1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
334 
335 #define IS_TSO_HEADER(txq, addr) \
336 	((addr >= txq->tso_hdrs_phys) && \
337 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338 
339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341 
342 enum {
343 	ETHTOOL_STAT_EEE_WAKEUP,
344 	ETHTOOL_STAT_SKB_ALLOC_ERR,
345 	ETHTOOL_STAT_REFILL_ERR,
346 	ETHTOOL_XDP_REDIRECT,
347 	ETHTOOL_XDP_PASS,
348 	ETHTOOL_XDP_DROP,
349 	ETHTOOL_XDP_TX,
350 	ETHTOOL_XDP_TX_ERR,
351 	ETHTOOL_XDP_XMIT,
352 	ETHTOOL_XDP_XMIT_ERR,
353 	ETHTOOL_MAX_STATS,
354 };
355 
356 struct mvneta_statistic {
357 	unsigned short offset;
358 	unsigned short type;
359 	const char name[ETH_GSTRING_LEN];
360 };
361 
362 #define T_REG_32	32
363 #define T_REG_64	64
364 #define T_SW		1
365 
366 #define MVNETA_XDP_PASS		0
367 #define MVNETA_XDP_DROPPED	BIT(0)
368 #define MVNETA_XDP_TX		BIT(1)
369 #define MVNETA_XDP_REDIR	BIT(2)
370 
371 static const struct mvneta_statistic mvneta_statistics[] = {
372 	{ 0x3000, T_REG_64, "good_octets_received", },
373 	{ 0x3010, T_REG_32, "good_frames_received", },
374 	{ 0x3008, T_REG_32, "bad_octets_received", },
375 	{ 0x3014, T_REG_32, "bad_frames_received", },
376 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
377 	{ 0x301c, T_REG_32, "multicast_frames_received", },
378 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
379 	{ 0x3058, T_REG_32, "good_fc_received", },
380 	{ 0x305c, T_REG_32, "bad_fc_received", },
381 	{ 0x3060, T_REG_32, "undersize_received", },
382 	{ 0x3064, T_REG_32, "fragments_received", },
383 	{ 0x3068, T_REG_32, "oversize_received", },
384 	{ 0x306c, T_REG_32, "jabber_received", },
385 	{ 0x3070, T_REG_32, "mac_receive_error", },
386 	{ 0x3074, T_REG_32, "bad_crc_event", },
387 	{ 0x3078, T_REG_32, "collision", },
388 	{ 0x307c, T_REG_32, "late_collision", },
389 	{ 0x2484, T_REG_32, "rx_discard", },
390 	{ 0x2488, T_REG_32, "rx_overrun", },
391 	{ 0x3020, T_REG_32, "frames_64_octets", },
392 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
393 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
394 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
395 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397 	{ 0x3038, T_REG_64, "good_octets_sent", },
398 	{ 0x3040, T_REG_32, "good_frames_sent", },
399 	{ 0x3044, T_REG_32, "excessive_collision", },
400 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
401 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
402 	{ 0x3054, T_REG_32, "fc_sent", },
403 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
404 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414 };
415 
416 struct mvneta_stats {
417 	u64	rx_packets;
418 	u64	rx_bytes;
419 	u64	tx_packets;
420 	u64	tx_bytes;
421 	/* xdp */
422 	u64	xdp_redirect;
423 	u64	xdp_pass;
424 	u64	xdp_drop;
425 	u64	xdp_xmit;
426 	u64	xdp_xmit_err;
427 	u64	xdp_tx;
428 	u64	xdp_tx_err;
429 };
430 
431 struct mvneta_ethtool_stats {
432 	struct mvneta_stats ps;
433 	u64	skb_alloc_error;
434 	u64	refill_error;
435 };
436 
437 struct mvneta_pcpu_stats {
438 	struct u64_stats_sync syncp;
439 
440 	struct mvneta_ethtool_stats es;
441 	u64	rx_dropped;
442 	u64	rx_errors;
443 };
444 
445 struct mvneta_pcpu_port {
446 	/* Pointer to the shared port */
447 	struct mvneta_port	*pp;
448 
449 	/* Pointer to the CPU-local NAPI struct */
450 	struct napi_struct	napi;
451 
452 	/* Cause of the previous interrupt */
453 	u32			cause_rx_tx;
454 };
455 
456 enum {
457 	__MVNETA_DOWN,
458 };
459 
460 struct mvneta_port {
461 	u8 id;
462 	struct mvneta_pcpu_port __percpu	*ports;
463 	struct mvneta_pcpu_stats __percpu	*stats;
464 
465 	unsigned long state;
466 
467 	int pkt_size;
468 	void __iomem *base;
469 	struct mvneta_rx_queue *rxqs;
470 	struct mvneta_tx_queue *txqs;
471 	struct net_device *dev;
472 	struct hlist_node node_online;
473 	struct hlist_node node_dead;
474 	int rxq_def;
475 	/* Protect the access to the percpu interrupt registers,
476 	 * ensuring that the configuration remains coherent.
477 	 */
478 	spinlock_t lock;
479 	bool is_stopped;
480 
481 	u32 cause_rx_tx;
482 	struct napi_struct napi;
483 
484 	struct bpf_prog *xdp_prog;
485 
486 	/* Core clock */
487 	struct clk *clk;
488 	/* AXI clock */
489 	struct clk *clk_bus;
490 	u8 mcast_count[256];
491 	u16 tx_ring_size;
492 	u16 rx_ring_size;
493 
494 	phy_interface_t phy_interface;
495 	struct device_node *dn;
496 	unsigned int tx_csum_limit;
497 	struct phylink *phylink;
498 	struct phylink_config phylink_config;
499 	struct phy *comphy;
500 
501 	struct mvneta_bm *bm_priv;
502 	struct mvneta_bm_pool *pool_long;
503 	struct mvneta_bm_pool *pool_short;
504 	int bm_win_id;
505 
506 	bool eee_enabled;
507 	bool eee_active;
508 	bool tx_lpi_enabled;
509 
510 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511 
512 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513 
514 	/* Flags for special SoC configurations */
515 	bool neta_armada3700;
516 	u16 rx_offset_correction;
517 	const struct mbus_dram_target_info *dram_target_info;
518 };
519 
520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521  * layout of the transmit and reception DMA descriptors, and their
522  * layout is therefore defined by the hardware design
523  */
524 
525 #define MVNETA_TX_L3_OFF_SHIFT	0
526 #define MVNETA_TX_IP_HLEN_SHIFT	8
527 #define MVNETA_TX_L4_UDP	BIT(16)
528 #define MVNETA_TX_L3_IP6	BIT(17)
529 #define MVNETA_TXD_IP_CSUM	BIT(18)
530 #define MVNETA_TXD_Z_PAD	BIT(19)
531 #define MVNETA_TXD_L_DESC	BIT(20)
532 #define MVNETA_TXD_F_DESC	BIT(21)
533 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
534 				 MVNETA_TXD_L_DESC | \
535 				 MVNETA_TXD_F_DESC)
536 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
537 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
538 
539 #define MVNETA_RXD_ERR_CRC		0x0
540 #define MVNETA_RXD_BM_POOL_SHIFT	13
541 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
542 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
543 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
544 #define MVNETA_RXD_ERR_LEN		BIT(18)
545 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
546 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
547 #define MVNETA_RXD_L3_IP4		BIT(25)
548 #define MVNETA_RXD_LAST_DESC		BIT(26)
549 #define MVNETA_RXD_FIRST_DESC		BIT(27)
550 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
551 					 MVNETA_RXD_LAST_DESC)
552 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
553 
554 #if defined(__LITTLE_ENDIAN)
555 struct mvneta_tx_desc {
556 	u32  command;		/* Options used by HW for packet transmitting.*/
557 	u16  reserved1;		/* csum_l4 (for future use)		*/
558 	u16  data_size;		/* Data size of transmitted packet in bytes */
559 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
560 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
561 	u32  reserved3[4];	/* Reserved - (for future use)		*/
562 };
563 
564 struct mvneta_rx_desc {
565 	u32  status;		/* Info about received packet		*/
566 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
567 	u16  data_size;		/* Size of received packet in bytes	*/
568 
569 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
570 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
571 
572 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
573 	u16  reserved3;		/* prefetch_cmd, for future use		*/
574 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
575 
576 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
577 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
578 };
579 #else
580 struct mvneta_tx_desc {
581 	u16  data_size;		/* Data size of transmitted packet in bytes */
582 	u16  reserved1;		/* csum_l4 (for future use)		*/
583 	u32  command;		/* Options used by HW for packet transmitting.*/
584 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
585 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
586 	u32  reserved3[4];	/* Reserved - (for future use)		*/
587 };
588 
589 struct mvneta_rx_desc {
590 	u16  data_size;		/* Size of received packet in bytes	*/
591 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
592 	u32  status;		/* Info about received packet		*/
593 
594 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
595 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
596 
597 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
598 	u16  reserved3;		/* prefetch_cmd, for future use		*/
599 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
600 
601 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
602 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
603 };
604 #endif
605 
606 enum mvneta_tx_buf_type {
607 	MVNETA_TYPE_SKB,
608 	MVNETA_TYPE_XDP_TX,
609 	MVNETA_TYPE_XDP_NDO,
610 };
611 
612 struct mvneta_tx_buf {
613 	enum mvneta_tx_buf_type type;
614 	union {
615 		struct xdp_frame *xdpf;
616 		struct sk_buff *skb;
617 	};
618 };
619 
620 struct mvneta_tx_queue {
621 	/* Number of this TX queue, in the range 0-7 */
622 	u8 id;
623 
624 	/* Number of TX DMA descriptors in the descriptor ring */
625 	int size;
626 
627 	/* Number of currently used TX DMA descriptor in the
628 	 * descriptor ring
629 	 */
630 	int count;
631 	int pending;
632 	int tx_stop_threshold;
633 	int tx_wake_threshold;
634 
635 	/* Array of transmitted buffers */
636 	struct mvneta_tx_buf *buf;
637 
638 	/* Index of last TX DMA descriptor that was inserted */
639 	int txq_put_index;
640 
641 	/* Index of the TX DMA descriptor to be cleaned up */
642 	int txq_get_index;
643 
644 	u32 done_pkts_coal;
645 
646 	/* Virtual address of the TX DMA descriptors array */
647 	struct mvneta_tx_desc *descs;
648 
649 	/* DMA address of the TX DMA descriptors array */
650 	dma_addr_t descs_phys;
651 
652 	/* Index of the last TX DMA descriptor */
653 	int last_desc;
654 
655 	/* Index of the next TX DMA descriptor to process */
656 	int next_desc_to_proc;
657 
658 	/* DMA buffers for TSO headers */
659 	char *tso_hdrs;
660 
661 	/* DMA address of TSO headers */
662 	dma_addr_t tso_hdrs_phys;
663 
664 	/* Affinity mask for CPUs*/
665 	cpumask_t affinity_mask;
666 };
667 
668 struct mvneta_rx_queue {
669 	/* rx queue number, in the range 0-7 */
670 	u8 id;
671 
672 	/* num of rx descriptors in the rx descriptor ring */
673 	int size;
674 
675 	u32 pkts_coal;
676 	u32 time_coal;
677 
678 	/* page_pool */
679 	struct page_pool *page_pool;
680 	struct xdp_rxq_info xdp_rxq;
681 
682 	/* Virtual address of the RX buffer */
683 	void  **buf_virt_addr;
684 
685 	/* Virtual address of the RX DMA descriptors array */
686 	struct mvneta_rx_desc *descs;
687 
688 	/* DMA address of the RX DMA descriptors array */
689 	dma_addr_t descs_phys;
690 
691 	/* Index of the last RX DMA descriptor */
692 	int last_desc;
693 
694 	/* Index of the next RX DMA descriptor to process */
695 	int next_desc_to_proc;
696 
697 	/* Index of first RX DMA descriptor to refill */
698 	int first_to_refill;
699 	u32 refill_num;
700 };
701 
702 static enum cpuhp_state online_hpstate;
703 /* The hardware supports eight (8) rx queues, but we are only allowing
704  * the first one to be used. Therefore, let's just allocate one queue.
705  */
706 static int rxq_number = 8;
707 static int txq_number = 8;
708 
709 static int rxq_def;
710 
711 static int rx_copybreak __read_mostly = 256;
712 
713 /* HW BM need that each port be identify by a unique ID */
714 static int global_port_id;
715 
716 #define MVNETA_DRIVER_NAME "mvneta"
717 #define MVNETA_DRIVER_VERSION "1.0"
718 
719 /* Utility/helper methods */
720 
721 /* Write helper method */
722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723 {
724 	writel(data, pp->base + offset);
725 }
726 
727 /* Read helper method */
728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729 {
730 	return readl(pp->base + offset);
731 }
732 
733 /* Increment txq get counter */
734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735 {
736 	txq->txq_get_index++;
737 	if (txq->txq_get_index == txq->size)
738 		txq->txq_get_index = 0;
739 }
740 
741 /* Increment txq put counter */
742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743 {
744 	txq->txq_put_index++;
745 	if (txq->txq_put_index == txq->size)
746 		txq->txq_put_index = 0;
747 }
748 
749 
750 /* Clear all MIB counters */
751 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752 {
753 	int i;
754 
755 	/* Perform dummy reads from MIB counters */
756 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
757 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
758 	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
759 	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
760 }
761 
762 /* Get System Network Statistics */
763 static void
764 mvneta_get_stats64(struct net_device *dev,
765 		   struct rtnl_link_stats64 *stats)
766 {
767 	struct mvneta_port *pp = netdev_priv(dev);
768 	unsigned int start;
769 	int cpu;
770 
771 	for_each_possible_cpu(cpu) {
772 		struct mvneta_pcpu_stats *cpu_stats;
773 		u64 rx_packets;
774 		u64 rx_bytes;
775 		u64 rx_dropped;
776 		u64 rx_errors;
777 		u64 tx_packets;
778 		u64 tx_bytes;
779 
780 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
781 		do {
782 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
783 			rx_packets = cpu_stats->es.ps.rx_packets;
784 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
785 			rx_dropped = cpu_stats->rx_dropped;
786 			rx_errors  = cpu_stats->rx_errors;
787 			tx_packets = cpu_stats->es.ps.tx_packets;
788 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
789 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
790 
791 		stats->rx_packets += rx_packets;
792 		stats->rx_bytes   += rx_bytes;
793 		stats->rx_dropped += rx_dropped;
794 		stats->rx_errors  += rx_errors;
795 		stats->tx_packets += tx_packets;
796 		stats->tx_bytes   += tx_bytes;
797 	}
798 
799 	stats->tx_dropped	= dev->stats.tx_dropped;
800 }
801 
802 /* Rx descriptors helper methods */
803 
804 /* Checks whether the RX descriptor having this status is both the first
805  * and the last descriptor for the RX packet. Each RX packet is currently
806  * received through a single RX descriptor, so not having each RX
807  * descriptor with its first and last bits set is an error
808  */
809 static int mvneta_rxq_desc_is_first_last(u32 status)
810 {
811 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
812 		MVNETA_RXD_FIRST_LAST_DESC;
813 }
814 
815 /* Add number of descriptors ready to receive new packets */
816 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
817 					  struct mvneta_rx_queue *rxq,
818 					  int ndescs)
819 {
820 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
821 	 * be added at once
822 	 */
823 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
824 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
825 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
826 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
827 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
828 	}
829 
830 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
832 }
833 
834 /* Get number of RX descriptors occupied by received packets */
835 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
836 					struct mvneta_rx_queue *rxq)
837 {
838 	u32 val;
839 
840 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
841 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
842 }
843 
844 /* Update num of rx desc called upon return from rx path or
845  * from mvneta_rxq_drop_pkts().
846  */
847 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
848 				       struct mvneta_rx_queue *rxq,
849 				       int rx_done, int rx_filled)
850 {
851 	u32 val;
852 
853 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
854 		val = rx_done |
855 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
856 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
857 		return;
858 	}
859 
860 	/* Only 255 descriptors can be added at once */
861 	while ((rx_done > 0) || (rx_filled > 0)) {
862 		if (rx_done <= 0xff) {
863 			val = rx_done;
864 			rx_done = 0;
865 		} else {
866 			val = 0xff;
867 			rx_done -= 0xff;
868 		}
869 		if (rx_filled <= 0xff) {
870 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
871 			rx_filled = 0;
872 		} else {
873 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
874 			rx_filled -= 0xff;
875 		}
876 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
877 	}
878 }
879 
880 /* Get pointer to next RX descriptor to be processed by SW */
881 static struct mvneta_rx_desc *
882 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
883 {
884 	int rx_desc = rxq->next_desc_to_proc;
885 
886 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
887 	prefetch(rxq->descs + rxq->next_desc_to_proc);
888 	return rxq->descs + rx_desc;
889 }
890 
891 /* Change maximum receive size of the port. */
892 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
893 {
894 	u32 val;
895 
896 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
897 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
898 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
899 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
900 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
901 }
902 
903 
904 /* Set rx queue offset */
905 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
906 				  struct mvneta_rx_queue *rxq,
907 				  int offset)
908 {
909 	u32 val;
910 
911 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
912 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
913 
914 	/* Offset is in */
915 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
916 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
917 }
918 
919 
920 /* Tx descriptors helper methods */
921 
922 /* Update HW with number of TX descriptors to be sent */
923 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
924 				     struct mvneta_tx_queue *txq,
925 				     int pend_desc)
926 {
927 	u32 val;
928 
929 	pend_desc += txq->pending;
930 
931 	/* Only 255 Tx descriptors can be added at once */
932 	do {
933 		val = min(pend_desc, 255);
934 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
935 		pend_desc -= val;
936 	} while (pend_desc > 0);
937 	txq->pending = 0;
938 }
939 
940 /* Get pointer to next TX descriptor to be processed (send) by HW */
941 static struct mvneta_tx_desc *
942 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
943 {
944 	int tx_desc = txq->next_desc_to_proc;
945 
946 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
947 	return txq->descs + tx_desc;
948 }
949 
950 /* Release the last allocated TX descriptor. Useful to handle DMA
951  * mapping failures in the TX path.
952  */
953 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
954 {
955 	if (txq->next_desc_to_proc == 0)
956 		txq->next_desc_to_proc = txq->last_desc - 1;
957 	else
958 		txq->next_desc_to_proc--;
959 }
960 
961 /* Set rxq buf size */
962 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
963 				    struct mvneta_rx_queue *rxq,
964 				    int buf_size)
965 {
966 	u32 val;
967 
968 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
969 
970 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
971 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
972 
973 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
974 }
975 
976 /* Disable buffer management (BM) */
977 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
978 				  struct mvneta_rx_queue *rxq)
979 {
980 	u32 val;
981 
982 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
983 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
984 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
985 }
986 
987 /* Enable buffer management (BM) */
988 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
989 				 struct mvneta_rx_queue *rxq)
990 {
991 	u32 val;
992 
993 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
994 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
995 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
996 }
997 
998 /* Notify HW about port's assignment of pool for bigger packets */
999 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000 				     struct mvneta_rx_queue *rxq)
1001 {
1002 	u32 val;
1003 
1004 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007 
1008 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009 }
1010 
1011 /* Notify HW about port's assignment of pool for smaller packets */
1012 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013 				      struct mvneta_rx_queue *rxq)
1014 {
1015 	u32 val;
1016 
1017 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020 
1021 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022 }
1023 
1024 /* Set port's receive buffer size for assigned BM pool */
1025 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026 					      int buf_size,
1027 					      u8 pool_id)
1028 {
1029 	u32 val;
1030 
1031 	if (!IS_ALIGNED(buf_size, 8)) {
1032 		dev_warn(pp->dev->dev.parent,
1033 			 "illegal buf_size value %d, round to %d\n",
1034 			 buf_size, ALIGN(buf_size, 8));
1035 		buf_size = ALIGN(buf_size, 8);
1036 	}
1037 
1038 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041 }
1042 
1043 /* Configure MBUS window in order to enable access BM internal SRAM */
1044 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045 				  u8 target, u8 attr)
1046 {
1047 	u32 win_enable, win_protect;
1048 	int i;
1049 
1050 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051 
1052 	if (pp->bm_win_id < 0) {
1053 		/* Find first not occupied window */
1054 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055 			if (win_enable & (1 << i)) {
1056 				pp->bm_win_id = i;
1057 				break;
1058 			}
1059 		}
1060 		if (i == MVNETA_MAX_DECODE_WIN)
1061 			return -ENOMEM;
1062 	} else {
1063 		i = pp->bm_win_id;
1064 	}
1065 
1066 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068 
1069 	if (i < 4)
1070 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071 
1072 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073 		    (attr << 8) | target);
1074 
1075 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076 
1077 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078 	win_protect |= 3 << (2 * i);
1079 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080 
1081 	win_enable &= ~(1 << i);
1082 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083 
1084 	return 0;
1085 }
1086 
1087 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088 {
1089 	u32 wsize;
1090 	u8 target, attr;
1091 	int err;
1092 
1093 	/* Get BM window information */
1094 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095 					 &target, &attr);
1096 	if (err < 0)
1097 		return err;
1098 
1099 	pp->bm_win_id = -1;
1100 
1101 	/* Open NETA -> BM window */
1102 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103 				     target, attr);
1104 	if (err < 0) {
1105 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106 		return err;
1107 	}
1108 	return 0;
1109 }
1110 
1111 /* Assign and initialize pools for port. In case of fail
1112  * buffer manager will remain disabled for current port.
1113  */
1114 static int mvneta_bm_port_init(struct platform_device *pdev,
1115 			       struct mvneta_port *pp)
1116 {
1117 	struct device_node *dn = pdev->dev.of_node;
1118 	u32 long_pool_id, short_pool_id;
1119 
1120 	if (!pp->neta_armada3700) {
1121 		int ret;
1122 
1123 		ret = mvneta_bm_port_mbus_init(pp);
1124 		if (ret)
1125 			return ret;
1126 	}
1127 
1128 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129 		netdev_info(pp->dev, "missing long pool id\n");
1130 		return -EINVAL;
1131 	}
1132 
1133 	/* Create port's long pool depending on mtu */
1134 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135 					   MVNETA_BM_LONG, pp->id,
1136 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137 	if (!pp->pool_long) {
1138 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139 		return -ENOMEM;
1140 	}
1141 
1142 	pp->pool_long->port_map |= 1 << pp->id;
1143 
1144 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145 				   pp->pool_long->id);
1146 
1147 	/* If short pool id is not defined, assume using single pool */
1148 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149 		short_pool_id = long_pool_id;
1150 
1151 	/* Create port's short pool */
1152 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153 					    MVNETA_BM_SHORT, pp->id,
1154 					    MVNETA_BM_SHORT_PKT_SIZE);
1155 	if (!pp->pool_short) {
1156 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158 		return -ENOMEM;
1159 	}
1160 
1161 	if (short_pool_id != long_pool_id) {
1162 		pp->pool_short->port_map |= 1 << pp->id;
1163 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164 					   pp->pool_short->id);
1165 	}
1166 
1167 	return 0;
1168 }
1169 
1170 /* Update settings of a pool for bigger packets */
1171 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172 {
1173 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175 	int num;
1176 
1177 	/* Release all buffers from long pool */
1178 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179 	if (hwbm_pool->buf_num) {
1180 		WARN(1, "cannot free all buffers in pool %d\n",
1181 		     bm_pool->id);
1182 		goto bm_mtu_err;
1183 	}
1184 
1185 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189 
1190 	/* Fill entire long pool */
1191 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192 	if (num != hwbm_pool->size) {
1193 		WARN(1, "pool %d: %d of %d allocated\n",
1194 		     bm_pool->id, num, hwbm_pool->size);
1195 		goto bm_mtu_err;
1196 	}
1197 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198 
1199 	return;
1200 
1201 bm_mtu_err:
1202 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204 
1205 	pp->bm_priv = NULL;
1206 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209 }
1210 
1211 /* Start the Ethernet port RX and TX activity */
1212 static void mvneta_port_up(struct mvneta_port *pp)
1213 {
1214 	int queue;
1215 	u32 q_map;
1216 
1217 	/* Enable all initialized TXs. */
1218 	q_map = 0;
1219 	for (queue = 0; queue < txq_number; queue++) {
1220 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221 		if (txq->descs)
1222 			q_map |= (1 << queue);
1223 	}
1224 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225 
1226 	q_map = 0;
1227 	/* Enable all initialized RXQs. */
1228 	for (queue = 0; queue < rxq_number; queue++) {
1229 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230 
1231 		if (rxq->descs)
1232 			q_map |= (1 << queue);
1233 	}
1234 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235 }
1236 
1237 /* Stop the Ethernet port activity */
1238 static void mvneta_port_down(struct mvneta_port *pp)
1239 {
1240 	u32 val;
1241 	int count;
1242 
1243 	/* Stop Rx port activity. Check port Rx activity. */
1244 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245 
1246 	/* Issue stop command for active channels only */
1247 	if (val != 0)
1248 		mvreg_write(pp, MVNETA_RXQ_CMD,
1249 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1250 
1251 	/* Wait for all Rx activity to terminate. */
1252 	count = 0;
1253 	do {
1254 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255 			netdev_warn(pp->dev,
1256 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257 				    val);
1258 			break;
1259 		}
1260 		mdelay(1);
1261 
1262 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1264 
1265 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1266 	 * command for active channels only
1267 	 */
1268 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269 
1270 	if (val != 0)
1271 		mvreg_write(pp, MVNETA_TXQ_CMD,
1272 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1273 
1274 	/* Wait for all Tx activity to terminate. */
1275 	count = 0;
1276 	do {
1277 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278 			netdev_warn(pp->dev,
1279 				    "TIMEOUT for TX stopped status=0x%08x\n",
1280 				    val);
1281 			break;
1282 		}
1283 		mdelay(1);
1284 
1285 		/* Check TX Command reg that all Txqs are stopped */
1286 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287 
1288 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1289 
1290 	/* Double check to verify that TX FIFO is empty */
1291 	count = 0;
1292 	do {
1293 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294 			netdev_warn(pp->dev,
1295 				    "TX FIFO empty timeout status=0x%08x\n",
1296 				    val);
1297 			break;
1298 		}
1299 		mdelay(1);
1300 
1301 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303 		 (val & MVNETA_TX_IN_PRGRS));
1304 
1305 	udelay(200);
1306 }
1307 
1308 /* Enable the port by setting the port enable bit of the MAC control register */
1309 static void mvneta_port_enable(struct mvneta_port *pp)
1310 {
1311 	u32 val;
1312 
1313 	/* Enable port */
1314 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315 	val |= MVNETA_GMAC0_PORT_ENABLE;
1316 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317 }
1318 
1319 /* Disable the port and wait for about 200 usec before retuning */
1320 static void mvneta_port_disable(struct mvneta_port *pp)
1321 {
1322 	u32 val;
1323 
1324 	/* Reset the Enable bit in the Serial Control Register */
1325 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328 
1329 	udelay(200);
1330 }
1331 
1332 /* Multicast tables methods */
1333 
1334 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1335 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336 {
1337 	int offset;
1338 	u32 val;
1339 
1340 	if (queue == -1) {
1341 		val = 0;
1342 	} else {
1343 		val = 0x1 | (queue << 1);
1344 		val |= (val << 24) | (val << 16) | (val << 8);
1345 	}
1346 
1347 	for (offset = 0; offset <= 0xc; offset += 4)
1348 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349 }
1350 
1351 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1352 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353 {
1354 	int offset;
1355 	u32 val;
1356 
1357 	if (queue == -1) {
1358 		val = 0;
1359 	} else {
1360 		val = 0x1 | (queue << 1);
1361 		val |= (val << 24) | (val << 16) | (val << 8);
1362 	}
1363 
1364 	for (offset = 0; offset <= 0xfc; offset += 4)
1365 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366 
1367 }
1368 
1369 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1370 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371 {
1372 	int offset;
1373 	u32 val;
1374 
1375 	if (queue == -1) {
1376 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377 		val = 0;
1378 	} else {
1379 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380 		val = 0x1 | (queue << 1);
1381 		val |= (val << 24) | (val << 16) | (val << 8);
1382 	}
1383 
1384 	for (offset = 0; offset <= 0xfc; offset += 4)
1385 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386 }
1387 
1388 static void mvneta_percpu_unmask_interrupt(void *arg)
1389 {
1390 	struct mvneta_port *pp = arg;
1391 
1392 	/* All the queue are unmasked, but actually only the ones
1393 	 * mapped to this CPU will be unmasked
1394 	 */
1395 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396 		    MVNETA_RX_INTR_MASK_ALL |
1397 		    MVNETA_TX_INTR_MASK_ALL |
1398 		    MVNETA_MISCINTR_INTR_MASK);
1399 }
1400 
1401 static void mvneta_percpu_mask_interrupt(void *arg)
1402 {
1403 	struct mvneta_port *pp = arg;
1404 
1405 	/* All the queue are masked, but actually only the ones
1406 	 * mapped to this CPU will be masked
1407 	 */
1408 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411 }
1412 
1413 static void mvneta_percpu_clear_intr_cause(void *arg)
1414 {
1415 	struct mvneta_port *pp = arg;
1416 
1417 	/* All the queue are cleared, but actually only the ones
1418 	 * mapped to this CPU will be cleared
1419 	 */
1420 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423 }
1424 
1425 /* This method sets defaults to the NETA port:
1426  *	Clears interrupt Cause and Mask registers.
1427  *	Clears all MAC tables.
1428  *	Sets defaults to all registers.
1429  *	Resets RX and TX descriptor rings.
1430  *	Resets PHY.
1431  * This method can be called after mvneta_port_down() to return the port
1432  *	settings to defaults.
1433  */
1434 static void mvneta_defaults_set(struct mvneta_port *pp)
1435 {
1436 	int cpu;
1437 	int queue;
1438 	u32 val;
1439 	int max_cpu = num_present_cpus();
1440 
1441 	/* Clear all Cause registers */
1442 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443 
1444 	/* Mask all interrupts */
1445 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447 
1448 	/* Enable MBUS Retry bit16 */
1449 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450 
1451 	/* Set CPU queue access map. CPUs are assigned to the RX and
1452 	 * TX queues modulo their number. If there is only one TX
1453 	 * queue then it is assigned to the CPU associated to the
1454 	 * default RX queue.
1455 	 */
1456 	for_each_present_cpu(cpu) {
1457 		int rxq_map = 0, txq_map = 0;
1458 		int rxq, txq;
1459 		if (!pp->neta_armada3700) {
1460 			for (rxq = 0; rxq < rxq_number; rxq++)
1461 				if ((rxq % max_cpu) == cpu)
1462 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463 
1464 			for (txq = 0; txq < txq_number; txq++)
1465 				if ((txq % max_cpu) == cpu)
1466 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467 
1468 			/* With only one TX queue we configure a special case
1469 			 * which will allow to get all the irq on a single
1470 			 * CPU
1471 			 */
1472 			if (txq_number == 1)
1473 				txq_map = (cpu == pp->rxq_def) ?
1474 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1475 
1476 		} else {
1477 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479 		}
1480 
1481 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482 	}
1483 
1484 	/* Reset RX and TX DMAs */
1485 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487 
1488 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1489 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490 	for (queue = 0; queue < txq_number; queue++) {
1491 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493 	}
1494 
1495 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497 
1498 	/* Set Port Acceleration Mode */
1499 	if (pp->bm_priv)
1500 		/* HW buffer management + legacy parser */
1501 		val = MVNETA_ACC_MODE_EXT2;
1502 	else
1503 		/* SW buffer management + legacy parser */
1504 		val = MVNETA_ACC_MODE_EXT1;
1505 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1506 
1507 	if (pp->bm_priv)
1508 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509 
1510 	/* Update val of portCfg register accordingly with all RxQueue types */
1511 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513 
1514 	val = 0;
1515 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517 
1518 	/* Build PORT_SDMA_CONFIG_REG */
1519 	val = 0;
1520 
1521 	/* Default burst size */
1522 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525 
1526 #if defined(__BIG_ENDIAN)
1527 	val |= MVNETA_DESC_SWAP;
1528 #endif
1529 
1530 	/* Assign port SDMA configuration */
1531 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532 
1533 	/* Disable PHY polling in hardware, since we're using the
1534 	 * kernel phylib to do this.
1535 	 */
1536 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1538 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539 
1540 	mvneta_set_ucast_table(pp, -1);
1541 	mvneta_set_special_mcast_table(pp, -1);
1542 	mvneta_set_other_mcast_table(pp, -1);
1543 
1544 	/* Set port interrupt enable register - default enable all */
1545 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1546 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548 
1549 	mvneta_mib_counters_clear(pp);
1550 }
1551 
1552 /* Set max sizes for tx queues */
1553 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554 
1555 {
1556 	u32 val, size, mtu;
1557 	int queue;
1558 
1559 	mtu = max_tx_size * 8;
1560 	if (mtu > MVNETA_TX_MTU_MAX)
1561 		mtu = MVNETA_TX_MTU_MAX;
1562 
1563 	/* Set MTU */
1564 	val = mvreg_read(pp, MVNETA_TX_MTU);
1565 	val &= ~MVNETA_TX_MTU_MAX;
1566 	val |= mtu;
1567 	mvreg_write(pp, MVNETA_TX_MTU, val);
1568 
1569 	/* TX token size and all TXQs token size must be larger that MTU */
1570 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571 
1572 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573 	if (size < mtu) {
1574 		size = mtu;
1575 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576 		val |= size;
1577 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578 	}
1579 	for (queue = 0; queue < txq_number; queue++) {
1580 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581 
1582 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583 		if (size < mtu) {
1584 			size = mtu;
1585 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586 			val |= size;
1587 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588 		}
1589 	}
1590 }
1591 
1592 /* Set unicast address */
1593 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594 				  int queue)
1595 {
1596 	unsigned int unicast_reg;
1597 	unsigned int tbl_offset;
1598 	unsigned int reg_offset;
1599 
1600 	/* Locate the Unicast table entry */
1601 	last_nibble = (0xf & last_nibble);
1602 
1603 	/* offset from unicast tbl base */
1604 	tbl_offset = (last_nibble / 4) * 4;
1605 
1606 	/* offset within the above reg  */
1607 	reg_offset = last_nibble % 4;
1608 
1609 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610 
1611 	if (queue == -1) {
1612 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1613 		unicast_reg &= ~(0xff << (8 * reg_offset));
1614 	} else {
1615 		unicast_reg &= ~(0xff << (8 * reg_offset));
1616 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617 	}
1618 
1619 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620 }
1621 
1622 /* Set mac address */
1623 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624 				int queue)
1625 {
1626 	unsigned int mac_h;
1627 	unsigned int mac_l;
1628 
1629 	if (queue != -1) {
1630 		mac_l = (addr[4] << 8) | (addr[5]);
1631 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632 			(addr[2] << 8) | (addr[3] << 0);
1633 
1634 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636 	}
1637 
1638 	/* Accept frames of this address */
1639 	mvneta_set_ucast_addr(pp, addr[5], queue);
1640 }
1641 
1642 /* Set the number of packets that will be received before RX interrupt
1643  * will be generated by HW.
1644  */
1645 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646 				    struct mvneta_rx_queue *rxq, u32 value)
1647 {
1648 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1650 }
1651 
1652 /* Set the time delay in usec before RX interrupt will be generated by
1653  * HW.
1654  */
1655 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656 				    struct mvneta_rx_queue *rxq, u32 value)
1657 {
1658 	u32 val;
1659 	unsigned long clk_rate;
1660 
1661 	clk_rate = clk_get_rate(pp->clk);
1662 	val = (clk_rate / 1000000) * value;
1663 
1664 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665 }
1666 
1667 /* Set threshold for TX_DONE pkts coalescing */
1668 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669 					 struct mvneta_tx_queue *txq, u32 value)
1670 {
1671 	u32 val;
1672 
1673 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674 
1675 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677 
1678 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679 }
1680 
1681 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1682 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683 				u32 phys_addr, void *virt_addr,
1684 				struct mvneta_rx_queue *rxq)
1685 {
1686 	int i;
1687 
1688 	rx_desc->buf_phys_addr = phys_addr;
1689 	i = rx_desc - rxq->descs;
1690 	rxq->buf_virt_addr[i] = virt_addr;
1691 }
1692 
1693 /* Decrement sent descriptors counter */
1694 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695 				     struct mvneta_tx_queue *txq,
1696 				     int sent_desc)
1697 {
1698 	u32 val;
1699 
1700 	/* Only 255 TX descriptors can be updated at once */
1701 	while (sent_desc > 0xff) {
1702 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704 		sent_desc = sent_desc - 0xff;
1705 	}
1706 
1707 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709 }
1710 
1711 /* Get number of TX descriptors already sent by HW */
1712 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713 					struct mvneta_tx_queue *txq)
1714 {
1715 	u32 val;
1716 	int sent_desc;
1717 
1718 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720 		MVNETA_TXQ_SENT_DESC_SHIFT;
1721 
1722 	return sent_desc;
1723 }
1724 
1725 /* Get number of sent descriptors and decrement counter.
1726  *  The number of sent descriptors is returned.
1727  */
1728 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729 				     struct mvneta_tx_queue *txq)
1730 {
1731 	int sent_desc;
1732 
1733 	/* Get number of sent descriptors */
1734 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735 
1736 	/* Decrement sent descriptors counter */
1737 	if (sent_desc)
1738 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739 
1740 	return sent_desc;
1741 }
1742 
1743 /* Set TXQ descriptors fields relevant for CSUM calculation */
1744 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745 				int ip_hdr_len, int l4_proto)
1746 {
1747 	u32 command;
1748 
1749 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750 	 * G_L4_chk, L4_type; required only for checksum
1751 	 * calculation
1752 	 */
1753 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1754 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755 
1756 	if (l3_proto == htons(ETH_P_IP))
1757 		command |= MVNETA_TXD_IP_CSUM;
1758 	else
1759 		command |= MVNETA_TX_L3_IP6;
1760 
1761 	if (l4_proto == IPPROTO_TCP)
1762 		command |=  MVNETA_TX_L4_CSUM_FULL;
1763 	else if (l4_proto == IPPROTO_UDP)
1764 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765 	else
1766 		command |= MVNETA_TX_L4_CSUM_NOT;
1767 
1768 	return command;
1769 }
1770 
1771 
1772 /* Display more error info */
1773 static void mvneta_rx_error(struct mvneta_port *pp,
1774 			    struct mvneta_rx_desc *rx_desc)
1775 {
1776 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777 	u32 status = rx_desc->status;
1778 
1779 	/* update per-cpu counter */
1780 	u64_stats_update_begin(&stats->syncp);
1781 	stats->rx_errors++;
1782 	u64_stats_update_end(&stats->syncp);
1783 
1784 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785 	case MVNETA_RXD_ERR_CRC:
1786 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787 			   status, rx_desc->data_size);
1788 		break;
1789 	case MVNETA_RXD_ERR_OVERRUN:
1790 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791 			   status, rx_desc->data_size);
1792 		break;
1793 	case MVNETA_RXD_ERR_LEN:
1794 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795 			   status, rx_desc->data_size);
1796 		break;
1797 	case MVNETA_RXD_ERR_RESOURCE:
1798 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799 			   status, rx_desc->data_size);
1800 		break;
1801 	}
1802 }
1803 
1804 /* Handle RX checksum offload based on the descriptor's status */
1805 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806 			   struct sk_buff *skb)
1807 {
1808 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809 	    (status & MVNETA_RXD_L3_IP4) &&
1810 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1811 		skb->csum = 0;
1812 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1813 		return;
1814 	}
1815 
1816 	skb->ip_summed = CHECKSUM_NONE;
1817 }
1818 
1819 /* Return tx queue pointer (find last set bit) according to <cause> returned
1820  * form tx_done reg. <cause> must not be null. The return value is always a
1821  * valid queue for matching the first one found in <cause>.
1822  */
1823 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824 						     u32 cause)
1825 {
1826 	int queue = fls(cause) - 1;
1827 
1828 	return &pp->txqs[queue];
1829 }
1830 
1831 /* Free tx queue skbuffs */
1832 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833 				 struct mvneta_tx_queue *txq, int num,
1834 				 struct netdev_queue *nq, bool napi)
1835 {
1836 	unsigned int bytes_compl = 0, pkts_compl = 0;
1837 	int i;
1838 
1839 	for (i = 0; i < num; i++) {
1840 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1841 		struct mvneta_tx_desc *tx_desc = txq->descs +
1842 			txq->txq_get_index;
1843 
1844 		mvneta_txq_inc_get(txq);
1845 
1846 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1847 		    buf->type != MVNETA_TYPE_XDP_TX)
1848 			dma_unmap_single(pp->dev->dev.parent,
1849 					 tx_desc->buf_phys_addr,
1850 					 tx_desc->data_size, DMA_TO_DEVICE);
1851 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1852 			bytes_compl += buf->skb->len;
1853 			pkts_compl++;
1854 			dev_kfree_skb_any(buf->skb);
1855 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1856 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1857 			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1858 				xdp_return_frame_rx_napi(buf->xdpf);
1859 			else
1860 				xdp_return_frame(buf->xdpf);
1861 		}
1862 	}
1863 
1864 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1865 }
1866 
1867 /* Handle end of transmission */
1868 static void mvneta_txq_done(struct mvneta_port *pp,
1869 			   struct mvneta_tx_queue *txq)
1870 {
1871 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1872 	int tx_done;
1873 
1874 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1875 	if (!tx_done)
1876 		return;
1877 
1878 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1879 
1880 	txq->count -= tx_done;
1881 
1882 	if (netif_tx_queue_stopped(nq)) {
1883 		if (txq->count <= txq->tx_wake_threshold)
1884 			netif_tx_wake_queue(nq);
1885 	}
1886 }
1887 
1888 /* Refill processing for SW buffer management */
1889 /* Allocate page per descriptor */
1890 static int mvneta_rx_refill(struct mvneta_port *pp,
1891 			    struct mvneta_rx_desc *rx_desc,
1892 			    struct mvneta_rx_queue *rxq,
1893 			    gfp_t gfp_mask)
1894 {
1895 	dma_addr_t phys_addr;
1896 	struct page *page;
1897 
1898 	page = page_pool_alloc_pages(rxq->page_pool,
1899 				     gfp_mask | __GFP_NOWARN);
1900 	if (!page)
1901 		return -ENOMEM;
1902 
1903 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1904 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1905 
1906 	return 0;
1907 }
1908 
1909 /* Handle tx checksum */
1910 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1911 {
1912 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1913 		int ip_hdr_len = 0;
1914 		__be16 l3_proto = vlan_get_protocol(skb);
1915 		u8 l4_proto;
1916 
1917 		if (l3_proto == htons(ETH_P_IP)) {
1918 			struct iphdr *ip4h = ip_hdr(skb);
1919 
1920 			/* Calculate IPv4 checksum and L4 checksum */
1921 			ip_hdr_len = ip4h->ihl;
1922 			l4_proto = ip4h->protocol;
1923 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1924 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1925 
1926 			/* Read l4_protocol from one of IPv6 extra headers */
1927 			if (skb_network_header_len(skb) > 0)
1928 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1929 			l4_proto = ip6h->nexthdr;
1930 		} else
1931 			return MVNETA_TX_L4_CSUM_NOT;
1932 
1933 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1934 					    l3_proto, ip_hdr_len, l4_proto);
1935 	}
1936 
1937 	return MVNETA_TX_L4_CSUM_NOT;
1938 }
1939 
1940 /* Drop packets received by the RXQ and free buffers */
1941 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1942 				 struct mvneta_rx_queue *rxq)
1943 {
1944 	int rx_done, i;
1945 
1946 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1947 	if (rx_done)
1948 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1949 
1950 	if (pp->bm_priv) {
1951 		for (i = 0; i < rx_done; i++) {
1952 			struct mvneta_rx_desc *rx_desc =
1953 						  mvneta_rxq_next_desc_get(rxq);
1954 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1955 			struct mvneta_bm_pool *bm_pool;
1956 
1957 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1958 			/* Return dropped buffer to the pool */
1959 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1960 					      rx_desc->buf_phys_addr);
1961 		}
1962 		return;
1963 	}
1964 
1965 	for (i = 0; i < rxq->size; i++) {
1966 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1967 		void *data = rxq->buf_virt_addr[i];
1968 		if (!data || !(rx_desc->buf_phys_addr))
1969 			continue;
1970 
1971 		page_pool_put_full_page(rxq->page_pool, data, false);
1972 	}
1973 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1974 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1975 	page_pool_destroy(rxq->page_pool);
1976 	rxq->page_pool = NULL;
1977 }
1978 
1979 static void
1980 mvneta_update_stats(struct mvneta_port *pp,
1981 		    struct mvneta_stats *ps)
1982 {
1983 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1984 
1985 	u64_stats_update_begin(&stats->syncp);
1986 	stats->es.ps.rx_packets += ps->rx_packets;
1987 	stats->es.ps.rx_bytes += ps->rx_bytes;
1988 	/* xdp */
1989 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1990 	stats->es.ps.xdp_pass += ps->xdp_pass;
1991 	stats->es.ps.xdp_drop += ps->xdp_drop;
1992 	u64_stats_update_end(&stats->syncp);
1993 }
1994 
1995 static inline
1996 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1997 {
1998 	struct mvneta_rx_desc *rx_desc;
1999 	int curr_desc = rxq->first_to_refill;
2000 	int i;
2001 
2002 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2003 		rx_desc = rxq->descs + curr_desc;
2004 		if (!(rx_desc->buf_phys_addr)) {
2005 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2006 				struct mvneta_pcpu_stats *stats;
2007 
2008 				pr_err("Can't refill queue %d. Done %d from %d\n",
2009 				       rxq->id, i, rxq->refill_num);
2010 
2011 				stats = this_cpu_ptr(pp->stats);
2012 				u64_stats_update_begin(&stats->syncp);
2013 				stats->es.refill_error++;
2014 				u64_stats_update_end(&stats->syncp);
2015 				break;
2016 			}
2017 		}
2018 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2019 	}
2020 	rxq->refill_num -= i;
2021 	rxq->first_to_refill = curr_desc;
2022 
2023 	return i;
2024 }
2025 
2026 static void
2027 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2028 		    struct xdp_buff *xdp, int sync_len, bool napi)
2029 {
2030 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2031 	int i;
2032 
2033 	for (i = 0; i < sinfo->nr_frags; i++)
2034 		page_pool_put_full_page(rxq->page_pool,
2035 					skb_frag_page(&sinfo->frags[i]), napi);
2036 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2037 			   sync_len, napi);
2038 }
2039 
2040 static int
2041 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2042 			struct xdp_frame *xdpf, bool dma_map)
2043 {
2044 	struct mvneta_tx_desc *tx_desc;
2045 	struct mvneta_tx_buf *buf;
2046 	dma_addr_t dma_addr;
2047 
2048 	if (txq->count >= txq->tx_stop_threshold)
2049 		return MVNETA_XDP_DROPPED;
2050 
2051 	tx_desc = mvneta_txq_next_desc_get(txq);
2052 
2053 	buf = &txq->buf[txq->txq_put_index];
2054 	if (dma_map) {
2055 		/* ndo_xdp_xmit */
2056 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2057 					  xdpf->len, DMA_TO_DEVICE);
2058 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2059 			mvneta_txq_desc_put(txq);
2060 			return MVNETA_XDP_DROPPED;
2061 		}
2062 		buf->type = MVNETA_TYPE_XDP_NDO;
2063 	} else {
2064 		struct page *page = virt_to_page(xdpf->data);
2065 
2066 		dma_addr = page_pool_get_dma_addr(page) +
2067 			   sizeof(*xdpf) + xdpf->headroom;
2068 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2069 					   xdpf->len, DMA_BIDIRECTIONAL);
2070 		buf->type = MVNETA_TYPE_XDP_TX;
2071 	}
2072 	buf->xdpf = xdpf;
2073 
2074 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2075 	tx_desc->buf_phys_addr = dma_addr;
2076 	tx_desc->data_size = xdpf->len;
2077 
2078 	mvneta_txq_inc_put(txq);
2079 	txq->pending++;
2080 	txq->count++;
2081 
2082 	return MVNETA_XDP_TX;
2083 }
2084 
2085 static int
2086 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2087 {
2088 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2089 	struct mvneta_tx_queue *txq;
2090 	struct netdev_queue *nq;
2091 	struct xdp_frame *xdpf;
2092 	int cpu;
2093 	u32 ret;
2094 
2095 	xdpf = xdp_convert_buff_to_frame(xdp);
2096 	if (unlikely(!xdpf))
2097 		return MVNETA_XDP_DROPPED;
2098 
2099 	cpu = smp_processor_id();
2100 	txq = &pp->txqs[cpu % txq_number];
2101 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2102 
2103 	__netif_tx_lock(nq, cpu);
2104 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2105 	if (ret == MVNETA_XDP_TX) {
2106 		u64_stats_update_begin(&stats->syncp);
2107 		stats->es.ps.tx_bytes += xdpf->len;
2108 		stats->es.ps.tx_packets++;
2109 		stats->es.ps.xdp_tx++;
2110 		u64_stats_update_end(&stats->syncp);
2111 
2112 		mvneta_txq_pend_desc_add(pp, txq, 0);
2113 	} else {
2114 		u64_stats_update_begin(&stats->syncp);
2115 		stats->es.ps.xdp_tx_err++;
2116 		u64_stats_update_end(&stats->syncp);
2117 	}
2118 	__netif_tx_unlock(nq);
2119 
2120 	return ret;
2121 }
2122 
2123 static int
2124 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2125 		struct xdp_frame **frames, u32 flags)
2126 {
2127 	struct mvneta_port *pp = netdev_priv(dev);
2128 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2129 	int i, nxmit_byte = 0, nxmit = num_frame;
2130 	int cpu = smp_processor_id();
2131 	struct mvneta_tx_queue *txq;
2132 	struct netdev_queue *nq;
2133 	u32 ret;
2134 
2135 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2136 		return -ENETDOWN;
2137 
2138 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2139 		return -EINVAL;
2140 
2141 	txq = &pp->txqs[cpu % txq_number];
2142 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2143 
2144 	__netif_tx_lock(nq, cpu);
2145 	for (i = 0; i < num_frame; i++) {
2146 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2147 		if (ret == MVNETA_XDP_TX) {
2148 			nxmit_byte += frames[i]->len;
2149 		} else {
2150 			xdp_return_frame_rx_napi(frames[i]);
2151 			nxmit--;
2152 		}
2153 	}
2154 
2155 	if (unlikely(flags & XDP_XMIT_FLUSH))
2156 		mvneta_txq_pend_desc_add(pp, txq, 0);
2157 	__netif_tx_unlock(nq);
2158 
2159 	u64_stats_update_begin(&stats->syncp);
2160 	stats->es.ps.tx_bytes += nxmit_byte;
2161 	stats->es.ps.tx_packets += nxmit;
2162 	stats->es.ps.xdp_xmit += nxmit;
2163 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2164 	u64_stats_update_end(&stats->syncp);
2165 
2166 	return nxmit;
2167 }
2168 
2169 static int
2170 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2171 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2172 	       u32 frame_sz, struct mvneta_stats *stats)
2173 {
2174 	unsigned int len, data_len, sync;
2175 	u32 ret, act;
2176 
2177 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2178 	data_len = xdp->data_end - xdp->data;
2179 	act = bpf_prog_run_xdp(prog, xdp);
2180 
2181 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2182 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2183 	sync = max(sync, len);
2184 
2185 	switch (act) {
2186 	case XDP_PASS:
2187 		stats->xdp_pass++;
2188 		return MVNETA_XDP_PASS;
2189 	case XDP_REDIRECT: {
2190 		int err;
2191 
2192 		err = xdp_do_redirect(pp->dev, xdp, prog);
2193 		if (unlikely(err)) {
2194 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2195 			ret = MVNETA_XDP_DROPPED;
2196 		} else {
2197 			ret = MVNETA_XDP_REDIR;
2198 			stats->xdp_redirect++;
2199 		}
2200 		break;
2201 	}
2202 	case XDP_TX:
2203 		ret = mvneta_xdp_xmit_back(pp, xdp);
2204 		if (ret != MVNETA_XDP_TX)
2205 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2206 		break;
2207 	default:
2208 		bpf_warn_invalid_xdp_action(act);
2209 		fallthrough;
2210 	case XDP_ABORTED:
2211 		trace_xdp_exception(pp->dev, prog, act);
2212 		fallthrough;
2213 	case XDP_DROP:
2214 		mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2215 		ret = MVNETA_XDP_DROPPED;
2216 		stats->xdp_drop++;
2217 		break;
2218 	}
2219 
2220 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2221 	stats->rx_packets++;
2222 
2223 	return ret;
2224 }
2225 
2226 static void
2227 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2228 		     struct mvneta_rx_desc *rx_desc,
2229 		     struct mvneta_rx_queue *rxq,
2230 		     struct xdp_buff *xdp, int *size,
2231 		     struct page *page)
2232 {
2233 	unsigned char *data = page_address(page);
2234 	int data_len = -MVNETA_MH_SIZE, len;
2235 	struct net_device *dev = pp->dev;
2236 	enum dma_data_direction dma_dir;
2237 	struct skb_shared_info *sinfo;
2238 
2239 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2240 		len = MVNETA_MAX_RX_BUF_SIZE;
2241 		data_len += len;
2242 	} else {
2243 		len = *size;
2244 		data_len += len - ETH_FCS_LEN;
2245 	}
2246 	*size = *size - len;
2247 
2248 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2249 	dma_sync_single_for_cpu(dev->dev.parent,
2250 				rx_desc->buf_phys_addr,
2251 				len, dma_dir);
2252 
2253 	rx_desc->buf_phys_addr = 0;
2254 
2255 	/* Prefetch header */
2256 	prefetch(data);
2257 
2258 	xdp->data_hard_start = data;
2259 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2260 	xdp->data_end = xdp->data + data_len;
2261 	xdp_set_data_meta_invalid(xdp);
2262 
2263 	sinfo = xdp_get_shared_info_from_buff(xdp);
2264 	sinfo->nr_frags = 0;
2265 }
2266 
2267 static void
2268 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2269 			    struct mvneta_rx_desc *rx_desc,
2270 			    struct mvneta_rx_queue *rxq,
2271 			    struct xdp_buff *xdp, int *size,
2272 			    struct page *page)
2273 {
2274 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2275 	struct net_device *dev = pp->dev;
2276 	enum dma_data_direction dma_dir;
2277 	int data_len, len;
2278 
2279 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2280 		len = MVNETA_MAX_RX_BUF_SIZE;
2281 		data_len = len;
2282 	} else {
2283 		len = *size;
2284 		data_len = len - ETH_FCS_LEN;
2285 	}
2286 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2287 	dma_sync_single_for_cpu(dev->dev.parent,
2288 				rx_desc->buf_phys_addr,
2289 				len, dma_dir);
2290 	rx_desc->buf_phys_addr = 0;
2291 
2292 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2293 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2294 
2295 		skb_frag_off_set(frag, pp->rx_offset_correction);
2296 		skb_frag_size_set(frag, data_len);
2297 		__skb_frag_set_page(frag, page);
2298 		sinfo->nr_frags++;
2299 	} else {
2300 		page_pool_put_full_page(rxq->page_pool, page, true);
2301 	}
2302 	*size -= len;
2303 }
2304 
2305 static struct sk_buff *
2306 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2307 		      struct xdp_buff *xdp, u32 desc_status)
2308 {
2309 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2310 	int i, num_frags = sinfo->nr_frags;
2311 	struct sk_buff *skb;
2312 
2313 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2314 	if (!skb)
2315 		return ERR_PTR(-ENOMEM);
2316 
2317 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2318 
2319 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2320 	skb_put(skb, xdp->data_end - xdp->data);
2321 	mvneta_rx_csum(pp, desc_status, skb);
2322 
2323 	for (i = 0; i < num_frags; i++) {
2324 		skb_frag_t *frag = &sinfo->frags[i];
2325 
2326 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2327 				skb_frag_page(frag), skb_frag_off(frag),
2328 				skb_frag_size(frag), PAGE_SIZE);
2329 		page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2330 	}
2331 
2332 	return skb;
2333 }
2334 
2335 /* Main rx processing when using software buffer management */
2336 static int mvneta_rx_swbm(struct napi_struct *napi,
2337 			  struct mvneta_port *pp, int budget,
2338 			  struct mvneta_rx_queue *rxq)
2339 {
2340 	int rx_proc = 0, rx_todo, refill, size = 0;
2341 	struct net_device *dev = pp->dev;
2342 	struct xdp_buff xdp_buf = {
2343 		.frame_sz = PAGE_SIZE,
2344 		.rxq = &rxq->xdp_rxq,
2345 	};
2346 	struct mvneta_stats ps = {};
2347 	struct bpf_prog *xdp_prog;
2348 	u32 desc_status, frame_sz;
2349 
2350 	/* Get number of received packets */
2351 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2352 
2353 	rcu_read_lock();
2354 	xdp_prog = READ_ONCE(pp->xdp_prog);
2355 
2356 	/* Fairness NAPI loop */
2357 	while (rx_proc < budget && rx_proc < rx_todo) {
2358 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2359 		u32 rx_status, index;
2360 		struct sk_buff *skb;
2361 		struct page *page;
2362 
2363 		index = rx_desc - rxq->descs;
2364 		page = (struct page *)rxq->buf_virt_addr[index];
2365 
2366 		rx_status = rx_desc->status;
2367 		rx_proc++;
2368 		rxq->refill_num++;
2369 
2370 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2371 			/* Check errors only for FIRST descriptor */
2372 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2373 				mvneta_rx_error(pp, rx_desc);
2374 				goto next;
2375 			}
2376 
2377 			size = rx_desc->data_size;
2378 			frame_sz = size - ETH_FCS_LEN;
2379 			desc_status = rx_status;
2380 
2381 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2382 					     &size, page);
2383 		} else {
2384 			if (unlikely(!xdp_buf.data_hard_start)) {
2385 				rx_desc->buf_phys_addr = 0;
2386 				page_pool_put_full_page(rxq->page_pool, page,
2387 							true);
2388 				continue;
2389 			}
2390 
2391 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2392 						    &size, page);
2393 		} /* Middle or Last descriptor */
2394 
2395 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2396 			/* no last descriptor this time */
2397 			continue;
2398 
2399 		if (size) {
2400 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2401 			goto next;
2402 		}
2403 
2404 		if (xdp_prog &&
2405 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2406 			goto next;
2407 
2408 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2409 		if (IS_ERR(skb)) {
2410 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2411 
2412 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2413 
2414 			u64_stats_update_begin(&stats->syncp);
2415 			stats->es.skb_alloc_error++;
2416 			stats->rx_dropped++;
2417 			u64_stats_update_end(&stats->syncp);
2418 
2419 			goto next;
2420 		}
2421 
2422 		ps.rx_bytes += skb->len;
2423 		ps.rx_packets++;
2424 
2425 		skb->protocol = eth_type_trans(skb, dev);
2426 		napi_gro_receive(napi, skb);
2427 next:
2428 		xdp_buf.data_hard_start = NULL;
2429 	}
2430 	rcu_read_unlock();
2431 
2432 	if (xdp_buf.data_hard_start)
2433 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2434 
2435 	if (ps.xdp_redirect)
2436 		xdp_do_flush_map();
2437 
2438 	if (ps.rx_packets)
2439 		mvneta_update_stats(pp, &ps);
2440 
2441 	/* return some buffers to hardware queue, one at a time is too slow */
2442 	refill = mvneta_rx_refill_queue(pp, rxq);
2443 
2444 	/* Update rxq management counters */
2445 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2446 
2447 	return ps.rx_packets;
2448 }
2449 
2450 /* Main rx processing when using hardware buffer management */
2451 static int mvneta_rx_hwbm(struct napi_struct *napi,
2452 			  struct mvneta_port *pp, int rx_todo,
2453 			  struct mvneta_rx_queue *rxq)
2454 {
2455 	struct net_device *dev = pp->dev;
2456 	int rx_done;
2457 	u32 rcvd_pkts = 0;
2458 	u32 rcvd_bytes = 0;
2459 
2460 	/* Get number of received packets */
2461 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2462 
2463 	if (rx_todo > rx_done)
2464 		rx_todo = rx_done;
2465 
2466 	rx_done = 0;
2467 
2468 	/* Fairness NAPI loop */
2469 	while (rx_done < rx_todo) {
2470 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2471 		struct mvneta_bm_pool *bm_pool = NULL;
2472 		struct sk_buff *skb;
2473 		unsigned char *data;
2474 		dma_addr_t phys_addr;
2475 		u32 rx_status, frag_size;
2476 		int rx_bytes, err;
2477 		u8 pool_id;
2478 
2479 		rx_done++;
2480 		rx_status = rx_desc->status;
2481 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2482 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2483 		phys_addr = rx_desc->buf_phys_addr;
2484 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2485 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2486 
2487 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2488 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2489 err_drop_frame_ret_pool:
2490 			/* Return the buffer to the pool */
2491 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2492 					      rx_desc->buf_phys_addr);
2493 err_drop_frame:
2494 			mvneta_rx_error(pp, rx_desc);
2495 			/* leave the descriptor untouched */
2496 			continue;
2497 		}
2498 
2499 		if (rx_bytes <= rx_copybreak) {
2500 			/* better copy a small frame and not unmap the DMA region */
2501 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2502 			if (unlikely(!skb))
2503 				goto err_drop_frame_ret_pool;
2504 
2505 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2506 			                              rx_desc->buf_phys_addr,
2507 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2508 			                              rx_bytes,
2509 			                              DMA_FROM_DEVICE);
2510 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2511 				     rx_bytes);
2512 
2513 			skb->protocol = eth_type_trans(skb, dev);
2514 			mvneta_rx_csum(pp, rx_status, skb);
2515 			napi_gro_receive(napi, skb);
2516 
2517 			rcvd_pkts++;
2518 			rcvd_bytes += rx_bytes;
2519 
2520 			/* Return the buffer to the pool */
2521 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2522 					      rx_desc->buf_phys_addr);
2523 
2524 			/* leave the descriptor and buffer untouched */
2525 			continue;
2526 		}
2527 
2528 		/* Refill processing */
2529 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2530 		if (err) {
2531 			struct mvneta_pcpu_stats *stats;
2532 
2533 			netdev_err(dev, "Linux processing - Can't refill\n");
2534 
2535 			stats = this_cpu_ptr(pp->stats);
2536 			u64_stats_update_begin(&stats->syncp);
2537 			stats->es.refill_error++;
2538 			u64_stats_update_end(&stats->syncp);
2539 
2540 			goto err_drop_frame_ret_pool;
2541 		}
2542 
2543 		frag_size = bm_pool->hwbm_pool.frag_size;
2544 
2545 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2546 
2547 		/* After refill old buffer has to be unmapped regardless
2548 		 * the skb is successfully built or not.
2549 		 */
2550 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2551 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2552 		if (!skb)
2553 			goto err_drop_frame;
2554 
2555 		rcvd_pkts++;
2556 		rcvd_bytes += rx_bytes;
2557 
2558 		/* Linux processing */
2559 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2560 		skb_put(skb, rx_bytes);
2561 
2562 		skb->protocol = eth_type_trans(skb, dev);
2563 
2564 		mvneta_rx_csum(pp, rx_status, skb);
2565 
2566 		napi_gro_receive(napi, skb);
2567 	}
2568 
2569 	if (rcvd_pkts) {
2570 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2571 
2572 		u64_stats_update_begin(&stats->syncp);
2573 		stats->es.ps.rx_packets += rcvd_pkts;
2574 		stats->es.ps.rx_bytes += rcvd_bytes;
2575 		u64_stats_update_end(&stats->syncp);
2576 	}
2577 
2578 	/* Update rxq management counters */
2579 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2580 
2581 	return rx_done;
2582 }
2583 
2584 static inline void
2585 mvneta_tso_put_hdr(struct sk_buff *skb,
2586 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2587 {
2588 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2589 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2590 	struct mvneta_tx_desc *tx_desc;
2591 
2592 	tx_desc = mvneta_txq_next_desc_get(txq);
2593 	tx_desc->data_size = hdr_len;
2594 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2595 	tx_desc->command |= MVNETA_TXD_F_DESC;
2596 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2597 				 txq->txq_put_index * TSO_HEADER_SIZE;
2598 	buf->type = MVNETA_TYPE_SKB;
2599 	buf->skb = NULL;
2600 
2601 	mvneta_txq_inc_put(txq);
2602 }
2603 
2604 static inline int
2605 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2606 		    struct sk_buff *skb, char *data, int size,
2607 		    bool last_tcp, bool is_last)
2608 {
2609 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2610 	struct mvneta_tx_desc *tx_desc;
2611 
2612 	tx_desc = mvneta_txq_next_desc_get(txq);
2613 	tx_desc->data_size = size;
2614 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2615 						size, DMA_TO_DEVICE);
2616 	if (unlikely(dma_mapping_error(dev->dev.parent,
2617 		     tx_desc->buf_phys_addr))) {
2618 		mvneta_txq_desc_put(txq);
2619 		return -ENOMEM;
2620 	}
2621 
2622 	tx_desc->command = 0;
2623 	buf->type = MVNETA_TYPE_SKB;
2624 	buf->skb = NULL;
2625 
2626 	if (last_tcp) {
2627 		/* last descriptor in the TCP packet */
2628 		tx_desc->command = MVNETA_TXD_L_DESC;
2629 
2630 		/* last descriptor in SKB */
2631 		if (is_last)
2632 			buf->skb = skb;
2633 	}
2634 	mvneta_txq_inc_put(txq);
2635 	return 0;
2636 }
2637 
2638 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2639 			 struct mvneta_tx_queue *txq)
2640 {
2641 	int hdr_len, total_len, data_left;
2642 	int desc_count = 0;
2643 	struct mvneta_port *pp = netdev_priv(dev);
2644 	struct tso_t tso;
2645 	int i;
2646 
2647 	/* Count needed descriptors */
2648 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2649 		return 0;
2650 
2651 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2652 		pr_info("*** Is this even  possible???!?!?\n");
2653 		return 0;
2654 	}
2655 
2656 	/* Initialize the TSO handler, and prepare the first payload */
2657 	hdr_len = tso_start(skb, &tso);
2658 
2659 	total_len = skb->len - hdr_len;
2660 	while (total_len > 0) {
2661 		char *hdr;
2662 
2663 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2664 		total_len -= data_left;
2665 		desc_count++;
2666 
2667 		/* prepare packet headers: MAC + IP + TCP */
2668 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2669 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2670 
2671 		mvneta_tso_put_hdr(skb, pp, txq);
2672 
2673 		while (data_left > 0) {
2674 			int size;
2675 			desc_count++;
2676 
2677 			size = min_t(int, tso.size, data_left);
2678 
2679 			if (mvneta_tso_put_data(dev, txq, skb,
2680 						 tso.data, size,
2681 						 size == data_left,
2682 						 total_len == 0))
2683 				goto err_release;
2684 			data_left -= size;
2685 
2686 			tso_build_data(skb, &tso, size);
2687 		}
2688 	}
2689 
2690 	return desc_count;
2691 
2692 err_release:
2693 	/* Release all used data descriptors; header descriptors must not
2694 	 * be DMA-unmapped.
2695 	 */
2696 	for (i = desc_count - 1; i >= 0; i--) {
2697 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2698 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2699 			dma_unmap_single(pp->dev->dev.parent,
2700 					 tx_desc->buf_phys_addr,
2701 					 tx_desc->data_size,
2702 					 DMA_TO_DEVICE);
2703 		mvneta_txq_desc_put(txq);
2704 	}
2705 	return 0;
2706 }
2707 
2708 /* Handle tx fragmentation processing */
2709 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2710 				  struct mvneta_tx_queue *txq)
2711 {
2712 	struct mvneta_tx_desc *tx_desc;
2713 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2714 
2715 	for (i = 0; i < nr_frags; i++) {
2716 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2717 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2718 		void *addr = skb_frag_address(frag);
2719 
2720 		tx_desc = mvneta_txq_next_desc_get(txq);
2721 		tx_desc->data_size = skb_frag_size(frag);
2722 
2723 		tx_desc->buf_phys_addr =
2724 			dma_map_single(pp->dev->dev.parent, addr,
2725 				       tx_desc->data_size, DMA_TO_DEVICE);
2726 
2727 		if (dma_mapping_error(pp->dev->dev.parent,
2728 				      tx_desc->buf_phys_addr)) {
2729 			mvneta_txq_desc_put(txq);
2730 			goto error;
2731 		}
2732 
2733 		if (i == nr_frags - 1) {
2734 			/* Last descriptor */
2735 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2736 			buf->skb = skb;
2737 		} else {
2738 			/* Descriptor in the middle: Not First, Not Last */
2739 			tx_desc->command = 0;
2740 			buf->skb = NULL;
2741 		}
2742 		buf->type = MVNETA_TYPE_SKB;
2743 		mvneta_txq_inc_put(txq);
2744 	}
2745 
2746 	return 0;
2747 
2748 error:
2749 	/* Release all descriptors that were used to map fragments of
2750 	 * this packet, as well as the corresponding DMA mappings
2751 	 */
2752 	for (i = i - 1; i >= 0; i--) {
2753 		tx_desc = txq->descs + i;
2754 		dma_unmap_single(pp->dev->dev.parent,
2755 				 tx_desc->buf_phys_addr,
2756 				 tx_desc->data_size,
2757 				 DMA_TO_DEVICE);
2758 		mvneta_txq_desc_put(txq);
2759 	}
2760 
2761 	return -ENOMEM;
2762 }
2763 
2764 /* Main tx processing */
2765 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2766 {
2767 	struct mvneta_port *pp = netdev_priv(dev);
2768 	u16 txq_id = skb_get_queue_mapping(skb);
2769 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2770 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2771 	struct mvneta_tx_desc *tx_desc;
2772 	int len = skb->len;
2773 	int frags = 0;
2774 	u32 tx_cmd;
2775 
2776 	if (!netif_running(dev))
2777 		goto out;
2778 
2779 	if (skb_is_gso(skb)) {
2780 		frags = mvneta_tx_tso(skb, dev, txq);
2781 		goto out;
2782 	}
2783 
2784 	frags = skb_shinfo(skb)->nr_frags + 1;
2785 
2786 	/* Get a descriptor for the first part of the packet */
2787 	tx_desc = mvneta_txq_next_desc_get(txq);
2788 
2789 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2790 
2791 	tx_desc->data_size = skb_headlen(skb);
2792 
2793 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2794 						tx_desc->data_size,
2795 						DMA_TO_DEVICE);
2796 	if (unlikely(dma_mapping_error(dev->dev.parent,
2797 				       tx_desc->buf_phys_addr))) {
2798 		mvneta_txq_desc_put(txq);
2799 		frags = 0;
2800 		goto out;
2801 	}
2802 
2803 	buf->type = MVNETA_TYPE_SKB;
2804 	if (frags == 1) {
2805 		/* First and Last descriptor */
2806 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2807 		tx_desc->command = tx_cmd;
2808 		buf->skb = skb;
2809 		mvneta_txq_inc_put(txq);
2810 	} else {
2811 		/* First but not Last */
2812 		tx_cmd |= MVNETA_TXD_F_DESC;
2813 		buf->skb = NULL;
2814 		mvneta_txq_inc_put(txq);
2815 		tx_desc->command = tx_cmd;
2816 		/* Continue with other skb fragments */
2817 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2818 			dma_unmap_single(dev->dev.parent,
2819 					 tx_desc->buf_phys_addr,
2820 					 tx_desc->data_size,
2821 					 DMA_TO_DEVICE);
2822 			mvneta_txq_desc_put(txq);
2823 			frags = 0;
2824 			goto out;
2825 		}
2826 	}
2827 
2828 out:
2829 	if (frags > 0) {
2830 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2831 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2832 
2833 		netdev_tx_sent_queue(nq, len);
2834 
2835 		txq->count += frags;
2836 		if (txq->count >= txq->tx_stop_threshold)
2837 			netif_tx_stop_queue(nq);
2838 
2839 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2840 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2841 			mvneta_txq_pend_desc_add(pp, txq, frags);
2842 		else
2843 			txq->pending += frags;
2844 
2845 		u64_stats_update_begin(&stats->syncp);
2846 		stats->es.ps.tx_bytes += len;
2847 		stats->es.ps.tx_packets++;
2848 		u64_stats_update_end(&stats->syncp);
2849 	} else {
2850 		dev->stats.tx_dropped++;
2851 		dev_kfree_skb_any(skb);
2852 	}
2853 
2854 	return NETDEV_TX_OK;
2855 }
2856 
2857 
2858 /* Free tx resources, when resetting a port */
2859 static void mvneta_txq_done_force(struct mvneta_port *pp,
2860 				  struct mvneta_tx_queue *txq)
2861 
2862 {
2863 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2864 	int tx_done = txq->count;
2865 
2866 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2867 
2868 	/* reset txq */
2869 	txq->count = 0;
2870 	txq->txq_put_index = 0;
2871 	txq->txq_get_index = 0;
2872 }
2873 
2874 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2875  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2876  */
2877 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2878 {
2879 	struct mvneta_tx_queue *txq;
2880 	struct netdev_queue *nq;
2881 	int cpu = smp_processor_id();
2882 
2883 	while (cause_tx_done) {
2884 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2885 
2886 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2887 		__netif_tx_lock(nq, cpu);
2888 
2889 		if (txq->count)
2890 			mvneta_txq_done(pp, txq);
2891 
2892 		__netif_tx_unlock(nq);
2893 		cause_tx_done &= ~((1 << txq->id));
2894 	}
2895 }
2896 
2897 /* Compute crc8 of the specified address, using a unique algorithm ,
2898  * according to hw spec, different than generic crc8 algorithm
2899  */
2900 static int mvneta_addr_crc(unsigned char *addr)
2901 {
2902 	int crc = 0;
2903 	int i;
2904 
2905 	for (i = 0; i < ETH_ALEN; i++) {
2906 		int j;
2907 
2908 		crc = (crc ^ addr[i]) << 8;
2909 		for (j = 7; j >= 0; j--) {
2910 			if (crc & (0x100 << j))
2911 				crc ^= 0x107 << j;
2912 		}
2913 	}
2914 
2915 	return crc;
2916 }
2917 
2918 /* This method controls the net device special MAC multicast support.
2919  * The Special Multicast Table for MAC addresses supports MAC of the form
2920  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2921  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2922  * Table entries in the DA-Filter table. This method set the Special
2923  * Multicast Table appropriate entry.
2924  */
2925 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2926 					  unsigned char last_byte,
2927 					  int queue)
2928 {
2929 	unsigned int smc_table_reg;
2930 	unsigned int tbl_offset;
2931 	unsigned int reg_offset;
2932 
2933 	/* Register offset from SMC table base    */
2934 	tbl_offset = (last_byte / 4);
2935 	/* Entry offset within the above reg */
2936 	reg_offset = last_byte % 4;
2937 
2938 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2939 					+ tbl_offset * 4));
2940 
2941 	if (queue == -1)
2942 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2943 	else {
2944 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2945 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2946 	}
2947 
2948 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2949 		    smc_table_reg);
2950 }
2951 
2952 /* This method controls the network device Other MAC multicast support.
2953  * The Other Multicast Table is used for multicast of another type.
2954  * A CRC-8 is used as an index to the Other Multicast Table entries
2955  * in the DA-Filter table.
2956  * The method gets the CRC-8 value from the calling routine and
2957  * sets the Other Multicast Table appropriate entry according to the
2958  * specified CRC-8 .
2959  */
2960 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2961 					unsigned char crc8,
2962 					int queue)
2963 {
2964 	unsigned int omc_table_reg;
2965 	unsigned int tbl_offset;
2966 	unsigned int reg_offset;
2967 
2968 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2969 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2970 
2971 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2972 
2973 	if (queue == -1) {
2974 		/* Clear accepts frame bit at specified Other DA table entry */
2975 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2976 	} else {
2977 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2978 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2979 	}
2980 
2981 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2982 }
2983 
2984 /* The network device supports multicast using two tables:
2985  *    1) Special Multicast Table for MAC addresses of the form
2986  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2987  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2988  *       Table entries in the DA-Filter table.
2989  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2990  *       is used as an index to the Other Multicast Table entries in the
2991  *       DA-Filter table.
2992  */
2993 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2994 				 int queue)
2995 {
2996 	unsigned char crc_result = 0;
2997 
2998 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2999 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3000 		return 0;
3001 	}
3002 
3003 	crc_result = mvneta_addr_crc(p_addr);
3004 	if (queue == -1) {
3005 		if (pp->mcast_count[crc_result] == 0) {
3006 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3007 				    crc_result);
3008 			return -EINVAL;
3009 		}
3010 
3011 		pp->mcast_count[crc_result]--;
3012 		if (pp->mcast_count[crc_result] != 0) {
3013 			netdev_info(pp->dev,
3014 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3015 				    pp->mcast_count[crc_result], crc_result);
3016 			return -EINVAL;
3017 		}
3018 	} else
3019 		pp->mcast_count[crc_result]++;
3020 
3021 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3022 
3023 	return 0;
3024 }
3025 
3026 /* Configure Fitering mode of Ethernet port */
3027 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3028 					  int is_promisc)
3029 {
3030 	u32 port_cfg_reg, val;
3031 
3032 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3033 
3034 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3035 
3036 	/* Set / Clear UPM bit in port configuration register */
3037 	if (is_promisc) {
3038 		/* Accept all Unicast addresses */
3039 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3040 		val |= MVNETA_FORCE_UNI;
3041 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3042 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3043 	} else {
3044 		/* Reject all Unicast addresses */
3045 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3046 		val &= ~MVNETA_FORCE_UNI;
3047 	}
3048 
3049 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3050 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3051 }
3052 
3053 /* register unicast and multicast addresses */
3054 static void mvneta_set_rx_mode(struct net_device *dev)
3055 {
3056 	struct mvneta_port *pp = netdev_priv(dev);
3057 	struct netdev_hw_addr *ha;
3058 
3059 	if (dev->flags & IFF_PROMISC) {
3060 		/* Accept all: Multicast + Unicast */
3061 		mvneta_rx_unicast_promisc_set(pp, 1);
3062 		mvneta_set_ucast_table(pp, pp->rxq_def);
3063 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3064 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3065 	} else {
3066 		/* Accept single Unicast */
3067 		mvneta_rx_unicast_promisc_set(pp, 0);
3068 		mvneta_set_ucast_table(pp, -1);
3069 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3070 
3071 		if (dev->flags & IFF_ALLMULTI) {
3072 			/* Accept all multicast */
3073 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3074 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3075 		} else {
3076 			/* Accept only initialized multicast */
3077 			mvneta_set_special_mcast_table(pp, -1);
3078 			mvneta_set_other_mcast_table(pp, -1);
3079 
3080 			if (!netdev_mc_empty(dev)) {
3081 				netdev_for_each_mc_addr(ha, dev) {
3082 					mvneta_mcast_addr_set(pp, ha->addr,
3083 							      pp->rxq_def);
3084 				}
3085 			}
3086 		}
3087 	}
3088 }
3089 
3090 /* Interrupt handling - the callback for request_irq() */
3091 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3092 {
3093 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3094 
3095 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3096 	napi_schedule(&pp->napi);
3097 
3098 	return IRQ_HANDLED;
3099 }
3100 
3101 /* Interrupt handling - the callback for request_percpu_irq() */
3102 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3103 {
3104 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3105 
3106 	disable_percpu_irq(port->pp->dev->irq);
3107 	napi_schedule(&port->napi);
3108 
3109 	return IRQ_HANDLED;
3110 }
3111 
3112 static void mvneta_link_change(struct mvneta_port *pp)
3113 {
3114 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3115 
3116 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3117 }
3118 
3119 /* NAPI handler
3120  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3121  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3122  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3123  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3124  * Each CPU has its own causeRxTx register
3125  */
3126 static int mvneta_poll(struct napi_struct *napi, int budget)
3127 {
3128 	int rx_done = 0;
3129 	u32 cause_rx_tx;
3130 	int rx_queue;
3131 	struct mvneta_port *pp = netdev_priv(napi->dev);
3132 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3133 
3134 	if (!netif_running(pp->dev)) {
3135 		napi_complete(napi);
3136 		return rx_done;
3137 	}
3138 
3139 	/* Read cause register */
3140 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3141 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3142 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3143 
3144 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3145 
3146 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3147 				  MVNETA_CAUSE_LINK_CHANGE))
3148 			mvneta_link_change(pp);
3149 	}
3150 
3151 	/* Release Tx descriptors */
3152 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3153 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3154 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3155 	}
3156 
3157 	/* For the case where the last mvneta_poll did not process all
3158 	 * RX packets
3159 	 */
3160 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3161 		port->cause_rx_tx;
3162 
3163 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3164 	if (rx_queue) {
3165 		rx_queue = rx_queue - 1;
3166 		if (pp->bm_priv)
3167 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3168 						 &pp->rxqs[rx_queue]);
3169 		else
3170 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3171 						 &pp->rxqs[rx_queue]);
3172 	}
3173 
3174 	if (rx_done < budget) {
3175 		cause_rx_tx = 0;
3176 		napi_complete_done(napi, rx_done);
3177 
3178 		if (pp->neta_armada3700) {
3179 			unsigned long flags;
3180 
3181 			local_irq_save(flags);
3182 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3183 				    MVNETA_RX_INTR_MASK(rxq_number) |
3184 				    MVNETA_TX_INTR_MASK(txq_number) |
3185 				    MVNETA_MISCINTR_INTR_MASK);
3186 			local_irq_restore(flags);
3187 		} else {
3188 			enable_percpu_irq(pp->dev->irq, 0);
3189 		}
3190 	}
3191 
3192 	if (pp->neta_armada3700)
3193 		pp->cause_rx_tx = cause_rx_tx;
3194 	else
3195 		port->cause_rx_tx = cause_rx_tx;
3196 
3197 	return rx_done;
3198 }
3199 
3200 static int mvneta_create_page_pool(struct mvneta_port *pp,
3201 				   struct mvneta_rx_queue *rxq, int size)
3202 {
3203 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3204 	struct page_pool_params pp_params = {
3205 		.order = 0,
3206 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3207 		.pool_size = size,
3208 		.nid = NUMA_NO_NODE,
3209 		.dev = pp->dev->dev.parent,
3210 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3211 		.offset = pp->rx_offset_correction,
3212 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3213 	};
3214 	int err;
3215 
3216 	rxq->page_pool = page_pool_create(&pp_params);
3217 	if (IS_ERR(rxq->page_pool)) {
3218 		err = PTR_ERR(rxq->page_pool);
3219 		rxq->page_pool = NULL;
3220 		return err;
3221 	}
3222 
3223 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3224 	if (err < 0)
3225 		goto err_free_pp;
3226 
3227 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3228 					 rxq->page_pool);
3229 	if (err)
3230 		goto err_unregister_rxq;
3231 
3232 	return 0;
3233 
3234 err_unregister_rxq:
3235 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3236 err_free_pp:
3237 	page_pool_destroy(rxq->page_pool);
3238 	rxq->page_pool = NULL;
3239 	return err;
3240 }
3241 
3242 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3243 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3244 			   int num)
3245 {
3246 	int i, err;
3247 
3248 	err = mvneta_create_page_pool(pp, rxq, num);
3249 	if (err < 0)
3250 		return err;
3251 
3252 	for (i = 0; i < num; i++) {
3253 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3254 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3255 				     GFP_KERNEL) != 0) {
3256 			netdev_err(pp->dev,
3257 				   "%s:rxq %d, %d of %d buffs  filled\n",
3258 				   __func__, rxq->id, i, num);
3259 			break;
3260 		}
3261 	}
3262 
3263 	/* Add this number of RX descriptors as non occupied (ready to
3264 	 * get packets)
3265 	 */
3266 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3267 
3268 	return i;
3269 }
3270 
3271 /* Free all packets pending transmit from all TXQs and reset TX port */
3272 static void mvneta_tx_reset(struct mvneta_port *pp)
3273 {
3274 	int queue;
3275 
3276 	/* free the skb's in the tx ring */
3277 	for (queue = 0; queue < txq_number; queue++)
3278 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3279 
3280 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3281 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3282 }
3283 
3284 static void mvneta_rx_reset(struct mvneta_port *pp)
3285 {
3286 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3287 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3288 }
3289 
3290 /* Rx/Tx queue initialization/cleanup methods */
3291 
3292 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3293 			      struct mvneta_rx_queue *rxq)
3294 {
3295 	rxq->size = pp->rx_ring_size;
3296 
3297 	/* Allocate memory for RX descriptors */
3298 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3299 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3300 					&rxq->descs_phys, GFP_KERNEL);
3301 	if (!rxq->descs)
3302 		return -ENOMEM;
3303 
3304 	rxq->last_desc = rxq->size - 1;
3305 
3306 	return 0;
3307 }
3308 
3309 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3310 			       struct mvneta_rx_queue *rxq)
3311 {
3312 	/* Set Rx descriptors queue starting address */
3313 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3314 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3315 
3316 	/* Set coalescing pkts and time */
3317 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3318 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3319 
3320 	if (!pp->bm_priv) {
3321 		/* Set Offset */
3322 		mvneta_rxq_offset_set(pp, rxq, 0);
3323 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3324 					MVNETA_MAX_RX_BUF_SIZE :
3325 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3326 		mvneta_rxq_bm_disable(pp, rxq);
3327 		mvneta_rxq_fill(pp, rxq, rxq->size);
3328 	} else {
3329 		/* Set Offset */
3330 		mvneta_rxq_offset_set(pp, rxq,
3331 				      NET_SKB_PAD - pp->rx_offset_correction);
3332 
3333 		mvneta_rxq_bm_enable(pp, rxq);
3334 		/* Fill RXQ with buffers from RX pool */
3335 		mvneta_rxq_long_pool_set(pp, rxq);
3336 		mvneta_rxq_short_pool_set(pp, rxq);
3337 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3338 	}
3339 }
3340 
3341 /* Create a specified RX queue */
3342 static int mvneta_rxq_init(struct mvneta_port *pp,
3343 			   struct mvneta_rx_queue *rxq)
3344 
3345 {
3346 	int ret;
3347 
3348 	ret = mvneta_rxq_sw_init(pp, rxq);
3349 	if (ret < 0)
3350 		return ret;
3351 
3352 	mvneta_rxq_hw_init(pp, rxq);
3353 
3354 	return 0;
3355 }
3356 
3357 /* Cleanup Rx queue */
3358 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3359 			      struct mvneta_rx_queue *rxq)
3360 {
3361 	mvneta_rxq_drop_pkts(pp, rxq);
3362 
3363 	if (rxq->descs)
3364 		dma_free_coherent(pp->dev->dev.parent,
3365 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3366 				  rxq->descs,
3367 				  rxq->descs_phys);
3368 
3369 	rxq->descs             = NULL;
3370 	rxq->last_desc         = 0;
3371 	rxq->next_desc_to_proc = 0;
3372 	rxq->descs_phys        = 0;
3373 	rxq->first_to_refill   = 0;
3374 	rxq->refill_num        = 0;
3375 }
3376 
3377 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3378 			      struct mvneta_tx_queue *txq)
3379 {
3380 	int cpu;
3381 
3382 	txq->size = pp->tx_ring_size;
3383 
3384 	/* A queue must always have room for at least one skb.
3385 	 * Therefore, stop the queue when the free entries reaches
3386 	 * the maximum number of descriptors per skb.
3387 	 */
3388 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3389 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3390 
3391 	/* Allocate memory for TX descriptors */
3392 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3393 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3394 					&txq->descs_phys, GFP_KERNEL);
3395 	if (!txq->descs)
3396 		return -ENOMEM;
3397 
3398 	txq->last_desc = txq->size - 1;
3399 
3400 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3401 	if (!txq->buf)
3402 		return -ENOMEM;
3403 
3404 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3405 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3406 					   txq->size * TSO_HEADER_SIZE,
3407 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3408 	if (!txq->tso_hdrs)
3409 		return -ENOMEM;
3410 
3411 	/* Setup XPS mapping */
3412 	if (txq_number > 1)
3413 		cpu = txq->id % num_present_cpus();
3414 	else
3415 		cpu = pp->rxq_def % num_present_cpus();
3416 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3417 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3418 
3419 	return 0;
3420 }
3421 
3422 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3423 			       struct mvneta_tx_queue *txq)
3424 {
3425 	/* Set maximum bandwidth for enabled TXQs */
3426 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3427 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3428 
3429 	/* Set Tx descriptors queue starting address */
3430 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3431 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3432 
3433 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3434 }
3435 
3436 /* Create and initialize a tx queue */
3437 static int mvneta_txq_init(struct mvneta_port *pp,
3438 			   struct mvneta_tx_queue *txq)
3439 {
3440 	int ret;
3441 
3442 	ret = mvneta_txq_sw_init(pp, txq);
3443 	if (ret < 0)
3444 		return ret;
3445 
3446 	mvneta_txq_hw_init(pp, txq);
3447 
3448 	return 0;
3449 }
3450 
3451 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3452 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3453 				 struct mvneta_tx_queue *txq)
3454 {
3455 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3456 
3457 	kfree(txq->buf);
3458 
3459 	if (txq->tso_hdrs)
3460 		dma_free_coherent(pp->dev->dev.parent,
3461 				  txq->size * TSO_HEADER_SIZE,
3462 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3463 	if (txq->descs)
3464 		dma_free_coherent(pp->dev->dev.parent,
3465 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3466 				  txq->descs, txq->descs_phys);
3467 
3468 	netdev_tx_reset_queue(nq);
3469 
3470 	txq->descs             = NULL;
3471 	txq->last_desc         = 0;
3472 	txq->next_desc_to_proc = 0;
3473 	txq->descs_phys        = 0;
3474 }
3475 
3476 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3477 				 struct mvneta_tx_queue *txq)
3478 {
3479 	/* Set minimum bandwidth for disabled TXQs */
3480 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3481 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3482 
3483 	/* Set Tx descriptors queue starting address and size */
3484 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3485 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3486 }
3487 
3488 static void mvneta_txq_deinit(struct mvneta_port *pp,
3489 			      struct mvneta_tx_queue *txq)
3490 {
3491 	mvneta_txq_sw_deinit(pp, txq);
3492 	mvneta_txq_hw_deinit(pp, txq);
3493 }
3494 
3495 /* Cleanup all Tx queues */
3496 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3497 {
3498 	int queue;
3499 
3500 	for (queue = 0; queue < txq_number; queue++)
3501 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3502 }
3503 
3504 /* Cleanup all Rx queues */
3505 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3506 {
3507 	int queue;
3508 
3509 	for (queue = 0; queue < rxq_number; queue++)
3510 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3511 }
3512 
3513 
3514 /* Init all Rx queues */
3515 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3516 {
3517 	int queue;
3518 
3519 	for (queue = 0; queue < rxq_number; queue++) {
3520 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3521 
3522 		if (err) {
3523 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3524 				   __func__, queue);
3525 			mvneta_cleanup_rxqs(pp);
3526 			return err;
3527 		}
3528 	}
3529 
3530 	return 0;
3531 }
3532 
3533 /* Init all tx queues */
3534 static int mvneta_setup_txqs(struct mvneta_port *pp)
3535 {
3536 	int queue;
3537 
3538 	for (queue = 0; queue < txq_number; queue++) {
3539 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3540 		if (err) {
3541 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3542 				   __func__, queue);
3543 			mvneta_cleanup_txqs(pp);
3544 			return err;
3545 		}
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3552 {
3553 	int ret;
3554 
3555 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3556 	if (ret)
3557 		return ret;
3558 
3559 	return phy_power_on(pp->comphy);
3560 }
3561 
3562 static int mvneta_config_interface(struct mvneta_port *pp,
3563 				   phy_interface_t interface)
3564 {
3565 	int ret = 0;
3566 
3567 	if (pp->comphy) {
3568 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3569 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3570 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3571 			ret = mvneta_comphy_init(pp, interface);
3572 		}
3573 	} else {
3574 		switch (interface) {
3575 		case PHY_INTERFACE_MODE_QSGMII:
3576 			mvreg_write(pp, MVNETA_SERDES_CFG,
3577 				    MVNETA_QSGMII_SERDES_PROTO);
3578 			break;
3579 
3580 		case PHY_INTERFACE_MODE_SGMII:
3581 		case PHY_INTERFACE_MODE_1000BASEX:
3582 			mvreg_write(pp, MVNETA_SERDES_CFG,
3583 				    MVNETA_SGMII_SERDES_PROTO);
3584 			break;
3585 
3586 		case PHY_INTERFACE_MODE_2500BASEX:
3587 			mvreg_write(pp, MVNETA_SERDES_CFG,
3588 				    MVNETA_HSGMII_SERDES_PROTO);
3589 			break;
3590 		default:
3591 			break;
3592 		}
3593 	}
3594 
3595 	pp->phy_interface = interface;
3596 
3597 	return ret;
3598 }
3599 
3600 static void mvneta_start_dev(struct mvneta_port *pp)
3601 {
3602 	int cpu;
3603 
3604 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3605 
3606 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3607 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3608 
3609 	/* start the Rx/Tx activity */
3610 	mvneta_port_enable(pp);
3611 
3612 	if (!pp->neta_armada3700) {
3613 		/* Enable polling on the port */
3614 		for_each_online_cpu(cpu) {
3615 			struct mvneta_pcpu_port *port =
3616 				per_cpu_ptr(pp->ports, cpu);
3617 
3618 			napi_enable(&port->napi);
3619 		}
3620 	} else {
3621 		napi_enable(&pp->napi);
3622 	}
3623 
3624 	/* Unmask interrupts. It has to be done from each CPU */
3625 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3626 
3627 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3628 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3629 		    MVNETA_CAUSE_LINK_CHANGE);
3630 
3631 	phylink_start(pp->phylink);
3632 
3633 	/* We may have called phylink_speed_down before */
3634 	phylink_speed_up(pp->phylink);
3635 
3636 	netif_tx_start_all_queues(pp->dev);
3637 
3638 	clear_bit(__MVNETA_DOWN, &pp->state);
3639 }
3640 
3641 static void mvneta_stop_dev(struct mvneta_port *pp)
3642 {
3643 	unsigned int cpu;
3644 
3645 	set_bit(__MVNETA_DOWN, &pp->state);
3646 
3647 	if (device_may_wakeup(&pp->dev->dev))
3648 		phylink_speed_down(pp->phylink, false);
3649 
3650 	phylink_stop(pp->phylink);
3651 
3652 	if (!pp->neta_armada3700) {
3653 		for_each_online_cpu(cpu) {
3654 			struct mvneta_pcpu_port *port =
3655 				per_cpu_ptr(pp->ports, cpu);
3656 
3657 			napi_disable(&port->napi);
3658 		}
3659 	} else {
3660 		napi_disable(&pp->napi);
3661 	}
3662 
3663 	netif_carrier_off(pp->dev);
3664 
3665 	mvneta_port_down(pp);
3666 	netif_tx_stop_all_queues(pp->dev);
3667 
3668 	/* Stop the port activity */
3669 	mvneta_port_disable(pp);
3670 
3671 	/* Clear all ethernet port interrupts */
3672 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3673 
3674 	/* Mask all ethernet port interrupts */
3675 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3676 
3677 	mvneta_tx_reset(pp);
3678 	mvneta_rx_reset(pp);
3679 
3680 	WARN_ON(phy_power_off(pp->comphy));
3681 }
3682 
3683 static void mvneta_percpu_enable(void *arg)
3684 {
3685 	struct mvneta_port *pp = arg;
3686 
3687 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3688 }
3689 
3690 static void mvneta_percpu_disable(void *arg)
3691 {
3692 	struct mvneta_port *pp = arg;
3693 
3694 	disable_percpu_irq(pp->dev->irq);
3695 }
3696 
3697 /* Change the device mtu */
3698 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3699 {
3700 	struct mvneta_port *pp = netdev_priv(dev);
3701 	int ret;
3702 
3703 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3704 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3705 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3706 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3707 	}
3708 
3709 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3710 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3711 		return -EINVAL;
3712 	}
3713 
3714 	dev->mtu = mtu;
3715 
3716 	if (!netif_running(dev)) {
3717 		if (pp->bm_priv)
3718 			mvneta_bm_update_mtu(pp, mtu);
3719 
3720 		netdev_update_features(dev);
3721 		return 0;
3722 	}
3723 
3724 	/* The interface is running, so we have to force a
3725 	 * reallocation of the queues
3726 	 */
3727 	mvneta_stop_dev(pp);
3728 	on_each_cpu(mvneta_percpu_disable, pp, true);
3729 
3730 	mvneta_cleanup_txqs(pp);
3731 	mvneta_cleanup_rxqs(pp);
3732 
3733 	if (pp->bm_priv)
3734 		mvneta_bm_update_mtu(pp, mtu);
3735 
3736 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3737 
3738 	ret = mvneta_setup_rxqs(pp);
3739 	if (ret) {
3740 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3741 		return ret;
3742 	}
3743 
3744 	ret = mvneta_setup_txqs(pp);
3745 	if (ret) {
3746 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3747 		return ret;
3748 	}
3749 
3750 	on_each_cpu(mvneta_percpu_enable, pp, true);
3751 	mvneta_start_dev(pp);
3752 
3753 	netdev_update_features(dev);
3754 
3755 	return 0;
3756 }
3757 
3758 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3759 					     netdev_features_t features)
3760 {
3761 	struct mvneta_port *pp = netdev_priv(dev);
3762 
3763 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3764 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3765 		netdev_info(dev,
3766 			    "Disable IP checksum for MTU greater than %dB\n",
3767 			    pp->tx_csum_limit);
3768 	}
3769 
3770 	return features;
3771 }
3772 
3773 /* Get mac address */
3774 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3775 {
3776 	u32 mac_addr_l, mac_addr_h;
3777 
3778 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3779 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3780 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3781 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3782 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3783 	addr[3] = mac_addr_h & 0xFF;
3784 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3785 	addr[5] = mac_addr_l & 0xFF;
3786 }
3787 
3788 /* Handle setting mac address */
3789 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3790 {
3791 	struct mvneta_port *pp = netdev_priv(dev);
3792 	struct sockaddr *sockaddr = addr;
3793 	int ret;
3794 
3795 	ret = eth_prepare_mac_addr_change(dev, addr);
3796 	if (ret < 0)
3797 		return ret;
3798 	/* Remove previous address table entry */
3799 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3800 
3801 	/* Set new addr in hw */
3802 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3803 
3804 	eth_commit_mac_addr_change(dev, addr);
3805 	return 0;
3806 }
3807 
3808 static void mvneta_validate(struct phylink_config *config,
3809 			    unsigned long *supported,
3810 			    struct phylink_link_state *state)
3811 {
3812 	struct net_device *ndev = to_net_dev(config->dev);
3813 	struct mvneta_port *pp = netdev_priv(ndev);
3814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3815 
3816 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3817 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3818 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3819 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3820 	    !phy_interface_mode_is_8023z(state->interface) &&
3821 	    !phy_interface_mode_is_rgmii(state->interface)) {
3822 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3823 		return;
3824 	}
3825 
3826 	/* Allow all the expected bits */
3827 	phylink_set(mask, Autoneg);
3828 	phylink_set_port_modes(mask);
3829 
3830 	/* Asymmetric pause is unsupported */
3831 	phylink_set(mask, Pause);
3832 
3833 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3834 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3835 		phylink_set(mask, 1000baseT_Full);
3836 		phylink_set(mask, 1000baseX_Full);
3837 	}
3838 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3839 		phylink_set(mask, 2500baseT_Full);
3840 		phylink_set(mask, 2500baseX_Full);
3841 	}
3842 
3843 	if (!phy_interface_mode_is_8023z(state->interface)) {
3844 		/* 10M and 100M are only supported in non-802.3z mode */
3845 		phylink_set(mask, 10baseT_Half);
3846 		phylink_set(mask, 10baseT_Full);
3847 		phylink_set(mask, 100baseT_Half);
3848 		phylink_set(mask, 100baseT_Full);
3849 	}
3850 
3851 	bitmap_and(supported, supported, mask,
3852 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3853 	bitmap_and(state->advertising, state->advertising, mask,
3854 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3855 
3856 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3857 	 * to advertise both, only report advertising at 2500BaseX.
3858 	 */
3859 	phylink_helper_basex_speed(state);
3860 }
3861 
3862 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3863 				     struct phylink_link_state *state)
3864 {
3865 	struct net_device *ndev = to_net_dev(config->dev);
3866 	struct mvneta_port *pp = netdev_priv(ndev);
3867 	u32 gmac_stat;
3868 
3869 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3870 
3871 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3872 		state->speed =
3873 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3874 			SPEED_2500 : SPEED_1000;
3875 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3876 		state->speed = SPEED_100;
3877 	else
3878 		state->speed = SPEED_10;
3879 
3880 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3881 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3882 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3883 
3884 	state->pause = 0;
3885 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3886 		state->pause |= MLO_PAUSE_RX;
3887 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3888 		state->pause |= MLO_PAUSE_TX;
3889 }
3890 
3891 static void mvneta_mac_an_restart(struct phylink_config *config)
3892 {
3893 	struct net_device *ndev = to_net_dev(config->dev);
3894 	struct mvneta_port *pp = netdev_priv(ndev);
3895 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3896 
3897 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3898 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3899 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3900 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3901 }
3902 
3903 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3904 			      const struct phylink_link_state *state)
3905 {
3906 	struct net_device *ndev = to_net_dev(config->dev);
3907 	struct mvneta_port *pp = netdev_priv(ndev);
3908 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3909 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3910 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3911 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3912 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3913 
3914 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3915 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3916 				   MVNETA_GMAC2_PORT_RESET);
3917 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3918 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3919 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3920 			     MVNETA_GMAC_INBAND_RESTART_AN |
3921 			     MVNETA_GMAC_AN_SPEED_EN |
3922 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3923 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3924 			     MVNETA_GMAC_AN_DUPLEX_EN);
3925 
3926 	/* Even though it might look weird, when we're configured in
3927 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3928 	 */
3929 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3930 
3931 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3932 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3933 	    phy_interface_mode_is_8023z(state->interface))
3934 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3935 
3936 	if (phylink_test(state->advertising, Pause))
3937 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3938 
3939 	if (!phylink_autoneg_inband(mode)) {
3940 		/* Phy or fixed speed - nothing to do, leave the
3941 		 * configured speed, duplex and flow control as-is.
3942 		 */
3943 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3944 		/* SGMII mode receives the state from the PHY */
3945 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3946 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3947 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3948 				     MVNETA_GMAC_FORCE_LINK_PASS |
3949 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3950 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3951 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3952 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3953 			 MVNETA_GMAC_AN_SPEED_EN |
3954 			 MVNETA_GMAC_AN_DUPLEX_EN;
3955 	} else {
3956 		/* 802.3z negotiation - only 1000base-X */
3957 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3958 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3959 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3960 				     MVNETA_GMAC_FORCE_LINK_PASS |
3961 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3962 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3963 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3964 			 /* The MAC only supports FD mode */
3965 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3966 
3967 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3968 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3969 	}
3970 
3971 	/* Armada 370 documentation says we can only change the port mode
3972 	 * and in-band enable when the link is down, so force it down
3973 	 * while making these changes. We also do this for GMAC_CTRL2 */
3974 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3975 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3976 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3977 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3978 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3979 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3980 	}
3981 
3982 
3983 	/* When at 2.5G, the link partner can send frames with shortened
3984 	 * preambles.
3985 	 */
3986 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3987 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3988 
3989 	if (pp->phy_interface != state->interface) {
3990 		if (pp->comphy)
3991 			WARN_ON(phy_power_off(pp->comphy));
3992 		WARN_ON(mvneta_config_interface(pp, state->interface));
3993 	}
3994 
3995 	if (new_ctrl0 != gmac_ctrl0)
3996 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3997 	if (new_ctrl2 != gmac_ctrl2)
3998 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3999 	if (new_ctrl4 != gmac_ctrl4)
4000 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4001 	if (new_clk != gmac_clk)
4002 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4003 	if (new_an != gmac_an)
4004 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4005 
4006 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4007 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4008 			MVNETA_GMAC2_PORT_RESET) != 0)
4009 			continue;
4010 	}
4011 }
4012 
4013 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4014 {
4015 	u32 lpi_ctl1;
4016 
4017 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4018 	if (enable)
4019 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4020 	else
4021 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4022 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4023 }
4024 
4025 static void mvneta_mac_link_down(struct phylink_config *config,
4026 				 unsigned int mode, phy_interface_t interface)
4027 {
4028 	struct net_device *ndev = to_net_dev(config->dev);
4029 	struct mvneta_port *pp = netdev_priv(ndev);
4030 	u32 val;
4031 
4032 	mvneta_port_down(pp);
4033 
4034 	if (!phylink_autoneg_inband(mode)) {
4035 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4036 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4037 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4038 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4039 	}
4040 
4041 	pp->eee_active = false;
4042 	mvneta_set_eee(pp, false);
4043 }
4044 
4045 static void mvneta_mac_link_up(struct phylink_config *config,
4046 			       struct phy_device *phy,
4047 			       unsigned int mode, phy_interface_t interface,
4048 			       int speed, int duplex,
4049 			       bool tx_pause, bool rx_pause)
4050 {
4051 	struct net_device *ndev = to_net_dev(config->dev);
4052 	struct mvneta_port *pp = netdev_priv(ndev);
4053 	u32 val;
4054 
4055 	if (!phylink_autoneg_inband(mode)) {
4056 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4057 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4058 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4059 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4060 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4061 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4062 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4063 
4064 		if (speed == SPEED_1000 || speed == SPEED_2500)
4065 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4066 		else if (speed == SPEED_100)
4067 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4068 
4069 		if (duplex == DUPLEX_FULL)
4070 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4071 
4072 		if (tx_pause || rx_pause)
4073 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4074 
4075 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4076 	} else {
4077 		/* When inband doesn't cover flow control or flow control is
4078 		 * disabled, we need to manually configure it. This bit will
4079 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4080 		 */
4081 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4082 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4083 
4084 		if (tx_pause || rx_pause)
4085 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4086 
4087 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4088 	}
4089 
4090 	mvneta_port_up(pp);
4091 
4092 	if (phy && pp->eee_enabled) {
4093 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4094 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4095 	}
4096 }
4097 
4098 static const struct phylink_mac_ops mvneta_phylink_ops = {
4099 	.validate = mvneta_validate,
4100 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4101 	.mac_an_restart = mvneta_mac_an_restart,
4102 	.mac_config = mvneta_mac_config,
4103 	.mac_link_down = mvneta_mac_link_down,
4104 	.mac_link_up = mvneta_mac_link_up,
4105 };
4106 
4107 static int mvneta_mdio_probe(struct mvneta_port *pp)
4108 {
4109 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4110 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4111 
4112 	if (err)
4113 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4114 
4115 	phylink_ethtool_get_wol(pp->phylink, &wol);
4116 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4117 
4118 	/* PHY WoL may be enabled but device wakeup disabled */
4119 	if (wol.supported)
4120 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4121 
4122 	return err;
4123 }
4124 
4125 static void mvneta_mdio_remove(struct mvneta_port *pp)
4126 {
4127 	phylink_disconnect_phy(pp->phylink);
4128 }
4129 
4130 /* Electing a CPU must be done in an atomic way: it should be done
4131  * after or before the removal/insertion of a CPU and this function is
4132  * not reentrant.
4133  */
4134 static void mvneta_percpu_elect(struct mvneta_port *pp)
4135 {
4136 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4137 
4138 	/* Use the cpu associated to the rxq when it is online, in all
4139 	 * the other cases, use the cpu 0 which can't be offline.
4140 	 */
4141 	if (cpu_online(pp->rxq_def))
4142 		elected_cpu = pp->rxq_def;
4143 
4144 	max_cpu = num_present_cpus();
4145 
4146 	for_each_online_cpu(cpu) {
4147 		int rxq_map = 0, txq_map = 0;
4148 		int rxq;
4149 
4150 		for (rxq = 0; rxq < rxq_number; rxq++)
4151 			if ((rxq % max_cpu) == cpu)
4152 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4153 
4154 		if (cpu == elected_cpu)
4155 			/* Map the default receive queue queue to the
4156 			 * elected CPU
4157 			 */
4158 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4159 
4160 		/* We update the TX queue map only if we have one
4161 		 * queue. In this case we associate the TX queue to
4162 		 * the CPU bound to the default RX queue
4163 		 */
4164 		if (txq_number == 1)
4165 			txq_map = (cpu == elected_cpu) ?
4166 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4167 		else
4168 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4169 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4170 
4171 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4172 
4173 		/* Update the interrupt mask on each CPU according the
4174 		 * new mapping
4175 		 */
4176 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4177 					 pp, true);
4178 		i++;
4179 
4180 	}
4181 };
4182 
4183 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4184 {
4185 	int other_cpu;
4186 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4187 						  node_online);
4188 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4189 
4190 
4191 	spin_lock(&pp->lock);
4192 	/*
4193 	 * Configuring the driver for a new CPU while the driver is
4194 	 * stopping is racy, so just avoid it.
4195 	 */
4196 	if (pp->is_stopped) {
4197 		spin_unlock(&pp->lock);
4198 		return 0;
4199 	}
4200 	netif_tx_stop_all_queues(pp->dev);
4201 
4202 	/*
4203 	 * We have to synchronise on tha napi of each CPU except the one
4204 	 * just being woken up
4205 	 */
4206 	for_each_online_cpu(other_cpu) {
4207 		if (other_cpu != cpu) {
4208 			struct mvneta_pcpu_port *other_port =
4209 				per_cpu_ptr(pp->ports, other_cpu);
4210 
4211 			napi_synchronize(&other_port->napi);
4212 		}
4213 	}
4214 
4215 	/* Mask all ethernet port interrupts */
4216 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4217 	napi_enable(&port->napi);
4218 
4219 	/*
4220 	 * Enable per-CPU interrupts on the CPU that is
4221 	 * brought up.
4222 	 */
4223 	mvneta_percpu_enable(pp);
4224 
4225 	/*
4226 	 * Enable per-CPU interrupt on the one CPU we care
4227 	 * about.
4228 	 */
4229 	mvneta_percpu_elect(pp);
4230 
4231 	/* Unmask all ethernet port interrupts */
4232 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4233 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4234 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4235 		    MVNETA_CAUSE_LINK_CHANGE);
4236 	netif_tx_start_all_queues(pp->dev);
4237 	spin_unlock(&pp->lock);
4238 	return 0;
4239 }
4240 
4241 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4242 {
4243 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4244 						  node_online);
4245 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4246 
4247 	/*
4248 	 * Thanks to this lock we are sure that any pending cpu election is
4249 	 * done.
4250 	 */
4251 	spin_lock(&pp->lock);
4252 	/* Mask all ethernet port interrupts */
4253 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4254 	spin_unlock(&pp->lock);
4255 
4256 	napi_synchronize(&port->napi);
4257 	napi_disable(&port->napi);
4258 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4259 	mvneta_percpu_disable(pp);
4260 	return 0;
4261 }
4262 
4263 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4264 {
4265 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4266 						  node_dead);
4267 
4268 	/* Check if a new CPU must be elected now this on is down */
4269 	spin_lock(&pp->lock);
4270 	mvneta_percpu_elect(pp);
4271 	spin_unlock(&pp->lock);
4272 	/* Unmask all ethernet port interrupts */
4273 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4274 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4275 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4276 		    MVNETA_CAUSE_LINK_CHANGE);
4277 	netif_tx_start_all_queues(pp->dev);
4278 	return 0;
4279 }
4280 
4281 static int mvneta_open(struct net_device *dev)
4282 {
4283 	struct mvneta_port *pp = netdev_priv(dev);
4284 	int ret;
4285 
4286 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4287 
4288 	ret = mvneta_setup_rxqs(pp);
4289 	if (ret)
4290 		return ret;
4291 
4292 	ret = mvneta_setup_txqs(pp);
4293 	if (ret)
4294 		goto err_cleanup_rxqs;
4295 
4296 	/* Connect to port interrupt line */
4297 	if (pp->neta_armada3700)
4298 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4299 				  dev->name, pp);
4300 	else
4301 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4302 					 dev->name, pp->ports);
4303 	if (ret) {
4304 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4305 		goto err_cleanup_txqs;
4306 	}
4307 
4308 	if (!pp->neta_armada3700) {
4309 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4310 		 * queue interrupts
4311 		 */
4312 		on_each_cpu(mvneta_percpu_enable, pp, true);
4313 
4314 		pp->is_stopped = false;
4315 		/* Register a CPU notifier to handle the case where our CPU
4316 		 * might be taken offline.
4317 		 */
4318 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4319 						       &pp->node_online);
4320 		if (ret)
4321 			goto err_free_irq;
4322 
4323 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4324 						       &pp->node_dead);
4325 		if (ret)
4326 			goto err_free_online_hp;
4327 	}
4328 
4329 	ret = mvneta_mdio_probe(pp);
4330 	if (ret < 0) {
4331 		netdev_err(dev, "cannot probe MDIO bus\n");
4332 		goto err_free_dead_hp;
4333 	}
4334 
4335 	mvneta_start_dev(pp);
4336 
4337 	return 0;
4338 
4339 err_free_dead_hp:
4340 	if (!pp->neta_armada3700)
4341 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4342 						    &pp->node_dead);
4343 err_free_online_hp:
4344 	if (!pp->neta_armada3700)
4345 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4346 						    &pp->node_online);
4347 err_free_irq:
4348 	if (pp->neta_armada3700) {
4349 		free_irq(pp->dev->irq, pp);
4350 	} else {
4351 		on_each_cpu(mvneta_percpu_disable, pp, true);
4352 		free_percpu_irq(pp->dev->irq, pp->ports);
4353 	}
4354 err_cleanup_txqs:
4355 	mvneta_cleanup_txqs(pp);
4356 err_cleanup_rxqs:
4357 	mvneta_cleanup_rxqs(pp);
4358 	return ret;
4359 }
4360 
4361 /* Stop the port, free port interrupt line */
4362 static int mvneta_stop(struct net_device *dev)
4363 {
4364 	struct mvneta_port *pp = netdev_priv(dev);
4365 
4366 	if (!pp->neta_armada3700) {
4367 		/* Inform that we are stopping so we don't want to setup the
4368 		 * driver for new CPUs in the notifiers. The code of the
4369 		 * notifier for CPU online is protected by the same spinlock,
4370 		 * so when we get the lock, the notifer work is done.
4371 		 */
4372 		spin_lock(&pp->lock);
4373 		pp->is_stopped = true;
4374 		spin_unlock(&pp->lock);
4375 
4376 		mvneta_stop_dev(pp);
4377 		mvneta_mdio_remove(pp);
4378 
4379 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4380 						    &pp->node_online);
4381 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4382 						    &pp->node_dead);
4383 		on_each_cpu(mvneta_percpu_disable, pp, true);
4384 		free_percpu_irq(dev->irq, pp->ports);
4385 	} else {
4386 		mvneta_stop_dev(pp);
4387 		mvneta_mdio_remove(pp);
4388 		free_irq(dev->irq, pp);
4389 	}
4390 
4391 	mvneta_cleanup_rxqs(pp);
4392 	mvneta_cleanup_txqs(pp);
4393 
4394 	return 0;
4395 }
4396 
4397 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4398 {
4399 	struct mvneta_port *pp = netdev_priv(dev);
4400 
4401 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4402 }
4403 
4404 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4405 			    struct netlink_ext_ack *extack)
4406 {
4407 	bool need_update, running = netif_running(dev);
4408 	struct mvneta_port *pp = netdev_priv(dev);
4409 	struct bpf_prog *old_prog;
4410 
4411 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4412 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4413 		return -EOPNOTSUPP;
4414 	}
4415 
4416 	if (pp->bm_priv) {
4417 		NL_SET_ERR_MSG_MOD(extack,
4418 				   "Hardware Buffer Management not supported on XDP");
4419 		return -EOPNOTSUPP;
4420 	}
4421 
4422 	need_update = !!pp->xdp_prog != !!prog;
4423 	if (running && need_update)
4424 		mvneta_stop(dev);
4425 
4426 	old_prog = xchg(&pp->xdp_prog, prog);
4427 	if (old_prog)
4428 		bpf_prog_put(old_prog);
4429 
4430 	if (running && need_update)
4431 		return mvneta_open(dev);
4432 
4433 	return 0;
4434 }
4435 
4436 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4437 {
4438 	switch (xdp->command) {
4439 	case XDP_SETUP_PROG:
4440 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4441 	default:
4442 		return -EINVAL;
4443 	}
4444 }
4445 
4446 /* Ethtool methods */
4447 
4448 /* Set link ksettings (phy address, speed) for ethtools */
4449 static int
4450 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4451 				  const struct ethtool_link_ksettings *cmd)
4452 {
4453 	struct mvneta_port *pp = netdev_priv(ndev);
4454 
4455 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4456 }
4457 
4458 /* Get link ksettings for ethtools */
4459 static int
4460 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4461 				  struct ethtool_link_ksettings *cmd)
4462 {
4463 	struct mvneta_port *pp = netdev_priv(ndev);
4464 
4465 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4466 }
4467 
4468 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4469 {
4470 	struct mvneta_port *pp = netdev_priv(dev);
4471 
4472 	return phylink_ethtool_nway_reset(pp->phylink);
4473 }
4474 
4475 /* Set interrupt coalescing for ethtools */
4476 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4477 				       struct ethtool_coalesce *c)
4478 {
4479 	struct mvneta_port *pp = netdev_priv(dev);
4480 	int queue;
4481 
4482 	for (queue = 0; queue < rxq_number; queue++) {
4483 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4484 		rxq->time_coal = c->rx_coalesce_usecs;
4485 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4486 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4487 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4488 	}
4489 
4490 	for (queue = 0; queue < txq_number; queue++) {
4491 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4492 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4493 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 /* get coalescing for ethtools */
4500 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4501 				       struct ethtool_coalesce *c)
4502 {
4503 	struct mvneta_port *pp = netdev_priv(dev);
4504 
4505 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4506 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4507 
4508 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4509 	return 0;
4510 }
4511 
4512 
4513 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4514 				    struct ethtool_drvinfo *drvinfo)
4515 {
4516 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4517 		sizeof(drvinfo->driver));
4518 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4519 		sizeof(drvinfo->version));
4520 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4521 		sizeof(drvinfo->bus_info));
4522 }
4523 
4524 
4525 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4526 					 struct ethtool_ringparam *ring)
4527 {
4528 	struct mvneta_port *pp = netdev_priv(netdev);
4529 
4530 	ring->rx_max_pending = MVNETA_MAX_RXD;
4531 	ring->tx_max_pending = MVNETA_MAX_TXD;
4532 	ring->rx_pending = pp->rx_ring_size;
4533 	ring->tx_pending = pp->tx_ring_size;
4534 }
4535 
4536 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4537 					struct ethtool_ringparam *ring)
4538 {
4539 	struct mvneta_port *pp = netdev_priv(dev);
4540 
4541 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4542 		return -EINVAL;
4543 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4544 		ring->rx_pending : MVNETA_MAX_RXD;
4545 
4546 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4547 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4548 	if (pp->tx_ring_size != ring->tx_pending)
4549 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4550 			    pp->tx_ring_size, ring->tx_pending);
4551 
4552 	if (netif_running(dev)) {
4553 		mvneta_stop(dev);
4554 		if (mvneta_open(dev)) {
4555 			netdev_err(dev,
4556 				   "error on opening device after ring param change\n");
4557 			return -ENOMEM;
4558 		}
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4565 					  struct ethtool_pauseparam *pause)
4566 {
4567 	struct mvneta_port *pp = netdev_priv(dev);
4568 
4569 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4570 }
4571 
4572 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4573 					 struct ethtool_pauseparam *pause)
4574 {
4575 	struct mvneta_port *pp = netdev_priv(dev);
4576 
4577 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4578 }
4579 
4580 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4581 				       u8 *data)
4582 {
4583 	if (sset == ETH_SS_STATS) {
4584 		int i;
4585 
4586 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4587 			memcpy(data + i * ETH_GSTRING_LEN,
4588 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4589 	}
4590 }
4591 
4592 static void
4593 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4594 				 struct mvneta_ethtool_stats *es)
4595 {
4596 	unsigned int start;
4597 	int cpu;
4598 
4599 	for_each_possible_cpu(cpu) {
4600 		struct mvneta_pcpu_stats *stats;
4601 		u64 skb_alloc_error;
4602 		u64 refill_error;
4603 		u64 xdp_redirect;
4604 		u64 xdp_xmit_err;
4605 		u64 xdp_tx_err;
4606 		u64 xdp_pass;
4607 		u64 xdp_drop;
4608 		u64 xdp_xmit;
4609 		u64 xdp_tx;
4610 
4611 		stats = per_cpu_ptr(pp->stats, cpu);
4612 		do {
4613 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4614 			skb_alloc_error = stats->es.skb_alloc_error;
4615 			refill_error = stats->es.refill_error;
4616 			xdp_redirect = stats->es.ps.xdp_redirect;
4617 			xdp_pass = stats->es.ps.xdp_pass;
4618 			xdp_drop = stats->es.ps.xdp_drop;
4619 			xdp_xmit = stats->es.ps.xdp_xmit;
4620 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4621 			xdp_tx = stats->es.ps.xdp_tx;
4622 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4623 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4624 
4625 		es->skb_alloc_error += skb_alloc_error;
4626 		es->refill_error += refill_error;
4627 		es->ps.xdp_redirect += xdp_redirect;
4628 		es->ps.xdp_pass += xdp_pass;
4629 		es->ps.xdp_drop += xdp_drop;
4630 		es->ps.xdp_xmit += xdp_xmit;
4631 		es->ps.xdp_xmit_err += xdp_xmit_err;
4632 		es->ps.xdp_tx += xdp_tx;
4633 		es->ps.xdp_tx_err += xdp_tx_err;
4634 	}
4635 }
4636 
4637 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4638 {
4639 	struct mvneta_ethtool_stats stats = {};
4640 	const struct mvneta_statistic *s;
4641 	void __iomem *base = pp->base;
4642 	u32 high, low;
4643 	u64 val;
4644 	int i;
4645 
4646 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4647 	for (i = 0, s = mvneta_statistics;
4648 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4649 	     s++, i++) {
4650 		switch (s->type) {
4651 		case T_REG_32:
4652 			val = readl_relaxed(base + s->offset);
4653 			pp->ethtool_stats[i] += val;
4654 			break;
4655 		case T_REG_64:
4656 			/* Docs say to read low 32-bit then high */
4657 			low = readl_relaxed(base + s->offset);
4658 			high = readl_relaxed(base + s->offset + 4);
4659 			val = (u64)high << 32 | low;
4660 			pp->ethtool_stats[i] += val;
4661 			break;
4662 		case T_SW:
4663 			switch (s->offset) {
4664 			case ETHTOOL_STAT_EEE_WAKEUP:
4665 				val = phylink_get_eee_err(pp->phylink);
4666 				pp->ethtool_stats[i] += val;
4667 				break;
4668 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4669 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4670 				break;
4671 			case ETHTOOL_STAT_REFILL_ERR:
4672 				pp->ethtool_stats[i] = stats.refill_error;
4673 				break;
4674 			case ETHTOOL_XDP_REDIRECT:
4675 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4676 				break;
4677 			case ETHTOOL_XDP_PASS:
4678 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4679 				break;
4680 			case ETHTOOL_XDP_DROP:
4681 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4682 				break;
4683 			case ETHTOOL_XDP_TX:
4684 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4685 				break;
4686 			case ETHTOOL_XDP_TX_ERR:
4687 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4688 				break;
4689 			case ETHTOOL_XDP_XMIT:
4690 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4691 				break;
4692 			case ETHTOOL_XDP_XMIT_ERR:
4693 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4694 				break;
4695 			}
4696 			break;
4697 		}
4698 	}
4699 }
4700 
4701 static void mvneta_ethtool_get_stats(struct net_device *dev,
4702 				     struct ethtool_stats *stats, u64 *data)
4703 {
4704 	struct mvneta_port *pp = netdev_priv(dev);
4705 	int i;
4706 
4707 	mvneta_ethtool_update_stats(pp);
4708 
4709 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4710 		*data++ = pp->ethtool_stats[i];
4711 }
4712 
4713 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4714 {
4715 	if (sset == ETH_SS_STATS)
4716 		return ARRAY_SIZE(mvneta_statistics);
4717 	return -EOPNOTSUPP;
4718 }
4719 
4720 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4721 {
4722 	return MVNETA_RSS_LU_TABLE_SIZE;
4723 }
4724 
4725 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4726 				    struct ethtool_rxnfc *info,
4727 				    u32 *rules __always_unused)
4728 {
4729 	switch (info->cmd) {
4730 	case ETHTOOL_GRXRINGS:
4731 		info->data =  rxq_number;
4732 		return 0;
4733 	case ETHTOOL_GRXFH:
4734 		return -EOPNOTSUPP;
4735 	default:
4736 		return -EOPNOTSUPP;
4737 	}
4738 }
4739 
4740 static int  mvneta_config_rss(struct mvneta_port *pp)
4741 {
4742 	int cpu;
4743 	u32 val;
4744 
4745 	netif_tx_stop_all_queues(pp->dev);
4746 
4747 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4748 
4749 	if (!pp->neta_armada3700) {
4750 		/* We have to synchronise on the napi of each CPU */
4751 		for_each_online_cpu(cpu) {
4752 			struct mvneta_pcpu_port *pcpu_port =
4753 				per_cpu_ptr(pp->ports, cpu);
4754 
4755 			napi_synchronize(&pcpu_port->napi);
4756 			napi_disable(&pcpu_port->napi);
4757 		}
4758 	} else {
4759 		napi_synchronize(&pp->napi);
4760 		napi_disable(&pp->napi);
4761 	}
4762 
4763 	pp->rxq_def = pp->indir[0];
4764 
4765 	/* Update unicast mapping */
4766 	mvneta_set_rx_mode(pp->dev);
4767 
4768 	/* Update val of portCfg register accordingly with all RxQueue types */
4769 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4770 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4771 
4772 	/* Update the elected CPU matching the new rxq_def */
4773 	spin_lock(&pp->lock);
4774 	mvneta_percpu_elect(pp);
4775 	spin_unlock(&pp->lock);
4776 
4777 	if (!pp->neta_armada3700) {
4778 		/* We have to synchronise on the napi of each CPU */
4779 		for_each_online_cpu(cpu) {
4780 			struct mvneta_pcpu_port *pcpu_port =
4781 				per_cpu_ptr(pp->ports, cpu);
4782 
4783 			napi_enable(&pcpu_port->napi);
4784 		}
4785 	} else {
4786 		napi_enable(&pp->napi);
4787 	}
4788 
4789 	netif_tx_start_all_queues(pp->dev);
4790 
4791 	return 0;
4792 }
4793 
4794 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4795 				   const u8 *key, const u8 hfunc)
4796 {
4797 	struct mvneta_port *pp = netdev_priv(dev);
4798 
4799 	/* Current code for Armada 3700 doesn't support RSS features yet */
4800 	if (pp->neta_armada3700)
4801 		return -EOPNOTSUPP;
4802 
4803 	/* We require at least one supported parameter to be changed
4804 	 * and no change in any of the unsupported parameters
4805 	 */
4806 	if (key ||
4807 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4808 		return -EOPNOTSUPP;
4809 
4810 	if (!indir)
4811 		return 0;
4812 
4813 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4814 
4815 	return mvneta_config_rss(pp);
4816 }
4817 
4818 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4819 				   u8 *hfunc)
4820 {
4821 	struct mvneta_port *pp = netdev_priv(dev);
4822 
4823 	/* Current code for Armada 3700 doesn't support RSS features yet */
4824 	if (pp->neta_armada3700)
4825 		return -EOPNOTSUPP;
4826 
4827 	if (hfunc)
4828 		*hfunc = ETH_RSS_HASH_TOP;
4829 
4830 	if (!indir)
4831 		return 0;
4832 
4833 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4834 
4835 	return 0;
4836 }
4837 
4838 static void mvneta_ethtool_get_wol(struct net_device *dev,
4839 				   struct ethtool_wolinfo *wol)
4840 {
4841 	struct mvneta_port *pp = netdev_priv(dev);
4842 
4843 	phylink_ethtool_get_wol(pp->phylink, wol);
4844 }
4845 
4846 static int mvneta_ethtool_set_wol(struct net_device *dev,
4847 				  struct ethtool_wolinfo *wol)
4848 {
4849 	struct mvneta_port *pp = netdev_priv(dev);
4850 	int ret;
4851 
4852 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4853 	if (!ret)
4854 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4855 
4856 	return ret;
4857 }
4858 
4859 static int mvneta_ethtool_get_eee(struct net_device *dev,
4860 				  struct ethtool_eee *eee)
4861 {
4862 	struct mvneta_port *pp = netdev_priv(dev);
4863 	u32 lpi_ctl0;
4864 
4865 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4866 
4867 	eee->eee_enabled = pp->eee_enabled;
4868 	eee->eee_active = pp->eee_active;
4869 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4870 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4871 
4872 	return phylink_ethtool_get_eee(pp->phylink, eee);
4873 }
4874 
4875 static int mvneta_ethtool_set_eee(struct net_device *dev,
4876 				  struct ethtool_eee *eee)
4877 {
4878 	struct mvneta_port *pp = netdev_priv(dev);
4879 	u32 lpi_ctl0;
4880 
4881 	/* The Armada 37x documents do not give limits for this other than
4882 	 * it being an 8-bit register. */
4883 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4884 		return -EINVAL;
4885 
4886 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4887 	lpi_ctl0 &= ~(0xff << 8);
4888 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4889 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4890 
4891 	pp->eee_enabled = eee->eee_enabled;
4892 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4893 
4894 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4895 
4896 	return phylink_ethtool_set_eee(pp->phylink, eee);
4897 }
4898 
4899 static const struct net_device_ops mvneta_netdev_ops = {
4900 	.ndo_open            = mvneta_open,
4901 	.ndo_stop            = mvneta_stop,
4902 	.ndo_start_xmit      = mvneta_tx,
4903 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4904 	.ndo_set_mac_address = mvneta_set_mac_addr,
4905 	.ndo_change_mtu      = mvneta_change_mtu,
4906 	.ndo_fix_features    = mvneta_fix_features,
4907 	.ndo_get_stats64     = mvneta_get_stats64,
4908 	.ndo_do_ioctl        = mvneta_ioctl,
4909 	.ndo_bpf	     = mvneta_xdp,
4910 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4911 };
4912 
4913 static const struct ethtool_ops mvneta_eth_tool_ops = {
4914 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4915 				     ETHTOOL_COALESCE_MAX_FRAMES,
4916 	.nway_reset	= mvneta_ethtool_nway_reset,
4917 	.get_link       = ethtool_op_get_link,
4918 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4919 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4920 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4921 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4922 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4923 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4924 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4925 	.get_strings	= mvneta_ethtool_get_strings,
4926 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4927 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4928 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4929 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4930 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4931 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4932 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4933 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4934 	.get_wol        = mvneta_ethtool_get_wol,
4935 	.set_wol        = mvneta_ethtool_set_wol,
4936 	.get_eee	= mvneta_ethtool_get_eee,
4937 	.set_eee	= mvneta_ethtool_set_eee,
4938 };
4939 
4940 /* Initialize hw */
4941 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4942 {
4943 	int queue;
4944 
4945 	/* Disable port */
4946 	mvneta_port_disable(pp);
4947 
4948 	/* Set port default values */
4949 	mvneta_defaults_set(pp);
4950 
4951 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4952 	if (!pp->txqs)
4953 		return -ENOMEM;
4954 
4955 	/* Initialize TX descriptor rings */
4956 	for (queue = 0; queue < txq_number; queue++) {
4957 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4958 		txq->id = queue;
4959 		txq->size = pp->tx_ring_size;
4960 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4961 	}
4962 
4963 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4964 	if (!pp->rxqs)
4965 		return -ENOMEM;
4966 
4967 	/* Create Rx descriptor rings */
4968 	for (queue = 0; queue < rxq_number; queue++) {
4969 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4970 		rxq->id = queue;
4971 		rxq->size = pp->rx_ring_size;
4972 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4973 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4974 		rxq->buf_virt_addr
4975 			= devm_kmalloc_array(pp->dev->dev.parent,
4976 					     rxq->size,
4977 					     sizeof(*rxq->buf_virt_addr),
4978 					     GFP_KERNEL);
4979 		if (!rxq->buf_virt_addr)
4980 			return -ENOMEM;
4981 	}
4982 
4983 	return 0;
4984 }
4985 
4986 /* platform glue : initialize decoding windows */
4987 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4988 				     const struct mbus_dram_target_info *dram)
4989 {
4990 	u32 win_enable;
4991 	u32 win_protect;
4992 	int i;
4993 
4994 	for (i = 0; i < 6; i++) {
4995 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4996 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4997 
4998 		if (i < 4)
4999 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5000 	}
5001 
5002 	win_enable = 0x3f;
5003 	win_protect = 0;
5004 
5005 	if (dram) {
5006 		for (i = 0; i < dram->num_cs; i++) {
5007 			const struct mbus_dram_window *cs = dram->cs + i;
5008 
5009 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5010 				    (cs->base & 0xffff0000) |
5011 				    (cs->mbus_attr << 8) |
5012 				    dram->mbus_dram_target_id);
5013 
5014 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5015 				    (cs->size - 1) & 0xffff0000);
5016 
5017 			win_enable &= ~(1 << i);
5018 			win_protect |= 3 << (2 * i);
5019 		}
5020 	} else {
5021 		/* For Armada3700 open default 4GB Mbus window, leaving
5022 		 * arbitration of target/attribute to a different layer
5023 		 * of configuration.
5024 		 */
5025 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5026 		win_enable &= ~BIT(0);
5027 		win_protect = 3;
5028 	}
5029 
5030 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5031 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5032 }
5033 
5034 /* Power up the port */
5035 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5036 {
5037 	/* MAC Cause register should be cleared */
5038 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5039 
5040 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5041 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5042 	    !phy_interface_mode_is_8023z(phy_mode) &&
5043 	    !phy_interface_mode_is_rgmii(phy_mode))
5044 		return -EINVAL;
5045 
5046 	return 0;
5047 }
5048 
5049 /* Device initialization routine */
5050 static int mvneta_probe(struct platform_device *pdev)
5051 {
5052 	struct device_node *dn = pdev->dev.of_node;
5053 	struct device_node *bm_node;
5054 	struct mvneta_port *pp;
5055 	struct net_device *dev;
5056 	struct phylink *phylink;
5057 	struct phy *comphy;
5058 	const char *dt_mac_addr;
5059 	char hw_mac_addr[ETH_ALEN];
5060 	phy_interface_t phy_mode;
5061 	const char *mac_from;
5062 	int tx_csum_limit;
5063 	int err;
5064 	int cpu;
5065 
5066 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5067 				      txq_number, rxq_number);
5068 	if (!dev)
5069 		return -ENOMEM;
5070 
5071 	dev->irq = irq_of_parse_and_map(dn, 0);
5072 	if (dev->irq == 0)
5073 		return -EINVAL;
5074 
5075 	err = of_get_phy_mode(dn, &phy_mode);
5076 	if (err) {
5077 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5078 		goto err_free_irq;
5079 	}
5080 
5081 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5082 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5083 		err = -EPROBE_DEFER;
5084 		goto err_free_irq;
5085 	} else if (IS_ERR(comphy)) {
5086 		comphy = NULL;
5087 	}
5088 
5089 	pp = netdev_priv(dev);
5090 	spin_lock_init(&pp->lock);
5091 
5092 	pp->phylink_config.dev = &dev->dev;
5093 	pp->phylink_config.type = PHYLINK_NETDEV;
5094 
5095 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5096 				 phy_mode, &mvneta_phylink_ops);
5097 	if (IS_ERR(phylink)) {
5098 		err = PTR_ERR(phylink);
5099 		goto err_free_irq;
5100 	}
5101 
5102 	dev->tx_queue_len = MVNETA_MAX_TXD;
5103 	dev->watchdog_timeo = 5 * HZ;
5104 	dev->netdev_ops = &mvneta_netdev_ops;
5105 
5106 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5107 
5108 	pp->phylink = phylink;
5109 	pp->comphy = comphy;
5110 	pp->phy_interface = phy_mode;
5111 	pp->dn = dn;
5112 
5113 	pp->rxq_def = rxq_def;
5114 	pp->indir[0] = rxq_def;
5115 
5116 	/* Get special SoC configurations */
5117 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5118 		pp->neta_armada3700 = true;
5119 
5120 	pp->clk = devm_clk_get(&pdev->dev, "core");
5121 	if (IS_ERR(pp->clk))
5122 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5123 	if (IS_ERR(pp->clk)) {
5124 		err = PTR_ERR(pp->clk);
5125 		goto err_free_phylink;
5126 	}
5127 
5128 	clk_prepare_enable(pp->clk);
5129 
5130 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5131 	if (!IS_ERR(pp->clk_bus))
5132 		clk_prepare_enable(pp->clk_bus);
5133 
5134 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5135 	if (IS_ERR(pp->base)) {
5136 		err = PTR_ERR(pp->base);
5137 		goto err_clk;
5138 	}
5139 
5140 	/* Alloc per-cpu port structure */
5141 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5142 	if (!pp->ports) {
5143 		err = -ENOMEM;
5144 		goto err_clk;
5145 	}
5146 
5147 	/* Alloc per-cpu stats */
5148 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5149 	if (!pp->stats) {
5150 		err = -ENOMEM;
5151 		goto err_free_ports;
5152 	}
5153 
5154 	dt_mac_addr = of_get_mac_address(dn);
5155 	if (!IS_ERR(dt_mac_addr)) {
5156 		mac_from = "device tree";
5157 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5158 	} else {
5159 		mvneta_get_mac_addr(pp, hw_mac_addr);
5160 		if (is_valid_ether_addr(hw_mac_addr)) {
5161 			mac_from = "hardware";
5162 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5163 		} else {
5164 			mac_from = "random";
5165 			eth_hw_addr_random(dev);
5166 		}
5167 	}
5168 
5169 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5170 		if (tx_csum_limit < 0 ||
5171 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5172 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5173 			dev_info(&pdev->dev,
5174 				 "Wrong TX csum limit in DT, set to %dB\n",
5175 				 MVNETA_TX_CSUM_DEF_SIZE);
5176 		}
5177 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5178 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5179 	} else {
5180 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5181 	}
5182 
5183 	pp->tx_csum_limit = tx_csum_limit;
5184 
5185 	pp->dram_target_info = mv_mbus_dram_info();
5186 	/* Armada3700 requires setting default configuration of Mbus
5187 	 * windows, however without using filled mbus_dram_target_info
5188 	 * structure.
5189 	 */
5190 	if (pp->dram_target_info || pp->neta_armada3700)
5191 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5192 
5193 	pp->tx_ring_size = MVNETA_MAX_TXD;
5194 	pp->rx_ring_size = MVNETA_MAX_RXD;
5195 
5196 	pp->dev = dev;
5197 	SET_NETDEV_DEV(dev, &pdev->dev);
5198 
5199 	pp->id = global_port_id++;
5200 
5201 	/* Obtain access to BM resources if enabled and already initialized */
5202 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5203 	if (bm_node) {
5204 		pp->bm_priv = mvneta_bm_get(bm_node);
5205 		if (pp->bm_priv) {
5206 			err = mvneta_bm_port_init(pdev, pp);
5207 			if (err < 0) {
5208 				dev_info(&pdev->dev,
5209 					 "use SW buffer management\n");
5210 				mvneta_bm_put(pp->bm_priv);
5211 				pp->bm_priv = NULL;
5212 			}
5213 		}
5214 		/* Set RX packet offset correction for platforms, whose
5215 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5216 		 * platforms and 0B for 32-bit ones.
5217 		 */
5218 		pp->rx_offset_correction = max(0,
5219 					       NET_SKB_PAD -
5220 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5221 	}
5222 	of_node_put(bm_node);
5223 
5224 	/* sw buffer management */
5225 	if (!pp->bm_priv)
5226 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5227 
5228 	err = mvneta_init(&pdev->dev, pp);
5229 	if (err < 0)
5230 		goto err_netdev;
5231 
5232 	err = mvneta_port_power_up(pp, pp->phy_interface);
5233 	if (err < 0) {
5234 		dev_err(&pdev->dev, "can't power up port\n");
5235 		return err;
5236 	}
5237 
5238 	/* Armada3700 network controller does not support per-cpu
5239 	 * operation, so only single NAPI should be initialized.
5240 	 */
5241 	if (pp->neta_armada3700) {
5242 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5243 	} else {
5244 		for_each_present_cpu(cpu) {
5245 			struct mvneta_pcpu_port *port =
5246 				per_cpu_ptr(pp->ports, cpu);
5247 
5248 			netif_napi_add(dev, &port->napi, mvneta_poll,
5249 				       NAPI_POLL_WEIGHT);
5250 			port->pp = pp;
5251 		}
5252 	}
5253 
5254 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5255 			NETIF_F_TSO | NETIF_F_RXCSUM;
5256 	dev->hw_features |= dev->features;
5257 	dev->vlan_features |= dev->features;
5258 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5259 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5260 
5261 	/* MTU range: 68 - 9676 */
5262 	dev->min_mtu = ETH_MIN_MTU;
5263 	/* 9676 == 9700 - 20 and rounding to 8 */
5264 	dev->max_mtu = 9676;
5265 
5266 	err = register_netdev(dev);
5267 	if (err < 0) {
5268 		dev_err(&pdev->dev, "failed to register\n");
5269 		goto err_netdev;
5270 	}
5271 
5272 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5273 		    dev->dev_addr);
5274 
5275 	platform_set_drvdata(pdev, pp->dev);
5276 
5277 	return 0;
5278 
5279 err_netdev:
5280 	if (pp->bm_priv) {
5281 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5282 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5283 				       1 << pp->id);
5284 		mvneta_bm_put(pp->bm_priv);
5285 	}
5286 	free_percpu(pp->stats);
5287 err_free_ports:
5288 	free_percpu(pp->ports);
5289 err_clk:
5290 	clk_disable_unprepare(pp->clk_bus);
5291 	clk_disable_unprepare(pp->clk);
5292 err_free_phylink:
5293 	if (pp->phylink)
5294 		phylink_destroy(pp->phylink);
5295 err_free_irq:
5296 	irq_dispose_mapping(dev->irq);
5297 	return err;
5298 }
5299 
5300 /* Device removal routine */
5301 static int mvneta_remove(struct platform_device *pdev)
5302 {
5303 	struct net_device  *dev = platform_get_drvdata(pdev);
5304 	struct mvneta_port *pp = netdev_priv(dev);
5305 
5306 	unregister_netdev(dev);
5307 	clk_disable_unprepare(pp->clk_bus);
5308 	clk_disable_unprepare(pp->clk);
5309 	free_percpu(pp->ports);
5310 	free_percpu(pp->stats);
5311 	irq_dispose_mapping(dev->irq);
5312 	phylink_destroy(pp->phylink);
5313 
5314 	if (pp->bm_priv) {
5315 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5316 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5317 				       1 << pp->id);
5318 		mvneta_bm_put(pp->bm_priv);
5319 	}
5320 
5321 	return 0;
5322 }
5323 
5324 #ifdef CONFIG_PM_SLEEP
5325 static int mvneta_suspend(struct device *device)
5326 {
5327 	int queue;
5328 	struct net_device *dev = dev_get_drvdata(device);
5329 	struct mvneta_port *pp = netdev_priv(dev);
5330 
5331 	if (!netif_running(dev))
5332 		goto clean_exit;
5333 
5334 	if (!pp->neta_armada3700) {
5335 		spin_lock(&pp->lock);
5336 		pp->is_stopped = true;
5337 		spin_unlock(&pp->lock);
5338 
5339 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5340 						    &pp->node_online);
5341 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5342 						    &pp->node_dead);
5343 	}
5344 
5345 	rtnl_lock();
5346 	mvneta_stop_dev(pp);
5347 	rtnl_unlock();
5348 
5349 	for (queue = 0; queue < rxq_number; queue++) {
5350 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5351 
5352 		mvneta_rxq_drop_pkts(pp, rxq);
5353 	}
5354 
5355 	for (queue = 0; queue < txq_number; queue++) {
5356 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5357 
5358 		mvneta_txq_hw_deinit(pp, txq);
5359 	}
5360 
5361 clean_exit:
5362 	netif_device_detach(dev);
5363 	clk_disable_unprepare(pp->clk_bus);
5364 	clk_disable_unprepare(pp->clk);
5365 
5366 	return 0;
5367 }
5368 
5369 static int mvneta_resume(struct device *device)
5370 {
5371 	struct platform_device *pdev = to_platform_device(device);
5372 	struct net_device *dev = dev_get_drvdata(device);
5373 	struct mvneta_port *pp = netdev_priv(dev);
5374 	int err, queue;
5375 
5376 	clk_prepare_enable(pp->clk);
5377 	if (!IS_ERR(pp->clk_bus))
5378 		clk_prepare_enable(pp->clk_bus);
5379 	if (pp->dram_target_info || pp->neta_armada3700)
5380 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5381 	if (pp->bm_priv) {
5382 		err = mvneta_bm_port_init(pdev, pp);
5383 		if (err < 0) {
5384 			dev_info(&pdev->dev, "use SW buffer management\n");
5385 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5386 			pp->bm_priv = NULL;
5387 		}
5388 	}
5389 	mvneta_defaults_set(pp);
5390 	err = mvneta_port_power_up(pp, pp->phy_interface);
5391 	if (err < 0) {
5392 		dev_err(device, "can't power up port\n");
5393 		return err;
5394 	}
5395 
5396 	netif_device_attach(dev);
5397 
5398 	if (!netif_running(dev))
5399 		return 0;
5400 
5401 	for (queue = 0; queue < rxq_number; queue++) {
5402 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5403 
5404 		rxq->next_desc_to_proc = 0;
5405 		mvneta_rxq_hw_init(pp, rxq);
5406 	}
5407 
5408 	for (queue = 0; queue < txq_number; queue++) {
5409 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5410 
5411 		txq->next_desc_to_proc = 0;
5412 		mvneta_txq_hw_init(pp, txq);
5413 	}
5414 
5415 	if (!pp->neta_armada3700) {
5416 		spin_lock(&pp->lock);
5417 		pp->is_stopped = false;
5418 		spin_unlock(&pp->lock);
5419 		cpuhp_state_add_instance_nocalls(online_hpstate,
5420 						 &pp->node_online);
5421 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5422 						 &pp->node_dead);
5423 	}
5424 
5425 	rtnl_lock();
5426 	mvneta_start_dev(pp);
5427 	rtnl_unlock();
5428 	mvneta_set_rx_mode(dev);
5429 
5430 	return 0;
5431 }
5432 #endif
5433 
5434 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5435 
5436 static const struct of_device_id mvneta_match[] = {
5437 	{ .compatible = "marvell,armada-370-neta" },
5438 	{ .compatible = "marvell,armada-xp-neta" },
5439 	{ .compatible = "marvell,armada-3700-neta" },
5440 	{ }
5441 };
5442 MODULE_DEVICE_TABLE(of, mvneta_match);
5443 
5444 static struct platform_driver mvneta_driver = {
5445 	.probe = mvneta_probe,
5446 	.remove = mvneta_remove,
5447 	.driver = {
5448 		.name = MVNETA_DRIVER_NAME,
5449 		.of_match_table = mvneta_match,
5450 		.pm = &mvneta_pm_ops,
5451 	},
5452 };
5453 
5454 static int __init mvneta_driver_init(void)
5455 {
5456 	int ret;
5457 
5458 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5459 				      mvneta_cpu_online,
5460 				      mvneta_cpu_down_prepare);
5461 	if (ret < 0)
5462 		goto out;
5463 	online_hpstate = ret;
5464 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5465 				      NULL, mvneta_cpu_dead);
5466 	if (ret)
5467 		goto err_dead;
5468 
5469 	ret = platform_driver_register(&mvneta_driver);
5470 	if (ret)
5471 		goto err;
5472 	return 0;
5473 
5474 err:
5475 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5476 err_dead:
5477 	cpuhp_remove_multi_state(online_hpstate);
5478 out:
5479 	return ret;
5480 }
5481 module_init(mvneta_driver_init);
5482 
5483 static void __exit mvneta_driver_exit(void)
5484 {
5485 	platform_driver_unregister(&mvneta_driver);
5486 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5487 	cpuhp_remove_multi_state(online_hpstate);
5488 }
5489 module_exit(mvneta_driver_exit);
5490 
5491 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5492 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5493 MODULE_LICENSE("GPL");
5494 
5495 module_param(rxq_number, int, 0444);
5496 module_param(txq_number, int, 0444);
5497 
5498 module_param(rxq_def, int, 0444);
5499 module_param(rx_copybreak, int, 0644);
5500