1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/phy_fixed.h>
32 #include <linux/platform_device.h>
33 #include <linux/skbuff.h>
34 #include <net/hwbm.h>
35 #include "mvneta_bm.h"
36 #include <net/ip.h>
37 #include <net/ipv6.h>
38 #include <net/tso.h>
39 
40 /* Registers */
41 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
42 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
43 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
44 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
45 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
46 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
47 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
48 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
49 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
50 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
51 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
52 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
53 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
54 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
55 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
56 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
63 #define MVNETA_PORT_RX_RESET                    0x1cc0
64 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
65 #define MVNETA_PHY_ADDR                         0x2000
66 #define      MVNETA_PHY_ADDR_MASK               0x1f
67 #define MVNETA_MBUS_RETRY                       0x2010
68 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
69 #define MVNETA_UNIT_CONTROL                     0x20B0
70 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
71 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
72 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
73 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
74 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
75 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
76 #define MVNETA_PORT_CONFIG                      0x2400
77 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
78 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
79 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
80 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
81 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
82 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
83 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
84 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
85 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
86 						 MVNETA_DEF_RXQ_ARP(q)	 | \
87 						 MVNETA_DEF_RXQ_TCP(q)	 | \
88 						 MVNETA_DEF_RXQ_UDP(q)	 | \
89 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
90 						 MVNETA_TX_UNSET_ERR_SUM | \
91 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
92 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
93 #define MVNETA_MAC_ADDR_LOW                      0x2414
94 #define MVNETA_MAC_ADDR_HIGH                     0x2418
95 #define MVNETA_SDMA_CONFIG                       0x241c
96 #define      MVNETA_SDMA_BRST_SIZE_16            4
97 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
98 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
99 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
100 #define      MVNETA_DESC_SWAP                    BIT(6)
101 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
102 #define MVNETA_PORT_STATUS                       0x2444
103 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
104 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
105 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
106 #define MVNETA_SERDES_CFG			 0x24A0
107 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
108 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
109 #define MVNETA_TYPE_PRIO                         0x24bc
110 #define      MVNETA_FORCE_UNI                    BIT(21)
111 #define MVNETA_TXQ_CMD_1                         0x24e4
112 #define MVNETA_TXQ_CMD                           0x2448
113 #define      MVNETA_TXQ_DISABLE_SHIFT            8
114 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
115 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
116 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
117 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
118 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
119 #define MVNETA_ACC_MODE                          0x2500
120 #define MVNETA_BM_ADDRESS                        0x2504
121 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
122 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
123 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
124 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
125 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
126 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
127 
128 /* Exception Interrupt Port/Queue Cause register
129  *
130  * Their behavior depend of the mapping done using the PCPX2Q
131  * registers. For a given CPU if the bit associated to a queue is not
132  * set, then for the register a read from this CPU will always return
133  * 0 and a write won't do anything
134  */
135 
136 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
137 #define MVNETA_INTR_NEW_MASK                     0x25a4
138 
139 /* bits  0..7  = TXQ SENT, one bit per queue.
140  * bits  8..15 = RXQ OCCUP, one bit per queue.
141  * bits 16..23 = RXQ FREE, one bit per queue.
142  * bit  29 = OLD_REG_SUM, see old reg ?
143  * bit  30 = TX_ERR_SUM, one bit for 4 ports
144  * bit  31 = MISC_SUM,   one bit for 4 ports
145  */
146 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
147 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
148 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
149 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
150 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
151 
152 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
153 #define MVNETA_INTR_OLD_MASK                     0x25ac
154 
155 /* Data Path Port/Queue Cause Register */
156 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
157 #define MVNETA_INTR_MISC_MASK                    0x25b4
158 
159 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
160 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
161 #define      MVNETA_CAUSE_PTP                    BIT(4)
162 
163 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
164 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
165 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
166 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
167 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
168 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
169 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
170 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
171 
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
175 
176 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
177 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
178 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
179 
180 #define MVNETA_INTR_ENABLE                       0x25b8
181 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
182 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
183 
184 #define MVNETA_RXQ_CMD                           0x2680
185 #define      MVNETA_RXQ_DISABLE_SHIFT            8
186 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
187 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
188 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
189 #define MVNETA_GMAC_CTRL_0                       0x2c00
190 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
191 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
192 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
193 #define MVNETA_GMAC_CTRL_2                       0x2c08
194 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
195 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
196 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
197 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
198 #define MVNETA_GMAC_STATUS                       0x2c10
199 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
200 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
201 #define      MVNETA_GMAC_SPEED_100               BIT(2)
202 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
203 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
204 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
205 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
206 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
207 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
208 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
209 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
210 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
211 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
212 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
213 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
214 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
215 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
216 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
217 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
218 #define      MVNETA_MIB_LATE_COLLISION           0x7c
219 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
220 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
221 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
222 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
223 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
224 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
225 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
226 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
227 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
228 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
229 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
230 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
231 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
232 #define MVNETA_PORT_TX_RESET                     0x3cf0
233 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
234 #define MVNETA_TX_MTU                            0x3e0c
235 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
236 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
238 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
239 
240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
241 
242 /* Descriptor ring Macros */
243 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
244 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
245 
246 /* Various constants */
247 
248 /* Coalescing */
249 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
250 #define MVNETA_RX_COAL_PKTS		32
251 #define MVNETA_RX_COAL_USEC		100
252 
253 /* The two bytes Marvell header. Either contains a special value used
254  * by Marvell switches when a specific hardware mode is enabled (not
255  * supported by this driver) or is filled automatically by zeroes on
256  * the RX side. Those two bytes being at the front of the Ethernet
257  * header, they allow to have the IP header aligned on a 4 bytes
258  * boundary automatically: the hardware skips those two bytes on its
259  * own.
260  */
261 #define MVNETA_MH_SIZE			2
262 
263 #define MVNETA_VLAN_TAG_LEN             4
264 
265 #define MVNETA_TX_CSUM_DEF_SIZE		1600
266 #define MVNETA_TX_CSUM_MAX_SIZE		9800
267 #define MVNETA_ACC_MODE_EXT1		1
268 #define MVNETA_ACC_MODE_EXT2		2
269 
270 #define MVNETA_MAX_DECODE_WIN		6
271 
272 /* Timeout constants */
273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
276 
277 #define MVNETA_TX_MTU_MAX		0x3ffff
278 
279 /* The RSS lookup table actually has 256 entries but we do not use
280  * them yet
281  */
282 #define MVNETA_RSS_LU_TABLE_SIZE	1
283 
284 /* TSO header size */
285 #define TSO_HEADER_SIZE 128
286 
287 /* Max number of Rx descriptors */
288 #define MVNETA_MAX_RXD 128
289 
290 /* Max number of Tx descriptors */
291 #define MVNETA_MAX_TXD 532
292 
293 /* Max number of allowed TCP segments for software TSO */
294 #define MVNETA_MAX_TSO_SEGS 100
295 
296 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
297 
298 /* descriptor aligned size */
299 #define MVNETA_DESC_ALIGNED_SIZE	32
300 
301 /* Number of bytes to be taken into account by HW when putting incoming data
302  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
303  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
304  */
305 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
306 
307 #define MVNETA_RX_PKT_SIZE(mtu) \
308 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
309 	      ETH_HLEN + ETH_FCS_LEN,			     \
310 	      cache_line_size())
311 
312 #define IS_TSO_HEADER(txq, addr) \
313 	((addr >= txq->tso_hdrs_phys) && \
314 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
315 
316 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
317 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
318 
319 struct mvneta_statistic {
320 	unsigned short offset;
321 	unsigned short type;
322 	const char name[ETH_GSTRING_LEN];
323 };
324 
325 #define T_REG_32	32
326 #define T_REG_64	64
327 
328 static const struct mvneta_statistic mvneta_statistics[] = {
329 	{ 0x3000, T_REG_64, "good_octets_received", },
330 	{ 0x3010, T_REG_32, "good_frames_received", },
331 	{ 0x3008, T_REG_32, "bad_octets_received", },
332 	{ 0x3014, T_REG_32, "bad_frames_received", },
333 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
334 	{ 0x301c, T_REG_32, "multicast_frames_received", },
335 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
336 	{ 0x3058, T_REG_32, "good_fc_received", },
337 	{ 0x305c, T_REG_32, "bad_fc_received", },
338 	{ 0x3060, T_REG_32, "undersize_received", },
339 	{ 0x3064, T_REG_32, "fragments_received", },
340 	{ 0x3068, T_REG_32, "oversize_received", },
341 	{ 0x306c, T_REG_32, "jabber_received", },
342 	{ 0x3070, T_REG_32, "mac_receive_error", },
343 	{ 0x3074, T_REG_32, "bad_crc_event", },
344 	{ 0x3078, T_REG_32, "collision", },
345 	{ 0x307c, T_REG_32, "late_collision", },
346 	{ 0x2484, T_REG_32, "rx_discard", },
347 	{ 0x2488, T_REG_32, "rx_overrun", },
348 	{ 0x3020, T_REG_32, "frames_64_octets", },
349 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
350 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
351 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
352 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
353 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
354 	{ 0x3038, T_REG_64, "good_octets_sent", },
355 	{ 0x3040, T_REG_32, "good_frames_sent", },
356 	{ 0x3044, T_REG_32, "excessive_collision", },
357 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
358 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
359 	{ 0x3054, T_REG_32, "fc_sent", },
360 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
361 };
362 
363 struct mvneta_pcpu_stats {
364 	struct	u64_stats_sync syncp;
365 	u64	rx_packets;
366 	u64	rx_bytes;
367 	u64	tx_packets;
368 	u64	tx_bytes;
369 };
370 
371 struct mvneta_pcpu_port {
372 	/* Pointer to the shared port */
373 	struct mvneta_port	*pp;
374 
375 	/* Pointer to the CPU-local NAPI struct */
376 	struct napi_struct	napi;
377 
378 	/* Cause of the previous interrupt */
379 	u32			cause_rx_tx;
380 };
381 
382 struct mvneta_port {
383 	u8 id;
384 	struct mvneta_pcpu_port __percpu	*ports;
385 	struct mvneta_pcpu_stats __percpu	*stats;
386 
387 	int pkt_size;
388 	unsigned int frag_size;
389 	void __iomem *base;
390 	struct mvneta_rx_queue *rxqs;
391 	struct mvneta_tx_queue *txqs;
392 	struct net_device *dev;
393 	struct hlist_node node_online;
394 	struct hlist_node node_dead;
395 	int rxq_def;
396 	/* Protect the access to the percpu interrupt registers,
397 	 * ensuring that the configuration remains coherent.
398 	 */
399 	spinlock_t lock;
400 	bool is_stopped;
401 
402 	u32 cause_rx_tx;
403 	struct napi_struct napi;
404 
405 	/* Core clock */
406 	struct clk *clk;
407 	/* AXI clock */
408 	struct clk *clk_bus;
409 	u8 mcast_count[256];
410 	u16 tx_ring_size;
411 	u16 rx_ring_size;
412 
413 	struct mii_bus *mii_bus;
414 	phy_interface_t phy_interface;
415 	struct device_node *phy_node;
416 	unsigned int link;
417 	unsigned int duplex;
418 	unsigned int speed;
419 	unsigned int tx_csum_limit;
420 	unsigned int use_inband_status:1;
421 
422 	struct mvneta_bm *bm_priv;
423 	struct mvneta_bm_pool *pool_long;
424 	struct mvneta_bm_pool *pool_short;
425 	int bm_win_id;
426 
427 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
428 
429 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
430 
431 	/* Flags for special SoC configurations */
432 	bool neta_armada3700;
433 	u16 rx_offset_correction;
434 	const struct mbus_dram_target_info *dram_target_info;
435 };
436 
437 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
438  * layout of the transmit and reception DMA descriptors, and their
439  * layout is therefore defined by the hardware design
440  */
441 
442 #define MVNETA_TX_L3_OFF_SHIFT	0
443 #define MVNETA_TX_IP_HLEN_SHIFT	8
444 #define MVNETA_TX_L4_UDP	BIT(16)
445 #define MVNETA_TX_L3_IP6	BIT(17)
446 #define MVNETA_TXD_IP_CSUM	BIT(18)
447 #define MVNETA_TXD_Z_PAD	BIT(19)
448 #define MVNETA_TXD_L_DESC	BIT(20)
449 #define MVNETA_TXD_F_DESC	BIT(21)
450 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
451 				 MVNETA_TXD_L_DESC | \
452 				 MVNETA_TXD_F_DESC)
453 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
454 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
455 
456 #define MVNETA_RXD_ERR_CRC		0x0
457 #define MVNETA_RXD_BM_POOL_SHIFT	13
458 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
459 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
460 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
461 #define MVNETA_RXD_ERR_LEN		BIT(18)
462 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
463 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
464 #define MVNETA_RXD_L3_IP4		BIT(25)
465 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
466 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
467 
468 #if defined(__LITTLE_ENDIAN)
469 struct mvneta_tx_desc {
470 	u32  command;		/* Options used by HW for packet transmitting.*/
471 	u16  reserverd1;	/* csum_l4 (for future use)		*/
472 	u16  data_size;		/* Data size of transmitted packet in bytes */
473 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
474 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
475 	u32  reserved3[4];	/* Reserved - (for future use)		*/
476 };
477 
478 struct mvneta_rx_desc {
479 	u32  status;		/* Info about received packet		*/
480 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
481 	u16  data_size;		/* Size of received packet in bytes	*/
482 
483 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
484 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
485 
486 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
487 	u16  reserved3;		/* prefetch_cmd, for future use		*/
488 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
489 
490 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
491 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
492 };
493 #else
494 struct mvneta_tx_desc {
495 	u16  data_size;		/* Data size of transmitted packet in bytes */
496 	u16  reserverd1;	/* csum_l4 (for future use)		*/
497 	u32  command;		/* Options used by HW for packet transmitting.*/
498 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
499 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
500 	u32  reserved3[4];	/* Reserved - (for future use)		*/
501 };
502 
503 struct mvneta_rx_desc {
504 	u16  data_size;		/* Size of received packet in bytes	*/
505 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
506 	u32  status;		/* Info about received packet		*/
507 
508 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
509 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
510 
511 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
512 	u16  reserved3;		/* prefetch_cmd, for future use		*/
513 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
514 
515 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
516 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
517 };
518 #endif
519 
520 struct mvneta_tx_queue {
521 	/* Number of this TX queue, in the range 0-7 */
522 	u8 id;
523 
524 	/* Number of TX DMA descriptors in the descriptor ring */
525 	int size;
526 
527 	/* Number of currently used TX DMA descriptor in the
528 	 * descriptor ring
529 	 */
530 	int count;
531 	int pending;
532 	int tx_stop_threshold;
533 	int tx_wake_threshold;
534 
535 	/* Array of transmitted skb */
536 	struct sk_buff **tx_skb;
537 
538 	/* Index of last TX DMA descriptor that was inserted */
539 	int txq_put_index;
540 
541 	/* Index of the TX DMA descriptor to be cleaned up */
542 	int txq_get_index;
543 
544 	u32 done_pkts_coal;
545 
546 	/* Virtual address of the TX DMA descriptors array */
547 	struct mvneta_tx_desc *descs;
548 
549 	/* DMA address of the TX DMA descriptors array */
550 	dma_addr_t descs_phys;
551 
552 	/* Index of the last TX DMA descriptor */
553 	int last_desc;
554 
555 	/* Index of the next TX DMA descriptor to process */
556 	int next_desc_to_proc;
557 
558 	/* DMA buffers for TSO headers */
559 	char *tso_hdrs;
560 
561 	/* DMA address of TSO headers */
562 	dma_addr_t tso_hdrs_phys;
563 
564 	/* Affinity mask for CPUs*/
565 	cpumask_t affinity_mask;
566 };
567 
568 struct mvneta_rx_queue {
569 	/* rx queue number, in the range 0-7 */
570 	u8 id;
571 
572 	/* num of rx descriptors in the rx descriptor ring */
573 	int size;
574 
575 	/* counter of times when mvneta_refill() failed */
576 	int missed;
577 
578 	u32 pkts_coal;
579 	u32 time_coal;
580 
581 	/* Virtual address of the RX buffer */
582 	void  **buf_virt_addr;
583 
584 	/* Virtual address of the RX DMA descriptors array */
585 	struct mvneta_rx_desc *descs;
586 
587 	/* DMA address of the RX DMA descriptors array */
588 	dma_addr_t descs_phys;
589 
590 	/* Index of the last RX DMA descriptor */
591 	int last_desc;
592 
593 	/* Index of the next RX DMA descriptor to process */
594 	int next_desc_to_proc;
595 };
596 
597 static enum cpuhp_state online_hpstate;
598 /* The hardware supports eight (8) rx queues, but we are only allowing
599  * the first one to be used. Therefore, let's just allocate one queue.
600  */
601 static int rxq_number = 8;
602 static int txq_number = 8;
603 
604 static int rxq_def;
605 
606 static int rx_copybreak __read_mostly = 256;
607 
608 /* HW BM need that each port be identify by a unique ID */
609 static int global_port_id;
610 
611 #define MVNETA_DRIVER_NAME "mvneta"
612 #define MVNETA_DRIVER_VERSION "1.0"
613 
614 /* Utility/helper methods */
615 
616 /* Write helper method */
617 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
618 {
619 	writel(data, pp->base + offset);
620 }
621 
622 /* Read helper method */
623 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
624 {
625 	return readl(pp->base + offset);
626 }
627 
628 /* Increment txq get counter */
629 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
630 {
631 	txq->txq_get_index++;
632 	if (txq->txq_get_index == txq->size)
633 		txq->txq_get_index = 0;
634 }
635 
636 /* Increment txq put counter */
637 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
638 {
639 	txq->txq_put_index++;
640 	if (txq->txq_put_index == txq->size)
641 		txq->txq_put_index = 0;
642 }
643 
644 
645 /* Clear all MIB counters */
646 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
647 {
648 	int i;
649 	u32 dummy;
650 
651 	/* Perform dummy reads from MIB counters */
652 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
653 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
654 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
655 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
656 }
657 
658 /* Get System Network Statistics */
659 static void
660 mvneta_get_stats64(struct net_device *dev,
661 		   struct rtnl_link_stats64 *stats)
662 {
663 	struct mvneta_port *pp = netdev_priv(dev);
664 	unsigned int start;
665 	int cpu;
666 
667 	for_each_possible_cpu(cpu) {
668 		struct mvneta_pcpu_stats *cpu_stats;
669 		u64 rx_packets;
670 		u64 rx_bytes;
671 		u64 tx_packets;
672 		u64 tx_bytes;
673 
674 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
675 		do {
676 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
677 			rx_packets = cpu_stats->rx_packets;
678 			rx_bytes   = cpu_stats->rx_bytes;
679 			tx_packets = cpu_stats->tx_packets;
680 			tx_bytes   = cpu_stats->tx_bytes;
681 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
682 
683 		stats->rx_packets += rx_packets;
684 		stats->rx_bytes   += rx_bytes;
685 		stats->tx_packets += tx_packets;
686 		stats->tx_bytes   += tx_bytes;
687 	}
688 
689 	stats->rx_errors	= dev->stats.rx_errors;
690 	stats->rx_dropped	= dev->stats.rx_dropped;
691 
692 	stats->tx_dropped	= dev->stats.tx_dropped;
693 }
694 
695 /* Rx descriptors helper methods */
696 
697 /* Checks whether the RX descriptor having this status is both the first
698  * and the last descriptor for the RX packet. Each RX packet is currently
699  * received through a single RX descriptor, so not having each RX
700  * descriptor with its first and last bits set is an error
701  */
702 static int mvneta_rxq_desc_is_first_last(u32 status)
703 {
704 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
705 		MVNETA_RXD_FIRST_LAST_DESC;
706 }
707 
708 /* Add number of descriptors ready to receive new packets */
709 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
710 					  struct mvneta_rx_queue *rxq,
711 					  int ndescs)
712 {
713 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
714 	 * be added at once
715 	 */
716 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
717 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
718 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
719 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
720 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
721 	}
722 
723 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
724 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
725 }
726 
727 /* Get number of RX descriptors occupied by received packets */
728 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
729 					struct mvneta_rx_queue *rxq)
730 {
731 	u32 val;
732 
733 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
734 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
735 }
736 
737 /* Update num of rx desc called upon return from rx path or
738  * from mvneta_rxq_drop_pkts().
739  */
740 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
741 				       struct mvneta_rx_queue *rxq,
742 				       int rx_done, int rx_filled)
743 {
744 	u32 val;
745 
746 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
747 		val = rx_done |
748 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
749 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
750 		return;
751 	}
752 
753 	/* Only 255 descriptors can be added at once */
754 	while ((rx_done > 0) || (rx_filled > 0)) {
755 		if (rx_done <= 0xff) {
756 			val = rx_done;
757 			rx_done = 0;
758 		} else {
759 			val = 0xff;
760 			rx_done -= 0xff;
761 		}
762 		if (rx_filled <= 0xff) {
763 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
764 			rx_filled = 0;
765 		} else {
766 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
767 			rx_filled -= 0xff;
768 		}
769 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
770 	}
771 }
772 
773 /* Get pointer to next RX descriptor to be processed by SW */
774 static struct mvneta_rx_desc *
775 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
776 {
777 	int rx_desc = rxq->next_desc_to_proc;
778 
779 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
780 	prefetch(rxq->descs + rxq->next_desc_to_proc);
781 	return rxq->descs + rx_desc;
782 }
783 
784 /* Change maximum receive size of the port. */
785 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
786 {
787 	u32 val;
788 
789 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
790 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
791 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
792 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
793 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
794 }
795 
796 
797 /* Set rx queue offset */
798 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
799 				  struct mvneta_rx_queue *rxq,
800 				  int offset)
801 {
802 	u32 val;
803 
804 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
805 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
806 
807 	/* Offset is in */
808 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
809 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
810 }
811 
812 
813 /* Tx descriptors helper methods */
814 
815 /* Update HW with number of TX descriptors to be sent */
816 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
817 				     struct mvneta_tx_queue *txq,
818 				     int pend_desc)
819 {
820 	u32 val;
821 
822 	/* Only 255 descriptors can be added at once ; Assume caller
823 	 * process TX desriptors in quanta less than 256
824 	 */
825 	val = pend_desc + txq->pending;
826 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
827 	txq->pending = 0;
828 }
829 
830 /* Get pointer to next TX descriptor to be processed (send) by HW */
831 static struct mvneta_tx_desc *
832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
833 {
834 	int tx_desc = txq->next_desc_to_proc;
835 
836 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
837 	return txq->descs + tx_desc;
838 }
839 
840 /* Release the last allocated TX descriptor. Useful to handle DMA
841  * mapping failures in the TX path.
842  */
843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
844 {
845 	if (txq->next_desc_to_proc == 0)
846 		txq->next_desc_to_proc = txq->last_desc - 1;
847 	else
848 		txq->next_desc_to_proc--;
849 }
850 
851 /* Set rxq buf size */
852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
853 				    struct mvneta_rx_queue *rxq,
854 				    int buf_size)
855 {
856 	u32 val;
857 
858 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
859 
860 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
861 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
862 
863 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
864 }
865 
866 /* Disable buffer management (BM) */
867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
868 				  struct mvneta_rx_queue *rxq)
869 {
870 	u32 val;
871 
872 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
873 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
874 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
875 }
876 
877 /* Enable buffer management (BM) */
878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
879 				 struct mvneta_rx_queue *rxq)
880 {
881 	u32 val;
882 
883 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
884 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
885 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
886 }
887 
888 /* Notify HW about port's assignment of pool for bigger packets */
889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
890 				     struct mvneta_rx_queue *rxq)
891 {
892 	u32 val;
893 
894 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
895 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
896 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
897 
898 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
899 }
900 
901 /* Notify HW about port's assignment of pool for smaller packets */
902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
903 				      struct mvneta_rx_queue *rxq)
904 {
905 	u32 val;
906 
907 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
908 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
909 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
910 
911 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
912 }
913 
914 /* Set port's receive buffer size for assigned BM pool */
915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
916 					      int buf_size,
917 					      u8 pool_id)
918 {
919 	u32 val;
920 
921 	if (!IS_ALIGNED(buf_size, 8)) {
922 		dev_warn(pp->dev->dev.parent,
923 			 "illegal buf_size value %d, round to %d\n",
924 			 buf_size, ALIGN(buf_size, 8));
925 		buf_size = ALIGN(buf_size, 8);
926 	}
927 
928 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
929 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
930 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
931 }
932 
933 /* Configure MBUS window in order to enable access BM internal SRAM */
934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
935 				  u8 target, u8 attr)
936 {
937 	u32 win_enable, win_protect;
938 	int i;
939 
940 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
941 
942 	if (pp->bm_win_id < 0) {
943 		/* Find first not occupied window */
944 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
945 			if (win_enable & (1 << i)) {
946 				pp->bm_win_id = i;
947 				break;
948 			}
949 		}
950 		if (i == MVNETA_MAX_DECODE_WIN)
951 			return -ENOMEM;
952 	} else {
953 		i = pp->bm_win_id;
954 	}
955 
956 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
957 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
958 
959 	if (i < 4)
960 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
961 
962 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
963 		    (attr << 8) | target);
964 
965 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
966 
967 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
968 	win_protect |= 3 << (2 * i);
969 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
970 
971 	win_enable &= ~(1 << i);
972 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
973 
974 	return 0;
975 }
976 
977 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
978 {
979 	u32 wsize;
980 	u8 target, attr;
981 	int err;
982 
983 	/* Get BM window information */
984 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
985 					 &target, &attr);
986 	if (err < 0)
987 		return err;
988 
989 	pp->bm_win_id = -1;
990 
991 	/* Open NETA -> BM window */
992 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
993 				     target, attr);
994 	if (err < 0) {
995 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
996 		return err;
997 	}
998 	return 0;
999 }
1000 
1001 /* Assign and initialize pools for port. In case of fail
1002  * buffer manager will remain disabled for current port.
1003  */
1004 static int mvneta_bm_port_init(struct platform_device *pdev,
1005 			       struct mvneta_port *pp)
1006 {
1007 	struct device_node *dn = pdev->dev.of_node;
1008 	u32 long_pool_id, short_pool_id;
1009 
1010 	if (!pp->neta_armada3700) {
1011 		int ret;
1012 
1013 		ret = mvneta_bm_port_mbus_init(pp);
1014 		if (ret)
1015 			return ret;
1016 	}
1017 
1018 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1019 		netdev_info(pp->dev, "missing long pool id\n");
1020 		return -EINVAL;
1021 	}
1022 
1023 	/* Create port's long pool depending on mtu */
1024 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1025 					   MVNETA_BM_LONG, pp->id,
1026 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1027 	if (!pp->pool_long) {
1028 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1029 		return -ENOMEM;
1030 	}
1031 
1032 	pp->pool_long->port_map |= 1 << pp->id;
1033 
1034 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1035 				   pp->pool_long->id);
1036 
1037 	/* If short pool id is not defined, assume using single pool */
1038 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1039 		short_pool_id = long_pool_id;
1040 
1041 	/* Create port's short pool */
1042 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1043 					    MVNETA_BM_SHORT, pp->id,
1044 					    MVNETA_BM_SHORT_PKT_SIZE);
1045 	if (!pp->pool_short) {
1046 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1047 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1048 		return -ENOMEM;
1049 	}
1050 
1051 	if (short_pool_id != long_pool_id) {
1052 		pp->pool_short->port_map |= 1 << pp->id;
1053 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1054 					   pp->pool_short->id);
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /* Update settings of a pool for bigger packets */
1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1062 {
1063 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1064 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1065 	int num;
1066 
1067 	/* Release all buffers from long pool */
1068 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1069 	if (hwbm_pool->buf_num) {
1070 		WARN(1, "cannot free all buffers in pool %d\n",
1071 		     bm_pool->id);
1072 		goto bm_mtu_err;
1073 	}
1074 
1075 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1076 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1077 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1078 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1079 
1080 	/* Fill entire long pool */
1081 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1082 	if (num != hwbm_pool->size) {
1083 		WARN(1, "pool %d: %d of %d allocated\n",
1084 		     bm_pool->id, num, hwbm_pool->size);
1085 		goto bm_mtu_err;
1086 	}
1087 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1088 
1089 	return;
1090 
1091 bm_mtu_err:
1092 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1093 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1094 
1095 	pp->bm_priv = NULL;
1096 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1097 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1098 }
1099 
1100 /* Start the Ethernet port RX and TX activity */
1101 static void mvneta_port_up(struct mvneta_port *pp)
1102 {
1103 	int queue;
1104 	u32 q_map;
1105 
1106 	/* Enable all initialized TXs. */
1107 	q_map = 0;
1108 	for (queue = 0; queue < txq_number; queue++) {
1109 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1110 		if (txq->descs)
1111 			q_map |= (1 << queue);
1112 	}
1113 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1114 
1115 	/* Enable all initialized RXQs. */
1116 	for (queue = 0; queue < rxq_number; queue++) {
1117 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1118 
1119 		if (rxq->descs)
1120 			q_map |= (1 << queue);
1121 	}
1122 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1123 }
1124 
1125 /* Stop the Ethernet port activity */
1126 static void mvneta_port_down(struct mvneta_port *pp)
1127 {
1128 	u32 val;
1129 	int count;
1130 
1131 	/* Stop Rx port activity. Check port Rx activity. */
1132 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1133 
1134 	/* Issue stop command for active channels only */
1135 	if (val != 0)
1136 		mvreg_write(pp, MVNETA_RXQ_CMD,
1137 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1138 
1139 	/* Wait for all Rx activity to terminate. */
1140 	count = 0;
1141 	do {
1142 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1143 			netdev_warn(pp->dev,
1144 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1145 				    val);
1146 			break;
1147 		}
1148 		mdelay(1);
1149 
1150 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1151 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1152 
1153 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1154 	 * command for active channels only
1155 	 */
1156 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1157 
1158 	if (val != 0)
1159 		mvreg_write(pp, MVNETA_TXQ_CMD,
1160 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1161 
1162 	/* Wait for all Tx activity to terminate. */
1163 	count = 0;
1164 	do {
1165 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1166 			netdev_warn(pp->dev,
1167 				    "TIMEOUT for TX stopped status=0x%08x\n",
1168 				    val);
1169 			break;
1170 		}
1171 		mdelay(1);
1172 
1173 		/* Check TX Command reg that all Txqs are stopped */
1174 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1175 
1176 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1177 
1178 	/* Double check to verify that TX FIFO is empty */
1179 	count = 0;
1180 	do {
1181 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1182 			netdev_warn(pp->dev,
1183 				    "TX FIFO empty timeout status=0x%08x\n",
1184 				    val);
1185 			break;
1186 		}
1187 		mdelay(1);
1188 
1189 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1190 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1191 		 (val & MVNETA_TX_IN_PRGRS));
1192 
1193 	udelay(200);
1194 }
1195 
1196 /* Enable the port by setting the port enable bit of the MAC control register */
1197 static void mvneta_port_enable(struct mvneta_port *pp)
1198 {
1199 	u32 val;
1200 
1201 	/* Enable port */
1202 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1203 	val |= MVNETA_GMAC0_PORT_ENABLE;
1204 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1205 }
1206 
1207 /* Disable the port and wait for about 200 usec before retuning */
1208 static void mvneta_port_disable(struct mvneta_port *pp)
1209 {
1210 	u32 val;
1211 
1212 	/* Reset the Enable bit in the Serial Control Register */
1213 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1214 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1215 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1216 
1217 	udelay(200);
1218 }
1219 
1220 /* Multicast tables methods */
1221 
1222 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1223 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1224 {
1225 	int offset;
1226 	u32 val;
1227 
1228 	if (queue == -1) {
1229 		val = 0;
1230 	} else {
1231 		val = 0x1 | (queue << 1);
1232 		val |= (val << 24) | (val << 16) | (val << 8);
1233 	}
1234 
1235 	for (offset = 0; offset <= 0xc; offset += 4)
1236 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1237 }
1238 
1239 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1240 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1241 {
1242 	int offset;
1243 	u32 val;
1244 
1245 	if (queue == -1) {
1246 		val = 0;
1247 	} else {
1248 		val = 0x1 | (queue << 1);
1249 		val |= (val << 24) | (val << 16) | (val << 8);
1250 	}
1251 
1252 	for (offset = 0; offset <= 0xfc; offset += 4)
1253 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1254 
1255 }
1256 
1257 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1258 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1259 {
1260 	int offset;
1261 	u32 val;
1262 
1263 	if (queue == -1) {
1264 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1265 		val = 0;
1266 	} else {
1267 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1268 		val = 0x1 | (queue << 1);
1269 		val |= (val << 24) | (val << 16) | (val << 8);
1270 	}
1271 
1272 	for (offset = 0; offset <= 0xfc; offset += 4)
1273 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1274 }
1275 
1276 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1277 {
1278 	u32 val;
1279 
1280 	if (enable) {
1281 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1282 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1283 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1284 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1285 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1286 		       MVNETA_GMAC_AN_SPEED_EN |
1287 		       MVNETA_GMAC_AN_DUPLEX_EN;
1288 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1289 
1290 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1291 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1292 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1293 
1294 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1295 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1296 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1297 	} else {
1298 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1299 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1300 		       MVNETA_GMAC_AN_SPEED_EN |
1301 		       MVNETA_GMAC_AN_DUPLEX_EN);
1302 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1303 
1304 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1305 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1306 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1307 
1308 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1309 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1310 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1311 	}
1312 }
1313 
1314 static void mvneta_percpu_unmask_interrupt(void *arg)
1315 {
1316 	struct mvneta_port *pp = arg;
1317 
1318 	/* All the queue are unmasked, but actually only the ones
1319 	 * mapped to this CPU will be unmasked
1320 	 */
1321 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1322 		    MVNETA_RX_INTR_MASK_ALL |
1323 		    MVNETA_TX_INTR_MASK_ALL |
1324 		    MVNETA_MISCINTR_INTR_MASK);
1325 }
1326 
1327 static void mvneta_percpu_mask_interrupt(void *arg)
1328 {
1329 	struct mvneta_port *pp = arg;
1330 
1331 	/* All the queue are masked, but actually only the ones
1332 	 * mapped to this CPU will be masked
1333 	 */
1334 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1335 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1336 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1337 }
1338 
1339 static void mvneta_percpu_clear_intr_cause(void *arg)
1340 {
1341 	struct mvneta_port *pp = arg;
1342 
1343 	/* All the queue are cleared, but actually only the ones
1344 	 * mapped to this CPU will be cleared
1345 	 */
1346 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1347 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1348 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1349 }
1350 
1351 /* This method sets defaults to the NETA port:
1352  *	Clears interrupt Cause and Mask registers.
1353  *	Clears all MAC tables.
1354  *	Sets defaults to all registers.
1355  *	Resets RX and TX descriptor rings.
1356  *	Resets PHY.
1357  * This method can be called after mvneta_port_down() to return the port
1358  *	settings to defaults.
1359  */
1360 static void mvneta_defaults_set(struct mvneta_port *pp)
1361 {
1362 	int cpu;
1363 	int queue;
1364 	u32 val;
1365 	int max_cpu = num_present_cpus();
1366 
1367 	/* Clear all Cause registers */
1368 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1369 
1370 	/* Mask all interrupts */
1371 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1372 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1373 
1374 	/* Enable MBUS Retry bit16 */
1375 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1376 
1377 	/* Set CPU queue access map. CPUs are assigned to the RX and
1378 	 * TX queues modulo their number. If there is only one TX
1379 	 * queue then it is assigned to the CPU associated to the
1380 	 * default RX queue.
1381 	 */
1382 	for_each_present_cpu(cpu) {
1383 		int rxq_map = 0, txq_map = 0;
1384 		int rxq, txq;
1385 		if (!pp->neta_armada3700) {
1386 			for (rxq = 0; rxq < rxq_number; rxq++)
1387 				if ((rxq % max_cpu) == cpu)
1388 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1389 
1390 			for (txq = 0; txq < txq_number; txq++)
1391 				if ((txq % max_cpu) == cpu)
1392 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1393 
1394 			/* With only one TX queue we configure a special case
1395 			 * which will allow to get all the irq on a single
1396 			 * CPU
1397 			 */
1398 			if (txq_number == 1)
1399 				txq_map = (cpu == pp->rxq_def) ?
1400 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1401 
1402 		} else {
1403 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1404 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1405 		}
1406 
1407 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1408 	}
1409 
1410 	/* Reset RX and TX DMAs */
1411 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1412 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1413 
1414 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1415 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1416 	for (queue = 0; queue < txq_number; queue++) {
1417 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1418 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1419 	}
1420 
1421 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1422 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1423 
1424 	/* Set Port Acceleration Mode */
1425 	if (pp->bm_priv)
1426 		/* HW buffer management + legacy parser */
1427 		val = MVNETA_ACC_MODE_EXT2;
1428 	else
1429 		/* SW buffer management + legacy parser */
1430 		val = MVNETA_ACC_MODE_EXT1;
1431 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1432 
1433 	if (pp->bm_priv)
1434 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1435 
1436 	/* Update val of portCfg register accordingly with all RxQueue types */
1437 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1438 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1439 
1440 	val = 0;
1441 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1442 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1443 
1444 	/* Build PORT_SDMA_CONFIG_REG */
1445 	val = 0;
1446 
1447 	/* Default burst size */
1448 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1449 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1450 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1451 
1452 #if defined(__BIG_ENDIAN)
1453 	val |= MVNETA_DESC_SWAP;
1454 #endif
1455 
1456 	/* Assign port SDMA configuration */
1457 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1458 
1459 	/* Disable PHY polling in hardware, since we're using the
1460 	 * kernel phylib to do this.
1461 	 */
1462 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1463 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1464 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1465 
1466 	mvneta_set_autoneg(pp, pp->use_inband_status);
1467 	mvneta_set_ucast_table(pp, -1);
1468 	mvneta_set_special_mcast_table(pp, -1);
1469 	mvneta_set_other_mcast_table(pp, -1);
1470 
1471 	/* Set port interrupt enable register - default enable all */
1472 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1473 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1474 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1475 
1476 	mvneta_mib_counters_clear(pp);
1477 }
1478 
1479 /* Set max sizes for tx queues */
1480 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1481 
1482 {
1483 	u32 val, size, mtu;
1484 	int queue;
1485 
1486 	mtu = max_tx_size * 8;
1487 	if (mtu > MVNETA_TX_MTU_MAX)
1488 		mtu = MVNETA_TX_MTU_MAX;
1489 
1490 	/* Set MTU */
1491 	val = mvreg_read(pp, MVNETA_TX_MTU);
1492 	val &= ~MVNETA_TX_MTU_MAX;
1493 	val |= mtu;
1494 	mvreg_write(pp, MVNETA_TX_MTU, val);
1495 
1496 	/* TX token size and all TXQs token size must be larger that MTU */
1497 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1498 
1499 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1500 	if (size < mtu) {
1501 		size = mtu;
1502 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1503 		val |= size;
1504 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1505 	}
1506 	for (queue = 0; queue < txq_number; queue++) {
1507 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1508 
1509 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1510 		if (size < mtu) {
1511 			size = mtu;
1512 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1513 			val |= size;
1514 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1515 		}
1516 	}
1517 }
1518 
1519 /* Set unicast address */
1520 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1521 				  int queue)
1522 {
1523 	unsigned int unicast_reg;
1524 	unsigned int tbl_offset;
1525 	unsigned int reg_offset;
1526 
1527 	/* Locate the Unicast table entry */
1528 	last_nibble = (0xf & last_nibble);
1529 
1530 	/* offset from unicast tbl base */
1531 	tbl_offset = (last_nibble / 4) * 4;
1532 
1533 	/* offset within the above reg  */
1534 	reg_offset = last_nibble % 4;
1535 
1536 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1537 
1538 	if (queue == -1) {
1539 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1540 		unicast_reg &= ~(0xff << (8 * reg_offset));
1541 	} else {
1542 		unicast_reg &= ~(0xff << (8 * reg_offset));
1543 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1544 	}
1545 
1546 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1547 }
1548 
1549 /* Set mac address */
1550 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1551 				int queue)
1552 {
1553 	unsigned int mac_h;
1554 	unsigned int mac_l;
1555 
1556 	if (queue != -1) {
1557 		mac_l = (addr[4] << 8) | (addr[5]);
1558 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1559 			(addr[2] << 8) | (addr[3] << 0);
1560 
1561 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1562 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1563 	}
1564 
1565 	/* Accept frames of this address */
1566 	mvneta_set_ucast_addr(pp, addr[5], queue);
1567 }
1568 
1569 /* Set the number of packets that will be received before RX interrupt
1570  * will be generated by HW.
1571  */
1572 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1573 				    struct mvneta_rx_queue *rxq, u32 value)
1574 {
1575 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1576 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1577 	rxq->pkts_coal = value;
1578 }
1579 
1580 /* Set the time delay in usec before RX interrupt will be generated by
1581  * HW.
1582  */
1583 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1584 				    struct mvneta_rx_queue *rxq, u32 value)
1585 {
1586 	u32 val;
1587 	unsigned long clk_rate;
1588 
1589 	clk_rate = clk_get_rate(pp->clk);
1590 	val = (clk_rate / 1000000) * value;
1591 
1592 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1593 	rxq->time_coal = value;
1594 }
1595 
1596 /* Set threshold for TX_DONE pkts coalescing */
1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1598 					 struct mvneta_tx_queue *txq, u32 value)
1599 {
1600 	u32 val;
1601 
1602 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1603 
1604 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1605 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1606 
1607 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1608 
1609 	txq->done_pkts_coal = value;
1610 }
1611 
1612 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1613 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1614 				u32 phys_addr, void *virt_addr,
1615 				struct mvneta_rx_queue *rxq)
1616 {
1617 	int i;
1618 
1619 	rx_desc->buf_phys_addr = phys_addr;
1620 	i = rx_desc - rxq->descs;
1621 	rxq->buf_virt_addr[i] = virt_addr;
1622 }
1623 
1624 /* Decrement sent descriptors counter */
1625 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1626 				     struct mvneta_tx_queue *txq,
1627 				     int sent_desc)
1628 {
1629 	u32 val;
1630 
1631 	/* Only 255 TX descriptors can be updated at once */
1632 	while (sent_desc > 0xff) {
1633 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1634 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1635 		sent_desc = sent_desc - 0xff;
1636 	}
1637 
1638 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1639 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1640 }
1641 
1642 /* Get number of TX descriptors already sent by HW */
1643 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1644 					struct mvneta_tx_queue *txq)
1645 {
1646 	u32 val;
1647 	int sent_desc;
1648 
1649 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1650 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1651 		MVNETA_TXQ_SENT_DESC_SHIFT;
1652 
1653 	return sent_desc;
1654 }
1655 
1656 /* Get number of sent descriptors and decrement counter.
1657  *  The number of sent descriptors is returned.
1658  */
1659 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1660 				     struct mvneta_tx_queue *txq)
1661 {
1662 	int sent_desc;
1663 
1664 	/* Get number of sent descriptors */
1665 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1666 
1667 	/* Decrement sent descriptors counter */
1668 	if (sent_desc)
1669 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1670 
1671 	return sent_desc;
1672 }
1673 
1674 /* Set TXQ descriptors fields relevant for CSUM calculation */
1675 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1676 				int ip_hdr_len, int l4_proto)
1677 {
1678 	u32 command;
1679 
1680 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1681 	 * G_L4_chk, L4_type; required only for checksum
1682 	 * calculation
1683 	 */
1684 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1685 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1686 
1687 	if (l3_proto == htons(ETH_P_IP))
1688 		command |= MVNETA_TXD_IP_CSUM;
1689 	else
1690 		command |= MVNETA_TX_L3_IP6;
1691 
1692 	if (l4_proto == IPPROTO_TCP)
1693 		command |=  MVNETA_TX_L4_CSUM_FULL;
1694 	else if (l4_proto == IPPROTO_UDP)
1695 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1696 	else
1697 		command |= MVNETA_TX_L4_CSUM_NOT;
1698 
1699 	return command;
1700 }
1701 
1702 
1703 /* Display more error info */
1704 static void mvneta_rx_error(struct mvneta_port *pp,
1705 			    struct mvneta_rx_desc *rx_desc)
1706 {
1707 	u32 status = rx_desc->status;
1708 
1709 	if (!mvneta_rxq_desc_is_first_last(status)) {
1710 		netdev_err(pp->dev,
1711 			   "bad rx status %08x (buffer oversize), size=%d\n",
1712 			   status, rx_desc->data_size);
1713 		return;
1714 	}
1715 
1716 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1717 	case MVNETA_RXD_ERR_CRC:
1718 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1719 			   status, rx_desc->data_size);
1720 		break;
1721 	case MVNETA_RXD_ERR_OVERRUN:
1722 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1723 			   status, rx_desc->data_size);
1724 		break;
1725 	case MVNETA_RXD_ERR_LEN:
1726 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1727 			   status, rx_desc->data_size);
1728 		break;
1729 	case MVNETA_RXD_ERR_RESOURCE:
1730 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1731 			   status, rx_desc->data_size);
1732 		break;
1733 	}
1734 }
1735 
1736 /* Handle RX checksum offload based on the descriptor's status */
1737 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1738 			   struct sk_buff *skb)
1739 {
1740 	if ((status & MVNETA_RXD_L3_IP4) &&
1741 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1742 		skb->csum = 0;
1743 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1744 		return;
1745 	}
1746 
1747 	skb->ip_summed = CHECKSUM_NONE;
1748 }
1749 
1750 /* Return tx queue pointer (find last set bit) according to <cause> returned
1751  * form tx_done reg. <cause> must not be null. The return value is always a
1752  * valid queue for matching the first one found in <cause>.
1753  */
1754 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1755 						     u32 cause)
1756 {
1757 	int queue = fls(cause) - 1;
1758 
1759 	return &pp->txqs[queue];
1760 }
1761 
1762 /* Free tx queue skbuffs */
1763 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1764 				 struct mvneta_tx_queue *txq, int num,
1765 				 struct netdev_queue *nq)
1766 {
1767 	unsigned int bytes_compl = 0, pkts_compl = 0;
1768 	int i;
1769 
1770 	for (i = 0; i < num; i++) {
1771 		struct mvneta_tx_desc *tx_desc = txq->descs +
1772 			txq->txq_get_index;
1773 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1774 
1775 		if (skb) {
1776 			bytes_compl += skb->len;
1777 			pkts_compl++;
1778 		}
1779 
1780 		mvneta_txq_inc_get(txq);
1781 
1782 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1783 			dma_unmap_single(pp->dev->dev.parent,
1784 					 tx_desc->buf_phys_addr,
1785 					 tx_desc->data_size, DMA_TO_DEVICE);
1786 		if (!skb)
1787 			continue;
1788 		dev_kfree_skb_any(skb);
1789 	}
1790 
1791 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1792 }
1793 
1794 /* Handle end of transmission */
1795 static void mvneta_txq_done(struct mvneta_port *pp,
1796 			   struct mvneta_tx_queue *txq)
1797 {
1798 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1799 	int tx_done;
1800 
1801 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1802 	if (!tx_done)
1803 		return;
1804 
1805 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1806 
1807 	txq->count -= tx_done;
1808 
1809 	if (netif_tx_queue_stopped(nq)) {
1810 		if (txq->count <= txq->tx_wake_threshold)
1811 			netif_tx_wake_queue(nq);
1812 	}
1813 }
1814 
1815 void *mvneta_frag_alloc(unsigned int frag_size)
1816 {
1817 	if (likely(frag_size <= PAGE_SIZE))
1818 		return netdev_alloc_frag(frag_size);
1819 	else
1820 		return kmalloc(frag_size, GFP_ATOMIC);
1821 }
1822 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1823 
1824 void mvneta_frag_free(unsigned int frag_size, void *data)
1825 {
1826 	if (likely(frag_size <= PAGE_SIZE))
1827 		skb_free_frag(data);
1828 	else
1829 		kfree(data);
1830 }
1831 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1832 
1833 /* Refill processing for SW buffer management */
1834 static int mvneta_rx_refill(struct mvneta_port *pp,
1835 			    struct mvneta_rx_desc *rx_desc,
1836 			    struct mvneta_rx_queue *rxq)
1837 
1838 {
1839 	dma_addr_t phys_addr;
1840 	void *data;
1841 
1842 	data = mvneta_frag_alloc(pp->frag_size);
1843 	if (!data)
1844 		return -ENOMEM;
1845 
1846 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1847 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1848 				   DMA_FROM_DEVICE);
1849 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1850 		mvneta_frag_free(pp->frag_size, data);
1851 		return -ENOMEM;
1852 	}
1853 
1854 	phys_addr += pp->rx_offset_correction;
1855 	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1856 	return 0;
1857 }
1858 
1859 /* Handle tx checksum */
1860 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1861 {
1862 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1863 		int ip_hdr_len = 0;
1864 		__be16 l3_proto = vlan_get_protocol(skb);
1865 		u8 l4_proto;
1866 
1867 		if (l3_proto == htons(ETH_P_IP)) {
1868 			struct iphdr *ip4h = ip_hdr(skb);
1869 
1870 			/* Calculate IPv4 checksum and L4 checksum */
1871 			ip_hdr_len = ip4h->ihl;
1872 			l4_proto = ip4h->protocol;
1873 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1874 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1875 
1876 			/* Read l4_protocol from one of IPv6 extra headers */
1877 			if (skb_network_header_len(skb) > 0)
1878 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1879 			l4_proto = ip6h->nexthdr;
1880 		} else
1881 			return MVNETA_TX_L4_CSUM_NOT;
1882 
1883 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1884 					    l3_proto, ip_hdr_len, l4_proto);
1885 	}
1886 
1887 	return MVNETA_TX_L4_CSUM_NOT;
1888 }
1889 
1890 /* Drop packets received by the RXQ and free buffers */
1891 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1892 				 struct mvneta_rx_queue *rxq)
1893 {
1894 	int rx_done, i;
1895 
1896 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1897 	if (rx_done)
1898 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1899 
1900 	if (pp->bm_priv) {
1901 		for (i = 0; i < rx_done; i++) {
1902 			struct mvneta_rx_desc *rx_desc =
1903 						  mvneta_rxq_next_desc_get(rxq);
1904 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1905 			struct mvneta_bm_pool *bm_pool;
1906 
1907 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1908 			/* Return dropped buffer to the pool */
1909 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1910 					      rx_desc->buf_phys_addr);
1911 		}
1912 		return;
1913 	}
1914 
1915 	for (i = 0; i < rxq->size; i++) {
1916 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1917 		void *data = rxq->buf_virt_addr[i];
1918 
1919 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1920 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1921 		mvneta_frag_free(pp->frag_size, data);
1922 	}
1923 }
1924 
1925 /* Main rx processing when using software buffer management */
1926 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1927 			  struct mvneta_rx_queue *rxq)
1928 {
1929 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1930 	struct net_device *dev = pp->dev;
1931 	int rx_done;
1932 	u32 rcvd_pkts = 0;
1933 	u32 rcvd_bytes = 0;
1934 
1935 	/* Get number of received packets */
1936 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1937 
1938 	if (rx_todo > rx_done)
1939 		rx_todo = rx_done;
1940 
1941 	rx_done = 0;
1942 
1943 	/* Fairness NAPI loop */
1944 	while (rx_done < rx_todo) {
1945 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1946 		struct sk_buff *skb;
1947 		unsigned char *data;
1948 		dma_addr_t phys_addr;
1949 		u32 rx_status, frag_size;
1950 		int rx_bytes, err, index;
1951 
1952 		rx_done++;
1953 		rx_status = rx_desc->status;
1954 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1955 		index = rx_desc - rxq->descs;
1956 		data = rxq->buf_virt_addr[index];
1957 		phys_addr = rx_desc->buf_phys_addr;
1958 
1959 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1960 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1961 err_drop_frame:
1962 			dev->stats.rx_errors++;
1963 			mvneta_rx_error(pp, rx_desc);
1964 			/* leave the descriptor untouched */
1965 			continue;
1966 		}
1967 
1968 		if (rx_bytes <= rx_copybreak) {
1969 		/* better copy a small frame and not unmap the DMA region */
1970 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1971 			if (unlikely(!skb))
1972 				goto err_drop_frame;
1973 
1974 			dma_sync_single_range_for_cpu(dev->dev.parent,
1975 						      phys_addr,
1976 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1977 						      rx_bytes,
1978 						      DMA_FROM_DEVICE);
1979 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
1980 				     rx_bytes);
1981 
1982 			skb->protocol = eth_type_trans(skb, dev);
1983 			mvneta_rx_csum(pp, rx_status, skb);
1984 			napi_gro_receive(&port->napi, skb);
1985 
1986 			rcvd_pkts++;
1987 			rcvd_bytes += rx_bytes;
1988 
1989 			/* leave the descriptor and buffer untouched */
1990 			continue;
1991 		}
1992 
1993 		/* Refill processing */
1994 		err = mvneta_rx_refill(pp, rx_desc, rxq);
1995 		if (err) {
1996 			netdev_err(dev, "Linux processing - Can't refill\n");
1997 			rxq->missed++;
1998 			goto err_drop_frame;
1999 		}
2000 
2001 		frag_size = pp->frag_size;
2002 
2003 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2004 
2005 		/* After refill old buffer has to be unmapped regardless
2006 		 * the skb is successfully built or not.
2007 		 */
2008 		dma_unmap_single(dev->dev.parent, phys_addr,
2009 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
2010 				 DMA_FROM_DEVICE);
2011 
2012 		if (!skb)
2013 			goto err_drop_frame;
2014 
2015 		rcvd_pkts++;
2016 		rcvd_bytes += rx_bytes;
2017 
2018 		/* Linux processing */
2019 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2020 		skb_put(skb, rx_bytes);
2021 
2022 		skb->protocol = eth_type_trans(skb, dev);
2023 
2024 		mvneta_rx_csum(pp, rx_status, skb);
2025 
2026 		napi_gro_receive(&port->napi, skb);
2027 	}
2028 
2029 	if (rcvd_pkts) {
2030 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2031 
2032 		u64_stats_update_begin(&stats->syncp);
2033 		stats->rx_packets += rcvd_pkts;
2034 		stats->rx_bytes   += rcvd_bytes;
2035 		u64_stats_update_end(&stats->syncp);
2036 	}
2037 
2038 	/* Update rxq management counters */
2039 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2040 
2041 	return rx_done;
2042 }
2043 
2044 /* Main rx processing when using hardware buffer management */
2045 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2046 			  struct mvneta_rx_queue *rxq)
2047 {
2048 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2049 	struct net_device *dev = pp->dev;
2050 	int rx_done;
2051 	u32 rcvd_pkts = 0;
2052 	u32 rcvd_bytes = 0;
2053 
2054 	/* Get number of received packets */
2055 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2056 
2057 	if (rx_todo > rx_done)
2058 		rx_todo = rx_done;
2059 
2060 	rx_done = 0;
2061 
2062 	/* Fairness NAPI loop */
2063 	while (rx_done < rx_todo) {
2064 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2065 		struct mvneta_bm_pool *bm_pool = NULL;
2066 		struct sk_buff *skb;
2067 		unsigned char *data;
2068 		dma_addr_t phys_addr;
2069 		u32 rx_status, frag_size;
2070 		int rx_bytes, err;
2071 		u8 pool_id;
2072 
2073 		rx_done++;
2074 		rx_status = rx_desc->status;
2075 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2076 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2077 		phys_addr = rx_desc->buf_phys_addr;
2078 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2079 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2080 
2081 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2082 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2083 err_drop_frame_ret_pool:
2084 			/* Return the buffer to the pool */
2085 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2086 					      rx_desc->buf_phys_addr);
2087 err_drop_frame:
2088 			dev->stats.rx_errors++;
2089 			mvneta_rx_error(pp, rx_desc);
2090 			/* leave the descriptor untouched */
2091 			continue;
2092 		}
2093 
2094 		if (rx_bytes <= rx_copybreak) {
2095 			/* better copy a small frame and not unmap the DMA region */
2096 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2097 			if (unlikely(!skb))
2098 				goto err_drop_frame_ret_pool;
2099 
2100 			dma_sync_single_range_for_cpu(dev->dev.parent,
2101 			                              rx_desc->buf_phys_addr,
2102 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2103 			                              rx_bytes,
2104 			                              DMA_FROM_DEVICE);
2105 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2106 				     rx_bytes);
2107 
2108 			skb->protocol = eth_type_trans(skb, dev);
2109 			mvneta_rx_csum(pp, rx_status, skb);
2110 			napi_gro_receive(&port->napi, skb);
2111 
2112 			rcvd_pkts++;
2113 			rcvd_bytes += rx_bytes;
2114 
2115 			/* Return the buffer to the pool */
2116 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2117 					      rx_desc->buf_phys_addr);
2118 
2119 			/* leave the descriptor and buffer untouched */
2120 			continue;
2121 		}
2122 
2123 		/* Refill processing */
2124 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2125 		if (err) {
2126 			netdev_err(dev, "Linux processing - Can't refill\n");
2127 			rxq->missed++;
2128 			goto err_drop_frame_ret_pool;
2129 		}
2130 
2131 		frag_size = bm_pool->hwbm_pool.frag_size;
2132 
2133 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2134 
2135 		/* After refill old buffer has to be unmapped regardless
2136 		 * the skb is successfully built or not.
2137 		 */
2138 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2139 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2140 		if (!skb)
2141 			goto err_drop_frame;
2142 
2143 		rcvd_pkts++;
2144 		rcvd_bytes += rx_bytes;
2145 
2146 		/* Linux processing */
2147 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2148 		skb_put(skb, rx_bytes);
2149 
2150 		skb->protocol = eth_type_trans(skb, dev);
2151 
2152 		mvneta_rx_csum(pp, rx_status, skb);
2153 
2154 		napi_gro_receive(&port->napi, skb);
2155 	}
2156 
2157 	if (rcvd_pkts) {
2158 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2159 
2160 		u64_stats_update_begin(&stats->syncp);
2161 		stats->rx_packets += rcvd_pkts;
2162 		stats->rx_bytes   += rcvd_bytes;
2163 		u64_stats_update_end(&stats->syncp);
2164 	}
2165 
2166 	/* Update rxq management counters */
2167 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2168 
2169 	return rx_done;
2170 }
2171 
2172 static inline void
2173 mvneta_tso_put_hdr(struct sk_buff *skb,
2174 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2175 {
2176 	struct mvneta_tx_desc *tx_desc;
2177 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2178 
2179 	txq->tx_skb[txq->txq_put_index] = NULL;
2180 	tx_desc = mvneta_txq_next_desc_get(txq);
2181 	tx_desc->data_size = hdr_len;
2182 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2183 	tx_desc->command |= MVNETA_TXD_F_DESC;
2184 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2185 				 txq->txq_put_index * TSO_HEADER_SIZE;
2186 	mvneta_txq_inc_put(txq);
2187 }
2188 
2189 static inline int
2190 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2191 		    struct sk_buff *skb, char *data, int size,
2192 		    bool last_tcp, bool is_last)
2193 {
2194 	struct mvneta_tx_desc *tx_desc;
2195 
2196 	tx_desc = mvneta_txq_next_desc_get(txq);
2197 	tx_desc->data_size = size;
2198 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2199 						size, DMA_TO_DEVICE);
2200 	if (unlikely(dma_mapping_error(dev->dev.parent,
2201 		     tx_desc->buf_phys_addr))) {
2202 		mvneta_txq_desc_put(txq);
2203 		return -ENOMEM;
2204 	}
2205 
2206 	tx_desc->command = 0;
2207 	txq->tx_skb[txq->txq_put_index] = NULL;
2208 
2209 	if (last_tcp) {
2210 		/* last descriptor in the TCP packet */
2211 		tx_desc->command = MVNETA_TXD_L_DESC;
2212 
2213 		/* last descriptor in SKB */
2214 		if (is_last)
2215 			txq->tx_skb[txq->txq_put_index] = skb;
2216 	}
2217 	mvneta_txq_inc_put(txq);
2218 	return 0;
2219 }
2220 
2221 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2222 			 struct mvneta_tx_queue *txq)
2223 {
2224 	int total_len, data_left;
2225 	int desc_count = 0;
2226 	struct mvneta_port *pp = netdev_priv(dev);
2227 	struct tso_t tso;
2228 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2229 	int i;
2230 
2231 	/* Count needed descriptors */
2232 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2233 		return 0;
2234 
2235 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2236 		pr_info("*** Is this even  possible???!?!?\n");
2237 		return 0;
2238 	}
2239 
2240 	/* Initialize the TSO handler, and prepare the first payload */
2241 	tso_start(skb, &tso);
2242 
2243 	total_len = skb->len - hdr_len;
2244 	while (total_len > 0) {
2245 		char *hdr;
2246 
2247 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2248 		total_len -= data_left;
2249 		desc_count++;
2250 
2251 		/* prepare packet headers: MAC + IP + TCP */
2252 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2253 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2254 
2255 		mvneta_tso_put_hdr(skb, pp, txq);
2256 
2257 		while (data_left > 0) {
2258 			int size;
2259 			desc_count++;
2260 
2261 			size = min_t(int, tso.size, data_left);
2262 
2263 			if (mvneta_tso_put_data(dev, txq, skb,
2264 						 tso.data, size,
2265 						 size == data_left,
2266 						 total_len == 0))
2267 				goto err_release;
2268 			data_left -= size;
2269 
2270 			tso_build_data(skb, &tso, size);
2271 		}
2272 	}
2273 
2274 	return desc_count;
2275 
2276 err_release:
2277 	/* Release all used data descriptors; header descriptors must not
2278 	 * be DMA-unmapped.
2279 	 */
2280 	for (i = desc_count - 1; i >= 0; i--) {
2281 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2282 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2283 			dma_unmap_single(pp->dev->dev.parent,
2284 					 tx_desc->buf_phys_addr,
2285 					 tx_desc->data_size,
2286 					 DMA_TO_DEVICE);
2287 		mvneta_txq_desc_put(txq);
2288 	}
2289 	return 0;
2290 }
2291 
2292 /* Handle tx fragmentation processing */
2293 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2294 				  struct mvneta_tx_queue *txq)
2295 {
2296 	struct mvneta_tx_desc *tx_desc;
2297 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2298 
2299 	for (i = 0; i < nr_frags; i++) {
2300 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2301 		void *addr = page_address(frag->page.p) + frag->page_offset;
2302 
2303 		tx_desc = mvneta_txq_next_desc_get(txq);
2304 		tx_desc->data_size = frag->size;
2305 
2306 		tx_desc->buf_phys_addr =
2307 			dma_map_single(pp->dev->dev.parent, addr,
2308 				       tx_desc->data_size, DMA_TO_DEVICE);
2309 
2310 		if (dma_mapping_error(pp->dev->dev.parent,
2311 				      tx_desc->buf_phys_addr)) {
2312 			mvneta_txq_desc_put(txq);
2313 			goto error;
2314 		}
2315 
2316 		if (i == nr_frags - 1) {
2317 			/* Last descriptor */
2318 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2319 			txq->tx_skb[txq->txq_put_index] = skb;
2320 		} else {
2321 			/* Descriptor in the middle: Not First, Not Last */
2322 			tx_desc->command = 0;
2323 			txq->tx_skb[txq->txq_put_index] = NULL;
2324 		}
2325 		mvneta_txq_inc_put(txq);
2326 	}
2327 
2328 	return 0;
2329 
2330 error:
2331 	/* Release all descriptors that were used to map fragments of
2332 	 * this packet, as well as the corresponding DMA mappings
2333 	 */
2334 	for (i = i - 1; i >= 0; i--) {
2335 		tx_desc = txq->descs + i;
2336 		dma_unmap_single(pp->dev->dev.parent,
2337 				 tx_desc->buf_phys_addr,
2338 				 tx_desc->data_size,
2339 				 DMA_TO_DEVICE);
2340 		mvneta_txq_desc_put(txq);
2341 	}
2342 
2343 	return -ENOMEM;
2344 }
2345 
2346 /* Main tx processing */
2347 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2348 {
2349 	struct mvneta_port *pp = netdev_priv(dev);
2350 	u16 txq_id = skb_get_queue_mapping(skb);
2351 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2352 	struct mvneta_tx_desc *tx_desc;
2353 	int len = skb->len;
2354 	int frags = 0;
2355 	u32 tx_cmd;
2356 
2357 	if (!netif_running(dev))
2358 		goto out;
2359 
2360 	if (skb_is_gso(skb)) {
2361 		frags = mvneta_tx_tso(skb, dev, txq);
2362 		goto out;
2363 	}
2364 
2365 	frags = skb_shinfo(skb)->nr_frags + 1;
2366 
2367 	/* Get a descriptor for the first part of the packet */
2368 	tx_desc = mvneta_txq_next_desc_get(txq);
2369 
2370 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2371 
2372 	tx_desc->data_size = skb_headlen(skb);
2373 
2374 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2375 						tx_desc->data_size,
2376 						DMA_TO_DEVICE);
2377 	if (unlikely(dma_mapping_error(dev->dev.parent,
2378 				       tx_desc->buf_phys_addr))) {
2379 		mvneta_txq_desc_put(txq);
2380 		frags = 0;
2381 		goto out;
2382 	}
2383 
2384 	if (frags == 1) {
2385 		/* First and Last descriptor */
2386 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2387 		tx_desc->command = tx_cmd;
2388 		txq->tx_skb[txq->txq_put_index] = skb;
2389 		mvneta_txq_inc_put(txq);
2390 	} else {
2391 		/* First but not Last */
2392 		tx_cmd |= MVNETA_TXD_F_DESC;
2393 		txq->tx_skb[txq->txq_put_index] = NULL;
2394 		mvneta_txq_inc_put(txq);
2395 		tx_desc->command = tx_cmd;
2396 		/* Continue with other skb fragments */
2397 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2398 			dma_unmap_single(dev->dev.parent,
2399 					 tx_desc->buf_phys_addr,
2400 					 tx_desc->data_size,
2401 					 DMA_TO_DEVICE);
2402 			mvneta_txq_desc_put(txq);
2403 			frags = 0;
2404 			goto out;
2405 		}
2406 	}
2407 
2408 out:
2409 	if (frags > 0) {
2410 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2412 
2413 		netdev_tx_sent_queue(nq, len);
2414 
2415 		txq->count += frags;
2416 		if (txq->count >= txq->tx_stop_threshold)
2417 			netif_tx_stop_queue(nq);
2418 
2419 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2420 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2421 			mvneta_txq_pend_desc_add(pp, txq, frags);
2422 		else
2423 			txq->pending += frags;
2424 
2425 		u64_stats_update_begin(&stats->syncp);
2426 		stats->tx_packets++;
2427 		stats->tx_bytes  += len;
2428 		u64_stats_update_end(&stats->syncp);
2429 	} else {
2430 		dev->stats.tx_dropped++;
2431 		dev_kfree_skb_any(skb);
2432 	}
2433 
2434 	return NETDEV_TX_OK;
2435 }
2436 
2437 
2438 /* Free tx resources, when resetting a port */
2439 static void mvneta_txq_done_force(struct mvneta_port *pp,
2440 				  struct mvneta_tx_queue *txq)
2441 
2442 {
2443 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2444 	int tx_done = txq->count;
2445 
2446 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2447 
2448 	/* reset txq */
2449 	txq->count = 0;
2450 	txq->txq_put_index = 0;
2451 	txq->txq_get_index = 0;
2452 }
2453 
2454 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2455  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2456  */
2457 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2458 {
2459 	struct mvneta_tx_queue *txq;
2460 	struct netdev_queue *nq;
2461 
2462 	while (cause_tx_done) {
2463 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2464 
2465 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2466 		__netif_tx_lock(nq, smp_processor_id());
2467 
2468 		if (txq->count)
2469 			mvneta_txq_done(pp, txq);
2470 
2471 		__netif_tx_unlock(nq);
2472 		cause_tx_done &= ~((1 << txq->id));
2473 	}
2474 }
2475 
2476 /* Compute crc8 of the specified address, using a unique algorithm ,
2477  * according to hw spec, different than generic crc8 algorithm
2478  */
2479 static int mvneta_addr_crc(unsigned char *addr)
2480 {
2481 	int crc = 0;
2482 	int i;
2483 
2484 	for (i = 0; i < ETH_ALEN; i++) {
2485 		int j;
2486 
2487 		crc = (crc ^ addr[i]) << 8;
2488 		for (j = 7; j >= 0; j--) {
2489 			if (crc & (0x100 << j))
2490 				crc ^= 0x107 << j;
2491 		}
2492 	}
2493 
2494 	return crc;
2495 }
2496 
2497 /* This method controls the net device special MAC multicast support.
2498  * The Special Multicast Table for MAC addresses supports MAC of the form
2499  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2500  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2501  * Table entries in the DA-Filter table. This method set the Special
2502  * Multicast Table appropriate entry.
2503  */
2504 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2505 					  unsigned char last_byte,
2506 					  int queue)
2507 {
2508 	unsigned int smc_table_reg;
2509 	unsigned int tbl_offset;
2510 	unsigned int reg_offset;
2511 
2512 	/* Register offset from SMC table base    */
2513 	tbl_offset = (last_byte / 4);
2514 	/* Entry offset within the above reg */
2515 	reg_offset = last_byte % 4;
2516 
2517 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2518 					+ tbl_offset * 4));
2519 
2520 	if (queue == -1)
2521 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2522 	else {
2523 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2524 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2525 	}
2526 
2527 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2528 		    smc_table_reg);
2529 }
2530 
2531 /* This method controls the network device Other MAC multicast support.
2532  * The Other Multicast Table is used for multicast of another type.
2533  * A CRC-8 is used as an index to the Other Multicast Table entries
2534  * in the DA-Filter table.
2535  * The method gets the CRC-8 value from the calling routine and
2536  * sets the Other Multicast Table appropriate entry according to the
2537  * specified CRC-8 .
2538  */
2539 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2540 					unsigned char crc8,
2541 					int queue)
2542 {
2543 	unsigned int omc_table_reg;
2544 	unsigned int tbl_offset;
2545 	unsigned int reg_offset;
2546 
2547 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2548 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2549 
2550 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2551 
2552 	if (queue == -1) {
2553 		/* Clear accepts frame bit at specified Other DA table entry */
2554 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2555 	} else {
2556 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2557 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2558 	}
2559 
2560 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2561 }
2562 
2563 /* The network device supports multicast using two tables:
2564  *    1) Special Multicast Table for MAC addresses of the form
2565  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2566  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2567  *       Table entries in the DA-Filter table.
2568  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2569  *       is used as an index to the Other Multicast Table entries in the
2570  *       DA-Filter table.
2571  */
2572 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2573 				 int queue)
2574 {
2575 	unsigned char crc_result = 0;
2576 
2577 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2578 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2579 		return 0;
2580 	}
2581 
2582 	crc_result = mvneta_addr_crc(p_addr);
2583 	if (queue == -1) {
2584 		if (pp->mcast_count[crc_result] == 0) {
2585 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2586 				    crc_result);
2587 			return -EINVAL;
2588 		}
2589 
2590 		pp->mcast_count[crc_result]--;
2591 		if (pp->mcast_count[crc_result] != 0) {
2592 			netdev_info(pp->dev,
2593 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2594 				    pp->mcast_count[crc_result], crc_result);
2595 			return -EINVAL;
2596 		}
2597 	} else
2598 		pp->mcast_count[crc_result]++;
2599 
2600 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2601 
2602 	return 0;
2603 }
2604 
2605 /* Configure Fitering mode of Ethernet port */
2606 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2607 					  int is_promisc)
2608 {
2609 	u32 port_cfg_reg, val;
2610 
2611 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2612 
2613 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2614 
2615 	/* Set / Clear UPM bit in port configuration register */
2616 	if (is_promisc) {
2617 		/* Accept all Unicast addresses */
2618 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2619 		val |= MVNETA_FORCE_UNI;
2620 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2621 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2622 	} else {
2623 		/* Reject all Unicast addresses */
2624 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2625 		val &= ~MVNETA_FORCE_UNI;
2626 	}
2627 
2628 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2629 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2630 }
2631 
2632 /* register unicast and multicast addresses */
2633 static void mvneta_set_rx_mode(struct net_device *dev)
2634 {
2635 	struct mvneta_port *pp = netdev_priv(dev);
2636 	struct netdev_hw_addr *ha;
2637 
2638 	if (dev->flags & IFF_PROMISC) {
2639 		/* Accept all: Multicast + Unicast */
2640 		mvneta_rx_unicast_promisc_set(pp, 1);
2641 		mvneta_set_ucast_table(pp, pp->rxq_def);
2642 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2643 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2644 	} else {
2645 		/* Accept single Unicast */
2646 		mvneta_rx_unicast_promisc_set(pp, 0);
2647 		mvneta_set_ucast_table(pp, -1);
2648 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2649 
2650 		if (dev->flags & IFF_ALLMULTI) {
2651 			/* Accept all multicast */
2652 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2653 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2654 		} else {
2655 			/* Accept only initialized multicast */
2656 			mvneta_set_special_mcast_table(pp, -1);
2657 			mvneta_set_other_mcast_table(pp, -1);
2658 
2659 			if (!netdev_mc_empty(dev)) {
2660 				netdev_for_each_mc_addr(ha, dev) {
2661 					mvneta_mcast_addr_set(pp, ha->addr,
2662 							      pp->rxq_def);
2663 				}
2664 			}
2665 		}
2666 	}
2667 }
2668 
2669 /* Interrupt handling - the callback for request_irq() */
2670 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2671 {
2672 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2673 
2674 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2675 	napi_schedule(&pp->napi);
2676 
2677 	return IRQ_HANDLED;
2678 }
2679 
2680 /* Interrupt handling - the callback for request_percpu_irq() */
2681 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2682 {
2683 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2684 
2685 	disable_percpu_irq(port->pp->dev->irq);
2686 	napi_schedule(&port->napi);
2687 
2688 	return IRQ_HANDLED;
2689 }
2690 
2691 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2692 				    struct phy_device *phy)
2693 {
2694 	struct fixed_phy_status status;
2695 	struct fixed_phy_status changed = {};
2696 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2697 
2698 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2699 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2700 		status.speed = SPEED_1000;
2701 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2702 		status.speed = SPEED_100;
2703 	else
2704 		status.speed = SPEED_10;
2705 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2706 	changed.link = 1;
2707 	changed.speed = 1;
2708 	changed.duplex = 1;
2709 	fixed_phy_update_state(phy, &status, &changed);
2710 	return 0;
2711 }
2712 
2713 /* NAPI handler
2714  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2715  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2716  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2717  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2718  * Each CPU has its own causeRxTx register
2719  */
2720 static int mvneta_poll(struct napi_struct *napi, int budget)
2721 {
2722 	int rx_done = 0;
2723 	u32 cause_rx_tx;
2724 	int rx_queue;
2725 	struct mvneta_port *pp = netdev_priv(napi->dev);
2726 	struct net_device *ndev = pp->dev;
2727 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2728 
2729 	if (!netif_running(pp->dev)) {
2730 		napi_complete(napi);
2731 		return rx_done;
2732 	}
2733 
2734 	/* Read cause register */
2735 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2736 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2737 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2738 
2739 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2740 		if (pp->use_inband_status && (cause_misc &
2741 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2742 				 MVNETA_CAUSE_LINK_CHANGE |
2743 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2744 			mvneta_fixed_link_update(pp, ndev->phydev);
2745 		}
2746 	}
2747 
2748 	/* Release Tx descriptors */
2749 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2750 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2751 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2752 	}
2753 
2754 	/* For the case where the last mvneta_poll did not process all
2755 	 * RX packets
2756 	 */
2757 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2758 
2759 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2760 		port->cause_rx_tx;
2761 
2762 	if (rx_queue) {
2763 		rx_queue = rx_queue - 1;
2764 		if (pp->bm_priv)
2765 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2766 		else
2767 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2768 	}
2769 
2770 	if (rx_done < budget) {
2771 		cause_rx_tx = 0;
2772 		napi_complete_done(napi, rx_done);
2773 
2774 		if (pp->neta_armada3700) {
2775 			unsigned long flags;
2776 
2777 			local_irq_save(flags);
2778 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2779 				    MVNETA_RX_INTR_MASK(rxq_number) |
2780 				    MVNETA_TX_INTR_MASK(txq_number) |
2781 				    MVNETA_MISCINTR_INTR_MASK);
2782 			local_irq_restore(flags);
2783 		} else {
2784 			enable_percpu_irq(pp->dev->irq, 0);
2785 		}
2786 	}
2787 
2788 	if (pp->neta_armada3700)
2789 		pp->cause_rx_tx = cause_rx_tx;
2790 	else
2791 		port->cause_rx_tx = cause_rx_tx;
2792 
2793 	return rx_done;
2794 }
2795 
2796 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2797 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2798 			   int num)
2799 {
2800 	int i;
2801 
2802 	for (i = 0; i < num; i++) {
2803 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2804 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2805 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2806 				__func__, rxq->id, i, num);
2807 			break;
2808 		}
2809 	}
2810 
2811 	/* Add this number of RX descriptors as non occupied (ready to
2812 	 * get packets)
2813 	 */
2814 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2815 
2816 	return i;
2817 }
2818 
2819 /* Free all packets pending transmit from all TXQs and reset TX port */
2820 static void mvneta_tx_reset(struct mvneta_port *pp)
2821 {
2822 	int queue;
2823 
2824 	/* free the skb's in the tx ring */
2825 	for (queue = 0; queue < txq_number; queue++)
2826 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2827 
2828 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2829 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2830 }
2831 
2832 static void mvneta_rx_reset(struct mvneta_port *pp)
2833 {
2834 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2835 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2836 }
2837 
2838 /* Rx/Tx queue initialization/cleanup methods */
2839 
2840 /* Create a specified RX queue */
2841 static int mvneta_rxq_init(struct mvneta_port *pp,
2842 			   struct mvneta_rx_queue *rxq)
2843 
2844 {
2845 	rxq->size = pp->rx_ring_size;
2846 
2847 	/* Allocate memory for RX descriptors */
2848 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2849 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 					&rxq->descs_phys, GFP_KERNEL);
2851 	if (!rxq->descs)
2852 		return -ENOMEM;
2853 
2854 	rxq->last_desc = rxq->size - 1;
2855 
2856 	/* Set Rx descriptors queue starting address */
2857 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2858 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2859 
2860 	/* Set Offset */
2861 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2862 
2863 	/* Set coalescing pkts and time */
2864 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2865 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2866 
2867 	if (!pp->bm_priv) {
2868 		/* Fill RXQ with buffers from RX pool */
2869 		mvneta_rxq_buf_size_set(pp, rxq,
2870 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2871 		mvneta_rxq_bm_disable(pp, rxq);
2872 		mvneta_rxq_fill(pp, rxq, rxq->size);
2873 	} else {
2874 		mvneta_rxq_bm_enable(pp, rxq);
2875 		mvneta_rxq_long_pool_set(pp, rxq);
2876 		mvneta_rxq_short_pool_set(pp, rxq);
2877 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 /* Cleanup Rx queue */
2884 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2885 			      struct mvneta_rx_queue *rxq)
2886 {
2887 	mvneta_rxq_drop_pkts(pp, rxq);
2888 
2889 	if (rxq->descs)
2890 		dma_free_coherent(pp->dev->dev.parent,
2891 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2892 				  rxq->descs,
2893 				  rxq->descs_phys);
2894 
2895 	rxq->descs             = NULL;
2896 	rxq->last_desc         = 0;
2897 	rxq->next_desc_to_proc = 0;
2898 	rxq->descs_phys        = 0;
2899 }
2900 
2901 /* Create and initialize a tx queue */
2902 static int mvneta_txq_init(struct mvneta_port *pp,
2903 			   struct mvneta_tx_queue *txq)
2904 {
2905 	int cpu;
2906 
2907 	txq->size = pp->tx_ring_size;
2908 
2909 	/* A queue must always have room for at least one skb.
2910 	 * Therefore, stop the queue when the free entries reaches
2911 	 * the maximum number of descriptors per skb.
2912 	 */
2913 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2914 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2915 
2916 
2917 	/* Allocate memory for TX descriptors */
2918 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2919 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2920 					&txq->descs_phys, GFP_KERNEL);
2921 	if (!txq->descs)
2922 		return -ENOMEM;
2923 
2924 	txq->last_desc = txq->size - 1;
2925 
2926 	/* Set maximum bandwidth for enabled TXQs */
2927 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2928 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2929 
2930 	/* Set Tx descriptors queue starting address */
2931 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2932 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2933 
2934 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2935 				    GFP_KERNEL);
2936 	if (!txq->tx_skb) {
2937 		dma_free_coherent(pp->dev->dev.parent,
2938 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2939 				  txq->descs, txq->descs_phys);
2940 		return -ENOMEM;
2941 	}
2942 
2943 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2944 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2945 					   txq->size * TSO_HEADER_SIZE,
2946 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2947 	if (!txq->tso_hdrs) {
2948 		kfree(txq->tx_skb);
2949 		dma_free_coherent(pp->dev->dev.parent,
2950 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2951 				  txq->descs, txq->descs_phys);
2952 		return -ENOMEM;
2953 	}
2954 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2955 
2956 	/* Setup XPS mapping */
2957 	if (txq_number > 1)
2958 		cpu = txq->id % num_present_cpus();
2959 	else
2960 		cpu = pp->rxq_def % num_present_cpus();
2961 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2962 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2963 
2964 	return 0;
2965 }
2966 
2967 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2968 static void mvneta_txq_deinit(struct mvneta_port *pp,
2969 			      struct mvneta_tx_queue *txq)
2970 {
2971 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2972 
2973 	kfree(txq->tx_skb);
2974 
2975 	if (txq->tso_hdrs)
2976 		dma_free_coherent(pp->dev->dev.parent,
2977 				  txq->size * TSO_HEADER_SIZE,
2978 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2979 	if (txq->descs)
2980 		dma_free_coherent(pp->dev->dev.parent,
2981 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2982 				  txq->descs, txq->descs_phys);
2983 
2984 	netdev_tx_reset_queue(nq);
2985 
2986 	txq->descs             = NULL;
2987 	txq->last_desc         = 0;
2988 	txq->next_desc_to_proc = 0;
2989 	txq->descs_phys        = 0;
2990 
2991 	/* Set minimum bandwidth for disabled TXQs */
2992 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2993 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2994 
2995 	/* Set Tx descriptors queue starting address and size */
2996 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2997 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2998 }
2999 
3000 /* Cleanup all Tx queues */
3001 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3002 {
3003 	int queue;
3004 
3005 	for (queue = 0; queue < txq_number; queue++)
3006 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3007 }
3008 
3009 /* Cleanup all Rx queues */
3010 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3011 {
3012 	int queue;
3013 
3014 	for (queue = 0; queue < txq_number; queue++)
3015 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3016 }
3017 
3018 
3019 /* Init all Rx queues */
3020 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3021 {
3022 	int queue;
3023 
3024 	for (queue = 0; queue < rxq_number; queue++) {
3025 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3026 
3027 		if (err) {
3028 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3029 				   __func__, queue);
3030 			mvneta_cleanup_rxqs(pp);
3031 			return err;
3032 		}
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 /* Init all tx queues */
3039 static int mvneta_setup_txqs(struct mvneta_port *pp)
3040 {
3041 	int queue;
3042 
3043 	for (queue = 0; queue < txq_number; queue++) {
3044 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3045 		if (err) {
3046 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3047 				   __func__, queue);
3048 			mvneta_cleanup_txqs(pp);
3049 			return err;
3050 		}
3051 	}
3052 
3053 	return 0;
3054 }
3055 
3056 static void mvneta_start_dev(struct mvneta_port *pp)
3057 {
3058 	int cpu;
3059 	struct net_device *ndev = pp->dev;
3060 
3061 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3062 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3063 
3064 	/* start the Rx/Tx activity */
3065 	mvneta_port_enable(pp);
3066 
3067 	if (!pp->neta_armada3700) {
3068 		/* Enable polling on the port */
3069 		for_each_online_cpu(cpu) {
3070 			struct mvneta_pcpu_port *port =
3071 				per_cpu_ptr(pp->ports, cpu);
3072 
3073 			napi_enable(&port->napi);
3074 		}
3075 	} else {
3076 		napi_enable(&pp->napi);
3077 	}
3078 
3079 	/* Unmask interrupts. It has to be done from each CPU */
3080 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3081 
3082 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3083 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3084 		    MVNETA_CAUSE_LINK_CHANGE |
3085 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3086 
3087 	phy_start(ndev->phydev);
3088 	netif_tx_start_all_queues(pp->dev);
3089 }
3090 
3091 static void mvneta_stop_dev(struct mvneta_port *pp)
3092 {
3093 	unsigned int cpu;
3094 	struct net_device *ndev = pp->dev;
3095 
3096 	phy_stop(ndev->phydev);
3097 
3098 	if (!pp->neta_armada3700) {
3099 		for_each_online_cpu(cpu) {
3100 			struct mvneta_pcpu_port *port =
3101 				per_cpu_ptr(pp->ports, cpu);
3102 
3103 			napi_disable(&port->napi);
3104 		}
3105 	} else {
3106 		napi_disable(&pp->napi);
3107 	}
3108 
3109 	netif_carrier_off(pp->dev);
3110 
3111 	mvneta_port_down(pp);
3112 	netif_tx_stop_all_queues(pp->dev);
3113 
3114 	/* Stop the port activity */
3115 	mvneta_port_disable(pp);
3116 
3117 	/* Clear all ethernet port interrupts */
3118 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3119 
3120 	/* Mask all ethernet port interrupts */
3121 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3122 
3123 	mvneta_tx_reset(pp);
3124 	mvneta_rx_reset(pp);
3125 }
3126 
3127 static void mvneta_percpu_enable(void *arg)
3128 {
3129 	struct mvneta_port *pp = arg;
3130 
3131 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3132 }
3133 
3134 static void mvneta_percpu_disable(void *arg)
3135 {
3136 	struct mvneta_port *pp = arg;
3137 
3138 	disable_percpu_irq(pp->dev->irq);
3139 }
3140 
3141 /* Change the device mtu */
3142 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3143 {
3144 	struct mvneta_port *pp = netdev_priv(dev);
3145 	int ret;
3146 
3147 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3148 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3149 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3150 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3151 	}
3152 
3153 	dev->mtu = mtu;
3154 
3155 	if (!netif_running(dev)) {
3156 		if (pp->bm_priv)
3157 			mvneta_bm_update_mtu(pp, mtu);
3158 
3159 		netdev_update_features(dev);
3160 		return 0;
3161 	}
3162 
3163 	/* The interface is running, so we have to force a
3164 	 * reallocation of the queues
3165 	 */
3166 	mvneta_stop_dev(pp);
3167 	on_each_cpu(mvneta_percpu_disable, pp, true);
3168 
3169 	mvneta_cleanup_txqs(pp);
3170 	mvneta_cleanup_rxqs(pp);
3171 
3172 	if (pp->bm_priv)
3173 		mvneta_bm_update_mtu(pp, mtu);
3174 
3175 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3176 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3177 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3178 
3179 	ret = mvneta_setup_rxqs(pp);
3180 	if (ret) {
3181 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3182 		return ret;
3183 	}
3184 
3185 	ret = mvneta_setup_txqs(pp);
3186 	if (ret) {
3187 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3188 		return ret;
3189 	}
3190 
3191 	on_each_cpu(mvneta_percpu_enable, pp, true);
3192 	mvneta_start_dev(pp);
3193 	mvneta_port_up(pp);
3194 
3195 	netdev_update_features(dev);
3196 
3197 	return 0;
3198 }
3199 
3200 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3201 					     netdev_features_t features)
3202 {
3203 	struct mvneta_port *pp = netdev_priv(dev);
3204 
3205 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3206 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3207 		netdev_info(dev,
3208 			    "Disable IP checksum for MTU greater than %dB\n",
3209 			    pp->tx_csum_limit);
3210 	}
3211 
3212 	return features;
3213 }
3214 
3215 /* Get mac address */
3216 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3217 {
3218 	u32 mac_addr_l, mac_addr_h;
3219 
3220 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3221 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3222 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3223 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3224 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3225 	addr[3] = mac_addr_h & 0xFF;
3226 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3227 	addr[5] = mac_addr_l & 0xFF;
3228 }
3229 
3230 /* Handle setting mac address */
3231 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3232 {
3233 	struct mvneta_port *pp = netdev_priv(dev);
3234 	struct sockaddr *sockaddr = addr;
3235 	int ret;
3236 
3237 	ret = eth_prepare_mac_addr_change(dev, addr);
3238 	if (ret < 0)
3239 		return ret;
3240 	/* Remove previous address table entry */
3241 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3242 
3243 	/* Set new addr in hw */
3244 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3245 
3246 	eth_commit_mac_addr_change(dev, addr);
3247 	return 0;
3248 }
3249 
3250 static void mvneta_adjust_link(struct net_device *ndev)
3251 {
3252 	struct mvneta_port *pp = netdev_priv(ndev);
3253 	struct phy_device *phydev = ndev->phydev;
3254 	int status_change = 0;
3255 
3256 	if (phydev->link) {
3257 		if ((pp->speed != phydev->speed) ||
3258 		    (pp->duplex != phydev->duplex)) {
3259 			u32 val;
3260 
3261 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3262 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3263 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3264 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3265 
3266 			if (phydev->duplex)
3267 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3268 
3269 			if (phydev->speed == SPEED_1000)
3270 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3271 			else if (phydev->speed == SPEED_100)
3272 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3273 
3274 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3275 
3276 			pp->duplex = phydev->duplex;
3277 			pp->speed  = phydev->speed;
3278 		}
3279 	}
3280 
3281 	if (phydev->link != pp->link) {
3282 		if (!phydev->link) {
3283 			pp->duplex = -1;
3284 			pp->speed = 0;
3285 		}
3286 
3287 		pp->link = phydev->link;
3288 		status_change = 1;
3289 	}
3290 
3291 	if (status_change) {
3292 		if (phydev->link) {
3293 			if (!pp->use_inband_status) {
3294 				u32 val = mvreg_read(pp,
3295 						  MVNETA_GMAC_AUTONEG_CONFIG);
3296 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3297 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
3298 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3299 					    val);
3300 			}
3301 			mvneta_port_up(pp);
3302 		} else {
3303 			if (!pp->use_inband_status) {
3304 				u32 val = mvreg_read(pp,
3305 						  MVNETA_GMAC_AUTONEG_CONFIG);
3306 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3307 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3308 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3309 					    val);
3310 			}
3311 			mvneta_port_down(pp);
3312 		}
3313 		phy_print_status(phydev);
3314 	}
3315 }
3316 
3317 static int mvneta_mdio_probe(struct mvneta_port *pp)
3318 {
3319 	struct phy_device *phy_dev;
3320 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3321 
3322 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3323 				 pp->phy_interface);
3324 	if (!phy_dev) {
3325 		netdev_err(pp->dev, "could not find the PHY\n");
3326 		return -ENODEV;
3327 	}
3328 
3329 	phy_ethtool_get_wol(phy_dev, &wol);
3330 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3331 
3332 	phy_dev->supported &= PHY_GBIT_FEATURES;
3333 	phy_dev->advertising = phy_dev->supported;
3334 
3335 	pp->link    = 0;
3336 	pp->duplex  = 0;
3337 	pp->speed   = 0;
3338 
3339 	return 0;
3340 }
3341 
3342 static void mvneta_mdio_remove(struct mvneta_port *pp)
3343 {
3344 	struct net_device *ndev = pp->dev;
3345 
3346 	phy_disconnect(ndev->phydev);
3347 }
3348 
3349 /* Electing a CPU must be done in an atomic way: it should be done
3350  * after or before the removal/insertion of a CPU and this function is
3351  * not reentrant.
3352  */
3353 static void mvneta_percpu_elect(struct mvneta_port *pp)
3354 {
3355 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3356 
3357 	/* Use the cpu associated to the rxq when it is online, in all
3358 	 * the other cases, use the cpu 0 which can't be offline.
3359 	 */
3360 	if (cpu_online(pp->rxq_def))
3361 		elected_cpu = pp->rxq_def;
3362 
3363 	max_cpu = num_present_cpus();
3364 
3365 	for_each_online_cpu(cpu) {
3366 		int rxq_map = 0, txq_map = 0;
3367 		int rxq;
3368 
3369 		for (rxq = 0; rxq < rxq_number; rxq++)
3370 			if ((rxq % max_cpu) == cpu)
3371 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3372 
3373 		if (cpu == elected_cpu)
3374 			/* Map the default receive queue queue to the
3375 			 * elected CPU
3376 			 */
3377 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3378 
3379 		/* We update the TX queue map only if we have one
3380 		 * queue. In this case we associate the TX queue to
3381 		 * the CPU bound to the default RX queue
3382 		 */
3383 		if (txq_number == 1)
3384 			txq_map = (cpu == elected_cpu) ?
3385 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3386 		else
3387 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3388 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3389 
3390 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3391 
3392 		/* Update the interrupt mask on each CPU according the
3393 		 * new mapping
3394 		 */
3395 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3396 					 pp, true);
3397 		i++;
3398 
3399 	}
3400 };
3401 
3402 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3403 {
3404 	int other_cpu;
3405 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3406 						  node_online);
3407 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3408 
3409 
3410 	spin_lock(&pp->lock);
3411 	/*
3412 	 * Configuring the driver for a new CPU while the driver is
3413 	 * stopping is racy, so just avoid it.
3414 	 */
3415 	if (pp->is_stopped) {
3416 		spin_unlock(&pp->lock);
3417 		return 0;
3418 	}
3419 	netif_tx_stop_all_queues(pp->dev);
3420 
3421 	/*
3422 	 * We have to synchronise on tha napi of each CPU except the one
3423 	 * just being woken up
3424 	 */
3425 	for_each_online_cpu(other_cpu) {
3426 		if (other_cpu != cpu) {
3427 			struct mvneta_pcpu_port *other_port =
3428 				per_cpu_ptr(pp->ports, other_cpu);
3429 
3430 			napi_synchronize(&other_port->napi);
3431 		}
3432 	}
3433 
3434 	/* Mask all ethernet port interrupts */
3435 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3436 	napi_enable(&port->napi);
3437 
3438 	/*
3439 	 * Enable per-CPU interrupts on the CPU that is
3440 	 * brought up.
3441 	 */
3442 	mvneta_percpu_enable(pp);
3443 
3444 	/*
3445 	 * Enable per-CPU interrupt on the one CPU we care
3446 	 * about.
3447 	 */
3448 	mvneta_percpu_elect(pp);
3449 
3450 	/* Unmask all ethernet port interrupts */
3451 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3452 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3453 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3454 		    MVNETA_CAUSE_LINK_CHANGE |
3455 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3456 	netif_tx_start_all_queues(pp->dev);
3457 	spin_unlock(&pp->lock);
3458 	return 0;
3459 }
3460 
3461 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3462 {
3463 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3464 						  node_online);
3465 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3466 
3467 	/*
3468 	 * Thanks to this lock we are sure that any pending cpu election is
3469 	 * done.
3470 	 */
3471 	spin_lock(&pp->lock);
3472 	/* Mask all ethernet port interrupts */
3473 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3474 	spin_unlock(&pp->lock);
3475 
3476 	napi_synchronize(&port->napi);
3477 	napi_disable(&port->napi);
3478 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3479 	mvneta_percpu_disable(pp);
3480 	return 0;
3481 }
3482 
3483 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3484 {
3485 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3486 						  node_dead);
3487 
3488 	/* Check if a new CPU must be elected now this on is down */
3489 	spin_lock(&pp->lock);
3490 	mvneta_percpu_elect(pp);
3491 	spin_unlock(&pp->lock);
3492 	/* Unmask all ethernet port interrupts */
3493 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3494 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3495 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3496 		    MVNETA_CAUSE_LINK_CHANGE |
3497 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3498 	netif_tx_start_all_queues(pp->dev);
3499 	return 0;
3500 }
3501 
3502 static int mvneta_open(struct net_device *dev)
3503 {
3504 	struct mvneta_port *pp = netdev_priv(dev);
3505 	int ret;
3506 
3507 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3508 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3509 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3510 
3511 	ret = mvneta_setup_rxqs(pp);
3512 	if (ret)
3513 		return ret;
3514 
3515 	ret = mvneta_setup_txqs(pp);
3516 	if (ret)
3517 		goto err_cleanup_rxqs;
3518 
3519 	/* Connect to port interrupt line */
3520 	if (pp->neta_armada3700)
3521 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3522 				  dev->name, pp);
3523 	else
3524 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3525 					 dev->name, pp->ports);
3526 	if (ret) {
3527 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3528 		goto err_cleanup_txqs;
3529 	}
3530 
3531 	if (!pp->neta_armada3700) {
3532 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3533 		 * queue interrupts
3534 		 */
3535 		on_each_cpu(mvneta_percpu_enable, pp, true);
3536 
3537 		pp->is_stopped = false;
3538 		/* Register a CPU notifier to handle the case where our CPU
3539 		 * might be taken offline.
3540 		 */
3541 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3542 						       &pp->node_online);
3543 		if (ret)
3544 			goto err_free_irq;
3545 
3546 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3547 						       &pp->node_dead);
3548 		if (ret)
3549 			goto err_free_online_hp;
3550 	}
3551 
3552 	/* In default link is down */
3553 	netif_carrier_off(pp->dev);
3554 
3555 	ret = mvneta_mdio_probe(pp);
3556 	if (ret < 0) {
3557 		netdev_err(dev, "cannot probe MDIO bus\n");
3558 		goto err_free_dead_hp;
3559 	}
3560 
3561 	mvneta_start_dev(pp);
3562 
3563 	return 0;
3564 
3565 err_free_dead_hp:
3566 	if (!pp->neta_armada3700)
3567 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3568 						    &pp->node_dead);
3569 err_free_online_hp:
3570 	if (!pp->neta_armada3700)
3571 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3572 						    &pp->node_online);
3573 err_free_irq:
3574 	if (pp->neta_armada3700) {
3575 		free_irq(pp->dev->irq, pp);
3576 	} else {
3577 		on_each_cpu(mvneta_percpu_disable, pp, true);
3578 		free_percpu_irq(pp->dev->irq, pp->ports);
3579 	}
3580 err_cleanup_txqs:
3581 	mvneta_cleanup_txqs(pp);
3582 err_cleanup_rxqs:
3583 	mvneta_cleanup_rxqs(pp);
3584 	return ret;
3585 }
3586 
3587 /* Stop the port, free port interrupt line */
3588 static int mvneta_stop(struct net_device *dev)
3589 {
3590 	struct mvneta_port *pp = netdev_priv(dev);
3591 
3592 	if (!pp->neta_armada3700) {
3593 		/* Inform that we are stopping so we don't want to setup the
3594 		 * driver for new CPUs in the notifiers. The code of the
3595 		 * notifier for CPU online is protected by the same spinlock,
3596 		 * so when we get the lock, the notifer work is done.
3597 		 */
3598 		spin_lock(&pp->lock);
3599 		pp->is_stopped = true;
3600 		spin_unlock(&pp->lock);
3601 
3602 		mvneta_stop_dev(pp);
3603 		mvneta_mdio_remove(pp);
3604 
3605 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3606 						    &pp->node_online);
3607 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3608 						    &pp->node_dead);
3609 		on_each_cpu(mvneta_percpu_disable, pp, true);
3610 		free_percpu_irq(dev->irq, pp->ports);
3611 	} else {
3612 		mvneta_stop_dev(pp);
3613 		mvneta_mdio_remove(pp);
3614 		free_irq(dev->irq, pp);
3615 	}
3616 
3617 	mvneta_cleanup_rxqs(pp);
3618 	mvneta_cleanup_txqs(pp);
3619 
3620 	return 0;
3621 }
3622 
3623 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3624 {
3625 	if (!dev->phydev)
3626 		return -ENOTSUPP;
3627 
3628 	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3629 }
3630 
3631 /* Ethtool methods */
3632 
3633 /* Set link ksettings (phy address, speed) for ethtools */
3634 static int
3635 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3636 				  const struct ethtool_link_ksettings *cmd)
3637 {
3638 	struct mvneta_port *pp = netdev_priv(ndev);
3639 	struct phy_device *phydev = ndev->phydev;
3640 
3641 	if (!phydev)
3642 		return -ENODEV;
3643 
3644 	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3645 		u32 val;
3646 
3647 		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3648 
3649 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3650 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3651 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3652 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3653 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3654 
3655 			if (phydev->duplex)
3656 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3657 
3658 			if (phydev->speed == SPEED_1000)
3659 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3660 			else if (phydev->speed == SPEED_100)
3661 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3662 
3663 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3664 		}
3665 
3666 		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3667 		netdev_info(pp->dev, "autoneg status set to %i\n",
3668 			    pp->use_inband_status);
3669 
3670 		if (netif_running(ndev)) {
3671 			mvneta_port_down(pp);
3672 			mvneta_port_up(pp);
3673 		}
3674 	}
3675 
3676 	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3677 }
3678 
3679 /* Set interrupt coalescing for ethtools */
3680 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3681 				       struct ethtool_coalesce *c)
3682 {
3683 	struct mvneta_port *pp = netdev_priv(dev);
3684 	int queue;
3685 
3686 	for (queue = 0; queue < rxq_number; queue++) {
3687 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3688 		rxq->time_coal = c->rx_coalesce_usecs;
3689 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3690 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3691 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3692 	}
3693 
3694 	for (queue = 0; queue < txq_number; queue++) {
3695 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3696 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3697 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3698 	}
3699 
3700 	return 0;
3701 }
3702 
3703 /* get coalescing for ethtools */
3704 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3705 				       struct ethtool_coalesce *c)
3706 {
3707 	struct mvneta_port *pp = netdev_priv(dev);
3708 
3709 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3710 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3711 
3712 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3713 	return 0;
3714 }
3715 
3716 
3717 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3718 				    struct ethtool_drvinfo *drvinfo)
3719 {
3720 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3721 		sizeof(drvinfo->driver));
3722 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3723 		sizeof(drvinfo->version));
3724 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3725 		sizeof(drvinfo->bus_info));
3726 }
3727 
3728 
3729 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3730 					 struct ethtool_ringparam *ring)
3731 {
3732 	struct mvneta_port *pp = netdev_priv(netdev);
3733 
3734 	ring->rx_max_pending = MVNETA_MAX_RXD;
3735 	ring->tx_max_pending = MVNETA_MAX_TXD;
3736 	ring->rx_pending = pp->rx_ring_size;
3737 	ring->tx_pending = pp->tx_ring_size;
3738 }
3739 
3740 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3741 					struct ethtool_ringparam *ring)
3742 {
3743 	struct mvneta_port *pp = netdev_priv(dev);
3744 
3745 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3746 		return -EINVAL;
3747 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3748 		ring->rx_pending : MVNETA_MAX_RXD;
3749 
3750 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3751 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3752 	if (pp->tx_ring_size != ring->tx_pending)
3753 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3754 			    pp->tx_ring_size, ring->tx_pending);
3755 
3756 	if (netif_running(dev)) {
3757 		mvneta_stop(dev);
3758 		if (mvneta_open(dev)) {
3759 			netdev_err(dev,
3760 				   "error on opening device after ring param change\n");
3761 			return -ENOMEM;
3762 		}
3763 	}
3764 
3765 	return 0;
3766 }
3767 
3768 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3769 				       u8 *data)
3770 {
3771 	if (sset == ETH_SS_STATS) {
3772 		int i;
3773 
3774 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3775 			memcpy(data + i * ETH_GSTRING_LEN,
3776 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3777 	}
3778 }
3779 
3780 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3781 {
3782 	const struct mvneta_statistic *s;
3783 	void __iomem *base = pp->base;
3784 	u32 high, low, val;
3785 	u64 val64;
3786 	int i;
3787 
3788 	for (i = 0, s = mvneta_statistics;
3789 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3790 	     s++, i++) {
3791 		switch (s->type) {
3792 		case T_REG_32:
3793 			val = readl_relaxed(base + s->offset);
3794 			pp->ethtool_stats[i] += val;
3795 			break;
3796 		case T_REG_64:
3797 			/* Docs say to read low 32-bit then high */
3798 			low = readl_relaxed(base + s->offset);
3799 			high = readl_relaxed(base + s->offset + 4);
3800 			val64 = (u64)high << 32 | low;
3801 			pp->ethtool_stats[i] += val64;
3802 			break;
3803 		}
3804 	}
3805 }
3806 
3807 static void mvneta_ethtool_get_stats(struct net_device *dev,
3808 				     struct ethtool_stats *stats, u64 *data)
3809 {
3810 	struct mvneta_port *pp = netdev_priv(dev);
3811 	int i;
3812 
3813 	mvneta_ethtool_update_stats(pp);
3814 
3815 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3816 		*data++ = pp->ethtool_stats[i];
3817 }
3818 
3819 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3820 {
3821 	if (sset == ETH_SS_STATS)
3822 		return ARRAY_SIZE(mvneta_statistics);
3823 	return -EOPNOTSUPP;
3824 }
3825 
3826 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3827 {
3828 	return MVNETA_RSS_LU_TABLE_SIZE;
3829 }
3830 
3831 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3832 				    struct ethtool_rxnfc *info,
3833 				    u32 *rules __always_unused)
3834 {
3835 	switch (info->cmd) {
3836 	case ETHTOOL_GRXRINGS:
3837 		info->data =  rxq_number;
3838 		return 0;
3839 	case ETHTOOL_GRXFH:
3840 		return -EOPNOTSUPP;
3841 	default:
3842 		return -EOPNOTSUPP;
3843 	}
3844 }
3845 
3846 static int  mvneta_config_rss(struct mvneta_port *pp)
3847 {
3848 	int cpu;
3849 	u32 val;
3850 
3851 	netif_tx_stop_all_queues(pp->dev);
3852 
3853 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3854 
3855 	/* We have to synchronise on the napi of each CPU */
3856 	for_each_online_cpu(cpu) {
3857 		struct mvneta_pcpu_port *pcpu_port =
3858 			per_cpu_ptr(pp->ports, cpu);
3859 
3860 		napi_synchronize(&pcpu_port->napi);
3861 		napi_disable(&pcpu_port->napi);
3862 	}
3863 
3864 	pp->rxq_def = pp->indir[0];
3865 
3866 	/* Update unicast mapping */
3867 	mvneta_set_rx_mode(pp->dev);
3868 
3869 	/* Update val of portCfg register accordingly with all RxQueue types */
3870 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3871 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3872 
3873 	/* Update the elected CPU matching the new rxq_def */
3874 	spin_lock(&pp->lock);
3875 	mvneta_percpu_elect(pp);
3876 	spin_unlock(&pp->lock);
3877 
3878 	/* We have to synchronise on the napi of each CPU */
3879 	for_each_online_cpu(cpu) {
3880 		struct mvneta_pcpu_port *pcpu_port =
3881 			per_cpu_ptr(pp->ports, cpu);
3882 
3883 		napi_enable(&pcpu_port->napi);
3884 	}
3885 
3886 	netif_tx_start_all_queues(pp->dev);
3887 
3888 	return 0;
3889 }
3890 
3891 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3892 				   const u8 *key, const u8 hfunc)
3893 {
3894 	struct mvneta_port *pp = netdev_priv(dev);
3895 
3896 	/* Current code for Armada 3700 doesn't support RSS features yet */
3897 	if (pp->neta_armada3700)
3898 		return -EOPNOTSUPP;
3899 
3900 	/* We require at least one supported parameter to be changed
3901 	 * and no change in any of the unsupported parameters
3902 	 */
3903 	if (key ||
3904 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3905 		return -EOPNOTSUPP;
3906 
3907 	if (!indir)
3908 		return 0;
3909 
3910 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3911 
3912 	return mvneta_config_rss(pp);
3913 }
3914 
3915 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3916 				   u8 *hfunc)
3917 {
3918 	struct mvneta_port *pp = netdev_priv(dev);
3919 
3920 	/* Current code for Armada 3700 doesn't support RSS features yet */
3921 	if (pp->neta_armada3700)
3922 		return -EOPNOTSUPP;
3923 
3924 	if (hfunc)
3925 		*hfunc = ETH_RSS_HASH_TOP;
3926 
3927 	if (!indir)
3928 		return 0;
3929 
3930 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3931 
3932 	return 0;
3933 }
3934 
3935 static void mvneta_ethtool_get_wol(struct net_device *dev,
3936 				   struct ethtool_wolinfo *wol)
3937 {
3938 	wol->supported = 0;
3939 	wol->wolopts = 0;
3940 
3941 	if (dev->phydev)
3942 		phy_ethtool_get_wol(dev->phydev, wol);
3943 }
3944 
3945 static int mvneta_ethtool_set_wol(struct net_device *dev,
3946 				  struct ethtool_wolinfo *wol)
3947 {
3948 	int ret;
3949 
3950 	if (!dev->phydev)
3951 		return -EOPNOTSUPP;
3952 
3953 	ret = phy_ethtool_set_wol(dev->phydev, wol);
3954 	if (!ret)
3955 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
3956 
3957 	return ret;
3958 }
3959 
3960 static const struct net_device_ops mvneta_netdev_ops = {
3961 	.ndo_open            = mvneta_open,
3962 	.ndo_stop            = mvneta_stop,
3963 	.ndo_start_xmit      = mvneta_tx,
3964 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3965 	.ndo_set_mac_address = mvneta_set_mac_addr,
3966 	.ndo_change_mtu      = mvneta_change_mtu,
3967 	.ndo_fix_features    = mvneta_fix_features,
3968 	.ndo_get_stats64     = mvneta_get_stats64,
3969 	.ndo_do_ioctl        = mvneta_ioctl,
3970 };
3971 
3972 static const struct ethtool_ops mvneta_eth_tool_ops = {
3973 	.nway_reset	= phy_ethtool_nway_reset,
3974 	.get_link       = ethtool_op_get_link,
3975 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3976 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3977 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3978 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3979 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3980 	.get_strings	= mvneta_ethtool_get_strings,
3981 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3982 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3983 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3984 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3985 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3986 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3987 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
3988 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3989 	.get_wol        = mvneta_ethtool_get_wol,
3990 	.set_wol        = mvneta_ethtool_set_wol,
3991 };
3992 
3993 /* Initialize hw */
3994 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3995 {
3996 	int queue;
3997 
3998 	/* Disable port */
3999 	mvneta_port_disable(pp);
4000 
4001 	/* Set port default values */
4002 	mvneta_defaults_set(pp);
4003 
4004 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4005 	if (!pp->txqs)
4006 		return -ENOMEM;
4007 
4008 	/* Initialize TX descriptor rings */
4009 	for (queue = 0; queue < txq_number; queue++) {
4010 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4011 		txq->id = queue;
4012 		txq->size = pp->tx_ring_size;
4013 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4014 	}
4015 
4016 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4017 	if (!pp->rxqs)
4018 		return -ENOMEM;
4019 
4020 	/* Create Rx descriptor rings */
4021 	for (queue = 0; queue < rxq_number; queue++) {
4022 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4023 		rxq->id = queue;
4024 		rxq->size = pp->rx_ring_size;
4025 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4026 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4027 		rxq->buf_virt_addr
4028 			= devm_kmalloc_array(pp->dev->dev.parent,
4029 					     rxq->size,
4030 					     sizeof(*rxq->buf_virt_addr),
4031 					     GFP_KERNEL);
4032 		if (!rxq->buf_virt_addr)
4033 			return -ENOMEM;
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 /* platform glue : initialize decoding windows */
4040 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4041 				     const struct mbus_dram_target_info *dram)
4042 {
4043 	u32 win_enable;
4044 	u32 win_protect;
4045 	int i;
4046 
4047 	for (i = 0; i < 6; i++) {
4048 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4049 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4050 
4051 		if (i < 4)
4052 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4053 	}
4054 
4055 	win_enable = 0x3f;
4056 	win_protect = 0;
4057 
4058 	if (dram) {
4059 		for (i = 0; i < dram->num_cs; i++) {
4060 			const struct mbus_dram_window *cs = dram->cs + i;
4061 
4062 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4063 				    (cs->base & 0xffff0000) |
4064 				    (cs->mbus_attr << 8) |
4065 				    dram->mbus_dram_target_id);
4066 
4067 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4068 				    (cs->size - 1) & 0xffff0000);
4069 
4070 			win_enable &= ~(1 << i);
4071 			win_protect |= 3 << (2 * i);
4072 		}
4073 	} else {
4074 		/* For Armada3700 open default 4GB Mbus window, leaving
4075 		 * arbitration of target/attribute to a different layer
4076 		 * of configuration.
4077 		 */
4078 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4079 		win_enable &= ~BIT(0);
4080 		win_protect = 3;
4081 	}
4082 
4083 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4084 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4085 }
4086 
4087 /* Power up the port */
4088 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4089 {
4090 	u32 ctrl;
4091 
4092 	/* MAC Cause register should be cleared */
4093 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4094 
4095 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4096 
4097 	/* Even though it might look weird, when we're configured in
4098 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4099 	 */
4100 	switch(phy_mode) {
4101 	case PHY_INTERFACE_MODE_QSGMII:
4102 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4103 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4104 		break;
4105 	case PHY_INTERFACE_MODE_SGMII:
4106 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4107 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4108 		break;
4109 	case PHY_INTERFACE_MODE_RGMII:
4110 	case PHY_INTERFACE_MODE_RGMII_ID:
4111 	case PHY_INTERFACE_MODE_RGMII_RXID:
4112 	case PHY_INTERFACE_MODE_RGMII_TXID:
4113 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
4114 		break;
4115 	default:
4116 		return -EINVAL;
4117 	}
4118 
4119 	/* Cancel Port Reset */
4120 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4121 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4122 
4123 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4124 		MVNETA_GMAC2_PORT_RESET) != 0)
4125 		continue;
4126 
4127 	return 0;
4128 }
4129 
4130 /* Device initialization routine */
4131 static int mvneta_probe(struct platform_device *pdev)
4132 {
4133 	struct resource *res;
4134 	struct device_node *dn = pdev->dev.of_node;
4135 	struct device_node *phy_node;
4136 	struct device_node *bm_node;
4137 	struct mvneta_port *pp;
4138 	struct net_device *dev;
4139 	const char *dt_mac_addr;
4140 	char hw_mac_addr[ETH_ALEN];
4141 	const char *mac_from;
4142 	const char *managed;
4143 	int tx_csum_limit;
4144 	int phy_mode;
4145 	int err;
4146 	int cpu;
4147 
4148 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4149 	if (!dev)
4150 		return -ENOMEM;
4151 
4152 	dev->irq = irq_of_parse_and_map(dn, 0);
4153 	if (dev->irq == 0) {
4154 		err = -EINVAL;
4155 		goto err_free_netdev;
4156 	}
4157 
4158 	phy_node = of_parse_phandle(dn, "phy", 0);
4159 	if (!phy_node) {
4160 		if (!of_phy_is_fixed_link(dn)) {
4161 			dev_err(&pdev->dev, "no PHY specified\n");
4162 			err = -ENODEV;
4163 			goto err_free_irq;
4164 		}
4165 
4166 		err = of_phy_register_fixed_link(dn);
4167 		if (err < 0) {
4168 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
4169 			goto err_free_irq;
4170 		}
4171 
4172 		/* In the case of a fixed PHY, the DT node associated
4173 		 * to the PHY is the Ethernet MAC DT node.
4174 		 */
4175 		phy_node = of_node_get(dn);
4176 	}
4177 
4178 	phy_mode = of_get_phy_mode(dn);
4179 	if (phy_mode < 0) {
4180 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4181 		err = -EINVAL;
4182 		goto err_put_phy_node;
4183 	}
4184 
4185 	dev->tx_queue_len = MVNETA_MAX_TXD;
4186 	dev->watchdog_timeo = 5 * HZ;
4187 	dev->netdev_ops = &mvneta_netdev_ops;
4188 
4189 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4190 
4191 	pp = netdev_priv(dev);
4192 	spin_lock_init(&pp->lock);
4193 	pp->phy_node = phy_node;
4194 	pp->phy_interface = phy_mode;
4195 
4196 	err = of_property_read_string(dn, "managed", &managed);
4197 	pp->use_inband_status = (err == 0 &&
4198 				 strcmp(managed, "in-band-status") == 0);
4199 
4200 	pp->rxq_def = rxq_def;
4201 
4202 	/* Set RX packet offset correction for platforms, whose
4203 	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4204 	 * platforms and 0B for 32-bit ones.
4205 	 */
4206 	pp->rx_offset_correction =
4207 		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4208 
4209 	pp->indir[0] = rxq_def;
4210 
4211 	/* Get special SoC configurations */
4212 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4213 		pp->neta_armada3700 = true;
4214 
4215 	pp->clk = devm_clk_get(&pdev->dev, "core");
4216 	if (IS_ERR(pp->clk))
4217 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4218 	if (IS_ERR(pp->clk)) {
4219 		err = PTR_ERR(pp->clk);
4220 		goto err_put_phy_node;
4221 	}
4222 
4223 	clk_prepare_enable(pp->clk);
4224 
4225 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4226 	if (!IS_ERR(pp->clk_bus))
4227 		clk_prepare_enable(pp->clk_bus);
4228 
4229 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4230 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4231 	if (IS_ERR(pp->base)) {
4232 		err = PTR_ERR(pp->base);
4233 		goto err_clk;
4234 	}
4235 
4236 	/* Alloc per-cpu port structure */
4237 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4238 	if (!pp->ports) {
4239 		err = -ENOMEM;
4240 		goto err_clk;
4241 	}
4242 
4243 	/* Alloc per-cpu stats */
4244 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4245 	if (!pp->stats) {
4246 		err = -ENOMEM;
4247 		goto err_free_ports;
4248 	}
4249 
4250 	dt_mac_addr = of_get_mac_address(dn);
4251 	if (dt_mac_addr) {
4252 		mac_from = "device tree";
4253 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4254 	} else {
4255 		mvneta_get_mac_addr(pp, hw_mac_addr);
4256 		if (is_valid_ether_addr(hw_mac_addr)) {
4257 			mac_from = "hardware";
4258 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4259 		} else {
4260 			mac_from = "random";
4261 			eth_hw_addr_random(dev);
4262 		}
4263 	}
4264 
4265 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4266 		if (tx_csum_limit < 0 ||
4267 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4268 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4269 			dev_info(&pdev->dev,
4270 				 "Wrong TX csum limit in DT, set to %dB\n",
4271 				 MVNETA_TX_CSUM_DEF_SIZE);
4272 		}
4273 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4274 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4275 	} else {
4276 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4277 	}
4278 
4279 	pp->tx_csum_limit = tx_csum_limit;
4280 
4281 	pp->dram_target_info = mv_mbus_dram_info();
4282 	/* Armada3700 requires setting default configuration of Mbus
4283 	 * windows, however without using filled mbus_dram_target_info
4284 	 * structure.
4285 	 */
4286 	if (pp->dram_target_info || pp->neta_armada3700)
4287 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4288 
4289 	pp->tx_ring_size = MVNETA_MAX_TXD;
4290 	pp->rx_ring_size = MVNETA_MAX_RXD;
4291 
4292 	pp->dev = dev;
4293 	SET_NETDEV_DEV(dev, &pdev->dev);
4294 
4295 	pp->id = global_port_id++;
4296 
4297 	/* Obtain access to BM resources if enabled and already initialized */
4298 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4299 	if (bm_node && bm_node->data) {
4300 		pp->bm_priv = bm_node->data;
4301 		err = mvneta_bm_port_init(pdev, pp);
4302 		if (err < 0) {
4303 			dev_info(&pdev->dev, "use SW buffer management\n");
4304 			pp->bm_priv = NULL;
4305 		}
4306 	}
4307 	of_node_put(bm_node);
4308 
4309 	err = mvneta_init(&pdev->dev, pp);
4310 	if (err < 0)
4311 		goto err_netdev;
4312 
4313 	err = mvneta_port_power_up(pp, phy_mode);
4314 	if (err < 0) {
4315 		dev_err(&pdev->dev, "can't power up port\n");
4316 		goto err_netdev;
4317 	}
4318 
4319 	/* Armada3700 network controller does not support per-cpu
4320 	 * operation, so only single NAPI should be initialized.
4321 	 */
4322 	if (pp->neta_armada3700) {
4323 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4324 	} else {
4325 		for_each_present_cpu(cpu) {
4326 			struct mvneta_pcpu_port *port =
4327 				per_cpu_ptr(pp->ports, cpu);
4328 
4329 			netif_napi_add(dev, &port->napi, mvneta_poll,
4330 				       NAPI_POLL_WEIGHT);
4331 			port->pp = pp;
4332 		}
4333 	}
4334 
4335 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4336 	dev->hw_features |= dev->features;
4337 	dev->vlan_features |= dev->features;
4338 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4339 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4340 
4341 	/* MTU range: 68 - 9676 */
4342 	dev->min_mtu = ETH_MIN_MTU;
4343 	/* 9676 == 9700 - 20 and rounding to 8 */
4344 	dev->max_mtu = 9676;
4345 
4346 	err = register_netdev(dev);
4347 	if (err < 0) {
4348 		dev_err(&pdev->dev, "failed to register\n");
4349 		goto err_free_stats;
4350 	}
4351 
4352 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4353 		    dev->dev_addr);
4354 
4355 	platform_set_drvdata(pdev, pp->dev);
4356 
4357 	if (pp->use_inband_status) {
4358 		struct phy_device *phy = of_phy_find_device(dn);
4359 
4360 		mvneta_fixed_link_update(pp, phy);
4361 
4362 		put_device(&phy->mdio.dev);
4363 	}
4364 
4365 	return 0;
4366 
4367 err_netdev:
4368 	unregister_netdev(dev);
4369 	if (pp->bm_priv) {
4370 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4371 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4372 				       1 << pp->id);
4373 	}
4374 err_free_stats:
4375 	free_percpu(pp->stats);
4376 err_free_ports:
4377 	free_percpu(pp->ports);
4378 err_clk:
4379 	clk_disable_unprepare(pp->clk_bus);
4380 	clk_disable_unprepare(pp->clk);
4381 err_put_phy_node:
4382 	of_node_put(phy_node);
4383 	if (of_phy_is_fixed_link(dn))
4384 		of_phy_deregister_fixed_link(dn);
4385 err_free_irq:
4386 	irq_dispose_mapping(dev->irq);
4387 err_free_netdev:
4388 	free_netdev(dev);
4389 	return err;
4390 }
4391 
4392 /* Device removal routine */
4393 static int mvneta_remove(struct platform_device *pdev)
4394 {
4395 	struct net_device  *dev = platform_get_drvdata(pdev);
4396 	struct device_node *dn = pdev->dev.of_node;
4397 	struct mvneta_port *pp = netdev_priv(dev);
4398 
4399 	unregister_netdev(dev);
4400 	clk_disable_unprepare(pp->clk_bus);
4401 	clk_disable_unprepare(pp->clk);
4402 	free_percpu(pp->ports);
4403 	free_percpu(pp->stats);
4404 	if (of_phy_is_fixed_link(dn))
4405 		of_phy_deregister_fixed_link(dn);
4406 	irq_dispose_mapping(dev->irq);
4407 	of_node_put(pp->phy_node);
4408 	free_netdev(dev);
4409 
4410 	if (pp->bm_priv) {
4411 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4412 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4413 				       1 << pp->id);
4414 	}
4415 
4416 	return 0;
4417 }
4418 
4419 #ifdef CONFIG_PM_SLEEP
4420 static int mvneta_suspend(struct device *device)
4421 {
4422 	struct net_device *dev = dev_get_drvdata(device);
4423 	struct mvneta_port *pp = netdev_priv(dev);
4424 
4425 	if (netif_running(dev))
4426 		mvneta_stop(dev);
4427 	netif_device_detach(dev);
4428 	clk_disable_unprepare(pp->clk_bus);
4429 	clk_disable_unprepare(pp->clk);
4430 	return 0;
4431 }
4432 
4433 static int mvneta_resume(struct device *device)
4434 {
4435 	struct platform_device *pdev = to_platform_device(device);
4436 	struct net_device *dev = dev_get_drvdata(device);
4437 	struct mvneta_port *pp = netdev_priv(dev);
4438 	int err;
4439 
4440 	clk_prepare_enable(pp->clk);
4441 	if (!IS_ERR(pp->clk_bus))
4442 		clk_prepare_enable(pp->clk_bus);
4443 	if (pp->dram_target_info || pp->neta_armada3700)
4444 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4445 	if (pp->bm_priv) {
4446 		err = mvneta_bm_port_init(pdev, pp);
4447 		if (err < 0) {
4448 			dev_info(&pdev->dev, "use SW buffer management\n");
4449 			pp->bm_priv = NULL;
4450 		}
4451 	}
4452 	mvneta_defaults_set(pp);
4453 	err = mvneta_port_power_up(pp, pp->phy_interface);
4454 	if (err < 0) {
4455 		dev_err(device, "can't power up port\n");
4456 		return err;
4457 	}
4458 
4459 	if (pp->use_inband_status)
4460 		mvneta_fixed_link_update(pp, dev->phydev);
4461 
4462 	netif_device_attach(dev);
4463 	if (netif_running(dev)) {
4464 		mvneta_open(dev);
4465 		mvneta_set_rx_mode(dev);
4466 	}
4467 
4468 	return 0;
4469 }
4470 #endif
4471 
4472 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4473 
4474 static const struct of_device_id mvneta_match[] = {
4475 	{ .compatible = "marvell,armada-370-neta" },
4476 	{ .compatible = "marvell,armada-xp-neta" },
4477 	{ .compatible = "marvell,armada-3700-neta" },
4478 	{ }
4479 };
4480 MODULE_DEVICE_TABLE(of, mvneta_match);
4481 
4482 static struct platform_driver mvneta_driver = {
4483 	.probe = mvneta_probe,
4484 	.remove = mvneta_remove,
4485 	.driver = {
4486 		.name = MVNETA_DRIVER_NAME,
4487 		.of_match_table = mvneta_match,
4488 		.pm = &mvneta_pm_ops,
4489 	},
4490 };
4491 
4492 static int __init mvneta_driver_init(void)
4493 {
4494 	int ret;
4495 
4496 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4497 				      mvneta_cpu_online,
4498 				      mvneta_cpu_down_prepare);
4499 	if (ret < 0)
4500 		goto out;
4501 	online_hpstate = ret;
4502 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4503 				      NULL, mvneta_cpu_dead);
4504 	if (ret)
4505 		goto err_dead;
4506 
4507 	ret = platform_driver_register(&mvneta_driver);
4508 	if (ret)
4509 		goto err;
4510 	return 0;
4511 
4512 err:
4513 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4514 err_dead:
4515 	cpuhp_remove_multi_state(online_hpstate);
4516 out:
4517 	return ret;
4518 }
4519 module_init(mvneta_driver_init);
4520 
4521 static void __exit mvneta_driver_exit(void)
4522 {
4523 	platform_driver_unregister(&mvneta_driver);
4524 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4525 	cpuhp_remove_multi_state(online_hpstate);
4526 }
4527 module_exit(mvneta_driver_exit);
4528 
4529 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4530 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4531 MODULE_LICENSE("GPL");
4532 
4533 module_param(rxq_number, int, S_IRUGO);
4534 module_param(txq_number, int, S_IRUGO);
4535 
4536 module_param(rxq_def, int, S_IRUGO);
4537 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4538