1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/if_vlan.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/io.h> 27 #include <net/tso.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/of_address.h> 33 #include <linux/phy.h> 34 #include <linux/clk.h> 35 36 /* Registers */ 37 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 38 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 39 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 40 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 41 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 42 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 43 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 44 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 45 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 46 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 47 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 48 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 49 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 52 #define MVNETA_PORT_RX_RESET 0x1cc0 53 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 54 #define MVNETA_PHY_ADDR 0x2000 55 #define MVNETA_PHY_ADDR_MASK 0x1f 56 #define MVNETA_MBUS_RETRY 0x2010 57 #define MVNETA_UNIT_INTR_CAUSE 0x2080 58 #define MVNETA_UNIT_CONTROL 0x20B0 59 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 60 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 61 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 62 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 63 #define MVNETA_BASE_ADDR_ENABLE 0x2290 64 #define MVNETA_PORT_CONFIG 0x2400 65 #define MVNETA_UNI_PROMISC_MODE BIT(0) 66 #define MVNETA_DEF_RXQ(q) ((q) << 1) 67 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 68 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 69 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 70 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 71 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 72 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 73 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 74 MVNETA_DEF_RXQ_ARP(q) | \ 75 MVNETA_DEF_RXQ_TCP(q) | \ 76 MVNETA_DEF_RXQ_UDP(q) | \ 77 MVNETA_DEF_RXQ_BPDU(q) | \ 78 MVNETA_TX_UNSET_ERR_SUM | \ 79 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 80 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 81 #define MVNETA_MAC_ADDR_LOW 0x2414 82 #define MVNETA_MAC_ADDR_HIGH 0x2418 83 #define MVNETA_SDMA_CONFIG 0x241c 84 #define MVNETA_SDMA_BRST_SIZE_16 4 85 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 86 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 87 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 88 #define MVNETA_DESC_SWAP BIT(6) 89 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 90 #define MVNETA_PORT_STATUS 0x2444 91 #define MVNETA_TX_IN_PRGRS BIT(1) 92 #define MVNETA_TX_FIFO_EMPTY BIT(8) 93 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 94 #define MVNETA_SERDES_CFG 0x24A0 95 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 96 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 97 #define MVNETA_TYPE_PRIO 0x24bc 98 #define MVNETA_FORCE_UNI BIT(21) 99 #define MVNETA_TXQ_CMD_1 0x24e4 100 #define MVNETA_TXQ_CMD 0x2448 101 #define MVNETA_TXQ_DISABLE_SHIFT 8 102 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 103 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 104 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 105 #define MVNETA_ACC_MODE 0x2500 106 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 107 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 108 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 109 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 110 111 /* Exception Interrupt Port/Queue Cause register */ 112 113 #define MVNETA_INTR_NEW_CAUSE 0x25a0 114 #define MVNETA_INTR_NEW_MASK 0x25a4 115 116 /* bits 0..7 = TXQ SENT, one bit per queue. 117 * bits 8..15 = RXQ OCCUP, one bit per queue. 118 * bits 16..23 = RXQ FREE, one bit per queue. 119 * bit 29 = OLD_REG_SUM, see old reg ? 120 * bit 30 = TX_ERR_SUM, one bit for 4 ports 121 * bit 31 = MISC_SUM, one bit for 4 ports 122 */ 123 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 124 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 125 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 126 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 127 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 128 129 #define MVNETA_INTR_OLD_CAUSE 0x25a8 130 #define MVNETA_INTR_OLD_MASK 0x25ac 131 132 /* Data Path Port/Queue Cause Register */ 133 #define MVNETA_INTR_MISC_CAUSE 0x25b0 134 #define MVNETA_INTR_MISC_MASK 0x25b4 135 136 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 137 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 138 #define MVNETA_CAUSE_PTP BIT(4) 139 140 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 141 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 142 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 143 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 144 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 145 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 146 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 147 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 148 149 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 150 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 151 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 152 153 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 154 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 155 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 156 157 #define MVNETA_INTR_ENABLE 0x25b8 158 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 159 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 160 161 #define MVNETA_RXQ_CMD 0x2680 162 #define MVNETA_RXQ_DISABLE_SHIFT 8 163 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 164 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 165 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 166 #define MVNETA_GMAC_CTRL_0 0x2c00 167 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 168 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 169 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 170 #define MVNETA_GMAC_CTRL_2 0x2c08 171 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 172 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 173 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 174 #define MVNETA_GMAC2_PORT_RESET BIT(6) 175 #define MVNETA_GMAC_STATUS 0x2c10 176 #define MVNETA_GMAC_LINK_UP BIT(0) 177 #define MVNETA_GMAC_SPEED_1000 BIT(1) 178 #define MVNETA_GMAC_SPEED_100 BIT(2) 179 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 180 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 181 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 182 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 183 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 184 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 185 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 186 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 187 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 188 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 189 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 190 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 191 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 192 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 193 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 194 #define MVNETA_MIB_COUNTERS_BASE 0x3080 195 #define MVNETA_MIB_LATE_COLLISION 0x7c 196 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 197 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 198 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 199 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 200 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 201 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 202 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 203 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 204 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 205 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 206 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 207 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 208 #define MVNETA_PORT_TX_RESET 0x3cf0 209 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 210 #define MVNETA_TX_MTU 0x3e0c 211 #define MVNETA_TX_TOKEN_SIZE 0x3e14 212 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 213 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 214 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 215 216 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 217 218 /* Descriptor ring Macros */ 219 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 220 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 221 222 /* Various constants */ 223 224 /* Coalescing */ 225 #define MVNETA_TXDONE_COAL_PKTS 1 226 #define MVNETA_RX_COAL_PKTS 32 227 #define MVNETA_RX_COAL_USEC 100 228 229 /* The two bytes Marvell header. Either contains a special value used 230 * by Marvell switches when a specific hardware mode is enabled (not 231 * supported by this driver) or is filled automatically by zeroes on 232 * the RX side. Those two bytes being at the front of the Ethernet 233 * header, they allow to have the IP header aligned on a 4 bytes 234 * boundary automatically: the hardware skips those two bytes on its 235 * own. 236 */ 237 #define MVNETA_MH_SIZE 2 238 239 #define MVNETA_VLAN_TAG_LEN 4 240 241 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 242 #define MVNETA_TX_CSUM_MAX_SIZE 9800 243 #define MVNETA_ACC_MODE_EXT 1 244 245 /* Timeout constants */ 246 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 247 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 248 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 249 250 #define MVNETA_TX_MTU_MAX 0x3ffff 251 252 /* TSO header size */ 253 #define TSO_HEADER_SIZE 128 254 255 /* Max number of Rx descriptors */ 256 #define MVNETA_MAX_RXD 128 257 258 /* Max number of Tx descriptors */ 259 #define MVNETA_MAX_TXD 532 260 261 /* Max number of allowed TCP segments for software TSO */ 262 #define MVNETA_MAX_TSO_SEGS 100 263 264 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 265 266 /* descriptor aligned size */ 267 #define MVNETA_DESC_ALIGNED_SIZE 32 268 269 #define MVNETA_RX_PKT_SIZE(mtu) \ 270 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 271 ETH_HLEN + ETH_FCS_LEN, \ 272 MVNETA_CPU_D_CACHE_LINE_SIZE) 273 274 #define IS_TSO_HEADER(txq, addr) \ 275 ((addr >= txq->tso_hdrs_phys) && \ 276 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 277 278 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 279 280 struct mvneta_pcpu_stats { 281 struct u64_stats_sync syncp; 282 u64 rx_packets; 283 u64 rx_bytes; 284 u64 tx_packets; 285 u64 tx_bytes; 286 }; 287 288 struct mvneta_port { 289 int pkt_size; 290 unsigned int frag_size; 291 void __iomem *base; 292 struct mvneta_rx_queue *rxqs; 293 struct mvneta_tx_queue *txqs; 294 struct net_device *dev; 295 296 u32 cause_rx_tx; 297 struct napi_struct napi; 298 299 /* Core clock */ 300 struct clk *clk; 301 u8 mcast_count[256]; 302 u16 tx_ring_size; 303 u16 rx_ring_size; 304 struct mvneta_pcpu_stats *stats; 305 306 struct mii_bus *mii_bus; 307 struct phy_device *phy_dev; 308 phy_interface_t phy_interface; 309 struct device_node *phy_node; 310 unsigned int link; 311 unsigned int duplex; 312 unsigned int speed; 313 int use_inband_status:1; 314 }; 315 316 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 317 * layout of the transmit and reception DMA descriptors, and their 318 * layout is therefore defined by the hardware design 319 */ 320 321 #define MVNETA_TX_L3_OFF_SHIFT 0 322 #define MVNETA_TX_IP_HLEN_SHIFT 8 323 #define MVNETA_TX_L4_UDP BIT(16) 324 #define MVNETA_TX_L3_IP6 BIT(17) 325 #define MVNETA_TXD_IP_CSUM BIT(18) 326 #define MVNETA_TXD_Z_PAD BIT(19) 327 #define MVNETA_TXD_L_DESC BIT(20) 328 #define MVNETA_TXD_F_DESC BIT(21) 329 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 330 MVNETA_TXD_L_DESC | \ 331 MVNETA_TXD_F_DESC) 332 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 333 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 334 335 #define MVNETA_RXD_ERR_CRC 0x0 336 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 337 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 338 #define MVNETA_RXD_ERR_LEN BIT(18) 339 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 340 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 341 #define MVNETA_RXD_L3_IP4 BIT(25) 342 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 343 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 344 345 #if defined(__LITTLE_ENDIAN) 346 struct mvneta_tx_desc { 347 u32 command; /* Options used by HW for packet transmitting.*/ 348 u16 reserverd1; /* csum_l4 (for future use) */ 349 u16 data_size; /* Data size of transmitted packet in bytes */ 350 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 351 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 352 u32 reserved3[4]; /* Reserved - (for future use) */ 353 }; 354 355 struct mvneta_rx_desc { 356 u32 status; /* Info about received packet */ 357 u16 reserved1; /* pnc_info - (for future use, PnC) */ 358 u16 data_size; /* Size of received packet in bytes */ 359 360 u32 buf_phys_addr; /* Physical address of the buffer */ 361 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 362 363 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 364 u16 reserved3; /* prefetch_cmd, for future use */ 365 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 366 367 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 368 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 369 }; 370 #else 371 struct mvneta_tx_desc { 372 u16 data_size; /* Data size of transmitted packet in bytes */ 373 u16 reserverd1; /* csum_l4 (for future use) */ 374 u32 command; /* Options used by HW for packet transmitting.*/ 375 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 376 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 377 u32 reserved3[4]; /* Reserved - (for future use) */ 378 }; 379 380 struct mvneta_rx_desc { 381 u16 data_size; /* Size of received packet in bytes */ 382 u16 reserved1; /* pnc_info - (for future use, PnC) */ 383 u32 status; /* Info about received packet */ 384 385 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 386 u32 buf_phys_addr; /* Physical address of the buffer */ 387 388 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 389 u16 reserved3; /* prefetch_cmd, for future use */ 390 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 391 392 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 393 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 394 }; 395 #endif 396 397 struct mvneta_tx_queue { 398 /* Number of this TX queue, in the range 0-7 */ 399 u8 id; 400 401 /* Number of TX DMA descriptors in the descriptor ring */ 402 int size; 403 404 /* Number of currently used TX DMA descriptor in the 405 * descriptor ring 406 */ 407 int count; 408 int tx_stop_threshold; 409 int tx_wake_threshold; 410 411 /* Array of transmitted skb */ 412 struct sk_buff **tx_skb; 413 414 /* Index of last TX DMA descriptor that was inserted */ 415 int txq_put_index; 416 417 /* Index of the TX DMA descriptor to be cleaned up */ 418 int txq_get_index; 419 420 u32 done_pkts_coal; 421 422 /* Virtual address of the TX DMA descriptors array */ 423 struct mvneta_tx_desc *descs; 424 425 /* DMA address of the TX DMA descriptors array */ 426 dma_addr_t descs_phys; 427 428 /* Index of the last TX DMA descriptor */ 429 int last_desc; 430 431 /* Index of the next TX DMA descriptor to process */ 432 int next_desc_to_proc; 433 434 /* DMA buffers for TSO headers */ 435 char *tso_hdrs; 436 437 /* DMA address of TSO headers */ 438 dma_addr_t tso_hdrs_phys; 439 }; 440 441 struct mvneta_rx_queue { 442 /* rx queue number, in the range 0-7 */ 443 u8 id; 444 445 /* num of rx descriptors in the rx descriptor ring */ 446 int size; 447 448 /* counter of times when mvneta_refill() failed */ 449 int missed; 450 451 u32 pkts_coal; 452 u32 time_coal; 453 454 /* Virtual address of the RX DMA descriptors array */ 455 struct mvneta_rx_desc *descs; 456 457 /* DMA address of the RX DMA descriptors array */ 458 dma_addr_t descs_phys; 459 460 /* Index of the last RX DMA descriptor */ 461 int last_desc; 462 463 /* Index of the next RX DMA descriptor to process */ 464 int next_desc_to_proc; 465 }; 466 467 /* The hardware supports eight (8) rx queues, but we are only allowing 468 * the first one to be used. Therefore, let's just allocate one queue. 469 */ 470 static int rxq_number = 1; 471 static int txq_number = 8; 472 473 static int rxq_def; 474 475 static int rx_copybreak __read_mostly = 256; 476 477 #define MVNETA_DRIVER_NAME "mvneta" 478 #define MVNETA_DRIVER_VERSION "1.0" 479 480 /* Utility/helper methods */ 481 482 /* Write helper method */ 483 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 484 { 485 writel(data, pp->base + offset); 486 } 487 488 /* Read helper method */ 489 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 490 { 491 return readl(pp->base + offset); 492 } 493 494 /* Increment txq get counter */ 495 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 496 { 497 txq->txq_get_index++; 498 if (txq->txq_get_index == txq->size) 499 txq->txq_get_index = 0; 500 } 501 502 /* Increment txq put counter */ 503 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 504 { 505 txq->txq_put_index++; 506 if (txq->txq_put_index == txq->size) 507 txq->txq_put_index = 0; 508 } 509 510 511 /* Clear all MIB counters */ 512 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 513 { 514 int i; 515 u32 dummy; 516 517 /* Perform dummy reads from MIB counters */ 518 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 519 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 520 } 521 522 /* Get System Network Statistics */ 523 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 524 struct rtnl_link_stats64 *stats) 525 { 526 struct mvneta_port *pp = netdev_priv(dev); 527 unsigned int start; 528 int cpu; 529 530 for_each_possible_cpu(cpu) { 531 struct mvneta_pcpu_stats *cpu_stats; 532 u64 rx_packets; 533 u64 rx_bytes; 534 u64 tx_packets; 535 u64 tx_bytes; 536 537 cpu_stats = per_cpu_ptr(pp->stats, cpu); 538 do { 539 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 540 rx_packets = cpu_stats->rx_packets; 541 rx_bytes = cpu_stats->rx_bytes; 542 tx_packets = cpu_stats->tx_packets; 543 tx_bytes = cpu_stats->tx_bytes; 544 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 545 546 stats->rx_packets += rx_packets; 547 stats->rx_bytes += rx_bytes; 548 stats->tx_packets += tx_packets; 549 stats->tx_bytes += tx_bytes; 550 } 551 552 stats->rx_errors = dev->stats.rx_errors; 553 stats->rx_dropped = dev->stats.rx_dropped; 554 555 stats->tx_dropped = dev->stats.tx_dropped; 556 557 return stats; 558 } 559 560 /* Rx descriptors helper methods */ 561 562 /* Checks whether the RX descriptor having this status is both the first 563 * and the last descriptor for the RX packet. Each RX packet is currently 564 * received through a single RX descriptor, so not having each RX 565 * descriptor with its first and last bits set is an error 566 */ 567 static int mvneta_rxq_desc_is_first_last(u32 status) 568 { 569 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 570 MVNETA_RXD_FIRST_LAST_DESC; 571 } 572 573 /* Add number of descriptors ready to receive new packets */ 574 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 575 struct mvneta_rx_queue *rxq, 576 int ndescs) 577 { 578 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 579 * be added at once 580 */ 581 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 582 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 583 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 584 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 585 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 586 } 587 588 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 589 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 590 } 591 592 /* Get number of RX descriptors occupied by received packets */ 593 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 594 struct mvneta_rx_queue *rxq) 595 { 596 u32 val; 597 598 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 599 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 600 } 601 602 /* Update num of rx desc called upon return from rx path or 603 * from mvneta_rxq_drop_pkts(). 604 */ 605 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 606 struct mvneta_rx_queue *rxq, 607 int rx_done, int rx_filled) 608 { 609 u32 val; 610 611 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 612 val = rx_done | 613 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 614 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 615 return; 616 } 617 618 /* Only 255 descriptors can be added at once */ 619 while ((rx_done > 0) || (rx_filled > 0)) { 620 if (rx_done <= 0xff) { 621 val = rx_done; 622 rx_done = 0; 623 } else { 624 val = 0xff; 625 rx_done -= 0xff; 626 } 627 if (rx_filled <= 0xff) { 628 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 629 rx_filled = 0; 630 } else { 631 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 632 rx_filled -= 0xff; 633 } 634 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 635 } 636 } 637 638 /* Get pointer to next RX descriptor to be processed by SW */ 639 static struct mvneta_rx_desc * 640 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 641 { 642 int rx_desc = rxq->next_desc_to_proc; 643 644 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 645 prefetch(rxq->descs + rxq->next_desc_to_proc); 646 return rxq->descs + rx_desc; 647 } 648 649 /* Change maximum receive size of the port. */ 650 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 651 { 652 u32 val; 653 654 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 655 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 656 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 657 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 658 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 659 } 660 661 662 /* Set rx queue offset */ 663 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 664 struct mvneta_rx_queue *rxq, 665 int offset) 666 { 667 u32 val; 668 669 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 670 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 671 672 /* Offset is in */ 673 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 674 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 675 } 676 677 678 /* Tx descriptors helper methods */ 679 680 /* Update HW with number of TX descriptors to be sent */ 681 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 682 struct mvneta_tx_queue *txq, 683 int pend_desc) 684 { 685 u32 val; 686 687 /* Only 255 descriptors can be added at once ; Assume caller 688 * process TX desriptors in quanta less than 256 689 */ 690 val = pend_desc; 691 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 692 } 693 694 /* Get pointer to next TX descriptor to be processed (send) by HW */ 695 static struct mvneta_tx_desc * 696 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 697 { 698 int tx_desc = txq->next_desc_to_proc; 699 700 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 701 return txq->descs + tx_desc; 702 } 703 704 /* Release the last allocated TX descriptor. Useful to handle DMA 705 * mapping failures in the TX path. 706 */ 707 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 708 { 709 if (txq->next_desc_to_proc == 0) 710 txq->next_desc_to_proc = txq->last_desc - 1; 711 else 712 txq->next_desc_to_proc--; 713 } 714 715 /* Set rxq buf size */ 716 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 717 struct mvneta_rx_queue *rxq, 718 int buf_size) 719 { 720 u32 val; 721 722 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 723 724 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 725 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 726 727 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 728 } 729 730 /* Disable buffer management (BM) */ 731 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 732 struct mvneta_rx_queue *rxq) 733 { 734 u32 val; 735 736 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 737 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 738 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 739 } 740 741 /* Start the Ethernet port RX and TX activity */ 742 static void mvneta_port_up(struct mvneta_port *pp) 743 { 744 int queue; 745 u32 q_map; 746 747 /* Enable all initialized TXs. */ 748 mvneta_mib_counters_clear(pp); 749 q_map = 0; 750 for (queue = 0; queue < txq_number; queue++) { 751 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 752 if (txq->descs != NULL) 753 q_map |= (1 << queue); 754 } 755 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 756 757 /* Enable all initialized RXQs. */ 758 q_map = 0; 759 for (queue = 0; queue < rxq_number; queue++) { 760 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 761 if (rxq->descs != NULL) 762 q_map |= (1 << queue); 763 } 764 765 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 766 } 767 768 /* Stop the Ethernet port activity */ 769 static void mvneta_port_down(struct mvneta_port *pp) 770 { 771 u32 val; 772 int count; 773 774 /* Stop Rx port activity. Check port Rx activity. */ 775 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 776 777 /* Issue stop command for active channels only */ 778 if (val != 0) 779 mvreg_write(pp, MVNETA_RXQ_CMD, 780 val << MVNETA_RXQ_DISABLE_SHIFT); 781 782 /* Wait for all Rx activity to terminate. */ 783 count = 0; 784 do { 785 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 786 netdev_warn(pp->dev, 787 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 788 val); 789 break; 790 } 791 mdelay(1); 792 793 val = mvreg_read(pp, MVNETA_RXQ_CMD); 794 } while (val & 0xff); 795 796 /* Stop Tx port activity. Check port Tx activity. Issue stop 797 * command for active channels only 798 */ 799 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 800 801 if (val != 0) 802 mvreg_write(pp, MVNETA_TXQ_CMD, 803 (val << MVNETA_TXQ_DISABLE_SHIFT)); 804 805 /* Wait for all Tx activity to terminate. */ 806 count = 0; 807 do { 808 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 809 netdev_warn(pp->dev, 810 "TIMEOUT for TX stopped status=0x%08x\n", 811 val); 812 break; 813 } 814 mdelay(1); 815 816 /* Check TX Command reg that all Txqs are stopped */ 817 val = mvreg_read(pp, MVNETA_TXQ_CMD); 818 819 } while (val & 0xff); 820 821 /* Double check to verify that TX FIFO is empty */ 822 count = 0; 823 do { 824 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 825 netdev_warn(pp->dev, 826 "TX FIFO empty timeout status=0x08%x\n", 827 val); 828 break; 829 } 830 mdelay(1); 831 832 val = mvreg_read(pp, MVNETA_PORT_STATUS); 833 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 834 (val & MVNETA_TX_IN_PRGRS)); 835 836 udelay(200); 837 } 838 839 /* Enable the port by setting the port enable bit of the MAC control register */ 840 static void mvneta_port_enable(struct mvneta_port *pp) 841 { 842 u32 val; 843 844 /* Enable port */ 845 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 846 val |= MVNETA_GMAC0_PORT_ENABLE; 847 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 848 } 849 850 /* Disable the port and wait for about 200 usec before retuning */ 851 static void mvneta_port_disable(struct mvneta_port *pp) 852 { 853 u32 val; 854 855 /* Reset the Enable bit in the Serial Control Register */ 856 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 857 val &= ~MVNETA_GMAC0_PORT_ENABLE; 858 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 859 860 udelay(200); 861 } 862 863 /* Multicast tables methods */ 864 865 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 866 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 867 { 868 int offset; 869 u32 val; 870 871 if (queue == -1) { 872 val = 0; 873 } else { 874 val = 0x1 | (queue << 1); 875 val |= (val << 24) | (val << 16) | (val << 8); 876 } 877 878 for (offset = 0; offset <= 0xc; offset += 4) 879 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 880 } 881 882 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 883 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 884 { 885 int offset; 886 u32 val; 887 888 if (queue == -1) { 889 val = 0; 890 } else { 891 val = 0x1 | (queue << 1); 892 val |= (val << 24) | (val << 16) | (val << 8); 893 } 894 895 for (offset = 0; offset <= 0xfc; offset += 4) 896 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 897 898 } 899 900 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 901 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 902 { 903 int offset; 904 u32 val; 905 906 if (queue == -1) { 907 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 908 val = 0; 909 } else { 910 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 911 val = 0x1 | (queue << 1); 912 val |= (val << 24) | (val << 16) | (val << 8); 913 } 914 915 for (offset = 0; offset <= 0xfc; offset += 4) 916 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 917 } 918 919 /* This method sets defaults to the NETA port: 920 * Clears interrupt Cause and Mask registers. 921 * Clears all MAC tables. 922 * Sets defaults to all registers. 923 * Resets RX and TX descriptor rings. 924 * Resets PHY. 925 * This method can be called after mvneta_port_down() to return the port 926 * settings to defaults. 927 */ 928 static void mvneta_defaults_set(struct mvneta_port *pp) 929 { 930 int cpu; 931 int queue; 932 u32 val; 933 934 /* Clear all Cause registers */ 935 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 936 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 937 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 938 939 /* Mask all interrupts */ 940 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 941 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 942 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 943 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 944 945 /* Enable MBUS Retry bit16 */ 946 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 947 948 /* Set CPU queue access map - all CPUs have access to all RX 949 * queues and to all TX queues 950 */ 951 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 952 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 953 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 954 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 955 956 /* Reset RX and TX DMAs */ 957 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 958 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 959 960 /* Disable Legacy WRR, Disable EJP, Release from reset */ 961 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 962 for (queue = 0; queue < txq_number; queue++) { 963 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 964 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 965 } 966 967 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 968 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 969 970 /* Set Port Acceleration Mode */ 971 val = MVNETA_ACC_MODE_EXT; 972 mvreg_write(pp, MVNETA_ACC_MODE, val); 973 974 /* Update val of portCfg register accordingly with all RxQueue types */ 975 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 976 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 977 978 val = 0; 979 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 980 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 981 982 /* Build PORT_SDMA_CONFIG_REG */ 983 val = 0; 984 985 /* Default burst size */ 986 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 987 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 988 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 989 990 #if defined(__BIG_ENDIAN) 991 val |= MVNETA_DESC_SWAP; 992 #endif 993 994 /* Assign port SDMA configuration */ 995 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 996 997 /* Disable PHY polling in hardware, since we're using the 998 * kernel phylib to do this. 999 */ 1000 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1001 val &= ~MVNETA_PHY_POLLING_ENABLE; 1002 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1003 1004 if (pp->use_inband_status) { 1005 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1006 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1007 MVNETA_GMAC_FORCE_LINK_DOWN | 1008 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1009 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1010 MVNETA_GMAC_AN_SPEED_EN | 1011 MVNETA_GMAC_AN_DUPLEX_EN; 1012 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1013 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1014 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1015 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1016 } 1017 1018 mvneta_set_ucast_table(pp, -1); 1019 mvneta_set_special_mcast_table(pp, -1); 1020 mvneta_set_other_mcast_table(pp, -1); 1021 1022 /* Set port interrupt enable register - default enable all */ 1023 mvreg_write(pp, MVNETA_INTR_ENABLE, 1024 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1025 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1026 } 1027 1028 /* Set max sizes for tx queues */ 1029 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1030 1031 { 1032 u32 val, size, mtu; 1033 int queue; 1034 1035 mtu = max_tx_size * 8; 1036 if (mtu > MVNETA_TX_MTU_MAX) 1037 mtu = MVNETA_TX_MTU_MAX; 1038 1039 /* Set MTU */ 1040 val = mvreg_read(pp, MVNETA_TX_MTU); 1041 val &= ~MVNETA_TX_MTU_MAX; 1042 val |= mtu; 1043 mvreg_write(pp, MVNETA_TX_MTU, val); 1044 1045 /* TX token size and all TXQs token size must be larger that MTU */ 1046 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1047 1048 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1049 if (size < mtu) { 1050 size = mtu; 1051 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1052 val |= size; 1053 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1054 } 1055 for (queue = 0; queue < txq_number; queue++) { 1056 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1057 1058 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1059 if (size < mtu) { 1060 size = mtu; 1061 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1062 val |= size; 1063 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1064 } 1065 } 1066 } 1067 1068 /* Set unicast address */ 1069 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1070 int queue) 1071 { 1072 unsigned int unicast_reg; 1073 unsigned int tbl_offset; 1074 unsigned int reg_offset; 1075 1076 /* Locate the Unicast table entry */ 1077 last_nibble = (0xf & last_nibble); 1078 1079 /* offset from unicast tbl base */ 1080 tbl_offset = (last_nibble / 4) * 4; 1081 1082 /* offset within the above reg */ 1083 reg_offset = last_nibble % 4; 1084 1085 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1086 1087 if (queue == -1) { 1088 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1089 unicast_reg &= ~(0xff << (8 * reg_offset)); 1090 } else { 1091 unicast_reg &= ~(0xff << (8 * reg_offset)); 1092 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1093 } 1094 1095 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1096 } 1097 1098 /* Set mac address */ 1099 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1100 int queue) 1101 { 1102 unsigned int mac_h; 1103 unsigned int mac_l; 1104 1105 if (queue != -1) { 1106 mac_l = (addr[4] << 8) | (addr[5]); 1107 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1108 (addr[2] << 8) | (addr[3] << 0); 1109 1110 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1111 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1112 } 1113 1114 /* Accept frames of this address */ 1115 mvneta_set_ucast_addr(pp, addr[5], queue); 1116 } 1117 1118 /* Set the number of packets that will be received before RX interrupt 1119 * will be generated by HW. 1120 */ 1121 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1122 struct mvneta_rx_queue *rxq, u32 value) 1123 { 1124 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1125 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1126 rxq->pkts_coal = value; 1127 } 1128 1129 /* Set the time delay in usec before RX interrupt will be generated by 1130 * HW. 1131 */ 1132 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1133 struct mvneta_rx_queue *rxq, u32 value) 1134 { 1135 u32 val; 1136 unsigned long clk_rate; 1137 1138 clk_rate = clk_get_rate(pp->clk); 1139 val = (clk_rate / 1000000) * value; 1140 1141 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1142 rxq->time_coal = value; 1143 } 1144 1145 /* Set threshold for TX_DONE pkts coalescing */ 1146 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1147 struct mvneta_tx_queue *txq, u32 value) 1148 { 1149 u32 val; 1150 1151 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1152 1153 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1154 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1155 1156 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1157 1158 txq->done_pkts_coal = value; 1159 } 1160 1161 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1162 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1163 u32 phys_addr, u32 cookie) 1164 { 1165 rx_desc->buf_cookie = cookie; 1166 rx_desc->buf_phys_addr = phys_addr; 1167 } 1168 1169 /* Decrement sent descriptors counter */ 1170 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1171 struct mvneta_tx_queue *txq, 1172 int sent_desc) 1173 { 1174 u32 val; 1175 1176 /* Only 255 TX descriptors can be updated at once */ 1177 while (sent_desc > 0xff) { 1178 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1179 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1180 sent_desc = sent_desc - 0xff; 1181 } 1182 1183 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1184 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1185 } 1186 1187 /* Get number of TX descriptors already sent by HW */ 1188 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1189 struct mvneta_tx_queue *txq) 1190 { 1191 u32 val; 1192 int sent_desc; 1193 1194 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1195 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1196 MVNETA_TXQ_SENT_DESC_SHIFT; 1197 1198 return sent_desc; 1199 } 1200 1201 /* Get number of sent descriptors and decrement counter. 1202 * The number of sent descriptors is returned. 1203 */ 1204 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1205 struct mvneta_tx_queue *txq) 1206 { 1207 int sent_desc; 1208 1209 /* Get number of sent descriptors */ 1210 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1211 1212 /* Decrement sent descriptors counter */ 1213 if (sent_desc) 1214 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1215 1216 return sent_desc; 1217 } 1218 1219 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1220 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1221 int ip_hdr_len, int l4_proto) 1222 { 1223 u32 command; 1224 1225 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1226 * G_L4_chk, L4_type; required only for checksum 1227 * calculation 1228 */ 1229 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1230 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1231 1232 if (l3_proto == htons(ETH_P_IP)) 1233 command |= MVNETA_TXD_IP_CSUM; 1234 else 1235 command |= MVNETA_TX_L3_IP6; 1236 1237 if (l4_proto == IPPROTO_TCP) 1238 command |= MVNETA_TX_L4_CSUM_FULL; 1239 else if (l4_proto == IPPROTO_UDP) 1240 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1241 else 1242 command |= MVNETA_TX_L4_CSUM_NOT; 1243 1244 return command; 1245 } 1246 1247 1248 /* Display more error info */ 1249 static void mvneta_rx_error(struct mvneta_port *pp, 1250 struct mvneta_rx_desc *rx_desc) 1251 { 1252 u32 status = rx_desc->status; 1253 1254 if (!mvneta_rxq_desc_is_first_last(status)) { 1255 netdev_err(pp->dev, 1256 "bad rx status %08x (buffer oversize), size=%d\n", 1257 status, rx_desc->data_size); 1258 return; 1259 } 1260 1261 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1262 case MVNETA_RXD_ERR_CRC: 1263 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1264 status, rx_desc->data_size); 1265 break; 1266 case MVNETA_RXD_ERR_OVERRUN: 1267 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1268 status, rx_desc->data_size); 1269 break; 1270 case MVNETA_RXD_ERR_LEN: 1271 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1272 status, rx_desc->data_size); 1273 break; 1274 case MVNETA_RXD_ERR_RESOURCE: 1275 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1276 status, rx_desc->data_size); 1277 break; 1278 } 1279 } 1280 1281 /* Handle RX checksum offload based on the descriptor's status */ 1282 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1283 struct sk_buff *skb) 1284 { 1285 if ((status & MVNETA_RXD_L3_IP4) && 1286 (status & MVNETA_RXD_L4_CSUM_OK)) { 1287 skb->csum = 0; 1288 skb->ip_summed = CHECKSUM_UNNECESSARY; 1289 return; 1290 } 1291 1292 skb->ip_summed = CHECKSUM_NONE; 1293 } 1294 1295 /* Return tx queue pointer (find last set bit) according to <cause> returned 1296 * form tx_done reg. <cause> must not be null. The return value is always a 1297 * valid queue for matching the first one found in <cause>. 1298 */ 1299 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1300 u32 cause) 1301 { 1302 int queue = fls(cause) - 1; 1303 1304 return &pp->txqs[queue]; 1305 } 1306 1307 /* Free tx queue skbuffs */ 1308 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1309 struct mvneta_tx_queue *txq, int num) 1310 { 1311 int i; 1312 1313 for (i = 0; i < num; i++) { 1314 struct mvneta_tx_desc *tx_desc = txq->descs + 1315 txq->txq_get_index; 1316 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1317 1318 mvneta_txq_inc_get(txq); 1319 1320 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1321 dma_unmap_single(pp->dev->dev.parent, 1322 tx_desc->buf_phys_addr, 1323 tx_desc->data_size, DMA_TO_DEVICE); 1324 if (!skb) 1325 continue; 1326 dev_kfree_skb_any(skb); 1327 } 1328 } 1329 1330 /* Handle end of transmission */ 1331 static void mvneta_txq_done(struct mvneta_port *pp, 1332 struct mvneta_tx_queue *txq) 1333 { 1334 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1335 int tx_done; 1336 1337 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1338 if (!tx_done) 1339 return; 1340 1341 mvneta_txq_bufs_free(pp, txq, tx_done); 1342 1343 txq->count -= tx_done; 1344 1345 if (netif_tx_queue_stopped(nq)) { 1346 if (txq->count <= txq->tx_wake_threshold) 1347 netif_tx_wake_queue(nq); 1348 } 1349 } 1350 1351 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1352 { 1353 if (likely(pp->frag_size <= PAGE_SIZE)) 1354 return netdev_alloc_frag(pp->frag_size); 1355 else 1356 return kmalloc(pp->frag_size, GFP_ATOMIC); 1357 } 1358 1359 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1360 { 1361 if (likely(pp->frag_size <= PAGE_SIZE)) 1362 put_page(virt_to_head_page(data)); 1363 else 1364 kfree(data); 1365 } 1366 1367 /* Refill processing */ 1368 static int mvneta_rx_refill(struct mvneta_port *pp, 1369 struct mvneta_rx_desc *rx_desc) 1370 1371 { 1372 dma_addr_t phys_addr; 1373 void *data; 1374 1375 data = mvneta_frag_alloc(pp); 1376 if (!data) 1377 return -ENOMEM; 1378 1379 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1380 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1381 DMA_FROM_DEVICE); 1382 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1383 mvneta_frag_free(pp, data); 1384 return -ENOMEM; 1385 } 1386 1387 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1388 return 0; 1389 } 1390 1391 /* Handle tx checksum */ 1392 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1393 { 1394 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1395 int ip_hdr_len = 0; 1396 __be16 l3_proto = vlan_get_protocol(skb); 1397 u8 l4_proto; 1398 1399 if (l3_proto == htons(ETH_P_IP)) { 1400 struct iphdr *ip4h = ip_hdr(skb); 1401 1402 /* Calculate IPv4 checksum and L4 checksum */ 1403 ip_hdr_len = ip4h->ihl; 1404 l4_proto = ip4h->protocol; 1405 } else if (l3_proto == htons(ETH_P_IPV6)) { 1406 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1407 1408 /* Read l4_protocol from one of IPv6 extra headers */ 1409 if (skb_network_header_len(skb) > 0) 1410 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1411 l4_proto = ip6h->nexthdr; 1412 } else 1413 return MVNETA_TX_L4_CSUM_NOT; 1414 1415 return mvneta_txq_desc_csum(skb_network_offset(skb), 1416 l3_proto, ip_hdr_len, l4_proto); 1417 } 1418 1419 return MVNETA_TX_L4_CSUM_NOT; 1420 } 1421 1422 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1423 * value 1424 */ 1425 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1426 u32 cause) 1427 { 1428 int queue = fls(cause >> 8) - 1; 1429 1430 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1431 } 1432 1433 /* Drop packets received by the RXQ and free buffers */ 1434 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1435 struct mvneta_rx_queue *rxq) 1436 { 1437 int rx_done, i; 1438 1439 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1440 for (i = 0; i < rxq->size; i++) { 1441 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1442 void *data = (void *)rx_desc->buf_cookie; 1443 1444 mvneta_frag_free(pp, data); 1445 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1446 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1447 } 1448 1449 if (rx_done) 1450 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1451 } 1452 1453 /* Main rx processing */ 1454 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1455 struct mvneta_rx_queue *rxq) 1456 { 1457 struct net_device *dev = pp->dev; 1458 int rx_done, rx_filled; 1459 u32 rcvd_pkts = 0; 1460 u32 rcvd_bytes = 0; 1461 1462 /* Get number of received packets */ 1463 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1464 1465 if (rx_todo > rx_done) 1466 rx_todo = rx_done; 1467 1468 rx_done = 0; 1469 rx_filled = 0; 1470 1471 /* Fairness NAPI loop */ 1472 while (rx_done < rx_todo) { 1473 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1474 struct sk_buff *skb; 1475 unsigned char *data; 1476 u32 rx_status; 1477 int rx_bytes, err; 1478 1479 rx_done++; 1480 rx_filled++; 1481 rx_status = rx_desc->status; 1482 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1483 data = (unsigned char *)rx_desc->buf_cookie; 1484 1485 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1486 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1487 err_drop_frame: 1488 dev->stats.rx_errors++; 1489 mvneta_rx_error(pp, rx_desc); 1490 /* leave the descriptor untouched */ 1491 continue; 1492 } 1493 1494 if (rx_bytes <= rx_copybreak) { 1495 /* better copy a small frame and not unmap the DMA region */ 1496 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1497 if (unlikely(!skb)) 1498 goto err_drop_frame; 1499 1500 dma_sync_single_range_for_cpu(dev->dev.parent, 1501 rx_desc->buf_phys_addr, 1502 MVNETA_MH_SIZE + NET_SKB_PAD, 1503 rx_bytes, 1504 DMA_FROM_DEVICE); 1505 memcpy(skb_put(skb, rx_bytes), 1506 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1507 rx_bytes); 1508 1509 skb->protocol = eth_type_trans(skb, dev); 1510 mvneta_rx_csum(pp, rx_status, skb); 1511 napi_gro_receive(&pp->napi, skb); 1512 1513 rcvd_pkts++; 1514 rcvd_bytes += rx_bytes; 1515 1516 /* leave the descriptor and buffer untouched */ 1517 continue; 1518 } 1519 1520 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1521 if (!skb) 1522 goto err_drop_frame; 1523 1524 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr, 1525 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1526 1527 rcvd_pkts++; 1528 rcvd_bytes += rx_bytes; 1529 1530 /* Linux processing */ 1531 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1532 skb_put(skb, rx_bytes); 1533 1534 skb->protocol = eth_type_trans(skb, dev); 1535 1536 mvneta_rx_csum(pp, rx_status, skb); 1537 1538 napi_gro_receive(&pp->napi, skb); 1539 1540 /* Refill processing */ 1541 err = mvneta_rx_refill(pp, rx_desc); 1542 if (err) { 1543 netdev_err(dev, "Linux processing - Can't refill\n"); 1544 rxq->missed++; 1545 rx_filled--; 1546 } 1547 } 1548 1549 if (rcvd_pkts) { 1550 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1551 1552 u64_stats_update_begin(&stats->syncp); 1553 stats->rx_packets += rcvd_pkts; 1554 stats->rx_bytes += rcvd_bytes; 1555 u64_stats_update_end(&stats->syncp); 1556 } 1557 1558 /* Update rxq management counters */ 1559 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1560 1561 return rx_done; 1562 } 1563 1564 static inline void 1565 mvneta_tso_put_hdr(struct sk_buff *skb, 1566 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1567 { 1568 struct mvneta_tx_desc *tx_desc; 1569 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1570 1571 txq->tx_skb[txq->txq_put_index] = NULL; 1572 tx_desc = mvneta_txq_next_desc_get(txq); 1573 tx_desc->data_size = hdr_len; 1574 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1575 tx_desc->command |= MVNETA_TXD_F_DESC; 1576 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1577 txq->txq_put_index * TSO_HEADER_SIZE; 1578 mvneta_txq_inc_put(txq); 1579 } 1580 1581 static inline int 1582 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1583 struct sk_buff *skb, char *data, int size, 1584 bool last_tcp, bool is_last) 1585 { 1586 struct mvneta_tx_desc *tx_desc; 1587 1588 tx_desc = mvneta_txq_next_desc_get(txq); 1589 tx_desc->data_size = size; 1590 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1591 size, DMA_TO_DEVICE); 1592 if (unlikely(dma_mapping_error(dev->dev.parent, 1593 tx_desc->buf_phys_addr))) { 1594 mvneta_txq_desc_put(txq); 1595 return -ENOMEM; 1596 } 1597 1598 tx_desc->command = 0; 1599 txq->tx_skb[txq->txq_put_index] = NULL; 1600 1601 if (last_tcp) { 1602 /* last descriptor in the TCP packet */ 1603 tx_desc->command = MVNETA_TXD_L_DESC; 1604 1605 /* last descriptor in SKB */ 1606 if (is_last) 1607 txq->tx_skb[txq->txq_put_index] = skb; 1608 } 1609 mvneta_txq_inc_put(txq); 1610 return 0; 1611 } 1612 1613 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1614 struct mvneta_tx_queue *txq) 1615 { 1616 int total_len, data_left; 1617 int desc_count = 0; 1618 struct mvneta_port *pp = netdev_priv(dev); 1619 struct tso_t tso; 1620 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1621 int i; 1622 1623 /* Count needed descriptors */ 1624 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1625 return 0; 1626 1627 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1628 pr_info("*** Is this even possible???!?!?\n"); 1629 return 0; 1630 } 1631 1632 /* Initialize the TSO handler, and prepare the first payload */ 1633 tso_start(skb, &tso); 1634 1635 total_len = skb->len - hdr_len; 1636 while (total_len > 0) { 1637 char *hdr; 1638 1639 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1640 total_len -= data_left; 1641 desc_count++; 1642 1643 /* prepare packet headers: MAC + IP + TCP */ 1644 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1645 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1646 1647 mvneta_tso_put_hdr(skb, pp, txq); 1648 1649 while (data_left > 0) { 1650 int size; 1651 desc_count++; 1652 1653 size = min_t(int, tso.size, data_left); 1654 1655 if (mvneta_tso_put_data(dev, txq, skb, 1656 tso.data, size, 1657 size == data_left, 1658 total_len == 0)) 1659 goto err_release; 1660 data_left -= size; 1661 1662 tso_build_data(skb, &tso, size); 1663 } 1664 } 1665 1666 return desc_count; 1667 1668 err_release: 1669 /* Release all used data descriptors; header descriptors must not 1670 * be DMA-unmapped. 1671 */ 1672 for (i = desc_count - 1; i >= 0; i--) { 1673 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1674 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1675 dma_unmap_single(pp->dev->dev.parent, 1676 tx_desc->buf_phys_addr, 1677 tx_desc->data_size, 1678 DMA_TO_DEVICE); 1679 mvneta_txq_desc_put(txq); 1680 } 1681 return 0; 1682 } 1683 1684 /* Handle tx fragmentation processing */ 1685 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1686 struct mvneta_tx_queue *txq) 1687 { 1688 struct mvneta_tx_desc *tx_desc; 1689 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1690 1691 for (i = 0; i < nr_frags; i++) { 1692 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1693 void *addr = page_address(frag->page.p) + frag->page_offset; 1694 1695 tx_desc = mvneta_txq_next_desc_get(txq); 1696 tx_desc->data_size = frag->size; 1697 1698 tx_desc->buf_phys_addr = 1699 dma_map_single(pp->dev->dev.parent, addr, 1700 tx_desc->data_size, DMA_TO_DEVICE); 1701 1702 if (dma_mapping_error(pp->dev->dev.parent, 1703 tx_desc->buf_phys_addr)) { 1704 mvneta_txq_desc_put(txq); 1705 goto error; 1706 } 1707 1708 if (i == nr_frags - 1) { 1709 /* Last descriptor */ 1710 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1711 txq->tx_skb[txq->txq_put_index] = skb; 1712 } else { 1713 /* Descriptor in the middle: Not First, Not Last */ 1714 tx_desc->command = 0; 1715 txq->tx_skb[txq->txq_put_index] = NULL; 1716 } 1717 mvneta_txq_inc_put(txq); 1718 } 1719 1720 return 0; 1721 1722 error: 1723 /* Release all descriptors that were used to map fragments of 1724 * this packet, as well as the corresponding DMA mappings 1725 */ 1726 for (i = i - 1; i >= 0; i--) { 1727 tx_desc = txq->descs + i; 1728 dma_unmap_single(pp->dev->dev.parent, 1729 tx_desc->buf_phys_addr, 1730 tx_desc->data_size, 1731 DMA_TO_DEVICE); 1732 mvneta_txq_desc_put(txq); 1733 } 1734 1735 return -ENOMEM; 1736 } 1737 1738 /* Main tx processing */ 1739 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1740 { 1741 struct mvneta_port *pp = netdev_priv(dev); 1742 u16 txq_id = skb_get_queue_mapping(skb); 1743 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1744 struct mvneta_tx_desc *tx_desc; 1745 int len = skb->len; 1746 int frags = 0; 1747 u32 tx_cmd; 1748 1749 if (!netif_running(dev)) 1750 goto out; 1751 1752 if (skb_is_gso(skb)) { 1753 frags = mvneta_tx_tso(skb, dev, txq); 1754 goto out; 1755 } 1756 1757 frags = skb_shinfo(skb)->nr_frags + 1; 1758 1759 /* Get a descriptor for the first part of the packet */ 1760 tx_desc = mvneta_txq_next_desc_get(txq); 1761 1762 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1763 1764 tx_desc->data_size = skb_headlen(skb); 1765 1766 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1767 tx_desc->data_size, 1768 DMA_TO_DEVICE); 1769 if (unlikely(dma_mapping_error(dev->dev.parent, 1770 tx_desc->buf_phys_addr))) { 1771 mvneta_txq_desc_put(txq); 1772 frags = 0; 1773 goto out; 1774 } 1775 1776 if (frags == 1) { 1777 /* First and Last descriptor */ 1778 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1779 tx_desc->command = tx_cmd; 1780 txq->tx_skb[txq->txq_put_index] = skb; 1781 mvneta_txq_inc_put(txq); 1782 } else { 1783 /* First but not Last */ 1784 tx_cmd |= MVNETA_TXD_F_DESC; 1785 txq->tx_skb[txq->txq_put_index] = NULL; 1786 mvneta_txq_inc_put(txq); 1787 tx_desc->command = tx_cmd; 1788 /* Continue with other skb fragments */ 1789 if (mvneta_tx_frag_process(pp, skb, txq)) { 1790 dma_unmap_single(dev->dev.parent, 1791 tx_desc->buf_phys_addr, 1792 tx_desc->data_size, 1793 DMA_TO_DEVICE); 1794 mvneta_txq_desc_put(txq); 1795 frags = 0; 1796 goto out; 1797 } 1798 } 1799 1800 out: 1801 if (frags > 0) { 1802 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1803 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1804 1805 txq->count += frags; 1806 mvneta_txq_pend_desc_add(pp, txq, frags); 1807 1808 if (txq->count >= txq->tx_stop_threshold) 1809 netif_tx_stop_queue(nq); 1810 1811 u64_stats_update_begin(&stats->syncp); 1812 stats->tx_packets++; 1813 stats->tx_bytes += len; 1814 u64_stats_update_end(&stats->syncp); 1815 } else { 1816 dev->stats.tx_dropped++; 1817 dev_kfree_skb_any(skb); 1818 } 1819 1820 return NETDEV_TX_OK; 1821 } 1822 1823 1824 /* Free tx resources, when resetting a port */ 1825 static void mvneta_txq_done_force(struct mvneta_port *pp, 1826 struct mvneta_tx_queue *txq) 1827 1828 { 1829 int tx_done = txq->count; 1830 1831 mvneta_txq_bufs_free(pp, txq, tx_done); 1832 1833 /* reset txq */ 1834 txq->count = 0; 1835 txq->txq_put_index = 0; 1836 txq->txq_get_index = 0; 1837 } 1838 1839 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1840 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1841 */ 1842 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1843 { 1844 struct mvneta_tx_queue *txq; 1845 struct netdev_queue *nq; 1846 1847 while (cause_tx_done) { 1848 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1849 1850 nq = netdev_get_tx_queue(pp->dev, txq->id); 1851 __netif_tx_lock(nq, smp_processor_id()); 1852 1853 if (txq->count) 1854 mvneta_txq_done(pp, txq); 1855 1856 __netif_tx_unlock(nq); 1857 cause_tx_done &= ~((1 << txq->id)); 1858 } 1859 } 1860 1861 /* Compute crc8 of the specified address, using a unique algorithm , 1862 * according to hw spec, different than generic crc8 algorithm 1863 */ 1864 static int mvneta_addr_crc(unsigned char *addr) 1865 { 1866 int crc = 0; 1867 int i; 1868 1869 for (i = 0; i < ETH_ALEN; i++) { 1870 int j; 1871 1872 crc = (crc ^ addr[i]) << 8; 1873 for (j = 7; j >= 0; j--) { 1874 if (crc & (0x100 << j)) 1875 crc ^= 0x107 << j; 1876 } 1877 } 1878 1879 return crc; 1880 } 1881 1882 /* This method controls the net device special MAC multicast support. 1883 * The Special Multicast Table for MAC addresses supports MAC of the form 1884 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1885 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1886 * Table entries in the DA-Filter table. This method set the Special 1887 * Multicast Table appropriate entry. 1888 */ 1889 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1890 unsigned char last_byte, 1891 int queue) 1892 { 1893 unsigned int smc_table_reg; 1894 unsigned int tbl_offset; 1895 unsigned int reg_offset; 1896 1897 /* Register offset from SMC table base */ 1898 tbl_offset = (last_byte / 4); 1899 /* Entry offset within the above reg */ 1900 reg_offset = last_byte % 4; 1901 1902 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1903 + tbl_offset * 4)); 1904 1905 if (queue == -1) 1906 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1907 else { 1908 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1909 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1910 } 1911 1912 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1913 smc_table_reg); 1914 } 1915 1916 /* This method controls the network device Other MAC multicast support. 1917 * The Other Multicast Table is used for multicast of another type. 1918 * A CRC-8 is used as an index to the Other Multicast Table entries 1919 * in the DA-Filter table. 1920 * The method gets the CRC-8 value from the calling routine and 1921 * sets the Other Multicast Table appropriate entry according to the 1922 * specified CRC-8 . 1923 */ 1924 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1925 unsigned char crc8, 1926 int queue) 1927 { 1928 unsigned int omc_table_reg; 1929 unsigned int tbl_offset; 1930 unsigned int reg_offset; 1931 1932 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1933 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1934 1935 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1936 1937 if (queue == -1) { 1938 /* Clear accepts frame bit at specified Other DA table entry */ 1939 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1940 } else { 1941 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1942 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1943 } 1944 1945 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1946 } 1947 1948 /* The network device supports multicast using two tables: 1949 * 1) Special Multicast Table for MAC addresses of the form 1950 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1951 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1952 * Table entries in the DA-Filter table. 1953 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1954 * is used as an index to the Other Multicast Table entries in the 1955 * DA-Filter table. 1956 */ 1957 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1958 int queue) 1959 { 1960 unsigned char crc_result = 0; 1961 1962 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1963 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1964 return 0; 1965 } 1966 1967 crc_result = mvneta_addr_crc(p_addr); 1968 if (queue == -1) { 1969 if (pp->mcast_count[crc_result] == 0) { 1970 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1971 crc_result); 1972 return -EINVAL; 1973 } 1974 1975 pp->mcast_count[crc_result]--; 1976 if (pp->mcast_count[crc_result] != 0) { 1977 netdev_info(pp->dev, 1978 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1979 pp->mcast_count[crc_result], crc_result); 1980 return -EINVAL; 1981 } 1982 } else 1983 pp->mcast_count[crc_result]++; 1984 1985 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1986 1987 return 0; 1988 } 1989 1990 /* Configure Fitering mode of Ethernet port */ 1991 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1992 int is_promisc) 1993 { 1994 u32 port_cfg_reg, val; 1995 1996 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1997 1998 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1999 2000 /* Set / Clear UPM bit in port configuration register */ 2001 if (is_promisc) { 2002 /* Accept all Unicast addresses */ 2003 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2004 val |= MVNETA_FORCE_UNI; 2005 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2006 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2007 } else { 2008 /* Reject all Unicast addresses */ 2009 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2010 val &= ~MVNETA_FORCE_UNI; 2011 } 2012 2013 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2014 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2015 } 2016 2017 /* register unicast and multicast addresses */ 2018 static void mvneta_set_rx_mode(struct net_device *dev) 2019 { 2020 struct mvneta_port *pp = netdev_priv(dev); 2021 struct netdev_hw_addr *ha; 2022 2023 if (dev->flags & IFF_PROMISC) { 2024 /* Accept all: Multicast + Unicast */ 2025 mvneta_rx_unicast_promisc_set(pp, 1); 2026 mvneta_set_ucast_table(pp, rxq_def); 2027 mvneta_set_special_mcast_table(pp, rxq_def); 2028 mvneta_set_other_mcast_table(pp, rxq_def); 2029 } else { 2030 /* Accept single Unicast */ 2031 mvneta_rx_unicast_promisc_set(pp, 0); 2032 mvneta_set_ucast_table(pp, -1); 2033 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2034 2035 if (dev->flags & IFF_ALLMULTI) { 2036 /* Accept all multicast */ 2037 mvneta_set_special_mcast_table(pp, rxq_def); 2038 mvneta_set_other_mcast_table(pp, rxq_def); 2039 } else { 2040 /* Accept only initialized multicast */ 2041 mvneta_set_special_mcast_table(pp, -1); 2042 mvneta_set_other_mcast_table(pp, -1); 2043 2044 if (!netdev_mc_empty(dev)) { 2045 netdev_for_each_mc_addr(ha, dev) { 2046 mvneta_mcast_addr_set(pp, ha->addr, 2047 rxq_def); 2048 } 2049 } 2050 } 2051 } 2052 } 2053 2054 /* Interrupt handling - the callback for request_irq() */ 2055 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2056 { 2057 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2058 2059 /* Mask all interrupts */ 2060 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2061 2062 napi_schedule(&pp->napi); 2063 2064 return IRQ_HANDLED; 2065 } 2066 2067 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2068 struct phy_device *phy) 2069 { 2070 struct fixed_phy_status status; 2071 struct fixed_phy_status changed = {}; 2072 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2073 2074 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2075 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2076 status.speed = SPEED_1000; 2077 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2078 status.speed = SPEED_100; 2079 else 2080 status.speed = SPEED_10; 2081 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2082 changed.link = 1; 2083 changed.speed = 1; 2084 changed.duplex = 1; 2085 fixed_phy_update_state(phy, &status, &changed); 2086 return 0; 2087 } 2088 2089 /* NAPI handler 2090 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2091 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2092 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2093 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2094 * Each CPU has its own causeRxTx register 2095 */ 2096 static int mvneta_poll(struct napi_struct *napi, int budget) 2097 { 2098 int rx_done = 0; 2099 u32 cause_rx_tx; 2100 unsigned long flags; 2101 struct mvneta_port *pp = netdev_priv(napi->dev); 2102 2103 if (!netif_running(pp->dev)) { 2104 napi_complete(napi); 2105 return rx_done; 2106 } 2107 2108 /* Read cause register */ 2109 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2110 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2111 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2112 2113 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2114 if (pp->use_inband_status && (cause_misc & 2115 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2116 MVNETA_CAUSE_LINK_CHANGE | 2117 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2118 mvneta_fixed_link_update(pp, pp->phy_dev); 2119 } 2120 } 2121 2122 /* Release Tx descriptors */ 2123 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2124 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2125 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2126 } 2127 2128 /* For the case where the last mvneta_poll did not process all 2129 * RX packets 2130 */ 2131 cause_rx_tx |= pp->cause_rx_tx; 2132 if (rxq_number > 1) { 2133 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) { 2134 int count; 2135 struct mvneta_rx_queue *rxq; 2136 /* get rx queue number from cause_rx_tx */ 2137 rxq = mvneta_rx_policy(pp, cause_rx_tx); 2138 if (!rxq) 2139 break; 2140 2141 /* process the packet in that rx queue */ 2142 count = mvneta_rx(pp, budget, rxq); 2143 rx_done += count; 2144 budget -= count; 2145 if (budget > 0) { 2146 /* set off the rx bit of the 2147 * corresponding bit in the cause rx 2148 * tx register, so that next iteration 2149 * will find the next rx queue where 2150 * packets are received on 2151 */ 2152 cause_rx_tx &= ~((1 << rxq->id) << 8); 2153 } 2154 } 2155 } else { 2156 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2157 budget -= rx_done; 2158 } 2159 2160 if (budget > 0) { 2161 cause_rx_tx = 0; 2162 napi_complete(napi); 2163 local_irq_save(flags); 2164 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2165 MVNETA_RX_INTR_MASK(rxq_number) | 2166 MVNETA_TX_INTR_MASK(txq_number) | 2167 MVNETA_MISCINTR_INTR_MASK); 2168 local_irq_restore(flags); 2169 } 2170 2171 pp->cause_rx_tx = cause_rx_tx; 2172 return rx_done; 2173 } 2174 2175 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2176 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2177 int num) 2178 { 2179 int i; 2180 2181 for (i = 0; i < num; i++) { 2182 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2183 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2184 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2185 __func__, rxq->id, i, num); 2186 break; 2187 } 2188 } 2189 2190 /* Add this number of RX descriptors as non occupied (ready to 2191 * get packets) 2192 */ 2193 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2194 2195 return i; 2196 } 2197 2198 /* Free all packets pending transmit from all TXQs and reset TX port */ 2199 static void mvneta_tx_reset(struct mvneta_port *pp) 2200 { 2201 int queue; 2202 2203 /* free the skb's in the tx ring */ 2204 for (queue = 0; queue < txq_number; queue++) 2205 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2206 2207 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2208 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2209 } 2210 2211 static void mvneta_rx_reset(struct mvneta_port *pp) 2212 { 2213 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2214 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2215 } 2216 2217 /* Rx/Tx queue initialization/cleanup methods */ 2218 2219 /* Create a specified RX queue */ 2220 static int mvneta_rxq_init(struct mvneta_port *pp, 2221 struct mvneta_rx_queue *rxq) 2222 2223 { 2224 rxq->size = pp->rx_ring_size; 2225 2226 /* Allocate memory for RX descriptors */ 2227 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2228 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2229 &rxq->descs_phys, GFP_KERNEL); 2230 if (rxq->descs == NULL) 2231 return -ENOMEM; 2232 2233 BUG_ON(rxq->descs != 2234 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2235 2236 rxq->last_desc = rxq->size - 1; 2237 2238 /* Set Rx descriptors queue starting address */ 2239 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2240 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2241 2242 /* Set Offset */ 2243 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2244 2245 /* Set coalescing pkts and time */ 2246 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2247 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2248 2249 /* Fill RXQ with buffers from RX pool */ 2250 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2251 mvneta_rxq_bm_disable(pp, rxq); 2252 mvneta_rxq_fill(pp, rxq, rxq->size); 2253 2254 return 0; 2255 } 2256 2257 /* Cleanup Rx queue */ 2258 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2259 struct mvneta_rx_queue *rxq) 2260 { 2261 mvneta_rxq_drop_pkts(pp, rxq); 2262 2263 if (rxq->descs) 2264 dma_free_coherent(pp->dev->dev.parent, 2265 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2266 rxq->descs, 2267 rxq->descs_phys); 2268 2269 rxq->descs = NULL; 2270 rxq->last_desc = 0; 2271 rxq->next_desc_to_proc = 0; 2272 rxq->descs_phys = 0; 2273 } 2274 2275 /* Create and initialize a tx queue */ 2276 static int mvneta_txq_init(struct mvneta_port *pp, 2277 struct mvneta_tx_queue *txq) 2278 { 2279 txq->size = pp->tx_ring_size; 2280 2281 /* A queue must always have room for at least one skb. 2282 * Therefore, stop the queue when the free entries reaches 2283 * the maximum number of descriptors per skb. 2284 */ 2285 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2286 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2287 2288 2289 /* Allocate memory for TX descriptors */ 2290 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2291 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2292 &txq->descs_phys, GFP_KERNEL); 2293 if (txq->descs == NULL) 2294 return -ENOMEM; 2295 2296 /* Make sure descriptor address is cache line size aligned */ 2297 BUG_ON(txq->descs != 2298 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2299 2300 txq->last_desc = txq->size - 1; 2301 2302 /* Set maximum bandwidth for enabled TXQs */ 2303 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2304 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2305 2306 /* Set Tx descriptors queue starting address */ 2307 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2308 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2309 2310 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2311 if (txq->tx_skb == NULL) { 2312 dma_free_coherent(pp->dev->dev.parent, 2313 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2314 txq->descs, txq->descs_phys); 2315 return -ENOMEM; 2316 } 2317 2318 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2319 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2320 txq->size * TSO_HEADER_SIZE, 2321 &txq->tso_hdrs_phys, GFP_KERNEL); 2322 if (txq->tso_hdrs == NULL) { 2323 kfree(txq->tx_skb); 2324 dma_free_coherent(pp->dev->dev.parent, 2325 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2326 txq->descs, txq->descs_phys); 2327 return -ENOMEM; 2328 } 2329 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2330 2331 return 0; 2332 } 2333 2334 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2335 static void mvneta_txq_deinit(struct mvneta_port *pp, 2336 struct mvneta_tx_queue *txq) 2337 { 2338 kfree(txq->tx_skb); 2339 2340 if (txq->tso_hdrs) 2341 dma_free_coherent(pp->dev->dev.parent, 2342 txq->size * TSO_HEADER_SIZE, 2343 txq->tso_hdrs, txq->tso_hdrs_phys); 2344 if (txq->descs) 2345 dma_free_coherent(pp->dev->dev.parent, 2346 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2347 txq->descs, txq->descs_phys); 2348 2349 txq->descs = NULL; 2350 txq->last_desc = 0; 2351 txq->next_desc_to_proc = 0; 2352 txq->descs_phys = 0; 2353 2354 /* Set minimum bandwidth for disabled TXQs */ 2355 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2356 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2357 2358 /* Set Tx descriptors queue starting address and size */ 2359 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2360 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2361 } 2362 2363 /* Cleanup all Tx queues */ 2364 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2365 { 2366 int queue; 2367 2368 for (queue = 0; queue < txq_number; queue++) 2369 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2370 } 2371 2372 /* Cleanup all Rx queues */ 2373 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2374 { 2375 int queue; 2376 2377 for (queue = 0; queue < rxq_number; queue++) 2378 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2379 } 2380 2381 2382 /* Init all Rx queues */ 2383 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2384 { 2385 int queue; 2386 2387 for (queue = 0; queue < rxq_number; queue++) { 2388 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2389 if (err) { 2390 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2391 __func__, queue); 2392 mvneta_cleanup_rxqs(pp); 2393 return err; 2394 } 2395 } 2396 2397 return 0; 2398 } 2399 2400 /* Init all tx queues */ 2401 static int mvneta_setup_txqs(struct mvneta_port *pp) 2402 { 2403 int queue; 2404 2405 for (queue = 0; queue < txq_number; queue++) { 2406 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2407 if (err) { 2408 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2409 __func__, queue); 2410 mvneta_cleanup_txqs(pp); 2411 return err; 2412 } 2413 } 2414 2415 return 0; 2416 } 2417 2418 static void mvneta_start_dev(struct mvneta_port *pp) 2419 { 2420 mvneta_max_rx_size_set(pp, pp->pkt_size); 2421 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2422 2423 /* start the Rx/Tx activity */ 2424 mvneta_port_enable(pp); 2425 2426 /* Enable polling on the port */ 2427 napi_enable(&pp->napi); 2428 2429 /* Unmask interrupts */ 2430 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2431 MVNETA_RX_INTR_MASK(rxq_number) | 2432 MVNETA_TX_INTR_MASK(txq_number) | 2433 MVNETA_MISCINTR_INTR_MASK); 2434 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2435 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2436 MVNETA_CAUSE_LINK_CHANGE | 2437 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2438 2439 phy_start(pp->phy_dev); 2440 netif_tx_start_all_queues(pp->dev); 2441 } 2442 2443 static void mvneta_stop_dev(struct mvneta_port *pp) 2444 { 2445 phy_stop(pp->phy_dev); 2446 2447 napi_disable(&pp->napi); 2448 2449 netif_carrier_off(pp->dev); 2450 2451 mvneta_port_down(pp); 2452 netif_tx_stop_all_queues(pp->dev); 2453 2454 /* Stop the port activity */ 2455 mvneta_port_disable(pp); 2456 2457 /* Clear all ethernet port interrupts */ 2458 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2459 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2460 2461 /* Mask all ethernet port interrupts */ 2462 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2463 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2464 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2465 2466 mvneta_tx_reset(pp); 2467 mvneta_rx_reset(pp); 2468 } 2469 2470 /* Return positive if MTU is valid */ 2471 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2472 { 2473 if (mtu < 68) { 2474 netdev_err(dev, "cannot change mtu to less than 68\n"); 2475 return -EINVAL; 2476 } 2477 2478 /* 9676 == 9700 - 20 and rounding to 8 */ 2479 if (mtu > 9676) { 2480 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2481 mtu = 9676; 2482 } 2483 2484 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2485 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2486 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2487 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2488 } 2489 2490 return mtu; 2491 } 2492 2493 /* Change the device mtu */ 2494 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2495 { 2496 struct mvneta_port *pp = netdev_priv(dev); 2497 int ret; 2498 2499 mtu = mvneta_check_mtu_valid(dev, mtu); 2500 if (mtu < 0) 2501 return -EINVAL; 2502 2503 dev->mtu = mtu; 2504 2505 if (!netif_running(dev)) 2506 return 0; 2507 2508 /* The interface is running, so we have to force a 2509 * reallocation of the queues 2510 */ 2511 mvneta_stop_dev(pp); 2512 2513 mvneta_cleanup_txqs(pp); 2514 mvneta_cleanup_rxqs(pp); 2515 2516 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2517 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2518 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2519 2520 ret = mvneta_setup_rxqs(pp); 2521 if (ret) { 2522 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2523 return ret; 2524 } 2525 2526 ret = mvneta_setup_txqs(pp); 2527 if (ret) { 2528 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2529 return ret; 2530 } 2531 2532 mvneta_start_dev(pp); 2533 mvneta_port_up(pp); 2534 2535 return 0; 2536 } 2537 2538 /* Get mac address */ 2539 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2540 { 2541 u32 mac_addr_l, mac_addr_h; 2542 2543 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2544 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2545 addr[0] = (mac_addr_h >> 24) & 0xFF; 2546 addr[1] = (mac_addr_h >> 16) & 0xFF; 2547 addr[2] = (mac_addr_h >> 8) & 0xFF; 2548 addr[3] = mac_addr_h & 0xFF; 2549 addr[4] = (mac_addr_l >> 8) & 0xFF; 2550 addr[5] = mac_addr_l & 0xFF; 2551 } 2552 2553 /* Handle setting mac address */ 2554 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2555 { 2556 struct mvneta_port *pp = netdev_priv(dev); 2557 struct sockaddr *sockaddr = addr; 2558 int ret; 2559 2560 ret = eth_prepare_mac_addr_change(dev, addr); 2561 if (ret < 0) 2562 return ret; 2563 /* Remove previous address table entry */ 2564 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2565 2566 /* Set new addr in hw */ 2567 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2568 2569 eth_commit_mac_addr_change(dev, addr); 2570 return 0; 2571 } 2572 2573 static void mvneta_adjust_link(struct net_device *ndev) 2574 { 2575 struct mvneta_port *pp = netdev_priv(ndev); 2576 struct phy_device *phydev = pp->phy_dev; 2577 int status_change = 0; 2578 2579 if (phydev->link) { 2580 if ((pp->speed != phydev->speed) || 2581 (pp->duplex != phydev->duplex)) { 2582 u32 val; 2583 2584 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2585 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2586 MVNETA_GMAC_CONFIG_GMII_SPEED | 2587 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2588 2589 if (phydev->duplex) 2590 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2591 2592 if (phydev->speed == SPEED_1000) 2593 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2594 else if (phydev->speed == SPEED_100) 2595 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2596 2597 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2598 2599 pp->duplex = phydev->duplex; 2600 pp->speed = phydev->speed; 2601 } 2602 } 2603 2604 if (phydev->link != pp->link) { 2605 if (!phydev->link) { 2606 pp->duplex = -1; 2607 pp->speed = 0; 2608 } 2609 2610 pp->link = phydev->link; 2611 status_change = 1; 2612 } 2613 2614 if (status_change) { 2615 if (phydev->link) { 2616 if (!pp->use_inband_status) { 2617 u32 val = mvreg_read(pp, 2618 MVNETA_GMAC_AUTONEG_CONFIG); 2619 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2620 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2621 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2622 val); 2623 } 2624 mvneta_port_up(pp); 2625 } else { 2626 if (!pp->use_inband_status) { 2627 u32 val = mvreg_read(pp, 2628 MVNETA_GMAC_AUTONEG_CONFIG); 2629 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2630 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2631 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2632 val); 2633 } 2634 mvneta_port_down(pp); 2635 } 2636 phy_print_status(phydev); 2637 } 2638 } 2639 2640 static int mvneta_mdio_probe(struct mvneta_port *pp) 2641 { 2642 struct phy_device *phy_dev; 2643 2644 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2645 pp->phy_interface); 2646 if (!phy_dev) { 2647 netdev_err(pp->dev, "could not find the PHY\n"); 2648 return -ENODEV; 2649 } 2650 2651 phy_dev->supported &= PHY_GBIT_FEATURES; 2652 phy_dev->advertising = phy_dev->supported; 2653 2654 pp->phy_dev = phy_dev; 2655 pp->link = 0; 2656 pp->duplex = 0; 2657 pp->speed = 0; 2658 2659 return 0; 2660 } 2661 2662 static void mvneta_mdio_remove(struct mvneta_port *pp) 2663 { 2664 phy_disconnect(pp->phy_dev); 2665 pp->phy_dev = NULL; 2666 } 2667 2668 static int mvneta_open(struct net_device *dev) 2669 { 2670 struct mvneta_port *pp = netdev_priv(dev); 2671 int ret; 2672 2673 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2674 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2675 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2676 2677 ret = mvneta_setup_rxqs(pp); 2678 if (ret) 2679 return ret; 2680 2681 ret = mvneta_setup_txqs(pp); 2682 if (ret) 2683 goto err_cleanup_rxqs; 2684 2685 /* Connect to port interrupt line */ 2686 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2687 MVNETA_DRIVER_NAME, pp); 2688 if (ret) { 2689 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2690 goto err_cleanup_txqs; 2691 } 2692 2693 /* In default link is down */ 2694 netif_carrier_off(pp->dev); 2695 2696 ret = mvneta_mdio_probe(pp); 2697 if (ret < 0) { 2698 netdev_err(dev, "cannot probe MDIO bus\n"); 2699 goto err_free_irq; 2700 } 2701 2702 mvneta_start_dev(pp); 2703 2704 return 0; 2705 2706 err_free_irq: 2707 free_irq(pp->dev->irq, pp); 2708 err_cleanup_txqs: 2709 mvneta_cleanup_txqs(pp); 2710 err_cleanup_rxqs: 2711 mvneta_cleanup_rxqs(pp); 2712 return ret; 2713 } 2714 2715 /* Stop the port, free port interrupt line */ 2716 static int mvneta_stop(struct net_device *dev) 2717 { 2718 struct mvneta_port *pp = netdev_priv(dev); 2719 2720 mvneta_stop_dev(pp); 2721 mvneta_mdio_remove(pp); 2722 free_irq(dev->irq, pp); 2723 mvneta_cleanup_rxqs(pp); 2724 mvneta_cleanup_txqs(pp); 2725 2726 return 0; 2727 } 2728 2729 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2730 { 2731 struct mvneta_port *pp = netdev_priv(dev); 2732 2733 if (!pp->phy_dev) 2734 return -ENOTSUPP; 2735 2736 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2737 } 2738 2739 /* Ethtool methods */ 2740 2741 /* Get settings (phy address, speed) for ethtools */ 2742 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2743 { 2744 struct mvneta_port *pp = netdev_priv(dev); 2745 2746 if (!pp->phy_dev) 2747 return -ENODEV; 2748 2749 return phy_ethtool_gset(pp->phy_dev, cmd); 2750 } 2751 2752 /* Set settings (phy address, speed) for ethtools */ 2753 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2754 { 2755 struct mvneta_port *pp = netdev_priv(dev); 2756 2757 if (!pp->phy_dev) 2758 return -ENODEV; 2759 2760 return phy_ethtool_sset(pp->phy_dev, cmd); 2761 } 2762 2763 /* Set interrupt coalescing for ethtools */ 2764 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2765 struct ethtool_coalesce *c) 2766 { 2767 struct mvneta_port *pp = netdev_priv(dev); 2768 int queue; 2769 2770 for (queue = 0; queue < rxq_number; queue++) { 2771 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2772 rxq->time_coal = c->rx_coalesce_usecs; 2773 rxq->pkts_coal = c->rx_max_coalesced_frames; 2774 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2775 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2776 } 2777 2778 for (queue = 0; queue < txq_number; queue++) { 2779 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2780 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2781 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2782 } 2783 2784 return 0; 2785 } 2786 2787 /* get coalescing for ethtools */ 2788 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2789 struct ethtool_coalesce *c) 2790 { 2791 struct mvneta_port *pp = netdev_priv(dev); 2792 2793 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2794 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2795 2796 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2797 return 0; 2798 } 2799 2800 2801 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2802 struct ethtool_drvinfo *drvinfo) 2803 { 2804 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2805 sizeof(drvinfo->driver)); 2806 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2807 sizeof(drvinfo->version)); 2808 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2809 sizeof(drvinfo->bus_info)); 2810 } 2811 2812 2813 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2814 struct ethtool_ringparam *ring) 2815 { 2816 struct mvneta_port *pp = netdev_priv(netdev); 2817 2818 ring->rx_max_pending = MVNETA_MAX_RXD; 2819 ring->tx_max_pending = MVNETA_MAX_TXD; 2820 ring->rx_pending = pp->rx_ring_size; 2821 ring->tx_pending = pp->tx_ring_size; 2822 } 2823 2824 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2825 struct ethtool_ringparam *ring) 2826 { 2827 struct mvneta_port *pp = netdev_priv(dev); 2828 2829 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2830 return -EINVAL; 2831 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2832 ring->rx_pending : MVNETA_MAX_RXD; 2833 2834 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 2835 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 2836 if (pp->tx_ring_size != ring->tx_pending) 2837 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 2838 pp->tx_ring_size, ring->tx_pending); 2839 2840 if (netif_running(dev)) { 2841 mvneta_stop(dev); 2842 if (mvneta_open(dev)) { 2843 netdev_err(dev, 2844 "error on opening device after ring param change\n"); 2845 return -ENOMEM; 2846 } 2847 } 2848 2849 return 0; 2850 } 2851 2852 static const struct net_device_ops mvneta_netdev_ops = { 2853 .ndo_open = mvneta_open, 2854 .ndo_stop = mvneta_stop, 2855 .ndo_start_xmit = mvneta_tx, 2856 .ndo_set_rx_mode = mvneta_set_rx_mode, 2857 .ndo_set_mac_address = mvneta_set_mac_addr, 2858 .ndo_change_mtu = mvneta_change_mtu, 2859 .ndo_get_stats64 = mvneta_get_stats64, 2860 .ndo_do_ioctl = mvneta_ioctl, 2861 }; 2862 2863 const struct ethtool_ops mvneta_eth_tool_ops = { 2864 .get_link = ethtool_op_get_link, 2865 .get_settings = mvneta_ethtool_get_settings, 2866 .set_settings = mvneta_ethtool_set_settings, 2867 .set_coalesce = mvneta_ethtool_set_coalesce, 2868 .get_coalesce = mvneta_ethtool_get_coalesce, 2869 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2870 .get_ringparam = mvneta_ethtool_get_ringparam, 2871 .set_ringparam = mvneta_ethtool_set_ringparam, 2872 }; 2873 2874 /* Initialize hw */ 2875 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 2876 { 2877 int queue; 2878 2879 /* Disable port */ 2880 mvneta_port_disable(pp); 2881 2882 /* Set port default values */ 2883 mvneta_defaults_set(pp); 2884 2885 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 2886 GFP_KERNEL); 2887 if (!pp->txqs) 2888 return -ENOMEM; 2889 2890 /* Initialize TX descriptor rings */ 2891 for (queue = 0; queue < txq_number; queue++) { 2892 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2893 txq->id = queue; 2894 txq->size = pp->tx_ring_size; 2895 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2896 } 2897 2898 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 2899 GFP_KERNEL); 2900 if (!pp->rxqs) 2901 return -ENOMEM; 2902 2903 /* Create Rx descriptor rings */ 2904 for (queue = 0; queue < rxq_number; queue++) { 2905 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2906 rxq->id = queue; 2907 rxq->size = pp->rx_ring_size; 2908 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2909 rxq->time_coal = MVNETA_RX_COAL_USEC; 2910 } 2911 2912 return 0; 2913 } 2914 2915 /* platform glue : initialize decoding windows */ 2916 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2917 const struct mbus_dram_target_info *dram) 2918 { 2919 u32 win_enable; 2920 u32 win_protect; 2921 int i; 2922 2923 for (i = 0; i < 6; i++) { 2924 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2925 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2926 2927 if (i < 4) 2928 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2929 } 2930 2931 win_enable = 0x3f; 2932 win_protect = 0; 2933 2934 for (i = 0; i < dram->num_cs; i++) { 2935 const struct mbus_dram_window *cs = dram->cs + i; 2936 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2937 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2938 2939 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2940 (cs->size - 1) & 0xffff0000); 2941 2942 win_enable &= ~(1 << i); 2943 win_protect |= 3 << (2 * i); 2944 } 2945 2946 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2947 } 2948 2949 /* Power up the port */ 2950 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2951 { 2952 u32 ctrl; 2953 2954 /* MAC Cause register should be cleared */ 2955 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2956 2957 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2958 2959 /* Even though it might look weird, when we're configured in 2960 * SGMII or QSGMII mode, the RGMII bit needs to be set. 2961 */ 2962 switch(phy_mode) { 2963 case PHY_INTERFACE_MODE_QSGMII: 2964 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 2965 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2966 break; 2967 case PHY_INTERFACE_MODE_SGMII: 2968 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 2969 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2970 break; 2971 case PHY_INTERFACE_MODE_RGMII: 2972 case PHY_INTERFACE_MODE_RGMII_ID: 2973 ctrl |= MVNETA_GMAC2_PORT_RGMII; 2974 break; 2975 default: 2976 return -EINVAL; 2977 } 2978 2979 if (pp->use_inband_status) 2980 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE; 2981 2982 /* Cancel Port Reset */ 2983 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 2984 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 2985 2986 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2987 MVNETA_GMAC2_PORT_RESET) != 0) 2988 continue; 2989 2990 return 0; 2991 } 2992 2993 /* Device initialization routine */ 2994 static int mvneta_probe(struct platform_device *pdev) 2995 { 2996 const struct mbus_dram_target_info *dram_target_info; 2997 struct resource *res; 2998 struct device_node *dn = pdev->dev.of_node; 2999 struct device_node *phy_node; 3000 struct mvneta_port *pp; 3001 struct net_device *dev; 3002 const char *dt_mac_addr; 3003 char hw_mac_addr[ETH_ALEN]; 3004 const char *mac_from; 3005 int phy_mode; 3006 int fixed_phy = 0; 3007 int err; 3008 3009 /* Our multiqueue support is not complete, so for now, only 3010 * allow the usage of the first RX queue 3011 */ 3012 if (rxq_def != 0) { 3013 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 3014 return -EINVAL; 3015 } 3016 3017 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3018 if (!dev) 3019 return -ENOMEM; 3020 3021 dev->irq = irq_of_parse_and_map(dn, 0); 3022 if (dev->irq == 0) { 3023 err = -EINVAL; 3024 goto err_free_netdev; 3025 } 3026 3027 phy_node = of_parse_phandle(dn, "phy", 0); 3028 if (!phy_node) { 3029 if (!of_phy_is_fixed_link(dn)) { 3030 dev_err(&pdev->dev, "no PHY specified\n"); 3031 err = -ENODEV; 3032 goto err_free_irq; 3033 } 3034 3035 err = of_phy_register_fixed_link(dn); 3036 if (err < 0) { 3037 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3038 goto err_free_irq; 3039 } 3040 fixed_phy = 1; 3041 3042 /* In the case of a fixed PHY, the DT node associated 3043 * to the PHY is the Ethernet MAC DT node. 3044 */ 3045 phy_node = of_node_get(dn); 3046 } 3047 3048 phy_mode = of_get_phy_mode(dn); 3049 if (phy_mode < 0) { 3050 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3051 err = -EINVAL; 3052 goto err_put_phy_node; 3053 } 3054 3055 dev->tx_queue_len = MVNETA_MAX_TXD; 3056 dev->watchdog_timeo = 5 * HZ; 3057 dev->netdev_ops = &mvneta_netdev_ops; 3058 3059 dev->ethtool_ops = &mvneta_eth_tool_ops; 3060 3061 pp = netdev_priv(dev); 3062 pp->phy_node = phy_node; 3063 pp->phy_interface = phy_mode; 3064 pp->use_inband_status = (phy_mode == PHY_INTERFACE_MODE_SGMII) && 3065 fixed_phy; 3066 3067 pp->clk = devm_clk_get(&pdev->dev, NULL); 3068 if (IS_ERR(pp->clk)) { 3069 err = PTR_ERR(pp->clk); 3070 goto err_put_phy_node; 3071 } 3072 3073 clk_prepare_enable(pp->clk); 3074 3075 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3076 pp->base = devm_ioremap_resource(&pdev->dev, res); 3077 if (IS_ERR(pp->base)) { 3078 err = PTR_ERR(pp->base); 3079 goto err_clk; 3080 } 3081 3082 /* Alloc per-cpu stats */ 3083 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3084 if (!pp->stats) { 3085 err = -ENOMEM; 3086 goto err_clk; 3087 } 3088 3089 dt_mac_addr = of_get_mac_address(dn); 3090 if (dt_mac_addr) { 3091 mac_from = "device tree"; 3092 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3093 } else { 3094 mvneta_get_mac_addr(pp, hw_mac_addr); 3095 if (is_valid_ether_addr(hw_mac_addr)) { 3096 mac_from = "hardware"; 3097 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3098 } else { 3099 mac_from = "random"; 3100 eth_hw_addr_random(dev); 3101 } 3102 } 3103 3104 pp->tx_ring_size = MVNETA_MAX_TXD; 3105 pp->rx_ring_size = MVNETA_MAX_RXD; 3106 3107 pp->dev = dev; 3108 SET_NETDEV_DEV(dev, &pdev->dev); 3109 3110 err = mvneta_init(&pdev->dev, pp); 3111 if (err < 0) 3112 goto err_free_stats; 3113 3114 err = mvneta_port_power_up(pp, phy_mode); 3115 if (err < 0) { 3116 dev_err(&pdev->dev, "can't power up port\n"); 3117 goto err_free_stats; 3118 } 3119 3120 dram_target_info = mv_mbus_dram_info(); 3121 if (dram_target_info) 3122 mvneta_conf_mbus_windows(pp, dram_target_info); 3123 3124 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3125 3126 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3127 dev->hw_features |= dev->features; 3128 dev->vlan_features |= dev->features; 3129 dev->priv_flags |= IFF_UNICAST_FLT; 3130 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3131 3132 err = register_netdev(dev); 3133 if (err < 0) { 3134 dev_err(&pdev->dev, "failed to register\n"); 3135 goto err_free_stats; 3136 } 3137 3138 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3139 dev->dev_addr); 3140 3141 platform_set_drvdata(pdev, pp->dev); 3142 3143 if (pp->use_inband_status) { 3144 struct phy_device *phy = of_phy_find_device(dn); 3145 3146 mvneta_fixed_link_update(pp, phy); 3147 } 3148 3149 return 0; 3150 3151 err_free_stats: 3152 free_percpu(pp->stats); 3153 err_clk: 3154 clk_disable_unprepare(pp->clk); 3155 err_put_phy_node: 3156 of_node_put(phy_node); 3157 err_free_irq: 3158 irq_dispose_mapping(dev->irq); 3159 err_free_netdev: 3160 free_netdev(dev); 3161 return err; 3162 } 3163 3164 /* Device removal routine */ 3165 static int mvneta_remove(struct platform_device *pdev) 3166 { 3167 struct net_device *dev = platform_get_drvdata(pdev); 3168 struct mvneta_port *pp = netdev_priv(dev); 3169 3170 unregister_netdev(dev); 3171 clk_disable_unprepare(pp->clk); 3172 free_percpu(pp->stats); 3173 irq_dispose_mapping(dev->irq); 3174 of_node_put(pp->phy_node); 3175 free_netdev(dev); 3176 3177 return 0; 3178 } 3179 3180 static const struct of_device_id mvneta_match[] = { 3181 { .compatible = "marvell,armada-370-neta" }, 3182 { } 3183 }; 3184 MODULE_DEVICE_TABLE(of, mvneta_match); 3185 3186 static struct platform_driver mvneta_driver = { 3187 .probe = mvneta_probe, 3188 .remove = mvneta_remove, 3189 .driver = { 3190 .name = MVNETA_DRIVER_NAME, 3191 .of_match_table = mvneta_match, 3192 }, 3193 }; 3194 3195 module_platform_driver(mvneta_driver); 3196 3197 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3198 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3199 MODULE_LICENSE("GPL"); 3200 3201 module_param(rxq_number, int, S_IRUGO); 3202 module_param(txq_number, int, S_IRUGO); 3203 3204 module_param(rxq_def, int, S_IRUGO); 3205 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3206