1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 193 #define MVNETA_GMAC_CTRL_2 0x2c08 194 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 195 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 196 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 197 #define MVNETA_GMAC2_PORT_RESET BIT(6) 198 #define MVNETA_GMAC_STATUS 0x2c10 199 #define MVNETA_GMAC_LINK_UP BIT(0) 200 #define MVNETA_GMAC_SPEED_1000 BIT(1) 201 #define MVNETA_GMAC_SPEED_100 BIT(2) 202 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 203 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 204 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 205 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 206 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 207 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 208 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 209 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 210 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 211 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 212 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 213 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 214 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 215 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 216 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 217 #define MVNETA_MIB_COUNTERS_BASE 0x3000 218 #define MVNETA_MIB_LATE_COLLISION 0x7c 219 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 220 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 221 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 222 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 223 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 224 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 225 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 226 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 227 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 228 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 229 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 230 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 231 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 232 #define MVNETA_PORT_TX_RESET 0x3cf0 233 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 234 #define MVNETA_TX_MTU 0x3e0c 235 #define MVNETA_TX_TOKEN_SIZE 0x3e14 236 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 237 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 238 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 239 240 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 241 242 /* Descriptor ring Macros */ 243 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 244 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 245 246 /* Various constants */ 247 248 /* Coalescing */ 249 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 250 #define MVNETA_RX_COAL_PKTS 32 251 #define MVNETA_RX_COAL_USEC 100 252 253 /* The two bytes Marvell header. Either contains a special value used 254 * by Marvell switches when a specific hardware mode is enabled (not 255 * supported by this driver) or is filled automatically by zeroes on 256 * the RX side. Those two bytes being at the front of the Ethernet 257 * header, they allow to have the IP header aligned on a 4 bytes 258 * boundary automatically: the hardware skips those two bytes on its 259 * own. 260 */ 261 #define MVNETA_MH_SIZE 2 262 263 #define MVNETA_VLAN_TAG_LEN 4 264 265 #define MVNETA_TX_CSUM_DEF_SIZE 1600 266 #define MVNETA_TX_CSUM_MAX_SIZE 9800 267 #define MVNETA_ACC_MODE_EXT1 1 268 #define MVNETA_ACC_MODE_EXT2 2 269 270 #define MVNETA_MAX_DECODE_WIN 6 271 272 /* Timeout constants */ 273 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 274 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 275 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 276 277 #define MVNETA_TX_MTU_MAX 0x3ffff 278 279 /* The RSS lookup table actually has 256 entries but we do not use 280 * them yet 281 */ 282 #define MVNETA_RSS_LU_TABLE_SIZE 1 283 284 /* TSO header size */ 285 #define TSO_HEADER_SIZE 128 286 287 /* Max number of Rx descriptors */ 288 #define MVNETA_MAX_RXD 128 289 290 /* Max number of Tx descriptors */ 291 #define MVNETA_MAX_TXD 532 292 293 /* Max number of allowed TCP segments for software TSO */ 294 #define MVNETA_MAX_TSO_SEGS 100 295 296 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 297 298 /* descriptor aligned size */ 299 #define MVNETA_DESC_ALIGNED_SIZE 32 300 301 /* Number of bytes to be taken into account by HW when putting incoming data 302 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 303 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 304 */ 305 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 306 307 #define MVNETA_RX_PKT_SIZE(mtu) \ 308 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 309 ETH_HLEN + ETH_FCS_LEN, \ 310 cache_line_size()) 311 312 #define IS_TSO_HEADER(txq, addr) \ 313 ((addr >= txq->tso_hdrs_phys) && \ 314 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 315 316 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 317 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 318 319 struct mvneta_statistic { 320 unsigned short offset; 321 unsigned short type; 322 const char name[ETH_GSTRING_LEN]; 323 }; 324 325 #define T_REG_32 32 326 #define T_REG_64 64 327 328 static const struct mvneta_statistic mvneta_statistics[] = { 329 { 0x3000, T_REG_64, "good_octets_received", }, 330 { 0x3010, T_REG_32, "good_frames_received", }, 331 { 0x3008, T_REG_32, "bad_octets_received", }, 332 { 0x3014, T_REG_32, "bad_frames_received", }, 333 { 0x3018, T_REG_32, "broadcast_frames_received", }, 334 { 0x301c, T_REG_32, "multicast_frames_received", }, 335 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 336 { 0x3058, T_REG_32, "good_fc_received", }, 337 { 0x305c, T_REG_32, "bad_fc_received", }, 338 { 0x3060, T_REG_32, "undersize_received", }, 339 { 0x3064, T_REG_32, "fragments_received", }, 340 { 0x3068, T_REG_32, "oversize_received", }, 341 { 0x306c, T_REG_32, "jabber_received", }, 342 { 0x3070, T_REG_32, "mac_receive_error", }, 343 { 0x3074, T_REG_32, "bad_crc_event", }, 344 { 0x3078, T_REG_32, "collision", }, 345 { 0x307c, T_REG_32, "late_collision", }, 346 { 0x2484, T_REG_32, "rx_discard", }, 347 { 0x2488, T_REG_32, "rx_overrun", }, 348 { 0x3020, T_REG_32, "frames_64_octets", }, 349 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 350 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 351 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 352 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 353 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 354 { 0x3038, T_REG_64, "good_octets_sent", }, 355 { 0x3040, T_REG_32, "good_frames_sent", }, 356 { 0x3044, T_REG_32, "excessive_collision", }, 357 { 0x3048, T_REG_32, "multicast_frames_sent", }, 358 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 359 { 0x3054, T_REG_32, "fc_sent", }, 360 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 361 }; 362 363 struct mvneta_pcpu_stats { 364 struct u64_stats_sync syncp; 365 u64 rx_packets; 366 u64 rx_bytes; 367 u64 tx_packets; 368 u64 tx_bytes; 369 }; 370 371 struct mvneta_pcpu_port { 372 /* Pointer to the shared port */ 373 struct mvneta_port *pp; 374 375 /* Pointer to the CPU-local NAPI struct */ 376 struct napi_struct napi; 377 378 /* Cause of the previous interrupt */ 379 u32 cause_rx_tx; 380 }; 381 382 struct mvneta_port { 383 u8 id; 384 struct mvneta_pcpu_port __percpu *ports; 385 struct mvneta_pcpu_stats __percpu *stats; 386 387 int pkt_size; 388 unsigned int frag_size; 389 void __iomem *base; 390 struct mvneta_rx_queue *rxqs; 391 struct mvneta_tx_queue *txqs; 392 struct net_device *dev; 393 struct hlist_node node_online; 394 struct hlist_node node_dead; 395 int rxq_def; 396 /* Protect the access to the percpu interrupt registers, 397 * ensuring that the configuration remains coherent. 398 */ 399 spinlock_t lock; 400 bool is_stopped; 401 402 u32 cause_rx_tx; 403 struct napi_struct napi; 404 405 /* Core clock */ 406 struct clk *clk; 407 /* AXI clock */ 408 struct clk *clk_bus; 409 u8 mcast_count[256]; 410 u16 tx_ring_size; 411 u16 rx_ring_size; 412 413 struct mii_bus *mii_bus; 414 phy_interface_t phy_interface; 415 struct device_node *phy_node; 416 unsigned int link; 417 unsigned int duplex; 418 unsigned int speed; 419 unsigned int tx_csum_limit; 420 unsigned int use_inband_status:1; 421 422 struct mvneta_bm *bm_priv; 423 struct mvneta_bm_pool *pool_long; 424 struct mvneta_bm_pool *pool_short; 425 int bm_win_id; 426 427 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 428 429 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 430 431 /* Flags for special SoC configurations */ 432 bool neta_armada3700; 433 u16 rx_offset_correction; 434 const struct mbus_dram_target_info *dram_target_info; 435 }; 436 437 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 438 * layout of the transmit and reception DMA descriptors, and their 439 * layout is therefore defined by the hardware design 440 */ 441 442 #define MVNETA_TX_L3_OFF_SHIFT 0 443 #define MVNETA_TX_IP_HLEN_SHIFT 8 444 #define MVNETA_TX_L4_UDP BIT(16) 445 #define MVNETA_TX_L3_IP6 BIT(17) 446 #define MVNETA_TXD_IP_CSUM BIT(18) 447 #define MVNETA_TXD_Z_PAD BIT(19) 448 #define MVNETA_TXD_L_DESC BIT(20) 449 #define MVNETA_TXD_F_DESC BIT(21) 450 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 451 MVNETA_TXD_L_DESC | \ 452 MVNETA_TXD_F_DESC) 453 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 454 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 455 456 #define MVNETA_RXD_ERR_CRC 0x0 457 #define MVNETA_RXD_BM_POOL_SHIFT 13 458 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 459 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 460 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 461 #define MVNETA_RXD_ERR_LEN BIT(18) 462 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 463 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 464 #define MVNETA_RXD_L3_IP4 BIT(25) 465 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 466 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 467 468 #if defined(__LITTLE_ENDIAN) 469 struct mvneta_tx_desc { 470 u32 command; /* Options used by HW for packet transmitting.*/ 471 u16 reserverd1; /* csum_l4 (for future use) */ 472 u16 data_size; /* Data size of transmitted packet in bytes */ 473 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 474 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 475 u32 reserved3[4]; /* Reserved - (for future use) */ 476 }; 477 478 struct mvneta_rx_desc { 479 u32 status; /* Info about received packet */ 480 u16 reserved1; /* pnc_info - (for future use, PnC) */ 481 u16 data_size; /* Size of received packet in bytes */ 482 483 u32 buf_phys_addr; /* Physical address of the buffer */ 484 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 485 486 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 487 u16 reserved3; /* prefetch_cmd, for future use */ 488 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 489 490 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 491 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 492 }; 493 #else 494 struct mvneta_tx_desc { 495 u16 data_size; /* Data size of transmitted packet in bytes */ 496 u16 reserverd1; /* csum_l4 (for future use) */ 497 u32 command; /* Options used by HW for packet transmitting.*/ 498 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 499 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 500 u32 reserved3[4]; /* Reserved - (for future use) */ 501 }; 502 503 struct mvneta_rx_desc { 504 u16 data_size; /* Size of received packet in bytes */ 505 u16 reserved1; /* pnc_info - (for future use, PnC) */ 506 u32 status; /* Info about received packet */ 507 508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 509 u32 buf_phys_addr; /* Physical address of the buffer */ 510 511 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 512 u16 reserved3; /* prefetch_cmd, for future use */ 513 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 514 515 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 516 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 517 }; 518 #endif 519 520 struct mvneta_tx_queue { 521 /* Number of this TX queue, in the range 0-7 */ 522 u8 id; 523 524 /* Number of TX DMA descriptors in the descriptor ring */ 525 int size; 526 527 /* Number of currently used TX DMA descriptor in the 528 * descriptor ring 529 */ 530 int count; 531 int pending; 532 int tx_stop_threshold; 533 int tx_wake_threshold; 534 535 /* Array of transmitted skb */ 536 struct sk_buff **tx_skb; 537 538 /* Index of last TX DMA descriptor that was inserted */ 539 int txq_put_index; 540 541 /* Index of the TX DMA descriptor to be cleaned up */ 542 int txq_get_index; 543 544 u32 done_pkts_coal; 545 546 /* Virtual address of the TX DMA descriptors array */ 547 struct mvneta_tx_desc *descs; 548 549 /* DMA address of the TX DMA descriptors array */ 550 dma_addr_t descs_phys; 551 552 /* Index of the last TX DMA descriptor */ 553 int last_desc; 554 555 /* Index of the next TX DMA descriptor to process */ 556 int next_desc_to_proc; 557 558 /* DMA buffers for TSO headers */ 559 char *tso_hdrs; 560 561 /* DMA address of TSO headers */ 562 dma_addr_t tso_hdrs_phys; 563 564 /* Affinity mask for CPUs*/ 565 cpumask_t affinity_mask; 566 }; 567 568 struct mvneta_rx_queue { 569 /* rx queue number, in the range 0-7 */ 570 u8 id; 571 572 /* num of rx descriptors in the rx descriptor ring */ 573 int size; 574 575 /* counter of times when mvneta_refill() failed */ 576 int missed; 577 578 u32 pkts_coal; 579 u32 time_coal; 580 581 /* Virtual address of the RX buffer */ 582 void **buf_virt_addr; 583 584 /* Virtual address of the RX DMA descriptors array */ 585 struct mvneta_rx_desc *descs; 586 587 /* DMA address of the RX DMA descriptors array */ 588 dma_addr_t descs_phys; 589 590 /* Index of the last RX DMA descriptor */ 591 int last_desc; 592 593 /* Index of the next RX DMA descriptor to process */ 594 int next_desc_to_proc; 595 }; 596 597 static enum cpuhp_state online_hpstate; 598 /* The hardware supports eight (8) rx queues, but we are only allowing 599 * the first one to be used. Therefore, let's just allocate one queue. 600 */ 601 static int rxq_number = 8; 602 static int txq_number = 8; 603 604 static int rxq_def; 605 606 static int rx_copybreak __read_mostly = 256; 607 608 /* HW BM need that each port be identify by a unique ID */ 609 static int global_port_id; 610 611 #define MVNETA_DRIVER_NAME "mvneta" 612 #define MVNETA_DRIVER_VERSION "1.0" 613 614 /* Utility/helper methods */ 615 616 /* Write helper method */ 617 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 618 { 619 writel(data, pp->base + offset); 620 } 621 622 /* Read helper method */ 623 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 624 { 625 return readl(pp->base + offset); 626 } 627 628 /* Increment txq get counter */ 629 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 630 { 631 txq->txq_get_index++; 632 if (txq->txq_get_index == txq->size) 633 txq->txq_get_index = 0; 634 } 635 636 /* Increment txq put counter */ 637 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 638 { 639 txq->txq_put_index++; 640 if (txq->txq_put_index == txq->size) 641 txq->txq_put_index = 0; 642 } 643 644 645 /* Clear all MIB counters */ 646 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 647 { 648 int i; 649 u32 dummy; 650 651 /* Perform dummy reads from MIB counters */ 652 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 653 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 654 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 655 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 656 } 657 658 /* Get System Network Statistics */ 659 static void 660 mvneta_get_stats64(struct net_device *dev, 661 struct rtnl_link_stats64 *stats) 662 { 663 struct mvneta_port *pp = netdev_priv(dev); 664 unsigned int start; 665 int cpu; 666 667 for_each_possible_cpu(cpu) { 668 struct mvneta_pcpu_stats *cpu_stats; 669 u64 rx_packets; 670 u64 rx_bytes; 671 u64 tx_packets; 672 u64 tx_bytes; 673 674 cpu_stats = per_cpu_ptr(pp->stats, cpu); 675 do { 676 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 677 rx_packets = cpu_stats->rx_packets; 678 rx_bytes = cpu_stats->rx_bytes; 679 tx_packets = cpu_stats->tx_packets; 680 tx_bytes = cpu_stats->tx_bytes; 681 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 682 683 stats->rx_packets += rx_packets; 684 stats->rx_bytes += rx_bytes; 685 stats->tx_packets += tx_packets; 686 stats->tx_bytes += tx_bytes; 687 } 688 689 stats->rx_errors = dev->stats.rx_errors; 690 stats->rx_dropped = dev->stats.rx_dropped; 691 692 stats->tx_dropped = dev->stats.tx_dropped; 693 } 694 695 /* Rx descriptors helper methods */ 696 697 /* Checks whether the RX descriptor having this status is both the first 698 * and the last descriptor for the RX packet. Each RX packet is currently 699 * received through a single RX descriptor, so not having each RX 700 * descriptor with its first and last bits set is an error 701 */ 702 static int mvneta_rxq_desc_is_first_last(u32 status) 703 { 704 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 705 MVNETA_RXD_FIRST_LAST_DESC; 706 } 707 708 /* Add number of descriptors ready to receive new packets */ 709 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 710 struct mvneta_rx_queue *rxq, 711 int ndescs) 712 { 713 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 714 * be added at once 715 */ 716 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 717 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 718 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 719 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 720 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 721 } 722 723 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 724 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 725 } 726 727 /* Get number of RX descriptors occupied by received packets */ 728 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 729 struct mvneta_rx_queue *rxq) 730 { 731 u32 val; 732 733 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 734 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 735 } 736 737 /* Update num of rx desc called upon return from rx path or 738 * from mvneta_rxq_drop_pkts(). 739 */ 740 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 741 struct mvneta_rx_queue *rxq, 742 int rx_done, int rx_filled) 743 { 744 u32 val; 745 746 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 747 val = rx_done | 748 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 749 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 750 return; 751 } 752 753 /* Only 255 descriptors can be added at once */ 754 while ((rx_done > 0) || (rx_filled > 0)) { 755 if (rx_done <= 0xff) { 756 val = rx_done; 757 rx_done = 0; 758 } else { 759 val = 0xff; 760 rx_done -= 0xff; 761 } 762 if (rx_filled <= 0xff) { 763 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 764 rx_filled = 0; 765 } else { 766 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 767 rx_filled -= 0xff; 768 } 769 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 770 } 771 } 772 773 /* Get pointer to next RX descriptor to be processed by SW */ 774 static struct mvneta_rx_desc * 775 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 776 { 777 int rx_desc = rxq->next_desc_to_proc; 778 779 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 780 prefetch(rxq->descs + rxq->next_desc_to_proc); 781 return rxq->descs + rx_desc; 782 } 783 784 /* Change maximum receive size of the port. */ 785 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 786 { 787 u32 val; 788 789 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 790 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 791 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 792 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 793 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 794 } 795 796 797 /* Set rx queue offset */ 798 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 799 struct mvneta_rx_queue *rxq, 800 int offset) 801 { 802 u32 val; 803 804 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 805 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 806 807 /* Offset is in */ 808 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 809 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 810 } 811 812 813 /* Tx descriptors helper methods */ 814 815 /* Update HW with number of TX descriptors to be sent */ 816 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 817 struct mvneta_tx_queue *txq, 818 int pend_desc) 819 { 820 u32 val; 821 822 /* Only 255 descriptors can be added at once ; Assume caller 823 * process TX desriptors in quanta less than 256 824 */ 825 val = pend_desc + txq->pending; 826 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 827 txq->pending = 0; 828 } 829 830 /* Get pointer to next TX descriptor to be processed (send) by HW */ 831 static struct mvneta_tx_desc * 832 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 833 { 834 int tx_desc = txq->next_desc_to_proc; 835 836 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 837 return txq->descs + tx_desc; 838 } 839 840 /* Release the last allocated TX descriptor. Useful to handle DMA 841 * mapping failures in the TX path. 842 */ 843 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 844 { 845 if (txq->next_desc_to_proc == 0) 846 txq->next_desc_to_proc = txq->last_desc - 1; 847 else 848 txq->next_desc_to_proc--; 849 } 850 851 /* Set rxq buf size */ 852 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 853 struct mvneta_rx_queue *rxq, 854 int buf_size) 855 { 856 u32 val; 857 858 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 859 860 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 861 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 862 863 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 864 } 865 866 /* Disable buffer management (BM) */ 867 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 868 struct mvneta_rx_queue *rxq) 869 { 870 u32 val; 871 872 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 873 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 874 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 875 } 876 877 /* Enable buffer management (BM) */ 878 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 879 struct mvneta_rx_queue *rxq) 880 { 881 u32 val; 882 883 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 884 val |= MVNETA_RXQ_HW_BUF_ALLOC; 885 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 886 } 887 888 /* Notify HW about port's assignment of pool for bigger packets */ 889 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 890 struct mvneta_rx_queue *rxq) 891 { 892 u32 val; 893 894 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 895 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 896 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 897 898 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 899 } 900 901 /* Notify HW about port's assignment of pool for smaller packets */ 902 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq) 904 { 905 u32 val; 906 907 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 908 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 909 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 910 911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 912 } 913 914 /* Set port's receive buffer size for assigned BM pool */ 915 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 916 int buf_size, 917 u8 pool_id) 918 { 919 u32 val; 920 921 if (!IS_ALIGNED(buf_size, 8)) { 922 dev_warn(pp->dev->dev.parent, 923 "illegal buf_size value %d, round to %d\n", 924 buf_size, ALIGN(buf_size, 8)); 925 buf_size = ALIGN(buf_size, 8); 926 } 927 928 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 929 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 930 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 931 } 932 933 /* Configure MBUS window in order to enable access BM internal SRAM */ 934 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 935 u8 target, u8 attr) 936 { 937 u32 win_enable, win_protect; 938 int i; 939 940 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 941 942 if (pp->bm_win_id < 0) { 943 /* Find first not occupied window */ 944 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 945 if (win_enable & (1 << i)) { 946 pp->bm_win_id = i; 947 break; 948 } 949 } 950 if (i == MVNETA_MAX_DECODE_WIN) 951 return -ENOMEM; 952 } else { 953 i = pp->bm_win_id; 954 } 955 956 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 957 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 958 959 if (i < 4) 960 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 961 962 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 963 (attr << 8) | target); 964 965 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 966 967 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 968 win_protect |= 3 << (2 * i); 969 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 970 971 win_enable &= ~(1 << i); 972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 973 974 return 0; 975 } 976 977 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 978 { 979 u32 wsize; 980 u8 target, attr; 981 int err; 982 983 /* Get BM window information */ 984 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 985 &target, &attr); 986 if (err < 0) 987 return err; 988 989 pp->bm_win_id = -1; 990 991 /* Open NETA -> BM window */ 992 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 993 target, attr); 994 if (err < 0) { 995 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 996 return err; 997 } 998 return 0; 999 } 1000 1001 /* Assign and initialize pools for port. In case of fail 1002 * buffer manager will remain disabled for current port. 1003 */ 1004 static int mvneta_bm_port_init(struct platform_device *pdev, 1005 struct mvneta_port *pp) 1006 { 1007 struct device_node *dn = pdev->dev.of_node; 1008 u32 long_pool_id, short_pool_id; 1009 1010 if (!pp->neta_armada3700) { 1011 int ret; 1012 1013 ret = mvneta_bm_port_mbus_init(pp); 1014 if (ret) 1015 return ret; 1016 } 1017 1018 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1019 netdev_info(pp->dev, "missing long pool id\n"); 1020 return -EINVAL; 1021 } 1022 1023 /* Create port's long pool depending on mtu */ 1024 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1025 MVNETA_BM_LONG, pp->id, 1026 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1027 if (!pp->pool_long) { 1028 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1029 return -ENOMEM; 1030 } 1031 1032 pp->pool_long->port_map |= 1 << pp->id; 1033 1034 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1035 pp->pool_long->id); 1036 1037 /* If short pool id is not defined, assume using single pool */ 1038 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1039 short_pool_id = long_pool_id; 1040 1041 /* Create port's short pool */ 1042 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1043 MVNETA_BM_SHORT, pp->id, 1044 MVNETA_BM_SHORT_PKT_SIZE); 1045 if (!pp->pool_short) { 1046 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1047 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1048 return -ENOMEM; 1049 } 1050 1051 if (short_pool_id != long_pool_id) { 1052 pp->pool_short->port_map |= 1 << pp->id; 1053 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1054 pp->pool_short->id); 1055 } 1056 1057 return 0; 1058 } 1059 1060 /* Update settings of a pool for bigger packets */ 1061 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1062 { 1063 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1064 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1065 int num; 1066 1067 /* Release all buffers from long pool */ 1068 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1069 if (hwbm_pool->buf_num) { 1070 WARN(1, "cannot free all buffers in pool %d\n", 1071 bm_pool->id); 1072 goto bm_mtu_err; 1073 } 1074 1075 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1076 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1077 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1078 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1079 1080 /* Fill entire long pool */ 1081 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1082 if (num != hwbm_pool->size) { 1083 WARN(1, "pool %d: %d of %d allocated\n", 1084 bm_pool->id, num, hwbm_pool->size); 1085 goto bm_mtu_err; 1086 } 1087 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1088 1089 return; 1090 1091 bm_mtu_err: 1092 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1093 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1094 1095 pp->bm_priv = NULL; 1096 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1097 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1098 } 1099 1100 /* Start the Ethernet port RX and TX activity */ 1101 static void mvneta_port_up(struct mvneta_port *pp) 1102 { 1103 int queue; 1104 u32 q_map; 1105 1106 /* Enable all initialized TXs. */ 1107 q_map = 0; 1108 for (queue = 0; queue < txq_number; queue++) { 1109 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1110 if (txq->descs) 1111 q_map |= (1 << queue); 1112 } 1113 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1114 1115 /* Enable all initialized RXQs. */ 1116 for (queue = 0; queue < rxq_number; queue++) { 1117 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1118 1119 if (rxq->descs) 1120 q_map |= (1 << queue); 1121 } 1122 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1123 } 1124 1125 /* Stop the Ethernet port activity */ 1126 static void mvneta_port_down(struct mvneta_port *pp) 1127 { 1128 u32 val; 1129 int count; 1130 1131 /* Stop Rx port activity. Check port Rx activity. */ 1132 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1133 1134 /* Issue stop command for active channels only */ 1135 if (val != 0) 1136 mvreg_write(pp, MVNETA_RXQ_CMD, 1137 val << MVNETA_RXQ_DISABLE_SHIFT); 1138 1139 /* Wait for all Rx activity to terminate. */ 1140 count = 0; 1141 do { 1142 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1143 netdev_warn(pp->dev, 1144 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1145 val); 1146 break; 1147 } 1148 mdelay(1); 1149 1150 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1151 } while (val & MVNETA_RXQ_ENABLE_MASK); 1152 1153 /* Stop Tx port activity. Check port Tx activity. Issue stop 1154 * command for active channels only 1155 */ 1156 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1157 1158 if (val != 0) 1159 mvreg_write(pp, MVNETA_TXQ_CMD, 1160 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1161 1162 /* Wait for all Tx activity to terminate. */ 1163 count = 0; 1164 do { 1165 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1166 netdev_warn(pp->dev, 1167 "TIMEOUT for TX stopped status=0x%08x\n", 1168 val); 1169 break; 1170 } 1171 mdelay(1); 1172 1173 /* Check TX Command reg that all Txqs are stopped */ 1174 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1175 1176 } while (val & MVNETA_TXQ_ENABLE_MASK); 1177 1178 /* Double check to verify that TX FIFO is empty */ 1179 count = 0; 1180 do { 1181 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1182 netdev_warn(pp->dev, 1183 "TX FIFO empty timeout status=0x%08x\n", 1184 val); 1185 break; 1186 } 1187 mdelay(1); 1188 1189 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1190 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1191 (val & MVNETA_TX_IN_PRGRS)); 1192 1193 udelay(200); 1194 } 1195 1196 /* Enable the port by setting the port enable bit of the MAC control register */ 1197 static void mvneta_port_enable(struct mvneta_port *pp) 1198 { 1199 u32 val; 1200 1201 /* Enable port */ 1202 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1203 val |= MVNETA_GMAC0_PORT_ENABLE; 1204 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1205 } 1206 1207 /* Disable the port and wait for about 200 usec before retuning */ 1208 static void mvneta_port_disable(struct mvneta_port *pp) 1209 { 1210 u32 val; 1211 1212 /* Reset the Enable bit in the Serial Control Register */ 1213 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1214 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1215 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1216 1217 udelay(200); 1218 } 1219 1220 /* Multicast tables methods */ 1221 1222 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1223 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1224 { 1225 int offset; 1226 u32 val; 1227 1228 if (queue == -1) { 1229 val = 0; 1230 } else { 1231 val = 0x1 | (queue << 1); 1232 val |= (val << 24) | (val << 16) | (val << 8); 1233 } 1234 1235 for (offset = 0; offset <= 0xc; offset += 4) 1236 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1237 } 1238 1239 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1240 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1241 { 1242 int offset; 1243 u32 val; 1244 1245 if (queue == -1) { 1246 val = 0; 1247 } else { 1248 val = 0x1 | (queue << 1); 1249 val |= (val << 24) | (val << 16) | (val << 8); 1250 } 1251 1252 for (offset = 0; offset <= 0xfc; offset += 4) 1253 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1254 1255 } 1256 1257 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1258 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1259 { 1260 int offset; 1261 u32 val; 1262 1263 if (queue == -1) { 1264 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1265 val = 0; 1266 } else { 1267 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1268 val = 0x1 | (queue << 1); 1269 val |= (val << 24) | (val << 16) | (val << 8); 1270 } 1271 1272 for (offset = 0; offset <= 0xfc; offset += 4) 1273 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1274 } 1275 1276 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1277 { 1278 u32 val; 1279 1280 if (enable) { 1281 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1282 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1283 MVNETA_GMAC_FORCE_LINK_DOWN | 1284 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1285 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1286 MVNETA_GMAC_AN_SPEED_EN | 1287 MVNETA_GMAC_AN_DUPLEX_EN; 1288 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1289 1290 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1291 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1292 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1293 1294 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1295 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1296 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1297 } else { 1298 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1299 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1300 MVNETA_GMAC_AN_SPEED_EN | 1301 MVNETA_GMAC_AN_DUPLEX_EN); 1302 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1303 1304 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1305 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1306 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1307 1308 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1309 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1310 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1311 } 1312 } 1313 1314 static void mvneta_percpu_unmask_interrupt(void *arg) 1315 { 1316 struct mvneta_port *pp = arg; 1317 1318 /* All the queue are unmasked, but actually only the ones 1319 * mapped to this CPU will be unmasked 1320 */ 1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1322 MVNETA_RX_INTR_MASK_ALL | 1323 MVNETA_TX_INTR_MASK_ALL | 1324 MVNETA_MISCINTR_INTR_MASK); 1325 } 1326 1327 static void mvneta_percpu_mask_interrupt(void *arg) 1328 { 1329 struct mvneta_port *pp = arg; 1330 1331 /* All the queue are masked, but actually only the ones 1332 * mapped to this CPU will be masked 1333 */ 1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1337 } 1338 1339 static void mvneta_percpu_clear_intr_cause(void *arg) 1340 { 1341 struct mvneta_port *pp = arg; 1342 1343 /* All the queue are cleared, but actually only the ones 1344 * mapped to this CPU will be cleared 1345 */ 1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1349 } 1350 1351 /* This method sets defaults to the NETA port: 1352 * Clears interrupt Cause and Mask registers. 1353 * Clears all MAC tables. 1354 * Sets defaults to all registers. 1355 * Resets RX and TX descriptor rings. 1356 * Resets PHY. 1357 * This method can be called after mvneta_port_down() to return the port 1358 * settings to defaults. 1359 */ 1360 static void mvneta_defaults_set(struct mvneta_port *pp) 1361 { 1362 int cpu; 1363 int queue; 1364 u32 val; 1365 int max_cpu = num_present_cpus(); 1366 1367 /* Clear all Cause registers */ 1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1369 1370 /* Mask all interrupts */ 1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1373 1374 /* Enable MBUS Retry bit16 */ 1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1376 1377 /* Set CPU queue access map. CPUs are assigned to the RX and 1378 * TX queues modulo their number. If there is only one TX 1379 * queue then it is assigned to the CPU associated to the 1380 * default RX queue. 1381 */ 1382 for_each_present_cpu(cpu) { 1383 int rxq_map = 0, txq_map = 0; 1384 int rxq, txq; 1385 if (!pp->neta_armada3700) { 1386 for (rxq = 0; rxq < rxq_number; rxq++) 1387 if ((rxq % max_cpu) == cpu) 1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1389 1390 for (txq = 0; txq < txq_number; txq++) 1391 if ((txq % max_cpu) == cpu) 1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1393 1394 /* With only one TX queue we configure a special case 1395 * which will allow to get all the irq on a single 1396 * CPU 1397 */ 1398 if (txq_number == 1) 1399 txq_map = (cpu == pp->rxq_def) ? 1400 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1401 1402 } else { 1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1405 } 1406 1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1408 } 1409 1410 /* Reset RX and TX DMAs */ 1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1413 1414 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1416 for (queue = 0; queue < txq_number; queue++) { 1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1419 } 1420 1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1423 1424 /* Set Port Acceleration Mode */ 1425 if (pp->bm_priv) 1426 /* HW buffer management + legacy parser */ 1427 val = MVNETA_ACC_MODE_EXT2; 1428 else 1429 /* SW buffer management + legacy parser */ 1430 val = MVNETA_ACC_MODE_EXT1; 1431 mvreg_write(pp, MVNETA_ACC_MODE, val); 1432 1433 if (pp->bm_priv) 1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1435 1436 /* Update val of portCfg register accordingly with all RxQueue types */ 1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1439 1440 val = 0; 1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1443 1444 /* Build PORT_SDMA_CONFIG_REG */ 1445 val = 0; 1446 1447 /* Default burst size */ 1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1451 1452 #if defined(__BIG_ENDIAN) 1453 val |= MVNETA_DESC_SWAP; 1454 #endif 1455 1456 /* Assign port SDMA configuration */ 1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1458 1459 /* Disable PHY polling in hardware, since we're using the 1460 * kernel phylib to do this. 1461 */ 1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1463 val &= ~MVNETA_PHY_POLLING_ENABLE; 1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1465 1466 mvneta_set_autoneg(pp, pp->use_inband_status); 1467 mvneta_set_ucast_table(pp, -1); 1468 mvneta_set_special_mcast_table(pp, -1); 1469 mvneta_set_other_mcast_table(pp, -1); 1470 1471 /* Set port interrupt enable register - default enable all */ 1472 mvreg_write(pp, MVNETA_INTR_ENABLE, 1473 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1474 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1475 1476 mvneta_mib_counters_clear(pp); 1477 } 1478 1479 /* Set max sizes for tx queues */ 1480 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1481 1482 { 1483 u32 val, size, mtu; 1484 int queue; 1485 1486 mtu = max_tx_size * 8; 1487 if (mtu > MVNETA_TX_MTU_MAX) 1488 mtu = MVNETA_TX_MTU_MAX; 1489 1490 /* Set MTU */ 1491 val = mvreg_read(pp, MVNETA_TX_MTU); 1492 val &= ~MVNETA_TX_MTU_MAX; 1493 val |= mtu; 1494 mvreg_write(pp, MVNETA_TX_MTU, val); 1495 1496 /* TX token size and all TXQs token size must be larger that MTU */ 1497 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1498 1499 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1500 if (size < mtu) { 1501 size = mtu; 1502 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1503 val |= size; 1504 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1505 } 1506 for (queue = 0; queue < txq_number; queue++) { 1507 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1508 1509 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1510 if (size < mtu) { 1511 size = mtu; 1512 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1513 val |= size; 1514 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1515 } 1516 } 1517 } 1518 1519 /* Set unicast address */ 1520 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1521 int queue) 1522 { 1523 unsigned int unicast_reg; 1524 unsigned int tbl_offset; 1525 unsigned int reg_offset; 1526 1527 /* Locate the Unicast table entry */ 1528 last_nibble = (0xf & last_nibble); 1529 1530 /* offset from unicast tbl base */ 1531 tbl_offset = (last_nibble / 4) * 4; 1532 1533 /* offset within the above reg */ 1534 reg_offset = last_nibble % 4; 1535 1536 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1537 1538 if (queue == -1) { 1539 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1540 unicast_reg &= ~(0xff << (8 * reg_offset)); 1541 } else { 1542 unicast_reg &= ~(0xff << (8 * reg_offset)); 1543 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1544 } 1545 1546 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1547 } 1548 1549 /* Set mac address */ 1550 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1551 int queue) 1552 { 1553 unsigned int mac_h; 1554 unsigned int mac_l; 1555 1556 if (queue != -1) { 1557 mac_l = (addr[4] << 8) | (addr[5]); 1558 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1559 (addr[2] << 8) | (addr[3] << 0); 1560 1561 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1562 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1563 } 1564 1565 /* Accept frames of this address */ 1566 mvneta_set_ucast_addr(pp, addr[5], queue); 1567 } 1568 1569 /* Set the number of packets that will be received before RX interrupt 1570 * will be generated by HW. 1571 */ 1572 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1573 struct mvneta_rx_queue *rxq, u32 value) 1574 { 1575 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1576 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1577 rxq->pkts_coal = value; 1578 } 1579 1580 /* Set the time delay in usec before RX interrupt will be generated by 1581 * HW. 1582 */ 1583 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1584 struct mvneta_rx_queue *rxq, u32 value) 1585 { 1586 u32 val; 1587 unsigned long clk_rate; 1588 1589 clk_rate = clk_get_rate(pp->clk); 1590 val = (clk_rate / 1000000) * value; 1591 1592 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1593 rxq->time_coal = value; 1594 } 1595 1596 /* Set threshold for TX_DONE pkts coalescing */ 1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1598 struct mvneta_tx_queue *txq, u32 value) 1599 { 1600 u32 val; 1601 1602 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1603 1604 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1605 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1606 1607 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1608 1609 txq->done_pkts_coal = value; 1610 } 1611 1612 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1613 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1614 u32 phys_addr, void *virt_addr, 1615 struct mvneta_rx_queue *rxq) 1616 { 1617 int i; 1618 1619 rx_desc->buf_phys_addr = phys_addr; 1620 i = rx_desc - rxq->descs; 1621 rxq->buf_virt_addr[i] = virt_addr; 1622 } 1623 1624 /* Decrement sent descriptors counter */ 1625 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1626 struct mvneta_tx_queue *txq, 1627 int sent_desc) 1628 { 1629 u32 val; 1630 1631 /* Only 255 TX descriptors can be updated at once */ 1632 while (sent_desc > 0xff) { 1633 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1635 sent_desc = sent_desc - 0xff; 1636 } 1637 1638 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1639 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1640 } 1641 1642 /* Get number of TX descriptors already sent by HW */ 1643 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1644 struct mvneta_tx_queue *txq) 1645 { 1646 u32 val; 1647 int sent_desc; 1648 1649 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1650 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1651 MVNETA_TXQ_SENT_DESC_SHIFT; 1652 1653 return sent_desc; 1654 } 1655 1656 /* Get number of sent descriptors and decrement counter. 1657 * The number of sent descriptors is returned. 1658 */ 1659 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1660 struct mvneta_tx_queue *txq) 1661 { 1662 int sent_desc; 1663 1664 /* Get number of sent descriptors */ 1665 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1666 1667 /* Decrement sent descriptors counter */ 1668 if (sent_desc) 1669 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1670 1671 return sent_desc; 1672 } 1673 1674 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1675 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1676 int ip_hdr_len, int l4_proto) 1677 { 1678 u32 command; 1679 1680 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1681 * G_L4_chk, L4_type; required only for checksum 1682 * calculation 1683 */ 1684 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1685 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1686 1687 if (l3_proto == htons(ETH_P_IP)) 1688 command |= MVNETA_TXD_IP_CSUM; 1689 else 1690 command |= MVNETA_TX_L3_IP6; 1691 1692 if (l4_proto == IPPROTO_TCP) 1693 command |= MVNETA_TX_L4_CSUM_FULL; 1694 else if (l4_proto == IPPROTO_UDP) 1695 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1696 else 1697 command |= MVNETA_TX_L4_CSUM_NOT; 1698 1699 return command; 1700 } 1701 1702 1703 /* Display more error info */ 1704 static void mvneta_rx_error(struct mvneta_port *pp, 1705 struct mvneta_rx_desc *rx_desc) 1706 { 1707 u32 status = rx_desc->status; 1708 1709 if (!mvneta_rxq_desc_is_first_last(status)) { 1710 netdev_err(pp->dev, 1711 "bad rx status %08x (buffer oversize), size=%d\n", 1712 status, rx_desc->data_size); 1713 return; 1714 } 1715 1716 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1717 case MVNETA_RXD_ERR_CRC: 1718 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1719 status, rx_desc->data_size); 1720 break; 1721 case MVNETA_RXD_ERR_OVERRUN: 1722 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1723 status, rx_desc->data_size); 1724 break; 1725 case MVNETA_RXD_ERR_LEN: 1726 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1727 status, rx_desc->data_size); 1728 break; 1729 case MVNETA_RXD_ERR_RESOURCE: 1730 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1731 status, rx_desc->data_size); 1732 break; 1733 } 1734 } 1735 1736 /* Handle RX checksum offload based on the descriptor's status */ 1737 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1738 struct sk_buff *skb) 1739 { 1740 if ((status & MVNETA_RXD_L3_IP4) && 1741 (status & MVNETA_RXD_L4_CSUM_OK)) { 1742 skb->csum = 0; 1743 skb->ip_summed = CHECKSUM_UNNECESSARY; 1744 return; 1745 } 1746 1747 skb->ip_summed = CHECKSUM_NONE; 1748 } 1749 1750 /* Return tx queue pointer (find last set bit) according to <cause> returned 1751 * form tx_done reg. <cause> must not be null. The return value is always a 1752 * valid queue for matching the first one found in <cause>. 1753 */ 1754 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1755 u32 cause) 1756 { 1757 int queue = fls(cause) - 1; 1758 1759 return &pp->txqs[queue]; 1760 } 1761 1762 /* Free tx queue skbuffs */ 1763 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1764 struct mvneta_tx_queue *txq, int num, 1765 struct netdev_queue *nq) 1766 { 1767 unsigned int bytes_compl = 0, pkts_compl = 0; 1768 int i; 1769 1770 for (i = 0; i < num; i++) { 1771 struct mvneta_tx_desc *tx_desc = txq->descs + 1772 txq->txq_get_index; 1773 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1774 1775 if (skb) { 1776 bytes_compl += skb->len; 1777 pkts_compl++; 1778 } 1779 1780 mvneta_txq_inc_get(txq); 1781 1782 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1783 dma_unmap_single(pp->dev->dev.parent, 1784 tx_desc->buf_phys_addr, 1785 tx_desc->data_size, DMA_TO_DEVICE); 1786 if (!skb) 1787 continue; 1788 dev_kfree_skb_any(skb); 1789 } 1790 1791 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1792 } 1793 1794 /* Handle end of transmission */ 1795 static void mvneta_txq_done(struct mvneta_port *pp, 1796 struct mvneta_tx_queue *txq) 1797 { 1798 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1799 int tx_done; 1800 1801 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1802 if (!tx_done) 1803 return; 1804 1805 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1806 1807 txq->count -= tx_done; 1808 1809 if (netif_tx_queue_stopped(nq)) { 1810 if (txq->count <= txq->tx_wake_threshold) 1811 netif_tx_wake_queue(nq); 1812 } 1813 } 1814 1815 void *mvneta_frag_alloc(unsigned int frag_size) 1816 { 1817 if (likely(frag_size <= PAGE_SIZE)) 1818 return netdev_alloc_frag(frag_size); 1819 else 1820 return kmalloc(frag_size, GFP_ATOMIC); 1821 } 1822 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1823 1824 void mvneta_frag_free(unsigned int frag_size, void *data) 1825 { 1826 if (likely(frag_size <= PAGE_SIZE)) 1827 skb_free_frag(data); 1828 else 1829 kfree(data); 1830 } 1831 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1832 1833 /* Refill processing for SW buffer management */ 1834 static int mvneta_rx_refill(struct mvneta_port *pp, 1835 struct mvneta_rx_desc *rx_desc, 1836 struct mvneta_rx_queue *rxq) 1837 1838 { 1839 dma_addr_t phys_addr; 1840 void *data; 1841 1842 data = mvneta_frag_alloc(pp->frag_size); 1843 if (!data) 1844 return -ENOMEM; 1845 1846 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1847 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1848 DMA_FROM_DEVICE); 1849 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1850 mvneta_frag_free(pp->frag_size, data); 1851 return -ENOMEM; 1852 } 1853 1854 phys_addr += pp->rx_offset_correction; 1855 mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq); 1856 return 0; 1857 } 1858 1859 /* Handle tx checksum */ 1860 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1861 { 1862 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1863 int ip_hdr_len = 0; 1864 __be16 l3_proto = vlan_get_protocol(skb); 1865 u8 l4_proto; 1866 1867 if (l3_proto == htons(ETH_P_IP)) { 1868 struct iphdr *ip4h = ip_hdr(skb); 1869 1870 /* Calculate IPv4 checksum and L4 checksum */ 1871 ip_hdr_len = ip4h->ihl; 1872 l4_proto = ip4h->protocol; 1873 } else if (l3_proto == htons(ETH_P_IPV6)) { 1874 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1875 1876 /* Read l4_protocol from one of IPv6 extra headers */ 1877 if (skb_network_header_len(skb) > 0) 1878 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1879 l4_proto = ip6h->nexthdr; 1880 } else 1881 return MVNETA_TX_L4_CSUM_NOT; 1882 1883 return mvneta_txq_desc_csum(skb_network_offset(skb), 1884 l3_proto, ip_hdr_len, l4_proto); 1885 } 1886 1887 return MVNETA_TX_L4_CSUM_NOT; 1888 } 1889 1890 /* Drop packets received by the RXQ and free buffers */ 1891 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1892 struct mvneta_rx_queue *rxq) 1893 { 1894 int rx_done, i; 1895 1896 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1897 if (rx_done) 1898 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1899 1900 if (pp->bm_priv) { 1901 for (i = 0; i < rx_done; i++) { 1902 struct mvneta_rx_desc *rx_desc = 1903 mvneta_rxq_next_desc_get(rxq); 1904 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1905 struct mvneta_bm_pool *bm_pool; 1906 1907 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1908 /* Return dropped buffer to the pool */ 1909 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1910 rx_desc->buf_phys_addr); 1911 } 1912 return; 1913 } 1914 1915 for (i = 0; i < rxq->size; i++) { 1916 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1917 void *data = rxq->buf_virt_addr[i]; 1918 1919 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1920 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1921 mvneta_frag_free(pp->frag_size, data); 1922 } 1923 } 1924 1925 /* Main rx processing when using software buffer management */ 1926 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1927 struct mvneta_rx_queue *rxq) 1928 { 1929 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1930 struct net_device *dev = pp->dev; 1931 int rx_done; 1932 u32 rcvd_pkts = 0; 1933 u32 rcvd_bytes = 0; 1934 1935 /* Get number of received packets */ 1936 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1937 1938 if (rx_todo > rx_done) 1939 rx_todo = rx_done; 1940 1941 rx_done = 0; 1942 1943 /* Fairness NAPI loop */ 1944 while (rx_done < rx_todo) { 1945 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1946 struct sk_buff *skb; 1947 unsigned char *data; 1948 dma_addr_t phys_addr; 1949 u32 rx_status, frag_size; 1950 int rx_bytes, err, index; 1951 1952 rx_done++; 1953 rx_status = rx_desc->status; 1954 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1955 index = rx_desc - rxq->descs; 1956 data = rxq->buf_virt_addr[index]; 1957 phys_addr = rx_desc->buf_phys_addr; 1958 1959 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1960 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1961 err_drop_frame: 1962 dev->stats.rx_errors++; 1963 mvneta_rx_error(pp, rx_desc); 1964 /* leave the descriptor untouched */ 1965 continue; 1966 } 1967 1968 if (rx_bytes <= rx_copybreak) { 1969 /* better copy a small frame and not unmap the DMA region */ 1970 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1971 if (unlikely(!skb)) 1972 goto err_drop_frame; 1973 1974 dma_sync_single_range_for_cpu(dev->dev.parent, 1975 phys_addr, 1976 MVNETA_MH_SIZE + NET_SKB_PAD, 1977 rx_bytes, 1978 DMA_FROM_DEVICE); 1979 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 1980 rx_bytes); 1981 1982 skb->protocol = eth_type_trans(skb, dev); 1983 mvneta_rx_csum(pp, rx_status, skb); 1984 napi_gro_receive(&port->napi, skb); 1985 1986 rcvd_pkts++; 1987 rcvd_bytes += rx_bytes; 1988 1989 /* leave the descriptor and buffer untouched */ 1990 continue; 1991 } 1992 1993 /* Refill processing */ 1994 err = mvneta_rx_refill(pp, rx_desc, rxq); 1995 if (err) { 1996 netdev_err(dev, "Linux processing - Can't refill\n"); 1997 rxq->missed++; 1998 goto err_drop_frame; 1999 } 2000 2001 frag_size = pp->frag_size; 2002 2003 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2004 2005 /* After refill old buffer has to be unmapped regardless 2006 * the skb is successfully built or not. 2007 */ 2008 dma_unmap_single(dev->dev.parent, phys_addr, 2009 MVNETA_RX_BUF_SIZE(pp->pkt_size), 2010 DMA_FROM_DEVICE); 2011 2012 if (!skb) 2013 goto err_drop_frame; 2014 2015 rcvd_pkts++; 2016 rcvd_bytes += rx_bytes; 2017 2018 /* Linux processing */ 2019 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2020 skb_put(skb, rx_bytes); 2021 2022 skb->protocol = eth_type_trans(skb, dev); 2023 2024 mvneta_rx_csum(pp, rx_status, skb); 2025 2026 napi_gro_receive(&port->napi, skb); 2027 } 2028 2029 if (rcvd_pkts) { 2030 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2031 2032 u64_stats_update_begin(&stats->syncp); 2033 stats->rx_packets += rcvd_pkts; 2034 stats->rx_bytes += rcvd_bytes; 2035 u64_stats_update_end(&stats->syncp); 2036 } 2037 2038 /* Update rxq management counters */ 2039 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2040 2041 return rx_done; 2042 } 2043 2044 /* Main rx processing when using hardware buffer management */ 2045 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 2046 struct mvneta_rx_queue *rxq) 2047 { 2048 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2049 struct net_device *dev = pp->dev; 2050 int rx_done; 2051 u32 rcvd_pkts = 0; 2052 u32 rcvd_bytes = 0; 2053 2054 /* Get number of received packets */ 2055 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2056 2057 if (rx_todo > rx_done) 2058 rx_todo = rx_done; 2059 2060 rx_done = 0; 2061 2062 /* Fairness NAPI loop */ 2063 while (rx_done < rx_todo) { 2064 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2065 struct mvneta_bm_pool *bm_pool = NULL; 2066 struct sk_buff *skb; 2067 unsigned char *data; 2068 dma_addr_t phys_addr; 2069 u32 rx_status, frag_size; 2070 int rx_bytes, err; 2071 u8 pool_id; 2072 2073 rx_done++; 2074 rx_status = rx_desc->status; 2075 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2076 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2077 phys_addr = rx_desc->buf_phys_addr; 2078 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2079 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2080 2081 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2082 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2083 err_drop_frame_ret_pool: 2084 /* Return the buffer to the pool */ 2085 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2086 rx_desc->buf_phys_addr); 2087 err_drop_frame: 2088 dev->stats.rx_errors++; 2089 mvneta_rx_error(pp, rx_desc); 2090 /* leave the descriptor untouched */ 2091 continue; 2092 } 2093 2094 if (rx_bytes <= rx_copybreak) { 2095 /* better copy a small frame and not unmap the DMA region */ 2096 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2097 if (unlikely(!skb)) 2098 goto err_drop_frame_ret_pool; 2099 2100 dma_sync_single_range_for_cpu(dev->dev.parent, 2101 rx_desc->buf_phys_addr, 2102 MVNETA_MH_SIZE + NET_SKB_PAD, 2103 rx_bytes, 2104 DMA_FROM_DEVICE); 2105 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2106 rx_bytes); 2107 2108 skb->protocol = eth_type_trans(skb, dev); 2109 mvneta_rx_csum(pp, rx_status, skb); 2110 napi_gro_receive(&port->napi, skb); 2111 2112 rcvd_pkts++; 2113 rcvd_bytes += rx_bytes; 2114 2115 /* Return the buffer to the pool */ 2116 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2117 rx_desc->buf_phys_addr); 2118 2119 /* leave the descriptor and buffer untouched */ 2120 continue; 2121 } 2122 2123 /* Refill processing */ 2124 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2125 if (err) { 2126 netdev_err(dev, "Linux processing - Can't refill\n"); 2127 rxq->missed++; 2128 goto err_drop_frame_ret_pool; 2129 } 2130 2131 frag_size = bm_pool->hwbm_pool.frag_size; 2132 2133 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2134 2135 /* After refill old buffer has to be unmapped regardless 2136 * the skb is successfully built or not. 2137 */ 2138 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2139 bm_pool->buf_size, DMA_FROM_DEVICE); 2140 if (!skb) 2141 goto err_drop_frame; 2142 2143 rcvd_pkts++; 2144 rcvd_bytes += rx_bytes; 2145 2146 /* Linux processing */ 2147 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2148 skb_put(skb, rx_bytes); 2149 2150 skb->protocol = eth_type_trans(skb, dev); 2151 2152 mvneta_rx_csum(pp, rx_status, skb); 2153 2154 napi_gro_receive(&port->napi, skb); 2155 } 2156 2157 if (rcvd_pkts) { 2158 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2159 2160 u64_stats_update_begin(&stats->syncp); 2161 stats->rx_packets += rcvd_pkts; 2162 stats->rx_bytes += rcvd_bytes; 2163 u64_stats_update_end(&stats->syncp); 2164 } 2165 2166 /* Update rxq management counters */ 2167 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2168 2169 return rx_done; 2170 } 2171 2172 static inline void 2173 mvneta_tso_put_hdr(struct sk_buff *skb, 2174 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2175 { 2176 struct mvneta_tx_desc *tx_desc; 2177 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2178 2179 txq->tx_skb[txq->txq_put_index] = NULL; 2180 tx_desc = mvneta_txq_next_desc_get(txq); 2181 tx_desc->data_size = hdr_len; 2182 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2183 tx_desc->command |= MVNETA_TXD_F_DESC; 2184 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2185 txq->txq_put_index * TSO_HEADER_SIZE; 2186 mvneta_txq_inc_put(txq); 2187 } 2188 2189 static inline int 2190 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2191 struct sk_buff *skb, char *data, int size, 2192 bool last_tcp, bool is_last) 2193 { 2194 struct mvneta_tx_desc *tx_desc; 2195 2196 tx_desc = mvneta_txq_next_desc_get(txq); 2197 tx_desc->data_size = size; 2198 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2199 size, DMA_TO_DEVICE); 2200 if (unlikely(dma_mapping_error(dev->dev.parent, 2201 tx_desc->buf_phys_addr))) { 2202 mvneta_txq_desc_put(txq); 2203 return -ENOMEM; 2204 } 2205 2206 tx_desc->command = 0; 2207 txq->tx_skb[txq->txq_put_index] = NULL; 2208 2209 if (last_tcp) { 2210 /* last descriptor in the TCP packet */ 2211 tx_desc->command = MVNETA_TXD_L_DESC; 2212 2213 /* last descriptor in SKB */ 2214 if (is_last) 2215 txq->tx_skb[txq->txq_put_index] = skb; 2216 } 2217 mvneta_txq_inc_put(txq); 2218 return 0; 2219 } 2220 2221 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2222 struct mvneta_tx_queue *txq) 2223 { 2224 int total_len, data_left; 2225 int desc_count = 0; 2226 struct mvneta_port *pp = netdev_priv(dev); 2227 struct tso_t tso; 2228 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2229 int i; 2230 2231 /* Count needed descriptors */ 2232 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2233 return 0; 2234 2235 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2236 pr_info("*** Is this even possible???!?!?\n"); 2237 return 0; 2238 } 2239 2240 /* Initialize the TSO handler, and prepare the first payload */ 2241 tso_start(skb, &tso); 2242 2243 total_len = skb->len - hdr_len; 2244 while (total_len > 0) { 2245 char *hdr; 2246 2247 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2248 total_len -= data_left; 2249 desc_count++; 2250 2251 /* prepare packet headers: MAC + IP + TCP */ 2252 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2253 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2254 2255 mvneta_tso_put_hdr(skb, pp, txq); 2256 2257 while (data_left > 0) { 2258 int size; 2259 desc_count++; 2260 2261 size = min_t(int, tso.size, data_left); 2262 2263 if (mvneta_tso_put_data(dev, txq, skb, 2264 tso.data, size, 2265 size == data_left, 2266 total_len == 0)) 2267 goto err_release; 2268 data_left -= size; 2269 2270 tso_build_data(skb, &tso, size); 2271 } 2272 } 2273 2274 return desc_count; 2275 2276 err_release: 2277 /* Release all used data descriptors; header descriptors must not 2278 * be DMA-unmapped. 2279 */ 2280 for (i = desc_count - 1; i >= 0; i--) { 2281 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2282 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2283 dma_unmap_single(pp->dev->dev.parent, 2284 tx_desc->buf_phys_addr, 2285 tx_desc->data_size, 2286 DMA_TO_DEVICE); 2287 mvneta_txq_desc_put(txq); 2288 } 2289 return 0; 2290 } 2291 2292 /* Handle tx fragmentation processing */ 2293 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2294 struct mvneta_tx_queue *txq) 2295 { 2296 struct mvneta_tx_desc *tx_desc; 2297 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2298 2299 for (i = 0; i < nr_frags; i++) { 2300 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2301 void *addr = page_address(frag->page.p) + frag->page_offset; 2302 2303 tx_desc = mvneta_txq_next_desc_get(txq); 2304 tx_desc->data_size = frag->size; 2305 2306 tx_desc->buf_phys_addr = 2307 dma_map_single(pp->dev->dev.parent, addr, 2308 tx_desc->data_size, DMA_TO_DEVICE); 2309 2310 if (dma_mapping_error(pp->dev->dev.parent, 2311 tx_desc->buf_phys_addr)) { 2312 mvneta_txq_desc_put(txq); 2313 goto error; 2314 } 2315 2316 if (i == nr_frags - 1) { 2317 /* Last descriptor */ 2318 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2319 txq->tx_skb[txq->txq_put_index] = skb; 2320 } else { 2321 /* Descriptor in the middle: Not First, Not Last */ 2322 tx_desc->command = 0; 2323 txq->tx_skb[txq->txq_put_index] = NULL; 2324 } 2325 mvneta_txq_inc_put(txq); 2326 } 2327 2328 return 0; 2329 2330 error: 2331 /* Release all descriptors that were used to map fragments of 2332 * this packet, as well as the corresponding DMA mappings 2333 */ 2334 for (i = i - 1; i >= 0; i--) { 2335 tx_desc = txq->descs + i; 2336 dma_unmap_single(pp->dev->dev.parent, 2337 tx_desc->buf_phys_addr, 2338 tx_desc->data_size, 2339 DMA_TO_DEVICE); 2340 mvneta_txq_desc_put(txq); 2341 } 2342 2343 return -ENOMEM; 2344 } 2345 2346 /* Main tx processing */ 2347 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2348 { 2349 struct mvneta_port *pp = netdev_priv(dev); 2350 u16 txq_id = skb_get_queue_mapping(skb); 2351 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2352 struct mvneta_tx_desc *tx_desc; 2353 int len = skb->len; 2354 int frags = 0; 2355 u32 tx_cmd; 2356 2357 if (!netif_running(dev)) 2358 goto out; 2359 2360 if (skb_is_gso(skb)) { 2361 frags = mvneta_tx_tso(skb, dev, txq); 2362 goto out; 2363 } 2364 2365 frags = skb_shinfo(skb)->nr_frags + 1; 2366 2367 /* Get a descriptor for the first part of the packet */ 2368 tx_desc = mvneta_txq_next_desc_get(txq); 2369 2370 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2371 2372 tx_desc->data_size = skb_headlen(skb); 2373 2374 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2375 tx_desc->data_size, 2376 DMA_TO_DEVICE); 2377 if (unlikely(dma_mapping_error(dev->dev.parent, 2378 tx_desc->buf_phys_addr))) { 2379 mvneta_txq_desc_put(txq); 2380 frags = 0; 2381 goto out; 2382 } 2383 2384 if (frags == 1) { 2385 /* First and Last descriptor */ 2386 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2387 tx_desc->command = tx_cmd; 2388 txq->tx_skb[txq->txq_put_index] = skb; 2389 mvneta_txq_inc_put(txq); 2390 } else { 2391 /* First but not Last */ 2392 tx_cmd |= MVNETA_TXD_F_DESC; 2393 txq->tx_skb[txq->txq_put_index] = NULL; 2394 mvneta_txq_inc_put(txq); 2395 tx_desc->command = tx_cmd; 2396 /* Continue with other skb fragments */ 2397 if (mvneta_tx_frag_process(pp, skb, txq)) { 2398 dma_unmap_single(dev->dev.parent, 2399 tx_desc->buf_phys_addr, 2400 tx_desc->data_size, 2401 DMA_TO_DEVICE); 2402 mvneta_txq_desc_put(txq); 2403 frags = 0; 2404 goto out; 2405 } 2406 } 2407 2408 out: 2409 if (frags > 0) { 2410 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2411 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2412 2413 netdev_tx_sent_queue(nq, len); 2414 2415 txq->count += frags; 2416 if (txq->count >= txq->tx_stop_threshold) 2417 netif_tx_stop_queue(nq); 2418 2419 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2420 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2421 mvneta_txq_pend_desc_add(pp, txq, frags); 2422 else 2423 txq->pending += frags; 2424 2425 u64_stats_update_begin(&stats->syncp); 2426 stats->tx_packets++; 2427 stats->tx_bytes += len; 2428 u64_stats_update_end(&stats->syncp); 2429 } else { 2430 dev->stats.tx_dropped++; 2431 dev_kfree_skb_any(skb); 2432 } 2433 2434 return NETDEV_TX_OK; 2435 } 2436 2437 2438 /* Free tx resources, when resetting a port */ 2439 static void mvneta_txq_done_force(struct mvneta_port *pp, 2440 struct mvneta_tx_queue *txq) 2441 2442 { 2443 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2444 int tx_done = txq->count; 2445 2446 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2447 2448 /* reset txq */ 2449 txq->count = 0; 2450 txq->txq_put_index = 0; 2451 txq->txq_get_index = 0; 2452 } 2453 2454 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2455 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2456 */ 2457 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2458 { 2459 struct mvneta_tx_queue *txq; 2460 struct netdev_queue *nq; 2461 2462 while (cause_tx_done) { 2463 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2464 2465 nq = netdev_get_tx_queue(pp->dev, txq->id); 2466 __netif_tx_lock(nq, smp_processor_id()); 2467 2468 if (txq->count) 2469 mvneta_txq_done(pp, txq); 2470 2471 __netif_tx_unlock(nq); 2472 cause_tx_done &= ~((1 << txq->id)); 2473 } 2474 } 2475 2476 /* Compute crc8 of the specified address, using a unique algorithm , 2477 * according to hw spec, different than generic crc8 algorithm 2478 */ 2479 static int mvneta_addr_crc(unsigned char *addr) 2480 { 2481 int crc = 0; 2482 int i; 2483 2484 for (i = 0; i < ETH_ALEN; i++) { 2485 int j; 2486 2487 crc = (crc ^ addr[i]) << 8; 2488 for (j = 7; j >= 0; j--) { 2489 if (crc & (0x100 << j)) 2490 crc ^= 0x107 << j; 2491 } 2492 } 2493 2494 return crc; 2495 } 2496 2497 /* This method controls the net device special MAC multicast support. 2498 * The Special Multicast Table for MAC addresses supports MAC of the form 2499 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2500 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2501 * Table entries in the DA-Filter table. This method set the Special 2502 * Multicast Table appropriate entry. 2503 */ 2504 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2505 unsigned char last_byte, 2506 int queue) 2507 { 2508 unsigned int smc_table_reg; 2509 unsigned int tbl_offset; 2510 unsigned int reg_offset; 2511 2512 /* Register offset from SMC table base */ 2513 tbl_offset = (last_byte / 4); 2514 /* Entry offset within the above reg */ 2515 reg_offset = last_byte % 4; 2516 2517 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2518 + tbl_offset * 4)); 2519 2520 if (queue == -1) 2521 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2522 else { 2523 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2524 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2525 } 2526 2527 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2528 smc_table_reg); 2529 } 2530 2531 /* This method controls the network device Other MAC multicast support. 2532 * The Other Multicast Table is used for multicast of another type. 2533 * A CRC-8 is used as an index to the Other Multicast Table entries 2534 * in the DA-Filter table. 2535 * The method gets the CRC-8 value from the calling routine and 2536 * sets the Other Multicast Table appropriate entry according to the 2537 * specified CRC-8 . 2538 */ 2539 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2540 unsigned char crc8, 2541 int queue) 2542 { 2543 unsigned int omc_table_reg; 2544 unsigned int tbl_offset; 2545 unsigned int reg_offset; 2546 2547 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2548 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2549 2550 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2551 2552 if (queue == -1) { 2553 /* Clear accepts frame bit at specified Other DA table entry */ 2554 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2555 } else { 2556 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2557 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2558 } 2559 2560 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2561 } 2562 2563 /* The network device supports multicast using two tables: 2564 * 1) Special Multicast Table for MAC addresses of the form 2565 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2566 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2567 * Table entries in the DA-Filter table. 2568 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2569 * is used as an index to the Other Multicast Table entries in the 2570 * DA-Filter table. 2571 */ 2572 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2573 int queue) 2574 { 2575 unsigned char crc_result = 0; 2576 2577 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2578 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2579 return 0; 2580 } 2581 2582 crc_result = mvneta_addr_crc(p_addr); 2583 if (queue == -1) { 2584 if (pp->mcast_count[crc_result] == 0) { 2585 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2586 crc_result); 2587 return -EINVAL; 2588 } 2589 2590 pp->mcast_count[crc_result]--; 2591 if (pp->mcast_count[crc_result] != 0) { 2592 netdev_info(pp->dev, 2593 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2594 pp->mcast_count[crc_result], crc_result); 2595 return -EINVAL; 2596 } 2597 } else 2598 pp->mcast_count[crc_result]++; 2599 2600 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2601 2602 return 0; 2603 } 2604 2605 /* Configure Fitering mode of Ethernet port */ 2606 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2607 int is_promisc) 2608 { 2609 u32 port_cfg_reg, val; 2610 2611 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2612 2613 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2614 2615 /* Set / Clear UPM bit in port configuration register */ 2616 if (is_promisc) { 2617 /* Accept all Unicast addresses */ 2618 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2619 val |= MVNETA_FORCE_UNI; 2620 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2621 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2622 } else { 2623 /* Reject all Unicast addresses */ 2624 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2625 val &= ~MVNETA_FORCE_UNI; 2626 } 2627 2628 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2629 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2630 } 2631 2632 /* register unicast and multicast addresses */ 2633 static void mvneta_set_rx_mode(struct net_device *dev) 2634 { 2635 struct mvneta_port *pp = netdev_priv(dev); 2636 struct netdev_hw_addr *ha; 2637 2638 if (dev->flags & IFF_PROMISC) { 2639 /* Accept all: Multicast + Unicast */ 2640 mvneta_rx_unicast_promisc_set(pp, 1); 2641 mvneta_set_ucast_table(pp, pp->rxq_def); 2642 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2643 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2644 } else { 2645 /* Accept single Unicast */ 2646 mvneta_rx_unicast_promisc_set(pp, 0); 2647 mvneta_set_ucast_table(pp, -1); 2648 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2649 2650 if (dev->flags & IFF_ALLMULTI) { 2651 /* Accept all multicast */ 2652 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2653 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2654 } else { 2655 /* Accept only initialized multicast */ 2656 mvneta_set_special_mcast_table(pp, -1); 2657 mvneta_set_other_mcast_table(pp, -1); 2658 2659 if (!netdev_mc_empty(dev)) { 2660 netdev_for_each_mc_addr(ha, dev) { 2661 mvneta_mcast_addr_set(pp, ha->addr, 2662 pp->rxq_def); 2663 } 2664 } 2665 } 2666 } 2667 } 2668 2669 /* Interrupt handling - the callback for request_irq() */ 2670 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2671 { 2672 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2673 2674 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2675 napi_schedule(&pp->napi); 2676 2677 return IRQ_HANDLED; 2678 } 2679 2680 /* Interrupt handling - the callback for request_percpu_irq() */ 2681 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2682 { 2683 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2684 2685 disable_percpu_irq(port->pp->dev->irq); 2686 napi_schedule(&port->napi); 2687 2688 return IRQ_HANDLED; 2689 } 2690 2691 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2692 struct phy_device *phy) 2693 { 2694 struct fixed_phy_status status; 2695 struct fixed_phy_status changed = {}; 2696 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2697 2698 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2699 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2700 status.speed = SPEED_1000; 2701 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2702 status.speed = SPEED_100; 2703 else 2704 status.speed = SPEED_10; 2705 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2706 changed.link = 1; 2707 changed.speed = 1; 2708 changed.duplex = 1; 2709 fixed_phy_update_state(phy, &status, &changed); 2710 return 0; 2711 } 2712 2713 /* NAPI handler 2714 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2715 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2716 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2717 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2718 * Each CPU has its own causeRxTx register 2719 */ 2720 static int mvneta_poll(struct napi_struct *napi, int budget) 2721 { 2722 int rx_done = 0; 2723 u32 cause_rx_tx; 2724 int rx_queue; 2725 struct mvneta_port *pp = netdev_priv(napi->dev); 2726 struct net_device *ndev = pp->dev; 2727 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2728 2729 if (!netif_running(pp->dev)) { 2730 napi_complete(napi); 2731 return rx_done; 2732 } 2733 2734 /* Read cause register */ 2735 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2736 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2737 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2738 2739 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2740 if (pp->use_inband_status && (cause_misc & 2741 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2742 MVNETA_CAUSE_LINK_CHANGE | 2743 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2744 mvneta_fixed_link_update(pp, ndev->phydev); 2745 } 2746 } 2747 2748 /* Release Tx descriptors */ 2749 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2750 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2751 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2752 } 2753 2754 /* For the case where the last mvneta_poll did not process all 2755 * RX packets 2756 */ 2757 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2758 2759 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2760 port->cause_rx_tx; 2761 2762 if (rx_queue) { 2763 rx_queue = rx_queue - 1; 2764 if (pp->bm_priv) 2765 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2766 else 2767 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2768 } 2769 2770 if (rx_done < budget) { 2771 cause_rx_tx = 0; 2772 napi_complete_done(napi, rx_done); 2773 2774 if (pp->neta_armada3700) { 2775 unsigned long flags; 2776 2777 local_irq_save(flags); 2778 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2779 MVNETA_RX_INTR_MASK(rxq_number) | 2780 MVNETA_TX_INTR_MASK(txq_number) | 2781 MVNETA_MISCINTR_INTR_MASK); 2782 local_irq_restore(flags); 2783 } else { 2784 enable_percpu_irq(pp->dev->irq, 0); 2785 } 2786 } 2787 2788 if (pp->neta_armada3700) 2789 pp->cause_rx_tx = cause_rx_tx; 2790 else 2791 port->cause_rx_tx = cause_rx_tx; 2792 2793 return rx_done; 2794 } 2795 2796 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2797 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2798 int num) 2799 { 2800 int i; 2801 2802 for (i = 0; i < num; i++) { 2803 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2804 if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) { 2805 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2806 __func__, rxq->id, i, num); 2807 break; 2808 } 2809 } 2810 2811 /* Add this number of RX descriptors as non occupied (ready to 2812 * get packets) 2813 */ 2814 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2815 2816 return i; 2817 } 2818 2819 /* Free all packets pending transmit from all TXQs and reset TX port */ 2820 static void mvneta_tx_reset(struct mvneta_port *pp) 2821 { 2822 int queue; 2823 2824 /* free the skb's in the tx ring */ 2825 for (queue = 0; queue < txq_number; queue++) 2826 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2827 2828 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2829 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2830 } 2831 2832 static void mvneta_rx_reset(struct mvneta_port *pp) 2833 { 2834 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2835 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2836 } 2837 2838 /* Rx/Tx queue initialization/cleanup methods */ 2839 2840 /* Create a specified RX queue */ 2841 static int mvneta_rxq_init(struct mvneta_port *pp, 2842 struct mvneta_rx_queue *rxq) 2843 2844 { 2845 rxq->size = pp->rx_ring_size; 2846 2847 /* Allocate memory for RX descriptors */ 2848 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2849 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2850 &rxq->descs_phys, GFP_KERNEL); 2851 if (!rxq->descs) 2852 return -ENOMEM; 2853 2854 rxq->last_desc = rxq->size - 1; 2855 2856 /* Set Rx descriptors queue starting address */ 2857 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2858 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2859 2860 /* Set Offset */ 2861 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); 2862 2863 /* Set coalescing pkts and time */ 2864 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2865 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2866 2867 if (!pp->bm_priv) { 2868 /* Fill RXQ with buffers from RX pool */ 2869 mvneta_rxq_buf_size_set(pp, rxq, 2870 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2871 mvneta_rxq_bm_disable(pp, rxq); 2872 mvneta_rxq_fill(pp, rxq, rxq->size); 2873 } else { 2874 mvneta_rxq_bm_enable(pp, rxq); 2875 mvneta_rxq_long_pool_set(pp, rxq); 2876 mvneta_rxq_short_pool_set(pp, rxq); 2877 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2878 } 2879 2880 return 0; 2881 } 2882 2883 /* Cleanup Rx queue */ 2884 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2885 struct mvneta_rx_queue *rxq) 2886 { 2887 mvneta_rxq_drop_pkts(pp, rxq); 2888 2889 if (rxq->descs) 2890 dma_free_coherent(pp->dev->dev.parent, 2891 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2892 rxq->descs, 2893 rxq->descs_phys); 2894 2895 rxq->descs = NULL; 2896 rxq->last_desc = 0; 2897 rxq->next_desc_to_proc = 0; 2898 rxq->descs_phys = 0; 2899 } 2900 2901 /* Create and initialize a tx queue */ 2902 static int mvneta_txq_init(struct mvneta_port *pp, 2903 struct mvneta_tx_queue *txq) 2904 { 2905 int cpu; 2906 2907 txq->size = pp->tx_ring_size; 2908 2909 /* A queue must always have room for at least one skb. 2910 * Therefore, stop the queue when the free entries reaches 2911 * the maximum number of descriptors per skb. 2912 */ 2913 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2914 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2915 2916 2917 /* Allocate memory for TX descriptors */ 2918 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2919 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2920 &txq->descs_phys, GFP_KERNEL); 2921 if (!txq->descs) 2922 return -ENOMEM; 2923 2924 txq->last_desc = txq->size - 1; 2925 2926 /* Set maximum bandwidth for enabled TXQs */ 2927 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2928 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2929 2930 /* Set Tx descriptors queue starting address */ 2931 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2932 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2933 2934 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2935 GFP_KERNEL); 2936 if (!txq->tx_skb) { 2937 dma_free_coherent(pp->dev->dev.parent, 2938 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2939 txq->descs, txq->descs_phys); 2940 return -ENOMEM; 2941 } 2942 2943 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2944 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2945 txq->size * TSO_HEADER_SIZE, 2946 &txq->tso_hdrs_phys, GFP_KERNEL); 2947 if (!txq->tso_hdrs) { 2948 kfree(txq->tx_skb); 2949 dma_free_coherent(pp->dev->dev.parent, 2950 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2951 txq->descs, txq->descs_phys); 2952 return -ENOMEM; 2953 } 2954 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2955 2956 /* Setup XPS mapping */ 2957 if (txq_number > 1) 2958 cpu = txq->id % num_present_cpus(); 2959 else 2960 cpu = pp->rxq_def % num_present_cpus(); 2961 cpumask_set_cpu(cpu, &txq->affinity_mask); 2962 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2963 2964 return 0; 2965 } 2966 2967 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2968 static void mvneta_txq_deinit(struct mvneta_port *pp, 2969 struct mvneta_tx_queue *txq) 2970 { 2971 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2972 2973 kfree(txq->tx_skb); 2974 2975 if (txq->tso_hdrs) 2976 dma_free_coherent(pp->dev->dev.parent, 2977 txq->size * TSO_HEADER_SIZE, 2978 txq->tso_hdrs, txq->tso_hdrs_phys); 2979 if (txq->descs) 2980 dma_free_coherent(pp->dev->dev.parent, 2981 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2982 txq->descs, txq->descs_phys); 2983 2984 netdev_tx_reset_queue(nq); 2985 2986 txq->descs = NULL; 2987 txq->last_desc = 0; 2988 txq->next_desc_to_proc = 0; 2989 txq->descs_phys = 0; 2990 2991 /* Set minimum bandwidth for disabled TXQs */ 2992 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2993 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2994 2995 /* Set Tx descriptors queue starting address and size */ 2996 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2997 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2998 } 2999 3000 /* Cleanup all Tx queues */ 3001 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3002 { 3003 int queue; 3004 3005 for (queue = 0; queue < txq_number; queue++) 3006 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3007 } 3008 3009 /* Cleanup all Rx queues */ 3010 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3011 { 3012 int queue; 3013 3014 for (queue = 0; queue < txq_number; queue++) 3015 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3016 } 3017 3018 3019 /* Init all Rx queues */ 3020 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3021 { 3022 int queue; 3023 3024 for (queue = 0; queue < rxq_number; queue++) { 3025 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3026 3027 if (err) { 3028 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3029 __func__, queue); 3030 mvneta_cleanup_rxqs(pp); 3031 return err; 3032 } 3033 } 3034 3035 return 0; 3036 } 3037 3038 /* Init all tx queues */ 3039 static int mvneta_setup_txqs(struct mvneta_port *pp) 3040 { 3041 int queue; 3042 3043 for (queue = 0; queue < txq_number; queue++) { 3044 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3045 if (err) { 3046 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3047 __func__, queue); 3048 mvneta_cleanup_txqs(pp); 3049 return err; 3050 } 3051 } 3052 3053 return 0; 3054 } 3055 3056 static void mvneta_start_dev(struct mvneta_port *pp) 3057 { 3058 int cpu; 3059 struct net_device *ndev = pp->dev; 3060 3061 mvneta_max_rx_size_set(pp, pp->pkt_size); 3062 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3063 3064 /* start the Rx/Tx activity */ 3065 mvneta_port_enable(pp); 3066 3067 if (!pp->neta_armada3700) { 3068 /* Enable polling on the port */ 3069 for_each_online_cpu(cpu) { 3070 struct mvneta_pcpu_port *port = 3071 per_cpu_ptr(pp->ports, cpu); 3072 3073 napi_enable(&port->napi); 3074 } 3075 } else { 3076 napi_enable(&pp->napi); 3077 } 3078 3079 /* Unmask interrupts. It has to be done from each CPU */ 3080 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3081 3082 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3083 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3084 MVNETA_CAUSE_LINK_CHANGE | 3085 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3086 3087 phy_start(ndev->phydev); 3088 netif_tx_start_all_queues(pp->dev); 3089 } 3090 3091 static void mvneta_stop_dev(struct mvneta_port *pp) 3092 { 3093 unsigned int cpu; 3094 struct net_device *ndev = pp->dev; 3095 3096 phy_stop(ndev->phydev); 3097 3098 if (!pp->neta_armada3700) { 3099 for_each_online_cpu(cpu) { 3100 struct mvneta_pcpu_port *port = 3101 per_cpu_ptr(pp->ports, cpu); 3102 3103 napi_disable(&port->napi); 3104 } 3105 } else { 3106 napi_disable(&pp->napi); 3107 } 3108 3109 netif_carrier_off(pp->dev); 3110 3111 mvneta_port_down(pp); 3112 netif_tx_stop_all_queues(pp->dev); 3113 3114 /* Stop the port activity */ 3115 mvneta_port_disable(pp); 3116 3117 /* Clear all ethernet port interrupts */ 3118 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3119 3120 /* Mask all ethernet port interrupts */ 3121 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3122 3123 mvneta_tx_reset(pp); 3124 mvneta_rx_reset(pp); 3125 } 3126 3127 static void mvneta_percpu_enable(void *arg) 3128 { 3129 struct mvneta_port *pp = arg; 3130 3131 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3132 } 3133 3134 static void mvneta_percpu_disable(void *arg) 3135 { 3136 struct mvneta_port *pp = arg; 3137 3138 disable_percpu_irq(pp->dev->irq); 3139 } 3140 3141 /* Change the device mtu */ 3142 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3143 { 3144 struct mvneta_port *pp = netdev_priv(dev); 3145 int ret; 3146 3147 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3148 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3149 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3150 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3151 } 3152 3153 dev->mtu = mtu; 3154 3155 if (!netif_running(dev)) { 3156 if (pp->bm_priv) 3157 mvneta_bm_update_mtu(pp, mtu); 3158 3159 netdev_update_features(dev); 3160 return 0; 3161 } 3162 3163 /* The interface is running, so we have to force a 3164 * reallocation of the queues 3165 */ 3166 mvneta_stop_dev(pp); 3167 on_each_cpu(mvneta_percpu_disable, pp, true); 3168 3169 mvneta_cleanup_txqs(pp); 3170 mvneta_cleanup_rxqs(pp); 3171 3172 if (pp->bm_priv) 3173 mvneta_bm_update_mtu(pp, mtu); 3174 3175 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3176 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3177 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3178 3179 ret = mvneta_setup_rxqs(pp); 3180 if (ret) { 3181 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3182 return ret; 3183 } 3184 3185 ret = mvneta_setup_txqs(pp); 3186 if (ret) { 3187 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3188 return ret; 3189 } 3190 3191 on_each_cpu(mvneta_percpu_enable, pp, true); 3192 mvneta_start_dev(pp); 3193 mvneta_port_up(pp); 3194 3195 netdev_update_features(dev); 3196 3197 return 0; 3198 } 3199 3200 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3201 netdev_features_t features) 3202 { 3203 struct mvneta_port *pp = netdev_priv(dev); 3204 3205 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3206 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3207 netdev_info(dev, 3208 "Disable IP checksum for MTU greater than %dB\n", 3209 pp->tx_csum_limit); 3210 } 3211 3212 return features; 3213 } 3214 3215 /* Get mac address */ 3216 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3217 { 3218 u32 mac_addr_l, mac_addr_h; 3219 3220 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3221 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3222 addr[0] = (mac_addr_h >> 24) & 0xFF; 3223 addr[1] = (mac_addr_h >> 16) & 0xFF; 3224 addr[2] = (mac_addr_h >> 8) & 0xFF; 3225 addr[3] = mac_addr_h & 0xFF; 3226 addr[4] = (mac_addr_l >> 8) & 0xFF; 3227 addr[5] = mac_addr_l & 0xFF; 3228 } 3229 3230 /* Handle setting mac address */ 3231 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3232 { 3233 struct mvneta_port *pp = netdev_priv(dev); 3234 struct sockaddr *sockaddr = addr; 3235 int ret; 3236 3237 ret = eth_prepare_mac_addr_change(dev, addr); 3238 if (ret < 0) 3239 return ret; 3240 /* Remove previous address table entry */ 3241 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3242 3243 /* Set new addr in hw */ 3244 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3245 3246 eth_commit_mac_addr_change(dev, addr); 3247 return 0; 3248 } 3249 3250 static void mvneta_adjust_link(struct net_device *ndev) 3251 { 3252 struct mvneta_port *pp = netdev_priv(ndev); 3253 struct phy_device *phydev = ndev->phydev; 3254 int status_change = 0; 3255 3256 if (phydev->link) { 3257 if ((pp->speed != phydev->speed) || 3258 (pp->duplex != phydev->duplex)) { 3259 u32 val; 3260 3261 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3262 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3263 MVNETA_GMAC_CONFIG_GMII_SPEED | 3264 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3265 3266 if (phydev->duplex) 3267 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3268 3269 if (phydev->speed == SPEED_1000) 3270 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3271 else if (phydev->speed == SPEED_100) 3272 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3273 3274 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3275 3276 pp->duplex = phydev->duplex; 3277 pp->speed = phydev->speed; 3278 } 3279 } 3280 3281 if (phydev->link != pp->link) { 3282 if (!phydev->link) { 3283 pp->duplex = -1; 3284 pp->speed = 0; 3285 } 3286 3287 pp->link = phydev->link; 3288 status_change = 1; 3289 } 3290 3291 if (status_change) { 3292 if (phydev->link) { 3293 if (!pp->use_inband_status) { 3294 u32 val = mvreg_read(pp, 3295 MVNETA_GMAC_AUTONEG_CONFIG); 3296 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3297 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3298 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3299 val); 3300 } 3301 mvneta_port_up(pp); 3302 } else { 3303 if (!pp->use_inband_status) { 3304 u32 val = mvreg_read(pp, 3305 MVNETA_GMAC_AUTONEG_CONFIG); 3306 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3307 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3308 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3309 val); 3310 } 3311 mvneta_port_down(pp); 3312 } 3313 phy_print_status(phydev); 3314 } 3315 } 3316 3317 static int mvneta_mdio_probe(struct mvneta_port *pp) 3318 { 3319 struct phy_device *phy_dev; 3320 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3321 3322 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3323 pp->phy_interface); 3324 if (!phy_dev) { 3325 netdev_err(pp->dev, "could not find the PHY\n"); 3326 return -ENODEV; 3327 } 3328 3329 phy_ethtool_get_wol(phy_dev, &wol); 3330 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3331 3332 phy_dev->supported &= PHY_GBIT_FEATURES; 3333 phy_dev->advertising = phy_dev->supported; 3334 3335 pp->link = 0; 3336 pp->duplex = 0; 3337 pp->speed = 0; 3338 3339 return 0; 3340 } 3341 3342 static void mvneta_mdio_remove(struct mvneta_port *pp) 3343 { 3344 struct net_device *ndev = pp->dev; 3345 3346 phy_disconnect(ndev->phydev); 3347 } 3348 3349 /* Electing a CPU must be done in an atomic way: it should be done 3350 * after or before the removal/insertion of a CPU and this function is 3351 * not reentrant. 3352 */ 3353 static void mvneta_percpu_elect(struct mvneta_port *pp) 3354 { 3355 int elected_cpu = 0, max_cpu, cpu, i = 0; 3356 3357 /* Use the cpu associated to the rxq when it is online, in all 3358 * the other cases, use the cpu 0 which can't be offline. 3359 */ 3360 if (cpu_online(pp->rxq_def)) 3361 elected_cpu = pp->rxq_def; 3362 3363 max_cpu = num_present_cpus(); 3364 3365 for_each_online_cpu(cpu) { 3366 int rxq_map = 0, txq_map = 0; 3367 int rxq; 3368 3369 for (rxq = 0; rxq < rxq_number; rxq++) 3370 if ((rxq % max_cpu) == cpu) 3371 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3372 3373 if (cpu == elected_cpu) 3374 /* Map the default receive queue queue to the 3375 * elected CPU 3376 */ 3377 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3378 3379 /* We update the TX queue map only if we have one 3380 * queue. In this case we associate the TX queue to 3381 * the CPU bound to the default RX queue 3382 */ 3383 if (txq_number == 1) 3384 txq_map = (cpu == elected_cpu) ? 3385 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3386 else 3387 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3388 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3389 3390 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3391 3392 /* Update the interrupt mask on each CPU according the 3393 * new mapping 3394 */ 3395 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3396 pp, true); 3397 i++; 3398 3399 } 3400 }; 3401 3402 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3403 { 3404 int other_cpu; 3405 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3406 node_online); 3407 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3408 3409 3410 spin_lock(&pp->lock); 3411 /* 3412 * Configuring the driver for a new CPU while the driver is 3413 * stopping is racy, so just avoid it. 3414 */ 3415 if (pp->is_stopped) { 3416 spin_unlock(&pp->lock); 3417 return 0; 3418 } 3419 netif_tx_stop_all_queues(pp->dev); 3420 3421 /* 3422 * We have to synchronise on tha napi of each CPU except the one 3423 * just being woken up 3424 */ 3425 for_each_online_cpu(other_cpu) { 3426 if (other_cpu != cpu) { 3427 struct mvneta_pcpu_port *other_port = 3428 per_cpu_ptr(pp->ports, other_cpu); 3429 3430 napi_synchronize(&other_port->napi); 3431 } 3432 } 3433 3434 /* Mask all ethernet port interrupts */ 3435 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3436 napi_enable(&port->napi); 3437 3438 /* 3439 * Enable per-CPU interrupts on the CPU that is 3440 * brought up. 3441 */ 3442 mvneta_percpu_enable(pp); 3443 3444 /* 3445 * Enable per-CPU interrupt on the one CPU we care 3446 * about. 3447 */ 3448 mvneta_percpu_elect(pp); 3449 3450 /* Unmask all ethernet port interrupts */ 3451 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3452 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3453 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3454 MVNETA_CAUSE_LINK_CHANGE | 3455 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3456 netif_tx_start_all_queues(pp->dev); 3457 spin_unlock(&pp->lock); 3458 return 0; 3459 } 3460 3461 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3462 { 3463 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3464 node_online); 3465 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3466 3467 /* 3468 * Thanks to this lock we are sure that any pending cpu election is 3469 * done. 3470 */ 3471 spin_lock(&pp->lock); 3472 /* Mask all ethernet port interrupts */ 3473 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3474 spin_unlock(&pp->lock); 3475 3476 napi_synchronize(&port->napi); 3477 napi_disable(&port->napi); 3478 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3479 mvneta_percpu_disable(pp); 3480 return 0; 3481 } 3482 3483 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3484 { 3485 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3486 node_dead); 3487 3488 /* Check if a new CPU must be elected now this on is down */ 3489 spin_lock(&pp->lock); 3490 mvneta_percpu_elect(pp); 3491 spin_unlock(&pp->lock); 3492 /* Unmask all ethernet port interrupts */ 3493 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3494 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3495 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3496 MVNETA_CAUSE_LINK_CHANGE | 3497 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3498 netif_tx_start_all_queues(pp->dev); 3499 return 0; 3500 } 3501 3502 static int mvneta_open(struct net_device *dev) 3503 { 3504 struct mvneta_port *pp = netdev_priv(dev); 3505 int ret; 3506 3507 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3508 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3509 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3510 3511 ret = mvneta_setup_rxqs(pp); 3512 if (ret) 3513 return ret; 3514 3515 ret = mvneta_setup_txqs(pp); 3516 if (ret) 3517 goto err_cleanup_rxqs; 3518 3519 /* Connect to port interrupt line */ 3520 if (pp->neta_armada3700) 3521 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3522 dev->name, pp); 3523 else 3524 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3525 dev->name, pp->ports); 3526 if (ret) { 3527 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3528 goto err_cleanup_txqs; 3529 } 3530 3531 if (!pp->neta_armada3700) { 3532 /* Enable per-CPU interrupt on all the CPU to handle our RX 3533 * queue interrupts 3534 */ 3535 on_each_cpu(mvneta_percpu_enable, pp, true); 3536 3537 pp->is_stopped = false; 3538 /* Register a CPU notifier to handle the case where our CPU 3539 * might be taken offline. 3540 */ 3541 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3542 &pp->node_online); 3543 if (ret) 3544 goto err_free_irq; 3545 3546 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3547 &pp->node_dead); 3548 if (ret) 3549 goto err_free_online_hp; 3550 } 3551 3552 /* In default link is down */ 3553 netif_carrier_off(pp->dev); 3554 3555 ret = mvneta_mdio_probe(pp); 3556 if (ret < 0) { 3557 netdev_err(dev, "cannot probe MDIO bus\n"); 3558 goto err_free_dead_hp; 3559 } 3560 3561 mvneta_start_dev(pp); 3562 3563 return 0; 3564 3565 err_free_dead_hp: 3566 if (!pp->neta_armada3700) 3567 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3568 &pp->node_dead); 3569 err_free_online_hp: 3570 if (!pp->neta_armada3700) 3571 cpuhp_state_remove_instance_nocalls(online_hpstate, 3572 &pp->node_online); 3573 err_free_irq: 3574 if (pp->neta_armada3700) { 3575 free_irq(pp->dev->irq, pp); 3576 } else { 3577 on_each_cpu(mvneta_percpu_disable, pp, true); 3578 free_percpu_irq(pp->dev->irq, pp->ports); 3579 } 3580 err_cleanup_txqs: 3581 mvneta_cleanup_txqs(pp); 3582 err_cleanup_rxqs: 3583 mvneta_cleanup_rxqs(pp); 3584 return ret; 3585 } 3586 3587 /* Stop the port, free port interrupt line */ 3588 static int mvneta_stop(struct net_device *dev) 3589 { 3590 struct mvneta_port *pp = netdev_priv(dev); 3591 3592 if (!pp->neta_armada3700) { 3593 /* Inform that we are stopping so we don't want to setup the 3594 * driver for new CPUs in the notifiers. The code of the 3595 * notifier for CPU online is protected by the same spinlock, 3596 * so when we get the lock, the notifer work is done. 3597 */ 3598 spin_lock(&pp->lock); 3599 pp->is_stopped = true; 3600 spin_unlock(&pp->lock); 3601 3602 mvneta_stop_dev(pp); 3603 mvneta_mdio_remove(pp); 3604 3605 cpuhp_state_remove_instance_nocalls(online_hpstate, 3606 &pp->node_online); 3607 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3608 &pp->node_dead); 3609 on_each_cpu(mvneta_percpu_disable, pp, true); 3610 free_percpu_irq(dev->irq, pp->ports); 3611 } else { 3612 mvneta_stop_dev(pp); 3613 mvneta_mdio_remove(pp); 3614 free_irq(dev->irq, pp); 3615 } 3616 3617 mvneta_cleanup_rxqs(pp); 3618 mvneta_cleanup_txqs(pp); 3619 3620 return 0; 3621 } 3622 3623 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3624 { 3625 if (!dev->phydev) 3626 return -ENOTSUPP; 3627 3628 return phy_mii_ioctl(dev->phydev, ifr, cmd); 3629 } 3630 3631 /* Ethtool methods */ 3632 3633 /* Set link ksettings (phy address, speed) for ethtools */ 3634 static int 3635 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3636 const struct ethtool_link_ksettings *cmd) 3637 { 3638 struct mvneta_port *pp = netdev_priv(ndev); 3639 struct phy_device *phydev = ndev->phydev; 3640 3641 if (!phydev) 3642 return -ENODEV; 3643 3644 if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3645 u32 val; 3646 3647 mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE); 3648 3649 if (cmd->base.autoneg == AUTONEG_DISABLE) { 3650 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3651 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3652 MVNETA_GMAC_CONFIG_GMII_SPEED | 3653 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3654 3655 if (phydev->duplex) 3656 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3657 3658 if (phydev->speed == SPEED_1000) 3659 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3660 else if (phydev->speed == SPEED_100) 3661 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3662 3663 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3664 } 3665 3666 pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE); 3667 netdev_info(pp->dev, "autoneg status set to %i\n", 3668 pp->use_inband_status); 3669 3670 if (netif_running(ndev)) { 3671 mvneta_port_down(pp); 3672 mvneta_port_up(pp); 3673 } 3674 } 3675 3676 return phy_ethtool_ksettings_set(ndev->phydev, cmd); 3677 } 3678 3679 /* Set interrupt coalescing for ethtools */ 3680 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3681 struct ethtool_coalesce *c) 3682 { 3683 struct mvneta_port *pp = netdev_priv(dev); 3684 int queue; 3685 3686 for (queue = 0; queue < rxq_number; queue++) { 3687 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3688 rxq->time_coal = c->rx_coalesce_usecs; 3689 rxq->pkts_coal = c->rx_max_coalesced_frames; 3690 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3691 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3692 } 3693 3694 for (queue = 0; queue < txq_number; queue++) { 3695 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3696 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3697 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3698 } 3699 3700 return 0; 3701 } 3702 3703 /* get coalescing for ethtools */ 3704 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3705 struct ethtool_coalesce *c) 3706 { 3707 struct mvneta_port *pp = netdev_priv(dev); 3708 3709 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3710 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3711 3712 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3713 return 0; 3714 } 3715 3716 3717 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3718 struct ethtool_drvinfo *drvinfo) 3719 { 3720 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3721 sizeof(drvinfo->driver)); 3722 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3723 sizeof(drvinfo->version)); 3724 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3725 sizeof(drvinfo->bus_info)); 3726 } 3727 3728 3729 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3730 struct ethtool_ringparam *ring) 3731 { 3732 struct mvneta_port *pp = netdev_priv(netdev); 3733 3734 ring->rx_max_pending = MVNETA_MAX_RXD; 3735 ring->tx_max_pending = MVNETA_MAX_TXD; 3736 ring->rx_pending = pp->rx_ring_size; 3737 ring->tx_pending = pp->tx_ring_size; 3738 } 3739 3740 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3741 struct ethtool_ringparam *ring) 3742 { 3743 struct mvneta_port *pp = netdev_priv(dev); 3744 3745 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3746 return -EINVAL; 3747 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3748 ring->rx_pending : MVNETA_MAX_RXD; 3749 3750 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3751 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3752 if (pp->tx_ring_size != ring->tx_pending) 3753 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3754 pp->tx_ring_size, ring->tx_pending); 3755 3756 if (netif_running(dev)) { 3757 mvneta_stop(dev); 3758 if (mvneta_open(dev)) { 3759 netdev_err(dev, 3760 "error on opening device after ring param change\n"); 3761 return -ENOMEM; 3762 } 3763 } 3764 3765 return 0; 3766 } 3767 3768 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3769 u8 *data) 3770 { 3771 if (sset == ETH_SS_STATS) { 3772 int i; 3773 3774 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3775 memcpy(data + i * ETH_GSTRING_LEN, 3776 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3777 } 3778 } 3779 3780 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3781 { 3782 const struct mvneta_statistic *s; 3783 void __iomem *base = pp->base; 3784 u32 high, low, val; 3785 u64 val64; 3786 int i; 3787 3788 for (i = 0, s = mvneta_statistics; 3789 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3790 s++, i++) { 3791 switch (s->type) { 3792 case T_REG_32: 3793 val = readl_relaxed(base + s->offset); 3794 pp->ethtool_stats[i] += val; 3795 break; 3796 case T_REG_64: 3797 /* Docs say to read low 32-bit then high */ 3798 low = readl_relaxed(base + s->offset); 3799 high = readl_relaxed(base + s->offset + 4); 3800 val64 = (u64)high << 32 | low; 3801 pp->ethtool_stats[i] += val64; 3802 break; 3803 } 3804 } 3805 } 3806 3807 static void mvneta_ethtool_get_stats(struct net_device *dev, 3808 struct ethtool_stats *stats, u64 *data) 3809 { 3810 struct mvneta_port *pp = netdev_priv(dev); 3811 int i; 3812 3813 mvneta_ethtool_update_stats(pp); 3814 3815 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3816 *data++ = pp->ethtool_stats[i]; 3817 } 3818 3819 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3820 { 3821 if (sset == ETH_SS_STATS) 3822 return ARRAY_SIZE(mvneta_statistics); 3823 return -EOPNOTSUPP; 3824 } 3825 3826 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3827 { 3828 return MVNETA_RSS_LU_TABLE_SIZE; 3829 } 3830 3831 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3832 struct ethtool_rxnfc *info, 3833 u32 *rules __always_unused) 3834 { 3835 switch (info->cmd) { 3836 case ETHTOOL_GRXRINGS: 3837 info->data = rxq_number; 3838 return 0; 3839 case ETHTOOL_GRXFH: 3840 return -EOPNOTSUPP; 3841 default: 3842 return -EOPNOTSUPP; 3843 } 3844 } 3845 3846 static int mvneta_config_rss(struct mvneta_port *pp) 3847 { 3848 int cpu; 3849 u32 val; 3850 3851 netif_tx_stop_all_queues(pp->dev); 3852 3853 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3854 3855 /* We have to synchronise on the napi of each CPU */ 3856 for_each_online_cpu(cpu) { 3857 struct mvneta_pcpu_port *pcpu_port = 3858 per_cpu_ptr(pp->ports, cpu); 3859 3860 napi_synchronize(&pcpu_port->napi); 3861 napi_disable(&pcpu_port->napi); 3862 } 3863 3864 pp->rxq_def = pp->indir[0]; 3865 3866 /* Update unicast mapping */ 3867 mvneta_set_rx_mode(pp->dev); 3868 3869 /* Update val of portCfg register accordingly with all RxQueue types */ 3870 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3871 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3872 3873 /* Update the elected CPU matching the new rxq_def */ 3874 spin_lock(&pp->lock); 3875 mvneta_percpu_elect(pp); 3876 spin_unlock(&pp->lock); 3877 3878 /* We have to synchronise on the napi of each CPU */ 3879 for_each_online_cpu(cpu) { 3880 struct mvneta_pcpu_port *pcpu_port = 3881 per_cpu_ptr(pp->ports, cpu); 3882 3883 napi_enable(&pcpu_port->napi); 3884 } 3885 3886 netif_tx_start_all_queues(pp->dev); 3887 3888 return 0; 3889 } 3890 3891 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3892 const u8 *key, const u8 hfunc) 3893 { 3894 struct mvneta_port *pp = netdev_priv(dev); 3895 3896 /* Current code for Armada 3700 doesn't support RSS features yet */ 3897 if (pp->neta_armada3700) 3898 return -EOPNOTSUPP; 3899 3900 /* We require at least one supported parameter to be changed 3901 * and no change in any of the unsupported parameters 3902 */ 3903 if (key || 3904 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3905 return -EOPNOTSUPP; 3906 3907 if (!indir) 3908 return 0; 3909 3910 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3911 3912 return mvneta_config_rss(pp); 3913 } 3914 3915 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3916 u8 *hfunc) 3917 { 3918 struct mvneta_port *pp = netdev_priv(dev); 3919 3920 /* Current code for Armada 3700 doesn't support RSS features yet */ 3921 if (pp->neta_armada3700) 3922 return -EOPNOTSUPP; 3923 3924 if (hfunc) 3925 *hfunc = ETH_RSS_HASH_TOP; 3926 3927 if (!indir) 3928 return 0; 3929 3930 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3931 3932 return 0; 3933 } 3934 3935 static void mvneta_ethtool_get_wol(struct net_device *dev, 3936 struct ethtool_wolinfo *wol) 3937 { 3938 wol->supported = 0; 3939 wol->wolopts = 0; 3940 3941 if (dev->phydev) 3942 phy_ethtool_get_wol(dev->phydev, wol); 3943 } 3944 3945 static int mvneta_ethtool_set_wol(struct net_device *dev, 3946 struct ethtool_wolinfo *wol) 3947 { 3948 int ret; 3949 3950 if (!dev->phydev) 3951 return -EOPNOTSUPP; 3952 3953 ret = phy_ethtool_set_wol(dev->phydev, wol); 3954 if (!ret) 3955 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 3956 3957 return ret; 3958 } 3959 3960 static const struct net_device_ops mvneta_netdev_ops = { 3961 .ndo_open = mvneta_open, 3962 .ndo_stop = mvneta_stop, 3963 .ndo_start_xmit = mvneta_tx, 3964 .ndo_set_rx_mode = mvneta_set_rx_mode, 3965 .ndo_set_mac_address = mvneta_set_mac_addr, 3966 .ndo_change_mtu = mvneta_change_mtu, 3967 .ndo_fix_features = mvneta_fix_features, 3968 .ndo_get_stats64 = mvneta_get_stats64, 3969 .ndo_do_ioctl = mvneta_ioctl, 3970 }; 3971 3972 static const struct ethtool_ops mvneta_eth_tool_ops = { 3973 .nway_reset = phy_ethtool_nway_reset, 3974 .get_link = ethtool_op_get_link, 3975 .set_coalesce = mvneta_ethtool_set_coalesce, 3976 .get_coalesce = mvneta_ethtool_get_coalesce, 3977 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3978 .get_ringparam = mvneta_ethtool_get_ringparam, 3979 .set_ringparam = mvneta_ethtool_set_ringparam, 3980 .get_strings = mvneta_ethtool_get_strings, 3981 .get_ethtool_stats = mvneta_ethtool_get_stats, 3982 .get_sset_count = mvneta_ethtool_get_sset_count, 3983 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3984 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3985 .get_rxfh = mvneta_ethtool_get_rxfh, 3986 .set_rxfh = mvneta_ethtool_set_rxfh, 3987 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3988 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 3989 .get_wol = mvneta_ethtool_get_wol, 3990 .set_wol = mvneta_ethtool_set_wol, 3991 }; 3992 3993 /* Initialize hw */ 3994 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3995 { 3996 int queue; 3997 3998 /* Disable port */ 3999 mvneta_port_disable(pp); 4000 4001 /* Set port default values */ 4002 mvneta_defaults_set(pp); 4003 4004 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4005 if (!pp->txqs) 4006 return -ENOMEM; 4007 4008 /* Initialize TX descriptor rings */ 4009 for (queue = 0; queue < txq_number; queue++) { 4010 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4011 txq->id = queue; 4012 txq->size = pp->tx_ring_size; 4013 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4014 } 4015 4016 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4017 if (!pp->rxqs) 4018 return -ENOMEM; 4019 4020 /* Create Rx descriptor rings */ 4021 for (queue = 0; queue < rxq_number; queue++) { 4022 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4023 rxq->id = queue; 4024 rxq->size = pp->rx_ring_size; 4025 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4026 rxq->time_coal = MVNETA_RX_COAL_USEC; 4027 rxq->buf_virt_addr 4028 = devm_kmalloc_array(pp->dev->dev.parent, 4029 rxq->size, 4030 sizeof(*rxq->buf_virt_addr), 4031 GFP_KERNEL); 4032 if (!rxq->buf_virt_addr) 4033 return -ENOMEM; 4034 } 4035 4036 return 0; 4037 } 4038 4039 /* platform glue : initialize decoding windows */ 4040 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4041 const struct mbus_dram_target_info *dram) 4042 { 4043 u32 win_enable; 4044 u32 win_protect; 4045 int i; 4046 4047 for (i = 0; i < 6; i++) { 4048 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4049 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4050 4051 if (i < 4) 4052 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4053 } 4054 4055 win_enable = 0x3f; 4056 win_protect = 0; 4057 4058 if (dram) { 4059 for (i = 0; i < dram->num_cs; i++) { 4060 const struct mbus_dram_window *cs = dram->cs + i; 4061 4062 mvreg_write(pp, MVNETA_WIN_BASE(i), 4063 (cs->base & 0xffff0000) | 4064 (cs->mbus_attr << 8) | 4065 dram->mbus_dram_target_id); 4066 4067 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4068 (cs->size - 1) & 0xffff0000); 4069 4070 win_enable &= ~(1 << i); 4071 win_protect |= 3 << (2 * i); 4072 } 4073 } else { 4074 /* For Armada3700 open default 4GB Mbus window, leaving 4075 * arbitration of target/attribute to a different layer 4076 * of configuration. 4077 */ 4078 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4079 win_enable &= ~BIT(0); 4080 win_protect = 3; 4081 } 4082 4083 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4084 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4085 } 4086 4087 /* Power up the port */ 4088 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4089 { 4090 u32 ctrl; 4091 4092 /* MAC Cause register should be cleared */ 4093 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4094 4095 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4096 4097 /* Even though it might look weird, when we're configured in 4098 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4099 */ 4100 switch(phy_mode) { 4101 case PHY_INTERFACE_MODE_QSGMII: 4102 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4103 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4104 break; 4105 case PHY_INTERFACE_MODE_SGMII: 4106 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4107 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 4108 break; 4109 case PHY_INTERFACE_MODE_RGMII: 4110 case PHY_INTERFACE_MODE_RGMII_ID: 4111 case PHY_INTERFACE_MODE_RGMII_RXID: 4112 case PHY_INTERFACE_MODE_RGMII_TXID: 4113 ctrl |= MVNETA_GMAC2_PORT_RGMII; 4114 break; 4115 default: 4116 return -EINVAL; 4117 } 4118 4119 /* Cancel Port Reset */ 4120 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 4121 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 4122 4123 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4124 MVNETA_GMAC2_PORT_RESET) != 0) 4125 continue; 4126 4127 return 0; 4128 } 4129 4130 /* Device initialization routine */ 4131 static int mvneta_probe(struct platform_device *pdev) 4132 { 4133 struct resource *res; 4134 struct device_node *dn = pdev->dev.of_node; 4135 struct device_node *phy_node; 4136 struct device_node *bm_node; 4137 struct mvneta_port *pp; 4138 struct net_device *dev; 4139 const char *dt_mac_addr; 4140 char hw_mac_addr[ETH_ALEN]; 4141 const char *mac_from; 4142 const char *managed; 4143 int tx_csum_limit; 4144 int phy_mode; 4145 int err; 4146 int cpu; 4147 4148 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4149 if (!dev) 4150 return -ENOMEM; 4151 4152 dev->irq = irq_of_parse_and_map(dn, 0); 4153 if (dev->irq == 0) { 4154 err = -EINVAL; 4155 goto err_free_netdev; 4156 } 4157 4158 phy_node = of_parse_phandle(dn, "phy", 0); 4159 if (!phy_node) { 4160 if (!of_phy_is_fixed_link(dn)) { 4161 dev_err(&pdev->dev, "no PHY specified\n"); 4162 err = -ENODEV; 4163 goto err_free_irq; 4164 } 4165 4166 err = of_phy_register_fixed_link(dn); 4167 if (err < 0) { 4168 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4169 goto err_free_irq; 4170 } 4171 4172 /* In the case of a fixed PHY, the DT node associated 4173 * to the PHY is the Ethernet MAC DT node. 4174 */ 4175 phy_node = of_node_get(dn); 4176 } 4177 4178 phy_mode = of_get_phy_mode(dn); 4179 if (phy_mode < 0) { 4180 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4181 err = -EINVAL; 4182 goto err_put_phy_node; 4183 } 4184 4185 dev->tx_queue_len = MVNETA_MAX_TXD; 4186 dev->watchdog_timeo = 5 * HZ; 4187 dev->netdev_ops = &mvneta_netdev_ops; 4188 4189 dev->ethtool_ops = &mvneta_eth_tool_ops; 4190 4191 pp = netdev_priv(dev); 4192 spin_lock_init(&pp->lock); 4193 pp->phy_node = phy_node; 4194 pp->phy_interface = phy_mode; 4195 4196 err = of_property_read_string(dn, "managed", &managed); 4197 pp->use_inband_status = (err == 0 && 4198 strcmp(managed, "in-band-status") == 0); 4199 4200 pp->rxq_def = rxq_def; 4201 4202 /* Set RX packet offset correction for platforms, whose 4203 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4204 * platforms and 0B for 32-bit ones. 4205 */ 4206 pp->rx_offset_correction = 4207 max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); 4208 4209 pp->indir[0] = rxq_def; 4210 4211 /* Get special SoC configurations */ 4212 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4213 pp->neta_armada3700 = true; 4214 4215 pp->clk = devm_clk_get(&pdev->dev, "core"); 4216 if (IS_ERR(pp->clk)) 4217 pp->clk = devm_clk_get(&pdev->dev, NULL); 4218 if (IS_ERR(pp->clk)) { 4219 err = PTR_ERR(pp->clk); 4220 goto err_put_phy_node; 4221 } 4222 4223 clk_prepare_enable(pp->clk); 4224 4225 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4226 if (!IS_ERR(pp->clk_bus)) 4227 clk_prepare_enable(pp->clk_bus); 4228 4229 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4230 pp->base = devm_ioremap_resource(&pdev->dev, res); 4231 if (IS_ERR(pp->base)) { 4232 err = PTR_ERR(pp->base); 4233 goto err_clk; 4234 } 4235 4236 /* Alloc per-cpu port structure */ 4237 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4238 if (!pp->ports) { 4239 err = -ENOMEM; 4240 goto err_clk; 4241 } 4242 4243 /* Alloc per-cpu stats */ 4244 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4245 if (!pp->stats) { 4246 err = -ENOMEM; 4247 goto err_free_ports; 4248 } 4249 4250 dt_mac_addr = of_get_mac_address(dn); 4251 if (dt_mac_addr) { 4252 mac_from = "device tree"; 4253 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4254 } else { 4255 mvneta_get_mac_addr(pp, hw_mac_addr); 4256 if (is_valid_ether_addr(hw_mac_addr)) { 4257 mac_from = "hardware"; 4258 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4259 } else { 4260 mac_from = "random"; 4261 eth_hw_addr_random(dev); 4262 } 4263 } 4264 4265 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4266 if (tx_csum_limit < 0 || 4267 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4268 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4269 dev_info(&pdev->dev, 4270 "Wrong TX csum limit in DT, set to %dB\n", 4271 MVNETA_TX_CSUM_DEF_SIZE); 4272 } 4273 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4274 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4275 } else { 4276 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4277 } 4278 4279 pp->tx_csum_limit = tx_csum_limit; 4280 4281 pp->dram_target_info = mv_mbus_dram_info(); 4282 /* Armada3700 requires setting default configuration of Mbus 4283 * windows, however without using filled mbus_dram_target_info 4284 * structure. 4285 */ 4286 if (pp->dram_target_info || pp->neta_armada3700) 4287 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4288 4289 pp->tx_ring_size = MVNETA_MAX_TXD; 4290 pp->rx_ring_size = MVNETA_MAX_RXD; 4291 4292 pp->dev = dev; 4293 SET_NETDEV_DEV(dev, &pdev->dev); 4294 4295 pp->id = global_port_id++; 4296 4297 /* Obtain access to BM resources if enabled and already initialized */ 4298 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4299 if (bm_node && bm_node->data) { 4300 pp->bm_priv = bm_node->data; 4301 err = mvneta_bm_port_init(pdev, pp); 4302 if (err < 0) { 4303 dev_info(&pdev->dev, "use SW buffer management\n"); 4304 pp->bm_priv = NULL; 4305 } 4306 } 4307 of_node_put(bm_node); 4308 4309 err = mvneta_init(&pdev->dev, pp); 4310 if (err < 0) 4311 goto err_netdev; 4312 4313 err = mvneta_port_power_up(pp, phy_mode); 4314 if (err < 0) { 4315 dev_err(&pdev->dev, "can't power up port\n"); 4316 goto err_netdev; 4317 } 4318 4319 /* Armada3700 network controller does not support per-cpu 4320 * operation, so only single NAPI should be initialized. 4321 */ 4322 if (pp->neta_armada3700) { 4323 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4324 } else { 4325 for_each_present_cpu(cpu) { 4326 struct mvneta_pcpu_port *port = 4327 per_cpu_ptr(pp->ports, cpu); 4328 4329 netif_napi_add(dev, &port->napi, mvneta_poll, 4330 NAPI_POLL_WEIGHT); 4331 port->pp = pp; 4332 } 4333 } 4334 4335 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4336 dev->hw_features |= dev->features; 4337 dev->vlan_features |= dev->features; 4338 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4339 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4340 4341 /* MTU range: 68 - 9676 */ 4342 dev->min_mtu = ETH_MIN_MTU; 4343 /* 9676 == 9700 - 20 and rounding to 8 */ 4344 dev->max_mtu = 9676; 4345 4346 err = register_netdev(dev); 4347 if (err < 0) { 4348 dev_err(&pdev->dev, "failed to register\n"); 4349 goto err_free_stats; 4350 } 4351 4352 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4353 dev->dev_addr); 4354 4355 platform_set_drvdata(pdev, pp->dev); 4356 4357 if (pp->use_inband_status) { 4358 struct phy_device *phy = of_phy_find_device(dn); 4359 4360 mvneta_fixed_link_update(pp, phy); 4361 4362 put_device(&phy->mdio.dev); 4363 } 4364 4365 return 0; 4366 4367 err_netdev: 4368 unregister_netdev(dev); 4369 if (pp->bm_priv) { 4370 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4371 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4372 1 << pp->id); 4373 } 4374 err_free_stats: 4375 free_percpu(pp->stats); 4376 err_free_ports: 4377 free_percpu(pp->ports); 4378 err_clk: 4379 clk_disable_unprepare(pp->clk_bus); 4380 clk_disable_unprepare(pp->clk); 4381 err_put_phy_node: 4382 of_node_put(phy_node); 4383 if (of_phy_is_fixed_link(dn)) 4384 of_phy_deregister_fixed_link(dn); 4385 err_free_irq: 4386 irq_dispose_mapping(dev->irq); 4387 err_free_netdev: 4388 free_netdev(dev); 4389 return err; 4390 } 4391 4392 /* Device removal routine */ 4393 static int mvneta_remove(struct platform_device *pdev) 4394 { 4395 struct net_device *dev = platform_get_drvdata(pdev); 4396 struct device_node *dn = pdev->dev.of_node; 4397 struct mvneta_port *pp = netdev_priv(dev); 4398 4399 unregister_netdev(dev); 4400 clk_disable_unprepare(pp->clk_bus); 4401 clk_disable_unprepare(pp->clk); 4402 free_percpu(pp->ports); 4403 free_percpu(pp->stats); 4404 if (of_phy_is_fixed_link(dn)) 4405 of_phy_deregister_fixed_link(dn); 4406 irq_dispose_mapping(dev->irq); 4407 of_node_put(pp->phy_node); 4408 free_netdev(dev); 4409 4410 if (pp->bm_priv) { 4411 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4412 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4413 1 << pp->id); 4414 } 4415 4416 return 0; 4417 } 4418 4419 #ifdef CONFIG_PM_SLEEP 4420 static int mvneta_suspend(struct device *device) 4421 { 4422 struct net_device *dev = dev_get_drvdata(device); 4423 struct mvneta_port *pp = netdev_priv(dev); 4424 4425 if (netif_running(dev)) 4426 mvneta_stop(dev); 4427 netif_device_detach(dev); 4428 clk_disable_unprepare(pp->clk_bus); 4429 clk_disable_unprepare(pp->clk); 4430 return 0; 4431 } 4432 4433 static int mvneta_resume(struct device *device) 4434 { 4435 struct platform_device *pdev = to_platform_device(device); 4436 struct net_device *dev = dev_get_drvdata(device); 4437 struct mvneta_port *pp = netdev_priv(dev); 4438 int err; 4439 4440 clk_prepare_enable(pp->clk); 4441 if (!IS_ERR(pp->clk_bus)) 4442 clk_prepare_enable(pp->clk_bus); 4443 if (pp->dram_target_info || pp->neta_armada3700) 4444 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4445 if (pp->bm_priv) { 4446 err = mvneta_bm_port_init(pdev, pp); 4447 if (err < 0) { 4448 dev_info(&pdev->dev, "use SW buffer management\n"); 4449 pp->bm_priv = NULL; 4450 } 4451 } 4452 mvneta_defaults_set(pp); 4453 err = mvneta_port_power_up(pp, pp->phy_interface); 4454 if (err < 0) { 4455 dev_err(device, "can't power up port\n"); 4456 return err; 4457 } 4458 4459 if (pp->use_inband_status) 4460 mvneta_fixed_link_update(pp, dev->phydev); 4461 4462 netif_device_attach(dev); 4463 if (netif_running(dev)) { 4464 mvneta_open(dev); 4465 mvneta_set_rx_mode(dev); 4466 } 4467 4468 return 0; 4469 } 4470 #endif 4471 4472 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4473 4474 static const struct of_device_id mvneta_match[] = { 4475 { .compatible = "marvell,armada-370-neta" }, 4476 { .compatible = "marvell,armada-xp-neta" }, 4477 { .compatible = "marvell,armada-3700-neta" }, 4478 { } 4479 }; 4480 MODULE_DEVICE_TABLE(of, mvneta_match); 4481 4482 static struct platform_driver mvneta_driver = { 4483 .probe = mvneta_probe, 4484 .remove = mvneta_remove, 4485 .driver = { 4486 .name = MVNETA_DRIVER_NAME, 4487 .of_match_table = mvneta_match, 4488 .pm = &mvneta_pm_ops, 4489 }, 4490 }; 4491 4492 static int __init mvneta_driver_init(void) 4493 { 4494 int ret; 4495 4496 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4497 mvneta_cpu_online, 4498 mvneta_cpu_down_prepare); 4499 if (ret < 0) 4500 goto out; 4501 online_hpstate = ret; 4502 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4503 NULL, mvneta_cpu_dead); 4504 if (ret) 4505 goto err_dead; 4506 4507 ret = platform_driver_register(&mvneta_driver); 4508 if (ret) 4509 goto err; 4510 return 0; 4511 4512 err: 4513 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4514 err_dead: 4515 cpuhp_remove_multi_state(online_hpstate); 4516 out: 4517 return ret; 4518 } 4519 module_init(mvneta_driver_init); 4520 4521 static void __exit mvneta_driver_exit(void) 4522 { 4523 platform_driver_unregister(&mvneta_driver); 4524 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4525 cpuhp_remove_multi_state(online_hpstate); 4526 } 4527 module_exit(mvneta_driver_exit); 4528 4529 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4530 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4531 MODULE_LICENSE("GPL"); 4532 4533 module_param(rxq_number, int, S_IRUGO); 4534 module_param(txq_number, int, S_IRUGO); 4535 4536 module_param(rxq_def, int, S_IRUGO); 4537 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4538