_threshold; 627 628 /* Array of transmitted buffers */ 629 struct mvneta_tx_buf *buf; 630 631 /* Index of last TX DMA descriptor that was inserted */ 632 int txq_put_index; 633 634 /* Index of the TX DMA descriptor to be cleaned up */ 635 int txq_get_index; 636 637 u32 done_pkts_coal; 638 639 /* Virtual address of the TX DMA descriptors array */ 640 struct mvneta_tx_desc *descs; 641 642 /* DMA address of the TX DMA descriptors array */ 643 dma_addr_t descs_phys; 644 645 /* Index of the last TX DMA descriptor */ 646 int last_desc; 647 648 /* Index of the next TX DMA descriptor to process */ 649 int next_desc_to_proc; 650 651 /* DMA buffers for TSO headers */ 652 char *tso_hdrs; 653 654 /* DMA address of TSO headers */ 655 dma_addr_t tso_hdrs_phys; 656 657 /* Affinity mask for CPUs*/ 658 cpumask_t affinity_mask; 659 }; 660 661 struct mvneta_rx_queue { 662 /* rx queue number, in the range 0-7 */ 663 u8 id; 664 665 /* num of rx descriptors in the rx descriptor ring */ 666 int size; 667 668 u32 pkts_coal; 669 u32 time_coal; 670 671 /* page_pool */ 672 struct page_pool *page_pool; 673 struct xdp_rxq_info xdp_rxq; 674 675 /* Virtual address of the RX buffer */ 676 void **buf_virt_addr; 677 678 /* Virtual address of the RX DMA descriptors array */ 679 struct mvneta_rx_desc *descs; 680 681 /* DMA address of the RX DMA descriptors array */ 682 dma_addr_t descs_phys; 683 684 /* Index of the last RX DMA descriptor */ 685 int last_desc; 686 687 /* Index of the next RX DMA descriptor to process */ 688 int next_desc_to_proc; 689 690 /* Index of first RX DMA descriptor to refill */ 691 int first_to_refill; 692 u32 refill_num; 693 694 /* pointer to uncomplete skb buffer */ 695 struct sk_buff *skb; 696 int left_size; 697 }; 698 699 static enum cpuhp_state online_hpstate; 700 /* The hardware supports eight (8) rx queues, but we are only allowing 701 * the first one to be used. Therefore, let's just allocate one queue. 702 */ 703 static int rxq_number = 8; 704 static int txq_number = 8; 705 706 static int rxq_def; 707 708 static int rx_copybreak __read_mostly = 256; 709 710 /* HW BM need that each port be identify by a unique ID */ 711 static int global_port_id; 712 713 #define MVNETA_DRIVER_NAME "mvneta" 714 #define MVNETA_DRIVER_VERSION "1.0" 715 716 /* Utility/helper methods */ 717 718 /* Write helper method */ 719 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 720 { 721 writel(data, pp->base + offset); 722 } 723 724 /* Read helper method */ 725 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 726 { 727 return readl(pp->base + offset); 728 } 729 730 /* Increment txq get counter */ 731 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 732 { 733 txq->txq_get_index++; 734 if (txq->txq_get_index == txq->size) 735 txq->txq_get_index = 0; 736 } 737 738 /* Increment txq put counter */ 739 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 740 { 741 txq->txq_put_index++; 742 if (txq->txq_put_index == txq->size) 743 txq->txq_put_index = 0; 744 } 745 746 747 /* Clear all MIB counters */ 748 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 749 { 750 int i; 751 u32 dummy; 752 753 /* Perform dummy reads from MIB counters */ 754 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 755 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 756 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 757 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 758 } 759 760 /* Get System Network Statistics */ 761 static void 762 mvneta_get_stats64(struct net_device *dev, 763 struct rtnl_link_stats64 *stats) 764 { 765 struct mvneta_port *pp = netdev_priv(dev); 766 unsigned int start; 767 int cpu; 768 769 for_each_possible_cpu(cpu) { 770 struct mvneta_pcpu_stats *cpu_stats; 771 u64 rx_packets; 772 u64 rx_bytes; 773 u64 rx_dropped; 774 u64 rx_errors; 775 u64 tx_packets; 776 u64 tx_bytes; 777 778 cpu_stats = per_cpu_ptr(pp->stats, cpu); 779 do { 780 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 781 rx_packets = cpu_stats->es.ps.rx_packets; 782 rx_bytes = cpu_stats->es.ps.rx_bytes; 783 rx_dropped = cpu_stats->rx_dropped; 784 rx_errors = cpu_stats->rx_errors; 785 tx_packets = cpu_stats->es.ps.tx_packets; 786 tx_bytes = cpu_stats->es.ps.tx_bytes; 787 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 788 789 stats->rx_packets += rx_packets; 790 stats->rx_bytes += rx_bytes; 791 stats->rx_dropped += rx_dropped; 792 stats->rx_errors += rx_errors; 793 stats->tx_packets += tx_packets; 794 stats->tx_bytes += tx_bytes; 795 } 796 797 stats->tx_dropped = dev->stats.tx_dropped; 798 } 799 800 /* Rx descriptors helper methods */ 801 802 /* Checks whether the RX descriptor having this status is both the first 803 * and the last descriptor for the RX packet. Each RX packet is currently 804 * received through a single RX descriptor, so not having each RX 805 * descriptor with its first and last bits set is an error 806 */ 807 static int mvneta_rxq_desc_is_first_last(u32 status) 808 { 809 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 810 MVNETA_RXD_FIRST_LAST_DESC; 811 } 812 813 /* Add number of descriptors ready to receive new packets */ 814 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 815 struct mvneta_rx_queue *rxq, 816 int ndescs) 817 { 818 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 819 * be added at once 820 */ 821 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 822 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 823 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 824 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 825 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 826 } 827 828 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 829 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 830 } 831 832 /* Get number of RX descriptors occupied by received packets */ 833 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 834 struct mvneta_rx_queue *rxq) 835 { 836 u32 val; 837 838 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 839 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 840 } 841 842 /* Update num of rx desc called upon return from rx path or 843 * from mvneta_rxq_drop_pkts(). 844 */ 845 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 846 struct mvneta_rx_queue *rxq, 847 int rx_done, int rx_filled) 848 { 849 u32 val; 850 851 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 852 val = rx_done | 853 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 854 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 855 return; 856 } 857 858 /* Only 255 descriptors can be added at once */ 859 while ((rx_done > 0) || (rx_filled > 0)) { 860 if (rx_done <= 0xff) { 861 val = rx_done; 862 rx_done = 0; 863 } else { 864 val = 0xff; 865 rx_done -= 0xff; 866 } 867 if (rx_filled <= 0xff) { 868 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 869 rx_filled = 0; 870 } else { 871 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 872 rx_filled -= 0xff; 873 } 874 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 875 } 876 } 877 878 /* Get pointer to next RX descriptor to be processed by SW */ 879 static struct mvneta_rx_desc * 880 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 881 { 882 int rx_desc = rxq->next_desc_to_proc; 883 884 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 885 prefetch(rxq->descs + rxq->next_desc_to_proc); 886 return rxq->descs + rx_desc; 887 } 888 889 /* Change maximum receive size of the port. */ 890 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 891 { 892 u32 val; 893 894 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 895 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 896 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 897 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 898 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 899 } 900 901 902 /* Set rx queue offset */ 903 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 904 struct mvneta_rx_queue *rxq, 905 int offset) 906 { 907 u32 val; 908 909 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 910 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 911 912 /* Offset is in */ 913 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 914 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 915 } 916 917 918 /* Tx descriptors helper methods */ 919 920 /* Update HW with number of TX descriptors to be sent */ 921 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 922 struct mvneta_tx_queue *txq, 923 int pend_desc) 924 { 925 u32 val; 926 927 pend_desc += txq->pending; 928 929 /* Only 255 Tx descriptors can be added at once */ 930 do { 931 val = min(pend_desc, 255); 932 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 933 pend_desc -= val; 934 } while (pend_desc > 0); 935 txq->pending = 0; 936 } 937 938 /* Get pointer to next TX descriptor to be processed (send) by HW */ 939 static struct mvneta_tx_desc * 940 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 941 { 942 int tx_desc = txq->next_desc_to_proc; 943 944 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 945 return txq->descs + tx_desc; 946 } 947 948 /* Release the last allocated TX descriptor. Useful to handle DMA 949 * mapping failures in the TX path. 950 */ 951 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 952 { 953 if (txq->next_desc_to_proc == 0) 954 txq->next_desc_to_proc = txq->last_desc - 1; 955 else 956 txq->next_desc_to_proc--; 957 } 958 959 /* Set rxq buf size */ 960 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 961 struct mvneta_rx_queue *rxq, 962 int buf_size) 963 { 964 u32 val; 965 966 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 967 968 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 969 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 970 971 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 972 } 973 974 /* Disable buffer management (BM) */ 975 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 976 struct mvneta_rx_queue *rxq) 977 { 978 u32 val; 979 980 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 981 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 982 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 983 } 984 985 /* Enable buffer management (BM) */ 986 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 987 struct mvneta_rx_queue *rxq) 988 { 989 u32 val; 990 991 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 992 val |= MVNETA_RXQ_HW_BUF_ALLOC; 993 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 994 } 995 996 /* Notify HW about port's assignment of pool for bigger packets */ 997 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 998 struct mvneta_rx_queue *rxq) 999 { 1000 u32 val; 1001 1002 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1003 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1004 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1005 1006 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1007 } 1008 1009 /* Notify HW about port's assignment of pool for smaller packets */ 1010 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1011 struct mvneta_rx_queue *rxq) 1012 { 1013 u32 val; 1014 1015 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1016 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1017 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1018 1019 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1020 } 1021 1022 /* Set port's receive buffer size for assigned BM pool */ 1023 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1024 int buf_size, 1025 u8 pool_id) 1026 { 1027 u32 val; 1028 1029 if (!IS_ALIGNED(buf_size, 8)) { 1030 dev_warn(pp->dev->dev.parent, 1031 "illegal buf_size value %d, round to %d\n", 1032 buf_size, ALIGN(buf_size, 8)); 1033 buf_size = ALIGN(buf_size, 8); 1034 } 1035 1036 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1037 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1038 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1039 } 1040 1041 /* Configure MBUS window in order to enable access BM internal SRAM */ 1042 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1043 u8 target, u8 attr) 1044 { 1045 u32 win_enable, win_protect; 1046 int i; 1047 1048 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1049 1050 if (pp->bm_win_id < 0) { 1051 /* Find first not occupied window */ 1052 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1053 if (win_enable & (1 << i)) { 1054 pp->bm_win_id = i; 1055 break; 1056 } 1057 } 1058 if (i == MVNETA_MAX_DECODE_WIN) 1059 return -ENOMEM; 1060 } else { 1061 i = pp->bm_win_id; 1062 } 1063 1064 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1065 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1066 1067 if (i < 4) 1068 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1069 1070 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1071 (attr << 8) | target); 1072 1073 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1074 1075 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1076 win_protect |= 3 << (2 * i); 1077 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1078 1079 win_enable &= ~(1 << i); 1080 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1081 1082 return 0; 1083 } 1084 1085 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1086 { 1087 u32 wsize; 1088 u8 target, attr; 1089 int err; 1090 1091 /* Get BM window information */ 1092 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1093 &target, &attr); 1094 if (err < 0) 1095 return err; 1096 1097 pp->bm_win_id = -1; 1098 1099 /* Open NETA -> BM window */ 1100 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1101 target, attr); 1102 if (err < 0) { 1103 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1104 return err; 1105 } 1106 return 0; 1107 } 1108 1109 /* Assign and initialize pools for port. In case of fail 1110 * buffer manager will remain disabled for current port. 1111 */ 1112 static int mvneta_bm_port_init(struct platform_device *pdev, 1113 struct mvneta_port *pp) 1114 { 1115 struct device_node *dn = pdev->dev.of_node; 1116 u32 long_pool_id, short_pool_id; 1117 1118 if (!pp->neta_armada3700) { 1119 int ret; 1120 1121 ret = mvneta_bm_port_mbus_init(pp); 1122 if (ret) 1123 return ret; 1124 } 1125 1126 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1127 netdev_info(pp->dev, "missing long pool id\n"); 1128 return -EINVAL; 1129 } 1130 1131 /* Create port's long pool depending on mtu */ 1132 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1133 MVNETA_BM_LONG, pp->id, 1134 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1135 if (!pp->pool_long) { 1136 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1137 return -ENOMEM; 1138 } 1139 1140 pp->pool_long->port_map |= 1 << pp->id; 1141 1142 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1143 pp->pool_long->id); 1144 1145 /* If short pool id is not defined, assume using single pool */ 1146 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1147 short_pool_id = long_pool_id; 1148 1149 /* Create port's short pool */ 1150 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1151 MVNETA_BM_SHORT, pp->id, 1152 MVNETA_BM_SHORT_PKT_SIZE); 1153 if (!pp->pool_short) { 1154 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1155 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1156 return -ENOMEM; 1157 } 1158 1159 if (short_pool_id != long_pool_id) { 1160 pp->pool_short->port_map |= 1 << pp->id; 1161 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1162 pp->pool_short->id); 1163 } 1164 1165 return 0; 1166 } 1167 1168 /* Update settings of a pool for bigger packets */ 1169 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1170 { 1171 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1172 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1173 int num; 1174 1175 /* Release all buffers from long pool */ 1176 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1177 if (hwbm_pool->buf_num) { 1178 WARN(1, "cannot free all buffers in pool %d\n", 1179 bm_pool->id); 1180 goto bm_mtu_err; 1181 } 1182 1183 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1184 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1185 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1186 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1187 1188 /* Fill entire long pool */ 1189 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1190 if (num != hwbm_pool->size) { 1191 WARN(1, "pool %d: %d of %d allocated\n", 1192 bm_pool->id, num, hwbm_pool->size); 1193 goto bm_mtu_err; 1194 } 1195 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1196 1197 return; 1198 1199 bm_mtu_err: 1200 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1201 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1202 1203 pp->bm_priv = NULL; 1204 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1205 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1206 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1207 } 1208 1209 /* Start the Ethernet port RX and TX activity */ 1210 static void mvneta_port_up(struct mvneta_port *pp) 1211 { 1212 int queue; 1213 u32 q_map; 1214 1215 /* Enable all initialized TXs. */ 1216 q_map = 0; 1217 for (queue = 0; queue < txq_number; queue++) { 1218 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1219 if (txq->descs) 1220 q_map |= (1 << queue); 1221 } 1222 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1223 1224 q_map = 0; 1225 /* Enable all initialized RXQs. */ 1226 for (queue = 0; queue < rxq_number; queue++) { 1227 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1228 1229 if (rxq->descs) 1230 q_map |= (1 << queue); 1231 } 1232 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1233 } 1234 1235 /* Stop the Ethernet port activity */ 1236 static void mvneta_port_down(struct mvneta_port *pp) 1237 { 1238 u32 val; 1239 int count; 1240 1241 /* Stop Rx port activity. Check port Rx activity. */ 1242 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1243 1244 /* Issue stop command for active channels only */ 1245 if (val != 0) 1246 mvreg_write(pp, MVNETA_RXQ_CMD, 1247 val << MVNETA_RXQ_DISABLE_SHIFT); 1248 1249 /* Wait for all Rx activity to terminate. */ 1250 count = 0; 1251 do { 1252 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1253 netdev_warn(pp->dev, 1254 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1255 val); 1256 break; 1257 } 1258 mdelay(1); 1259 1260 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1261 } while (val & MVNETA_RXQ_ENABLE_MASK); 1262 1263 /* Stop Tx port activity. Check port Tx activity. Issue stop 1264 * command for active channels only 1265 */ 1266 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1267 1268 if (val != 0) 1269 mvreg_write(pp, MVNETA_TXQ_CMD, 1270 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1271 1272 /* Wait for all Tx activity to terminate. */ 1273 count = 0; 1274 do { 1275 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1276 netdev_warn(pp->dev, 1277 "TIMEOUT for TX stopped status=0x%08x\n", 1278 val); 1279 break; 1280 } 1281 mdelay(1); 1282 1283 /* Check TX Command reg that all Txqs are stopped */ 1284 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1285 1286 } while (val & MVNETA_TXQ_ENABLE_MASK); 1287 1288 /* Double check to verify that TX FIFO is empty */ 1289 count = 0; 1290 do { 1291 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1292 netdev_warn(pp->dev, 1293 "TX FIFO empty timeout status=0x%08x\n", 1294 val); 1295 break; 1296 } 1297 mdelay(1); 1298 1299 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1300 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1301 (val & MVNETA_TX_IN_PRGRS)); 1302 1303 udelay(200); 1304 } 1305 1306 /* Enable the port by setting the port enable bit of the MAC control register */ 1307 static void mvneta_port_enable(struct mvneta_port *pp) 1308 { 1309 u32 val; 1310 1311 /* Enable port */ 1312 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1313 val |= MVNETA_GMAC0_PORT_ENABLE; 1314 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1315 } 1316 1317 /* Disable the port and wait for about 200 usec before retuning */ 1318 static void mvneta_port_disable(struct mvneta_port *pp) 1319 { 1320 u32 val; 1321 1322 /* Reset the Enable bit in the Serial Control Register */ 1323 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1324 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1325 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1326 1327 udelay(200); 1328 } 1329 1330 /* Multicast tables methods */ 1331 1332 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1333 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1334 { 1335 int offset; 1336 u32 val; 1337 1338 if (queue == -1) { 1339 val = 0; 1340 } else { 1341 val = 0x1 | (queue << 1); 1342 val |= (val << 24) | (val << 16) | (val << 8); 1343 } 1344 1345 for (offset = 0; offset <= 0xc; offset += 4) 1346 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1347 } 1348 1349 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1350 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1351 { 1352 int offset; 1353 u32 val; 1354 1355 if (queue == -1) { 1356 val = 0; 1357 } else { 1358 val = 0x1 | (queue << 1); 1359 val |= (val << 24) | (val << 16) | (val << 8); 1360 } 1361 1362 for (offset = 0; offset <= 0xfc; offset += 4) 1363 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1364 1365 } 1366 1367 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1368 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1369 { 1370 int offset; 1371 u32 val; 1372 1373 if (queue == -1) { 1374 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1375 val = 0; 1376 } else { 1377 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1378 val = 0x1 | (queue << 1); 1379 val |= (val << 24) | (val << 16) | (val << 8); 1380 } 1381 1382 for (offset = 0; offset <= 0xfc; offset += 4) 1383 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1384 } 1385 1386 static void mvneta_percpu_unmask_interrupt(void *arg) 1387 { 1388 struct mvneta_port *pp = arg; 1389 1390 /* All the queue are unmasked, but actually only the ones 1391 * mapped to this CPU will be unmasked 1392 */ 1393 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1394 MVNETA_RX_INTR_MASK_ALL | 1395 MVNETA_TX_INTR_MASK_ALL | 1396 MVNETA_MISCINTR_INTR_MASK); 1397 } 1398 1399 static void mvneta_percpu_mask_interrupt(void *arg) 1400 { 1401 struct mvneta_port *pp = arg; 1402 1403 /* All the queue are masked, but actually only the ones 1404 * mapped to this CPU will be masked 1405 */ 1406 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1407 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1408 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1409 } 1410 1411 static void mvneta_percpu_clear_intr_cause(void *arg) 1412 { 1413 struct mvneta_port *pp = arg; 1414 1415 /* All the queue are cleared, but actually only the ones 1416 * mapped to this CPU will be cleared 1417 */ 1418 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1419 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1420 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1421 } 1422 1423 /* This method sets defaults to the NETA port: 1424 * Clears interrupt Cause and Mask registers. 1425 * Clears all MAC tables. 1426 * Sets defaults to all registers. 1427 * Resets RX and TX descriptor rings. 1428 * Resets PHY. 1429 * This method can be called after mvneta_port_down() to return the port 1430 * settings to defaults. 1431 */ 1432 static void mvneta_defaults_set(struct mvneta_port *pp) 1433 { 1434 int cpu; 1435 int queue; 1436 u32 val; 1437 int max_cpu = num_present_cpus(); 1438 1439 /* Clear all Cause registers */ 1440 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1441 1442 /* Mask all interrupts */ 1443 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1444 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1445 1446 /* Enable MBUS Retry bit16 */ 1447 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1448 1449 /* Set CPU queue access map. CPUs are assigned to the RX and 1450 * TX queues modulo their number. If there is only one TX 1451 * queue then it is assigned to the CPU associated to the 1452 * default RX queue. 1453 */ 1454 for_each_present_cpu(cpu) { 1455 int rxq_map = 0, txq_map = 0; 1456 int rxq, txq; 1457 if (!pp->neta_armada3700) { 1458 for (rxq = 0; rxq < rxq_number; rxq++) 1459 if ((rxq % max_cpu) == cpu) 1460 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1461 1462 for (txq = 0; txq < txq_number; txq++) 1463 if ((txq % max_cpu) == cpu) 1464 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1465 1466 /* With only one TX queue we configure a special case 1467 * which will allow to get all the irq on a single 1468 * CPU 1469 */ 1470 if (txq_number == 1) 1471 txq_map = (cpu == pp->rxq_def) ? 1472 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1473 1474 } else { 1475 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1476 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1477 } 1478 1479 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1480 } 1481 1482 /* Reset RX and TX DMAs */ 1483 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1484 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1485 1486 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1487 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1488 for (queue = 0; queue < txq_number; queue++) { 1489 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1490 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1491 } 1492 1493 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1494 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1495 1496 /* Set Port Acceleration Mode */ 1497 if (pp->bm_priv) 1498 /* HW buffer management + legacy parser */ 1499 val = MVNETA_ACC_MODE_EXT2; 1500 else 1501 /* SW buffer management + legacy parser */ 1502 val = MVNETA_ACC_MODE_EXT1; 1503 mvreg_write(pp, MVNETA_ACC_MODE, val); 1504 1505 if (pp->bm_priv) 1506 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1507 1508 /* Update val of portCfg register accordingly with all RxQueue types */ 1509 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1510 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1511 1512 val = 0; 1513 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1514 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1515 1516 /* Build PORT_SDMA_CONFIG_REG */ 1517 val = 0; 1518 1519 /* Default burst size */ 1520 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1521 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1522 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1523 1524 #if defined(__BIG_ENDIAN) 1525 val |= MVNETA_DESC_SWAP; 1526 #endif 1527 1528 /* Assign port SDMA configuration */ 1529 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1530 1531 /* Disable PHY polling in hardware, since we're using the 1532 * kernel phylib to do this. 1533 */ 1534 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1535 val &= ~MVNETA_PHY_POLLING_ENABLE; 1536 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1537 1538 mvneta_set_ucast_table(pp, -1); 1539 mvneta_set_special_mcast_table(pp, -1); 1540 mvneta_set_other_mcast_table(pp, -1); 1541 1542 /* Set port interrupt enable register - default enable all */ 1543 mvreg_write(pp, MVNETA_INTR_ENABLE, 1544 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1545 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1546 1547 mvneta_mib_counters_clear(pp); 1548 } 1549 1550 /* Set max sizes for tx queues */ 1551 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1552 1553 { 1554 u32 val, size, mtu; 1555 int queue; 1556 1557 mtu = max_tx_size * 8; 1558 if (mtu > MVNETA_TX_MTU_MAX) 1559 mtu = MVNETA_TX_MTU_MAX; 1560 1561 /* Set MTU */ 1562 val = mvreg_read(pp, MVNETA_TX_MTU); 1563 val &= ~MVNETA_TX_MTU_MAX; 1564 val |= mtu; 1565 mvreg_write(pp, MVNETA_TX_MTU, val); 1566 1567 /* TX token size and all TXQs token size must be larger that MTU */ 1568 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1569 1570 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1571 if (size < mtu) { 1572 size = mtu; 1573 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1574 val |= size; 1575 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1576 } 1577 for (queue = 0; queue < txq_number; queue++) { 1578 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1579 1580 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1581 if (size < mtu) { 1582 size = mtu; 1583 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1584 val |= size; 1585 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1586 } 1587 } 1588 } 1589 1590 /* Set unicast address */ 1591 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1592 int queue) 1593 { 1594 unsigned int unicast_reg; 1595 unsigned int tbl_offset; 1596 unsigned int reg_offset; 1597 1598 /* Locate the Unicast table entry */ 1599 last_nibble = (0xf & last_nibble); 1600 1601 /* offset from unicast tbl base */ 1602 tbl_offset = (last_nibble / 4) * 4; 1603 1604 /* offset within the above reg */ 1605 reg_offset = last_nibble % 4; 1606 1607 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1608 1609 if (queue == -1) { 1610 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1611 unicast_reg &= ~(0xff << (8 * reg_offset)); 1612 } else { 1613 unicast_reg &= ~(0xff << (8 * reg_offset)); 1614 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1615 } 1616 1617 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1618 } 1619 1620 /* Set mac address */ 1621 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1622 int queue) 1623 { 1624 unsigned int mac_h; 1625 unsigned int mac_l; 1626 1627 if (queue != -1) { 1628 mac_l = (addr[4] << 8) | (addr[5]); 1629 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1630 (addr[2] << 8) | (addr[3] << 0); 1631 1632 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1633 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1634 } 1635 1636 /* Accept frames of this address */ 1637 mvneta_set_ucast_addr(pp, addr[5], queue); 1638 } 1639 1640 /* Set the number of packets that will be received before RX interrupt 1641 * will be generated by HW. 1642 */ 1643 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1644 struct mvneta_rx_queue *rxq, u32 value) 1645 { 1646 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1647 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1648 } 1649 1650 /* Set the time delay in usec before RX interrupt will be generated by 1651 * HW. 1652 */ 1653 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1654 struct mvneta_rx_queue *rxq, u32 value) 1655 { 1656 u32 val; 1657 unsigned long clk_rate; 1658 1659 clk_rate = clk_get_rate(pp->clk); 1660 val = (clk_rate / 1000000) * value; 1661 1662 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1663 } 1664 1665 /* Set threshold for TX_DONE pkts coalescing */ 1666 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1667 struct mvneta_tx_queue *txq, u32 value) 1668 { 1669 u32 val; 1670 1671 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1672 1673 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1674 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1675 1676 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1677 } 1678 1679 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1680 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1681 u32 phys_addr, void *virt_addr, 1682 struct mvneta_rx_queue *rxq) 1683 { 1684 int i; 1685 1686 rx_desc->buf_phys_addr = phys_addr; 1687 i = rx_desc - rxq->descs; 1688 rxq->buf_virt_addr[i] = virt_addr; 1689 } 1690 1691 /* Decrement sent descriptors counter */ 1692 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1693 struct mvneta_tx_queue *txq, 1694 int sent_desc) 1695 { 1696 u32 val; 1697 1698 /* Only 255 TX descriptors can be updated at once */ 1699 while (sent_desc > 0xff) { 1700 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1701 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1702 sent_desc = sent_desc - 0xff; 1703 } 1704 1705 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1706 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1707 } 1708 1709 /* Get number of TX descriptors already sent by HW */ 1710 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1711 struct mvneta_tx_queue *txq) 1712 { 1713 u32 val; 1714 int sent_desc; 1715 1716 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1717 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1718 MVNETA_TXQ_SENT_DESC_SHIFT; 1719 1720 return sent_desc; 1721 } 1722 1723 /* Get number of sent descriptors and decrement counter. 1724 * The number of sent descriptors is returned. 1725 */ 1726 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1727 struct mvneta_tx_queue *txq) 1728 { 1729 int sent_desc; 1730 1731 /* Get number of sent descriptors */ 1732 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1733 1734 /* Decrement sent descriptors counter */ 1735 if (sent_desc) 1736 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1737 1738 return sent_desc; 1739 } 1740 1741 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1742 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1743 int ip_hdr_len, int l4_proto) 1744 { 1745 u32 command; 1746 1747 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1748 * G_L4_chk, L4_type; required only for checksum 1749 * calculation 1750 */ 1751 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1752 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1753 1754 if (l3_proto == htons(ETH_P_IP)) 1755 command |= MVNETA_TXD_IP_CSUM; 1756 else 1757 command |= MVNETA_TX_L3_IP6; 1758 1759 if (l4_proto == IPPROTO_TCP) 1760 command |= MVNETA_TX_L4_CSUM_FULL; 1761 else if (l4_proto == IPPROTO_UDP) 1762 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1763 else 1764 command |= MVNETA_TX_L4_CSUM_NOT; 1765 1766 return command; 1767 } 1768 1769 1770 /* Display more error info */ 1771 static void mvneta_rx_error(struct mvneta_port *pp, 1772 struct mvneta_rx_desc *rx_desc) 1773 { 1774 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1775 u32 status = rx_desc->status; 1776 1777 /* update per-cpu counter */ 1778 u64_stats_update_begin(&stats->syncp); 1779 stats->rx_errors++; 1780 u64_stats_update_end(&stats->syncp); 1781 1782 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1783 case MVNETA_RXD_ERR_CRC: 1784 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1785 status, rx_desc->data_size); 1786 break; 1787 case MVNETA_RXD_ERR_OVERRUN: 1788 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1789 status, rx_desc->data_size); 1790 break; 1791 case MVNETA_RXD_ERR_LEN: 1792 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1793 status, rx_desc->data_size); 1794 break; 1795 case MVNETA_RXD_ERR_RESOURCE: 1796 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1797 status, rx_desc->data_size); 1798 break; 1799 } 1800 } 1801 1802 /* Handle RX checksum offload based on the descriptor's status */ 1803 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1804 struct sk_buff *skb) 1805 { 1806 if ((pp->dev->features & NETIF_F_RXCSUM) && 1807 (status & MVNETA_RXD_L3_IP4) && 1808 (status & MVNETA_RXD_L4_CSUM_OK)) { 1809 skb->csum = 0; 1810 skb->ip_summed = CHECKSUM_UNNECESSARY; 1811 return; 1812 } 1813 1814 skb->ip_summed = CHECKSUM_NONE; 1815 } 1816 1817 /* Return tx queue pointer (find last set bit) according to <cause> returned 1818 * form tx_done reg. <cause> must not be null. The return value is always a 1819 * valid queue for matching the first one found in <cause>. 1820 */ 1821 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1822 u32 cause) 1823 { 1824 int queue = fls(cause) - 1; 1825 1826 return &pp->txqs[queue]; 1827 } 1828 1829 /* Free tx queue skbuffs */ 1830 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1831 struct mvneta_tx_queue *txq, int num, 1832 struct netdev_queue *nq) 1833 { 1834 unsigned int bytes_compl = 0, pkts_compl = 0; 1835 int i; 1836 1837 for (i = 0; i < num; i++) { 1838 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1839 struct mvneta_tx_desc *tx_desc = txq->descs + 1840 txq->txq_get_index; 1841 1842 mvneta_txq_inc_get(txq); 1843 1844 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1845 buf->type != MVNETA_TYPE_XDP_TX) 1846 dma_unmap_single(pp->dev->dev.parent, 1847 tx_desc->buf_phys_addr, 1848 tx_desc->data_size, DMA_TO_DEVICE); 1849 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1850 bytes_compl += buf->skb->len; 1851 pkts_compl++; 1852 dev_kfree_skb_any(buf->skb); 1853 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1854 buf->type == MVNETA_TYPE_XDP_NDO) { 1855 xdp_return_frame(buf->xdpf); 1856 } 1857 } 1858 1859 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1860 } 1861 1862 /* Handle end of transmission */ 1863 static void mvneta_txq_done(struct mvneta_port *pp, 1864 struct mvneta_tx_queue *txq) 1865 { 1866 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1867 int tx_done; 1868 1869 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1870 if (!tx_done) 1871 return; 1872 1873 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1874 1875 txq->count -= tx_done; 1876 1877 if (netif_tx_queue_stopped(nq)) { 1878 if (txq->count <= txq->tx_wake_threshold) 1879 netif_tx_wake_queue(nq); 1880 } 1881 } 1882 1883 /* Refill processing for SW buffer management */ 1884 /* Allocate page per descriptor */ 1885 static int mvneta_rx_refill(struct mvneta_port *pp, 1886 struct mvneta_rx_desc *rx_desc, 1887 struct mvneta_rx_queue *rxq, 1888 gfp_t gfp_mask) 1889 { 1890 dma_addr_t phys_addr; 1891 struct page *page; 1892 1893 page = page_pool_alloc_pages(rxq->page_pool, 1894 gfp_mask | __GFP_NOWARN); 1895 if (!page) 1896 return -ENOMEM; 1897 1898 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1899 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1900 1901 return 0; 1902 } 1903 1904 /* Handle tx checksum */ 1905 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1906 { 1907 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1908 int ip_hdr_len = 0; 1909 __be16 l3_proto = vlan_get_protocol(skb); 1910 u8 l4_proto; 1911 1912 if (l3_proto == htons(ETH_P_IP)) { 1913 struct iphdr *ip4h = ip_hdr(skb); 1914 1915 /* Calculate IPv4 checksum and L4 checksum */ 1916 ip_hdr_len = ip4h->ihl; 1917 l4_proto = ip4h->protocol; 1918 } else if (l3_proto == htons(ETH_P_IPV6)) { 1919 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1920 1921 /* Read l4_protocol from one of IPv6 extra headers */ 1922 if (skb_network_header_len(skb) > 0) 1923 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1924 l4_proto = ip6h->nexthdr; 1925 } else 1926 return MVNETA_TX_L4_CSUM_NOT; 1927 1928 return mvneta_txq_desc_csum(skb_network_offset(skb), 1929 l3_proto, ip_hdr_len, l4_proto); 1930 } 1931 1932 return MVNETA_TX_L4_CSUM_NOT; 1933 } 1934 1935 /* Drop packets received by the RXQ and free buffers */ 1936 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1937 struct mvneta_rx_queue *rxq) 1938 { 1939 int rx_done, i; 1940 1941 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1942 if (rx_done) 1943 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1944 1945 if (pp->bm_priv) { 1946 for (i = 0; i < rx_done; i++) { 1947 struct mvneta_rx_desc *rx_desc = 1948 mvneta_rxq_next_desc_get(rxq); 1949 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1950 struct mvneta_bm_pool *bm_pool; 1951 1952 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1953 /* Return dropped buffer to the pool */ 1954 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1955 rx_desc->buf_phys_addr); 1956 } 1957 return; 1958 } 1959 1960 for (i = 0; i < rxq->size; i++) { 1961 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1962 void *data = rxq->buf_virt_addr[i]; 1963 if (!data || !(rx_desc->buf_phys_addr)) 1964 continue; 1965 1966 page_pool_put_full_page(rxq->page_pool, data, false); 1967 } 1968 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1969 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1970 page_pool_destroy(rxq->page_pool); 1971 rxq->page_pool = NULL; 1972 } 1973 1974 static void 1975 mvneta_update_stats(struct mvneta_port *pp, 1976 struct mvneta_stats *ps) 1977 { 1978 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1979 1980 u64_stats_update_begin(&stats->syncp); 1981 stats->es.ps.rx_packets += ps->rx_packets; 1982 stats->es.ps.rx_bytes += ps->rx_bytes; 1983 /* xdp */ 1984 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1985 stats->es.ps.xdp_pass += ps->xdp_pass; 1986 stats->es.ps.xdp_drop += ps->xdp_drop; 1987 u64_stats_update_end(&stats->syncp); 1988 } 1989 1990 static inline 1991 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1992 { 1993 struct mvneta_rx_desc *rx_desc; 1994 int curr_desc = rxq->first_to_refill; 1995 int i; 1996 1997 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1998 rx_desc = rxq->descs + curr_desc; 1999 if (!(rx_desc->buf_phys_addr)) { 2000 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2001 struct mvneta_pcpu_stats *stats; 2002 2003 pr_err("Can't refill queue %d. Done %d from %d\n", 2004 rxq->id, i, rxq->refill_num); 2005 2006 stats = this_cpu_ptr(pp->stats); 2007 u64_stats_update_begin(&stats->syncp); 2008 stats->es.refill_error++; 2009 u64_stats_update_end(&stats->syncp); 2010 break; 2011 } 2012 } 2013 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2014 } 2015 rxq->refill_num -= i; 2016 rxq->first_to_refill = curr_desc; 2017 2018 return i; 2019 } 2020 2021 static int 2022 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2023 struct xdp_frame *xdpf, bool dma_map) 2024 { 2025 struct mvneta_tx_desc *tx_desc; 2026 struct mvneta_tx_buf *buf; 2027 dma_addr_t dma_addr; 2028 2029 if (txq->count >= txq->tx_stop_threshold) 2030 return MVNETA_XDP_DROPPED; 2031 2032 tx_desc = mvneta_txq_next_desc_get(txq); 2033 2034 buf = &txq->buf[txq->txq_put_index]; 2035 if (dma_map) { 2036 /* ndo_xdp_xmit */ 2037 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2038 xdpf->len, DMA_TO_DEVICE); 2039 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2040 mvneta_txq_desc_put(txq); 2041 return MVNETA_XDP_DROPPED; 2042 } 2043 buf->type = MVNETA_TYPE_XDP_NDO; 2044 } else { 2045 struct page *page = virt_to_page(xdpf->data); 2046 2047 dma_addr = page_pool_get_dma_addr(page) + 2048 sizeof(*xdpf) + xdpf->headroom; 2049 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2050 xdpf->len, DMA_BIDIRECTIONAL); 2051 buf->type = MVNETA_TYPE_XDP_TX; 2052 } 2053 buf->xdpf = xdpf; 2054 2055 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2056 tx_desc->buf_phys_addr = dma_addr; 2057 tx_desc->data_size = xdpf->len; 2058 2059 mvneta_txq_inc_put(txq); 2060 txq->pending++; 2061 txq->count++; 2062 2063 return MVNETA_XDP_TX; 2064 } 2065 2066 static int 2067 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2068 { 2069 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2070 struct mvneta_tx_queue *txq; 2071 struct netdev_queue *nq; 2072 struct xdp_frame *xdpf; 2073 int cpu; 2074 u32 ret; 2075 2076 xdpf = xdp_convert_buff_to_frame(xdp); 2077 if (unlikely(!xdpf)) 2078 return MVNETA_XDP_DROPPED; 2079 2080 cpu = smp_processor_id(); 2081 txq = &pp->txqs[cpu % txq_number]; 2082 nq = netdev_get_tx_queue(pp->dev, txq->id); 2083 2084 __netif_tx_lock(nq, cpu); 2085 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2086 if (ret == MVNETA_XDP_TX) { 2087 u64_stats_update_begin(&stats->syncp); 2088 stats->es.ps.tx_bytes += xdpf->len; 2089 stats->es.ps.tx_packets++; 2090 stats->es.ps.xdp_tx++; 2091 u64_stats_update_end(&stats->syncp); 2092 2093 mvneta_txq_pend_desc_add(pp, txq, 0); 2094 } else { 2095 u64_stats_update_begin(&stats->syncp); 2096 stats->es.ps.xdp_tx_err++; 2097 u64_stats_update_end(&stats->syncp); 2098 } 2099 __netif_tx_unlock(nq); 2100 2101 return ret; 2102 } 2103 2104 static int 2105 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2106 struct xdp_frame **frames, u32 flags) 2107 { 2108 struct mvneta_port *pp = netdev_priv(dev); 2109 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2110 int i, nxmit_byte = 0, nxmit = num_frame; 2111 int cpu = smp_processor_id(); 2112 struct mvneta_tx_queue *txq; 2113 struct netdev_queue *nq; 2114 u32 ret; 2115 2116 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2117 return -EINVAL; 2118 2119 txq = &pp->txqs[cpu % txq_number]; 2120 nq = netdev_get_tx_queue(pp->dev, txq->id); 2121 2122 __netif_tx_lock(nq, cpu); 2123 for (i = 0; i < num_frame; i++) { 2124 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2125 if (ret == MVNETA_XDP_TX) { 2126 nxmit_byte += frames[i]->len; 2127 } else { 2128 xdp_return_frame_rx_napi(frames[i]); 2129 nxmit--; 2130 } 2131 } 2132 2133 if (unlikely(flags & XDP_XMIT_FLUSH)) 2134 mvneta_txq_pend_desc_add(pp, txq, 0); 2135 __netif_tx_unlock(nq); 2136 2137 u64_stats_update_begin(&stats->syncp); 2138 stats->es.ps.tx_bytes += nxmit_byte; 2139 stats->es.ps.tx_packets += nxmit; 2140 stats->es.ps.xdp_xmit += nxmit; 2141 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2142 u64_stats_update_end(&stats->syncp); 2143 2144 return nxmit; 2145 } 2146 2147 static int 2148 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2149 struct bpf_prog *prog, struct xdp_buff *xdp, 2150 struct mvneta_stats *stats) 2151 { 2152 unsigned int len, sync; 2153 struct page *page; 2154 u32 ret, act; 2155 2156 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2157 act = bpf_prog_run_xdp(prog, xdp); 2158 2159 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2160 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2161 sync = max(sync, len); 2162 2163 switch (act) { 2164 case XDP_PASS: 2165 stats->xdp_pass++; 2166 return MVNETA_XDP_PASS; 2167 case XDP_REDIRECT: { 2168 int err; 2169 2170 err = xdp_do_redirect(pp->dev, xdp, prog); 2171 if (unlikely(err)) { 2172 ret = MVNETA_XDP_DROPPED; 2173 page = virt_to_head_page(xdp->data); 2174 page_pool_put_page(rxq->page_pool, page, sync, true); 2175 } else { 2176 ret = MVNETA_XDP_REDIR; 2177 stats->xdp_redirect++; 2178 } 2179 break; 2180 } 2181 case XDP_TX: 2182 ret = mvneta_xdp_xmit_back(pp, xdp); 2183 if (ret != MVNETA_XDP_TX) { 2184 page = virt_to_head_page(xdp->data); 2185 page_pool_put_page(rxq->page_pool, page, sync, true); 2186 } 2187 break; 2188 default: 2189 bpf_warn_invalid_xdp_action(act); 2190 /* fall through */ 2191 case XDP_ABORTED: 2192 trace_xdp_exception(pp->dev, prog, act); 2193 /* fall through */ 2194 case XDP_DROP: 2195 page = virt_to_head_page(xdp->data); 2196 page_pool_put_page(rxq->page_pool, page, sync, true); 2197 ret = MVNETA_XDP_DROPPED; 2198 stats->xdp_drop++; 2199 break; 2200 } 2201 2202 stats->rx_bytes += xdp->data_end - xdp->data; 2203 stats->rx_packets++; 2204 2205 return ret; 2206 } 2207 2208 static int 2209 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2210 struct mvneta_rx_desc *rx_desc, 2211 struct mvneta_rx_queue *rxq, 2212 struct xdp_buff *xdp, 2213 struct bpf_prog *xdp_prog, 2214 struct page *page, 2215 struct mvneta_stats *stats) 2216 { 2217 unsigned char *data = page_address(page); 2218 int data_len = -MVNETA_MH_SIZE, len; 2219 struct net_device *dev = pp->dev; 2220 enum dma_data_direction dma_dir; 2221 int ret = 0; 2222 2223 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2224 len = MVNETA_MAX_RX_BUF_SIZE; 2225 data_len += len; 2226 } else { 2227 len = rx_desc->data_size; 2228 data_len += len - ETH_FCS_LEN; 2229 } 2230 2231 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2232 dma_sync_single_for_cpu(dev->dev.parent, 2233 rx_desc->buf_phys_addr, 2234 len, dma_dir); 2235 2236 /* Prefetch header */ 2237 prefetch(data); 2238 2239 xdp->data_hard_start = data; 2240 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2241 xdp->data_end = xdp->data + data_len; 2242 xdp_set_data_meta_invalid(xdp); 2243 2244 if (xdp_prog) { 2245 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats); 2246 if (ret) 2247 goto out; 2248 } 2249 2250 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2251 if (unlikely(!rxq->skb)) { 2252 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2253 2254 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2255 2256 u64_stats_update_begin(&stats->syncp); 2257 stats->es.skb_alloc_error++; 2258 stats->rx_dropped++; 2259 u64_stats_update_end(&stats->syncp); 2260 2261 return -ENOMEM; 2262 } 2263 page_pool_release_page(rxq->page_pool, page); 2264 2265 skb_reserve(rxq->skb, 2266 xdp->data - xdp->data_hard_start); 2267 skb_put(rxq->skb, xdp->data_end - xdp->data); 2268 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2269 2270 rxq->left_size = rx_desc->data_size - len; 2271 2272 out: 2273 rx_desc->buf_phys_addr = 0; 2274 2275 return ret; 2276 } 2277 2278 static void 2279 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2280 struct mvneta_rx_desc *rx_desc, 2281 struct mvneta_rx_queue *rxq, 2282 struct page *page) 2283 { 2284 struct net_device *dev = pp->dev; 2285 enum dma_data_direction dma_dir; 2286 int data_len, len; 2287 2288 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2289 len = MVNETA_MAX_RX_BUF_SIZE; 2290 data_len = len; 2291 } else { 2292 len = rxq->left_size; 2293 data_len = len - ETH_FCS_LEN; 2294 } 2295 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2296 dma_sync_single_for_cpu(dev->dev.parent, 2297 rx_desc->buf_phys_addr, 2298 len, dma_dir); 2299 if (data_len > 0) { 2300 /* refill descriptor with new buffer later */ 2301 skb_add_rx_frag(rxq->skb, 2302 skb_shinfo(rxq->skb)->nr_frags, 2303 page, pp->rx_offset_correction, data_len, 2304 PAGE_SIZE); 2305 } 2306 page_pool_release_page(rxq->page_pool, page); 2307 rx_desc->buf_phys_addr = 0; 2308 rxq->left_size -= len; 2309 } 2310 2311 /* Main rx processing when using software buffer management */ 2312 static int mvneta_rx_swbm(struct napi_struct *napi, 2313 struct mvneta_port *pp, int budget, 2314 struct mvneta_rx_queue *rxq) 2315 { 2316 int rx_proc = 0, rx_todo, refill; 2317 struct net_device *dev = pp->dev; 2318 struct mvneta_stats ps = {}; 2319 struct bpf_prog *xdp_prog; 2320 struct xdp_buff xdp_buf; 2321 2322 /* Get number of received packets */ 2323 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2324 2325 rcu_read_lock(); 2326 xdp_prog = READ_ONCE(pp->xdp_prog); 2327 xdp_buf.rxq = &rxq->xdp_rxq; 2328 xdp_buf.frame_sz = PAGE_SIZE; 2329 2330 /* Fairness NAPI loop */ 2331 while (rx_proc < budget && rx_proc < rx_todo) { 2332 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2333 u32 rx_status, index; 2334 struct page *page; 2335 2336 index = rx_desc - rxq->descs; 2337 page = (struct page *)rxq->buf_virt_addr[index]; 2338 2339 rx_status = rx_desc->status; 2340 rx_proc++; 2341 rxq->refill_num++; 2342 2343 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2344 int err; 2345 2346 /* Check errors only for FIRST descriptor */ 2347 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2348 mvneta_rx_error(pp, rx_desc); 2349 /* leave the descriptor untouched */ 2350 continue; 2351 } 2352 2353 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2354 xdp_prog, page, &ps); 2355 if (err) 2356 continue; 2357 } else { 2358 if (unlikely(!rxq->skb)) { 2359 pr_debug("no skb for rx_status 0x%x\n", 2360 rx_status); 2361 continue; 2362 } 2363 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2364 } /* Middle or Last descriptor */ 2365 2366 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2367 /* no last descriptor this time */ 2368 continue; 2369 2370 if (rxq->left_size) { 2371 pr_err("get last desc, but left_size (%d) != 0\n", 2372 rxq->left_size); 2373 dev_kfree_skb_any(rxq->skb); 2374 rxq->left_size = 0; 2375 rxq->skb = NULL; 2376 continue; 2377 } 2378 2379 ps.rx_bytes += rxq->skb->len; 2380 ps.rx_packets++; 2381 2382 /* Linux processing */ 2383 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2384 2385 napi_gro_receive(napi, rxq->skb); 2386 2387 /* clean uncomplete skb pointer in queue */ 2388 rxq->skb = NULL; 2389 } 2390 rcu_read_unlock(); 2391 2392 if (ps.xdp_redirect) 2393 xdp_do_flush_map(); 2394 2395 if (ps.rx_packets) 2396 mvneta_update_stats(pp, &ps); 2397 2398 /* return some buffers to hardware queue, one at a time is too slow */ 2399 refill = mvneta_rx_refill_queue(pp, rxq); 2400 2401 /* Update rxq management counters */ 2402 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2403 2404 return ps.rx_packets; 2405 } 2406 2407 /* Main rx processing when using hardware buffer management */ 2408 static int mvneta_rx_hwbm(struct napi_struct *napi, 2409 struct mvneta_port *pp, int rx_todo, 2410 struct mvneta_rx_queue *rxq) 2411 { 2412 struct net_device *dev = pp->dev; 2413 int rx_done; 2414 u32 rcvd_pkts = 0; 2415 u32 rcvd_bytes = 0; 2416 2417 /* Get number of received packets */ 2418 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2419 2420 if (rx_todo > rx_done) 2421 rx_todo = rx_done; 2422 2423 rx_done = 0; 2424 2425 /* Fairness NAPI loop */ 2426 while (rx_done < rx_todo) { 2427 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2428 struct mvneta_bm_pool *bm_pool = NULL; 2429 struct sk_buff *skb; 2430 unsigned char *data; 2431 dma_addr_t phys_addr; 2432 u32 rx_status, frag_size; 2433 int rx_bytes, err; 2434 u8 pool_id; 2435 2436 rx_done++; 2437 rx_status = rx_desc->status; 2438 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2439 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2440 phys_addr = rx_desc->buf_phys_addr; 2441 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2442 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2443 2444 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2445 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2446 err_drop_frame_ret_pool: 2447 /* Return the buffer to the pool */ 2448 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2449 rx_desc->buf_phys_addr); 2450 err_drop_frame: 2451 mvneta_rx_error(pp, rx_desc); 2452 /* leave the descriptor untouched */ 2453 continue; 2454 } 2455 2456 if (rx_bytes <= rx_copybreak) { 2457 /* better copy a small frame and not unmap the DMA region */ 2458 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2459 if (unlikely(!skb)) 2460 goto err_drop_frame_ret_pool; 2461 2462 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2463 rx_desc->buf_phys_addr, 2464 MVNETA_MH_SIZE + NET_SKB_PAD, 2465 rx_bytes, 2466 DMA_FROM_DEVICE); 2467 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2468 rx_bytes); 2469 2470 skb->protocol = eth_type_trans(skb, dev); 2471 mvneta_rx_csum(pp, rx_status, skb); 2472 napi_gro_receive(napi, skb); 2473 2474 rcvd_pkts++; 2475 rcvd_bytes += rx_bytes; 2476 2477 /* Return the buffer to the pool */ 2478 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2479 rx_desc->buf_phys_addr); 2480 2481 /* leave the descriptor and buffer untouched */ 2482 continue; 2483 } 2484 2485 /* Refill processing */ 2486 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2487 if (err) { 2488 struct mvneta_pcpu_stats *stats; 2489 2490 netdev_err(dev, "Linux processing - Can't refill\n"); 2491 2492 stats = this_cpu_ptr(pp->stats); 2493 u64_stats_update_begin(&stats->syncp); 2494 stats->es.refill_error++; 2495 u64_stats_update_end(&stats->syncp); 2496 2497 goto err_drop_frame_ret_pool; 2498 } 2499 2500 frag_size = bm_pool->hwbm_pool.frag_size; 2501 2502 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2503 2504 /* After refill old buffer has to be unmapped regardless 2505 * the skb is successfully built or not. 2506 */ 2507 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2508 bm_pool->buf_size, DMA_FROM_DEVICE); 2509 if (!skb) 2510 goto err_drop_frame; 2511 2512 rcvd_pkts++; 2513 rcvd_bytes += rx_bytes; 2514 2515 /* Linux processing */ 2516 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2517 skb_put(skb, rx_bytes); 2518 2519 skb->protocol = eth_type_trans(skb, dev); 2520 2521 mvneta_rx_csum(pp, rx_status, skb); 2522 2523 napi_gro_receive(napi, skb); 2524 } 2525 2526 if (rcvd_pkts) { 2527 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2528 2529 u64_stats_update_begin(&stats->syncp); 2530 stats->es.ps.rx_packets += rcvd_pkts; 2531 stats->es.ps.rx_bytes += rcvd_bytes; 2532 u64_stats_update_end(&stats->syncp); 2533 } 2534 2535 /* Update rxq management counters */ 2536 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2537 2538 return rx_done; 2539 } 2540 2541 static inline void 2542 mvneta_tso_put_hdr(struct sk_buff *skb, 2543 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2544 { 2545 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2546 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2547 struct mvneta_tx_desc *tx_desc; 2548 2549 tx_desc = mvneta_txq_next_desc_get(txq); 2550 tx_desc->data_size = hdr_len; 2551 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2552 tx_desc->command |= MVNETA_TXD_F_DESC; 2553 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2554 txq->txq_put_index * TSO_HEADER_SIZE; 2555 buf->type = MVNETA_TYPE_SKB; 2556 buf->skb = NULL; 2557 2558 mvneta_txq_inc_put(txq); 2559 } 2560 2561 static inline int 2562 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2563 struct sk_buff *skb, char *data, int size, 2564 bool last_tcp, bool is_last) 2565 { 2566 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2567 struct mvneta_tx_desc *tx_desc; 2568 2569 tx_desc = mvneta_txq_next_desc_get(txq); 2570 tx_desc->data_size = size; 2571 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2572 size, DMA_TO_DEVICE); 2573 if (unlikely(dma_mapping_error(dev->dev.parent, 2574 tx_desc->buf_phys_addr))) { 2575 mvneta_txq_desc_put(txq); 2576 return -ENOMEM; 2577 } 2578 2579 tx_desc->command = 0; 2580 buf->type = MVNETA_TYPE_SKB; 2581 buf->skb = NULL; 2582 2583 if (last_tcp) { 2584 /* last descriptor in the TCP packet */ 2585 tx_desc->command = MVNETA_TXD_L_DESC; 2586 2587 /* last descriptor in SKB */ 2588 if (is_last) 2589 buf->skb = skb; 2590 } 2591 mvneta_txq_inc_put(txq); 2592 return 0; 2593 } 2594 2595 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2596 struct mvneta_tx_queue *txq) 2597 { 2598 int total_len, data_left; 2599 int desc_count = 0; 2600 struct mvneta_port *pp = netdev_priv(dev); 2601 struct tso_t tso; 2602 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2603 int i; 2604 2605 /* Count needed descriptors */ 2606 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2607 return 0; 2608 2609 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2610 pr_info("*** Is this even possible???!?!?\n"); 2611 return 0; 2612 } 2613 2614 /* Initialize the TSO handler, and prepare the first payload */ 2615 tso_start(skb, &tso); 2616 2617 total_len = skb->len - hdr_len; 2618 while (total_len > 0) { 2619 char *hdr; 2620 2621 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2622 total_len -= data_left; 2623 desc_count++; 2624 2625 /* prepare packet headers: MAC + IP + TCP */ 2626 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2627 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2628 2629 mvneta_tso_put_hdr(skb, pp, txq); 2630 2631 while (data_left > 0) { 2632 int size; 2633 desc_count++; 2634 2635 size = min_t(int, tso.size, data_left); 2636 2637 if (mvneta_tso_put_data(dev, txq, skb, 2638 tso.data, size, 2639 size == data_left, 2640 total_len == 0)) 2641 goto err_release; 2642 data_left -= size; 2643 2644 tso_build_data(skb, &tso, size); 2645 } 2646 } 2647 2648 return desc_count; 2649 2650 err_release: 2651 /* Release all used data descriptors; header descriptors must not 2652 * be DMA-unmapped. 2653 */ 2654 for (i = desc_count - 1; i >= 0; i--) { 2655 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2656 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2657 dma_unmap_single(pp->dev->dev.parent, 2658 tx_desc->buf_phys_addr, 2659 tx_desc->data_size, 2660 DMA_TO_DEVICE); 2661 mvneta_txq_desc_put(txq); 2662 } 2663 return 0; 2664 } 2665 2666 /* Handle tx fragmentation processing */ 2667 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2668 struct mvneta_tx_queue *txq) 2669 { 2670 struct mvneta_tx_desc *tx_desc; 2671 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2672 2673 for (i = 0; i < nr_frags; i++) { 2674 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2675 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2676 void *addr = skb_frag_address(frag); 2677 2678 tx_desc = mvneta_txq_next_desc_get(txq); 2679 tx_desc->data_size = skb_frag_size(frag); 2680 2681 tx_desc->buf_phys_addr = 2682 dma_map_single(pp->dev->dev.parent, addr, 2683 tx_desc->data_size, DMA_TO_DEVICE); 2684 2685 if (dma_mapping_error(pp->dev->dev.parent, 2686 tx_desc->buf_phys_addr)) { 2687 mvneta_txq_desc_put(txq); 2688 goto error; 2689 } 2690 2691 if (i == nr_frags - 1) { 2692 /* Last descriptor */ 2693 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2694 buf->skb = skb; 2695 } else { 2696 /* Descriptor in the middle: Not First, Not Last */ 2697 tx_desc->command = 0; 2698 buf->skb = NULL; 2699 } 2700 buf->type = MVNETA_TYPE_SKB; 2701 mvneta_txq_inc_put(txq); 2702 } 2703 2704 return 0; 2705 2706 error: 2707 /* Release all descriptors that were used to map fragments of 2708 * this packet, as well as the corresponding DMA mappings 2709 */ 2710 for (i = i - 1; i >= 0; i--) { 2711 tx_desc = txq->descs + i; 2712 dma_unmap_single(pp->dev->dev.parent, 2713 tx_desc->buf_phys_addr, 2714 tx_desc->data_size, 2715 DMA_TO_DEVICE); 2716 mvneta_txq_desc_put(txq); 2717 } 2718 2719 return -ENOMEM; 2720 } 2721 2722 /* Main tx processing */ 2723 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2724 { 2725 struct mvneta_port *pp = netdev_priv(dev); 2726 u16 txq_id = skb_get_queue_mapping(skb); 2727 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2728 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2729 struct mvneta_tx_desc *tx_desc; 2730 int len = skb->len; 2731 int frags = 0; 2732 u32 tx_cmd; 2733 2734 if (!netif_running(dev)) 2735 goto out; 2736 2737 if (skb_is_gso(skb)) { 2738 frags = mvneta_tx_tso(skb, dev, txq); 2739 goto out; 2740 } 2741 2742 frags = skb_shinfo(skb)->nr_frags + 1; 2743 2744 /* Get a descriptor for the first part of the packet */ 2745 tx_desc = mvneta_txq_next_desc_get(txq); 2746 2747 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2748 2749 tx_desc->data_size = skb_headlen(skb); 2750 2751 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2752 tx_desc->data_size, 2753 DMA_TO_DEVICE); 2754 if (unlikely(dma_mapping_error(dev->dev.parent, 2755 tx_desc->buf_phys_addr))) { 2756 mvneta_txq_desc_put(txq); 2757 frags = 0; 2758 goto out; 2759 } 2760 2761 buf->type = MVNETA_TYPE_SKB; 2762 if (frags == 1) { 2763 /* First and Last descriptor */ 2764 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2765 tx_desc->command = tx_cmd; 2766 buf->skb = skb; 2767 mvneta_txq_inc_put(txq); 2768 } else { 2769 /* First but not Last */ 2770 tx_cmd |= MVNETA_TXD_F_DESC; 2771 buf->skb = NULL; 2772 mvneta_txq_inc_put(txq); 2773 tx_desc->command = tx_cmd; 2774 /* Continue with other skb fragments */ 2775 if (mvneta_tx_frag_process(pp, skb, txq)) { 2776 dma_unmap_single(dev->dev.parent, 2777 tx_desc->buf_phys_addr, 2778 tx_desc->data_size, 2779 DMA_TO_DEVICE); 2780 mvneta_txq_desc_put(txq); 2781 frags = 0; 2782 goto out; 2783 } 2784 } 2785 2786 out: 2787 if (frags > 0) { 2788 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2789 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2790 2791 netdev_tx_sent_queue(nq, len); 2792 2793 txq->count += frags; 2794 if (txq->count >= txq->tx_stop_threshold) 2795 netif_tx_stop_queue(nq); 2796 2797 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2798 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2799 mvneta_txq_pend_desc_add(pp, txq, frags); 2800 else 2801 txq->pending += frags; 2802 2803 u64_stats_update_begin(&stats->syncp); 2804 stats->es.ps.tx_bytes += len; 2805 stats->es.ps.tx_packets++; 2806 u64_stats_update_end(&stats->syncp); 2807 } else { 2808 dev->stats.tx_dropped++; 2809 dev_kfree_skb_any(skb); 2810 } 2811 2812 return NETDEV_TX_OK; 2813 } 2814 2815 2816 /* Free tx resources, when resetting a port */ 2817 static void mvneta_txq_done_force(struct mvneta_port *pp, 2818 struct mvneta_tx_queue *txq) 2819 2820 { 2821 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2822 int tx_done = txq->count; 2823 2824 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2825 2826 /* reset txq */ 2827 txq->count = 0; 2828 txq->txq_put_index = 0; 2829 txq->txq_get_index = 0; 2830 } 2831 2832 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2833 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2834 */ 2835 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2836 { 2837 struct mvneta_tx_queue *txq; 2838 struct netdev_queue *nq; 2839 int cpu = smp_processor_id(); 2840 2841 while (cause_tx_done) { 2842 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2843 2844 nq = netdev_get_tx_queue(pp->dev, txq->id); 2845 __netif_tx_lock(nq, cpu); 2846 2847 if (txq->count) 2848 mvneta_txq_done(pp, txq); 2849 2850 __netif_tx_unlock(nq); 2851 cause_tx_done &= ~((1 << txq->id)); 2852 } 2853 } 2854 2855 /* Compute crc8 of the specified address, using a unique algorithm , 2856 * according to hw spec, different than generic crc8 algorithm 2857 */ 2858 static int mvneta_addr_crc(unsigned char *addr) 2859 { 2860 int crc = 0; 2861 int i; 2862 2863 for (i = 0; i < ETH_ALEN; i++) { 2864 int j; 2865 2866 crc = (crc ^ addr[i]) << 8; 2867 for (j = 7; j >= 0; j--) { 2868 if (crc & (0x100 << j)) 2869 crc ^= 0x107 << j; 2870 } 2871 } 2872 2873 return crc; 2874 } 2875 2876 /* This method controls the net device special MAC multicast support. 2877 * The Special Multicast Table for MAC addresses supports MAC of the form 2878 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2879 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2880 * Table entries in the DA-Filter table. This method set the Special 2881 * Multicast Table appropriate entry. 2882 */ 2883 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2884 unsigned char last_byte, 2885 int queue) 2886 { 2887 unsigned int smc_table_reg; 2888 unsigned int tbl_offset; 2889 unsigned int reg_offset; 2890 2891 /* Register offset from SMC table base */ 2892 tbl_offset = (last_byte / 4); 2893 /* Entry offset within the above reg */ 2894 reg_offset = last_byte % 4; 2895 2896 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2897 + tbl_offset * 4)); 2898 2899 if (queue == -1) 2900 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2901 else { 2902 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2903 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2904 } 2905 2906 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2907 smc_table_reg); 2908 } 2909 2910 /* This method controls the network device Other MAC multicast support. 2911 * The Other Multicast Table is used for multicast of another type. 2912 * A CRC-8 is used as an index to the Other Multicast Table entries 2913 * in the DA-Filter table. 2914 * The method gets the CRC-8 value from the calling routine and 2915 * sets the Other Multicast Table appropriate entry according to the 2916 * specified CRC-8 . 2917 */ 2918 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2919 unsigned char crc8, 2920 int queue) 2921 { 2922 unsigned int omc_table_reg; 2923 unsigned int tbl_offset; 2924 unsigned int reg_offset; 2925 2926 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2927 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2928 2929 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2930 2931 if (queue == -1) { 2932 /* Clear accepts frame bit at specified Other DA table entry */ 2933 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2934 } else { 2935 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2936 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2937 } 2938 2939 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2940 } 2941 2942 /* The network device supports multicast using two tables: 2943 * 1) Special Multicast Table for MAC addresses of the form 2944 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2945 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2946 * Table entries in the DA-Filter table. 2947 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2948 * is used as an index to the Other Multicast Table entries in the 2949 * DA-Filter table. 2950 */ 2951 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2952 int queue) 2953 { 2954 unsigned char crc_result = 0; 2955 2956 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2957 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2958 return 0; 2959 } 2960 2961 crc_result = mvneta_addr_crc(p_addr); 2962 if (queue == -1) { 2963 if (pp->mcast_count[crc_result] == 0) { 2964 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2965 crc_result); 2966 return -EINVAL; 2967 } 2968 2969 pp->mcast_count[crc_result]--; 2970 if (pp->mcast_count[crc_result] != 0) { 2971 netdev_info(pp->dev, 2972 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2973 pp->mcast_count[crc_result], crc_result); 2974 return -EINVAL; 2975 } 2976 } else 2977 pp->mcast_count[crc_result]++; 2978 2979 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2980 2981 return 0; 2982 } 2983 2984 /* Configure Fitering mode of Ethernet port */ 2985 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2986 int is_promisc) 2987 { 2988 u32 port_cfg_reg, val; 2989 2990 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2991 2992 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2993 2994 /* Set / Clear UPM bit in port configuration register */ 2995 if (is_promisc) { 2996 /* Accept all Unicast addresses */ 2997 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2998 val |= MVNETA_FORCE_UNI; 2999 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3000 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3001 } else { 3002 /* Reject all Unicast addresses */ 3003 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3004 val &= ~MVNETA_FORCE_UNI; 3005 } 3006 3007 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3008 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3009 } 3010 3011 /* register unicast and multicast addresses */ 3012 static void mvneta_set_rx_mode(struct net_device *dev) 3013 { 3014 struct mvneta_port *pp = netdev_priv(dev); 3015 struct netdev_hw_addr *ha; 3016 3017 if (dev->flags & IFF_PROMISC) { 3018 /* Accept all: Multicast + Unicast */ 3019 mvneta_rx_unicast_promisc_set(pp, 1); 3020 mvneta_set_ucast_table(pp, pp->rxq_def); 3021 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3022 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3023 } else { 3024 /* Accept single Unicast */ 3025 mvneta_rx_unicast_promisc_set(pp, 0); 3026 mvneta_set_ucast_table(pp, -1); 3027 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3028 3029 if (dev->flags & IFF_ALLMULTI) { 3030 /* Accept all multicast */ 3031 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3032 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3033 } else { 3034 /* Accept only initialized multicast */ 3035 mvneta_set_special_mcast_table(pp, -1); 3036 mvneta_set_other_mcast_table(pp, -1); 3037 3038 if (!netdev_mc_empty(dev)) { 3039 netdev_for_each_mc_addr(ha, dev) { 3040 mvneta_mcast_addr_set(pp, ha->addr, 3041 pp->rxq_def); 3042 } 3043 } 3044 } 3045 } 3046 } 3047 3048 /* Interrupt handling - the callback for request_irq() */ 3049 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3050 { 3051 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3052 3053 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3054 napi_schedule(&pp->napi); 3055 3056 return IRQ_HANDLED; 3057 } 3058 3059 /* Interrupt handling - the callback for request_percpu_irq() */ 3060 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3061 { 3062 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3063 3064 disable_percpu_irq(port->pp->dev->irq); 3065 napi_schedule(&port->napi); 3066 3067 return IRQ_HANDLED; 3068 } 3069 3070 static void mvneta_link_change(struct mvneta_port *pp) 3071 { 3072 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3073 3074 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3075 } 3076 3077 /* NAPI handler 3078 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3079 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3080 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3081 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3082 * Each CPU has its own causeRxTx register 3083 */ 3084 static int mvneta_poll(struct napi_struct *napi, int budget) 3085 { 3086 int rx_done = 0; 3087 u32 cause_rx_tx; 3088 int rx_queue; 3089 struct mvneta_port *pp = netdev_priv(napi->dev); 3090 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3091 3092 if (!netif_running(pp->dev)) { 3093 napi_complete(napi); 3094 return rx_done; 3095 } 3096 3097 /* Read cause register */ 3098 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3099 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3100 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3101 3102 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3103 3104 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3105 MVNETA_CAUSE_LINK_CHANGE)) 3106 mvneta_link_change(pp); 3107 } 3108 3109 /* Release Tx descriptors */ 3110 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3111 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3112 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3113 } 3114 3115 /* For the case where the last mvneta_poll did not process all 3116 * RX packets 3117 */ 3118 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3119 port->cause_rx_tx; 3120 3121 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3122 if (rx_queue) { 3123 rx_queue = rx_queue - 1; 3124 if (pp->bm_priv) 3125 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3126 &pp->rxqs[rx_queue]); 3127 else 3128 rx_done = mvneta_rx_swbm(napi, pp, budget, 3129 &pp->rxqs[rx_queue]); 3130 } 3131 3132 if (rx_done < budget) { 3133 cause_rx_tx = 0; 3134 napi_complete_done(napi, rx_done); 3135 3136 if (pp->neta_armada3700) { 3137 unsigned long flags; 3138 3139 local_irq_save(flags); 3140 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3141 MVNETA_RX_INTR_MASK(rxq_number) | 3142 MVNETA_TX_INTR_MASK(txq_number) | 3143 MVNETA_MISCINTR_INTR_MASK); 3144 local_irq_restore(flags); 3145 } else { 3146 enable_percpu_irq(pp->dev->irq, 0); 3147 } 3148 } 3149 3150 if (pp->neta_armada3700) 3151 pp->cause_rx_tx = cause_rx_tx; 3152 else 3153 port->cause_rx_tx = cause_rx_tx; 3154 3155 return rx_done; 3156 } 3157 3158 static int mvneta_create_page_pool(struct mvneta_port *pp, 3159 struct mvneta_rx_queue *rxq, int size) 3160 { 3161 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3162 struct page_pool_params pp_params = { 3163 .order = 0, 3164 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3165 .pool_size = size, 3166 .nid = NUMA_NO_NODE, 3167 .dev = pp->dev->dev.parent, 3168 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3169 .offset = pp->rx_offset_correction, 3170 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3171 }; 3172 int err; 3173 3174 rxq->page_pool = page_pool_create(&pp_params); 3175 if (IS_ERR(rxq->page_pool)) { 3176 err = PTR_ERR(rxq->page_pool); 3177 rxq->page_pool = NULL; 3178 return err; 3179 } 3180 3181 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3182 if (err < 0) 3183 goto err_free_pp; 3184 3185 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3186 rxq->page_pool); 3187 if (err) 3188 goto err_unregister_rxq; 3189 3190 return 0; 3191 3192 err_unregister_rxq: 3193 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3194 err_free_pp: 3195 page_pool_destroy(rxq->page_pool); 3196 rxq->page_pool = NULL; 3197 return err; 3198 } 3199 3200 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3201 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3202 int num) 3203 { 3204 int i, err; 3205 3206 err = mvneta_create_page_pool(pp, rxq, num); 3207 if (err < 0) 3208 return err; 3209 3210 for (i = 0; i < num; i++) { 3211 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3212 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3213 GFP_KERNEL) != 0) { 3214 netdev_err(pp->dev, 3215 "%s:rxq %d, %d of %d buffs filled\n", 3216 __func__, rxq->id, i, num); 3217 break; 3218 } 3219 } 3220 3221 /* Add this number of RX descriptors as non occupied (ready to 3222 * get packets) 3223 */ 3224 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3225 3226 return i; 3227 } 3228 3229 /* Free all packets pending transmit from all TXQs and reset TX port */ 3230 static void mvneta_tx_reset(struct mvneta_port *pp) 3231 { 3232 int queue; 3233 3234 /* free the skb's in the tx ring */ 3235 for (queue = 0; queue < txq_number; queue++) 3236 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3237 3238 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3239 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3240 } 3241 3242 static void mvneta_rx_reset(struct mvneta_port *pp) 3243 { 3244 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3245 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3246 } 3247 3248 /* Rx/Tx queue initialization/cleanup methods */ 3249 3250 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3251 struct mvneta_rx_queue *rxq) 3252 { 3253 rxq->size = pp->rx_ring_size; 3254 3255 /* Allocate memory for RX descriptors */ 3256 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3257 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3258 &rxq->descs_phys, GFP_KERNEL); 3259 if (!rxq->descs) 3260 return -ENOMEM; 3261 3262 rxq->last_desc = rxq->size - 1; 3263 3264 return 0; 3265 } 3266 3267 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3268 struct mvneta_rx_queue *rxq) 3269 { 3270 /* Set Rx descriptors queue starting address */ 3271 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3272 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3273 3274 /* Set coalescing pkts and time */ 3275 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3276 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3277 3278 if (!pp->bm_priv) { 3279 /* Set Offset */ 3280 mvneta_rxq_offset_set(pp, rxq, 0); 3281 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3282 MVNETA_MAX_RX_BUF_SIZE : 3283 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3284 mvneta_rxq_bm_disable(pp, rxq); 3285 mvneta_rxq_fill(pp, rxq, rxq->size); 3286 } else { 3287 /* Set Offset */ 3288 mvneta_rxq_offset_set(pp, rxq, 3289 NET_SKB_PAD - pp->rx_offset_correction); 3290 3291 mvneta_rxq_bm_enable(pp, rxq); 3292 /* Fill RXQ with buffers from RX pool */ 3293 mvneta_rxq_long_pool_set(pp, rxq); 3294 mvneta_rxq_short_pool_set(pp, rxq); 3295 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3296 } 3297 } 3298 3299 /* Create a specified RX queue */ 3300 static int mvneta_rxq_init(struct mvneta_port *pp, 3301 struct mvneta_rx_queue *rxq) 3302 3303 { 3304 int ret; 3305 3306 ret = mvneta_rxq_sw_init(pp, rxq); 3307 if (ret < 0) 3308 return ret; 3309 3310 mvneta_rxq_hw_init(pp, rxq); 3311 3312 return 0; 3313 } 3314 3315 /* Cleanup Rx queue */ 3316 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3317 struct mvneta_rx_queue *rxq) 3318 { 3319 mvneta_rxq_drop_pkts(pp, rxq); 3320 3321 if (rxq->skb) 3322 dev_kfree_skb_any(rxq->skb); 3323 3324 if (rxq->descs) 3325 dma_free_coherent(pp->dev->dev.parent, 3326 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3327 rxq->descs, 3328 rxq->descs_phys); 3329 3330 rxq->descs = NULL; 3331 rxq->last_desc = 0; 3332 rxq->next_desc_to_proc = 0; 3333 rxq->descs_phys = 0; 3334 rxq->first_to_refill = 0; 3335 rxq->refill_num = 0; 3336 rxq->skb = NULL; 3337 rxq->left_size = 0; 3338 } 3339 3340 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3341 struct mvneta_tx_queue *txq) 3342 { 3343 int cpu; 3344 3345 txq->size = pp->tx_ring_size; 3346 3347 /* A queue must always have room for at least one skb. 3348 * Therefore, stop the queue when the free entries reaches 3349 * the maximum number of descriptors per skb. 3350 */ 3351 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3352 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3353 3354 /* Allocate memory for TX descriptors */ 3355 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3356 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3357 &txq->descs_phys, GFP_KERNEL); 3358 if (!txq->descs) 3359 return -ENOMEM; 3360 3361 txq->last_desc = txq->size - 1; 3362 3363 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3364 if (!txq->buf) { 3365 dma_free_coherent(pp->dev->dev.parent, 3366 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3367 txq->descs, txq->descs_phys); 3368 return -ENOMEM; 3369 } 3370 3371 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3372 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3373 txq->size * TSO_HEADER_SIZE, 3374 &txq->tso_hdrs_phys, GFP_KERNEL); 3375 if (!txq->tso_hdrs) { 3376 kfree(txq->buf); 3377 dma_free_coherent(pp->dev->dev.parent, 3378 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3379 txq->descs, txq->descs_phys); 3380 return -ENOMEM; 3381 } 3382 3383 /* Setup XPS mapping */ 3384 if (txq_number > 1) 3385 cpu = txq->id % num_present_cpus(); 3386 else 3387 cpu = pp->rxq_def % num_present_cpus(); 3388 cpumask_set_cpu(cpu, &txq->affinity_mask); 3389 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3390 3391 return 0; 3392 } 3393 3394 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3395 struct mvneta_tx_queue *txq) 3396 { 3397 /* Set maximum bandwidth for enabled TXQs */ 3398 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3399 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3400 3401 /* Set Tx descriptors queue starting address */ 3402 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3403 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3404 3405 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3406 } 3407 3408 /* Create and initialize a tx queue */ 3409 static int mvneta_txq_init(struct mvneta_port *pp, 3410 struct mvneta_tx_queue *txq) 3411 { 3412 int ret; 3413 3414 ret = mvneta_txq_sw_init(pp, txq); 3415 if (ret < 0) 3416 return ret; 3417 3418 mvneta_txq_hw_init(pp, txq); 3419 3420 return 0; 3421 } 3422 3423 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3424 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3425 struct mvneta_tx_queue *txq) 3426 { 3427 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3428 3429 kfree(txq->buf); 3430 3431 if (txq->tso_hdrs) 3432 dma_free_coherent(pp->dev->dev.parent, 3433 txq->size * TSO_HEADER_SIZE, 3434 txq->tso_hdrs, txq->tso_hdrs_phys); 3435 if (txq->descs) 3436 dma_free_coherent(pp->dev->dev.parent, 3437 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3438 txq->descs, txq->descs_phys); 3439 3440 netdev_tx_reset_queue(nq); 3441 3442 txq->descs = NULL; 3443 txq->last_desc = 0; 3444 txq->next_desc_to_proc = 0; 3445 txq->descs_phys = 0; 3446 } 3447 3448 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3449 struct mvneta_tx_queue *txq) 3450 { 3451 /* Set minimum bandwidth for disabled TXQs */ 3452 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3453 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3454 3455 /* Set Tx descriptors queue starting address and size */ 3456 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3457 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3458 } 3459 3460 static void mvneta_txq_deinit(struct mvneta_port *pp, 3461 struct mvneta_tx_queue *txq) 3462 { 3463 mvneta_txq_sw_deinit(pp, txq); 3464 mvneta_txq_hw_deinit(pp, txq); 3465 } 3466 3467 /* Cleanup all Tx queues */ 3468 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3469 { 3470 int queue; 3471 3472 for (queue = 0; queue < txq_number; queue++) 3473 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3474 } 3475 3476 /* Cleanup all Rx queues */ 3477 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3478 { 3479 int queue; 3480 3481 for (queue = 0; queue < rxq_number; queue++) 3482 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3483 } 3484 3485 3486 /* Init all Rx queues */ 3487 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3488 { 3489 int queue; 3490 3491 for (queue = 0; queue < rxq_number; queue++) { 3492 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3493 3494 if (err) { 3495 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3496 __func__, queue); 3497 mvneta_cleanup_rxqs(pp); 3498 return err; 3499 } 3500 } 3501 3502 return 0; 3503 } 3504 3505 /* Init all tx queues */ 3506 static int mvneta_setup_txqs(struct mvneta_port *pp) 3507 { 3508 int queue; 3509 3510 for (queue = 0; queue < txq_number; queue++) { 3511 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3512 if (err) { 3513 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3514 __func__, queue); 3515 mvneta_cleanup_txqs(pp); 3516 return err; 3517 } 3518 } 3519 3520 return 0; 3521 } 3522 3523 static int mvneta_comphy_init(struct mvneta_port *pp) 3524 { 3525 int ret; 3526 3527 if (!pp->comphy) 3528 return 0; 3529 3530 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3531 pp->phy_interface); 3532 if (ret) 3533 return ret; 3534 3535 return phy_power_on(pp->comphy); 3536 } 3537 3538 static void mvneta_start_dev(struct mvneta_port *pp) 3539 { 3540 int cpu; 3541 3542 WARN_ON(mvneta_comphy_init(pp)); 3543 3544 mvneta_max_rx_size_set(pp, pp->pkt_size); 3545 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3546 3547 /* start the Rx/Tx activity */ 3548 mvneta_port_enable(pp); 3549 3550 if (!pp->neta_armada3700) { 3551 /* Enable polling on the port */ 3552 for_each_online_cpu(cpu) { 3553 struct mvneta_pcpu_port *port = 3554 per_cpu_ptr(pp->ports, cpu); 3555 3556 napi_enable(&port->napi); 3557 } 3558 } else { 3559 napi_enable(&pp->napi); 3560 } 3561 3562 /* Unmask interrupts. It has to be done from each CPU */ 3563 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3564 3565 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3566 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3567 MVNETA_CAUSE_LINK_CHANGE); 3568 3569 phylink_start(pp->phylink); 3570 netif_tx_start_all_queues(pp->dev); 3571 } 3572 3573 static void mvneta_stop_dev(struct mvneta_port *pp) 3574 { 3575 unsigned int cpu; 3576 3577 phylink_stop(pp->phylink); 3578 3579 if (!pp->neta_armada3700) { 3580 for_each_online_cpu(cpu) { 3581 struct mvneta_pcpu_port *port = 3582 per_cpu_ptr(pp->ports, cpu); 3583 3584 napi_disable(&port->napi); 3585 } 3586 } else { 3587 napi_disable(&pp->napi); 3588 } 3589 3590 netif_carrier_off(pp->dev); 3591 3592 mvneta_port_down(pp); 3593 netif_tx_stop_all_queues(pp->dev); 3594 3595 /* Stop the port activity */ 3596 mvneta_port_disable(pp); 3597 3598 /* Clear all ethernet port interrupts */ 3599 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3600 3601 /* Mask all ethernet port interrupts */ 3602 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3603 3604 mvneta_tx_reset(pp); 3605 mvneta_rx_reset(pp); 3606 3607 WARN_ON(phy_power_off(pp->comphy)); 3608 } 3609 3610 static void mvneta_percpu_enable(void *arg) 3611 { 3612 struct mvneta_port *pp = arg; 3613 3614 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3615 } 3616 3617 static void mvneta_percpu_disable(void *arg) 3618 { 3619 struct mvneta_port *pp = arg; 3620 3621 disable_percpu_irq(pp->dev->irq); 3622 } 3623 3624 /* Change the device mtu */ 3625 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3626 { 3627 struct mvneta_port *pp = netdev_priv(dev); 3628 int ret; 3629 3630 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3631 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3632 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3633 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3634 } 3635 3636 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3637 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3638 return -EINVAL; 3639 } 3640 3641 dev->mtu = mtu; 3642 3643 if (!netif_running(dev)) { 3644 if (pp->bm_priv) 3645 mvneta_bm_update_mtu(pp, mtu); 3646 3647 netdev_update_features(dev); 3648 return 0; 3649 } 3650 3651 /* The interface is running, so we have to force a 3652 * reallocation of the queues 3653 */ 3654 mvneta_stop_dev(pp); 3655 on_each_cpu(mvneta_percpu_disable, pp, true); 3656 3657 mvneta_cleanup_txqs(pp); 3658 mvneta_cleanup_rxqs(pp); 3659 3660 if (pp->bm_priv) 3661 mvneta_bm_update_mtu(pp, mtu); 3662 3663 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3664 3665 ret = mvneta_setup_rxqs(pp); 3666 if (ret) { 3667 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3668 return ret; 3669 } 3670 3671 ret = mvneta_setup_txqs(pp); 3672 if (ret) { 3673 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3674 return ret; 3675 } 3676 3677 on_each_cpu(mvneta_percpu_enable, pp, true); 3678 mvneta_start_dev(pp); 3679 3680 netdev_update_features(dev); 3681 3682 return 0; 3683 } 3684 3685 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3686 netdev_features_t features) 3687 { 3688 struct mvneta_port *pp = netdev_priv(dev); 3689 3690 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3691 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3692 netdev_info(dev, 3693 "Disable IP checksum for MTU greater than %dB\n", 3694 pp->tx_csum_limit); 3695 } 3696 3697 return features; 3698 } 3699 3700 /* Get mac address */ 3701 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3702 { 3703 u32 mac_addr_l, mac_addr_h; 3704 3705 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3706 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3707 addr[0] = (mac_addr_h >> 24) & 0xFF; 3708 addr[1] = (mac_addr_h >> 16) & 0xFF; 3709 addr[2] = (mac_addr_h >> 8) & 0xFF; 3710 addr[3] = mac_addr_h & 0xFF; 3711 addr[4] = (mac_addr_l >> 8) & 0xFF; 3712 addr[5] = mac_addr_l & 0xFF; 3713 } 3714 3715 /* Handle setting mac address */ 3716 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3717 { 3718 struct mvneta_port *pp = netdev_priv(dev); 3719 struct sockaddr *sockaddr = addr; 3720 int ret; 3721 3722 ret = eth_prepare_mac_addr_change(dev, addr); 3723 if (ret < 0) 3724 return ret; 3725 /* Remove previous address table entry */ 3726 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3727 3728 /* Set new addr in hw */ 3729 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3730 3731 eth_commit_mac_addr_change(dev, addr); 3732 return 0; 3733 } 3734 3735 static void mvneta_validate(struct phylink_config *config, 3736 unsigned long *supported, 3737 struct phylink_link_state *state) 3738 { 3739 struct net_device *ndev = to_net_dev(config->dev); 3740 struct mvneta_port *pp = netdev_priv(ndev); 3741 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3742 3743 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3744 if (state->interface != PHY_INTERFACE_MODE_NA && 3745 state->interface != PHY_INTERFACE_MODE_QSGMII && 3746 state->interface != PHY_INTERFACE_MODE_SGMII && 3747 !phy_interface_mode_is_8023z(state->interface) && 3748 !phy_interface_mode_is_rgmii(state->interface)) { 3749 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3750 return; 3751 } 3752 3753 /* Allow all the expected bits */ 3754 phylink_set(mask, Autoneg); 3755 phylink_set_port_modes(mask); 3756 3757 /* Asymmetric pause is unsupported */ 3758 phylink_set(mask, Pause); 3759 3760 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3761 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3762 phylink_set(mask, 1000baseT_Full); 3763 phylink_set(mask, 1000baseX_Full); 3764 } 3765 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3766 phylink_set(mask, 2500baseT_Full); 3767 phylink_set(mask, 2500baseX_Full); 3768 } 3769 3770 if (!phy_interface_mode_is_8023z(state->interface)) { 3771 /* 10M and 100M are only supported in non-802.3z mode */ 3772 phylink_set(mask, 10baseT_Half); 3773 phylink_set(mask, 10baseT_Full); 3774 phylink_set(mask, 100baseT_Half); 3775 phylink_set(mask, 100baseT_Full); 3776 } 3777 3778 bitmap_and(supported, supported, mask, 3779 __ETHTOOL_LINK_MODE_MASK_NBITS); 3780 bitmap_and(state->advertising, state->advertising, mask, 3781 __ETHTOOL_LINK_MODE_MASK_NBITS); 3782 3783 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3784 * to advertise both, only report advertising at 2500BaseX. 3785 */ 3786 phylink_helper_basex_speed(state); 3787 } 3788 3789 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3790 struct phylink_link_state *state) 3791 { 3792 struct net_device *ndev = to_net_dev(config->dev); 3793 struct mvneta_port *pp = netdev_priv(ndev); 3794 u32 gmac_stat; 3795 3796 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3797 3798 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3799 state->speed = 3800 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3801 SPEED_2500 : SPEED_1000; 3802 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3803 state->speed = SPEED_100; 3804 else 3805 state->speed = SPEED_10; 3806 3807 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3808 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3809 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3810 3811 state->pause = 0; 3812 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3813 state->pause |= MLO_PAUSE_RX; 3814 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3815 state->pause |= MLO_PAUSE_TX; 3816 } 3817 3818 static void mvneta_mac_an_restart(struct phylink_config *config) 3819 { 3820 struct net_device *ndev = to_net_dev(config->dev); 3821 struct mvneta_port *pp = netdev_priv(ndev); 3822 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3823 3824 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3825 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3826 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3827 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3828 } 3829 3830 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3831 const struct phylink_link_state *state) 3832 { 3833 struct net_device *ndev = to_net_dev(config->dev); 3834 struct mvneta_port *pp = netdev_priv(ndev); 3835 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3836 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3837 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3838 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3839 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3840 3841 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3842 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3843 MVNETA_GMAC2_PORT_RESET); 3844 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3845 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3846 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3847 MVNETA_GMAC_INBAND_RESTART_AN | 3848 MVNETA_GMAC_AN_SPEED_EN | 3849 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3850 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3851 MVNETA_GMAC_AN_DUPLEX_EN); 3852 3853 /* Even though it might look weird, when we're configured in 3854 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3855 */ 3856 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3857 3858 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3859 state->interface == PHY_INTERFACE_MODE_SGMII || 3860 phy_interface_mode_is_8023z(state->interface)) 3861 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3862 3863 if (phylink_test(state->advertising, Pause)) 3864 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3865 3866 if (!phylink_autoneg_inband(mode)) { 3867 /* Phy or fixed speed - nothing to do, leave the 3868 * configured speed, duplex and flow control as-is. 3869 */ 3870 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3871 /* SGMII mode receives the state from the PHY */ 3872 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3873 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3874 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3875 MVNETA_GMAC_FORCE_LINK_PASS | 3876 MVNETA_GMAC_CONFIG_MII_SPEED | 3877 MVNETA_GMAC_CONFIG_GMII_SPEED | 3878 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3879 MVNETA_GMAC_INBAND_AN_ENABLE | 3880 MVNETA_GMAC_AN_SPEED_EN | 3881 MVNETA_GMAC_AN_DUPLEX_EN; 3882 } else { 3883 /* 802.3z negotiation - only 1000base-X */ 3884 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3885 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3886 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3887 MVNETA_GMAC_FORCE_LINK_PASS | 3888 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3889 MVNETA_GMAC_INBAND_AN_ENABLE | 3890 MVNETA_GMAC_CONFIG_GMII_SPEED | 3891 /* The MAC only supports FD mode */ 3892 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3893 3894 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3895 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3896 } 3897 3898 /* Armada 370 documentation says we can only change the port mode 3899 * and in-band enable when the link is down, so force it down 3900 * while making these changes. We also do this for GMAC_CTRL2 */ 3901 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3902 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3903 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3904 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3905 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3906 MVNETA_GMAC_FORCE_LINK_DOWN); 3907 } 3908 3909 3910 /* When at 2.5G, the link partner can send frames with shortened 3911 * preambles. 3912 */ 3913 if (state->speed == SPEED_2500) 3914 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3915 3916 if (pp->comphy && pp->phy_interface != state->interface && 3917 (state->interface == PHY_INTERFACE_MODE_SGMII || 3918 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3919 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3920 pp->phy_interface = state->interface; 3921 3922 WARN_ON(phy_power_off(pp->comphy)); 3923 WARN_ON(mvneta_comphy_init(pp)); 3924 } 3925 3926 if (new_ctrl0 != gmac_ctrl0) 3927 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3928 if (new_ctrl2 != gmac_ctrl2) 3929 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3930 if (new_ctrl4 != gmac_ctrl4) 3931 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3932 if (new_clk != gmac_clk) 3933 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3934 if (new_an != gmac_an) 3935 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3936 3937 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3938 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3939 MVNETA_GMAC2_PORT_RESET) != 0) 3940 continue; 3941 } 3942 } 3943 3944 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3945 { 3946 u32 lpi_ctl1; 3947 3948 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3949 if (enable) 3950 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3951 else 3952 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3953 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3954 } 3955 3956 static void mvneta_mac_link_down(struct phylink_config *config, 3957 unsigned int mode, phy_interface_t interface) 3958 { 3959 struct net_device *ndev = to_net_dev(config->dev); 3960 struct mvneta_port *pp = netdev_priv(ndev); 3961 u32 val; 3962 3963 mvneta_port_down(pp); 3964 3965 if (!phylink_autoneg_inband(mode)) { 3966 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3967 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3968 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3969 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3970 } 3971 3972 pp->eee_active = false; 3973 mvneta_set_eee(pp, false); 3974 } 3975 3976 static void mvneta_mac_link_up(struct phylink_config *config, 3977 struct phy_device *phy, 3978 unsigned int mode, phy_interface_t interface, 3979 int speed, int duplex, 3980 bool tx_pause, bool rx_pause) 3981 { 3982 struct net_device *ndev = to_net_dev(config->dev); 3983 struct mvneta_port *pp = netdev_priv(ndev); 3984 u32 val; 3985 3986 if (!phylink_autoneg_inband(mode)) { 3987 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3988 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3989 MVNETA_GMAC_CONFIG_MII_SPEED | 3990 MVNETA_GMAC_CONFIG_GMII_SPEED | 3991 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3992 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3993 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3994 3995 if (speed == SPEED_1000 || speed == SPEED_2500) 3996 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3997 else if (speed == SPEED_100) 3998 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3999 4000 if (duplex == DUPLEX_FULL) 4001 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4002 4003 if (tx_pause || rx_pause) 4004 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4005 4006 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4007 } else { 4008 /* When inband doesn't cover flow control or flow control is 4009 * disabled, we need to manually configure it. This bit will 4010 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4011 */ 4012 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4013 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4014 4015 if (tx_pause || rx_pause) 4016 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4017 4018 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4019 } 4020 4021 mvneta_port_up(pp); 4022 4023 if (phy && pp->eee_enabled) { 4024 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4025 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4026 } 4027 } 4028 4029 static const struct phylink_mac_ops mvneta_phylink_ops = { 4030 .validate = mvneta_validate, 4031 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4032 .mac_an_restart = mvneta_mac_an_restart, 4033 .mac_config = mvneta_mac_config, 4034 .mac_link_down = mvneta_mac_link_down, 4035 .mac_link_up = mvneta_mac_link_up, 4036 }; 4037 4038 static int mvneta_mdio_probe(struct mvneta_port *pp) 4039 { 4040 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4041 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4042 4043 if (err) 4044 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4045 4046 phylink_ethtool_get_wol(pp->phylink, &wol); 4047 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4048 4049 return err; 4050 } 4051 4052 static void mvneta_mdio_remove(struct mvneta_port *pp) 4053 { 4054 phylink_disconnect_phy(pp->phylink); 4055 } 4056 4057 /* Electing a CPU must be done in an atomic way: it should be done 4058 * after or before the removal/insertion of a CPU and this function is 4059 * not reentrant. 4060 */ 4061 static void mvneta_percpu_elect(struct mvneta_port *pp) 4062 { 4063 int elected_cpu = 0, max_cpu, cpu, i = 0; 4064 4065 /* Use the cpu associated to the rxq when it is online, in all 4066 * the other cases, use the cpu 0 which can't be offline. 4067 */ 4068 if (cpu_online(pp->rxq_def)) 4069 elected_cpu = pp->rxq_def; 4070 4071 max_cpu = num_present_cpus(); 4072 4073 for_each_online_cpu(cpu) { 4074 int rxq_map = 0, txq_map = 0; 4075 int rxq; 4076 4077 for (rxq = 0; rxq < rxq_number; rxq++) 4078 if ((rxq % max_cpu) == cpu) 4079 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4080 4081 if (cpu == elected_cpu) 4082 /* Map the default receive queue queue to the 4083 * elected CPU 4084 */ 4085 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4086 4087 /* We update the TX queue map only if we have one 4088 * queue. In this case we associate the TX queue to 4089 * the CPU bound to the default RX queue 4090 */ 4091 if (txq_number == 1) 4092 txq_map = (cpu == elected_cpu) ? 4093 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4094 else 4095 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4096 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4097 4098 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4099 4100 /* Update the interrupt mask on each CPU according the 4101 * new mapping 4102 */ 4103 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4104 pp, true); 4105 i++; 4106 4107 } 4108 }; 4109 4110 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4111 { 4112 int other_cpu; 4113 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4114 node_online); 4115 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4116 4117 4118 spin_lock(&pp->lock); 4119 /* 4120 * Configuring the driver for a new CPU while the driver is 4121 * stopping is racy, so just avoid it. 4122 */ 4123 if (pp->is_stopped) { 4124 spin_unlock(&pp->lock); 4125 return 0; 4126 } 4127 netif_tx_stop_all_queues(pp->dev); 4128 4129 /* 4130 * We have to synchronise on tha napi of each CPU except the one 4131 * just being woken up 4132 */ 4133 for_each_online_cpu(other_cpu) { 4134 if (other_cpu != cpu) { 4135 struct mvneta_pcpu_port *other_port = 4136 per_cpu_ptr(pp->ports, other_cpu); 4137 4138 napi_synchronize(&other_port->napi); 4139 } 4140 } 4141 4142 /* Mask all ethernet port interrupts */ 4143 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4144 napi_enable(&port->napi); 4145 4146 /* 4147 * Enable per-CPU interrupts on the CPU that is 4148 * brought up. 4149 */ 4150 mvneta_percpu_enable(pp); 4151 4152 /* 4153 * Enable per-CPU interrupt on the one CPU we care 4154 * about. 4155 */ 4156 mvneta_percpu_elect(pp); 4157 4158 /* Unmask all ethernet port interrupts */ 4159 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4160 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4161 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4162 MVNETA_CAUSE_LINK_CHANGE); 4163 netif_tx_start_all_queues(pp->dev); 4164 spin_unlock(&pp->lock); 4165 return 0; 4166 } 4167 4168 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4169 { 4170 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4171 node_online); 4172 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4173 4174 /* 4175 * Thanks to this lock we are sure that any pending cpu election is 4176 * done. 4177 */ 4178 spin_lock(&pp->lock); 4179 /* Mask all ethernet port interrupts */ 4180 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4181 spin_unlock(&pp->lock); 4182 4183 napi_synchronize(&port->napi); 4184 napi_disable(&port->napi); 4185 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4186 mvneta_percpu_disable(pp); 4187 return 0; 4188 } 4189 4190 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4191 { 4192 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4193 node_dead); 4194 4195 /* Check if a new CPU must be elected now this on is down */ 4196 spin_lock(&pp->lock); 4197 mvneta_percpu_elect(pp); 4198 spin_unlock(&pp->lock); 4199 /* Unmask all ethernet port interrupts */ 4200 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4201 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4202 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4203 MVNETA_CAUSE_LINK_CHANGE); 4204 netif_tx_start_all_queues(pp->dev); 4205 return 0; 4206 } 4207 4208 static int mvneta_open(struct net_device *dev) 4209 { 4210 struct mvneta_port *pp = netdev_priv(dev); 4211 int ret; 4212 4213 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4214 4215 ret = mvneta_setup_rxqs(pp); 4216 if (ret) 4217 return ret; 4218 4219 ret = mvneta_setup_txqs(pp); 4220 if (ret) 4221 goto err_cleanup_rxqs; 4222 4223 /* Connect to port interrupt line */ 4224 if (pp->neta_armada3700) 4225 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4226 dev->name, pp); 4227 else 4228 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4229 dev->name, pp->ports); 4230 if (ret) { 4231 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4232 goto err_cleanup_txqs; 4233 } 4234 4235 if (!pp->neta_armada3700) { 4236 /* Enable per-CPU interrupt on all the CPU to handle our RX 4237 * queue interrupts 4238 */ 4239 on_each_cpu(mvneta_percpu_enable, pp, true); 4240 4241 pp->is_stopped = false; 4242 /* Register a CPU notifier to handle the case where our CPU 4243 * might be taken offline. 4244 */ 4245 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4246 &pp->node_online); 4247 if (ret) 4248 goto err_free_irq; 4249 4250 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4251 &pp->node_dead); 4252 if (ret) 4253 goto err_free_online_hp; 4254 } 4255 4256 ret = mvneta_mdio_probe(pp); 4257 if (ret < 0) { 4258 netdev_err(dev, "cannot probe MDIO bus\n"); 4259 goto err_free_dead_hp; 4260 } 4261 4262 mvneta_start_dev(pp); 4263 4264 return 0; 4265 4266 err_free_dead_hp: 4267 if (!pp->neta_armada3700) 4268 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4269 &pp->node_dead); 4270 err_free_online_hp: 4271 if (!pp->neta_armada3700) 4272 cpuhp_state_remove_instance_nocalls(online_hpstate, 4273 &pp->node_online); 4274 err_free_irq: 4275 if (pp->neta_armada3700) { 4276 free_irq(pp->dev->irq, pp); 4277 } else { 4278 on_each_cpu(mvneta_percpu_disable, pp, true); 4279 free_percpu_irq(pp->dev->irq, pp->ports); 4280 } 4281 err_cleanup_txqs: 4282 mvneta_cleanup_txqs(pp); 4283 err_cleanup_rxqs: 4284 mvneta_cleanup_rxqs(pp); 4285 return ret; 4286 } 4287 4288 /* Stop the port, free port interrupt line */ 4289 static int mvneta_stop(struct net_device *dev) 4290 { 4291 struct mvneta_port *pp = netdev_priv(dev); 4292 4293 if (!pp->neta_armada3700) { 4294 /* Inform that we are stopping so we don't want to setup the 4295 * driver for new CPUs in the notifiers. The code of the 4296 * notifier for CPU online is protected by the same spinlock, 4297 * so when we get the lock, the notifer work is done. 4298 */ 4299 spin_lock(&pp->lock); 4300 pp->is_stopped = true; 4301 spin_unlock(&pp->lock); 4302 4303 mvneta_stop_dev(pp); 4304 mvneta_mdio_remove(pp); 4305 4306 cpuhp_state_remove_instance_nocalls(online_hpstate, 4307 &pp->node_online); 4308 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4309 &pp->node_dead); 4310 on_each_cpu(mvneta_percpu_disable, pp, true); 4311 free_percpu_irq(dev->irq, pp->ports); 4312 } else { 4313 mvneta_stop_dev(pp); 4314 mvneta_mdio_remove(pp); 4315 free_irq(dev->irq, pp); 4316 } 4317 4318 mvneta_cleanup_rxqs(pp); 4319 mvneta_cleanup_txqs(pp); 4320 4321 return 0; 4322 } 4323 4324 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4325 { 4326 struct mvneta_port *pp = netdev_priv(dev); 4327 4328 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4329 } 4330 4331 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4332 struct netlink_ext_ack *extack) 4333 { 4334 bool need_update, running = netif_running(dev); 4335 struct mvneta_port *pp = netdev_priv(dev); 4336 struct bpf_prog *old_prog; 4337 4338 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4339 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4340 return -EOPNOTSUPP; 4341 } 4342 4343 if (pp->bm_priv) { 4344 NL_SET_ERR_MSG_MOD(extack, 4345 "Hardware Buffer Management not supported on XDP"); 4346 return -EOPNOTSUPP; 4347 } 4348 4349 need_update = !!pp->xdp_prog != !!prog; 4350 if (running && need_update) 4351 mvneta_stop(dev); 4352 4353 old_prog = xchg(&pp->xdp_prog, prog); 4354 if (old_prog) 4355 bpf_prog_put(old_prog); 4356 4357 if (running && need_update) 4358 return mvneta_open(dev); 4359 4360 return 0; 4361 } 4362 4363 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4364 { 4365 struct mvneta_port *pp = netdev_priv(dev); 4366 4367 switch (xdp->command) { 4368 case XDP_SETUP_PROG: 4369 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4370 case XDP_QUERY_PROG: 4371 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4372 return 0; 4373 default: 4374 return -EINVAL; 4375 } 4376 } 4377 4378 /* Ethtool methods */ 4379 4380 /* Set link ksettings (phy address, speed) for ethtools */ 4381 static int 4382 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4383 const struct ethtool_link_ksettings *cmd) 4384 { 4385 struct mvneta_port *pp = netdev_priv(ndev); 4386 4387 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4388 } 4389 4390 /* Get link ksettings for ethtools */ 4391 static int 4392 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4393 struct ethtool_link_ksettings *cmd) 4394 { 4395 struct mvneta_port *pp = netdev_priv(ndev); 4396 4397 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4398 } 4399 4400 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4401 { 4402 struct mvneta_port *pp = netdev_priv(dev); 4403 4404 return phylink_ethtool_nway_reset(pp->phylink); 4405 } 4406 4407 /* Set interrupt coalescing for ethtools */ 4408 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4409 struct ethtool_coalesce *c) 4410 { 4411 struct mvneta_port *pp = netdev_priv(dev); 4412 int queue; 4413 4414 for (queue = 0; queue < rxq_number; queue++) { 4415 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4416 rxq->time_coal = c->rx_coalesce_usecs; 4417 rxq->pkts_coal = c->rx_max_coalesced_frames; 4418 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4419 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4420 } 4421 4422 for (queue = 0; queue < txq_number; queue++) { 4423 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4424 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4425 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4426 } 4427 4428 return 0; 4429 } 4430 4431 /* get coalescing for ethtools */ 4432 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4433 struct ethtool_coalesce *c) 4434 { 4435 struct mvneta_port *pp = netdev_priv(dev); 4436 4437 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4438 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4439 4440 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4441 return 0; 4442 } 4443 4444 4445 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4446 struct ethtool_drvinfo *drvinfo) 4447 { 4448 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4449 sizeof(drvinfo->driver)); 4450 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4451 sizeof(drvinfo->version)); 4452 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4453 sizeof(drvinfo->bus_info)); 4454 } 4455 4456 4457 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4458 struct ethtool_ringparam *ring) 4459 { 4460 struct mvneta_port *pp = netdev_priv(netdev); 4461 4462 ring->rx_max_pending = MVNETA_MAX_RXD; 4463 ring->tx_max_pending = MVNETA_MAX_TXD; 4464 ring->rx_pending = pp->rx_ring_size; 4465 ring->tx_pending = pp->tx_ring_size; 4466 } 4467 4468 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4469 struct ethtool_ringparam *ring) 4470 { 4471 struct mvneta_port *pp = netdev_priv(dev); 4472 4473 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4474 return -EINVAL; 4475 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4476 ring->rx_pending : MVNETA_MAX_RXD; 4477 4478 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4479 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4480 if (pp->tx_ring_size != ring->tx_pending) 4481 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4482 pp->tx_ring_size, ring->tx_pending); 4483 4484 if (netif_running(dev)) { 4485 mvneta_stop(dev); 4486 if (mvneta_open(dev)) { 4487 netdev_err(dev, 4488 "error on opening device after ring param change\n"); 4489 return -ENOMEM; 4490 } 4491 } 4492 4493 return 0; 4494 } 4495 4496 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4497 struct ethtool_pauseparam *pause) 4498 { 4499 struct mvneta_port *pp = netdev_priv(dev); 4500 4501 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4502 } 4503 4504 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4505 struct ethtool_pauseparam *pause) 4506 { 4507 struct mvneta_port *pp = netdev_priv(dev); 4508 4509 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4510 } 4511 4512 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4513 u8 *data) 4514 { 4515 if (sset == ETH_SS_STATS) { 4516 int i; 4517 4518 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4519 memcpy(data + i * ETH_GSTRING_LEN, 4520 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4521 } 4522 } 4523 4524 static void 4525 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4526 struct mvneta_ethtool_stats *es) 4527 { 4528 unsigned int start; 4529 int cpu; 4530 4531 for_each_possible_cpu(cpu) { 4532 struct mvneta_pcpu_stats *stats; 4533 u64 skb_alloc_error; 4534 u64 refill_error; 4535 u64 xdp_redirect; 4536 u64 xdp_xmit_err; 4537 u64 xdp_tx_err; 4538 u64 xdp_pass; 4539 u64 xdp_drop; 4540 u64 xdp_xmit; 4541 u64 xdp_tx; 4542 4543 stats = per_cpu_ptr(pp->stats, cpu); 4544 do { 4545 start = u64_stats_fetch_begin_irq(&stats->syncp); 4546 skb_alloc_error = stats->es.skb_alloc_error; 4547 refill_error = stats->es.refill_error; 4548 xdp_redirect = stats->es.ps.xdp_redirect; 4549 xdp_pass = stats->es.ps.xdp_pass; 4550 xdp_drop = stats->es.ps.xdp_drop; 4551 xdp_xmit = stats->es.ps.xdp_xmit; 4552 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4553 xdp_tx = stats->es.ps.xdp_tx; 4554 xdp_tx_err = stats->es.ps.xdp_tx_err; 4555 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4556 4557 es->skb_alloc_error += skb_alloc_error; 4558 es->refill_error += refill_error; 4559 es->ps.xdp_redirect += xdp_redirect; 4560 es->ps.xdp_pass += xdp_pass; 4561 es->ps.xdp_drop += xdp_drop; 4562 es->ps.xdp_xmit += xdp_xmit; 4563 es->ps.xdp_xmit_err += xdp_xmit_err; 4564 es->ps.xdp_tx += xdp_tx; 4565 es->ps.xdp_tx_err += xdp_tx_err; 4566 } 4567 } 4568 4569 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4570 { 4571 struct mvneta_ethtool_stats stats = {}; 4572 const struct mvneta_statistic *s; 4573 void __iomem *base = pp->base; 4574 u32 high, low; 4575 u64 val; 4576 int i; 4577 4578 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4579 for (i = 0, s = mvneta_statistics; 4580 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4581 s++, i++) { 4582 switch (s->type) { 4583 case T_REG_32: 4584 val = readl_relaxed(base + s->offset); 4585 pp->ethtool_stats[i] += val; 4586 break; 4587 case T_REG_64: 4588 /* Docs say to read low 32-bit then high */ 4589 low = readl_relaxed(base + s->offset); 4590 high = readl_relaxed(base + s->offset + 4); 4591 val = (u64)high << 32 | low; 4592 pp->ethtool_stats[i] += val; 4593 break; 4594 case T_SW: 4595 switch (s->offset) { 4596 case ETHTOOL_STAT_EEE_WAKEUP: 4597 val = phylink_get_eee_err(pp->phylink); 4598 pp->ethtool_stats[i] += val; 4599 break; 4600 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4601 pp->ethtool_stats[i] = stats.skb_alloc_error; 4602 break; 4603 case ETHTOOL_STAT_REFILL_ERR: 4604 pp->ethtool_stats[i] = stats.refill_error; 4605 break; 4606 case ETHTOOL_XDP_REDIRECT: 4607 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4608 break; 4609 case ETHTOOL_XDP_PASS: 4610 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4611 break; 4612 case ETHTOOL_XDP_DROP: 4613 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4614 break; 4615 case ETHTOOL_XDP_TX: 4616 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4617 break; 4618 case ETHTOOL_XDP_TX_ERR: 4619 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4620 break; 4621 case ETHTOOL_XDP_XMIT: 4622 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4623 break; 4624 case ETHTOOL_XDP_XMIT_ERR: 4625 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4626 break; 4627 } 4628 break; 4629 } 4630 } 4631 } 4632 4633 static void mvneta_ethtool_get_stats(struct net_device *dev, 4634 struct ethtool_stats *stats, u64 *data) 4635 { 4636 struct mvneta_port *pp = netdev_priv(dev); 4637 int i; 4638 4639 mvneta_ethtool_update_stats(pp); 4640 4641 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4642 *data++ = pp->ethtool_stats[i]; 4643 } 4644 4645 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4646 { 4647 if (sset == ETH_SS_STATS) 4648 return ARRAY_SIZE(mvneta_statistics); 4649 return -EOPNOTSUPP; 4650 } 4651 4652 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4653 { 4654 return MVNETA_RSS_LU_TABLE_SIZE; 4655 } 4656 4657 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4658 struct ethtool_rxnfc *info, 4659 u32 *rules __always_unused) 4660 { 4661 switch (info->cmd) { 4662 case ETHTOOL_GRXRINGS: 4663 info->data = rxq_number; 4664 return 0; 4665 case ETHTOOL_GRXFH: 4666 return -EOPNOTSUPP; 4667 default: 4668 return -EOPNOTSUPP; 4669 } 4670 } 4671 4672 static int mvneta_config_rss(struct mvneta_port *pp) 4673 { 4674 int cpu; 4675 u32 val; 4676 4677 netif_tx_stop_all_queues(pp->dev); 4678 4679 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4680 4681 if (!pp->neta_armada3700) { 4682 /* We have to synchronise on the napi of each CPU */ 4683 for_each_online_cpu(cpu) { 4684 struct mvneta_pcpu_port *pcpu_port = 4685 per_cpu_ptr(pp->ports, cpu); 4686 4687 napi_synchronize(&pcpu_port->napi); 4688 napi_disable(&pcpu_port->napi); 4689 } 4690 } else { 4691 napi_synchronize(&pp->napi); 4692 napi_disable(&pp->napi); 4693 } 4694 4695 pp->rxq_def = pp->indir[0]; 4696 4697 /* Update unicast mapping */ 4698 mvneta_set_rx_mode(pp->dev); 4699 4700 /* Update val of portCfg register accordingly with all RxQueue types */ 4701 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4702 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4703 4704 /* Update the elected CPU matching the new rxq_def */ 4705 spin_lock(&pp->lock); 4706 mvneta_percpu_elect(pp); 4707 spin_unlock(&pp->lock); 4708 4709 if (!pp->neta_armada3700) { 4710 /* We have to synchronise on the napi of each CPU */ 4711 for_each_online_cpu(cpu) { 4712 struct mvneta_pcpu_port *pcpu_port = 4713 per_cpu_ptr(pp->ports, cpu); 4714 4715 napi_enable(&pcpu_port->napi); 4716 } 4717 } else { 4718 napi_enable(&pp->napi); 4719 } 4720 4721 netif_tx_start_all_queues(pp->dev); 4722 4723 return 0; 4724 } 4725 4726 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4727 const u8 *key, const u8 hfunc) 4728 { 4729 struct mvneta_port *pp = netdev_priv(dev); 4730 4731 /* Current code for Armada 3700 doesn't support RSS features yet */ 4732 if (pp->neta_armada3700) 4733 return -EOPNOTSUPP; 4734 4735 /* We require at least one supported parameter to be changed 4736 * and no change in any of the unsupported parameters 4737 */ 4738 if (key || 4739 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4740 return -EOPNOTSUPP; 4741 4742 if (!indir) 4743 return 0; 4744 4745 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4746 4747 return mvneta_config_rss(pp); 4748 } 4749 4750 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4751 u8 *hfunc) 4752 { 4753 struct mvneta_port *pp = netdev_priv(dev); 4754 4755 /* Current code for Armada 3700 doesn't support RSS features yet */ 4756 if (pp->neta_armada3700) 4757 return -EOPNOTSUPP; 4758 4759 if (hfunc) 4760 *hfunc = ETH_RSS_HASH_TOP; 4761 4762 if (!indir) 4763 return 0; 4764 4765 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4766 4767 return 0; 4768 } 4769 4770 static void mvneta_ethtool_get_wol(struct net_device *dev, 4771 struct ethtool_wolinfo *wol) 4772 { 4773 struct mvneta_port *pp = netdev_priv(dev); 4774 4775 phylink_ethtool_get_wol(pp->phylink, wol); 4776 } 4777 4778 static int mvneta_ethtool_set_wol(struct net_device *dev, 4779 struct ethtool_wolinfo *wol) 4780 { 4781 struct mvneta_port *pp = netdev_priv(dev); 4782 int ret; 4783 4784 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4785 if (!ret) 4786 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4787 4788 return ret; 4789 } 4790 4791 static int mvneta_ethtool_get_eee(struct net_device *dev, 4792 struct ethtool_eee *eee) 4793 { 4794 struct mvneta_port *pp = netdev_priv(dev); 4795 u32 lpi_ctl0; 4796 4797 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4798 4799 eee->eee_enabled = pp->eee_enabled; 4800 eee->eee_active = pp->eee_active; 4801 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4802 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4803 4804 return phylink_ethtool_get_eee(pp->phylink, eee); 4805 } 4806 4807 static int mvneta_ethtool_set_eee(struct net_device *dev, 4808 struct ethtool_eee *eee) 4809 { 4810 struct mvneta_port *pp = netdev_priv(dev); 4811 u32 lpi_ctl0; 4812 4813 /* The Armada 37x documents do not give limits for this other than 4814 * it being an 8-bit register. */ 4815 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4816 return -EINVAL; 4817 4818 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4819 lpi_ctl0 &= ~(0xff << 8); 4820 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4821 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4822 4823 pp->eee_enabled = eee->eee_enabled; 4824 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4825 4826 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4827 4828 return phylink_ethtool_set_eee(pp->phylink, eee); 4829 } 4830 4831 static const struct net_device_ops mvneta_netdev_ops = { 4832 .ndo_open = mvneta_open, 4833 .ndo_stop = mvneta_stop, 4834 .ndo_start_xmit = mvneta_tx, 4835 .ndo_set_rx_mode = mvneta_set_rx_mode, 4836 .ndo_set_mac_address = mvneta_set_mac_addr, 4837 .ndo_change_mtu = mvneta_change_mtu, 4838 .ndo_fix_features = mvneta_fix_features, 4839 .ndo_get_stats64 = mvneta_get_stats64, 4840 .ndo_do_ioctl = mvneta_ioctl, 4841 .ndo_bpf = mvneta_xdp, 4842 .ndo_xdp_xmit = mvneta_xdp_xmit, 4843 }; 4844 4845 static const struct ethtool_ops mvneta_eth_tool_ops = { 4846 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 4847 ETHTOOL_COALESCE_MAX_FRAMES, 4848 .nway_reset = mvneta_ethtool_nway_reset, 4849 .get_link = ethtool_op_get_link, 4850 .set_coalesce = mvneta_ethtool_set_coalesce, 4851 .get_coalesce = mvneta_ethtool_get_coalesce, 4852 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4853 .get_ringparam = mvneta_ethtool_get_ringparam, 4854 .set_ringparam = mvneta_ethtool_set_ringparam, 4855 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4856 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4857 .get_strings = mvneta_ethtool_get_strings, 4858 .get_ethtool_stats = mvneta_ethtool_get_stats, 4859 .get_sset_count = mvneta_ethtool_get_sset_count, 4860 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4861 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4862 .get_rxfh = mvneta_ethtool_get_rxfh, 4863 .set_rxfh = mvneta_ethtool_set_rxfh, 4864 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4865 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4866 .get_wol = mvneta_ethtool_get_wol, 4867 .set_wol = mvneta_ethtool_set_wol, 4868 .get_eee = mvneta_ethtool_get_eee, 4869 .set_eee = mvneta_ethtool_set_eee, 4870 }; 4871 4872 /* Initialize hw */ 4873 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4874 { 4875 int queue; 4876 4877 /* Disable port */ 4878 mvneta_port_disable(pp); 4879 4880 /* Set port default values */ 4881 mvneta_defaults_set(pp); 4882 4883 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4884 if (!pp->txqs) 4885 return -ENOMEM; 4886 4887 /* Initialize TX descriptor rings */ 4888 for (queue = 0; queue < txq_number; queue++) { 4889 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4890 txq->id = queue; 4891 txq->size = pp->tx_ring_size; 4892 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4893 } 4894 4895 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4896 if (!pp->rxqs) 4897 return -ENOMEM; 4898 4899 /* Create Rx descriptor rings */ 4900 for (queue = 0; queue < rxq_number; queue++) { 4901 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4902 rxq->id = queue; 4903 rxq->size = pp->rx_ring_size; 4904 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4905 rxq->time_coal = MVNETA_RX_COAL_USEC; 4906 rxq->buf_virt_addr 4907 = devm_kmalloc_array(pp->dev->dev.parent, 4908 rxq->size, 4909 sizeof(*rxq->buf_virt_addr), 4910 GFP_KERNEL); 4911 if (!rxq->buf_virt_addr) 4912 return -ENOMEM; 4913 } 4914 4915 return 0; 4916 } 4917 4918 /* platform glue : initialize decoding windows */ 4919 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4920 const struct mbus_dram_target_info *dram) 4921 { 4922 u32 win_enable; 4923 u32 win_protect; 4924 int i; 4925 4926 for (i = 0; i < 6; i++) { 4927 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4928 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4929 4930 if (i < 4) 4931 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4932 } 4933 4934 win_enable = 0x3f; 4935 win_protect = 0; 4936 4937 if (dram) { 4938 for (i = 0; i < dram->num_cs; i++) { 4939 const struct mbus_dram_window *cs = dram->cs + i; 4940 4941 mvreg_write(pp, MVNETA_WIN_BASE(i), 4942 (cs->base & 0xffff0000) | 4943 (cs->mbus_attr << 8) | 4944 dram->mbus_dram_target_id); 4945 4946 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4947 (cs->size - 1) & 0xffff0000); 4948 4949 win_enable &= ~(1 << i); 4950 win_protect |= 3 << (2 * i); 4951 } 4952 } else { 4953 /* For Armada3700 open default 4GB Mbus window, leaving 4954 * arbitration of target/attribute to a different layer 4955 * of configuration. 4956 */ 4957 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4958 win_enable &= ~BIT(0); 4959 win_protect = 3; 4960 } 4961 4962 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4963 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4964 } 4965 4966 /* Power up the port */ 4967 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4968 { 4969 /* MAC Cause register should be cleared */ 4970 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4971 4972 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4973 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4974 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4975 phy_interface_mode_is_8023z(phy_mode)) 4976 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4977 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4978 return -EINVAL; 4979 4980 return 0; 4981 } 4982 4983 /* Device initialization routine */ 4984 static int mvneta_probe(struct platform_device *pdev) 4985 { 4986 struct device_node *dn = pdev->dev.of_node; 4987 struct device_node *bm_node; 4988 struct mvneta_port *pp; 4989 struct net_device *dev; 4990 struct phylink *phylink; 4991 struct phy *comphy; 4992 const char *dt_mac_addr; 4993 char hw_mac_addr[ETH_ALEN]; 4994 phy_interface_t phy_mode; 4995 const char *mac_from; 4996 int tx_csum_limit; 4997 int err; 4998 int cpu; 4999 5000 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5001 txq_number, rxq_number); 5002 if (!dev) 5003 return -ENOMEM; 5004 5005 dev->irq = irq_of_parse_and_map(dn, 0); 5006 if (dev->irq == 0) 5007 return -EINVAL; 5008 5009 err = of_get_phy_mode(dn, &phy_mode); 5010 if (err) { 5011 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5012 goto err_free_irq; 5013 } 5014 5015 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5016 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5017 err = -EPROBE_DEFER; 5018 goto err_free_irq; 5019 } else if (IS_ERR(comphy)) { 5020 comphy = NULL; 5021 } 5022 5023 pp = netdev_priv(dev); 5024 spin_lock_init(&pp->lock); 5025 5026 pp->phylink_config.dev = &dev->dev; 5027 pp->phylink_config.type = PHYLINK_NETDEV; 5028 5029 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5030 phy_mode, &mvneta_phylink_ops); 5031 if (IS_ERR(phylink)) { 5032 err = PTR_ERR(phylink); 5033 goto err_free_irq; 5034 } 5035 5036 dev->tx_queue_len = MVNETA_MAX_TXD; 5037 dev->watchdog_timeo = 5 * HZ; 5038 dev->netdev_ops = &mvneta_netdev_ops; 5039 5040 dev->ethtool_ops = &mvneta_eth_tool_ops; 5041 5042 pp->phylink = phylink; 5043 pp->comphy = comphy; 5044 pp->phy_interface = phy_mode; 5045 pp->dn = dn; 5046 5047 pp->rxq_def = rxq_def; 5048 pp->indir[0] = rxq_def; 5049 5050 /* Get special SoC configurations */ 5051 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5052 pp->neta_armada3700 = true; 5053 5054 pp->clk = devm_clk_get(&pdev->dev, "core"); 5055 if (IS_ERR(pp->clk)) 5056 pp->clk = devm_clk_get(&pdev->dev, NULL); 5057 if (IS_ERR(pp->clk)) { 5058 err = PTR_ERR(pp->clk); 5059 goto err_free_phylink; 5060 } 5061 5062 clk_prepare_enable(pp->clk); 5063 5064 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5065 if (!IS_ERR(pp->clk_bus)) 5066 clk_prepare_enable(pp->clk_bus); 5067 5068 pp->base = devm_platform_ioremap_resource(pdev, 0); 5069 if (IS_ERR(pp->base)) { 5070 err = PTR_ERR(pp->base); 5071 goto err_clk; 5072 } 5073 5074 /* Alloc per-cpu port structure */ 5075 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5076 if (!pp->ports) { 5077 err = -ENOMEM; 5078 goto err_clk; 5079 } 5080 5081 /* Alloc per-cpu stats */ 5082 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5083 if (!pp->stats) { 5084 err = -ENOMEM; 5085 goto err_free_ports; 5086 } 5087 5088 dt_mac_addr = of_get_mac_address(dn); 5089 if (!IS_ERR(dt_mac_addr)) { 5090 mac_from = "device tree"; 5091 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5092 } else { 5093 mvneta_get_mac_addr(pp, hw_mac_addr); 5094 if (is_valid_ether_addr(hw_mac_addr)) { 5095 mac_from = "hardware"; 5096 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5097 } else { 5098 mac_from = "random"; 5099 eth_hw_addr_random(dev); 5100 } 5101 } 5102 5103 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5104 if (tx_csum_limit < 0 || 5105 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5106 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5107 dev_info(&pdev->dev, 5108 "Wrong TX csum limit in DT, set to %dB\n", 5109 MVNETA_TX_CSUM_DEF_SIZE); 5110 } 5111 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5112 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5113 } else { 5114 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5115 } 5116 5117 pp->tx_csum_limit = tx_csum_limit; 5118 5119 pp->dram_target_info = mv_mbus_dram_info(); 5120 /* Armada3700 requires setting default configuration of Mbus 5121 * windows, however without using filled mbus_dram_target_info 5122 * structure. 5123 */ 5124 if (pp->dram_target_info || pp->neta_armada3700) 5125 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5126 5127 pp->tx_ring_size = MVNETA_MAX_TXD; 5128 pp->rx_ring_size = MVNETA_MAX_RXD; 5129 5130 pp->dev = dev; 5131 SET_NETDEV_DEV(dev, &pdev->dev); 5132 5133 pp->id = global_port_id++; 5134 5135 /* Obtain access to BM resources if enabled and already initialized */ 5136 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5137 if (bm_node) { 5138 pp->bm_priv = mvneta_bm_get(bm_node); 5139 if (pp->bm_priv) { 5140 err = mvneta_bm_port_init(pdev, pp); 5141 if (err < 0) { 5142 dev_info(&pdev->dev, 5143 "use SW buffer management\n"); 5144 mvneta_bm_put(pp->bm_priv); 5145 pp->bm_priv = NULL; 5146 } 5147 } 5148 /* Set RX packet offset correction for platforms, whose 5149 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5150 * platforms and 0B for 32-bit ones. 5151 */ 5152 pp->rx_offset_correction = max(0, 5153 NET_SKB_PAD - 5154 MVNETA_RX_PKT_OFFSET_CORRECTION); 5155 } 5156 of_node_put(bm_node); 5157 5158 /* sw buffer management */ 5159 if (!pp->bm_priv) 5160 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5161 5162 err = mvneta_init(&pdev->dev, pp); 5163 if (err < 0) 5164 goto err_netdev; 5165 5166 err = mvneta_port_power_up(pp, phy_mode); 5167 if (err < 0) { 5168 dev_err(&pdev->dev, "can't power up port\n"); 5169 goto err_netdev; 5170 } 5171 5172 /* Armada3700 network controller does not support per-cpu 5173 * operation, so only single NAPI should be initialized. 5174 */ 5175 if (pp->neta_armada3700) { 5176 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5177 } else { 5178 for_each_present_cpu(cpu) { 5179 struct mvneta_pcpu_port *port = 5180 per_cpu_ptr(pp->ports, cpu); 5181 5182 netif_napi_add(dev, &port->napi, mvneta_poll, 5183 NAPI_POLL_WEIGHT); 5184 port->pp = pp; 5185 } 5186 } 5187 5188 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5189 NETIF_F_TSO | NETIF_F_RXCSUM; 5190 dev->hw_features |= dev->features; 5191 dev->vlan_features |= dev->features; 5192 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5193 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5194 5195 /* MTU range: 68 - 9676 */ 5196 dev->min_mtu = ETH_MIN_MTU; 5197 /* 9676 == 9700 - 20 and rounding to 8 */ 5198 dev->max_mtu = 9676; 5199 5200 err = register_netdev(dev); 5201 if (err < 0) { 5202 dev_err(&pdev->dev, "failed to register\n"); 5203 goto err_netdev; 5204 } 5205 5206 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5207 dev->dev_addr); 5208 5209 platform_set_drvdata(pdev, pp->dev); 5210 5211 return 0; 5212 5213 err_netdev: 5214 if (pp->bm_priv) { 5215 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5216 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5217 1 << pp->id); 5218 mvneta_bm_put(pp->bm_priv); 5219 } 5220 free_percpu(pp->stats); 5221 err_free_ports: 5222 free_percpu(pp->ports); 5223 err_clk: 5224 clk_disable_unprepare(pp->clk_bus); 5225 clk_disable_unprepare(pp->clk); 5226 err_free_phylink: 5227 if (pp->phylink) 5228 phylink_destroy(pp->phylink); 5229 err_free_irq: 5230 irq_dispose_mapping(dev->irq); 5231 return err; 5232 } 5233 5234 /* Device removal routine */ 5235 static int mvneta_remove(struct platform_device *pdev) 5236 { 5237 struct net_device *dev = platform_get_drvdata(pdev); 5238 struct mvneta_port *pp = netdev_priv(dev); 5239 5240 unregister_netdev(dev); 5241 clk_disable_unprepare(pp->clk_bus); 5242 clk_disable_unprepare(pp->clk); 5243 free_percpu(pp->ports); 5244 free_percpu(pp->stats); 5245 irq_dispose_mapping(dev->irq); 5246 phylink_destroy(pp->phylink); 5247 5248 if (pp->bm_priv) { 5249 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5250 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5251 1 << pp->id); 5252 mvneta_bm_put(pp->bm_priv); 5253 } 5254 5255 return 0; 5256 } 5257 5258 #ifdef CONFIG_PM_SLEEP 5259 static int mvneta_suspend(struct device *device) 5260 { 5261 int queue; 5262 struct net_device *dev = dev_get_drvdata(device); 5263 struct mvneta_port *pp = netdev_priv(dev); 5264 5265 if (!netif_running(dev)) 5266 goto clean_exit; 5267 5268 if (!pp->neta_armada3700) { 5269 spin_lock(&pp->lock); 5270 pp->is_stopped = true; 5271 spin_unlock(&pp->lock); 5272 5273 cpuhp_state_remove_instance_nocalls(online_hpstate, 5274 &pp->node_online); 5275 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5276 &pp->node_dead); 5277 } 5278 5279 rtnl_lock(); 5280 mvneta_stop_dev(pp); 5281 rtnl_unlock(); 5282 5283 for (queue = 0; queue < rxq_number; queue++) { 5284 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5285 5286 mvneta_rxq_drop_pkts(pp, rxq); 5287 } 5288 5289 for (queue = 0; queue < txq_number; queue++) { 5290 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5291 5292 mvneta_txq_hw_deinit(pp, txq); 5293 } 5294 5295 clean_exit: 5296 netif_device_detach(dev); 5297 clk_disable_unprepare(pp->clk_bus); 5298 clk_disable_unprepare(pp->clk); 5299 5300 return 0; 5301 } 5302 5303 static int mvneta_resume(struct device *device) 5304 { 5305 struct platform_device *pdev = to_platform_device(device); 5306 struct net_device *dev = dev_get_drvdata(device); 5307 struct mvneta_port *pp = netdev_priv(dev); 5308 int err, queue; 5309 5310 clk_prepare_enable(pp->clk); 5311 if (!IS_ERR(pp->clk_bus)) 5312 clk_prepare_enable(pp->clk_bus); 5313 if (pp->dram_target_info || pp->neta_armada3700) 5314 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5315 if (pp->bm_priv) { 5316 err = mvneta_bm_port_init(pdev, pp); 5317 if (err < 0) { 5318 dev_info(&pdev->dev, "use SW buffer management\n"); 5319 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5320 pp->bm_priv = NULL; 5321 } 5322 } 5323 mvneta_defaults_set(pp); 5324 err = mvneta_port_power_up(pp, pp->phy_interface); 5325 if (err < 0) { 5326 dev_err(device, "can't power up port\n"); 5327 return err; 5328 } 5329 5330 netif_device_attach(dev); 5331 5332 if (!netif_running(dev)) 5333 return 0; 5334 5335 for (queue = 0; queue < rxq_number; queue++) { 5336 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5337 5338 rxq->next_desc_to_proc = 0; 5339 mvneta_rxq_hw_init(pp, rxq); 5340 } 5341 5342 for (queue = 0; queue < txq_number; queue++) { 5343 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5344 5345 txq->next_desc_to_proc = 0; 5346 mvneta_txq_hw_init(pp, txq); 5347 } 5348 5349 if (!pp->neta_armada3700) { 5350 spin_lock(&pp->lock); 5351 pp->is_stopped = false; 5352 spin_unlock(&pp->lock); 5353 cpuhp_state_add_instance_nocalls(online_hpstate, 5354 &pp->node_online); 5355 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5356 &pp->node_dead); 5357 } 5358 5359 rtnl_lock(); 5360 mvneta_start_dev(pp); 5361 rtnl_unlock(); 5362 mvneta_set_rx_mode(dev); 5363 5364 return 0; 5365 } 5366 #endif 5367 5368 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5369 5370 static const struct of_device_id mvneta_match[] = { 5371 { .compatible = "marvell,armada-370-neta" }, 5372 { .compatible = "marvell,armada-xp-neta" }, 5373 { .compatible = "marvell,armada-3700-neta" }, 5374 { } 5375 }; 5376 MODULE_DEVICE_TABLE(of, mvneta_match); 5377 5378 static struct platform_driver mvneta_driver = { 5379 .probe = mvneta_probe, 5380 .remove = mvneta_remove, 5381 .driver = { 5382 .name = MVNETA_DRIVER_NAME, 5383 .of_match_table = mvneta_match, 5384 .pm = &mvneta_pm_ops, 5385 }, 5386 }; 5387 5388 static int __init mvneta_driver_init(void) 5389 { 5390 int ret; 5391 5392 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5393 mvneta_cpu_online, 5394 mvneta_cpu_down_prepare); 5395 if (ret < 0) 5396 goto out; 5397 online_hpstate = ret; 5398 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5399 NULL, mvneta_cpu_dead); 5400 if (ret) 5401 goto err_dead; 5402 5403 ret = platform_driver_register(&mvneta_driver); 5404 if (ret) 5405 goto err; 5406 return 0; 5407 5408 err: 5409 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5410 err_dead: 5411 cpuhp_remove_multi_state(online_hpstate); 5412 out: 5413 return ret; 5414 } 5415 module_init(mvneta_driver_init); 5416 5417 static void __exit mvneta_driver_exit(void) 5418 { 5419 platform_driver_unregister(&mvneta_driver); 5420 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5421 cpuhp_remove_multi_state(online_hpstate); 5422 } 5423 module_exit(mvneta_driver_exit); 5424 5425 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5426 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5427 MODULE_LICENSE("GPL"); 5428 5429 module_param(rxq_number, int, 0444); 5430 module_param(txq_number, int, 0444); 5431 5432 module_param(rxq_def, int, 0444); 5433 module_param(rx_copybreak, int, 0644); 5434