1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
334 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
335 
336 #define IS_TSO_HEADER(txq, addr) \
337 	((addr >= txq->tso_hdrs_phys) && \
338 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
339 
340 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
341 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
342 
343 enum {
344 	ETHTOOL_STAT_EEE_WAKEUP,
345 	ETHTOOL_STAT_SKB_ALLOC_ERR,
346 	ETHTOOL_STAT_REFILL_ERR,
347 	ETHTOOL_XDP_REDIRECT,
348 	ETHTOOL_XDP_PASS,
349 	ETHTOOL_XDP_DROP,
350 	ETHTOOL_XDP_TX,
351 	ETHTOOL_XDP_TX_ERR,
352 	ETHTOOL_XDP_XMIT,
353 	ETHTOOL_XDP_XMIT_ERR,
354 	ETHTOOL_MAX_STATS,
355 };
356 
357 struct mvneta_statistic {
358 	unsigned short offset;
359 	unsigned short type;
360 	const char name[ETH_GSTRING_LEN];
361 };
362 
363 #define T_REG_32	32
364 #define T_REG_64	64
365 #define T_SW		1
366 
367 #define MVNETA_XDP_PASS		0
368 #define MVNETA_XDP_DROPPED	BIT(0)
369 #define MVNETA_XDP_TX		BIT(1)
370 #define MVNETA_XDP_REDIR	BIT(2)
371 
372 static const struct mvneta_statistic mvneta_statistics[] = {
373 	{ 0x3000, T_REG_64, "good_octets_received", },
374 	{ 0x3010, T_REG_32, "good_frames_received", },
375 	{ 0x3008, T_REG_32, "bad_octets_received", },
376 	{ 0x3014, T_REG_32, "bad_frames_received", },
377 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
378 	{ 0x301c, T_REG_32, "multicast_frames_received", },
379 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
380 	{ 0x3058, T_REG_32, "good_fc_received", },
381 	{ 0x305c, T_REG_32, "bad_fc_received", },
382 	{ 0x3060, T_REG_32, "undersize_received", },
383 	{ 0x3064, T_REG_32, "fragments_received", },
384 	{ 0x3068, T_REG_32, "oversize_received", },
385 	{ 0x306c, T_REG_32, "jabber_received", },
386 	{ 0x3070, T_REG_32, "mac_receive_error", },
387 	{ 0x3074, T_REG_32, "bad_crc_event", },
388 	{ 0x3078, T_REG_32, "collision", },
389 	{ 0x307c, T_REG_32, "late_collision", },
390 	{ 0x2484, T_REG_32, "rx_discard", },
391 	{ 0x2488, T_REG_32, "rx_overrun", },
392 	{ 0x3020, T_REG_32, "frames_64_octets", },
393 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
394 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
395 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
396 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
397 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
398 	{ 0x3038, T_REG_64, "good_octets_sent", },
399 	{ 0x3040, T_REG_32, "good_frames_sent", },
400 	{ 0x3044, T_REG_32, "excessive_collision", },
401 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
402 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
403 	{ 0x3054, T_REG_32, "fc_sent", },
404 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
405 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
406 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
407 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
408 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
409 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
410 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
411 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
412 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
413 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
414 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
415 };
416 
417 struct mvneta_stats {
418 	u64	rx_packets;
419 	u64	rx_bytes;
420 	u64	tx_packets;
421 	u64	tx_bytes;
422 	/* xdp */
423 	u64	xdp_redirect;
424 	u64	xdp_pass;
425 	u64	xdp_drop;
426 	u64	xdp_xmit;
427 	u64	xdp_xmit_err;
428 	u64	xdp_tx;
429 	u64	xdp_tx_err;
430 };
431 
432 struct mvneta_ethtool_stats {
433 	struct mvneta_stats ps;
434 	u64	skb_alloc_error;
435 	u64	refill_error;
436 };
437 
438 struct mvneta_pcpu_stats {
439 	struct u64_stats_sync syncp;
440 
441 	struct mvneta_ethtool_stats es;
442 	u64	rx_dropped;
443 	u64	rx_errors;
444 };
445 
446 struct mvneta_pcpu_port {
447 	/* Pointer to the shared port */
448 	struct mvneta_port	*pp;
449 
450 	/* Pointer to the CPU-local NAPI struct */
451 	struct napi_struct	napi;
452 
453 	/* Cause of the previous interrupt */
454 	u32			cause_rx_tx;
455 };
456 
457 enum {
458 	__MVNETA_DOWN,
459 };
460 
461 struct mvneta_port {
462 	u8 id;
463 	struct mvneta_pcpu_port __percpu	*ports;
464 	struct mvneta_pcpu_stats __percpu	*stats;
465 
466 	unsigned long state;
467 
468 	int pkt_size;
469 	void __iomem *base;
470 	struct mvneta_rx_queue *rxqs;
471 	struct mvneta_tx_queue *txqs;
472 	struct net_device *dev;
473 	struct hlist_node node_online;
474 	struct hlist_node node_dead;
475 	int rxq_def;
476 	/* Protect the access to the percpu interrupt registers,
477 	 * ensuring that the configuration remains coherent.
478 	 */
479 	spinlock_t lock;
480 	bool is_stopped;
481 
482 	u32 cause_rx_tx;
483 	struct napi_struct napi;
484 
485 	struct bpf_prog *xdp_prog;
486 
487 	/* Core clock */
488 	struct clk *clk;
489 	/* AXI clock */
490 	struct clk *clk_bus;
491 	u8 mcast_count[256];
492 	u16 tx_ring_size;
493 	u16 rx_ring_size;
494 
495 	phy_interface_t phy_interface;
496 	struct device_node *dn;
497 	unsigned int tx_csum_limit;
498 	struct phylink *phylink;
499 	struct phylink_config phylink_config;
500 	struct phy *comphy;
501 
502 	struct mvneta_bm *bm_priv;
503 	struct mvneta_bm_pool *pool_long;
504 	struct mvneta_bm_pool *pool_short;
505 	int bm_win_id;
506 
507 	bool eee_enabled;
508 	bool eee_active;
509 	bool tx_lpi_enabled;
510 
511 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
512 
513 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
514 
515 	/* Flags for special SoC configurations */
516 	bool neta_armada3700;
517 	u16 rx_offset_correction;
518 	const struct mbus_dram_target_info *dram_target_info;
519 };
520 
521 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
522  * layout of the transmit and reception DMA descriptors, and their
523  * layout is therefore defined by the hardware design
524  */
525 
526 #define MVNETA_TX_L3_OFF_SHIFT	0
527 #define MVNETA_TX_IP_HLEN_SHIFT	8
528 #define MVNETA_TX_L4_UDP	BIT(16)
529 #define MVNETA_TX_L3_IP6	BIT(17)
530 #define MVNETA_TXD_IP_CSUM	BIT(18)
531 #define MVNETA_TXD_Z_PAD	BIT(19)
532 #define MVNETA_TXD_L_DESC	BIT(20)
533 #define MVNETA_TXD_F_DESC	BIT(21)
534 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
535 				 MVNETA_TXD_L_DESC | \
536 				 MVNETA_TXD_F_DESC)
537 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
538 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
539 
540 #define MVNETA_RXD_ERR_CRC		0x0
541 #define MVNETA_RXD_BM_POOL_SHIFT	13
542 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
543 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
544 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
545 #define MVNETA_RXD_ERR_LEN		BIT(18)
546 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
547 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
548 #define MVNETA_RXD_L3_IP4		BIT(25)
549 #define MVNETA_RXD_LAST_DESC		BIT(26)
550 #define MVNETA_RXD_FIRST_DESC		BIT(27)
551 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
552 					 MVNETA_RXD_LAST_DESC)
553 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
554 
555 #if defined(__LITTLE_ENDIAN)
556 struct mvneta_tx_desc {
557 	u32  command;		/* Options used by HW for packet transmitting.*/
558 	u16  reserved1;		/* csum_l4 (for future use)		*/
559 	u16  data_size;		/* Data size of transmitted packet in bytes */
560 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
561 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
562 	u32  reserved3[4];	/* Reserved - (for future use)		*/
563 };
564 
565 struct mvneta_rx_desc {
566 	u32  status;		/* Info about received packet		*/
567 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
568 	u16  data_size;		/* Size of received packet in bytes	*/
569 
570 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
571 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
572 
573 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
574 	u16  reserved3;		/* prefetch_cmd, for future use		*/
575 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
576 
577 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
578 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
579 };
580 #else
581 struct mvneta_tx_desc {
582 	u16  data_size;		/* Data size of transmitted packet in bytes */
583 	u16  reserved1;		/* csum_l4 (for future use)		*/
584 	u32  command;		/* Options used by HW for packet transmitting.*/
585 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
586 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
587 	u32  reserved3[4];	/* Reserved - (for future use)		*/
588 };
589 
590 struct mvneta_rx_desc {
591 	u16  data_size;		/* Size of received packet in bytes	*/
592 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
593 	u32  status;		/* Info about received packet		*/
594 
595 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
596 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
597 
598 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
599 	u16  reserved3;		/* prefetch_cmd, for future use		*/
600 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
601 
602 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
603 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
604 };
605 #endif
606 
607 enum mvneta_tx_buf_type {
608 	MVNETA_TYPE_SKB,
609 	MVNETA_TYPE_XDP_TX,
610 	MVNETA_TYPE_XDP_NDO,
611 };
612 
613 struct mvneta_tx_buf {
614 	enum mvneta_tx_buf_type type;
615 	union {
616 		struct xdp_frame *xdpf;
617 		struct sk_buff *skb;
618 	};
619 };
620 
621 struct mvneta_tx_queue {
622 	/* Number of this TX queue, in the range 0-7 */
623 	u8 id;
624 
625 	/* Number of TX DMA descriptors in the descriptor ring */
626 	int size;
627 
628 	/* Number of currently used TX DMA descriptor in the
629 	 * descriptor ring
630 	 */
631 	int count;
632 	int pending;
633 	int tx_stop_threshold;
634 	int tx_wake_threshold;
635 
636 	/* Array of transmitted buffers */
637 	struct mvneta_tx_buf *buf;
638 
639 	/* Index of last TX DMA descriptor that was inserted */
640 	int txq_put_index;
641 
642 	/* Index of the TX DMA descriptor to be cleaned up */
643 	int txq_get_index;
644 
645 	u32 done_pkts_coal;
646 
647 	/* Virtual address of the TX DMA descriptors array */
648 	struct mvneta_tx_desc *descs;
649 
650 	/* DMA address of the TX DMA descriptors array */
651 	dma_addr_t descs_phys;
652 
653 	/* Index of the last TX DMA descriptor */
654 	int last_desc;
655 
656 	/* Index of the next TX DMA descriptor to process */
657 	int next_desc_to_proc;
658 
659 	/* DMA buffers for TSO headers */
660 	char *tso_hdrs;
661 
662 	/* DMA address of TSO headers */
663 	dma_addr_t tso_hdrs_phys;
664 
665 	/* Affinity mask for CPUs*/
666 	cpumask_t affinity_mask;
667 };
668 
669 struct mvneta_rx_queue {
670 	/* rx queue number, in the range 0-7 */
671 	u8 id;
672 
673 	/* num of rx descriptors in the rx descriptor ring */
674 	int size;
675 
676 	u32 pkts_coal;
677 	u32 time_coal;
678 
679 	/* page_pool */
680 	struct page_pool *page_pool;
681 	struct xdp_rxq_info xdp_rxq;
682 
683 	/* Virtual address of the RX buffer */
684 	void  **buf_virt_addr;
685 
686 	/* Virtual address of the RX DMA descriptors array */
687 	struct mvneta_rx_desc *descs;
688 
689 	/* DMA address of the RX DMA descriptors array */
690 	dma_addr_t descs_phys;
691 
692 	/* Index of the last RX DMA descriptor */
693 	int last_desc;
694 
695 	/* Index of the next RX DMA descriptor to process */
696 	int next_desc_to_proc;
697 
698 	/* Index of first RX DMA descriptor to refill */
699 	int first_to_refill;
700 	u32 refill_num;
701 
702 	/* pointer to uncomplete skb buffer */
703 	struct sk_buff *skb;
704 	int left_size;
705 };
706 
707 static enum cpuhp_state online_hpstate;
708 /* The hardware supports eight (8) rx queues, but we are only allowing
709  * the first one to be used. Therefore, let's just allocate one queue.
710  */
711 static int rxq_number = 8;
712 static int txq_number = 8;
713 
714 static int rxq_def;
715 
716 static int rx_copybreak __read_mostly = 256;
717 
718 /* HW BM need that each port be identify by a unique ID */
719 static int global_port_id;
720 
721 #define MVNETA_DRIVER_NAME "mvneta"
722 #define MVNETA_DRIVER_VERSION "1.0"
723 
724 /* Utility/helper methods */
725 
726 /* Write helper method */
727 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
728 {
729 	writel(data, pp->base + offset);
730 }
731 
732 /* Read helper method */
733 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
734 {
735 	return readl(pp->base + offset);
736 }
737 
738 /* Increment txq get counter */
739 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
740 {
741 	txq->txq_get_index++;
742 	if (txq->txq_get_index == txq->size)
743 		txq->txq_get_index = 0;
744 }
745 
746 /* Increment txq put counter */
747 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
748 {
749 	txq->txq_put_index++;
750 	if (txq->txq_put_index == txq->size)
751 		txq->txq_put_index = 0;
752 }
753 
754 
755 /* Clear all MIB counters */
756 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
757 {
758 	int i;
759 	u32 dummy;
760 
761 	/* Perform dummy reads from MIB counters */
762 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
763 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
764 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
765 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
766 }
767 
768 /* Get System Network Statistics */
769 static void
770 mvneta_get_stats64(struct net_device *dev,
771 		   struct rtnl_link_stats64 *stats)
772 {
773 	struct mvneta_port *pp = netdev_priv(dev);
774 	unsigned int start;
775 	int cpu;
776 
777 	for_each_possible_cpu(cpu) {
778 		struct mvneta_pcpu_stats *cpu_stats;
779 		u64 rx_packets;
780 		u64 rx_bytes;
781 		u64 rx_dropped;
782 		u64 rx_errors;
783 		u64 tx_packets;
784 		u64 tx_bytes;
785 
786 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
787 		do {
788 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
789 			rx_packets = cpu_stats->es.ps.rx_packets;
790 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
791 			rx_dropped = cpu_stats->rx_dropped;
792 			rx_errors  = cpu_stats->rx_errors;
793 			tx_packets = cpu_stats->es.ps.tx_packets;
794 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
795 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
796 
797 		stats->rx_packets += rx_packets;
798 		stats->rx_bytes   += rx_bytes;
799 		stats->rx_dropped += rx_dropped;
800 		stats->rx_errors  += rx_errors;
801 		stats->tx_packets += tx_packets;
802 		stats->tx_bytes   += tx_bytes;
803 	}
804 
805 	stats->tx_dropped	= dev->stats.tx_dropped;
806 }
807 
808 /* Rx descriptors helper methods */
809 
810 /* Checks whether the RX descriptor having this status is both the first
811  * and the last descriptor for the RX packet. Each RX packet is currently
812  * received through a single RX descriptor, so not having each RX
813  * descriptor with its first and last bits set is an error
814  */
815 static int mvneta_rxq_desc_is_first_last(u32 status)
816 {
817 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
818 		MVNETA_RXD_FIRST_LAST_DESC;
819 }
820 
821 /* Add number of descriptors ready to receive new packets */
822 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
823 					  struct mvneta_rx_queue *rxq,
824 					  int ndescs)
825 {
826 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
827 	 * be added at once
828 	 */
829 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
830 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
832 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
833 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
834 	}
835 
836 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
837 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
838 }
839 
840 /* Get number of RX descriptors occupied by received packets */
841 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
842 					struct mvneta_rx_queue *rxq)
843 {
844 	u32 val;
845 
846 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
847 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
848 }
849 
850 /* Update num of rx desc called upon return from rx path or
851  * from mvneta_rxq_drop_pkts().
852  */
853 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
854 				       struct mvneta_rx_queue *rxq,
855 				       int rx_done, int rx_filled)
856 {
857 	u32 val;
858 
859 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
860 		val = rx_done |
861 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
862 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
863 		return;
864 	}
865 
866 	/* Only 255 descriptors can be added at once */
867 	while ((rx_done > 0) || (rx_filled > 0)) {
868 		if (rx_done <= 0xff) {
869 			val = rx_done;
870 			rx_done = 0;
871 		} else {
872 			val = 0xff;
873 			rx_done -= 0xff;
874 		}
875 		if (rx_filled <= 0xff) {
876 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
877 			rx_filled = 0;
878 		} else {
879 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
880 			rx_filled -= 0xff;
881 		}
882 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
883 	}
884 }
885 
886 /* Get pointer to next RX descriptor to be processed by SW */
887 static struct mvneta_rx_desc *
888 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
889 {
890 	int rx_desc = rxq->next_desc_to_proc;
891 
892 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
893 	prefetch(rxq->descs + rxq->next_desc_to_proc);
894 	return rxq->descs + rx_desc;
895 }
896 
897 /* Change maximum receive size of the port. */
898 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
899 {
900 	u32 val;
901 
902 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
903 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
904 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
905 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
906 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
907 }
908 
909 
910 /* Set rx queue offset */
911 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
912 				  struct mvneta_rx_queue *rxq,
913 				  int offset)
914 {
915 	u32 val;
916 
917 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
918 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
919 
920 	/* Offset is in */
921 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
922 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
923 }
924 
925 
926 /* Tx descriptors helper methods */
927 
928 /* Update HW with number of TX descriptors to be sent */
929 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
930 				     struct mvneta_tx_queue *txq,
931 				     int pend_desc)
932 {
933 	u32 val;
934 
935 	pend_desc += txq->pending;
936 
937 	/* Only 255 Tx descriptors can be added at once */
938 	do {
939 		val = min(pend_desc, 255);
940 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
941 		pend_desc -= val;
942 	} while (pend_desc > 0);
943 	txq->pending = 0;
944 }
945 
946 /* Get pointer to next TX descriptor to be processed (send) by HW */
947 static struct mvneta_tx_desc *
948 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
949 {
950 	int tx_desc = txq->next_desc_to_proc;
951 
952 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
953 	return txq->descs + tx_desc;
954 }
955 
956 /* Release the last allocated TX descriptor. Useful to handle DMA
957  * mapping failures in the TX path.
958  */
959 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
960 {
961 	if (txq->next_desc_to_proc == 0)
962 		txq->next_desc_to_proc = txq->last_desc - 1;
963 	else
964 		txq->next_desc_to_proc--;
965 }
966 
967 /* Set rxq buf size */
968 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
969 				    struct mvneta_rx_queue *rxq,
970 				    int buf_size)
971 {
972 	u32 val;
973 
974 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
975 
976 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
977 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
978 
979 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
980 }
981 
982 /* Disable buffer management (BM) */
983 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
984 				  struct mvneta_rx_queue *rxq)
985 {
986 	u32 val;
987 
988 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
989 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
990 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
991 }
992 
993 /* Enable buffer management (BM) */
994 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
995 				 struct mvneta_rx_queue *rxq)
996 {
997 	u32 val;
998 
999 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1000 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
1001 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1002 }
1003 
1004 /* Notify HW about port's assignment of pool for bigger packets */
1005 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1006 				     struct mvneta_rx_queue *rxq)
1007 {
1008 	u32 val;
1009 
1010 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1011 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1012 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1013 
1014 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1015 }
1016 
1017 /* Notify HW about port's assignment of pool for smaller packets */
1018 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1019 				      struct mvneta_rx_queue *rxq)
1020 {
1021 	u32 val;
1022 
1023 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1024 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1025 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1026 
1027 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1028 }
1029 
1030 /* Set port's receive buffer size for assigned BM pool */
1031 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1032 					      int buf_size,
1033 					      u8 pool_id)
1034 {
1035 	u32 val;
1036 
1037 	if (!IS_ALIGNED(buf_size, 8)) {
1038 		dev_warn(pp->dev->dev.parent,
1039 			 "illegal buf_size value %d, round to %d\n",
1040 			 buf_size, ALIGN(buf_size, 8));
1041 		buf_size = ALIGN(buf_size, 8);
1042 	}
1043 
1044 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1045 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1046 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1047 }
1048 
1049 /* Configure MBUS window in order to enable access BM internal SRAM */
1050 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1051 				  u8 target, u8 attr)
1052 {
1053 	u32 win_enable, win_protect;
1054 	int i;
1055 
1056 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1057 
1058 	if (pp->bm_win_id < 0) {
1059 		/* Find first not occupied window */
1060 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1061 			if (win_enable & (1 << i)) {
1062 				pp->bm_win_id = i;
1063 				break;
1064 			}
1065 		}
1066 		if (i == MVNETA_MAX_DECODE_WIN)
1067 			return -ENOMEM;
1068 	} else {
1069 		i = pp->bm_win_id;
1070 	}
1071 
1072 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1073 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1074 
1075 	if (i < 4)
1076 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1077 
1078 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1079 		    (attr << 8) | target);
1080 
1081 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1082 
1083 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1084 	win_protect |= 3 << (2 * i);
1085 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1086 
1087 	win_enable &= ~(1 << i);
1088 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1089 
1090 	return 0;
1091 }
1092 
1093 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1094 {
1095 	u32 wsize;
1096 	u8 target, attr;
1097 	int err;
1098 
1099 	/* Get BM window information */
1100 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1101 					 &target, &attr);
1102 	if (err < 0)
1103 		return err;
1104 
1105 	pp->bm_win_id = -1;
1106 
1107 	/* Open NETA -> BM window */
1108 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1109 				     target, attr);
1110 	if (err < 0) {
1111 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1112 		return err;
1113 	}
1114 	return 0;
1115 }
1116 
1117 /* Assign and initialize pools for port. In case of fail
1118  * buffer manager will remain disabled for current port.
1119  */
1120 static int mvneta_bm_port_init(struct platform_device *pdev,
1121 			       struct mvneta_port *pp)
1122 {
1123 	struct device_node *dn = pdev->dev.of_node;
1124 	u32 long_pool_id, short_pool_id;
1125 
1126 	if (!pp->neta_armada3700) {
1127 		int ret;
1128 
1129 		ret = mvneta_bm_port_mbus_init(pp);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1135 		netdev_info(pp->dev, "missing long pool id\n");
1136 		return -EINVAL;
1137 	}
1138 
1139 	/* Create port's long pool depending on mtu */
1140 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1141 					   MVNETA_BM_LONG, pp->id,
1142 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1143 	if (!pp->pool_long) {
1144 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1145 		return -ENOMEM;
1146 	}
1147 
1148 	pp->pool_long->port_map |= 1 << pp->id;
1149 
1150 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1151 				   pp->pool_long->id);
1152 
1153 	/* If short pool id is not defined, assume using single pool */
1154 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1155 		short_pool_id = long_pool_id;
1156 
1157 	/* Create port's short pool */
1158 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1159 					    MVNETA_BM_SHORT, pp->id,
1160 					    MVNETA_BM_SHORT_PKT_SIZE);
1161 	if (!pp->pool_short) {
1162 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1163 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1164 		return -ENOMEM;
1165 	}
1166 
1167 	if (short_pool_id != long_pool_id) {
1168 		pp->pool_short->port_map |= 1 << pp->id;
1169 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1170 					   pp->pool_short->id);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 /* Update settings of a pool for bigger packets */
1177 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1178 {
1179 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1180 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1181 	int num;
1182 
1183 	/* Release all buffers from long pool */
1184 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1185 	if (hwbm_pool->buf_num) {
1186 		WARN(1, "cannot free all buffers in pool %d\n",
1187 		     bm_pool->id);
1188 		goto bm_mtu_err;
1189 	}
1190 
1191 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1192 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1193 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1194 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1195 
1196 	/* Fill entire long pool */
1197 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1198 	if (num != hwbm_pool->size) {
1199 		WARN(1, "pool %d: %d of %d allocated\n",
1200 		     bm_pool->id, num, hwbm_pool->size);
1201 		goto bm_mtu_err;
1202 	}
1203 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1204 
1205 	return;
1206 
1207 bm_mtu_err:
1208 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1209 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1210 
1211 	pp->bm_priv = NULL;
1212 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1213 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1214 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1215 }
1216 
1217 /* Start the Ethernet port RX and TX activity */
1218 static void mvneta_port_up(struct mvneta_port *pp)
1219 {
1220 	int queue;
1221 	u32 q_map;
1222 
1223 	/* Enable all initialized TXs. */
1224 	q_map = 0;
1225 	for (queue = 0; queue < txq_number; queue++) {
1226 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1227 		if (txq->descs)
1228 			q_map |= (1 << queue);
1229 	}
1230 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1231 
1232 	q_map = 0;
1233 	/* Enable all initialized RXQs. */
1234 	for (queue = 0; queue < rxq_number; queue++) {
1235 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1236 
1237 		if (rxq->descs)
1238 			q_map |= (1 << queue);
1239 	}
1240 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1241 }
1242 
1243 /* Stop the Ethernet port activity */
1244 static void mvneta_port_down(struct mvneta_port *pp)
1245 {
1246 	u32 val;
1247 	int count;
1248 
1249 	/* Stop Rx port activity. Check port Rx activity. */
1250 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1251 
1252 	/* Issue stop command for active channels only */
1253 	if (val != 0)
1254 		mvreg_write(pp, MVNETA_RXQ_CMD,
1255 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1256 
1257 	/* Wait for all Rx activity to terminate. */
1258 	count = 0;
1259 	do {
1260 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1261 			netdev_warn(pp->dev,
1262 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1263 				    val);
1264 			break;
1265 		}
1266 		mdelay(1);
1267 
1268 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1269 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1270 
1271 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1272 	 * command for active channels only
1273 	 */
1274 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1275 
1276 	if (val != 0)
1277 		mvreg_write(pp, MVNETA_TXQ_CMD,
1278 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1279 
1280 	/* Wait for all Tx activity to terminate. */
1281 	count = 0;
1282 	do {
1283 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1284 			netdev_warn(pp->dev,
1285 				    "TIMEOUT for TX stopped status=0x%08x\n",
1286 				    val);
1287 			break;
1288 		}
1289 		mdelay(1);
1290 
1291 		/* Check TX Command reg that all Txqs are stopped */
1292 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1293 
1294 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1295 
1296 	/* Double check to verify that TX FIFO is empty */
1297 	count = 0;
1298 	do {
1299 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1300 			netdev_warn(pp->dev,
1301 				    "TX FIFO empty timeout status=0x%08x\n",
1302 				    val);
1303 			break;
1304 		}
1305 		mdelay(1);
1306 
1307 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1308 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1309 		 (val & MVNETA_TX_IN_PRGRS));
1310 
1311 	udelay(200);
1312 }
1313 
1314 /* Enable the port by setting the port enable bit of the MAC control register */
1315 static void mvneta_port_enable(struct mvneta_port *pp)
1316 {
1317 	u32 val;
1318 
1319 	/* Enable port */
1320 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1321 	val |= MVNETA_GMAC0_PORT_ENABLE;
1322 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1323 }
1324 
1325 /* Disable the port and wait for about 200 usec before retuning */
1326 static void mvneta_port_disable(struct mvneta_port *pp)
1327 {
1328 	u32 val;
1329 
1330 	/* Reset the Enable bit in the Serial Control Register */
1331 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1332 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1333 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1334 
1335 	udelay(200);
1336 }
1337 
1338 /* Multicast tables methods */
1339 
1340 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1341 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1342 {
1343 	int offset;
1344 	u32 val;
1345 
1346 	if (queue == -1) {
1347 		val = 0;
1348 	} else {
1349 		val = 0x1 | (queue << 1);
1350 		val |= (val << 24) | (val << 16) | (val << 8);
1351 	}
1352 
1353 	for (offset = 0; offset <= 0xc; offset += 4)
1354 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1355 }
1356 
1357 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1358 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1359 {
1360 	int offset;
1361 	u32 val;
1362 
1363 	if (queue == -1) {
1364 		val = 0;
1365 	} else {
1366 		val = 0x1 | (queue << 1);
1367 		val |= (val << 24) | (val << 16) | (val << 8);
1368 	}
1369 
1370 	for (offset = 0; offset <= 0xfc; offset += 4)
1371 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1372 
1373 }
1374 
1375 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1376 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1377 {
1378 	int offset;
1379 	u32 val;
1380 
1381 	if (queue == -1) {
1382 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1383 		val = 0;
1384 	} else {
1385 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1386 		val = 0x1 | (queue << 1);
1387 		val |= (val << 24) | (val << 16) | (val << 8);
1388 	}
1389 
1390 	for (offset = 0; offset <= 0xfc; offset += 4)
1391 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1392 }
1393 
1394 static void mvneta_percpu_unmask_interrupt(void *arg)
1395 {
1396 	struct mvneta_port *pp = arg;
1397 
1398 	/* All the queue are unmasked, but actually only the ones
1399 	 * mapped to this CPU will be unmasked
1400 	 */
1401 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1402 		    MVNETA_RX_INTR_MASK_ALL |
1403 		    MVNETA_TX_INTR_MASK_ALL |
1404 		    MVNETA_MISCINTR_INTR_MASK);
1405 }
1406 
1407 static void mvneta_percpu_mask_interrupt(void *arg)
1408 {
1409 	struct mvneta_port *pp = arg;
1410 
1411 	/* All the queue are masked, but actually only the ones
1412 	 * mapped to this CPU will be masked
1413 	 */
1414 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1415 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1416 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1417 }
1418 
1419 static void mvneta_percpu_clear_intr_cause(void *arg)
1420 {
1421 	struct mvneta_port *pp = arg;
1422 
1423 	/* All the queue are cleared, but actually only the ones
1424 	 * mapped to this CPU will be cleared
1425 	 */
1426 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1427 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1428 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1429 }
1430 
1431 /* This method sets defaults to the NETA port:
1432  *	Clears interrupt Cause and Mask registers.
1433  *	Clears all MAC tables.
1434  *	Sets defaults to all registers.
1435  *	Resets RX and TX descriptor rings.
1436  *	Resets PHY.
1437  * This method can be called after mvneta_port_down() to return the port
1438  *	settings to defaults.
1439  */
1440 static void mvneta_defaults_set(struct mvneta_port *pp)
1441 {
1442 	int cpu;
1443 	int queue;
1444 	u32 val;
1445 	int max_cpu = num_present_cpus();
1446 
1447 	/* Clear all Cause registers */
1448 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1449 
1450 	/* Mask all interrupts */
1451 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1452 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1453 
1454 	/* Enable MBUS Retry bit16 */
1455 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1456 
1457 	/* Set CPU queue access map. CPUs are assigned to the RX and
1458 	 * TX queues modulo their number. If there is only one TX
1459 	 * queue then it is assigned to the CPU associated to the
1460 	 * default RX queue.
1461 	 */
1462 	for_each_present_cpu(cpu) {
1463 		int rxq_map = 0, txq_map = 0;
1464 		int rxq, txq;
1465 		if (!pp->neta_armada3700) {
1466 			for (rxq = 0; rxq < rxq_number; rxq++)
1467 				if ((rxq % max_cpu) == cpu)
1468 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1469 
1470 			for (txq = 0; txq < txq_number; txq++)
1471 				if ((txq % max_cpu) == cpu)
1472 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1473 
1474 			/* With only one TX queue we configure a special case
1475 			 * which will allow to get all the irq on a single
1476 			 * CPU
1477 			 */
1478 			if (txq_number == 1)
1479 				txq_map = (cpu == pp->rxq_def) ?
1480 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1481 
1482 		} else {
1483 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1484 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1485 		}
1486 
1487 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1488 	}
1489 
1490 	/* Reset RX and TX DMAs */
1491 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1492 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1493 
1494 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1495 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1496 	for (queue = 0; queue < txq_number; queue++) {
1497 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1498 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1499 	}
1500 
1501 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1502 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1503 
1504 	/* Set Port Acceleration Mode */
1505 	if (pp->bm_priv)
1506 		/* HW buffer management + legacy parser */
1507 		val = MVNETA_ACC_MODE_EXT2;
1508 	else
1509 		/* SW buffer management + legacy parser */
1510 		val = MVNETA_ACC_MODE_EXT1;
1511 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1512 
1513 	if (pp->bm_priv)
1514 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1515 
1516 	/* Update val of portCfg register accordingly with all RxQueue types */
1517 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1518 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1519 
1520 	val = 0;
1521 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1522 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1523 
1524 	/* Build PORT_SDMA_CONFIG_REG */
1525 	val = 0;
1526 
1527 	/* Default burst size */
1528 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1529 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1530 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1531 
1532 #if defined(__BIG_ENDIAN)
1533 	val |= MVNETA_DESC_SWAP;
1534 #endif
1535 
1536 	/* Assign port SDMA configuration */
1537 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1538 
1539 	/* Disable PHY polling in hardware, since we're using the
1540 	 * kernel phylib to do this.
1541 	 */
1542 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1543 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1544 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1545 
1546 	mvneta_set_ucast_table(pp, -1);
1547 	mvneta_set_special_mcast_table(pp, -1);
1548 	mvneta_set_other_mcast_table(pp, -1);
1549 
1550 	/* Set port interrupt enable register - default enable all */
1551 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1552 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1553 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1554 
1555 	mvneta_mib_counters_clear(pp);
1556 }
1557 
1558 /* Set max sizes for tx queues */
1559 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1560 
1561 {
1562 	u32 val, size, mtu;
1563 	int queue;
1564 
1565 	mtu = max_tx_size * 8;
1566 	if (mtu > MVNETA_TX_MTU_MAX)
1567 		mtu = MVNETA_TX_MTU_MAX;
1568 
1569 	/* Set MTU */
1570 	val = mvreg_read(pp, MVNETA_TX_MTU);
1571 	val &= ~MVNETA_TX_MTU_MAX;
1572 	val |= mtu;
1573 	mvreg_write(pp, MVNETA_TX_MTU, val);
1574 
1575 	/* TX token size and all TXQs token size must be larger that MTU */
1576 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1577 
1578 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1579 	if (size < mtu) {
1580 		size = mtu;
1581 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1582 		val |= size;
1583 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1584 	}
1585 	for (queue = 0; queue < txq_number; queue++) {
1586 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1587 
1588 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1589 		if (size < mtu) {
1590 			size = mtu;
1591 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1592 			val |= size;
1593 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1594 		}
1595 	}
1596 }
1597 
1598 /* Set unicast address */
1599 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1600 				  int queue)
1601 {
1602 	unsigned int unicast_reg;
1603 	unsigned int tbl_offset;
1604 	unsigned int reg_offset;
1605 
1606 	/* Locate the Unicast table entry */
1607 	last_nibble = (0xf & last_nibble);
1608 
1609 	/* offset from unicast tbl base */
1610 	tbl_offset = (last_nibble / 4) * 4;
1611 
1612 	/* offset within the above reg  */
1613 	reg_offset = last_nibble % 4;
1614 
1615 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1616 
1617 	if (queue == -1) {
1618 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1619 		unicast_reg &= ~(0xff << (8 * reg_offset));
1620 	} else {
1621 		unicast_reg &= ~(0xff << (8 * reg_offset));
1622 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1623 	}
1624 
1625 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1626 }
1627 
1628 /* Set mac address */
1629 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1630 				int queue)
1631 {
1632 	unsigned int mac_h;
1633 	unsigned int mac_l;
1634 
1635 	if (queue != -1) {
1636 		mac_l = (addr[4] << 8) | (addr[5]);
1637 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1638 			(addr[2] << 8) | (addr[3] << 0);
1639 
1640 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1641 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1642 	}
1643 
1644 	/* Accept frames of this address */
1645 	mvneta_set_ucast_addr(pp, addr[5], queue);
1646 }
1647 
1648 /* Set the number of packets that will be received before RX interrupt
1649  * will be generated by HW.
1650  */
1651 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1652 				    struct mvneta_rx_queue *rxq, u32 value)
1653 {
1654 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1655 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1656 }
1657 
1658 /* Set the time delay in usec before RX interrupt will be generated by
1659  * HW.
1660  */
1661 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1662 				    struct mvneta_rx_queue *rxq, u32 value)
1663 {
1664 	u32 val;
1665 	unsigned long clk_rate;
1666 
1667 	clk_rate = clk_get_rate(pp->clk);
1668 	val = (clk_rate / 1000000) * value;
1669 
1670 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1671 }
1672 
1673 /* Set threshold for TX_DONE pkts coalescing */
1674 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1675 					 struct mvneta_tx_queue *txq, u32 value)
1676 {
1677 	u32 val;
1678 
1679 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1680 
1681 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1682 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1683 
1684 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1685 }
1686 
1687 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1688 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1689 				u32 phys_addr, void *virt_addr,
1690 				struct mvneta_rx_queue *rxq)
1691 {
1692 	int i;
1693 
1694 	rx_desc->buf_phys_addr = phys_addr;
1695 	i = rx_desc - rxq->descs;
1696 	rxq->buf_virt_addr[i] = virt_addr;
1697 }
1698 
1699 /* Decrement sent descriptors counter */
1700 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1701 				     struct mvneta_tx_queue *txq,
1702 				     int sent_desc)
1703 {
1704 	u32 val;
1705 
1706 	/* Only 255 TX descriptors can be updated at once */
1707 	while (sent_desc > 0xff) {
1708 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1709 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1710 		sent_desc = sent_desc - 0xff;
1711 	}
1712 
1713 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1714 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1715 }
1716 
1717 /* Get number of TX descriptors already sent by HW */
1718 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1719 					struct mvneta_tx_queue *txq)
1720 {
1721 	u32 val;
1722 	int sent_desc;
1723 
1724 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1725 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1726 		MVNETA_TXQ_SENT_DESC_SHIFT;
1727 
1728 	return sent_desc;
1729 }
1730 
1731 /* Get number of sent descriptors and decrement counter.
1732  *  The number of sent descriptors is returned.
1733  */
1734 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1735 				     struct mvneta_tx_queue *txq)
1736 {
1737 	int sent_desc;
1738 
1739 	/* Get number of sent descriptors */
1740 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1741 
1742 	/* Decrement sent descriptors counter */
1743 	if (sent_desc)
1744 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1745 
1746 	return sent_desc;
1747 }
1748 
1749 /* Set TXQ descriptors fields relevant for CSUM calculation */
1750 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1751 				int ip_hdr_len, int l4_proto)
1752 {
1753 	u32 command;
1754 
1755 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1756 	 * G_L4_chk, L4_type; required only for checksum
1757 	 * calculation
1758 	 */
1759 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1760 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1761 
1762 	if (l3_proto == htons(ETH_P_IP))
1763 		command |= MVNETA_TXD_IP_CSUM;
1764 	else
1765 		command |= MVNETA_TX_L3_IP6;
1766 
1767 	if (l4_proto == IPPROTO_TCP)
1768 		command |=  MVNETA_TX_L4_CSUM_FULL;
1769 	else if (l4_proto == IPPROTO_UDP)
1770 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1771 	else
1772 		command |= MVNETA_TX_L4_CSUM_NOT;
1773 
1774 	return command;
1775 }
1776 
1777 
1778 /* Display more error info */
1779 static void mvneta_rx_error(struct mvneta_port *pp,
1780 			    struct mvneta_rx_desc *rx_desc)
1781 {
1782 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1783 	u32 status = rx_desc->status;
1784 
1785 	/* update per-cpu counter */
1786 	u64_stats_update_begin(&stats->syncp);
1787 	stats->rx_errors++;
1788 	u64_stats_update_end(&stats->syncp);
1789 
1790 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1791 	case MVNETA_RXD_ERR_CRC:
1792 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1793 			   status, rx_desc->data_size);
1794 		break;
1795 	case MVNETA_RXD_ERR_OVERRUN:
1796 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1797 			   status, rx_desc->data_size);
1798 		break;
1799 	case MVNETA_RXD_ERR_LEN:
1800 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1801 			   status, rx_desc->data_size);
1802 		break;
1803 	case MVNETA_RXD_ERR_RESOURCE:
1804 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1805 			   status, rx_desc->data_size);
1806 		break;
1807 	}
1808 }
1809 
1810 /* Handle RX checksum offload based on the descriptor's status */
1811 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1812 			   struct sk_buff *skb)
1813 {
1814 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1815 	    (status & MVNETA_RXD_L3_IP4) &&
1816 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1817 		skb->csum = 0;
1818 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1819 		return;
1820 	}
1821 
1822 	skb->ip_summed = CHECKSUM_NONE;
1823 }
1824 
1825 /* Return tx queue pointer (find last set bit) according to <cause> returned
1826  * form tx_done reg. <cause> must not be null. The return value is always a
1827  * valid queue for matching the first one found in <cause>.
1828  */
1829 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1830 						     u32 cause)
1831 {
1832 	int queue = fls(cause) - 1;
1833 
1834 	return &pp->txqs[queue];
1835 }
1836 
1837 /* Free tx queue skbuffs */
1838 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1839 				 struct mvneta_tx_queue *txq, int num,
1840 				 struct netdev_queue *nq)
1841 {
1842 	unsigned int bytes_compl = 0, pkts_compl = 0;
1843 	int i;
1844 
1845 	for (i = 0; i < num; i++) {
1846 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1847 		struct mvneta_tx_desc *tx_desc = txq->descs +
1848 			txq->txq_get_index;
1849 
1850 		mvneta_txq_inc_get(txq);
1851 
1852 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1853 		    buf->type != MVNETA_TYPE_XDP_TX)
1854 			dma_unmap_single(pp->dev->dev.parent,
1855 					 tx_desc->buf_phys_addr,
1856 					 tx_desc->data_size, DMA_TO_DEVICE);
1857 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1858 			bytes_compl += buf->skb->len;
1859 			pkts_compl++;
1860 			dev_kfree_skb_any(buf->skb);
1861 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1862 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1863 			xdp_return_frame(buf->xdpf);
1864 		}
1865 	}
1866 
1867 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1868 }
1869 
1870 /* Handle end of transmission */
1871 static void mvneta_txq_done(struct mvneta_port *pp,
1872 			   struct mvneta_tx_queue *txq)
1873 {
1874 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1875 	int tx_done;
1876 
1877 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1878 	if (!tx_done)
1879 		return;
1880 
1881 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1882 
1883 	txq->count -= tx_done;
1884 
1885 	if (netif_tx_queue_stopped(nq)) {
1886 		if (txq->count <= txq->tx_wake_threshold)
1887 			netif_tx_wake_queue(nq);
1888 	}
1889 }
1890 
1891 /* Refill processing for SW buffer management */
1892 /* Allocate page per descriptor */
1893 static int mvneta_rx_refill(struct mvneta_port *pp,
1894 			    struct mvneta_rx_desc *rx_desc,
1895 			    struct mvneta_rx_queue *rxq,
1896 			    gfp_t gfp_mask)
1897 {
1898 	dma_addr_t phys_addr;
1899 	struct page *page;
1900 
1901 	page = page_pool_alloc_pages(rxq->page_pool,
1902 				     gfp_mask | __GFP_NOWARN);
1903 	if (!page)
1904 		return -ENOMEM;
1905 
1906 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1907 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1908 
1909 	return 0;
1910 }
1911 
1912 /* Handle tx checksum */
1913 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1914 {
1915 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1916 		int ip_hdr_len = 0;
1917 		__be16 l3_proto = vlan_get_protocol(skb);
1918 		u8 l4_proto;
1919 
1920 		if (l3_proto == htons(ETH_P_IP)) {
1921 			struct iphdr *ip4h = ip_hdr(skb);
1922 
1923 			/* Calculate IPv4 checksum and L4 checksum */
1924 			ip_hdr_len = ip4h->ihl;
1925 			l4_proto = ip4h->protocol;
1926 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1927 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1928 
1929 			/* Read l4_protocol from one of IPv6 extra headers */
1930 			if (skb_network_header_len(skb) > 0)
1931 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1932 			l4_proto = ip6h->nexthdr;
1933 		} else
1934 			return MVNETA_TX_L4_CSUM_NOT;
1935 
1936 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1937 					    l3_proto, ip_hdr_len, l4_proto);
1938 	}
1939 
1940 	return MVNETA_TX_L4_CSUM_NOT;
1941 }
1942 
1943 /* Drop packets received by the RXQ and free buffers */
1944 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1945 				 struct mvneta_rx_queue *rxq)
1946 {
1947 	int rx_done, i;
1948 
1949 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1950 	if (rx_done)
1951 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1952 
1953 	if (pp->bm_priv) {
1954 		for (i = 0; i < rx_done; i++) {
1955 			struct mvneta_rx_desc *rx_desc =
1956 						  mvneta_rxq_next_desc_get(rxq);
1957 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1958 			struct mvneta_bm_pool *bm_pool;
1959 
1960 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1961 			/* Return dropped buffer to the pool */
1962 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1963 					      rx_desc->buf_phys_addr);
1964 		}
1965 		return;
1966 	}
1967 
1968 	for (i = 0; i < rxq->size; i++) {
1969 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1970 		void *data = rxq->buf_virt_addr[i];
1971 		if (!data || !(rx_desc->buf_phys_addr))
1972 			continue;
1973 
1974 		page_pool_put_full_page(rxq->page_pool, data, false);
1975 	}
1976 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1977 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1978 	page_pool_destroy(rxq->page_pool);
1979 	rxq->page_pool = NULL;
1980 }
1981 
1982 static void
1983 mvneta_update_stats(struct mvneta_port *pp,
1984 		    struct mvneta_stats *ps)
1985 {
1986 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1987 
1988 	u64_stats_update_begin(&stats->syncp);
1989 	stats->es.ps.rx_packets += ps->rx_packets;
1990 	stats->es.ps.rx_bytes += ps->rx_bytes;
1991 	/* xdp */
1992 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1993 	stats->es.ps.xdp_pass += ps->xdp_pass;
1994 	stats->es.ps.xdp_drop += ps->xdp_drop;
1995 	u64_stats_update_end(&stats->syncp);
1996 }
1997 
1998 static inline
1999 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2000 {
2001 	struct mvneta_rx_desc *rx_desc;
2002 	int curr_desc = rxq->first_to_refill;
2003 	int i;
2004 
2005 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2006 		rx_desc = rxq->descs + curr_desc;
2007 		if (!(rx_desc->buf_phys_addr)) {
2008 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2009 				struct mvneta_pcpu_stats *stats;
2010 
2011 				pr_err("Can't refill queue %d. Done %d from %d\n",
2012 				       rxq->id, i, rxq->refill_num);
2013 
2014 				stats = this_cpu_ptr(pp->stats);
2015 				u64_stats_update_begin(&stats->syncp);
2016 				stats->es.refill_error++;
2017 				u64_stats_update_end(&stats->syncp);
2018 				break;
2019 			}
2020 		}
2021 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2022 	}
2023 	rxq->refill_num -= i;
2024 	rxq->first_to_refill = curr_desc;
2025 
2026 	return i;
2027 }
2028 
2029 static int
2030 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2031 			struct xdp_frame *xdpf, bool dma_map)
2032 {
2033 	struct mvneta_tx_desc *tx_desc;
2034 	struct mvneta_tx_buf *buf;
2035 	dma_addr_t dma_addr;
2036 
2037 	if (txq->count >= txq->tx_stop_threshold)
2038 		return MVNETA_XDP_DROPPED;
2039 
2040 	tx_desc = mvneta_txq_next_desc_get(txq);
2041 
2042 	buf = &txq->buf[txq->txq_put_index];
2043 	if (dma_map) {
2044 		/* ndo_xdp_xmit */
2045 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2046 					  xdpf->len, DMA_TO_DEVICE);
2047 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2048 			mvneta_txq_desc_put(txq);
2049 			return MVNETA_XDP_DROPPED;
2050 		}
2051 		buf->type = MVNETA_TYPE_XDP_NDO;
2052 	} else {
2053 		struct page *page = virt_to_page(xdpf->data);
2054 
2055 		dma_addr = page_pool_get_dma_addr(page) +
2056 			   sizeof(*xdpf) + xdpf->headroom;
2057 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2058 					   xdpf->len, DMA_BIDIRECTIONAL);
2059 		buf->type = MVNETA_TYPE_XDP_TX;
2060 	}
2061 	buf->xdpf = xdpf;
2062 
2063 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2064 	tx_desc->buf_phys_addr = dma_addr;
2065 	tx_desc->data_size = xdpf->len;
2066 
2067 	mvneta_txq_inc_put(txq);
2068 	txq->pending++;
2069 	txq->count++;
2070 
2071 	return MVNETA_XDP_TX;
2072 }
2073 
2074 static int
2075 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2076 {
2077 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2078 	struct mvneta_tx_queue *txq;
2079 	struct netdev_queue *nq;
2080 	struct xdp_frame *xdpf;
2081 	int cpu;
2082 	u32 ret;
2083 
2084 	xdpf = xdp_convert_buff_to_frame(xdp);
2085 	if (unlikely(!xdpf))
2086 		return MVNETA_XDP_DROPPED;
2087 
2088 	cpu = smp_processor_id();
2089 	txq = &pp->txqs[cpu % txq_number];
2090 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2091 
2092 	__netif_tx_lock(nq, cpu);
2093 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2094 	if (ret == MVNETA_XDP_TX) {
2095 		u64_stats_update_begin(&stats->syncp);
2096 		stats->es.ps.tx_bytes += xdpf->len;
2097 		stats->es.ps.tx_packets++;
2098 		stats->es.ps.xdp_tx++;
2099 		u64_stats_update_end(&stats->syncp);
2100 
2101 		mvneta_txq_pend_desc_add(pp, txq, 0);
2102 	} else {
2103 		u64_stats_update_begin(&stats->syncp);
2104 		stats->es.ps.xdp_tx_err++;
2105 		u64_stats_update_end(&stats->syncp);
2106 	}
2107 	__netif_tx_unlock(nq);
2108 
2109 	return ret;
2110 }
2111 
2112 static int
2113 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2114 		struct xdp_frame **frames, u32 flags)
2115 {
2116 	struct mvneta_port *pp = netdev_priv(dev);
2117 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2118 	int i, nxmit_byte = 0, nxmit = num_frame;
2119 	int cpu = smp_processor_id();
2120 	struct mvneta_tx_queue *txq;
2121 	struct netdev_queue *nq;
2122 	u32 ret;
2123 
2124 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2125 		return -ENETDOWN;
2126 
2127 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2128 		return -EINVAL;
2129 
2130 	txq = &pp->txqs[cpu % txq_number];
2131 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2132 
2133 	__netif_tx_lock(nq, cpu);
2134 	for (i = 0; i < num_frame; i++) {
2135 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2136 		if (ret == MVNETA_XDP_TX) {
2137 			nxmit_byte += frames[i]->len;
2138 		} else {
2139 			xdp_return_frame_rx_napi(frames[i]);
2140 			nxmit--;
2141 		}
2142 	}
2143 
2144 	if (unlikely(flags & XDP_XMIT_FLUSH))
2145 		mvneta_txq_pend_desc_add(pp, txq, 0);
2146 	__netif_tx_unlock(nq);
2147 
2148 	u64_stats_update_begin(&stats->syncp);
2149 	stats->es.ps.tx_bytes += nxmit_byte;
2150 	stats->es.ps.tx_packets += nxmit;
2151 	stats->es.ps.xdp_xmit += nxmit;
2152 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2153 	u64_stats_update_end(&stats->syncp);
2154 
2155 	return nxmit;
2156 }
2157 
2158 static int
2159 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2160 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2161 	       struct mvneta_stats *stats)
2162 {
2163 	unsigned int len, sync;
2164 	struct page *page;
2165 	u32 ret, act;
2166 
2167 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2168 	act = bpf_prog_run_xdp(prog, xdp);
2169 
2170 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2171 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2172 	sync = max(sync, len);
2173 
2174 	switch (act) {
2175 	case XDP_PASS:
2176 		stats->xdp_pass++;
2177 		return MVNETA_XDP_PASS;
2178 	case XDP_REDIRECT: {
2179 		int err;
2180 
2181 		err = xdp_do_redirect(pp->dev, xdp, prog);
2182 		if (unlikely(err)) {
2183 			ret = MVNETA_XDP_DROPPED;
2184 			page = virt_to_head_page(xdp->data);
2185 			page_pool_put_page(rxq->page_pool, page, sync, true);
2186 		} else {
2187 			ret = MVNETA_XDP_REDIR;
2188 			stats->xdp_redirect++;
2189 		}
2190 		break;
2191 	}
2192 	case XDP_TX:
2193 		ret = mvneta_xdp_xmit_back(pp, xdp);
2194 		if (ret != MVNETA_XDP_TX) {
2195 			page = virt_to_head_page(xdp->data);
2196 			page_pool_put_page(rxq->page_pool, page, sync, true);
2197 		}
2198 		break;
2199 	default:
2200 		bpf_warn_invalid_xdp_action(act);
2201 		/* fall through */
2202 	case XDP_ABORTED:
2203 		trace_xdp_exception(pp->dev, prog, act);
2204 		/* fall through */
2205 	case XDP_DROP:
2206 		page = virt_to_head_page(xdp->data);
2207 		page_pool_put_page(rxq->page_pool, page, sync, true);
2208 		ret = MVNETA_XDP_DROPPED;
2209 		stats->xdp_drop++;
2210 		break;
2211 	}
2212 
2213 	stats->rx_bytes += xdp->data_end - xdp->data;
2214 	stats->rx_packets++;
2215 
2216 	return ret;
2217 }
2218 
2219 static int
2220 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2221 		     struct mvneta_rx_desc *rx_desc,
2222 		     struct mvneta_rx_queue *rxq,
2223 		     struct xdp_buff *xdp,
2224 		     struct bpf_prog *xdp_prog,
2225 		     struct page *page,
2226 		     struct mvneta_stats *stats)
2227 {
2228 	unsigned char *data = page_address(page);
2229 	int data_len = -MVNETA_MH_SIZE, len;
2230 	struct net_device *dev = pp->dev;
2231 	enum dma_data_direction dma_dir;
2232 	int ret = 0;
2233 
2234 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2235 		len = MVNETA_MAX_RX_BUF_SIZE;
2236 		data_len += len;
2237 	} else {
2238 		len = rx_desc->data_size;
2239 		data_len += len - ETH_FCS_LEN;
2240 	}
2241 
2242 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2243 	dma_sync_single_for_cpu(dev->dev.parent,
2244 				rx_desc->buf_phys_addr,
2245 				len, dma_dir);
2246 
2247 	/* Prefetch header */
2248 	prefetch(data);
2249 
2250 	xdp->data_hard_start = data;
2251 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2252 	xdp->data_end = xdp->data + data_len;
2253 	xdp_set_data_meta_invalid(xdp);
2254 
2255 	if (xdp_prog) {
2256 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats);
2257 		if (ret)
2258 			goto out;
2259 	}
2260 
2261 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2262 	if (unlikely(!rxq->skb)) {
2263 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2264 
2265 		netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
2266 
2267 		u64_stats_update_begin(&stats->syncp);
2268 		stats->es.skb_alloc_error++;
2269 		stats->rx_dropped++;
2270 		u64_stats_update_end(&stats->syncp);
2271 
2272 		return -ENOMEM;
2273 	}
2274 	page_pool_release_page(rxq->page_pool, page);
2275 
2276 	skb_reserve(rxq->skb,
2277 		    xdp->data - xdp->data_hard_start);
2278 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2279 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2280 
2281 	rxq->left_size = rx_desc->data_size - len;
2282 
2283 out:
2284 	rx_desc->buf_phys_addr = 0;
2285 
2286 	return ret;
2287 }
2288 
2289 static void
2290 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2291 			    struct mvneta_rx_desc *rx_desc,
2292 			    struct mvneta_rx_queue *rxq,
2293 			    struct page *page)
2294 {
2295 	struct net_device *dev = pp->dev;
2296 	enum dma_data_direction dma_dir;
2297 	int data_len, len;
2298 
2299 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2300 		len = MVNETA_MAX_RX_BUF_SIZE;
2301 		data_len = len;
2302 	} else {
2303 		len = rxq->left_size;
2304 		data_len = len - ETH_FCS_LEN;
2305 	}
2306 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2307 	dma_sync_single_for_cpu(dev->dev.parent,
2308 				rx_desc->buf_phys_addr,
2309 				len, dma_dir);
2310 	if (data_len > 0) {
2311 		/* refill descriptor with new buffer later */
2312 		skb_add_rx_frag(rxq->skb,
2313 				skb_shinfo(rxq->skb)->nr_frags,
2314 				page, pp->rx_offset_correction, data_len,
2315 				PAGE_SIZE);
2316 	}
2317 	page_pool_release_page(rxq->page_pool, page);
2318 	rx_desc->buf_phys_addr = 0;
2319 	rxq->left_size -= len;
2320 }
2321 
2322 /* Main rx processing when using software buffer management */
2323 static int mvneta_rx_swbm(struct napi_struct *napi,
2324 			  struct mvneta_port *pp, int budget,
2325 			  struct mvneta_rx_queue *rxq)
2326 {
2327 	int rx_proc = 0, rx_todo, refill;
2328 	struct net_device *dev = pp->dev;
2329 	struct mvneta_stats ps = {};
2330 	struct bpf_prog *xdp_prog;
2331 	struct xdp_buff xdp_buf;
2332 
2333 	/* Get number of received packets */
2334 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2335 
2336 	rcu_read_lock();
2337 	xdp_prog = READ_ONCE(pp->xdp_prog);
2338 	xdp_buf.rxq = &rxq->xdp_rxq;
2339 	xdp_buf.frame_sz = PAGE_SIZE;
2340 
2341 	/* Fairness NAPI loop */
2342 	while (rx_proc < budget && rx_proc < rx_todo) {
2343 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2344 		u32 rx_status, index;
2345 		struct page *page;
2346 
2347 		index = rx_desc - rxq->descs;
2348 		page = (struct page *)rxq->buf_virt_addr[index];
2349 
2350 		rx_status = rx_desc->status;
2351 		rx_proc++;
2352 		rxq->refill_num++;
2353 
2354 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2355 			int err;
2356 
2357 			/* Check errors only for FIRST descriptor */
2358 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2359 				mvneta_rx_error(pp, rx_desc);
2360 				/* leave the descriptor untouched */
2361 				continue;
2362 			}
2363 
2364 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2365 						   xdp_prog, page, &ps);
2366 			if (err)
2367 				continue;
2368 		} else {
2369 			if (unlikely(!rxq->skb)) {
2370 				pr_debug("no skb for rx_status 0x%x\n",
2371 					 rx_status);
2372 				continue;
2373 			}
2374 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2375 		} /* Middle or Last descriptor */
2376 
2377 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2378 			/* no last descriptor this time */
2379 			continue;
2380 
2381 		if (rxq->left_size) {
2382 			pr_err("get last desc, but left_size (%d) != 0\n",
2383 			       rxq->left_size);
2384 			dev_kfree_skb_any(rxq->skb);
2385 			rxq->left_size = 0;
2386 			rxq->skb = NULL;
2387 			continue;
2388 		}
2389 
2390 		ps.rx_bytes += rxq->skb->len;
2391 		ps.rx_packets++;
2392 
2393 		/* Linux processing */
2394 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2395 
2396 		napi_gro_receive(napi, rxq->skb);
2397 
2398 		/* clean uncomplete skb pointer in queue */
2399 		rxq->skb = NULL;
2400 	}
2401 	rcu_read_unlock();
2402 
2403 	if (ps.xdp_redirect)
2404 		xdp_do_flush_map();
2405 
2406 	if (ps.rx_packets)
2407 		mvneta_update_stats(pp, &ps);
2408 
2409 	/* return some buffers to hardware queue, one at a time is too slow */
2410 	refill = mvneta_rx_refill_queue(pp, rxq);
2411 
2412 	/* Update rxq management counters */
2413 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2414 
2415 	return ps.rx_packets;
2416 }
2417 
2418 /* Main rx processing when using hardware buffer management */
2419 static int mvneta_rx_hwbm(struct napi_struct *napi,
2420 			  struct mvneta_port *pp, int rx_todo,
2421 			  struct mvneta_rx_queue *rxq)
2422 {
2423 	struct net_device *dev = pp->dev;
2424 	int rx_done;
2425 	u32 rcvd_pkts = 0;
2426 	u32 rcvd_bytes = 0;
2427 
2428 	/* Get number of received packets */
2429 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2430 
2431 	if (rx_todo > rx_done)
2432 		rx_todo = rx_done;
2433 
2434 	rx_done = 0;
2435 
2436 	/* Fairness NAPI loop */
2437 	while (rx_done < rx_todo) {
2438 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2439 		struct mvneta_bm_pool *bm_pool = NULL;
2440 		struct sk_buff *skb;
2441 		unsigned char *data;
2442 		dma_addr_t phys_addr;
2443 		u32 rx_status, frag_size;
2444 		int rx_bytes, err;
2445 		u8 pool_id;
2446 
2447 		rx_done++;
2448 		rx_status = rx_desc->status;
2449 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2450 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2451 		phys_addr = rx_desc->buf_phys_addr;
2452 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2453 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2454 
2455 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2456 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2457 err_drop_frame_ret_pool:
2458 			/* Return the buffer to the pool */
2459 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2460 					      rx_desc->buf_phys_addr);
2461 err_drop_frame:
2462 			mvneta_rx_error(pp, rx_desc);
2463 			/* leave the descriptor untouched */
2464 			continue;
2465 		}
2466 
2467 		if (rx_bytes <= rx_copybreak) {
2468 			/* better copy a small frame and not unmap the DMA region */
2469 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2470 			if (unlikely(!skb))
2471 				goto err_drop_frame_ret_pool;
2472 
2473 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2474 			                              rx_desc->buf_phys_addr,
2475 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2476 			                              rx_bytes,
2477 			                              DMA_FROM_DEVICE);
2478 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2479 				     rx_bytes);
2480 
2481 			skb->protocol = eth_type_trans(skb, dev);
2482 			mvneta_rx_csum(pp, rx_status, skb);
2483 			napi_gro_receive(napi, skb);
2484 
2485 			rcvd_pkts++;
2486 			rcvd_bytes += rx_bytes;
2487 
2488 			/* Return the buffer to the pool */
2489 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2490 					      rx_desc->buf_phys_addr);
2491 
2492 			/* leave the descriptor and buffer untouched */
2493 			continue;
2494 		}
2495 
2496 		/* Refill processing */
2497 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2498 		if (err) {
2499 			struct mvneta_pcpu_stats *stats;
2500 
2501 			netdev_err(dev, "Linux processing - Can't refill\n");
2502 
2503 			stats = this_cpu_ptr(pp->stats);
2504 			u64_stats_update_begin(&stats->syncp);
2505 			stats->es.refill_error++;
2506 			u64_stats_update_end(&stats->syncp);
2507 
2508 			goto err_drop_frame_ret_pool;
2509 		}
2510 
2511 		frag_size = bm_pool->hwbm_pool.frag_size;
2512 
2513 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2514 
2515 		/* After refill old buffer has to be unmapped regardless
2516 		 * the skb is successfully built or not.
2517 		 */
2518 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2519 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2520 		if (!skb)
2521 			goto err_drop_frame;
2522 
2523 		rcvd_pkts++;
2524 		rcvd_bytes += rx_bytes;
2525 
2526 		/* Linux processing */
2527 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2528 		skb_put(skb, rx_bytes);
2529 
2530 		skb->protocol = eth_type_trans(skb, dev);
2531 
2532 		mvneta_rx_csum(pp, rx_status, skb);
2533 
2534 		napi_gro_receive(napi, skb);
2535 	}
2536 
2537 	if (rcvd_pkts) {
2538 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2539 
2540 		u64_stats_update_begin(&stats->syncp);
2541 		stats->es.ps.rx_packets += rcvd_pkts;
2542 		stats->es.ps.rx_bytes += rcvd_bytes;
2543 		u64_stats_update_end(&stats->syncp);
2544 	}
2545 
2546 	/* Update rxq management counters */
2547 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2548 
2549 	return rx_done;
2550 }
2551 
2552 static inline void
2553 mvneta_tso_put_hdr(struct sk_buff *skb,
2554 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2555 {
2556 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2557 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2558 	struct mvneta_tx_desc *tx_desc;
2559 
2560 	tx_desc = mvneta_txq_next_desc_get(txq);
2561 	tx_desc->data_size = hdr_len;
2562 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2563 	tx_desc->command |= MVNETA_TXD_F_DESC;
2564 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2565 				 txq->txq_put_index * TSO_HEADER_SIZE;
2566 	buf->type = MVNETA_TYPE_SKB;
2567 	buf->skb = NULL;
2568 
2569 	mvneta_txq_inc_put(txq);
2570 }
2571 
2572 static inline int
2573 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2574 		    struct sk_buff *skb, char *data, int size,
2575 		    bool last_tcp, bool is_last)
2576 {
2577 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2578 	struct mvneta_tx_desc *tx_desc;
2579 
2580 	tx_desc = mvneta_txq_next_desc_get(txq);
2581 	tx_desc->data_size = size;
2582 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2583 						size, DMA_TO_DEVICE);
2584 	if (unlikely(dma_mapping_error(dev->dev.parent,
2585 		     tx_desc->buf_phys_addr))) {
2586 		mvneta_txq_desc_put(txq);
2587 		return -ENOMEM;
2588 	}
2589 
2590 	tx_desc->command = 0;
2591 	buf->type = MVNETA_TYPE_SKB;
2592 	buf->skb = NULL;
2593 
2594 	if (last_tcp) {
2595 		/* last descriptor in the TCP packet */
2596 		tx_desc->command = MVNETA_TXD_L_DESC;
2597 
2598 		/* last descriptor in SKB */
2599 		if (is_last)
2600 			buf->skb = skb;
2601 	}
2602 	mvneta_txq_inc_put(txq);
2603 	return 0;
2604 }
2605 
2606 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2607 			 struct mvneta_tx_queue *txq)
2608 {
2609 	int total_len, data_left;
2610 	int desc_count = 0;
2611 	struct mvneta_port *pp = netdev_priv(dev);
2612 	struct tso_t tso;
2613 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2614 	int i;
2615 
2616 	/* Count needed descriptors */
2617 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2618 		return 0;
2619 
2620 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2621 		pr_info("*** Is this even  possible???!?!?\n");
2622 		return 0;
2623 	}
2624 
2625 	/* Initialize the TSO handler, and prepare the first payload */
2626 	tso_start(skb, &tso);
2627 
2628 	total_len = skb->len - hdr_len;
2629 	while (total_len > 0) {
2630 		char *hdr;
2631 
2632 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2633 		total_len -= data_left;
2634 		desc_count++;
2635 
2636 		/* prepare packet headers: MAC + IP + TCP */
2637 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2638 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2639 
2640 		mvneta_tso_put_hdr(skb, pp, txq);
2641 
2642 		while (data_left > 0) {
2643 			int size;
2644 			desc_count++;
2645 
2646 			size = min_t(int, tso.size, data_left);
2647 
2648 			if (mvneta_tso_put_data(dev, txq, skb,
2649 						 tso.data, size,
2650 						 size == data_left,
2651 						 total_len == 0))
2652 				goto err_release;
2653 			data_left -= size;
2654 
2655 			tso_build_data(skb, &tso, size);
2656 		}
2657 	}
2658 
2659 	return desc_count;
2660 
2661 err_release:
2662 	/* Release all used data descriptors; header descriptors must not
2663 	 * be DMA-unmapped.
2664 	 */
2665 	for (i = desc_count - 1; i >= 0; i--) {
2666 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2667 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2668 			dma_unmap_single(pp->dev->dev.parent,
2669 					 tx_desc->buf_phys_addr,
2670 					 tx_desc->data_size,
2671 					 DMA_TO_DEVICE);
2672 		mvneta_txq_desc_put(txq);
2673 	}
2674 	return 0;
2675 }
2676 
2677 /* Handle tx fragmentation processing */
2678 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2679 				  struct mvneta_tx_queue *txq)
2680 {
2681 	struct mvneta_tx_desc *tx_desc;
2682 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2683 
2684 	for (i = 0; i < nr_frags; i++) {
2685 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2686 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2687 		void *addr = skb_frag_address(frag);
2688 
2689 		tx_desc = mvneta_txq_next_desc_get(txq);
2690 		tx_desc->data_size = skb_frag_size(frag);
2691 
2692 		tx_desc->buf_phys_addr =
2693 			dma_map_single(pp->dev->dev.parent, addr,
2694 				       tx_desc->data_size, DMA_TO_DEVICE);
2695 
2696 		if (dma_mapping_error(pp->dev->dev.parent,
2697 				      tx_desc->buf_phys_addr)) {
2698 			mvneta_txq_desc_put(txq);
2699 			goto error;
2700 		}
2701 
2702 		if (i == nr_frags - 1) {
2703 			/* Last descriptor */
2704 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2705 			buf->skb = skb;
2706 		} else {
2707 			/* Descriptor in the middle: Not First, Not Last */
2708 			tx_desc->command = 0;
2709 			buf->skb = NULL;
2710 		}
2711 		buf->type = MVNETA_TYPE_SKB;
2712 		mvneta_txq_inc_put(txq);
2713 	}
2714 
2715 	return 0;
2716 
2717 error:
2718 	/* Release all descriptors that were used to map fragments of
2719 	 * this packet, as well as the corresponding DMA mappings
2720 	 */
2721 	for (i = i - 1; i >= 0; i--) {
2722 		tx_desc = txq->descs + i;
2723 		dma_unmap_single(pp->dev->dev.parent,
2724 				 tx_desc->buf_phys_addr,
2725 				 tx_desc->data_size,
2726 				 DMA_TO_DEVICE);
2727 		mvneta_txq_desc_put(txq);
2728 	}
2729 
2730 	return -ENOMEM;
2731 }
2732 
2733 /* Main tx processing */
2734 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2735 {
2736 	struct mvneta_port *pp = netdev_priv(dev);
2737 	u16 txq_id = skb_get_queue_mapping(skb);
2738 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2739 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2740 	struct mvneta_tx_desc *tx_desc;
2741 	int len = skb->len;
2742 	int frags = 0;
2743 	u32 tx_cmd;
2744 
2745 	if (!netif_running(dev))
2746 		goto out;
2747 
2748 	if (skb_is_gso(skb)) {
2749 		frags = mvneta_tx_tso(skb, dev, txq);
2750 		goto out;
2751 	}
2752 
2753 	frags = skb_shinfo(skb)->nr_frags + 1;
2754 
2755 	/* Get a descriptor for the first part of the packet */
2756 	tx_desc = mvneta_txq_next_desc_get(txq);
2757 
2758 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2759 
2760 	tx_desc->data_size = skb_headlen(skb);
2761 
2762 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2763 						tx_desc->data_size,
2764 						DMA_TO_DEVICE);
2765 	if (unlikely(dma_mapping_error(dev->dev.parent,
2766 				       tx_desc->buf_phys_addr))) {
2767 		mvneta_txq_desc_put(txq);
2768 		frags = 0;
2769 		goto out;
2770 	}
2771 
2772 	buf->type = MVNETA_TYPE_SKB;
2773 	if (frags == 1) {
2774 		/* First and Last descriptor */
2775 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2776 		tx_desc->command = tx_cmd;
2777 		buf->skb = skb;
2778 		mvneta_txq_inc_put(txq);
2779 	} else {
2780 		/* First but not Last */
2781 		tx_cmd |= MVNETA_TXD_F_DESC;
2782 		buf->skb = NULL;
2783 		mvneta_txq_inc_put(txq);
2784 		tx_desc->command = tx_cmd;
2785 		/* Continue with other skb fragments */
2786 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2787 			dma_unmap_single(dev->dev.parent,
2788 					 tx_desc->buf_phys_addr,
2789 					 tx_desc->data_size,
2790 					 DMA_TO_DEVICE);
2791 			mvneta_txq_desc_put(txq);
2792 			frags = 0;
2793 			goto out;
2794 		}
2795 	}
2796 
2797 out:
2798 	if (frags > 0) {
2799 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2800 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2801 
2802 		netdev_tx_sent_queue(nq, len);
2803 
2804 		txq->count += frags;
2805 		if (txq->count >= txq->tx_stop_threshold)
2806 			netif_tx_stop_queue(nq);
2807 
2808 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2809 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2810 			mvneta_txq_pend_desc_add(pp, txq, frags);
2811 		else
2812 			txq->pending += frags;
2813 
2814 		u64_stats_update_begin(&stats->syncp);
2815 		stats->es.ps.tx_bytes += len;
2816 		stats->es.ps.tx_packets++;
2817 		u64_stats_update_end(&stats->syncp);
2818 	} else {
2819 		dev->stats.tx_dropped++;
2820 		dev_kfree_skb_any(skb);
2821 	}
2822 
2823 	return NETDEV_TX_OK;
2824 }
2825 
2826 
2827 /* Free tx resources, when resetting a port */
2828 static void mvneta_txq_done_force(struct mvneta_port *pp,
2829 				  struct mvneta_tx_queue *txq)
2830 
2831 {
2832 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2833 	int tx_done = txq->count;
2834 
2835 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2836 
2837 	/* reset txq */
2838 	txq->count = 0;
2839 	txq->txq_put_index = 0;
2840 	txq->txq_get_index = 0;
2841 }
2842 
2843 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2844  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2845  */
2846 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2847 {
2848 	struct mvneta_tx_queue *txq;
2849 	struct netdev_queue *nq;
2850 	int cpu = smp_processor_id();
2851 
2852 	while (cause_tx_done) {
2853 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2854 
2855 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2856 		__netif_tx_lock(nq, cpu);
2857 
2858 		if (txq->count)
2859 			mvneta_txq_done(pp, txq);
2860 
2861 		__netif_tx_unlock(nq);
2862 		cause_tx_done &= ~((1 << txq->id));
2863 	}
2864 }
2865 
2866 /* Compute crc8 of the specified address, using a unique algorithm ,
2867  * according to hw spec, different than generic crc8 algorithm
2868  */
2869 static int mvneta_addr_crc(unsigned char *addr)
2870 {
2871 	int crc = 0;
2872 	int i;
2873 
2874 	for (i = 0; i < ETH_ALEN; i++) {
2875 		int j;
2876 
2877 		crc = (crc ^ addr[i]) << 8;
2878 		for (j = 7; j >= 0; j--) {
2879 			if (crc & (0x100 << j))
2880 				crc ^= 0x107 << j;
2881 		}
2882 	}
2883 
2884 	return crc;
2885 }
2886 
2887 /* This method controls the net device special MAC multicast support.
2888  * The Special Multicast Table for MAC addresses supports MAC of the form
2889  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2890  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2891  * Table entries in the DA-Filter table. This method set the Special
2892  * Multicast Table appropriate entry.
2893  */
2894 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2895 					  unsigned char last_byte,
2896 					  int queue)
2897 {
2898 	unsigned int smc_table_reg;
2899 	unsigned int tbl_offset;
2900 	unsigned int reg_offset;
2901 
2902 	/* Register offset from SMC table base    */
2903 	tbl_offset = (last_byte / 4);
2904 	/* Entry offset within the above reg */
2905 	reg_offset = last_byte % 4;
2906 
2907 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2908 					+ tbl_offset * 4));
2909 
2910 	if (queue == -1)
2911 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2912 	else {
2913 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2914 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2915 	}
2916 
2917 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2918 		    smc_table_reg);
2919 }
2920 
2921 /* This method controls the network device Other MAC multicast support.
2922  * The Other Multicast Table is used for multicast of another type.
2923  * A CRC-8 is used as an index to the Other Multicast Table entries
2924  * in the DA-Filter table.
2925  * The method gets the CRC-8 value from the calling routine and
2926  * sets the Other Multicast Table appropriate entry according to the
2927  * specified CRC-8 .
2928  */
2929 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2930 					unsigned char crc8,
2931 					int queue)
2932 {
2933 	unsigned int omc_table_reg;
2934 	unsigned int tbl_offset;
2935 	unsigned int reg_offset;
2936 
2937 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2938 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2939 
2940 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2941 
2942 	if (queue == -1) {
2943 		/* Clear accepts frame bit at specified Other DA table entry */
2944 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2945 	} else {
2946 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2947 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2948 	}
2949 
2950 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2951 }
2952 
2953 /* The network device supports multicast using two tables:
2954  *    1) Special Multicast Table for MAC addresses of the form
2955  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2956  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2957  *       Table entries in the DA-Filter table.
2958  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2959  *       is used as an index to the Other Multicast Table entries in the
2960  *       DA-Filter table.
2961  */
2962 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2963 				 int queue)
2964 {
2965 	unsigned char crc_result = 0;
2966 
2967 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2968 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2969 		return 0;
2970 	}
2971 
2972 	crc_result = mvneta_addr_crc(p_addr);
2973 	if (queue == -1) {
2974 		if (pp->mcast_count[crc_result] == 0) {
2975 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2976 				    crc_result);
2977 			return -EINVAL;
2978 		}
2979 
2980 		pp->mcast_count[crc_result]--;
2981 		if (pp->mcast_count[crc_result] != 0) {
2982 			netdev_info(pp->dev,
2983 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2984 				    pp->mcast_count[crc_result], crc_result);
2985 			return -EINVAL;
2986 		}
2987 	} else
2988 		pp->mcast_count[crc_result]++;
2989 
2990 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2991 
2992 	return 0;
2993 }
2994 
2995 /* Configure Fitering mode of Ethernet port */
2996 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2997 					  int is_promisc)
2998 {
2999 	u32 port_cfg_reg, val;
3000 
3001 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3002 
3003 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3004 
3005 	/* Set / Clear UPM bit in port configuration register */
3006 	if (is_promisc) {
3007 		/* Accept all Unicast addresses */
3008 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3009 		val |= MVNETA_FORCE_UNI;
3010 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3011 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3012 	} else {
3013 		/* Reject all Unicast addresses */
3014 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3015 		val &= ~MVNETA_FORCE_UNI;
3016 	}
3017 
3018 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3019 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3020 }
3021 
3022 /* register unicast and multicast addresses */
3023 static void mvneta_set_rx_mode(struct net_device *dev)
3024 {
3025 	struct mvneta_port *pp = netdev_priv(dev);
3026 	struct netdev_hw_addr *ha;
3027 
3028 	if (dev->flags & IFF_PROMISC) {
3029 		/* Accept all: Multicast + Unicast */
3030 		mvneta_rx_unicast_promisc_set(pp, 1);
3031 		mvneta_set_ucast_table(pp, pp->rxq_def);
3032 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3033 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3034 	} else {
3035 		/* Accept single Unicast */
3036 		mvneta_rx_unicast_promisc_set(pp, 0);
3037 		mvneta_set_ucast_table(pp, -1);
3038 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3039 
3040 		if (dev->flags & IFF_ALLMULTI) {
3041 			/* Accept all multicast */
3042 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3043 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3044 		} else {
3045 			/* Accept only initialized multicast */
3046 			mvneta_set_special_mcast_table(pp, -1);
3047 			mvneta_set_other_mcast_table(pp, -1);
3048 
3049 			if (!netdev_mc_empty(dev)) {
3050 				netdev_for_each_mc_addr(ha, dev) {
3051 					mvneta_mcast_addr_set(pp, ha->addr,
3052 							      pp->rxq_def);
3053 				}
3054 			}
3055 		}
3056 	}
3057 }
3058 
3059 /* Interrupt handling - the callback for request_irq() */
3060 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3061 {
3062 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3063 
3064 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3065 	napi_schedule(&pp->napi);
3066 
3067 	return IRQ_HANDLED;
3068 }
3069 
3070 /* Interrupt handling - the callback for request_percpu_irq() */
3071 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3072 {
3073 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3074 
3075 	disable_percpu_irq(port->pp->dev->irq);
3076 	napi_schedule(&port->napi);
3077 
3078 	return IRQ_HANDLED;
3079 }
3080 
3081 static void mvneta_link_change(struct mvneta_port *pp)
3082 {
3083 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3084 
3085 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3086 }
3087 
3088 /* NAPI handler
3089  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3090  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3091  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3092  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3093  * Each CPU has its own causeRxTx register
3094  */
3095 static int mvneta_poll(struct napi_struct *napi, int budget)
3096 {
3097 	int rx_done = 0;
3098 	u32 cause_rx_tx;
3099 	int rx_queue;
3100 	struct mvneta_port *pp = netdev_priv(napi->dev);
3101 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3102 
3103 	if (!netif_running(pp->dev)) {
3104 		napi_complete(napi);
3105 		return rx_done;
3106 	}
3107 
3108 	/* Read cause register */
3109 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3110 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3111 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3112 
3113 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3114 
3115 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3116 				  MVNETA_CAUSE_LINK_CHANGE))
3117 			mvneta_link_change(pp);
3118 	}
3119 
3120 	/* Release Tx descriptors */
3121 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3122 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3123 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3124 	}
3125 
3126 	/* For the case where the last mvneta_poll did not process all
3127 	 * RX packets
3128 	 */
3129 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3130 		port->cause_rx_tx;
3131 
3132 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3133 	if (rx_queue) {
3134 		rx_queue = rx_queue - 1;
3135 		if (pp->bm_priv)
3136 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3137 						 &pp->rxqs[rx_queue]);
3138 		else
3139 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3140 						 &pp->rxqs[rx_queue]);
3141 	}
3142 
3143 	if (rx_done < budget) {
3144 		cause_rx_tx = 0;
3145 		napi_complete_done(napi, rx_done);
3146 
3147 		if (pp->neta_armada3700) {
3148 			unsigned long flags;
3149 
3150 			local_irq_save(flags);
3151 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3152 				    MVNETA_RX_INTR_MASK(rxq_number) |
3153 				    MVNETA_TX_INTR_MASK(txq_number) |
3154 				    MVNETA_MISCINTR_INTR_MASK);
3155 			local_irq_restore(flags);
3156 		} else {
3157 			enable_percpu_irq(pp->dev->irq, 0);
3158 		}
3159 	}
3160 
3161 	if (pp->neta_armada3700)
3162 		pp->cause_rx_tx = cause_rx_tx;
3163 	else
3164 		port->cause_rx_tx = cause_rx_tx;
3165 
3166 	return rx_done;
3167 }
3168 
3169 static int mvneta_create_page_pool(struct mvneta_port *pp,
3170 				   struct mvneta_rx_queue *rxq, int size)
3171 {
3172 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3173 	struct page_pool_params pp_params = {
3174 		.order = 0,
3175 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3176 		.pool_size = size,
3177 		.nid = NUMA_NO_NODE,
3178 		.dev = pp->dev->dev.parent,
3179 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3180 		.offset = pp->rx_offset_correction,
3181 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3182 	};
3183 	int err;
3184 
3185 	rxq->page_pool = page_pool_create(&pp_params);
3186 	if (IS_ERR(rxq->page_pool)) {
3187 		err = PTR_ERR(rxq->page_pool);
3188 		rxq->page_pool = NULL;
3189 		return err;
3190 	}
3191 
3192 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3193 	if (err < 0)
3194 		goto err_free_pp;
3195 
3196 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3197 					 rxq->page_pool);
3198 	if (err)
3199 		goto err_unregister_rxq;
3200 
3201 	return 0;
3202 
3203 err_unregister_rxq:
3204 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3205 err_free_pp:
3206 	page_pool_destroy(rxq->page_pool);
3207 	rxq->page_pool = NULL;
3208 	return err;
3209 }
3210 
3211 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3212 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3213 			   int num)
3214 {
3215 	int i, err;
3216 
3217 	err = mvneta_create_page_pool(pp, rxq, num);
3218 	if (err < 0)
3219 		return err;
3220 
3221 	for (i = 0; i < num; i++) {
3222 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3223 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3224 				     GFP_KERNEL) != 0) {
3225 			netdev_err(pp->dev,
3226 				   "%s:rxq %d, %d of %d buffs  filled\n",
3227 				   __func__, rxq->id, i, num);
3228 			break;
3229 		}
3230 	}
3231 
3232 	/* Add this number of RX descriptors as non occupied (ready to
3233 	 * get packets)
3234 	 */
3235 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3236 
3237 	return i;
3238 }
3239 
3240 /* Free all packets pending transmit from all TXQs and reset TX port */
3241 static void mvneta_tx_reset(struct mvneta_port *pp)
3242 {
3243 	int queue;
3244 
3245 	/* free the skb's in the tx ring */
3246 	for (queue = 0; queue < txq_number; queue++)
3247 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3248 
3249 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3250 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3251 }
3252 
3253 static void mvneta_rx_reset(struct mvneta_port *pp)
3254 {
3255 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3256 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3257 }
3258 
3259 /* Rx/Tx queue initialization/cleanup methods */
3260 
3261 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3262 			      struct mvneta_rx_queue *rxq)
3263 {
3264 	rxq->size = pp->rx_ring_size;
3265 
3266 	/* Allocate memory for RX descriptors */
3267 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3268 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3269 					&rxq->descs_phys, GFP_KERNEL);
3270 	if (!rxq->descs)
3271 		return -ENOMEM;
3272 
3273 	rxq->last_desc = rxq->size - 1;
3274 
3275 	return 0;
3276 }
3277 
3278 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3279 			       struct mvneta_rx_queue *rxq)
3280 {
3281 	/* Set Rx descriptors queue starting address */
3282 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3283 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3284 
3285 	/* Set coalescing pkts and time */
3286 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3287 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3288 
3289 	if (!pp->bm_priv) {
3290 		/* Set Offset */
3291 		mvneta_rxq_offset_set(pp, rxq, 0);
3292 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3293 					MVNETA_MAX_RX_BUF_SIZE :
3294 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3295 		mvneta_rxq_bm_disable(pp, rxq);
3296 		mvneta_rxq_fill(pp, rxq, rxq->size);
3297 	} else {
3298 		/* Set Offset */
3299 		mvneta_rxq_offset_set(pp, rxq,
3300 				      NET_SKB_PAD - pp->rx_offset_correction);
3301 
3302 		mvneta_rxq_bm_enable(pp, rxq);
3303 		/* Fill RXQ with buffers from RX pool */
3304 		mvneta_rxq_long_pool_set(pp, rxq);
3305 		mvneta_rxq_short_pool_set(pp, rxq);
3306 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3307 	}
3308 }
3309 
3310 /* Create a specified RX queue */
3311 static int mvneta_rxq_init(struct mvneta_port *pp,
3312 			   struct mvneta_rx_queue *rxq)
3313 
3314 {
3315 	int ret;
3316 
3317 	ret = mvneta_rxq_sw_init(pp, rxq);
3318 	if (ret < 0)
3319 		return ret;
3320 
3321 	mvneta_rxq_hw_init(pp, rxq);
3322 
3323 	return 0;
3324 }
3325 
3326 /* Cleanup Rx queue */
3327 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3328 			      struct mvneta_rx_queue *rxq)
3329 {
3330 	mvneta_rxq_drop_pkts(pp, rxq);
3331 
3332 	if (rxq->skb)
3333 		dev_kfree_skb_any(rxq->skb);
3334 
3335 	if (rxq->descs)
3336 		dma_free_coherent(pp->dev->dev.parent,
3337 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3338 				  rxq->descs,
3339 				  rxq->descs_phys);
3340 
3341 	rxq->descs             = NULL;
3342 	rxq->last_desc         = 0;
3343 	rxq->next_desc_to_proc = 0;
3344 	rxq->descs_phys        = 0;
3345 	rxq->first_to_refill   = 0;
3346 	rxq->refill_num        = 0;
3347 	rxq->skb               = NULL;
3348 	rxq->left_size         = 0;
3349 }
3350 
3351 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3352 			      struct mvneta_tx_queue *txq)
3353 {
3354 	int cpu;
3355 
3356 	txq->size = pp->tx_ring_size;
3357 
3358 	/* A queue must always have room for at least one skb.
3359 	 * Therefore, stop the queue when the free entries reaches
3360 	 * the maximum number of descriptors per skb.
3361 	 */
3362 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3363 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3364 
3365 	/* Allocate memory for TX descriptors */
3366 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3367 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3368 					&txq->descs_phys, GFP_KERNEL);
3369 	if (!txq->descs)
3370 		return -ENOMEM;
3371 
3372 	txq->last_desc = txq->size - 1;
3373 
3374 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3375 	if (!txq->buf) {
3376 		dma_free_coherent(pp->dev->dev.parent,
3377 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3378 				  txq->descs, txq->descs_phys);
3379 		return -ENOMEM;
3380 	}
3381 
3382 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3383 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3384 					   txq->size * TSO_HEADER_SIZE,
3385 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3386 	if (!txq->tso_hdrs) {
3387 		kfree(txq->buf);
3388 		dma_free_coherent(pp->dev->dev.parent,
3389 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3390 				  txq->descs, txq->descs_phys);
3391 		return -ENOMEM;
3392 	}
3393 
3394 	/* Setup XPS mapping */
3395 	if (txq_number > 1)
3396 		cpu = txq->id % num_present_cpus();
3397 	else
3398 		cpu = pp->rxq_def % num_present_cpus();
3399 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3400 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3401 
3402 	return 0;
3403 }
3404 
3405 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3406 			       struct mvneta_tx_queue *txq)
3407 {
3408 	/* Set maximum bandwidth for enabled TXQs */
3409 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3410 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3411 
3412 	/* Set Tx descriptors queue starting address */
3413 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3414 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3415 
3416 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3417 }
3418 
3419 /* Create and initialize a tx queue */
3420 static int mvneta_txq_init(struct mvneta_port *pp,
3421 			   struct mvneta_tx_queue *txq)
3422 {
3423 	int ret;
3424 
3425 	ret = mvneta_txq_sw_init(pp, txq);
3426 	if (ret < 0)
3427 		return ret;
3428 
3429 	mvneta_txq_hw_init(pp, txq);
3430 
3431 	return 0;
3432 }
3433 
3434 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3435 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3436 				 struct mvneta_tx_queue *txq)
3437 {
3438 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3439 
3440 	kfree(txq->buf);
3441 
3442 	if (txq->tso_hdrs)
3443 		dma_free_coherent(pp->dev->dev.parent,
3444 				  txq->size * TSO_HEADER_SIZE,
3445 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3446 	if (txq->descs)
3447 		dma_free_coherent(pp->dev->dev.parent,
3448 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3449 				  txq->descs, txq->descs_phys);
3450 
3451 	netdev_tx_reset_queue(nq);
3452 
3453 	txq->descs             = NULL;
3454 	txq->last_desc         = 0;
3455 	txq->next_desc_to_proc = 0;
3456 	txq->descs_phys        = 0;
3457 }
3458 
3459 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3460 				 struct mvneta_tx_queue *txq)
3461 {
3462 	/* Set minimum bandwidth for disabled TXQs */
3463 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3464 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3465 
3466 	/* Set Tx descriptors queue starting address and size */
3467 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3468 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3469 }
3470 
3471 static void mvneta_txq_deinit(struct mvneta_port *pp,
3472 			      struct mvneta_tx_queue *txq)
3473 {
3474 	mvneta_txq_sw_deinit(pp, txq);
3475 	mvneta_txq_hw_deinit(pp, txq);
3476 }
3477 
3478 /* Cleanup all Tx queues */
3479 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3480 {
3481 	int queue;
3482 
3483 	for (queue = 0; queue < txq_number; queue++)
3484 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3485 }
3486 
3487 /* Cleanup all Rx queues */
3488 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3489 {
3490 	int queue;
3491 
3492 	for (queue = 0; queue < rxq_number; queue++)
3493 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3494 }
3495 
3496 
3497 /* Init all Rx queues */
3498 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3499 {
3500 	int queue;
3501 
3502 	for (queue = 0; queue < rxq_number; queue++) {
3503 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3504 
3505 		if (err) {
3506 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3507 				   __func__, queue);
3508 			mvneta_cleanup_rxqs(pp);
3509 			return err;
3510 		}
3511 	}
3512 
3513 	return 0;
3514 }
3515 
3516 /* Init all tx queues */
3517 static int mvneta_setup_txqs(struct mvneta_port *pp)
3518 {
3519 	int queue;
3520 
3521 	for (queue = 0; queue < txq_number; queue++) {
3522 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3523 		if (err) {
3524 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3525 				   __func__, queue);
3526 			mvneta_cleanup_txqs(pp);
3527 			return err;
3528 		}
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3535 {
3536 	int ret;
3537 
3538 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3539 	if (ret)
3540 		return ret;
3541 
3542 	return phy_power_on(pp->comphy);
3543 }
3544 
3545 static int mvneta_config_interface(struct mvneta_port *pp,
3546 				   phy_interface_t interface)
3547 {
3548 	int ret = 0;
3549 
3550 	if (pp->comphy) {
3551 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3552 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3553 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3554 			ret = mvneta_comphy_init(pp, interface);
3555 		}
3556 	} else {
3557 		switch (interface) {
3558 		case PHY_INTERFACE_MODE_QSGMII:
3559 			mvreg_write(pp, MVNETA_SERDES_CFG,
3560 				    MVNETA_QSGMII_SERDES_PROTO);
3561 			break;
3562 
3563 		case PHY_INTERFACE_MODE_SGMII:
3564 		case PHY_INTERFACE_MODE_1000BASEX:
3565 			mvreg_write(pp, MVNETA_SERDES_CFG,
3566 				    MVNETA_SGMII_SERDES_PROTO);
3567 			break;
3568 
3569 		case PHY_INTERFACE_MODE_2500BASEX:
3570 			mvreg_write(pp, MVNETA_SERDES_CFG,
3571 				    MVNETA_HSGMII_SERDES_PROTO);
3572 			break;
3573 		default:
3574 			break;
3575 		}
3576 	}
3577 
3578 	pp->phy_interface = interface;
3579 
3580 	return ret;
3581 }
3582 
3583 static void mvneta_start_dev(struct mvneta_port *pp)
3584 {
3585 	int cpu;
3586 
3587 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3588 
3589 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3590 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3591 
3592 	/* start the Rx/Tx activity */
3593 	mvneta_port_enable(pp);
3594 
3595 	if (!pp->neta_armada3700) {
3596 		/* Enable polling on the port */
3597 		for_each_online_cpu(cpu) {
3598 			struct mvneta_pcpu_port *port =
3599 				per_cpu_ptr(pp->ports, cpu);
3600 
3601 			napi_enable(&port->napi);
3602 		}
3603 	} else {
3604 		napi_enable(&pp->napi);
3605 	}
3606 
3607 	/* Unmask interrupts. It has to be done from each CPU */
3608 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3609 
3610 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3611 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3612 		    MVNETA_CAUSE_LINK_CHANGE);
3613 
3614 	phylink_start(pp->phylink);
3615 	netif_tx_start_all_queues(pp->dev);
3616 
3617 	clear_bit(__MVNETA_DOWN, &pp->state);
3618 }
3619 
3620 static void mvneta_stop_dev(struct mvneta_port *pp)
3621 {
3622 	unsigned int cpu;
3623 
3624 	set_bit(__MVNETA_DOWN, &pp->state);
3625 
3626 	phylink_stop(pp->phylink);
3627 
3628 	if (!pp->neta_armada3700) {
3629 		for_each_online_cpu(cpu) {
3630 			struct mvneta_pcpu_port *port =
3631 				per_cpu_ptr(pp->ports, cpu);
3632 
3633 			napi_disable(&port->napi);
3634 		}
3635 	} else {
3636 		napi_disable(&pp->napi);
3637 	}
3638 
3639 	netif_carrier_off(pp->dev);
3640 
3641 	mvneta_port_down(pp);
3642 	netif_tx_stop_all_queues(pp->dev);
3643 
3644 	/* Stop the port activity */
3645 	mvneta_port_disable(pp);
3646 
3647 	/* Clear all ethernet port interrupts */
3648 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3649 
3650 	/* Mask all ethernet port interrupts */
3651 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3652 
3653 	mvneta_tx_reset(pp);
3654 	mvneta_rx_reset(pp);
3655 
3656 	WARN_ON(phy_power_off(pp->comphy));
3657 }
3658 
3659 static void mvneta_percpu_enable(void *arg)
3660 {
3661 	struct mvneta_port *pp = arg;
3662 
3663 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3664 }
3665 
3666 static void mvneta_percpu_disable(void *arg)
3667 {
3668 	struct mvneta_port *pp = arg;
3669 
3670 	disable_percpu_irq(pp->dev->irq);
3671 }
3672 
3673 /* Change the device mtu */
3674 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3675 {
3676 	struct mvneta_port *pp = netdev_priv(dev);
3677 	int ret;
3678 
3679 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3680 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3681 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3682 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3683 	}
3684 
3685 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3686 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3687 		return -EINVAL;
3688 	}
3689 
3690 	dev->mtu = mtu;
3691 
3692 	if (!netif_running(dev)) {
3693 		if (pp->bm_priv)
3694 			mvneta_bm_update_mtu(pp, mtu);
3695 
3696 		netdev_update_features(dev);
3697 		return 0;
3698 	}
3699 
3700 	/* The interface is running, so we have to force a
3701 	 * reallocation of the queues
3702 	 */
3703 	mvneta_stop_dev(pp);
3704 	on_each_cpu(mvneta_percpu_disable, pp, true);
3705 
3706 	mvneta_cleanup_txqs(pp);
3707 	mvneta_cleanup_rxqs(pp);
3708 
3709 	if (pp->bm_priv)
3710 		mvneta_bm_update_mtu(pp, mtu);
3711 
3712 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3713 
3714 	ret = mvneta_setup_rxqs(pp);
3715 	if (ret) {
3716 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3717 		return ret;
3718 	}
3719 
3720 	ret = mvneta_setup_txqs(pp);
3721 	if (ret) {
3722 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3723 		return ret;
3724 	}
3725 
3726 	on_each_cpu(mvneta_percpu_enable, pp, true);
3727 	mvneta_start_dev(pp);
3728 
3729 	netdev_update_features(dev);
3730 
3731 	return 0;
3732 }
3733 
3734 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3735 					     netdev_features_t features)
3736 {
3737 	struct mvneta_port *pp = netdev_priv(dev);
3738 
3739 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3740 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3741 		netdev_info(dev,
3742 			    "Disable IP checksum for MTU greater than %dB\n",
3743 			    pp->tx_csum_limit);
3744 	}
3745 
3746 	return features;
3747 }
3748 
3749 /* Get mac address */
3750 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3751 {
3752 	u32 mac_addr_l, mac_addr_h;
3753 
3754 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3755 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3756 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3757 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3758 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3759 	addr[3] = mac_addr_h & 0xFF;
3760 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3761 	addr[5] = mac_addr_l & 0xFF;
3762 }
3763 
3764 /* Handle setting mac address */
3765 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3766 {
3767 	struct mvneta_port *pp = netdev_priv(dev);
3768 	struct sockaddr *sockaddr = addr;
3769 	int ret;
3770 
3771 	ret = eth_prepare_mac_addr_change(dev, addr);
3772 	if (ret < 0)
3773 		return ret;
3774 	/* Remove previous address table entry */
3775 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3776 
3777 	/* Set new addr in hw */
3778 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3779 
3780 	eth_commit_mac_addr_change(dev, addr);
3781 	return 0;
3782 }
3783 
3784 static void mvneta_validate(struct phylink_config *config,
3785 			    unsigned long *supported,
3786 			    struct phylink_link_state *state)
3787 {
3788 	struct net_device *ndev = to_net_dev(config->dev);
3789 	struct mvneta_port *pp = netdev_priv(ndev);
3790 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3791 
3792 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3793 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3794 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3795 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3796 	    !phy_interface_mode_is_8023z(state->interface) &&
3797 	    !phy_interface_mode_is_rgmii(state->interface)) {
3798 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3799 		return;
3800 	}
3801 
3802 	/* Allow all the expected bits */
3803 	phylink_set(mask, Autoneg);
3804 	phylink_set_port_modes(mask);
3805 
3806 	/* Asymmetric pause is unsupported */
3807 	phylink_set(mask, Pause);
3808 
3809 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3810 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3811 		phylink_set(mask, 1000baseT_Full);
3812 		phylink_set(mask, 1000baseX_Full);
3813 	}
3814 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3815 		phylink_set(mask, 2500baseT_Full);
3816 		phylink_set(mask, 2500baseX_Full);
3817 	}
3818 
3819 	if (!phy_interface_mode_is_8023z(state->interface)) {
3820 		/* 10M and 100M are only supported in non-802.3z mode */
3821 		phylink_set(mask, 10baseT_Half);
3822 		phylink_set(mask, 10baseT_Full);
3823 		phylink_set(mask, 100baseT_Half);
3824 		phylink_set(mask, 100baseT_Full);
3825 	}
3826 
3827 	bitmap_and(supported, supported, mask,
3828 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3829 	bitmap_and(state->advertising, state->advertising, mask,
3830 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3831 
3832 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3833 	 * to advertise both, only report advertising at 2500BaseX.
3834 	 */
3835 	phylink_helper_basex_speed(state);
3836 }
3837 
3838 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3839 				     struct phylink_link_state *state)
3840 {
3841 	struct net_device *ndev = to_net_dev(config->dev);
3842 	struct mvneta_port *pp = netdev_priv(ndev);
3843 	u32 gmac_stat;
3844 
3845 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3846 
3847 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3848 		state->speed =
3849 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3850 			SPEED_2500 : SPEED_1000;
3851 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3852 		state->speed = SPEED_100;
3853 	else
3854 		state->speed = SPEED_10;
3855 
3856 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3857 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3858 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3859 
3860 	state->pause = 0;
3861 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3862 		state->pause |= MLO_PAUSE_RX;
3863 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3864 		state->pause |= MLO_PAUSE_TX;
3865 }
3866 
3867 static void mvneta_mac_an_restart(struct phylink_config *config)
3868 {
3869 	struct net_device *ndev = to_net_dev(config->dev);
3870 	struct mvneta_port *pp = netdev_priv(ndev);
3871 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3872 
3873 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3874 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3875 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3876 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3877 }
3878 
3879 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3880 			      const struct phylink_link_state *state)
3881 {
3882 	struct net_device *ndev = to_net_dev(config->dev);
3883 	struct mvneta_port *pp = netdev_priv(ndev);
3884 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3885 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3886 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3887 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3888 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3889 
3890 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3891 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3892 				   MVNETA_GMAC2_PORT_RESET);
3893 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3894 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3895 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3896 			     MVNETA_GMAC_INBAND_RESTART_AN |
3897 			     MVNETA_GMAC_AN_SPEED_EN |
3898 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3899 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3900 			     MVNETA_GMAC_AN_DUPLEX_EN);
3901 
3902 	/* Even though it might look weird, when we're configured in
3903 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3904 	 */
3905 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3906 
3907 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3908 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3909 	    phy_interface_mode_is_8023z(state->interface))
3910 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3911 
3912 	if (phylink_test(state->advertising, Pause))
3913 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3914 
3915 	if (!phylink_autoneg_inband(mode)) {
3916 		/* Phy or fixed speed - nothing to do, leave the
3917 		 * configured speed, duplex and flow control as-is.
3918 		 */
3919 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3920 		/* SGMII mode receives the state from the PHY */
3921 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3922 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3923 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3924 				     MVNETA_GMAC_FORCE_LINK_PASS |
3925 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3926 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3927 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3928 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3929 			 MVNETA_GMAC_AN_SPEED_EN |
3930 			 MVNETA_GMAC_AN_DUPLEX_EN;
3931 	} else {
3932 		/* 802.3z negotiation - only 1000base-X */
3933 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3934 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3935 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3936 				     MVNETA_GMAC_FORCE_LINK_PASS |
3937 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3938 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3939 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3940 			 /* The MAC only supports FD mode */
3941 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3942 
3943 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3944 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3945 	}
3946 
3947 	/* Armada 370 documentation says we can only change the port mode
3948 	 * and in-band enable when the link is down, so force it down
3949 	 * while making these changes. We also do this for GMAC_CTRL2 */
3950 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3951 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3952 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3953 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3954 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3955 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3956 	}
3957 
3958 
3959 	/* When at 2.5G, the link partner can send frames with shortened
3960 	 * preambles.
3961 	 */
3962 	if (state->speed == SPEED_2500)
3963 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3964 
3965 	if (pp->phy_interface != state->interface) {
3966 		if (pp->comphy)
3967 			WARN_ON(phy_power_off(pp->comphy));
3968 		WARN_ON(mvneta_config_interface(pp, state->interface));
3969 	}
3970 
3971 	if (new_ctrl0 != gmac_ctrl0)
3972 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3973 	if (new_ctrl2 != gmac_ctrl2)
3974 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3975 	if (new_ctrl4 != gmac_ctrl4)
3976 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3977 	if (new_clk != gmac_clk)
3978 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3979 	if (new_an != gmac_an)
3980 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3981 
3982 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3983 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3984 			MVNETA_GMAC2_PORT_RESET) != 0)
3985 			continue;
3986 	}
3987 }
3988 
3989 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3990 {
3991 	u32 lpi_ctl1;
3992 
3993 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3994 	if (enable)
3995 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3996 	else
3997 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3998 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3999 }
4000 
4001 static void mvneta_mac_link_down(struct phylink_config *config,
4002 				 unsigned int mode, phy_interface_t interface)
4003 {
4004 	struct net_device *ndev = to_net_dev(config->dev);
4005 	struct mvneta_port *pp = netdev_priv(ndev);
4006 	u32 val;
4007 
4008 	mvneta_port_down(pp);
4009 
4010 	if (!phylink_autoneg_inband(mode)) {
4011 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4012 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4013 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4014 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4015 	}
4016 
4017 	pp->eee_active = false;
4018 	mvneta_set_eee(pp, false);
4019 }
4020 
4021 static void mvneta_mac_link_up(struct phylink_config *config,
4022 			       struct phy_device *phy,
4023 			       unsigned int mode, phy_interface_t interface,
4024 			       int speed, int duplex,
4025 			       bool tx_pause, bool rx_pause)
4026 {
4027 	struct net_device *ndev = to_net_dev(config->dev);
4028 	struct mvneta_port *pp = netdev_priv(ndev);
4029 	u32 val;
4030 
4031 	if (!phylink_autoneg_inband(mode)) {
4032 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4033 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4034 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4035 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4036 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4037 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4038 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4039 
4040 		if (speed == SPEED_1000 || speed == SPEED_2500)
4041 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4042 		else if (speed == SPEED_100)
4043 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4044 
4045 		if (duplex == DUPLEX_FULL)
4046 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4047 
4048 		if (tx_pause || rx_pause)
4049 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4050 
4051 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4052 	} else {
4053 		/* When inband doesn't cover flow control or flow control is
4054 		 * disabled, we need to manually configure it. This bit will
4055 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4056 		 */
4057 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4058 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4059 
4060 		if (tx_pause || rx_pause)
4061 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4062 
4063 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4064 	}
4065 
4066 	mvneta_port_up(pp);
4067 
4068 	if (phy && pp->eee_enabled) {
4069 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4070 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4071 	}
4072 }
4073 
4074 static const struct phylink_mac_ops mvneta_phylink_ops = {
4075 	.validate = mvneta_validate,
4076 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4077 	.mac_an_restart = mvneta_mac_an_restart,
4078 	.mac_config = mvneta_mac_config,
4079 	.mac_link_down = mvneta_mac_link_down,
4080 	.mac_link_up = mvneta_mac_link_up,
4081 };
4082 
4083 static int mvneta_mdio_probe(struct mvneta_port *pp)
4084 {
4085 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4086 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4087 
4088 	if (err)
4089 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4090 
4091 	phylink_ethtool_get_wol(pp->phylink, &wol);
4092 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4093 
4094 	return err;
4095 }
4096 
4097 static void mvneta_mdio_remove(struct mvneta_port *pp)
4098 {
4099 	phylink_disconnect_phy(pp->phylink);
4100 }
4101 
4102 /* Electing a CPU must be done in an atomic way: it should be done
4103  * after or before the removal/insertion of a CPU and this function is
4104  * not reentrant.
4105  */
4106 static void mvneta_percpu_elect(struct mvneta_port *pp)
4107 {
4108 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4109 
4110 	/* Use the cpu associated to the rxq when it is online, in all
4111 	 * the other cases, use the cpu 0 which can't be offline.
4112 	 */
4113 	if (cpu_online(pp->rxq_def))
4114 		elected_cpu = pp->rxq_def;
4115 
4116 	max_cpu = num_present_cpus();
4117 
4118 	for_each_online_cpu(cpu) {
4119 		int rxq_map = 0, txq_map = 0;
4120 		int rxq;
4121 
4122 		for (rxq = 0; rxq < rxq_number; rxq++)
4123 			if ((rxq % max_cpu) == cpu)
4124 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4125 
4126 		if (cpu == elected_cpu)
4127 			/* Map the default receive queue queue to the
4128 			 * elected CPU
4129 			 */
4130 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4131 
4132 		/* We update the TX queue map only if we have one
4133 		 * queue. In this case we associate the TX queue to
4134 		 * the CPU bound to the default RX queue
4135 		 */
4136 		if (txq_number == 1)
4137 			txq_map = (cpu == elected_cpu) ?
4138 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4139 		else
4140 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4141 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4142 
4143 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4144 
4145 		/* Update the interrupt mask on each CPU according the
4146 		 * new mapping
4147 		 */
4148 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4149 					 pp, true);
4150 		i++;
4151 
4152 	}
4153 };
4154 
4155 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4156 {
4157 	int other_cpu;
4158 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4159 						  node_online);
4160 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4161 
4162 
4163 	spin_lock(&pp->lock);
4164 	/*
4165 	 * Configuring the driver for a new CPU while the driver is
4166 	 * stopping is racy, so just avoid it.
4167 	 */
4168 	if (pp->is_stopped) {
4169 		spin_unlock(&pp->lock);
4170 		return 0;
4171 	}
4172 	netif_tx_stop_all_queues(pp->dev);
4173 
4174 	/*
4175 	 * We have to synchronise on tha napi of each CPU except the one
4176 	 * just being woken up
4177 	 */
4178 	for_each_online_cpu(other_cpu) {
4179 		if (other_cpu != cpu) {
4180 			struct mvneta_pcpu_port *other_port =
4181 				per_cpu_ptr(pp->ports, other_cpu);
4182 
4183 			napi_synchronize(&other_port->napi);
4184 		}
4185 	}
4186 
4187 	/* Mask all ethernet port interrupts */
4188 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4189 	napi_enable(&port->napi);
4190 
4191 	/*
4192 	 * Enable per-CPU interrupts on the CPU that is
4193 	 * brought up.
4194 	 */
4195 	mvneta_percpu_enable(pp);
4196 
4197 	/*
4198 	 * Enable per-CPU interrupt on the one CPU we care
4199 	 * about.
4200 	 */
4201 	mvneta_percpu_elect(pp);
4202 
4203 	/* Unmask all ethernet port interrupts */
4204 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4205 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4206 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4207 		    MVNETA_CAUSE_LINK_CHANGE);
4208 	netif_tx_start_all_queues(pp->dev);
4209 	spin_unlock(&pp->lock);
4210 	return 0;
4211 }
4212 
4213 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4214 {
4215 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4216 						  node_online);
4217 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4218 
4219 	/*
4220 	 * Thanks to this lock we are sure that any pending cpu election is
4221 	 * done.
4222 	 */
4223 	spin_lock(&pp->lock);
4224 	/* Mask all ethernet port interrupts */
4225 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4226 	spin_unlock(&pp->lock);
4227 
4228 	napi_synchronize(&port->napi);
4229 	napi_disable(&port->napi);
4230 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4231 	mvneta_percpu_disable(pp);
4232 	return 0;
4233 }
4234 
4235 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4236 {
4237 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4238 						  node_dead);
4239 
4240 	/* Check if a new CPU must be elected now this on is down */
4241 	spin_lock(&pp->lock);
4242 	mvneta_percpu_elect(pp);
4243 	spin_unlock(&pp->lock);
4244 	/* Unmask all ethernet port interrupts */
4245 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4246 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4247 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4248 		    MVNETA_CAUSE_LINK_CHANGE);
4249 	netif_tx_start_all_queues(pp->dev);
4250 	return 0;
4251 }
4252 
4253 static int mvneta_open(struct net_device *dev)
4254 {
4255 	struct mvneta_port *pp = netdev_priv(dev);
4256 	int ret;
4257 
4258 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4259 
4260 	ret = mvneta_setup_rxqs(pp);
4261 	if (ret)
4262 		return ret;
4263 
4264 	ret = mvneta_setup_txqs(pp);
4265 	if (ret)
4266 		goto err_cleanup_rxqs;
4267 
4268 	/* Connect to port interrupt line */
4269 	if (pp->neta_armada3700)
4270 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4271 				  dev->name, pp);
4272 	else
4273 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4274 					 dev->name, pp->ports);
4275 	if (ret) {
4276 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4277 		goto err_cleanup_txqs;
4278 	}
4279 
4280 	if (!pp->neta_armada3700) {
4281 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4282 		 * queue interrupts
4283 		 */
4284 		on_each_cpu(mvneta_percpu_enable, pp, true);
4285 
4286 		pp->is_stopped = false;
4287 		/* Register a CPU notifier to handle the case where our CPU
4288 		 * might be taken offline.
4289 		 */
4290 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4291 						       &pp->node_online);
4292 		if (ret)
4293 			goto err_free_irq;
4294 
4295 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4296 						       &pp->node_dead);
4297 		if (ret)
4298 			goto err_free_online_hp;
4299 	}
4300 
4301 	ret = mvneta_mdio_probe(pp);
4302 	if (ret < 0) {
4303 		netdev_err(dev, "cannot probe MDIO bus\n");
4304 		goto err_free_dead_hp;
4305 	}
4306 
4307 	mvneta_start_dev(pp);
4308 
4309 	return 0;
4310 
4311 err_free_dead_hp:
4312 	if (!pp->neta_armada3700)
4313 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4314 						    &pp->node_dead);
4315 err_free_online_hp:
4316 	if (!pp->neta_armada3700)
4317 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4318 						    &pp->node_online);
4319 err_free_irq:
4320 	if (pp->neta_armada3700) {
4321 		free_irq(pp->dev->irq, pp);
4322 	} else {
4323 		on_each_cpu(mvneta_percpu_disable, pp, true);
4324 		free_percpu_irq(pp->dev->irq, pp->ports);
4325 	}
4326 err_cleanup_txqs:
4327 	mvneta_cleanup_txqs(pp);
4328 err_cleanup_rxqs:
4329 	mvneta_cleanup_rxqs(pp);
4330 	return ret;
4331 }
4332 
4333 /* Stop the port, free port interrupt line */
4334 static int mvneta_stop(struct net_device *dev)
4335 {
4336 	struct mvneta_port *pp = netdev_priv(dev);
4337 
4338 	if (!pp->neta_armada3700) {
4339 		/* Inform that we are stopping so we don't want to setup the
4340 		 * driver for new CPUs in the notifiers. The code of the
4341 		 * notifier for CPU online is protected by the same spinlock,
4342 		 * so when we get the lock, the notifer work is done.
4343 		 */
4344 		spin_lock(&pp->lock);
4345 		pp->is_stopped = true;
4346 		spin_unlock(&pp->lock);
4347 
4348 		mvneta_stop_dev(pp);
4349 		mvneta_mdio_remove(pp);
4350 
4351 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4352 						    &pp->node_online);
4353 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4354 						    &pp->node_dead);
4355 		on_each_cpu(mvneta_percpu_disable, pp, true);
4356 		free_percpu_irq(dev->irq, pp->ports);
4357 	} else {
4358 		mvneta_stop_dev(pp);
4359 		mvneta_mdio_remove(pp);
4360 		free_irq(dev->irq, pp);
4361 	}
4362 
4363 	mvneta_cleanup_rxqs(pp);
4364 	mvneta_cleanup_txqs(pp);
4365 
4366 	return 0;
4367 }
4368 
4369 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4370 {
4371 	struct mvneta_port *pp = netdev_priv(dev);
4372 
4373 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4374 }
4375 
4376 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4377 			    struct netlink_ext_ack *extack)
4378 {
4379 	bool need_update, running = netif_running(dev);
4380 	struct mvneta_port *pp = netdev_priv(dev);
4381 	struct bpf_prog *old_prog;
4382 
4383 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4384 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4385 		return -EOPNOTSUPP;
4386 	}
4387 
4388 	if (pp->bm_priv) {
4389 		NL_SET_ERR_MSG_MOD(extack,
4390 				   "Hardware Buffer Management not supported on XDP");
4391 		return -EOPNOTSUPP;
4392 	}
4393 
4394 	need_update = !!pp->xdp_prog != !!prog;
4395 	if (running && need_update)
4396 		mvneta_stop(dev);
4397 
4398 	old_prog = xchg(&pp->xdp_prog, prog);
4399 	if (old_prog)
4400 		bpf_prog_put(old_prog);
4401 
4402 	if (running && need_update)
4403 		return mvneta_open(dev);
4404 
4405 	return 0;
4406 }
4407 
4408 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4409 {
4410 	struct mvneta_port *pp = netdev_priv(dev);
4411 
4412 	switch (xdp->command) {
4413 	case XDP_SETUP_PROG:
4414 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4415 	case XDP_QUERY_PROG:
4416 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4417 		return 0;
4418 	default:
4419 		return -EINVAL;
4420 	}
4421 }
4422 
4423 /* Ethtool methods */
4424 
4425 /* Set link ksettings (phy address, speed) for ethtools */
4426 static int
4427 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4428 				  const struct ethtool_link_ksettings *cmd)
4429 {
4430 	struct mvneta_port *pp = netdev_priv(ndev);
4431 
4432 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4433 }
4434 
4435 /* Get link ksettings for ethtools */
4436 static int
4437 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4438 				  struct ethtool_link_ksettings *cmd)
4439 {
4440 	struct mvneta_port *pp = netdev_priv(ndev);
4441 
4442 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4443 }
4444 
4445 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4446 {
4447 	struct mvneta_port *pp = netdev_priv(dev);
4448 
4449 	return phylink_ethtool_nway_reset(pp->phylink);
4450 }
4451 
4452 /* Set interrupt coalescing for ethtools */
4453 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4454 				       struct ethtool_coalesce *c)
4455 {
4456 	struct mvneta_port *pp = netdev_priv(dev);
4457 	int queue;
4458 
4459 	for (queue = 0; queue < rxq_number; queue++) {
4460 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4461 		rxq->time_coal = c->rx_coalesce_usecs;
4462 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4463 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4464 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4465 	}
4466 
4467 	for (queue = 0; queue < txq_number; queue++) {
4468 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4469 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4470 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4471 	}
4472 
4473 	return 0;
4474 }
4475 
4476 /* get coalescing for ethtools */
4477 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4478 				       struct ethtool_coalesce *c)
4479 {
4480 	struct mvneta_port *pp = netdev_priv(dev);
4481 
4482 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4483 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4484 
4485 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4486 	return 0;
4487 }
4488 
4489 
4490 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4491 				    struct ethtool_drvinfo *drvinfo)
4492 {
4493 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4494 		sizeof(drvinfo->driver));
4495 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4496 		sizeof(drvinfo->version));
4497 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4498 		sizeof(drvinfo->bus_info));
4499 }
4500 
4501 
4502 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4503 					 struct ethtool_ringparam *ring)
4504 {
4505 	struct mvneta_port *pp = netdev_priv(netdev);
4506 
4507 	ring->rx_max_pending = MVNETA_MAX_RXD;
4508 	ring->tx_max_pending = MVNETA_MAX_TXD;
4509 	ring->rx_pending = pp->rx_ring_size;
4510 	ring->tx_pending = pp->tx_ring_size;
4511 }
4512 
4513 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4514 					struct ethtool_ringparam *ring)
4515 {
4516 	struct mvneta_port *pp = netdev_priv(dev);
4517 
4518 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4519 		return -EINVAL;
4520 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4521 		ring->rx_pending : MVNETA_MAX_RXD;
4522 
4523 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4524 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4525 	if (pp->tx_ring_size != ring->tx_pending)
4526 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4527 			    pp->tx_ring_size, ring->tx_pending);
4528 
4529 	if (netif_running(dev)) {
4530 		mvneta_stop(dev);
4531 		if (mvneta_open(dev)) {
4532 			netdev_err(dev,
4533 				   "error on opening device after ring param change\n");
4534 			return -ENOMEM;
4535 		}
4536 	}
4537 
4538 	return 0;
4539 }
4540 
4541 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4542 					  struct ethtool_pauseparam *pause)
4543 {
4544 	struct mvneta_port *pp = netdev_priv(dev);
4545 
4546 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4547 }
4548 
4549 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4550 					 struct ethtool_pauseparam *pause)
4551 {
4552 	struct mvneta_port *pp = netdev_priv(dev);
4553 
4554 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4555 }
4556 
4557 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4558 				       u8 *data)
4559 {
4560 	if (sset == ETH_SS_STATS) {
4561 		int i;
4562 
4563 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4564 			memcpy(data + i * ETH_GSTRING_LEN,
4565 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4566 	}
4567 }
4568 
4569 static void
4570 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4571 				 struct mvneta_ethtool_stats *es)
4572 {
4573 	unsigned int start;
4574 	int cpu;
4575 
4576 	for_each_possible_cpu(cpu) {
4577 		struct mvneta_pcpu_stats *stats;
4578 		u64 skb_alloc_error;
4579 		u64 refill_error;
4580 		u64 xdp_redirect;
4581 		u64 xdp_xmit_err;
4582 		u64 xdp_tx_err;
4583 		u64 xdp_pass;
4584 		u64 xdp_drop;
4585 		u64 xdp_xmit;
4586 		u64 xdp_tx;
4587 
4588 		stats = per_cpu_ptr(pp->stats, cpu);
4589 		do {
4590 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4591 			skb_alloc_error = stats->es.skb_alloc_error;
4592 			refill_error = stats->es.refill_error;
4593 			xdp_redirect = stats->es.ps.xdp_redirect;
4594 			xdp_pass = stats->es.ps.xdp_pass;
4595 			xdp_drop = stats->es.ps.xdp_drop;
4596 			xdp_xmit = stats->es.ps.xdp_xmit;
4597 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4598 			xdp_tx = stats->es.ps.xdp_tx;
4599 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4600 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4601 
4602 		es->skb_alloc_error += skb_alloc_error;
4603 		es->refill_error += refill_error;
4604 		es->ps.xdp_redirect += xdp_redirect;
4605 		es->ps.xdp_pass += xdp_pass;
4606 		es->ps.xdp_drop += xdp_drop;
4607 		es->ps.xdp_xmit += xdp_xmit;
4608 		es->ps.xdp_xmit_err += xdp_xmit_err;
4609 		es->ps.xdp_tx += xdp_tx;
4610 		es->ps.xdp_tx_err += xdp_tx_err;
4611 	}
4612 }
4613 
4614 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4615 {
4616 	struct mvneta_ethtool_stats stats = {};
4617 	const struct mvneta_statistic *s;
4618 	void __iomem *base = pp->base;
4619 	u32 high, low;
4620 	u64 val;
4621 	int i;
4622 
4623 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4624 	for (i = 0, s = mvneta_statistics;
4625 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4626 	     s++, i++) {
4627 		switch (s->type) {
4628 		case T_REG_32:
4629 			val = readl_relaxed(base + s->offset);
4630 			pp->ethtool_stats[i] += val;
4631 			break;
4632 		case T_REG_64:
4633 			/* Docs say to read low 32-bit then high */
4634 			low = readl_relaxed(base + s->offset);
4635 			high = readl_relaxed(base + s->offset + 4);
4636 			val = (u64)high << 32 | low;
4637 			pp->ethtool_stats[i] += val;
4638 			break;
4639 		case T_SW:
4640 			switch (s->offset) {
4641 			case ETHTOOL_STAT_EEE_WAKEUP:
4642 				val = phylink_get_eee_err(pp->phylink);
4643 				pp->ethtool_stats[i] += val;
4644 				break;
4645 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4646 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4647 				break;
4648 			case ETHTOOL_STAT_REFILL_ERR:
4649 				pp->ethtool_stats[i] = stats.refill_error;
4650 				break;
4651 			case ETHTOOL_XDP_REDIRECT:
4652 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4653 				break;
4654 			case ETHTOOL_XDP_PASS:
4655 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4656 				break;
4657 			case ETHTOOL_XDP_DROP:
4658 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4659 				break;
4660 			case ETHTOOL_XDP_TX:
4661 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4662 				break;
4663 			case ETHTOOL_XDP_TX_ERR:
4664 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4665 				break;
4666 			case ETHTOOL_XDP_XMIT:
4667 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4668 				break;
4669 			case ETHTOOL_XDP_XMIT_ERR:
4670 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4671 				break;
4672 			}
4673 			break;
4674 		}
4675 	}
4676 }
4677 
4678 static void mvneta_ethtool_get_stats(struct net_device *dev,
4679 				     struct ethtool_stats *stats, u64 *data)
4680 {
4681 	struct mvneta_port *pp = netdev_priv(dev);
4682 	int i;
4683 
4684 	mvneta_ethtool_update_stats(pp);
4685 
4686 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4687 		*data++ = pp->ethtool_stats[i];
4688 }
4689 
4690 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4691 {
4692 	if (sset == ETH_SS_STATS)
4693 		return ARRAY_SIZE(mvneta_statistics);
4694 	return -EOPNOTSUPP;
4695 }
4696 
4697 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4698 {
4699 	return MVNETA_RSS_LU_TABLE_SIZE;
4700 }
4701 
4702 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4703 				    struct ethtool_rxnfc *info,
4704 				    u32 *rules __always_unused)
4705 {
4706 	switch (info->cmd) {
4707 	case ETHTOOL_GRXRINGS:
4708 		info->data =  rxq_number;
4709 		return 0;
4710 	case ETHTOOL_GRXFH:
4711 		return -EOPNOTSUPP;
4712 	default:
4713 		return -EOPNOTSUPP;
4714 	}
4715 }
4716 
4717 static int  mvneta_config_rss(struct mvneta_port *pp)
4718 {
4719 	int cpu;
4720 	u32 val;
4721 
4722 	netif_tx_stop_all_queues(pp->dev);
4723 
4724 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4725 
4726 	if (!pp->neta_armada3700) {
4727 		/* We have to synchronise on the napi of each CPU */
4728 		for_each_online_cpu(cpu) {
4729 			struct mvneta_pcpu_port *pcpu_port =
4730 				per_cpu_ptr(pp->ports, cpu);
4731 
4732 			napi_synchronize(&pcpu_port->napi);
4733 			napi_disable(&pcpu_port->napi);
4734 		}
4735 	} else {
4736 		napi_synchronize(&pp->napi);
4737 		napi_disable(&pp->napi);
4738 	}
4739 
4740 	pp->rxq_def = pp->indir[0];
4741 
4742 	/* Update unicast mapping */
4743 	mvneta_set_rx_mode(pp->dev);
4744 
4745 	/* Update val of portCfg register accordingly with all RxQueue types */
4746 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4747 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4748 
4749 	/* Update the elected CPU matching the new rxq_def */
4750 	spin_lock(&pp->lock);
4751 	mvneta_percpu_elect(pp);
4752 	spin_unlock(&pp->lock);
4753 
4754 	if (!pp->neta_armada3700) {
4755 		/* We have to synchronise on the napi of each CPU */
4756 		for_each_online_cpu(cpu) {
4757 			struct mvneta_pcpu_port *pcpu_port =
4758 				per_cpu_ptr(pp->ports, cpu);
4759 
4760 			napi_enable(&pcpu_port->napi);
4761 		}
4762 	} else {
4763 		napi_enable(&pp->napi);
4764 	}
4765 
4766 	netif_tx_start_all_queues(pp->dev);
4767 
4768 	return 0;
4769 }
4770 
4771 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4772 				   const u8 *key, const u8 hfunc)
4773 {
4774 	struct mvneta_port *pp = netdev_priv(dev);
4775 
4776 	/* Current code for Armada 3700 doesn't support RSS features yet */
4777 	if (pp->neta_armada3700)
4778 		return -EOPNOTSUPP;
4779 
4780 	/* We require at least one supported parameter to be changed
4781 	 * and no change in any of the unsupported parameters
4782 	 */
4783 	if (key ||
4784 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4785 		return -EOPNOTSUPP;
4786 
4787 	if (!indir)
4788 		return 0;
4789 
4790 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4791 
4792 	return mvneta_config_rss(pp);
4793 }
4794 
4795 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4796 				   u8 *hfunc)
4797 {
4798 	struct mvneta_port *pp = netdev_priv(dev);
4799 
4800 	/* Current code for Armada 3700 doesn't support RSS features yet */
4801 	if (pp->neta_armada3700)
4802 		return -EOPNOTSUPP;
4803 
4804 	if (hfunc)
4805 		*hfunc = ETH_RSS_HASH_TOP;
4806 
4807 	if (!indir)
4808 		return 0;
4809 
4810 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4811 
4812 	return 0;
4813 }
4814 
4815 static void mvneta_ethtool_get_wol(struct net_device *dev,
4816 				   struct ethtool_wolinfo *wol)
4817 {
4818 	struct mvneta_port *pp = netdev_priv(dev);
4819 
4820 	phylink_ethtool_get_wol(pp->phylink, wol);
4821 }
4822 
4823 static int mvneta_ethtool_set_wol(struct net_device *dev,
4824 				  struct ethtool_wolinfo *wol)
4825 {
4826 	struct mvneta_port *pp = netdev_priv(dev);
4827 	int ret;
4828 
4829 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4830 	if (!ret)
4831 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4832 
4833 	return ret;
4834 }
4835 
4836 static int mvneta_ethtool_get_eee(struct net_device *dev,
4837 				  struct ethtool_eee *eee)
4838 {
4839 	struct mvneta_port *pp = netdev_priv(dev);
4840 	u32 lpi_ctl0;
4841 
4842 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4843 
4844 	eee->eee_enabled = pp->eee_enabled;
4845 	eee->eee_active = pp->eee_active;
4846 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4847 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4848 
4849 	return phylink_ethtool_get_eee(pp->phylink, eee);
4850 }
4851 
4852 static int mvneta_ethtool_set_eee(struct net_device *dev,
4853 				  struct ethtool_eee *eee)
4854 {
4855 	struct mvneta_port *pp = netdev_priv(dev);
4856 	u32 lpi_ctl0;
4857 
4858 	/* The Armada 37x documents do not give limits for this other than
4859 	 * it being an 8-bit register. */
4860 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4861 		return -EINVAL;
4862 
4863 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4864 	lpi_ctl0 &= ~(0xff << 8);
4865 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4866 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4867 
4868 	pp->eee_enabled = eee->eee_enabled;
4869 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4870 
4871 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4872 
4873 	return phylink_ethtool_set_eee(pp->phylink, eee);
4874 }
4875 
4876 static const struct net_device_ops mvneta_netdev_ops = {
4877 	.ndo_open            = mvneta_open,
4878 	.ndo_stop            = mvneta_stop,
4879 	.ndo_start_xmit      = mvneta_tx,
4880 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4881 	.ndo_set_mac_address = mvneta_set_mac_addr,
4882 	.ndo_change_mtu      = mvneta_change_mtu,
4883 	.ndo_fix_features    = mvneta_fix_features,
4884 	.ndo_get_stats64     = mvneta_get_stats64,
4885 	.ndo_do_ioctl        = mvneta_ioctl,
4886 	.ndo_bpf	     = mvneta_xdp,
4887 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4888 };
4889 
4890 static const struct ethtool_ops mvneta_eth_tool_ops = {
4891 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4892 				     ETHTOOL_COALESCE_MAX_FRAMES,
4893 	.nway_reset	= mvneta_ethtool_nway_reset,
4894 	.get_link       = ethtool_op_get_link,
4895 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4896 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4897 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4898 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4899 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4900 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4901 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4902 	.get_strings	= mvneta_ethtool_get_strings,
4903 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4904 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4905 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4906 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4907 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4908 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4909 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4910 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4911 	.get_wol        = mvneta_ethtool_get_wol,
4912 	.set_wol        = mvneta_ethtool_set_wol,
4913 	.get_eee	= mvneta_ethtool_get_eee,
4914 	.set_eee	= mvneta_ethtool_set_eee,
4915 };
4916 
4917 /* Initialize hw */
4918 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4919 {
4920 	int queue;
4921 
4922 	/* Disable port */
4923 	mvneta_port_disable(pp);
4924 
4925 	/* Set port default values */
4926 	mvneta_defaults_set(pp);
4927 
4928 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4929 	if (!pp->txqs)
4930 		return -ENOMEM;
4931 
4932 	/* Initialize TX descriptor rings */
4933 	for (queue = 0; queue < txq_number; queue++) {
4934 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4935 		txq->id = queue;
4936 		txq->size = pp->tx_ring_size;
4937 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4938 	}
4939 
4940 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4941 	if (!pp->rxqs)
4942 		return -ENOMEM;
4943 
4944 	/* Create Rx descriptor rings */
4945 	for (queue = 0; queue < rxq_number; queue++) {
4946 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4947 		rxq->id = queue;
4948 		rxq->size = pp->rx_ring_size;
4949 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4950 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4951 		rxq->buf_virt_addr
4952 			= devm_kmalloc_array(pp->dev->dev.parent,
4953 					     rxq->size,
4954 					     sizeof(*rxq->buf_virt_addr),
4955 					     GFP_KERNEL);
4956 		if (!rxq->buf_virt_addr)
4957 			return -ENOMEM;
4958 	}
4959 
4960 	return 0;
4961 }
4962 
4963 /* platform glue : initialize decoding windows */
4964 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4965 				     const struct mbus_dram_target_info *dram)
4966 {
4967 	u32 win_enable;
4968 	u32 win_protect;
4969 	int i;
4970 
4971 	for (i = 0; i < 6; i++) {
4972 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4973 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4974 
4975 		if (i < 4)
4976 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4977 	}
4978 
4979 	win_enable = 0x3f;
4980 	win_protect = 0;
4981 
4982 	if (dram) {
4983 		for (i = 0; i < dram->num_cs; i++) {
4984 			const struct mbus_dram_window *cs = dram->cs + i;
4985 
4986 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4987 				    (cs->base & 0xffff0000) |
4988 				    (cs->mbus_attr << 8) |
4989 				    dram->mbus_dram_target_id);
4990 
4991 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4992 				    (cs->size - 1) & 0xffff0000);
4993 
4994 			win_enable &= ~(1 << i);
4995 			win_protect |= 3 << (2 * i);
4996 		}
4997 	} else {
4998 		/* For Armada3700 open default 4GB Mbus window, leaving
4999 		 * arbitration of target/attribute to a different layer
5000 		 * of configuration.
5001 		 */
5002 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5003 		win_enable &= ~BIT(0);
5004 		win_protect = 3;
5005 	}
5006 
5007 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5008 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5009 }
5010 
5011 /* Power up the port */
5012 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5013 {
5014 	/* MAC Cause register should be cleared */
5015 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5016 
5017 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5018 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5019 	    !phy_interface_mode_is_8023z(phy_mode) &&
5020 	    !phy_interface_mode_is_rgmii(phy_mode))
5021 		return -EINVAL;
5022 
5023 	return 0;
5024 }
5025 
5026 /* Device initialization routine */
5027 static int mvneta_probe(struct platform_device *pdev)
5028 {
5029 	struct device_node *dn = pdev->dev.of_node;
5030 	struct device_node *bm_node;
5031 	struct mvneta_port *pp;
5032 	struct net_device *dev;
5033 	struct phylink *phylink;
5034 	struct phy *comphy;
5035 	const char *dt_mac_addr;
5036 	char hw_mac_addr[ETH_ALEN];
5037 	phy_interface_t phy_mode;
5038 	const char *mac_from;
5039 	int tx_csum_limit;
5040 	int err;
5041 	int cpu;
5042 
5043 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5044 				      txq_number, rxq_number);
5045 	if (!dev)
5046 		return -ENOMEM;
5047 
5048 	dev->irq = irq_of_parse_and_map(dn, 0);
5049 	if (dev->irq == 0)
5050 		return -EINVAL;
5051 
5052 	err = of_get_phy_mode(dn, &phy_mode);
5053 	if (err) {
5054 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5055 		goto err_free_irq;
5056 	}
5057 
5058 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5059 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5060 		err = -EPROBE_DEFER;
5061 		goto err_free_irq;
5062 	} else if (IS_ERR(comphy)) {
5063 		comphy = NULL;
5064 	}
5065 
5066 	pp = netdev_priv(dev);
5067 	spin_lock_init(&pp->lock);
5068 
5069 	pp->phylink_config.dev = &dev->dev;
5070 	pp->phylink_config.type = PHYLINK_NETDEV;
5071 
5072 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5073 				 phy_mode, &mvneta_phylink_ops);
5074 	if (IS_ERR(phylink)) {
5075 		err = PTR_ERR(phylink);
5076 		goto err_free_irq;
5077 	}
5078 
5079 	dev->tx_queue_len = MVNETA_MAX_TXD;
5080 	dev->watchdog_timeo = 5 * HZ;
5081 	dev->netdev_ops = &mvneta_netdev_ops;
5082 
5083 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5084 
5085 	pp->phylink = phylink;
5086 	pp->comphy = comphy;
5087 	pp->phy_interface = phy_mode;
5088 	pp->dn = dn;
5089 
5090 	pp->rxq_def = rxq_def;
5091 	pp->indir[0] = rxq_def;
5092 
5093 	/* Get special SoC configurations */
5094 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5095 		pp->neta_armada3700 = true;
5096 
5097 	pp->clk = devm_clk_get(&pdev->dev, "core");
5098 	if (IS_ERR(pp->clk))
5099 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5100 	if (IS_ERR(pp->clk)) {
5101 		err = PTR_ERR(pp->clk);
5102 		goto err_free_phylink;
5103 	}
5104 
5105 	clk_prepare_enable(pp->clk);
5106 
5107 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5108 	if (!IS_ERR(pp->clk_bus))
5109 		clk_prepare_enable(pp->clk_bus);
5110 
5111 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5112 	if (IS_ERR(pp->base)) {
5113 		err = PTR_ERR(pp->base);
5114 		goto err_clk;
5115 	}
5116 
5117 	/* Alloc per-cpu port structure */
5118 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5119 	if (!pp->ports) {
5120 		err = -ENOMEM;
5121 		goto err_clk;
5122 	}
5123 
5124 	/* Alloc per-cpu stats */
5125 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5126 	if (!pp->stats) {
5127 		err = -ENOMEM;
5128 		goto err_free_ports;
5129 	}
5130 
5131 	dt_mac_addr = of_get_mac_address(dn);
5132 	if (!IS_ERR(dt_mac_addr)) {
5133 		mac_from = "device tree";
5134 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5135 	} else {
5136 		mvneta_get_mac_addr(pp, hw_mac_addr);
5137 		if (is_valid_ether_addr(hw_mac_addr)) {
5138 			mac_from = "hardware";
5139 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5140 		} else {
5141 			mac_from = "random";
5142 			eth_hw_addr_random(dev);
5143 		}
5144 	}
5145 
5146 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5147 		if (tx_csum_limit < 0 ||
5148 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5149 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5150 			dev_info(&pdev->dev,
5151 				 "Wrong TX csum limit in DT, set to %dB\n",
5152 				 MVNETA_TX_CSUM_DEF_SIZE);
5153 		}
5154 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5155 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5156 	} else {
5157 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5158 	}
5159 
5160 	pp->tx_csum_limit = tx_csum_limit;
5161 
5162 	pp->dram_target_info = mv_mbus_dram_info();
5163 	/* Armada3700 requires setting default configuration of Mbus
5164 	 * windows, however without using filled mbus_dram_target_info
5165 	 * structure.
5166 	 */
5167 	if (pp->dram_target_info || pp->neta_armada3700)
5168 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5169 
5170 	pp->tx_ring_size = MVNETA_MAX_TXD;
5171 	pp->rx_ring_size = MVNETA_MAX_RXD;
5172 
5173 	pp->dev = dev;
5174 	SET_NETDEV_DEV(dev, &pdev->dev);
5175 
5176 	pp->id = global_port_id++;
5177 
5178 	/* Obtain access to BM resources if enabled and already initialized */
5179 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5180 	if (bm_node) {
5181 		pp->bm_priv = mvneta_bm_get(bm_node);
5182 		if (pp->bm_priv) {
5183 			err = mvneta_bm_port_init(pdev, pp);
5184 			if (err < 0) {
5185 				dev_info(&pdev->dev,
5186 					 "use SW buffer management\n");
5187 				mvneta_bm_put(pp->bm_priv);
5188 				pp->bm_priv = NULL;
5189 			}
5190 		}
5191 		/* Set RX packet offset correction for platforms, whose
5192 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5193 		 * platforms and 0B for 32-bit ones.
5194 		 */
5195 		pp->rx_offset_correction = max(0,
5196 					       NET_SKB_PAD -
5197 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5198 	}
5199 	of_node_put(bm_node);
5200 
5201 	/* sw buffer management */
5202 	if (!pp->bm_priv)
5203 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5204 
5205 	err = mvneta_init(&pdev->dev, pp);
5206 	if (err < 0)
5207 		goto err_netdev;
5208 
5209 	err = mvneta_port_power_up(pp, pp->phy_interface);
5210 	if (err < 0) {
5211 		dev_err(&pdev->dev, "can't power up port\n");
5212 		return err;
5213 	}
5214 
5215 	/* Armada3700 network controller does not support per-cpu
5216 	 * operation, so only single NAPI should be initialized.
5217 	 */
5218 	if (pp->neta_armada3700) {
5219 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5220 	} else {
5221 		for_each_present_cpu(cpu) {
5222 			struct mvneta_pcpu_port *port =
5223 				per_cpu_ptr(pp->ports, cpu);
5224 
5225 			netif_napi_add(dev, &port->napi, mvneta_poll,
5226 				       NAPI_POLL_WEIGHT);
5227 			port->pp = pp;
5228 		}
5229 	}
5230 
5231 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5232 			NETIF_F_TSO | NETIF_F_RXCSUM;
5233 	dev->hw_features |= dev->features;
5234 	dev->vlan_features |= dev->features;
5235 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5236 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5237 
5238 	/* MTU range: 68 - 9676 */
5239 	dev->min_mtu = ETH_MIN_MTU;
5240 	/* 9676 == 9700 - 20 and rounding to 8 */
5241 	dev->max_mtu = 9676;
5242 
5243 	err = register_netdev(dev);
5244 	if (err < 0) {
5245 		dev_err(&pdev->dev, "failed to register\n");
5246 		goto err_netdev;
5247 	}
5248 
5249 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5250 		    dev->dev_addr);
5251 
5252 	platform_set_drvdata(pdev, pp->dev);
5253 
5254 	return 0;
5255 
5256 err_netdev:
5257 	if (pp->bm_priv) {
5258 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5259 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5260 				       1 << pp->id);
5261 		mvneta_bm_put(pp->bm_priv);
5262 	}
5263 	free_percpu(pp->stats);
5264 err_free_ports:
5265 	free_percpu(pp->ports);
5266 err_clk:
5267 	clk_disable_unprepare(pp->clk_bus);
5268 	clk_disable_unprepare(pp->clk);
5269 err_free_phylink:
5270 	if (pp->phylink)
5271 		phylink_destroy(pp->phylink);
5272 err_free_irq:
5273 	irq_dispose_mapping(dev->irq);
5274 	return err;
5275 }
5276 
5277 /* Device removal routine */
5278 static int mvneta_remove(struct platform_device *pdev)
5279 {
5280 	struct net_device  *dev = platform_get_drvdata(pdev);
5281 	struct mvneta_port *pp = netdev_priv(dev);
5282 
5283 	unregister_netdev(dev);
5284 	clk_disable_unprepare(pp->clk_bus);
5285 	clk_disable_unprepare(pp->clk);
5286 	free_percpu(pp->ports);
5287 	free_percpu(pp->stats);
5288 	irq_dispose_mapping(dev->irq);
5289 	phylink_destroy(pp->phylink);
5290 
5291 	if (pp->bm_priv) {
5292 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5293 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5294 				       1 << pp->id);
5295 		mvneta_bm_put(pp->bm_priv);
5296 	}
5297 
5298 	return 0;
5299 }
5300 
5301 #ifdef CONFIG_PM_SLEEP
5302 static int mvneta_suspend(struct device *device)
5303 {
5304 	int queue;
5305 	struct net_device *dev = dev_get_drvdata(device);
5306 	struct mvneta_port *pp = netdev_priv(dev);
5307 
5308 	if (!netif_running(dev))
5309 		goto clean_exit;
5310 
5311 	if (!pp->neta_armada3700) {
5312 		spin_lock(&pp->lock);
5313 		pp->is_stopped = true;
5314 		spin_unlock(&pp->lock);
5315 
5316 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5317 						    &pp->node_online);
5318 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5319 						    &pp->node_dead);
5320 	}
5321 
5322 	rtnl_lock();
5323 	mvneta_stop_dev(pp);
5324 	rtnl_unlock();
5325 
5326 	for (queue = 0; queue < rxq_number; queue++) {
5327 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5328 
5329 		mvneta_rxq_drop_pkts(pp, rxq);
5330 	}
5331 
5332 	for (queue = 0; queue < txq_number; queue++) {
5333 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5334 
5335 		mvneta_txq_hw_deinit(pp, txq);
5336 	}
5337 
5338 clean_exit:
5339 	netif_device_detach(dev);
5340 	clk_disable_unprepare(pp->clk_bus);
5341 	clk_disable_unprepare(pp->clk);
5342 
5343 	return 0;
5344 }
5345 
5346 static int mvneta_resume(struct device *device)
5347 {
5348 	struct platform_device *pdev = to_platform_device(device);
5349 	struct net_device *dev = dev_get_drvdata(device);
5350 	struct mvneta_port *pp = netdev_priv(dev);
5351 	int err, queue;
5352 
5353 	clk_prepare_enable(pp->clk);
5354 	if (!IS_ERR(pp->clk_bus))
5355 		clk_prepare_enable(pp->clk_bus);
5356 	if (pp->dram_target_info || pp->neta_armada3700)
5357 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5358 	if (pp->bm_priv) {
5359 		err = mvneta_bm_port_init(pdev, pp);
5360 		if (err < 0) {
5361 			dev_info(&pdev->dev, "use SW buffer management\n");
5362 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5363 			pp->bm_priv = NULL;
5364 		}
5365 	}
5366 	mvneta_defaults_set(pp);
5367 	err = mvneta_port_power_up(pp, pp->phy_interface);
5368 	if (err < 0) {
5369 		dev_err(device, "can't power up port\n");
5370 		return err;
5371 	}
5372 
5373 	netif_device_attach(dev);
5374 
5375 	if (!netif_running(dev))
5376 		return 0;
5377 
5378 	for (queue = 0; queue < rxq_number; queue++) {
5379 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5380 
5381 		rxq->next_desc_to_proc = 0;
5382 		mvneta_rxq_hw_init(pp, rxq);
5383 	}
5384 
5385 	for (queue = 0; queue < txq_number; queue++) {
5386 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5387 
5388 		txq->next_desc_to_proc = 0;
5389 		mvneta_txq_hw_init(pp, txq);
5390 	}
5391 
5392 	if (!pp->neta_armada3700) {
5393 		spin_lock(&pp->lock);
5394 		pp->is_stopped = false;
5395 		spin_unlock(&pp->lock);
5396 		cpuhp_state_add_instance_nocalls(online_hpstate,
5397 						 &pp->node_online);
5398 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5399 						 &pp->node_dead);
5400 	}
5401 
5402 	rtnl_lock();
5403 	mvneta_start_dev(pp);
5404 	rtnl_unlock();
5405 	mvneta_set_rx_mode(dev);
5406 
5407 	return 0;
5408 }
5409 #endif
5410 
5411 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5412 
5413 static const struct of_device_id mvneta_match[] = {
5414 	{ .compatible = "marvell,armada-370-neta" },
5415 	{ .compatible = "marvell,armada-xp-neta" },
5416 	{ .compatible = "marvell,armada-3700-neta" },
5417 	{ }
5418 };
5419 MODULE_DEVICE_TABLE(of, mvneta_match);
5420 
5421 static struct platform_driver mvneta_driver = {
5422 	.probe = mvneta_probe,
5423 	.remove = mvneta_remove,
5424 	.driver = {
5425 		.name = MVNETA_DRIVER_NAME,
5426 		.of_match_table = mvneta_match,
5427 		.pm = &mvneta_pm_ops,
5428 	},
5429 };
5430 
5431 static int __init mvneta_driver_init(void)
5432 {
5433 	int ret;
5434 
5435 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5436 				      mvneta_cpu_online,
5437 				      mvneta_cpu_down_prepare);
5438 	if (ret < 0)
5439 		goto out;
5440 	online_hpstate = ret;
5441 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5442 				      NULL, mvneta_cpu_dead);
5443 	if (ret)
5444 		goto err_dead;
5445 
5446 	ret = platform_driver_register(&mvneta_driver);
5447 	if (ret)
5448 		goto err;
5449 	return 0;
5450 
5451 err:
5452 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5453 err_dead:
5454 	cpuhp_remove_multi_state(online_hpstate);
5455 out:
5456 	return ret;
5457 }
5458 module_init(mvneta_driver_init);
5459 
5460 static void __exit mvneta_driver_exit(void)
5461 {
5462 	platform_driver_unregister(&mvneta_driver);
5463 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5464 	cpuhp_remove_multi_state(online_hpstate);
5465 }
5466 module_exit(mvneta_driver_exit);
5467 
5468 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5469 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5470 MODULE_LICENSE("GPL");
5471 
5472 module_param(rxq_number, int, 0444);
5473 module_param(txq_number, int, 0444);
5474 
5475 module_param(rxq_def, int, 0444);
5476 module_param(rx_copybreak, int, 0644);
5477