1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 /* Only exists on Armada XP and Armada 370 */ 110 #define MVNETA_SERDES_CFG 0x24A0 111 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 112 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 113 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 114 #define MVNETA_TYPE_PRIO 0x24bc 115 #define MVNETA_FORCE_UNI BIT(21) 116 #define MVNETA_TXQ_CMD_1 0x24e4 117 #define MVNETA_TXQ_CMD 0x2448 118 #define MVNETA_TXQ_DISABLE_SHIFT 8 119 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 120 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 121 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 122 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 123 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 124 #define MVNETA_ACC_MODE 0x2500 125 #define MVNETA_BM_ADDRESS 0x2504 126 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 127 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 128 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 129 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 130 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 131 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 132 133 /* Exception Interrupt Port/Queue Cause register 134 * 135 * Their behavior depend of the mapping done using the PCPX2Q 136 * registers. For a given CPU if the bit associated to a queue is not 137 * set, then for the register a read from this CPU will always return 138 * 0 and a write won't do anything 139 */ 140 141 #define MVNETA_INTR_NEW_CAUSE 0x25a0 142 #define MVNETA_INTR_NEW_MASK 0x25a4 143 144 /* bits 0..7 = TXQ SENT, one bit per queue. 145 * bits 8..15 = RXQ OCCUP, one bit per queue. 146 * bits 16..23 = RXQ FREE, one bit per queue. 147 * bit 29 = OLD_REG_SUM, see old reg ? 148 * bit 30 = TX_ERR_SUM, one bit for 4 ports 149 * bit 31 = MISC_SUM, one bit for 4 ports 150 */ 151 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 152 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 153 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 154 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 155 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 156 157 #define MVNETA_INTR_OLD_CAUSE 0x25a8 158 #define MVNETA_INTR_OLD_MASK 0x25ac 159 160 /* Data Path Port/Queue Cause Register */ 161 #define MVNETA_INTR_MISC_CAUSE 0x25b0 162 #define MVNETA_INTR_MISC_MASK 0x25b4 163 164 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 165 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 166 #define MVNETA_CAUSE_PTP BIT(4) 167 168 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 169 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 170 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 171 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 172 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 173 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 174 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 175 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 176 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 178 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 179 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 180 181 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 182 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 183 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 184 185 #define MVNETA_INTR_ENABLE 0x25b8 186 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 187 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 188 189 #define MVNETA_RXQ_CMD 0x2680 190 #define MVNETA_RXQ_DISABLE_SHIFT 8 191 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 192 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 193 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 194 #define MVNETA_GMAC_CTRL_0 0x2c00 195 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 196 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 197 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 198 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 199 #define MVNETA_GMAC_CTRL_2 0x2c08 200 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 201 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 202 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 203 #define MVNETA_GMAC2_PORT_RESET BIT(6) 204 #define MVNETA_GMAC_STATUS 0x2c10 205 #define MVNETA_GMAC_LINK_UP BIT(0) 206 #define MVNETA_GMAC_SPEED_1000 BIT(1) 207 #define MVNETA_GMAC_SPEED_100 BIT(2) 208 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 211 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 212 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 213 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 214 #define MVNETA_GMAC_SYNC_OK BIT(14) 215 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 216 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 217 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 218 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 219 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 220 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 221 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 222 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 223 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 224 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 225 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 226 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 227 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 228 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 229 #define MVNETA_GMAC_CTRL_4 0x2c90 230 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 231 #define MVNETA_MIB_COUNTERS_BASE 0x3000 232 #define MVNETA_MIB_LATE_COLLISION 0x7c 233 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 234 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 235 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 236 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 237 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 238 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 239 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 240 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 241 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 242 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 243 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 244 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 245 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 246 #define MVNETA_PORT_TX_RESET 0x3cf0 247 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 248 #define MVNETA_TX_MTU 0x3e0c 249 #define MVNETA_TX_TOKEN_SIZE 0x3e14 250 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 252 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 253 254 #define MVNETA_LPI_CTRL_0 0x2cc0 255 #define MVNETA_LPI_CTRL_1 0x2cc4 256 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 257 #define MVNETA_LPI_CTRL_2 0x2cc8 258 #define MVNETA_LPI_STATUS 0x2ccc 259 260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 261 262 /* Descriptor ring Macros */ 263 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 264 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 265 266 /* Various constants */ 267 268 /* Coalescing */ 269 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 270 #define MVNETA_RX_COAL_PKTS 32 271 #define MVNETA_RX_COAL_USEC 100 272 273 /* The two bytes Marvell header. Either contains a special value used 274 * by Marvell switches when a specific hardware mode is enabled (not 275 * supported by this driver) or is filled automatically by zeroes on 276 * the RX side. Those two bytes being at the front of the Ethernet 277 * header, they allow to have the IP header aligned on a 4 bytes 278 * boundary automatically: the hardware skips those two bytes on its 279 * own. 280 */ 281 #define MVNETA_MH_SIZE 2 282 283 #define MVNETA_VLAN_TAG_LEN 4 284 285 #define MVNETA_TX_CSUM_DEF_SIZE 1600 286 #define MVNETA_TX_CSUM_MAX_SIZE 9800 287 #define MVNETA_ACC_MODE_EXT1 1 288 #define MVNETA_ACC_MODE_EXT2 2 289 290 #define MVNETA_MAX_DECODE_WIN 6 291 292 /* Timeout constants */ 293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 296 297 #define MVNETA_TX_MTU_MAX 0x3ffff 298 299 /* The RSS lookup table actually has 256 entries but we do not use 300 * them yet 301 */ 302 #define MVNETA_RSS_LU_TABLE_SIZE 1 303 304 /* Max number of Rx descriptors */ 305 #define MVNETA_MAX_RXD 512 306 307 /* Max number of Tx descriptors */ 308 #define MVNETA_MAX_TXD 1024 309 310 /* Max number of allowed TCP segments for software TSO */ 311 #define MVNETA_MAX_TSO_SEGS 100 312 313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 314 315 /* descriptor aligned size */ 316 #define MVNETA_DESC_ALIGNED_SIZE 32 317 318 /* Number of bytes to be taken into account by HW when putting incoming data 319 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 320 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 321 */ 322 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 323 324 #define MVNETA_RX_PKT_SIZE(mtu) \ 325 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 326 ETH_HLEN + ETH_FCS_LEN, \ 327 cache_line_size()) 328 329 /* Driver assumes that the last 3 bits are 0 */ 330 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 331 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 332 MVNETA_SKB_HEADROOM)) 333 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 334 335 #define IS_TSO_HEADER(txq, addr) \ 336 ((addr >= txq->tso_hdrs_phys) && \ 337 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 338 339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 340 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 341 342 enum { 343 ETHTOOL_STAT_EEE_WAKEUP, 344 ETHTOOL_STAT_SKB_ALLOC_ERR, 345 ETHTOOL_STAT_REFILL_ERR, 346 ETHTOOL_XDP_REDIRECT, 347 ETHTOOL_XDP_PASS, 348 ETHTOOL_XDP_DROP, 349 ETHTOOL_XDP_TX, 350 ETHTOOL_XDP_TX_ERR, 351 ETHTOOL_XDP_XMIT, 352 ETHTOOL_XDP_XMIT_ERR, 353 ETHTOOL_MAX_STATS, 354 }; 355 356 struct mvneta_statistic { 357 unsigned short offset; 358 unsigned short type; 359 const char name[ETH_GSTRING_LEN]; 360 }; 361 362 #define T_REG_32 32 363 #define T_REG_64 64 364 #define T_SW 1 365 366 #define MVNETA_XDP_PASS 0 367 #define MVNETA_XDP_DROPPED BIT(0) 368 #define MVNETA_XDP_TX BIT(1) 369 #define MVNETA_XDP_REDIR BIT(2) 370 371 static const struct mvneta_statistic mvneta_statistics[] = { 372 { 0x3000, T_REG_64, "good_octets_received", }, 373 { 0x3010, T_REG_32, "good_frames_received", }, 374 { 0x3008, T_REG_32, "bad_octets_received", }, 375 { 0x3014, T_REG_32, "bad_frames_received", }, 376 { 0x3018, T_REG_32, "broadcast_frames_received", }, 377 { 0x301c, T_REG_32, "multicast_frames_received", }, 378 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 379 { 0x3058, T_REG_32, "good_fc_received", }, 380 { 0x305c, T_REG_32, "bad_fc_received", }, 381 { 0x3060, T_REG_32, "undersize_received", }, 382 { 0x3064, T_REG_32, "fragments_received", }, 383 { 0x3068, T_REG_32, "oversize_received", }, 384 { 0x306c, T_REG_32, "jabber_received", }, 385 { 0x3070, T_REG_32, "mac_receive_error", }, 386 { 0x3074, T_REG_32, "bad_crc_event", }, 387 { 0x3078, T_REG_32, "collision", }, 388 { 0x307c, T_REG_32, "late_collision", }, 389 { 0x2484, T_REG_32, "rx_discard", }, 390 { 0x2488, T_REG_32, "rx_overrun", }, 391 { 0x3020, T_REG_32, "frames_64_octets", }, 392 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 393 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 394 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 395 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 396 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 397 { 0x3038, T_REG_64, "good_octets_sent", }, 398 { 0x3040, T_REG_32, "good_frames_sent", }, 399 { 0x3044, T_REG_32, "excessive_collision", }, 400 { 0x3048, T_REG_32, "multicast_frames_sent", }, 401 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 402 { 0x3054, T_REG_32, "fc_sent", }, 403 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 404 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 405 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 406 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 407 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 408 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 409 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 410 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 411 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 412 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 413 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 414 }; 415 416 struct mvneta_stats { 417 u64 rx_packets; 418 u64 rx_bytes; 419 u64 tx_packets; 420 u64 tx_bytes; 421 /* xdp */ 422 u64 xdp_redirect; 423 u64 xdp_pass; 424 u64 xdp_drop; 425 u64 xdp_xmit; 426 u64 xdp_xmit_err; 427 u64 xdp_tx; 428 u64 xdp_tx_err; 429 }; 430 431 struct mvneta_ethtool_stats { 432 struct mvneta_stats ps; 433 u64 skb_alloc_error; 434 u64 refill_error; 435 }; 436 437 struct mvneta_pcpu_stats { 438 struct u64_stats_sync syncp; 439 440 struct mvneta_ethtool_stats es; 441 u64 rx_dropped; 442 u64 rx_errors; 443 }; 444 445 struct mvneta_pcpu_port { 446 /* Pointer to the shared port */ 447 struct mvneta_port *pp; 448 449 /* Pointer to the CPU-local NAPI struct */ 450 struct napi_struct napi; 451 452 /* Cause of the previous interrupt */ 453 u32 cause_rx_tx; 454 }; 455 456 enum { 457 __MVNETA_DOWN, 458 }; 459 460 struct mvneta_port { 461 u8 id; 462 struct mvneta_pcpu_port __percpu *ports; 463 struct mvneta_pcpu_stats __percpu *stats; 464 465 unsigned long state; 466 467 int pkt_size; 468 void __iomem *base; 469 struct mvneta_rx_queue *rxqs; 470 struct mvneta_tx_queue *txqs; 471 struct net_device *dev; 472 struct hlist_node node_online; 473 struct hlist_node node_dead; 474 int rxq_def; 475 /* Protect the access to the percpu interrupt registers, 476 * ensuring that the configuration remains coherent. 477 */ 478 spinlock_t lock; 479 bool is_stopped; 480 481 u32 cause_rx_tx; 482 struct napi_struct napi; 483 484 struct bpf_prog *xdp_prog; 485 486 /* Core clock */ 487 struct clk *clk; 488 /* AXI clock */ 489 struct clk *clk_bus; 490 u8 mcast_count[256]; 491 u16 tx_ring_size; 492 u16 rx_ring_size; 493 494 phy_interface_t phy_interface; 495 struct device_node *dn; 496 unsigned int tx_csum_limit; 497 struct phylink *phylink; 498 struct phylink_config phylink_config; 499 struct phy *comphy; 500 501 struct mvneta_bm *bm_priv; 502 struct mvneta_bm_pool *pool_long; 503 struct mvneta_bm_pool *pool_short; 504 int bm_win_id; 505 506 bool eee_enabled; 507 bool eee_active; 508 bool tx_lpi_enabled; 509 510 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 511 512 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 513 514 /* Flags for special SoC configurations */ 515 bool neta_armada3700; 516 u16 rx_offset_correction; 517 const struct mbus_dram_target_info *dram_target_info; 518 }; 519 520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 521 * layout of the transmit and reception DMA descriptors, and their 522 * layout is therefore defined by the hardware design 523 */ 524 525 #define MVNETA_TX_L3_OFF_SHIFT 0 526 #define MVNETA_TX_IP_HLEN_SHIFT 8 527 #define MVNETA_TX_L4_UDP BIT(16) 528 #define MVNETA_TX_L3_IP6 BIT(17) 529 #define MVNETA_TXD_IP_CSUM BIT(18) 530 #define MVNETA_TXD_Z_PAD BIT(19) 531 #define MVNETA_TXD_L_DESC BIT(20) 532 #define MVNETA_TXD_F_DESC BIT(21) 533 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 534 MVNETA_TXD_L_DESC | \ 535 MVNETA_TXD_F_DESC) 536 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 537 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 538 539 #define MVNETA_RXD_ERR_CRC 0x0 540 #define MVNETA_RXD_BM_POOL_SHIFT 13 541 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 542 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 543 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 544 #define MVNETA_RXD_ERR_LEN BIT(18) 545 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 546 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 547 #define MVNETA_RXD_L3_IP4 BIT(25) 548 #define MVNETA_RXD_LAST_DESC BIT(26) 549 #define MVNETA_RXD_FIRST_DESC BIT(27) 550 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 551 MVNETA_RXD_LAST_DESC) 552 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 553 554 #if defined(__LITTLE_ENDIAN) 555 struct mvneta_tx_desc { 556 u32 command; /* Options used by HW for packet transmitting.*/ 557 u16 reserved1; /* csum_l4 (for future use) */ 558 u16 data_size; /* Data size of transmitted packet in bytes */ 559 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 560 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 561 u32 reserved3[4]; /* Reserved - (for future use) */ 562 }; 563 564 struct mvneta_rx_desc { 565 u32 status; /* Info about received packet */ 566 u16 reserved1; /* pnc_info - (for future use, PnC) */ 567 u16 data_size; /* Size of received packet in bytes */ 568 569 u32 buf_phys_addr; /* Physical address of the buffer */ 570 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 571 572 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 573 u16 reserved3; /* prefetch_cmd, for future use */ 574 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 575 576 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 577 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 578 }; 579 #else 580 struct mvneta_tx_desc { 581 u16 data_size; /* Data size of transmitted packet in bytes */ 582 u16 reserved1; /* csum_l4 (for future use) */ 583 u32 command; /* Options used by HW for packet transmitting.*/ 584 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 585 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 586 u32 reserved3[4]; /* Reserved - (for future use) */ 587 }; 588 589 struct mvneta_rx_desc { 590 u16 data_size; /* Size of received packet in bytes */ 591 u16 reserved1; /* pnc_info - (for future use, PnC) */ 592 u32 status; /* Info about received packet */ 593 594 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 595 u32 buf_phys_addr; /* Physical address of the buffer */ 596 597 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 598 u16 reserved3; /* prefetch_cmd, for future use */ 599 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 600 601 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 602 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 603 }; 604 #endif 605 606 enum mvneta_tx_buf_type { 607 MVNETA_TYPE_SKB, 608 MVNETA_TYPE_XDP_TX, 609 MVNETA_TYPE_XDP_NDO, 610 }; 611 612 struct mvneta_tx_buf { 613 enum mvneta_tx_buf_type type; 614 union { 615 struct xdp_frame *xdpf; 616 struct sk_buff *skb; 617 }; 618 }; 619 620 struct mvneta_tx_queue { 621 /* Number of this TX queue, in the range 0-7 */ 622 u8 id; 623 624 /* Number of TX DMA descriptors in the descriptor ring */ 625 int size; 626 627 /* Number of currently used TX DMA descriptor in the 628 * descriptor ring 629 */ 630 int count; 631 int pending; 632 int tx_stop_threshold; 633 int tx_wake_threshold; 634 635 /* Array of transmitted buffers */ 636 struct mvneta_tx_buf *buf; 637 638 /* Index of last TX DMA descriptor that was inserted */ 639 int txq_put_index; 640 641 /* Index of the TX DMA descriptor to be cleaned up */ 642 int txq_get_index; 643 644 u32 done_pkts_coal; 645 646 /* Virtual address of the TX DMA descriptors array */ 647 struct mvneta_tx_desc *descs; 648 649 /* DMA address of the TX DMA descriptors array */ 650 dma_addr_t descs_phys; 651 652 /* Index of the last TX DMA descriptor */ 653 int last_desc; 654 655 /* Index of the next TX DMA descriptor to process */ 656 int next_desc_to_proc; 657 658 /* DMA buffers for TSO headers */ 659 char *tso_hdrs; 660 661 /* DMA address of TSO headers */ 662 dma_addr_t tso_hdrs_phys; 663 664 /* Affinity mask for CPUs*/ 665 cpumask_t affinity_mask; 666 }; 667 668 struct mvneta_rx_queue { 669 /* rx queue number, in the range 0-7 */ 670 u8 id; 671 672 /* num of rx descriptors in the rx descriptor ring */ 673 int size; 674 675 u32 pkts_coal; 676 u32 time_coal; 677 678 /* page_pool */ 679 struct page_pool *page_pool; 680 struct xdp_rxq_info xdp_rxq; 681 682 /* Virtual address of the RX buffer */ 683 void **buf_virt_addr; 684 685 /* Virtual address of the RX DMA descriptors array */ 686 struct mvneta_rx_desc *descs; 687 688 /* DMA address of the RX DMA descriptors array */ 689 dma_addr_t descs_phys; 690 691 /* Index of the last RX DMA descriptor */ 692 int last_desc; 693 694 /* Index of the next RX DMA descriptor to process */ 695 int next_desc_to_proc; 696 697 /* Index of first RX DMA descriptor to refill */ 698 int first_to_refill; 699 u32 refill_num; 700 }; 701 702 static enum cpuhp_state online_hpstate; 703 /* The hardware supports eight (8) rx queues, but we are only allowing 704 * the first one to be used. Therefore, let's just allocate one queue. 705 */ 706 static int rxq_number = 8; 707 static int txq_number = 8; 708 709 static int rxq_def; 710 711 static int rx_copybreak __read_mostly = 256; 712 713 /* HW BM need that each port be identify by a unique ID */ 714 static int global_port_id; 715 716 #define MVNETA_DRIVER_NAME "mvneta" 717 #define MVNETA_DRIVER_VERSION "1.0" 718 719 /* Utility/helper methods */ 720 721 /* Write helper method */ 722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 723 { 724 writel(data, pp->base + offset); 725 } 726 727 /* Read helper method */ 728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 729 { 730 return readl(pp->base + offset); 731 } 732 733 /* Increment txq get counter */ 734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 735 { 736 txq->txq_get_index++; 737 if (txq->txq_get_index == txq->size) 738 txq->txq_get_index = 0; 739 } 740 741 /* Increment txq put counter */ 742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 743 { 744 txq->txq_put_index++; 745 if (txq->txq_put_index == txq->size) 746 txq->txq_put_index = 0; 747 } 748 749 750 /* Clear all MIB counters */ 751 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 752 { 753 int i; 754 755 /* Perform dummy reads from MIB counters */ 756 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 757 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 758 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 759 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 760 } 761 762 /* Get System Network Statistics */ 763 static void 764 mvneta_get_stats64(struct net_device *dev, 765 struct rtnl_link_stats64 *stats) 766 { 767 struct mvneta_port *pp = netdev_priv(dev); 768 unsigned int start; 769 int cpu; 770 771 for_each_possible_cpu(cpu) { 772 struct mvneta_pcpu_stats *cpu_stats; 773 u64 rx_packets; 774 u64 rx_bytes; 775 u64 rx_dropped; 776 u64 rx_errors; 777 u64 tx_packets; 778 u64 tx_bytes; 779 780 cpu_stats = per_cpu_ptr(pp->stats, cpu); 781 do { 782 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 783 rx_packets = cpu_stats->es.ps.rx_packets; 784 rx_bytes = cpu_stats->es.ps.rx_bytes; 785 rx_dropped = cpu_stats->rx_dropped; 786 rx_errors = cpu_stats->rx_errors; 787 tx_packets = cpu_stats->es.ps.tx_packets; 788 tx_bytes = cpu_stats->es.ps.tx_bytes; 789 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 790 791 stats->rx_packets += rx_packets; 792 stats->rx_bytes += rx_bytes; 793 stats->rx_dropped += rx_dropped; 794 stats->rx_errors += rx_errors; 795 stats->tx_packets += tx_packets; 796 stats->tx_bytes += tx_bytes; 797 } 798 799 stats->tx_dropped = dev->stats.tx_dropped; 800 } 801 802 /* Rx descriptors helper methods */ 803 804 /* Checks whether the RX descriptor having this status is both the first 805 * and the last descriptor for the RX packet. Each RX packet is currently 806 * received through a single RX descriptor, so not having each RX 807 * descriptor with its first and last bits set is an error 808 */ 809 static int mvneta_rxq_desc_is_first_last(u32 status) 810 { 811 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 812 MVNETA_RXD_FIRST_LAST_DESC; 813 } 814 815 /* Add number of descriptors ready to receive new packets */ 816 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 817 struct mvneta_rx_queue *rxq, 818 int ndescs) 819 { 820 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 821 * be added at once 822 */ 823 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 824 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 825 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 826 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 827 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 828 } 829 830 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 831 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 832 } 833 834 /* Get number of RX descriptors occupied by received packets */ 835 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 836 struct mvneta_rx_queue *rxq) 837 { 838 u32 val; 839 840 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 841 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 842 } 843 844 /* Update num of rx desc called upon return from rx path or 845 * from mvneta_rxq_drop_pkts(). 846 */ 847 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 848 struct mvneta_rx_queue *rxq, 849 int rx_done, int rx_filled) 850 { 851 u32 val; 852 853 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 854 val = rx_done | 855 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 856 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 857 return; 858 } 859 860 /* Only 255 descriptors can be added at once */ 861 while ((rx_done > 0) || (rx_filled > 0)) { 862 if (rx_done <= 0xff) { 863 val = rx_done; 864 rx_done = 0; 865 } else { 866 val = 0xff; 867 rx_done -= 0xff; 868 } 869 if (rx_filled <= 0xff) { 870 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 871 rx_filled = 0; 872 } else { 873 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 874 rx_filled -= 0xff; 875 } 876 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 877 } 878 } 879 880 /* Get pointer to next RX descriptor to be processed by SW */ 881 static struct mvneta_rx_desc * 882 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 883 { 884 int rx_desc = rxq->next_desc_to_proc; 885 886 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 887 prefetch(rxq->descs + rxq->next_desc_to_proc); 888 return rxq->descs + rx_desc; 889 } 890 891 /* Change maximum receive size of the port. */ 892 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 893 { 894 u32 val; 895 896 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 897 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 898 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 899 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 900 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 901 } 902 903 904 /* Set rx queue offset */ 905 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 906 struct mvneta_rx_queue *rxq, 907 int offset) 908 { 909 u32 val; 910 911 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 912 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 913 914 /* Offset is in */ 915 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 916 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 917 } 918 919 920 /* Tx descriptors helper methods */ 921 922 /* Update HW with number of TX descriptors to be sent */ 923 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 924 struct mvneta_tx_queue *txq, 925 int pend_desc) 926 { 927 u32 val; 928 929 pend_desc += txq->pending; 930 931 /* Only 255 Tx descriptors can be added at once */ 932 do { 933 val = min(pend_desc, 255); 934 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 935 pend_desc -= val; 936 } while (pend_desc > 0); 937 txq->pending = 0; 938 } 939 940 /* Get pointer to next TX descriptor to be processed (send) by HW */ 941 static struct mvneta_tx_desc * 942 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 943 { 944 int tx_desc = txq->next_desc_to_proc; 945 946 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 947 return txq->descs + tx_desc; 948 } 949 950 /* Release the last allocated TX descriptor. Useful to handle DMA 951 * mapping failures in the TX path. 952 */ 953 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 954 { 955 if (txq->next_desc_to_proc == 0) 956 txq->next_desc_to_proc = txq->last_desc - 1; 957 else 958 txq->next_desc_to_proc--; 959 } 960 961 /* Set rxq buf size */ 962 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 963 struct mvneta_rx_queue *rxq, 964 int buf_size) 965 { 966 u32 val; 967 968 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 969 970 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 971 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 972 973 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 974 } 975 976 /* Disable buffer management (BM) */ 977 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 978 struct mvneta_rx_queue *rxq) 979 { 980 u32 val; 981 982 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 983 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 984 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 985 } 986 987 /* Enable buffer management (BM) */ 988 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 989 struct mvneta_rx_queue *rxq) 990 { 991 u32 val; 992 993 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 994 val |= MVNETA_RXQ_HW_BUF_ALLOC; 995 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 996 } 997 998 /* Notify HW about port's assignment of pool for bigger packets */ 999 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1000 struct mvneta_rx_queue *rxq) 1001 { 1002 u32 val; 1003 1004 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1005 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1006 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1007 1008 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1009 } 1010 1011 /* Notify HW about port's assignment of pool for smaller packets */ 1012 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1013 struct mvneta_rx_queue *rxq) 1014 { 1015 u32 val; 1016 1017 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1018 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1019 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1020 1021 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1022 } 1023 1024 /* Set port's receive buffer size for assigned BM pool */ 1025 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1026 int buf_size, 1027 u8 pool_id) 1028 { 1029 u32 val; 1030 1031 if (!IS_ALIGNED(buf_size, 8)) { 1032 dev_warn(pp->dev->dev.parent, 1033 "illegal buf_size value %d, round to %d\n", 1034 buf_size, ALIGN(buf_size, 8)); 1035 buf_size = ALIGN(buf_size, 8); 1036 } 1037 1038 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1039 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1040 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1041 } 1042 1043 /* Configure MBUS window in order to enable access BM internal SRAM */ 1044 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1045 u8 target, u8 attr) 1046 { 1047 u32 win_enable, win_protect; 1048 int i; 1049 1050 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1051 1052 if (pp->bm_win_id < 0) { 1053 /* Find first not occupied window */ 1054 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1055 if (win_enable & (1 << i)) { 1056 pp->bm_win_id = i; 1057 break; 1058 } 1059 } 1060 if (i == MVNETA_MAX_DECODE_WIN) 1061 return -ENOMEM; 1062 } else { 1063 i = pp->bm_win_id; 1064 } 1065 1066 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1067 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1068 1069 if (i < 4) 1070 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1071 1072 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1073 (attr << 8) | target); 1074 1075 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1076 1077 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1078 win_protect |= 3 << (2 * i); 1079 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1080 1081 win_enable &= ~(1 << i); 1082 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1083 1084 return 0; 1085 } 1086 1087 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1088 { 1089 u32 wsize; 1090 u8 target, attr; 1091 int err; 1092 1093 /* Get BM window information */ 1094 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1095 &target, &attr); 1096 if (err < 0) 1097 return err; 1098 1099 pp->bm_win_id = -1; 1100 1101 /* Open NETA -> BM window */ 1102 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1103 target, attr); 1104 if (err < 0) { 1105 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1106 return err; 1107 } 1108 return 0; 1109 } 1110 1111 /* Assign and initialize pools for port. In case of fail 1112 * buffer manager will remain disabled for current port. 1113 */ 1114 static int mvneta_bm_port_init(struct platform_device *pdev, 1115 struct mvneta_port *pp) 1116 { 1117 struct device_node *dn = pdev->dev.of_node; 1118 u32 long_pool_id, short_pool_id; 1119 1120 if (!pp->neta_armada3700) { 1121 int ret; 1122 1123 ret = mvneta_bm_port_mbus_init(pp); 1124 if (ret) 1125 return ret; 1126 } 1127 1128 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1129 netdev_info(pp->dev, "missing long pool id\n"); 1130 return -EINVAL; 1131 } 1132 1133 /* Create port's long pool depending on mtu */ 1134 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1135 MVNETA_BM_LONG, pp->id, 1136 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1137 if (!pp->pool_long) { 1138 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1139 return -ENOMEM; 1140 } 1141 1142 pp->pool_long->port_map |= 1 << pp->id; 1143 1144 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1145 pp->pool_long->id); 1146 1147 /* If short pool id is not defined, assume using single pool */ 1148 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1149 short_pool_id = long_pool_id; 1150 1151 /* Create port's short pool */ 1152 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1153 MVNETA_BM_SHORT, pp->id, 1154 MVNETA_BM_SHORT_PKT_SIZE); 1155 if (!pp->pool_short) { 1156 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1157 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1158 return -ENOMEM; 1159 } 1160 1161 if (short_pool_id != long_pool_id) { 1162 pp->pool_short->port_map |= 1 << pp->id; 1163 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1164 pp->pool_short->id); 1165 } 1166 1167 return 0; 1168 } 1169 1170 /* Update settings of a pool for bigger packets */ 1171 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1172 { 1173 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1174 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1175 int num; 1176 1177 /* Release all buffers from long pool */ 1178 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1179 if (hwbm_pool->buf_num) { 1180 WARN(1, "cannot free all buffers in pool %d\n", 1181 bm_pool->id); 1182 goto bm_mtu_err; 1183 } 1184 1185 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1186 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1187 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1188 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1189 1190 /* Fill entire long pool */ 1191 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1192 if (num != hwbm_pool->size) { 1193 WARN(1, "pool %d: %d of %d allocated\n", 1194 bm_pool->id, num, hwbm_pool->size); 1195 goto bm_mtu_err; 1196 } 1197 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1198 1199 return; 1200 1201 bm_mtu_err: 1202 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1203 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1204 1205 pp->bm_priv = NULL; 1206 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1207 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1208 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1209 } 1210 1211 /* Start the Ethernet port RX and TX activity */ 1212 static void mvneta_port_up(struct mvneta_port *pp) 1213 { 1214 int queue; 1215 u32 q_map; 1216 1217 /* Enable all initialized TXs. */ 1218 q_map = 0; 1219 for (queue = 0; queue < txq_number; queue++) { 1220 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1221 if (txq->descs) 1222 q_map |= (1 << queue); 1223 } 1224 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1225 1226 q_map = 0; 1227 /* Enable all initialized RXQs. */ 1228 for (queue = 0; queue < rxq_number; queue++) { 1229 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1230 1231 if (rxq->descs) 1232 q_map |= (1 << queue); 1233 } 1234 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1235 } 1236 1237 /* Stop the Ethernet port activity */ 1238 static void mvneta_port_down(struct mvneta_port *pp) 1239 { 1240 u32 val; 1241 int count; 1242 1243 /* Stop Rx port activity. Check port Rx activity. */ 1244 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1245 1246 /* Issue stop command for active channels only */ 1247 if (val != 0) 1248 mvreg_write(pp, MVNETA_RXQ_CMD, 1249 val << MVNETA_RXQ_DISABLE_SHIFT); 1250 1251 /* Wait for all Rx activity to terminate. */ 1252 count = 0; 1253 do { 1254 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1255 netdev_warn(pp->dev, 1256 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1257 val); 1258 break; 1259 } 1260 mdelay(1); 1261 1262 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1263 } while (val & MVNETA_RXQ_ENABLE_MASK); 1264 1265 /* Stop Tx port activity. Check port Tx activity. Issue stop 1266 * command for active channels only 1267 */ 1268 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1269 1270 if (val != 0) 1271 mvreg_write(pp, MVNETA_TXQ_CMD, 1272 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1273 1274 /* Wait for all Tx activity to terminate. */ 1275 count = 0; 1276 do { 1277 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1278 netdev_warn(pp->dev, 1279 "TIMEOUT for TX stopped status=0x%08x\n", 1280 val); 1281 break; 1282 } 1283 mdelay(1); 1284 1285 /* Check TX Command reg that all Txqs are stopped */ 1286 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1287 1288 } while (val & MVNETA_TXQ_ENABLE_MASK); 1289 1290 /* Double check to verify that TX FIFO is empty */ 1291 count = 0; 1292 do { 1293 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1294 netdev_warn(pp->dev, 1295 "TX FIFO empty timeout status=0x%08x\n", 1296 val); 1297 break; 1298 } 1299 mdelay(1); 1300 1301 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1302 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1303 (val & MVNETA_TX_IN_PRGRS)); 1304 1305 udelay(200); 1306 } 1307 1308 /* Enable the port by setting the port enable bit of the MAC control register */ 1309 static void mvneta_port_enable(struct mvneta_port *pp) 1310 { 1311 u32 val; 1312 1313 /* Enable port */ 1314 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1315 val |= MVNETA_GMAC0_PORT_ENABLE; 1316 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1317 } 1318 1319 /* Disable the port and wait for about 200 usec before retuning */ 1320 static void mvneta_port_disable(struct mvneta_port *pp) 1321 { 1322 u32 val; 1323 1324 /* Reset the Enable bit in the Serial Control Register */ 1325 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1326 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1327 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1328 1329 udelay(200); 1330 } 1331 1332 /* Multicast tables methods */ 1333 1334 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1335 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1336 { 1337 int offset; 1338 u32 val; 1339 1340 if (queue == -1) { 1341 val = 0; 1342 } else { 1343 val = 0x1 | (queue << 1); 1344 val |= (val << 24) | (val << 16) | (val << 8); 1345 } 1346 1347 for (offset = 0; offset <= 0xc; offset += 4) 1348 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1349 } 1350 1351 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1352 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1353 { 1354 int offset; 1355 u32 val; 1356 1357 if (queue == -1) { 1358 val = 0; 1359 } else { 1360 val = 0x1 | (queue << 1); 1361 val |= (val << 24) | (val << 16) | (val << 8); 1362 } 1363 1364 for (offset = 0; offset <= 0xfc; offset += 4) 1365 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1366 1367 } 1368 1369 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1370 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1371 { 1372 int offset; 1373 u32 val; 1374 1375 if (queue == -1) { 1376 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1377 val = 0; 1378 } else { 1379 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1380 val = 0x1 | (queue << 1); 1381 val |= (val << 24) | (val << 16) | (val << 8); 1382 } 1383 1384 for (offset = 0; offset <= 0xfc; offset += 4) 1385 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1386 } 1387 1388 static void mvneta_percpu_unmask_interrupt(void *arg) 1389 { 1390 struct mvneta_port *pp = arg; 1391 1392 /* All the queue are unmasked, but actually only the ones 1393 * mapped to this CPU will be unmasked 1394 */ 1395 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1396 MVNETA_RX_INTR_MASK_ALL | 1397 MVNETA_TX_INTR_MASK_ALL | 1398 MVNETA_MISCINTR_INTR_MASK); 1399 } 1400 1401 static void mvneta_percpu_mask_interrupt(void *arg) 1402 { 1403 struct mvneta_port *pp = arg; 1404 1405 /* All the queue are masked, but actually only the ones 1406 * mapped to this CPU will be masked 1407 */ 1408 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1409 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1410 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1411 } 1412 1413 static void mvneta_percpu_clear_intr_cause(void *arg) 1414 { 1415 struct mvneta_port *pp = arg; 1416 1417 /* All the queue are cleared, but actually only the ones 1418 * mapped to this CPU will be cleared 1419 */ 1420 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1421 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1422 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1423 } 1424 1425 /* This method sets defaults to the NETA port: 1426 * Clears interrupt Cause and Mask registers. 1427 * Clears all MAC tables. 1428 * Sets defaults to all registers. 1429 * Resets RX and TX descriptor rings. 1430 * Resets PHY. 1431 * This method can be called after mvneta_port_down() to return the port 1432 * settings to defaults. 1433 */ 1434 static void mvneta_defaults_set(struct mvneta_port *pp) 1435 { 1436 int cpu; 1437 int queue; 1438 u32 val; 1439 int max_cpu = num_present_cpus(); 1440 1441 /* Clear all Cause registers */ 1442 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1443 1444 /* Mask all interrupts */ 1445 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1446 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1447 1448 /* Enable MBUS Retry bit16 */ 1449 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1450 1451 /* Set CPU queue access map. CPUs are assigned to the RX and 1452 * TX queues modulo their number. If there is only one TX 1453 * queue then it is assigned to the CPU associated to the 1454 * default RX queue. 1455 */ 1456 for_each_present_cpu(cpu) { 1457 int rxq_map = 0, txq_map = 0; 1458 int rxq, txq; 1459 if (!pp->neta_armada3700) { 1460 for (rxq = 0; rxq < rxq_number; rxq++) 1461 if ((rxq % max_cpu) == cpu) 1462 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1463 1464 for (txq = 0; txq < txq_number; txq++) 1465 if ((txq % max_cpu) == cpu) 1466 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1467 1468 /* With only one TX queue we configure a special case 1469 * which will allow to get all the irq on a single 1470 * CPU 1471 */ 1472 if (txq_number == 1) 1473 txq_map = (cpu == pp->rxq_def) ? 1474 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1475 1476 } else { 1477 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1478 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1479 } 1480 1481 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1482 } 1483 1484 /* Reset RX and TX DMAs */ 1485 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1486 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1487 1488 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1489 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1490 for (queue = 0; queue < txq_number; queue++) { 1491 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1492 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1493 } 1494 1495 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1496 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1497 1498 /* Set Port Acceleration Mode */ 1499 if (pp->bm_priv) 1500 /* HW buffer management + legacy parser */ 1501 val = MVNETA_ACC_MODE_EXT2; 1502 else 1503 /* SW buffer management + legacy parser */ 1504 val = MVNETA_ACC_MODE_EXT1; 1505 mvreg_write(pp, MVNETA_ACC_MODE, val); 1506 1507 if (pp->bm_priv) 1508 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1509 1510 /* Update val of portCfg register accordingly with all RxQueue types */ 1511 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1512 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1513 1514 val = 0; 1515 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1516 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1517 1518 /* Build PORT_SDMA_CONFIG_REG */ 1519 val = 0; 1520 1521 /* Default burst size */ 1522 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1523 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1524 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1525 1526 #if defined(__BIG_ENDIAN) 1527 val |= MVNETA_DESC_SWAP; 1528 #endif 1529 1530 /* Assign port SDMA configuration */ 1531 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1532 1533 /* Disable PHY polling in hardware, since we're using the 1534 * kernel phylib to do this. 1535 */ 1536 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1537 val &= ~MVNETA_PHY_POLLING_ENABLE; 1538 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1539 1540 mvneta_set_ucast_table(pp, -1); 1541 mvneta_set_special_mcast_table(pp, -1); 1542 mvneta_set_other_mcast_table(pp, -1); 1543 1544 /* Set port interrupt enable register - default enable all */ 1545 mvreg_write(pp, MVNETA_INTR_ENABLE, 1546 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1547 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1548 1549 mvneta_mib_counters_clear(pp); 1550 } 1551 1552 /* Set max sizes for tx queues */ 1553 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1554 1555 { 1556 u32 val, size, mtu; 1557 int queue; 1558 1559 mtu = max_tx_size * 8; 1560 if (mtu > MVNETA_TX_MTU_MAX) 1561 mtu = MVNETA_TX_MTU_MAX; 1562 1563 /* Set MTU */ 1564 val = mvreg_read(pp, MVNETA_TX_MTU); 1565 val &= ~MVNETA_TX_MTU_MAX; 1566 val |= mtu; 1567 mvreg_write(pp, MVNETA_TX_MTU, val); 1568 1569 /* TX token size and all TXQs token size must be larger that MTU */ 1570 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1571 1572 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1573 if (size < mtu) { 1574 size = mtu; 1575 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1576 val |= size; 1577 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1578 } 1579 for (queue = 0; queue < txq_number; queue++) { 1580 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1581 1582 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1583 if (size < mtu) { 1584 size = mtu; 1585 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1586 val |= size; 1587 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1588 } 1589 } 1590 } 1591 1592 /* Set unicast address */ 1593 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1594 int queue) 1595 { 1596 unsigned int unicast_reg; 1597 unsigned int tbl_offset; 1598 unsigned int reg_offset; 1599 1600 /* Locate the Unicast table entry */ 1601 last_nibble = (0xf & last_nibble); 1602 1603 /* offset from unicast tbl base */ 1604 tbl_offset = (last_nibble / 4) * 4; 1605 1606 /* offset within the above reg */ 1607 reg_offset = last_nibble % 4; 1608 1609 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1610 1611 if (queue == -1) { 1612 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1613 unicast_reg &= ~(0xff << (8 * reg_offset)); 1614 } else { 1615 unicast_reg &= ~(0xff << (8 * reg_offset)); 1616 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1617 } 1618 1619 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1620 } 1621 1622 /* Set mac address */ 1623 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1624 int queue) 1625 { 1626 unsigned int mac_h; 1627 unsigned int mac_l; 1628 1629 if (queue != -1) { 1630 mac_l = (addr[4] << 8) | (addr[5]); 1631 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1632 (addr[2] << 8) | (addr[3] << 0); 1633 1634 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1635 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1636 } 1637 1638 /* Accept frames of this address */ 1639 mvneta_set_ucast_addr(pp, addr[5], queue); 1640 } 1641 1642 /* Set the number of packets that will be received before RX interrupt 1643 * will be generated by HW. 1644 */ 1645 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1646 struct mvneta_rx_queue *rxq, u32 value) 1647 { 1648 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1649 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1650 } 1651 1652 /* Set the time delay in usec before RX interrupt will be generated by 1653 * HW. 1654 */ 1655 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1656 struct mvneta_rx_queue *rxq, u32 value) 1657 { 1658 u32 val; 1659 unsigned long clk_rate; 1660 1661 clk_rate = clk_get_rate(pp->clk); 1662 val = (clk_rate / 1000000) * value; 1663 1664 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1665 } 1666 1667 /* Set threshold for TX_DONE pkts coalescing */ 1668 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1669 struct mvneta_tx_queue *txq, u32 value) 1670 { 1671 u32 val; 1672 1673 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1674 1675 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1676 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1677 1678 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1679 } 1680 1681 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1682 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1683 u32 phys_addr, void *virt_addr, 1684 struct mvneta_rx_queue *rxq) 1685 { 1686 int i; 1687 1688 rx_desc->buf_phys_addr = phys_addr; 1689 i = rx_desc - rxq->descs; 1690 rxq->buf_virt_addr[i] = virt_addr; 1691 } 1692 1693 /* Decrement sent descriptors counter */ 1694 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1695 struct mvneta_tx_queue *txq, 1696 int sent_desc) 1697 { 1698 u32 val; 1699 1700 /* Only 255 TX descriptors can be updated at once */ 1701 while (sent_desc > 0xff) { 1702 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1703 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1704 sent_desc = sent_desc - 0xff; 1705 } 1706 1707 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1708 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1709 } 1710 1711 /* Get number of TX descriptors already sent by HW */ 1712 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1713 struct mvneta_tx_queue *txq) 1714 { 1715 u32 val; 1716 int sent_desc; 1717 1718 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1719 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1720 MVNETA_TXQ_SENT_DESC_SHIFT; 1721 1722 return sent_desc; 1723 } 1724 1725 /* Get number of sent descriptors and decrement counter. 1726 * The number of sent descriptors is returned. 1727 */ 1728 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1729 struct mvneta_tx_queue *txq) 1730 { 1731 int sent_desc; 1732 1733 /* Get number of sent descriptors */ 1734 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1735 1736 /* Decrement sent descriptors counter */ 1737 if (sent_desc) 1738 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1739 1740 return sent_desc; 1741 } 1742 1743 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1744 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1745 int ip_hdr_len, int l4_proto) 1746 { 1747 u32 command; 1748 1749 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1750 * G_L4_chk, L4_type; required only for checksum 1751 * calculation 1752 */ 1753 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1754 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1755 1756 if (l3_proto == htons(ETH_P_IP)) 1757 command |= MVNETA_TXD_IP_CSUM; 1758 else 1759 command |= MVNETA_TX_L3_IP6; 1760 1761 if (l4_proto == IPPROTO_TCP) 1762 command |= MVNETA_TX_L4_CSUM_FULL; 1763 else if (l4_proto == IPPROTO_UDP) 1764 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1765 else 1766 command |= MVNETA_TX_L4_CSUM_NOT; 1767 1768 return command; 1769 } 1770 1771 1772 /* Display more error info */ 1773 static void mvneta_rx_error(struct mvneta_port *pp, 1774 struct mvneta_rx_desc *rx_desc) 1775 { 1776 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1777 u32 status = rx_desc->status; 1778 1779 /* update per-cpu counter */ 1780 u64_stats_update_begin(&stats->syncp); 1781 stats->rx_errors++; 1782 u64_stats_update_end(&stats->syncp); 1783 1784 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1785 case MVNETA_RXD_ERR_CRC: 1786 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1787 status, rx_desc->data_size); 1788 break; 1789 case MVNETA_RXD_ERR_OVERRUN: 1790 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1791 status, rx_desc->data_size); 1792 break; 1793 case MVNETA_RXD_ERR_LEN: 1794 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1795 status, rx_desc->data_size); 1796 break; 1797 case MVNETA_RXD_ERR_RESOURCE: 1798 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1799 status, rx_desc->data_size); 1800 break; 1801 } 1802 } 1803 1804 /* Handle RX checksum offload based on the descriptor's status */ 1805 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1806 struct sk_buff *skb) 1807 { 1808 if ((pp->dev->features & NETIF_F_RXCSUM) && 1809 (status & MVNETA_RXD_L3_IP4) && 1810 (status & MVNETA_RXD_L4_CSUM_OK)) { 1811 skb->csum = 0; 1812 skb->ip_summed = CHECKSUM_UNNECESSARY; 1813 return; 1814 } 1815 1816 skb->ip_summed = CHECKSUM_NONE; 1817 } 1818 1819 /* Return tx queue pointer (find last set bit) according to <cause> returned 1820 * form tx_done reg. <cause> must not be null. The return value is always a 1821 * valid queue for matching the first one found in <cause>. 1822 */ 1823 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1824 u32 cause) 1825 { 1826 int queue = fls(cause) - 1; 1827 1828 return &pp->txqs[queue]; 1829 } 1830 1831 /* Free tx queue skbuffs */ 1832 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1833 struct mvneta_tx_queue *txq, int num, 1834 struct netdev_queue *nq, bool napi) 1835 { 1836 unsigned int bytes_compl = 0, pkts_compl = 0; 1837 int i; 1838 1839 for (i = 0; i < num; i++) { 1840 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1841 struct mvneta_tx_desc *tx_desc = txq->descs + 1842 txq->txq_get_index; 1843 1844 mvneta_txq_inc_get(txq); 1845 1846 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1847 buf->type != MVNETA_TYPE_XDP_TX) 1848 dma_unmap_single(pp->dev->dev.parent, 1849 tx_desc->buf_phys_addr, 1850 tx_desc->data_size, DMA_TO_DEVICE); 1851 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1852 bytes_compl += buf->skb->len; 1853 pkts_compl++; 1854 dev_kfree_skb_any(buf->skb); 1855 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1856 buf->type == MVNETA_TYPE_XDP_NDO) { 1857 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1858 xdp_return_frame_rx_napi(buf->xdpf); 1859 else 1860 xdp_return_frame(buf->xdpf); 1861 } 1862 } 1863 1864 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1865 } 1866 1867 /* Handle end of transmission */ 1868 static void mvneta_txq_done(struct mvneta_port *pp, 1869 struct mvneta_tx_queue *txq) 1870 { 1871 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1872 int tx_done; 1873 1874 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1875 if (!tx_done) 1876 return; 1877 1878 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1879 1880 txq->count -= tx_done; 1881 1882 if (netif_tx_queue_stopped(nq)) { 1883 if (txq->count <= txq->tx_wake_threshold) 1884 netif_tx_wake_queue(nq); 1885 } 1886 } 1887 1888 /* Refill processing for SW buffer management */ 1889 /* Allocate page per descriptor */ 1890 static int mvneta_rx_refill(struct mvneta_port *pp, 1891 struct mvneta_rx_desc *rx_desc, 1892 struct mvneta_rx_queue *rxq, 1893 gfp_t gfp_mask) 1894 { 1895 dma_addr_t phys_addr; 1896 struct page *page; 1897 1898 page = page_pool_alloc_pages(rxq->page_pool, 1899 gfp_mask | __GFP_NOWARN); 1900 if (!page) 1901 return -ENOMEM; 1902 1903 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1904 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1905 1906 return 0; 1907 } 1908 1909 /* Handle tx checksum */ 1910 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1911 { 1912 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1913 int ip_hdr_len = 0; 1914 __be16 l3_proto = vlan_get_protocol(skb); 1915 u8 l4_proto; 1916 1917 if (l3_proto == htons(ETH_P_IP)) { 1918 struct iphdr *ip4h = ip_hdr(skb); 1919 1920 /* Calculate IPv4 checksum and L4 checksum */ 1921 ip_hdr_len = ip4h->ihl; 1922 l4_proto = ip4h->protocol; 1923 } else if (l3_proto == htons(ETH_P_IPV6)) { 1924 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1925 1926 /* Read l4_protocol from one of IPv6 extra headers */ 1927 if (skb_network_header_len(skb) > 0) 1928 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1929 l4_proto = ip6h->nexthdr; 1930 } else 1931 return MVNETA_TX_L4_CSUM_NOT; 1932 1933 return mvneta_txq_desc_csum(skb_network_offset(skb), 1934 l3_proto, ip_hdr_len, l4_proto); 1935 } 1936 1937 return MVNETA_TX_L4_CSUM_NOT; 1938 } 1939 1940 /* Drop packets received by the RXQ and free buffers */ 1941 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1942 struct mvneta_rx_queue *rxq) 1943 { 1944 int rx_done, i; 1945 1946 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1947 if (rx_done) 1948 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1949 1950 if (pp->bm_priv) { 1951 for (i = 0; i < rx_done; i++) { 1952 struct mvneta_rx_desc *rx_desc = 1953 mvneta_rxq_next_desc_get(rxq); 1954 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1955 struct mvneta_bm_pool *bm_pool; 1956 1957 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1958 /* Return dropped buffer to the pool */ 1959 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1960 rx_desc->buf_phys_addr); 1961 } 1962 return; 1963 } 1964 1965 for (i = 0; i < rxq->size; i++) { 1966 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1967 void *data = rxq->buf_virt_addr[i]; 1968 if (!data || !(rx_desc->buf_phys_addr)) 1969 continue; 1970 1971 page_pool_put_full_page(rxq->page_pool, data, false); 1972 } 1973 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1974 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1975 page_pool_destroy(rxq->page_pool); 1976 rxq->page_pool = NULL; 1977 } 1978 1979 static void 1980 mvneta_update_stats(struct mvneta_port *pp, 1981 struct mvneta_stats *ps) 1982 { 1983 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1984 1985 u64_stats_update_begin(&stats->syncp); 1986 stats->es.ps.rx_packets += ps->rx_packets; 1987 stats->es.ps.rx_bytes += ps->rx_bytes; 1988 /* xdp */ 1989 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1990 stats->es.ps.xdp_pass += ps->xdp_pass; 1991 stats->es.ps.xdp_drop += ps->xdp_drop; 1992 u64_stats_update_end(&stats->syncp); 1993 } 1994 1995 static inline 1996 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1997 { 1998 struct mvneta_rx_desc *rx_desc; 1999 int curr_desc = rxq->first_to_refill; 2000 int i; 2001 2002 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2003 rx_desc = rxq->descs + curr_desc; 2004 if (!(rx_desc->buf_phys_addr)) { 2005 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2006 struct mvneta_pcpu_stats *stats; 2007 2008 pr_err("Can't refill queue %d. Done %d from %d\n", 2009 rxq->id, i, rxq->refill_num); 2010 2011 stats = this_cpu_ptr(pp->stats); 2012 u64_stats_update_begin(&stats->syncp); 2013 stats->es.refill_error++; 2014 u64_stats_update_end(&stats->syncp); 2015 break; 2016 } 2017 } 2018 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2019 } 2020 rxq->refill_num -= i; 2021 rxq->first_to_refill = curr_desc; 2022 2023 return i; 2024 } 2025 2026 static void 2027 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2028 struct xdp_buff *xdp, int sync_len, bool napi) 2029 { 2030 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2031 int i; 2032 2033 for (i = 0; i < sinfo->nr_frags; i++) 2034 page_pool_put_full_page(rxq->page_pool, 2035 skb_frag_page(&sinfo->frags[i]), napi); 2036 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2037 sync_len, napi); 2038 } 2039 2040 static int 2041 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2042 struct xdp_frame *xdpf, bool dma_map) 2043 { 2044 struct mvneta_tx_desc *tx_desc; 2045 struct mvneta_tx_buf *buf; 2046 dma_addr_t dma_addr; 2047 2048 if (txq->count >= txq->tx_stop_threshold) 2049 return MVNETA_XDP_DROPPED; 2050 2051 tx_desc = mvneta_txq_next_desc_get(txq); 2052 2053 buf = &txq->buf[txq->txq_put_index]; 2054 if (dma_map) { 2055 /* ndo_xdp_xmit */ 2056 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2057 xdpf->len, DMA_TO_DEVICE); 2058 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2059 mvneta_txq_desc_put(txq); 2060 return MVNETA_XDP_DROPPED; 2061 } 2062 buf->type = MVNETA_TYPE_XDP_NDO; 2063 } else { 2064 struct page *page = virt_to_page(xdpf->data); 2065 2066 dma_addr = page_pool_get_dma_addr(page) + 2067 sizeof(*xdpf) + xdpf->headroom; 2068 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2069 xdpf->len, DMA_BIDIRECTIONAL); 2070 buf->type = MVNETA_TYPE_XDP_TX; 2071 } 2072 buf->xdpf = xdpf; 2073 2074 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2075 tx_desc->buf_phys_addr = dma_addr; 2076 tx_desc->data_size = xdpf->len; 2077 2078 mvneta_txq_inc_put(txq); 2079 txq->pending++; 2080 txq->count++; 2081 2082 return MVNETA_XDP_TX; 2083 } 2084 2085 static int 2086 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2087 { 2088 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2089 struct mvneta_tx_queue *txq; 2090 struct netdev_queue *nq; 2091 struct xdp_frame *xdpf; 2092 int cpu; 2093 u32 ret; 2094 2095 xdpf = xdp_convert_buff_to_frame(xdp); 2096 if (unlikely(!xdpf)) 2097 return MVNETA_XDP_DROPPED; 2098 2099 cpu = smp_processor_id(); 2100 txq = &pp->txqs[cpu % txq_number]; 2101 nq = netdev_get_tx_queue(pp->dev, txq->id); 2102 2103 __netif_tx_lock(nq, cpu); 2104 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2105 if (ret == MVNETA_XDP_TX) { 2106 u64_stats_update_begin(&stats->syncp); 2107 stats->es.ps.tx_bytes += xdpf->len; 2108 stats->es.ps.tx_packets++; 2109 stats->es.ps.xdp_tx++; 2110 u64_stats_update_end(&stats->syncp); 2111 2112 mvneta_txq_pend_desc_add(pp, txq, 0); 2113 } else { 2114 u64_stats_update_begin(&stats->syncp); 2115 stats->es.ps.xdp_tx_err++; 2116 u64_stats_update_end(&stats->syncp); 2117 } 2118 __netif_tx_unlock(nq); 2119 2120 return ret; 2121 } 2122 2123 static int 2124 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2125 struct xdp_frame **frames, u32 flags) 2126 { 2127 struct mvneta_port *pp = netdev_priv(dev); 2128 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2129 int i, nxmit_byte = 0, nxmit = num_frame; 2130 int cpu = smp_processor_id(); 2131 struct mvneta_tx_queue *txq; 2132 struct netdev_queue *nq; 2133 u32 ret; 2134 2135 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2136 return -ENETDOWN; 2137 2138 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2139 return -EINVAL; 2140 2141 txq = &pp->txqs[cpu % txq_number]; 2142 nq = netdev_get_tx_queue(pp->dev, txq->id); 2143 2144 __netif_tx_lock(nq, cpu); 2145 for (i = 0; i < num_frame; i++) { 2146 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2147 if (ret == MVNETA_XDP_TX) { 2148 nxmit_byte += frames[i]->len; 2149 } else { 2150 xdp_return_frame_rx_napi(frames[i]); 2151 nxmit--; 2152 } 2153 } 2154 2155 if (unlikely(flags & XDP_XMIT_FLUSH)) 2156 mvneta_txq_pend_desc_add(pp, txq, 0); 2157 __netif_tx_unlock(nq); 2158 2159 u64_stats_update_begin(&stats->syncp); 2160 stats->es.ps.tx_bytes += nxmit_byte; 2161 stats->es.ps.tx_packets += nxmit; 2162 stats->es.ps.xdp_xmit += nxmit; 2163 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2164 u64_stats_update_end(&stats->syncp); 2165 2166 return nxmit; 2167 } 2168 2169 static int 2170 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2171 struct bpf_prog *prog, struct xdp_buff *xdp, 2172 u32 frame_sz, struct mvneta_stats *stats) 2173 { 2174 unsigned int len, data_len, sync; 2175 u32 ret, act; 2176 2177 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2178 data_len = xdp->data_end - xdp->data; 2179 act = bpf_prog_run_xdp(prog, xdp); 2180 2181 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2182 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2183 sync = max(sync, len); 2184 2185 switch (act) { 2186 case XDP_PASS: 2187 stats->xdp_pass++; 2188 return MVNETA_XDP_PASS; 2189 case XDP_REDIRECT: { 2190 int err; 2191 2192 err = xdp_do_redirect(pp->dev, xdp, prog); 2193 if (unlikely(err)) { 2194 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true); 2195 ret = MVNETA_XDP_DROPPED; 2196 } else { 2197 ret = MVNETA_XDP_REDIR; 2198 stats->xdp_redirect++; 2199 } 2200 break; 2201 } 2202 case XDP_TX: 2203 ret = mvneta_xdp_xmit_back(pp, xdp); 2204 if (ret != MVNETA_XDP_TX) 2205 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true); 2206 break; 2207 default: 2208 bpf_warn_invalid_xdp_action(act); 2209 fallthrough; 2210 case XDP_ABORTED: 2211 trace_xdp_exception(pp->dev, prog, act); 2212 fallthrough; 2213 case XDP_DROP: 2214 mvneta_xdp_put_buff(pp, rxq, xdp, sync, true); 2215 ret = MVNETA_XDP_DROPPED; 2216 stats->xdp_drop++; 2217 break; 2218 } 2219 2220 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2221 stats->rx_packets++; 2222 2223 return ret; 2224 } 2225 2226 static void 2227 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2228 struct mvneta_rx_desc *rx_desc, 2229 struct mvneta_rx_queue *rxq, 2230 struct xdp_buff *xdp, int *size, 2231 struct page *page) 2232 { 2233 unsigned char *data = page_address(page); 2234 int data_len = -MVNETA_MH_SIZE, len; 2235 struct net_device *dev = pp->dev; 2236 enum dma_data_direction dma_dir; 2237 struct skb_shared_info *sinfo; 2238 2239 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2240 len = MVNETA_MAX_RX_BUF_SIZE; 2241 data_len += len; 2242 } else { 2243 len = *size; 2244 data_len += len - ETH_FCS_LEN; 2245 } 2246 *size = *size - len; 2247 2248 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2249 dma_sync_single_for_cpu(dev->dev.parent, 2250 rx_desc->buf_phys_addr, 2251 len, dma_dir); 2252 2253 rx_desc->buf_phys_addr = 0; 2254 2255 /* Prefetch header */ 2256 prefetch(data); 2257 2258 xdp->data_hard_start = data; 2259 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2260 xdp->data_end = xdp->data + data_len; 2261 xdp_set_data_meta_invalid(xdp); 2262 2263 sinfo = xdp_get_shared_info_from_buff(xdp); 2264 sinfo->nr_frags = 0; 2265 } 2266 2267 static void 2268 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2269 struct mvneta_rx_desc *rx_desc, 2270 struct mvneta_rx_queue *rxq, 2271 struct xdp_buff *xdp, int *size, 2272 struct page *page) 2273 { 2274 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2275 struct net_device *dev = pp->dev; 2276 enum dma_data_direction dma_dir; 2277 int data_len, len; 2278 2279 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2280 len = MVNETA_MAX_RX_BUF_SIZE; 2281 data_len = len; 2282 } else { 2283 len = *size; 2284 data_len = len - ETH_FCS_LEN; 2285 } 2286 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2287 dma_sync_single_for_cpu(dev->dev.parent, 2288 rx_desc->buf_phys_addr, 2289 len, dma_dir); 2290 rx_desc->buf_phys_addr = 0; 2291 2292 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) { 2293 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags]; 2294 2295 skb_frag_off_set(frag, pp->rx_offset_correction); 2296 skb_frag_size_set(frag, data_len); 2297 __skb_frag_set_page(frag, page); 2298 sinfo->nr_frags++; 2299 } else { 2300 page_pool_put_full_page(rxq->page_pool, page, true); 2301 } 2302 *size -= len; 2303 } 2304 2305 static struct sk_buff * 2306 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2307 struct xdp_buff *xdp, u32 desc_status) 2308 { 2309 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2310 int i, num_frags = sinfo->nr_frags; 2311 struct sk_buff *skb; 2312 2313 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2314 if (!skb) 2315 return ERR_PTR(-ENOMEM); 2316 2317 page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data)); 2318 2319 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2320 skb_put(skb, xdp->data_end - xdp->data); 2321 mvneta_rx_csum(pp, desc_status, skb); 2322 2323 for (i = 0; i < num_frags; i++) { 2324 skb_frag_t *frag = &sinfo->frags[i]; 2325 2326 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2327 skb_frag_page(frag), skb_frag_off(frag), 2328 skb_frag_size(frag), PAGE_SIZE); 2329 page_pool_release_page(rxq->page_pool, skb_frag_page(frag)); 2330 } 2331 2332 return skb; 2333 } 2334 2335 /* Main rx processing when using software buffer management */ 2336 static int mvneta_rx_swbm(struct napi_struct *napi, 2337 struct mvneta_port *pp, int budget, 2338 struct mvneta_rx_queue *rxq) 2339 { 2340 int rx_proc = 0, rx_todo, refill, size = 0; 2341 struct net_device *dev = pp->dev; 2342 struct xdp_buff xdp_buf = { 2343 .frame_sz = PAGE_SIZE, 2344 .rxq = &rxq->xdp_rxq, 2345 }; 2346 struct mvneta_stats ps = {}; 2347 struct bpf_prog *xdp_prog; 2348 u32 desc_status, frame_sz; 2349 2350 /* Get number of received packets */ 2351 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2352 2353 rcu_read_lock(); 2354 xdp_prog = READ_ONCE(pp->xdp_prog); 2355 2356 /* Fairness NAPI loop */ 2357 while (rx_proc < budget && rx_proc < rx_todo) { 2358 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2359 u32 rx_status, index; 2360 struct sk_buff *skb; 2361 struct page *page; 2362 2363 index = rx_desc - rxq->descs; 2364 page = (struct page *)rxq->buf_virt_addr[index]; 2365 2366 rx_status = rx_desc->status; 2367 rx_proc++; 2368 rxq->refill_num++; 2369 2370 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2371 /* Check errors only for FIRST descriptor */ 2372 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2373 mvneta_rx_error(pp, rx_desc); 2374 goto next; 2375 } 2376 2377 size = rx_desc->data_size; 2378 frame_sz = size - ETH_FCS_LEN; 2379 desc_status = rx_status; 2380 2381 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2382 &size, page); 2383 } else { 2384 if (unlikely(!xdp_buf.data_hard_start)) { 2385 rx_desc->buf_phys_addr = 0; 2386 page_pool_put_full_page(rxq->page_pool, page, 2387 true); 2388 continue; 2389 } 2390 2391 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2392 &size, page); 2393 } /* Middle or Last descriptor */ 2394 2395 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2396 /* no last descriptor this time */ 2397 continue; 2398 2399 if (size) { 2400 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true); 2401 goto next; 2402 } 2403 2404 if (xdp_prog && 2405 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2406 goto next; 2407 2408 skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status); 2409 if (IS_ERR(skb)) { 2410 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2411 2412 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true); 2413 2414 u64_stats_update_begin(&stats->syncp); 2415 stats->es.skb_alloc_error++; 2416 stats->rx_dropped++; 2417 u64_stats_update_end(&stats->syncp); 2418 2419 goto next; 2420 } 2421 2422 ps.rx_bytes += skb->len; 2423 ps.rx_packets++; 2424 2425 skb->protocol = eth_type_trans(skb, dev); 2426 napi_gro_receive(napi, skb); 2427 next: 2428 xdp_buf.data_hard_start = NULL; 2429 } 2430 rcu_read_unlock(); 2431 2432 if (xdp_buf.data_hard_start) 2433 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true); 2434 2435 if (ps.xdp_redirect) 2436 xdp_do_flush_map(); 2437 2438 if (ps.rx_packets) 2439 mvneta_update_stats(pp, &ps); 2440 2441 /* return some buffers to hardware queue, one at a time is too slow */ 2442 refill = mvneta_rx_refill_queue(pp, rxq); 2443 2444 /* Update rxq management counters */ 2445 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2446 2447 return ps.rx_packets; 2448 } 2449 2450 /* Main rx processing when using hardware buffer management */ 2451 static int mvneta_rx_hwbm(struct napi_struct *napi, 2452 struct mvneta_port *pp, int rx_todo, 2453 struct mvneta_rx_queue *rxq) 2454 { 2455 struct net_device *dev = pp->dev; 2456 int rx_done; 2457 u32 rcvd_pkts = 0; 2458 u32 rcvd_bytes = 0; 2459 2460 /* Get number of received packets */ 2461 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2462 2463 if (rx_todo > rx_done) 2464 rx_todo = rx_done; 2465 2466 rx_done = 0; 2467 2468 /* Fairness NAPI loop */ 2469 while (rx_done < rx_todo) { 2470 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2471 struct mvneta_bm_pool *bm_pool = NULL; 2472 struct sk_buff *skb; 2473 unsigned char *data; 2474 dma_addr_t phys_addr; 2475 u32 rx_status, frag_size; 2476 int rx_bytes, err; 2477 u8 pool_id; 2478 2479 rx_done++; 2480 rx_status = rx_desc->status; 2481 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2482 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2483 phys_addr = rx_desc->buf_phys_addr; 2484 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2485 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2486 2487 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2488 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2489 err_drop_frame_ret_pool: 2490 /* Return the buffer to the pool */ 2491 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2492 rx_desc->buf_phys_addr); 2493 err_drop_frame: 2494 mvneta_rx_error(pp, rx_desc); 2495 /* leave the descriptor untouched */ 2496 continue; 2497 } 2498 2499 if (rx_bytes <= rx_copybreak) { 2500 /* better copy a small frame and not unmap the DMA region */ 2501 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2502 if (unlikely(!skb)) 2503 goto err_drop_frame_ret_pool; 2504 2505 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2506 rx_desc->buf_phys_addr, 2507 MVNETA_MH_SIZE + NET_SKB_PAD, 2508 rx_bytes, 2509 DMA_FROM_DEVICE); 2510 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2511 rx_bytes); 2512 2513 skb->protocol = eth_type_trans(skb, dev); 2514 mvneta_rx_csum(pp, rx_status, skb); 2515 napi_gro_receive(napi, skb); 2516 2517 rcvd_pkts++; 2518 rcvd_bytes += rx_bytes; 2519 2520 /* Return the buffer to the pool */ 2521 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2522 rx_desc->buf_phys_addr); 2523 2524 /* leave the descriptor and buffer untouched */ 2525 continue; 2526 } 2527 2528 /* Refill processing */ 2529 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2530 if (err) { 2531 struct mvneta_pcpu_stats *stats; 2532 2533 netdev_err(dev, "Linux processing - Can't refill\n"); 2534 2535 stats = this_cpu_ptr(pp->stats); 2536 u64_stats_update_begin(&stats->syncp); 2537 stats->es.refill_error++; 2538 u64_stats_update_end(&stats->syncp); 2539 2540 goto err_drop_frame_ret_pool; 2541 } 2542 2543 frag_size = bm_pool->hwbm_pool.frag_size; 2544 2545 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2546 2547 /* After refill old buffer has to be unmapped regardless 2548 * the skb is successfully built or not. 2549 */ 2550 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2551 bm_pool->buf_size, DMA_FROM_DEVICE); 2552 if (!skb) 2553 goto err_drop_frame; 2554 2555 rcvd_pkts++; 2556 rcvd_bytes += rx_bytes; 2557 2558 /* Linux processing */ 2559 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2560 skb_put(skb, rx_bytes); 2561 2562 skb->protocol = eth_type_trans(skb, dev); 2563 2564 mvneta_rx_csum(pp, rx_status, skb); 2565 2566 napi_gro_receive(napi, skb); 2567 } 2568 2569 if (rcvd_pkts) { 2570 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2571 2572 u64_stats_update_begin(&stats->syncp); 2573 stats->es.ps.rx_packets += rcvd_pkts; 2574 stats->es.ps.rx_bytes += rcvd_bytes; 2575 u64_stats_update_end(&stats->syncp); 2576 } 2577 2578 /* Update rxq management counters */ 2579 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2580 2581 return rx_done; 2582 } 2583 2584 static inline void 2585 mvneta_tso_put_hdr(struct sk_buff *skb, 2586 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2587 { 2588 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2589 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2590 struct mvneta_tx_desc *tx_desc; 2591 2592 tx_desc = mvneta_txq_next_desc_get(txq); 2593 tx_desc->data_size = hdr_len; 2594 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2595 tx_desc->command |= MVNETA_TXD_F_DESC; 2596 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2597 txq->txq_put_index * TSO_HEADER_SIZE; 2598 buf->type = MVNETA_TYPE_SKB; 2599 buf->skb = NULL; 2600 2601 mvneta_txq_inc_put(txq); 2602 } 2603 2604 static inline int 2605 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2606 struct sk_buff *skb, char *data, int size, 2607 bool last_tcp, bool is_last) 2608 { 2609 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2610 struct mvneta_tx_desc *tx_desc; 2611 2612 tx_desc = mvneta_txq_next_desc_get(txq); 2613 tx_desc->data_size = size; 2614 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2615 size, DMA_TO_DEVICE); 2616 if (unlikely(dma_mapping_error(dev->dev.parent, 2617 tx_desc->buf_phys_addr))) { 2618 mvneta_txq_desc_put(txq); 2619 return -ENOMEM; 2620 } 2621 2622 tx_desc->command = 0; 2623 buf->type = MVNETA_TYPE_SKB; 2624 buf->skb = NULL; 2625 2626 if (last_tcp) { 2627 /* last descriptor in the TCP packet */ 2628 tx_desc->command = MVNETA_TXD_L_DESC; 2629 2630 /* last descriptor in SKB */ 2631 if (is_last) 2632 buf->skb = skb; 2633 } 2634 mvneta_txq_inc_put(txq); 2635 return 0; 2636 } 2637 2638 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2639 struct mvneta_tx_queue *txq) 2640 { 2641 int hdr_len, total_len, data_left; 2642 int desc_count = 0; 2643 struct mvneta_port *pp = netdev_priv(dev); 2644 struct tso_t tso; 2645 int i; 2646 2647 /* Count needed descriptors */ 2648 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2649 return 0; 2650 2651 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2652 pr_info("*** Is this even possible???!?!?\n"); 2653 return 0; 2654 } 2655 2656 /* Initialize the TSO handler, and prepare the first payload */ 2657 hdr_len = tso_start(skb, &tso); 2658 2659 total_len = skb->len - hdr_len; 2660 while (total_len > 0) { 2661 char *hdr; 2662 2663 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2664 total_len -= data_left; 2665 desc_count++; 2666 2667 /* prepare packet headers: MAC + IP + TCP */ 2668 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2669 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2670 2671 mvneta_tso_put_hdr(skb, pp, txq); 2672 2673 while (data_left > 0) { 2674 int size; 2675 desc_count++; 2676 2677 size = min_t(int, tso.size, data_left); 2678 2679 if (mvneta_tso_put_data(dev, txq, skb, 2680 tso.data, size, 2681 size == data_left, 2682 total_len == 0)) 2683 goto err_release; 2684 data_left -= size; 2685 2686 tso_build_data(skb, &tso, size); 2687 } 2688 } 2689 2690 return desc_count; 2691 2692 err_release: 2693 /* Release all used data descriptors; header descriptors must not 2694 * be DMA-unmapped. 2695 */ 2696 for (i = desc_count - 1; i >= 0; i--) { 2697 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2698 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2699 dma_unmap_single(pp->dev->dev.parent, 2700 tx_desc->buf_phys_addr, 2701 tx_desc->data_size, 2702 DMA_TO_DEVICE); 2703 mvneta_txq_desc_put(txq); 2704 } 2705 return 0; 2706 } 2707 2708 /* Handle tx fragmentation processing */ 2709 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2710 struct mvneta_tx_queue *txq) 2711 { 2712 struct mvneta_tx_desc *tx_desc; 2713 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2714 2715 for (i = 0; i < nr_frags; i++) { 2716 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2717 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2718 void *addr = skb_frag_address(frag); 2719 2720 tx_desc = mvneta_txq_next_desc_get(txq); 2721 tx_desc->data_size = skb_frag_size(frag); 2722 2723 tx_desc->buf_phys_addr = 2724 dma_map_single(pp->dev->dev.parent, addr, 2725 tx_desc->data_size, DMA_TO_DEVICE); 2726 2727 if (dma_mapping_error(pp->dev->dev.parent, 2728 tx_desc->buf_phys_addr)) { 2729 mvneta_txq_desc_put(txq); 2730 goto error; 2731 } 2732 2733 if (i == nr_frags - 1) { 2734 /* Last descriptor */ 2735 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2736 buf->skb = skb; 2737 } else { 2738 /* Descriptor in the middle: Not First, Not Last */ 2739 tx_desc->command = 0; 2740 buf->skb = NULL; 2741 } 2742 buf->type = MVNETA_TYPE_SKB; 2743 mvneta_txq_inc_put(txq); 2744 } 2745 2746 return 0; 2747 2748 error: 2749 /* Release all descriptors that were used to map fragments of 2750 * this packet, as well as the corresponding DMA mappings 2751 */ 2752 for (i = i - 1; i >= 0; i--) { 2753 tx_desc = txq->descs + i; 2754 dma_unmap_single(pp->dev->dev.parent, 2755 tx_desc->buf_phys_addr, 2756 tx_desc->data_size, 2757 DMA_TO_DEVICE); 2758 mvneta_txq_desc_put(txq); 2759 } 2760 2761 return -ENOMEM; 2762 } 2763 2764 /* Main tx processing */ 2765 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2766 { 2767 struct mvneta_port *pp = netdev_priv(dev); 2768 u16 txq_id = skb_get_queue_mapping(skb); 2769 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2770 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2771 struct mvneta_tx_desc *tx_desc; 2772 int len = skb->len; 2773 int frags = 0; 2774 u32 tx_cmd; 2775 2776 if (!netif_running(dev)) 2777 goto out; 2778 2779 if (skb_is_gso(skb)) { 2780 frags = mvneta_tx_tso(skb, dev, txq); 2781 goto out; 2782 } 2783 2784 frags = skb_shinfo(skb)->nr_frags + 1; 2785 2786 /* Get a descriptor for the first part of the packet */ 2787 tx_desc = mvneta_txq_next_desc_get(txq); 2788 2789 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2790 2791 tx_desc->data_size = skb_headlen(skb); 2792 2793 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2794 tx_desc->data_size, 2795 DMA_TO_DEVICE); 2796 if (unlikely(dma_mapping_error(dev->dev.parent, 2797 tx_desc->buf_phys_addr))) { 2798 mvneta_txq_desc_put(txq); 2799 frags = 0; 2800 goto out; 2801 } 2802 2803 buf->type = MVNETA_TYPE_SKB; 2804 if (frags == 1) { 2805 /* First and Last descriptor */ 2806 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2807 tx_desc->command = tx_cmd; 2808 buf->skb = skb; 2809 mvneta_txq_inc_put(txq); 2810 } else { 2811 /* First but not Last */ 2812 tx_cmd |= MVNETA_TXD_F_DESC; 2813 buf->skb = NULL; 2814 mvneta_txq_inc_put(txq); 2815 tx_desc->command = tx_cmd; 2816 /* Continue with other skb fragments */ 2817 if (mvneta_tx_frag_process(pp, skb, txq)) { 2818 dma_unmap_single(dev->dev.parent, 2819 tx_desc->buf_phys_addr, 2820 tx_desc->data_size, 2821 DMA_TO_DEVICE); 2822 mvneta_txq_desc_put(txq); 2823 frags = 0; 2824 goto out; 2825 } 2826 } 2827 2828 out: 2829 if (frags > 0) { 2830 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2831 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2832 2833 netdev_tx_sent_queue(nq, len); 2834 2835 txq->count += frags; 2836 if (txq->count >= txq->tx_stop_threshold) 2837 netif_tx_stop_queue(nq); 2838 2839 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2840 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2841 mvneta_txq_pend_desc_add(pp, txq, frags); 2842 else 2843 txq->pending += frags; 2844 2845 u64_stats_update_begin(&stats->syncp); 2846 stats->es.ps.tx_bytes += len; 2847 stats->es.ps.tx_packets++; 2848 u64_stats_update_end(&stats->syncp); 2849 } else { 2850 dev->stats.tx_dropped++; 2851 dev_kfree_skb_any(skb); 2852 } 2853 2854 return NETDEV_TX_OK; 2855 } 2856 2857 2858 /* Free tx resources, when resetting a port */ 2859 static void mvneta_txq_done_force(struct mvneta_port *pp, 2860 struct mvneta_tx_queue *txq) 2861 2862 { 2863 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2864 int tx_done = txq->count; 2865 2866 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 2867 2868 /* reset txq */ 2869 txq->count = 0; 2870 txq->txq_put_index = 0; 2871 txq->txq_get_index = 0; 2872 } 2873 2874 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2875 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2876 */ 2877 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2878 { 2879 struct mvneta_tx_queue *txq; 2880 struct netdev_queue *nq; 2881 int cpu = smp_processor_id(); 2882 2883 while (cause_tx_done) { 2884 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2885 2886 nq = netdev_get_tx_queue(pp->dev, txq->id); 2887 __netif_tx_lock(nq, cpu); 2888 2889 if (txq->count) 2890 mvneta_txq_done(pp, txq); 2891 2892 __netif_tx_unlock(nq); 2893 cause_tx_done &= ~((1 << txq->id)); 2894 } 2895 } 2896 2897 /* Compute crc8 of the specified address, using a unique algorithm , 2898 * according to hw spec, different than generic crc8 algorithm 2899 */ 2900 static int mvneta_addr_crc(unsigned char *addr) 2901 { 2902 int crc = 0; 2903 int i; 2904 2905 for (i = 0; i < ETH_ALEN; i++) { 2906 int j; 2907 2908 crc = (crc ^ addr[i]) << 8; 2909 for (j = 7; j >= 0; j--) { 2910 if (crc & (0x100 << j)) 2911 crc ^= 0x107 << j; 2912 } 2913 } 2914 2915 return crc; 2916 } 2917 2918 /* This method controls the net device special MAC multicast support. 2919 * The Special Multicast Table for MAC addresses supports MAC of the form 2920 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2921 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2922 * Table entries in the DA-Filter table. This method set the Special 2923 * Multicast Table appropriate entry. 2924 */ 2925 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2926 unsigned char last_byte, 2927 int queue) 2928 { 2929 unsigned int smc_table_reg; 2930 unsigned int tbl_offset; 2931 unsigned int reg_offset; 2932 2933 /* Register offset from SMC table base */ 2934 tbl_offset = (last_byte / 4); 2935 /* Entry offset within the above reg */ 2936 reg_offset = last_byte % 4; 2937 2938 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2939 + tbl_offset * 4)); 2940 2941 if (queue == -1) 2942 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2943 else { 2944 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2945 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2946 } 2947 2948 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2949 smc_table_reg); 2950 } 2951 2952 /* This method controls the network device Other MAC multicast support. 2953 * The Other Multicast Table is used for multicast of another type. 2954 * A CRC-8 is used as an index to the Other Multicast Table entries 2955 * in the DA-Filter table. 2956 * The method gets the CRC-8 value from the calling routine and 2957 * sets the Other Multicast Table appropriate entry according to the 2958 * specified CRC-8 . 2959 */ 2960 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2961 unsigned char crc8, 2962 int queue) 2963 { 2964 unsigned int omc_table_reg; 2965 unsigned int tbl_offset; 2966 unsigned int reg_offset; 2967 2968 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2969 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2970 2971 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2972 2973 if (queue == -1) { 2974 /* Clear accepts frame bit at specified Other DA table entry */ 2975 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2976 } else { 2977 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2978 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2979 } 2980 2981 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2982 } 2983 2984 /* The network device supports multicast using two tables: 2985 * 1) Special Multicast Table for MAC addresses of the form 2986 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2987 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2988 * Table entries in the DA-Filter table. 2989 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2990 * is used as an index to the Other Multicast Table entries in the 2991 * DA-Filter table. 2992 */ 2993 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2994 int queue) 2995 { 2996 unsigned char crc_result = 0; 2997 2998 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2999 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3000 return 0; 3001 } 3002 3003 crc_result = mvneta_addr_crc(p_addr); 3004 if (queue == -1) { 3005 if (pp->mcast_count[crc_result] == 0) { 3006 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3007 crc_result); 3008 return -EINVAL; 3009 } 3010 3011 pp->mcast_count[crc_result]--; 3012 if (pp->mcast_count[crc_result] != 0) { 3013 netdev_info(pp->dev, 3014 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3015 pp->mcast_count[crc_result], crc_result); 3016 return -EINVAL; 3017 } 3018 } else 3019 pp->mcast_count[crc_result]++; 3020 3021 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3022 3023 return 0; 3024 } 3025 3026 /* Configure Fitering mode of Ethernet port */ 3027 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3028 int is_promisc) 3029 { 3030 u32 port_cfg_reg, val; 3031 3032 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3033 3034 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3035 3036 /* Set / Clear UPM bit in port configuration register */ 3037 if (is_promisc) { 3038 /* Accept all Unicast addresses */ 3039 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3040 val |= MVNETA_FORCE_UNI; 3041 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3042 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3043 } else { 3044 /* Reject all Unicast addresses */ 3045 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3046 val &= ~MVNETA_FORCE_UNI; 3047 } 3048 3049 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3050 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3051 } 3052 3053 /* register unicast and multicast addresses */ 3054 static void mvneta_set_rx_mode(struct net_device *dev) 3055 { 3056 struct mvneta_port *pp = netdev_priv(dev); 3057 struct netdev_hw_addr *ha; 3058 3059 if (dev->flags & IFF_PROMISC) { 3060 /* Accept all: Multicast + Unicast */ 3061 mvneta_rx_unicast_promisc_set(pp, 1); 3062 mvneta_set_ucast_table(pp, pp->rxq_def); 3063 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3064 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3065 } else { 3066 /* Accept single Unicast */ 3067 mvneta_rx_unicast_promisc_set(pp, 0); 3068 mvneta_set_ucast_table(pp, -1); 3069 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3070 3071 if (dev->flags & IFF_ALLMULTI) { 3072 /* Accept all multicast */ 3073 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3074 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3075 } else { 3076 /* Accept only initialized multicast */ 3077 mvneta_set_special_mcast_table(pp, -1); 3078 mvneta_set_other_mcast_table(pp, -1); 3079 3080 if (!netdev_mc_empty(dev)) { 3081 netdev_for_each_mc_addr(ha, dev) { 3082 mvneta_mcast_addr_set(pp, ha->addr, 3083 pp->rxq_def); 3084 } 3085 } 3086 } 3087 } 3088 } 3089 3090 /* Interrupt handling - the callback for request_irq() */ 3091 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3092 { 3093 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3094 3095 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3096 napi_schedule(&pp->napi); 3097 3098 return IRQ_HANDLED; 3099 } 3100 3101 /* Interrupt handling - the callback for request_percpu_irq() */ 3102 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3103 { 3104 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3105 3106 disable_percpu_irq(port->pp->dev->irq); 3107 napi_schedule(&port->napi); 3108 3109 return IRQ_HANDLED; 3110 } 3111 3112 static void mvneta_link_change(struct mvneta_port *pp) 3113 { 3114 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3115 3116 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3117 } 3118 3119 /* NAPI handler 3120 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3121 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3122 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3123 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3124 * Each CPU has its own causeRxTx register 3125 */ 3126 static int mvneta_poll(struct napi_struct *napi, int budget) 3127 { 3128 int rx_done = 0; 3129 u32 cause_rx_tx; 3130 int rx_queue; 3131 struct mvneta_port *pp = netdev_priv(napi->dev); 3132 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3133 3134 if (!netif_running(pp->dev)) { 3135 napi_complete(napi); 3136 return rx_done; 3137 } 3138 3139 /* Read cause register */ 3140 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3141 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3142 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3143 3144 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3145 3146 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3147 MVNETA_CAUSE_LINK_CHANGE)) 3148 mvneta_link_change(pp); 3149 } 3150 3151 /* Release Tx descriptors */ 3152 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3153 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3154 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3155 } 3156 3157 /* For the case where the last mvneta_poll did not process all 3158 * RX packets 3159 */ 3160 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3161 port->cause_rx_tx; 3162 3163 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3164 if (rx_queue) { 3165 rx_queue = rx_queue - 1; 3166 if (pp->bm_priv) 3167 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3168 &pp->rxqs[rx_queue]); 3169 else 3170 rx_done = mvneta_rx_swbm(napi, pp, budget, 3171 &pp->rxqs[rx_queue]); 3172 } 3173 3174 if (rx_done < budget) { 3175 cause_rx_tx = 0; 3176 napi_complete_done(napi, rx_done); 3177 3178 if (pp->neta_armada3700) { 3179 unsigned long flags; 3180 3181 local_irq_save(flags); 3182 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3183 MVNETA_RX_INTR_MASK(rxq_number) | 3184 MVNETA_TX_INTR_MASK(txq_number) | 3185 MVNETA_MISCINTR_INTR_MASK); 3186 local_irq_restore(flags); 3187 } else { 3188 enable_percpu_irq(pp->dev->irq, 0); 3189 } 3190 } 3191 3192 if (pp->neta_armada3700) 3193 pp->cause_rx_tx = cause_rx_tx; 3194 else 3195 port->cause_rx_tx = cause_rx_tx; 3196 3197 return rx_done; 3198 } 3199 3200 static int mvneta_create_page_pool(struct mvneta_port *pp, 3201 struct mvneta_rx_queue *rxq, int size) 3202 { 3203 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3204 struct page_pool_params pp_params = { 3205 .order = 0, 3206 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3207 .pool_size = size, 3208 .nid = NUMA_NO_NODE, 3209 .dev = pp->dev->dev.parent, 3210 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3211 .offset = pp->rx_offset_correction, 3212 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3213 }; 3214 int err; 3215 3216 rxq->page_pool = page_pool_create(&pp_params); 3217 if (IS_ERR(rxq->page_pool)) { 3218 err = PTR_ERR(rxq->page_pool); 3219 rxq->page_pool = NULL; 3220 return err; 3221 } 3222 3223 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3224 if (err < 0) 3225 goto err_free_pp; 3226 3227 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3228 rxq->page_pool); 3229 if (err) 3230 goto err_unregister_rxq; 3231 3232 return 0; 3233 3234 err_unregister_rxq: 3235 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3236 err_free_pp: 3237 page_pool_destroy(rxq->page_pool); 3238 rxq->page_pool = NULL; 3239 return err; 3240 } 3241 3242 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3243 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3244 int num) 3245 { 3246 int i, err; 3247 3248 err = mvneta_create_page_pool(pp, rxq, num); 3249 if (err < 0) 3250 return err; 3251 3252 for (i = 0; i < num; i++) { 3253 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3254 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3255 GFP_KERNEL) != 0) { 3256 netdev_err(pp->dev, 3257 "%s:rxq %d, %d of %d buffs filled\n", 3258 __func__, rxq->id, i, num); 3259 break; 3260 } 3261 } 3262 3263 /* Add this number of RX descriptors as non occupied (ready to 3264 * get packets) 3265 */ 3266 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3267 3268 return i; 3269 } 3270 3271 /* Free all packets pending transmit from all TXQs and reset TX port */ 3272 static void mvneta_tx_reset(struct mvneta_port *pp) 3273 { 3274 int queue; 3275 3276 /* free the skb's in the tx ring */ 3277 for (queue = 0; queue < txq_number; queue++) 3278 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3279 3280 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3281 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3282 } 3283 3284 static void mvneta_rx_reset(struct mvneta_port *pp) 3285 { 3286 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3287 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3288 } 3289 3290 /* Rx/Tx queue initialization/cleanup methods */ 3291 3292 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3293 struct mvneta_rx_queue *rxq) 3294 { 3295 rxq->size = pp->rx_ring_size; 3296 3297 /* Allocate memory for RX descriptors */ 3298 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3299 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3300 &rxq->descs_phys, GFP_KERNEL); 3301 if (!rxq->descs) 3302 return -ENOMEM; 3303 3304 rxq->last_desc = rxq->size - 1; 3305 3306 return 0; 3307 } 3308 3309 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3310 struct mvneta_rx_queue *rxq) 3311 { 3312 /* Set Rx descriptors queue starting address */ 3313 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3314 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3315 3316 /* Set coalescing pkts and time */ 3317 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3318 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3319 3320 if (!pp->bm_priv) { 3321 /* Set Offset */ 3322 mvneta_rxq_offset_set(pp, rxq, 0); 3323 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3324 MVNETA_MAX_RX_BUF_SIZE : 3325 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3326 mvneta_rxq_bm_disable(pp, rxq); 3327 mvneta_rxq_fill(pp, rxq, rxq->size); 3328 } else { 3329 /* Set Offset */ 3330 mvneta_rxq_offset_set(pp, rxq, 3331 NET_SKB_PAD - pp->rx_offset_correction); 3332 3333 mvneta_rxq_bm_enable(pp, rxq); 3334 /* Fill RXQ with buffers from RX pool */ 3335 mvneta_rxq_long_pool_set(pp, rxq); 3336 mvneta_rxq_short_pool_set(pp, rxq); 3337 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3338 } 3339 } 3340 3341 /* Create a specified RX queue */ 3342 static int mvneta_rxq_init(struct mvneta_port *pp, 3343 struct mvneta_rx_queue *rxq) 3344 3345 { 3346 int ret; 3347 3348 ret = mvneta_rxq_sw_init(pp, rxq); 3349 if (ret < 0) 3350 return ret; 3351 3352 mvneta_rxq_hw_init(pp, rxq); 3353 3354 return 0; 3355 } 3356 3357 /* Cleanup Rx queue */ 3358 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3359 struct mvneta_rx_queue *rxq) 3360 { 3361 mvneta_rxq_drop_pkts(pp, rxq); 3362 3363 if (rxq->descs) 3364 dma_free_coherent(pp->dev->dev.parent, 3365 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3366 rxq->descs, 3367 rxq->descs_phys); 3368 3369 rxq->descs = NULL; 3370 rxq->last_desc = 0; 3371 rxq->next_desc_to_proc = 0; 3372 rxq->descs_phys = 0; 3373 rxq->first_to_refill = 0; 3374 rxq->refill_num = 0; 3375 } 3376 3377 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3378 struct mvneta_tx_queue *txq) 3379 { 3380 int cpu; 3381 3382 txq->size = pp->tx_ring_size; 3383 3384 /* A queue must always have room for at least one skb. 3385 * Therefore, stop the queue when the free entries reaches 3386 * the maximum number of descriptors per skb. 3387 */ 3388 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3389 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3390 3391 /* Allocate memory for TX descriptors */ 3392 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3393 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3394 &txq->descs_phys, GFP_KERNEL); 3395 if (!txq->descs) 3396 return -ENOMEM; 3397 3398 txq->last_desc = txq->size - 1; 3399 3400 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3401 if (!txq->buf) 3402 return -ENOMEM; 3403 3404 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3405 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3406 txq->size * TSO_HEADER_SIZE, 3407 &txq->tso_hdrs_phys, GFP_KERNEL); 3408 if (!txq->tso_hdrs) 3409 return -ENOMEM; 3410 3411 /* Setup XPS mapping */ 3412 if (txq_number > 1) 3413 cpu = txq->id % num_present_cpus(); 3414 else 3415 cpu = pp->rxq_def % num_present_cpus(); 3416 cpumask_set_cpu(cpu, &txq->affinity_mask); 3417 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3418 3419 return 0; 3420 } 3421 3422 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3423 struct mvneta_tx_queue *txq) 3424 { 3425 /* Set maximum bandwidth for enabled TXQs */ 3426 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3427 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3428 3429 /* Set Tx descriptors queue starting address */ 3430 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3431 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3432 3433 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3434 } 3435 3436 /* Create and initialize a tx queue */ 3437 static int mvneta_txq_init(struct mvneta_port *pp, 3438 struct mvneta_tx_queue *txq) 3439 { 3440 int ret; 3441 3442 ret = mvneta_txq_sw_init(pp, txq); 3443 if (ret < 0) 3444 return ret; 3445 3446 mvneta_txq_hw_init(pp, txq); 3447 3448 return 0; 3449 } 3450 3451 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3452 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3453 struct mvneta_tx_queue *txq) 3454 { 3455 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3456 3457 kfree(txq->buf); 3458 3459 if (txq->tso_hdrs) 3460 dma_free_coherent(pp->dev->dev.parent, 3461 txq->size * TSO_HEADER_SIZE, 3462 txq->tso_hdrs, txq->tso_hdrs_phys); 3463 if (txq->descs) 3464 dma_free_coherent(pp->dev->dev.parent, 3465 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3466 txq->descs, txq->descs_phys); 3467 3468 netdev_tx_reset_queue(nq); 3469 3470 txq->descs = NULL; 3471 txq->last_desc = 0; 3472 txq->next_desc_to_proc = 0; 3473 txq->descs_phys = 0; 3474 } 3475 3476 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3477 struct mvneta_tx_queue *txq) 3478 { 3479 /* Set minimum bandwidth for disabled TXQs */ 3480 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3481 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3482 3483 /* Set Tx descriptors queue starting address and size */ 3484 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3485 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3486 } 3487 3488 static void mvneta_txq_deinit(struct mvneta_port *pp, 3489 struct mvneta_tx_queue *txq) 3490 { 3491 mvneta_txq_sw_deinit(pp, txq); 3492 mvneta_txq_hw_deinit(pp, txq); 3493 } 3494 3495 /* Cleanup all Tx queues */ 3496 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3497 { 3498 int queue; 3499 3500 for (queue = 0; queue < txq_number; queue++) 3501 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3502 } 3503 3504 /* Cleanup all Rx queues */ 3505 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3506 { 3507 int queue; 3508 3509 for (queue = 0; queue < rxq_number; queue++) 3510 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3511 } 3512 3513 3514 /* Init all Rx queues */ 3515 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3516 { 3517 int queue; 3518 3519 for (queue = 0; queue < rxq_number; queue++) { 3520 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3521 3522 if (err) { 3523 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3524 __func__, queue); 3525 mvneta_cleanup_rxqs(pp); 3526 return err; 3527 } 3528 } 3529 3530 return 0; 3531 } 3532 3533 /* Init all tx queues */ 3534 static int mvneta_setup_txqs(struct mvneta_port *pp) 3535 { 3536 int queue; 3537 3538 for (queue = 0; queue < txq_number; queue++) { 3539 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3540 if (err) { 3541 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3542 __func__, queue); 3543 mvneta_cleanup_txqs(pp); 3544 return err; 3545 } 3546 } 3547 3548 return 0; 3549 } 3550 3551 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3552 { 3553 int ret; 3554 3555 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3556 if (ret) 3557 return ret; 3558 3559 return phy_power_on(pp->comphy); 3560 } 3561 3562 static int mvneta_config_interface(struct mvneta_port *pp, 3563 phy_interface_t interface) 3564 { 3565 int ret = 0; 3566 3567 if (pp->comphy) { 3568 if (interface == PHY_INTERFACE_MODE_SGMII || 3569 interface == PHY_INTERFACE_MODE_1000BASEX || 3570 interface == PHY_INTERFACE_MODE_2500BASEX) { 3571 ret = mvneta_comphy_init(pp, interface); 3572 } 3573 } else { 3574 switch (interface) { 3575 case PHY_INTERFACE_MODE_QSGMII: 3576 mvreg_write(pp, MVNETA_SERDES_CFG, 3577 MVNETA_QSGMII_SERDES_PROTO); 3578 break; 3579 3580 case PHY_INTERFACE_MODE_SGMII: 3581 case PHY_INTERFACE_MODE_1000BASEX: 3582 mvreg_write(pp, MVNETA_SERDES_CFG, 3583 MVNETA_SGMII_SERDES_PROTO); 3584 break; 3585 3586 case PHY_INTERFACE_MODE_2500BASEX: 3587 mvreg_write(pp, MVNETA_SERDES_CFG, 3588 MVNETA_HSGMII_SERDES_PROTO); 3589 break; 3590 default: 3591 break; 3592 } 3593 } 3594 3595 pp->phy_interface = interface; 3596 3597 return ret; 3598 } 3599 3600 static void mvneta_start_dev(struct mvneta_port *pp) 3601 { 3602 int cpu; 3603 3604 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3605 3606 mvneta_max_rx_size_set(pp, pp->pkt_size); 3607 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3608 3609 /* start the Rx/Tx activity */ 3610 mvneta_port_enable(pp); 3611 3612 if (!pp->neta_armada3700) { 3613 /* Enable polling on the port */ 3614 for_each_online_cpu(cpu) { 3615 struct mvneta_pcpu_port *port = 3616 per_cpu_ptr(pp->ports, cpu); 3617 3618 napi_enable(&port->napi); 3619 } 3620 } else { 3621 napi_enable(&pp->napi); 3622 } 3623 3624 /* Unmask interrupts. It has to be done from each CPU */ 3625 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3626 3627 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3628 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3629 MVNETA_CAUSE_LINK_CHANGE); 3630 3631 phylink_start(pp->phylink); 3632 3633 /* We may have called phylink_speed_down before */ 3634 phylink_speed_up(pp->phylink); 3635 3636 netif_tx_start_all_queues(pp->dev); 3637 3638 clear_bit(__MVNETA_DOWN, &pp->state); 3639 } 3640 3641 static void mvneta_stop_dev(struct mvneta_port *pp) 3642 { 3643 unsigned int cpu; 3644 3645 set_bit(__MVNETA_DOWN, &pp->state); 3646 3647 if (device_may_wakeup(&pp->dev->dev)) 3648 phylink_speed_down(pp->phylink, false); 3649 3650 phylink_stop(pp->phylink); 3651 3652 if (!pp->neta_armada3700) { 3653 for_each_online_cpu(cpu) { 3654 struct mvneta_pcpu_port *port = 3655 per_cpu_ptr(pp->ports, cpu); 3656 3657 napi_disable(&port->napi); 3658 } 3659 } else { 3660 napi_disable(&pp->napi); 3661 } 3662 3663 netif_carrier_off(pp->dev); 3664 3665 mvneta_port_down(pp); 3666 netif_tx_stop_all_queues(pp->dev); 3667 3668 /* Stop the port activity */ 3669 mvneta_port_disable(pp); 3670 3671 /* Clear all ethernet port interrupts */ 3672 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3673 3674 /* Mask all ethernet port interrupts */ 3675 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3676 3677 mvneta_tx_reset(pp); 3678 mvneta_rx_reset(pp); 3679 3680 WARN_ON(phy_power_off(pp->comphy)); 3681 } 3682 3683 static void mvneta_percpu_enable(void *arg) 3684 { 3685 struct mvneta_port *pp = arg; 3686 3687 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3688 } 3689 3690 static void mvneta_percpu_disable(void *arg) 3691 { 3692 struct mvneta_port *pp = arg; 3693 3694 disable_percpu_irq(pp->dev->irq); 3695 } 3696 3697 /* Change the device mtu */ 3698 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3699 { 3700 struct mvneta_port *pp = netdev_priv(dev); 3701 int ret; 3702 3703 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3704 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3705 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3706 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3707 } 3708 3709 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3710 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3711 return -EINVAL; 3712 } 3713 3714 dev->mtu = mtu; 3715 3716 if (!netif_running(dev)) { 3717 if (pp->bm_priv) 3718 mvneta_bm_update_mtu(pp, mtu); 3719 3720 netdev_update_features(dev); 3721 return 0; 3722 } 3723 3724 /* The interface is running, so we have to force a 3725 * reallocation of the queues 3726 */ 3727 mvneta_stop_dev(pp); 3728 on_each_cpu(mvneta_percpu_disable, pp, true); 3729 3730 mvneta_cleanup_txqs(pp); 3731 mvneta_cleanup_rxqs(pp); 3732 3733 if (pp->bm_priv) 3734 mvneta_bm_update_mtu(pp, mtu); 3735 3736 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3737 3738 ret = mvneta_setup_rxqs(pp); 3739 if (ret) { 3740 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3741 return ret; 3742 } 3743 3744 ret = mvneta_setup_txqs(pp); 3745 if (ret) { 3746 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3747 return ret; 3748 } 3749 3750 on_each_cpu(mvneta_percpu_enable, pp, true); 3751 mvneta_start_dev(pp); 3752 3753 netdev_update_features(dev); 3754 3755 return 0; 3756 } 3757 3758 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3759 netdev_features_t features) 3760 { 3761 struct mvneta_port *pp = netdev_priv(dev); 3762 3763 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3764 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3765 netdev_info(dev, 3766 "Disable IP checksum for MTU greater than %dB\n", 3767 pp->tx_csum_limit); 3768 } 3769 3770 return features; 3771 } 3772 3773 /* Get mac address */ 3774 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3775 { 3776 u32 mac_addr_l, mac_addr_h; 3777 3778 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3779 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3780 addr[0] = (mac_addr_h >> 24) & 0xFF; 3781 addr[1] = (mac_addr_h >> 16) & 0xFF; 3782 addr[2] = (mac_addr_h >> 8) & 0xFF; 3783 addr[3] = mac_addr_h & 0xFF; 3784 addr[4] = (mac_addr_l >> 8) & 0xFF; 3785 addr[5] = mac_addr_l & 0xFF; 3786 } 3787 3788 /* Handle setting mac address */ 3789 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3790 { 3791 struct mvneta_port *pp = netdev_priv(dev); 3792 struct sockaddr *sockaddr = addr; 3793 int ret; 3794 3795 ret = eth_prepare_mac_addr_change(dev, addr); 3796 if (ret < 0) 3797 return ret; 3798 /* Remove previous address table entry */ 3799 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3800 3801 /* Set new addr in hw */ 3802 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3803 3804 eth_commit_mac_addr_change(dev, addr); 3805 return 0; 3806 } 3807 3808 static void mvneta_validate(struct phylink_config *config, 3809 unsigned long *supported, 3810 struct phylink_link_state *state) 3811 { 3812 struct net_device *ndev = to_net_dev(config->dev); 3813 struct mvneta_port *pp = netdev_priv(ndev); 3814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3815 3816 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3817 if (state->interface != PHY_INTERFACE_MODE_NA && 3818 state->interface != PHY_INTERFACE_MODE_QSGMII && 3819 state->interface != PHY_INTERFACE_MODE_SGMII && 3820 !phy_interface_mode_is_8023z(state->interface) && 3821 !phy_interface_mode_is_rgmii(state->interface)) { 3822 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3823 return; 3824 } 3825 3826 /* Allow all the expected bits */ 3827 phylink_set(mask, Autoneg); 3828 phylink_set_port_modes(mask); 3829 3830 /* Asymmetric pause is unsupported */ 3831 phylink_set(mask, Pause); 3832 3833 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3834 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3835 phylink_set(mask, 1000baseT_Full); 3836 phylink_set(mask, 1000baseX_Full); 3837 } 3838 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3839 phylink_set(mask, 2500baseT_Full); 3840 phylink_set(mask, 2500baseX_Full); 3841 } 3842 3843 if (!phy_interface_mode_is_8023z(state->interface)) { 3844 /* 10M and 100M are only supported in non-802.3z mode */ 3845 phylink_set(mask, 10baseT_Half); 3846 phylink_set(mask, 10baseT_Full); 3847 phylink_set(mask, 100baseT_Half); 3848 phylink_set(mask, 100baseT_Full); 3849 } 3850 3851 bitmap_and(supported, supported, mask, 3852 __ETHTOOL_LINK_MODE_MASK_NBITS); 3853 bitmap_and(state->advertising, state->advertising, mask, 3854 __ETHTOOL_LINK_MODE_MASK_NBITS); 3855 3856 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3857 * to advertise both, only report advertising at 2500BaseX. 3858 */ 3859 phylink_helper_basex_speed(state); 3860 } 3861 3862 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3863 struct phylink_link_state *state) 3864 { 3865 struct net_device *ndev = to_net_dev(config->dev); 3866 struct mvneta_port *pp = netdev_priv(ndev); 3867 u32 gmac_stat; 3868 3869 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3870 3871 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3872 state->speed = 3873 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3874 SPEED_2500 : SPEED_1000; 3875 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3876 state->speed = SPEED_100; 3877 else 3878 state->speed = SPEED_10; 3879 3880 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3881 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3882 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3883 3884 state->pause = 0; 3885 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3886 state->pause |= MLO_PAUSE_RX; 3887 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3888 state->pause |= MLO_PAUSE_TX; 3889 } 3890 3891 static void mvneta_mac_an_restart(struct phylink_config *config) 3892 { 3893 struct net_device *ndev = to_net_dev(config->dev); 3894 struct mvneta_port *pp = netdev_priv(ndev); 3895 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3896 3897 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3898 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3899 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3900 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3901 } 3902 3903 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3904 const struct phylink_link_state *state) 3905 { 3906 struct net_device *ndev = to_net_dev(config->dev); 3907 struct mvneta_port *pp = netdev_priv(ndev); 3908 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3909 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3910 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3911 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3912 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3913 3914 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3915 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3916 MVNETA_GMAC2_PORT_RESET); 3917 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3918 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3919 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3920 MVNETA_GMAC_INBAND_RESTART_AN | 3921 MVNETA_GMAC_AN_SPEED_EN | 3922 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3923 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3924 MVNETA_GMAC_AN_DUPLEX_EN); 3925 3926 /* Even though it might look weird, when we're configured in 3927 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3928 */ 3929 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3930 3931 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3932 state->interface == PHY_INTERFACE_MODE_SGMII || 3933 phy_interface_mode_is_8023z(state->interface)) 3934 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3935 3936 if (phylink_test(state->advertising, Pause)) 3937 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3938 3939 if (!phylink_autoneg_inband(mode)) { 3940 /* Phy or fixed speed - nothing to do, leave the 3941 * configured speed, duplex and flow control as-is. 3942 */ 3943 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3944 /* SGMII mode receives the state from the PHY */ 3945 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3946 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3947 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3948 MVNETA_GMAC_FORCE_LINK_PASS | 3949 MVNETA_GMAC_CONFIG_MII_SPEED | 3950 MVNETA_GMAC_CONFIG_GMII_SPEED | 3951 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3952 MVNETA_GMAC_INBAND_AN_ENABLE | 3953 MVNETA_GMAC_AN_SPEED_EN | 3954 MVNETA_GMAC_AN_DUPLEX_EN; 3955 } else { 3956 /* 802.3z negotiation - only 1000base-X */ 3957 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3958 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3959 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3960 MVNETA_GMAC_FORCE_LINK_PASS | 3961 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3962 MVNETA_GMAC_INBAND_AN_ENABLE | 3963 MVNETA_GMAC_CONFIG_GMII_SPEED | 3964 /* The MAC only supports FD mode */ 3965 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3966 3967 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3968 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3969 } 3970 3971 /* Armada 370 documentation says we can only change the port mode 3972 * and in-band enable when the link is down, so force it down 3973 * while making these changes. We also do this for GMAC_CTRL2 */ 3974 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3975 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3976 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3977 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3978 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3979 MVNETA_GMAC_FORCE_LINK_DOWN); 3980 } 3981 3982 3983 /* When at 2.5G, the link partner can send frames with shortened 3984 * preambles. 3985 */ 3986 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 3987 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3988 3989 if (pp->phy_interface != state->interface) { 3990 if (pp->comphy) 3991 WARN_ON(phy_power_off(pp->comphy)); 3992 WARN_ON(mvneta_config_interface(pp, state->interface)); 3993 } 3994 3995 if (new_ctrl0 != gmac_ctrl0) 3996 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3997 if (new_ctrl2 != gmac_ctrl2) 3998 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3999 if (new_ctrl4 != gmac_ctrl4) 4000 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4001 if (new_clk != gmac_clk) 4002 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 4003 if (new_an != gmac_an) 4004 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 4005 4006 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4007 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4008 MVNETA_GMAC2_PORT_RESET) != 0) 4009 continue; 4010 } 4011 } 4012 4013 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4014 { 4015 u32 lpi_ctl1; 4016 4017 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4018 if (enable) 4019 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4020 else 4021 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4022 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4023 } 4024 4025 static void mvneta_mac_link_down(struct phylink_config *config, 4026 unsigned int mode, phy_interface_t interface) 4027 { 4028 struct net_device *ndev = to_net_dev(config->dev); 4029 struct mvneta_port *pp = netdev_priv(ndev); 4030 u32 val; 4031 4032 mvneta_port_down(pp); 4033 4034 if (!phylink_autoneg_inband(mode)) { 4035 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4036 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4037 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4038 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4039 } 4040 4041 pp->eee_active = false; 4042 mvneta_set_eee(pp, false); 4043 } 4044 4045 static void mvneta_mac_link_up(struct phylink_config *config, 4046 struct phy_device *phy, 4047 unsigned int mode, phy_interface_t interface, 4048 int speed, int duplex, 4049 bool tx_pause, bool rx_pause) 4050 { 4051 struct net_device *ndev = to_net_dev(config->dev); 4052 struct mvneta_port *pp = netdev_priv(ndev); 4053 u32 val; 4054 4055 if (!phylink_autoneg_inband(mode)) { 4056 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4057 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4058 MVNETA_GMAC_CONFIG_MII_SPEED | 4059 MVNETA_GMAC_CONFIG_GMII_SPEED | 4060 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4061 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4062 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4063 4064 if (speed == SPEED_1000 || speed == SPEED_2500) 4065 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4066 else if (speed == SPEED_100) 4067 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4068 4069 if (duplex == DUPLEX_FULL) 4070 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4071 4072 if (tx_pause || rx_pause) 4073 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4074 4075 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4076 } else { 4077 /* When inband doesn't cover flow control or flow control is 4078 * disabled, we need to manually configure it. This bit will 4079 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4080 */ 4081 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4082 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4083 4084 if (tx_pause || rx_pause) 4085 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4086 4087 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4088 } 4089 4090 mvneta_port_up(pp); 4091 4092 if (phy && pp->eee_enabled) { 4093 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4094 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4095 } 4096 } 4097 4098 static const struct phylink_mac_ops mvneta_phylink_ops = { 4099 .validate = mvneta_validate, 4100 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4101 .mac_an_restart = mvneta_mac_an_restart, 4102 .mac_config = mvneta_mac_config, 4103 .mac_link_down = mvneta_mac_link_down, 4104 .mac_link_up = mvneta_mac_link_up, 4105 }; 4106 4107 static int mvneta_mdio_probe(struct mvneta_port *pp) 4108 { 4109 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4110 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4111 4112 if (err) 4113 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4114 4115 phylink_ethtool_get_wol(pp->phylink, &wol); 4116 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4117 4118 /* PHY WoL may be enabled but device wakeup disabled */ 4119 if (wol.supported) 4120 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4121 4122 return err; 4123 } 4124 4125 static void mvneta_mdio_remove(struct mvneta_port *pp) 4126 { 4127 phylink_disconnect_phy(pp->phylink); 4128 } 4129 4130 /* Electing a CPU must be done in an atomic way: it should be done 4131 * after or before the removal/insertion of a CPU and this function is 4132 * not reentrant. 4133 */ 4134 static void mvneta_percpu_elect(struct mvneta_port *pp) 4135 { 4136 int elected_cpu = 0, max_cpu, cpu, i = 0; 4137 4138 /* Use the cpu associated to the rxq when it is online, in all 4139 * the other cases, use the cpu 0 which can't be offline. 4140 */ 4141 if (cpu_online(pp->rxq_def)) 4142 elected_cpu = pp->rxq_def; 4143 4144 max_cpu = num_present_cpus(); 4145 4146 for_each_online_cpu(cpu) { 4147 int rxq_map = 0, txq_map = 0; 4148 int rxq; 4149 4150 for (rxq = 0; rxq < rxq_number; rxq++) 4151 if ((rxq % max_cpu) == cpu) 4152 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4153 4154 if (cpu == elected_cpu) 4155 /* Map the default receive queue queue to the 4156 * elected CPU 4157 */ 4158 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4159 4160 /* We update the TX queue map only if we have one 4161 * queue. In this case we associate the TX queue to 4162 * the CPU bound to the default RX queue 4163 */ 4164 if (txq_number == 1) 4165 txq_map = (cpu == elected_cpu) ? 4166 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4167 else 4168 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4169 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4170 4171 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4172 4173 /* Update the interrupt mask on each CPU according the 4174 * new mapping 4175 */ 4176 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4177 pp, true); 4178 i++; 4179 4180 } 4181 }; 4182 4183 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4184 { 4185 int other_cpu; 4186 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4187 node_online); 4188 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4189 4190 4191 spin_lock(&pp->lock); 4192 /* 4193 * Configuring the driver for a new CPU while the driver is 4194 * stopping is racy, so just avoid it. 4195 */ 4196 if (pp->is_stopped) { 4197 spin_unlock(&pp->lock); 4198 return 0; 4199 } 4200 netif_tx_stop_all_queues(pp->dev); 4201 4202 /* 4203 * We have to synchronise on tha napi of each CPU except the one 4204 * just being woken up 4205 */ 4206 for_each_online_cpu(other_cpu) { 4207 if (other_cpu != cpu) { 4208 struct mvneta_pcpu_port *other_port = 4209 per_cpu_ptr(pp->ports, other_cpu); 4210 4211 napi_synchronize(&other_port->napi); 4212 } 4213 } 4214 4215 /* Mask all ethernet port interrupts */ 4216 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4217 napi_enable(&port->napi); 4218 4219 /* 4220 * Enable per-CPU interrupts on the CPU that is 4221 * brought up. 4222 */ 4223 mvneta_percpu_enable(pp); 4224 4225 /* 4226 * Enable per-CPU interrupt on the one CPU we care 4227 * about. 4228 */ 4229 mvneta_percpu_elect(pp); 4230 4231 /* Unmask all ethernet port interrupts */ 4232 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4233 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4234 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4235 MVNETA_CAUSE_LINK_CHANGE); 4236 netif_tx_start_all_queues(pp->dev); 4237 spin_unlock(&pp->lock); 4238 return 0; 4239 } 4240 4241 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4242 { 4243 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4244 node_online); 4245 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4246 4247 /* 4248 * Thanks to this lock we are sure that any pending cpu election is 4249 * done. 4250 */ 4251 spin_lock(&pp->lock); 4252 /* Mask all ethernet port interrupts */ 4253 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4254 spin_unlock(&pp->lock); 4255 4256 napi_synchronize(&port->napi); 4257 napi_disable(&port->napi); 4258 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4259 mvneta_percpu_disable(pp); 4260 return 0; 4261 } 4262 4263 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4264 { 4265 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4266 node_dead); 4267 4268 /* Check if a new CPU must be elected now this on is down */ 4269 spin_lock(&pp->lock); 4270 mvneta_percpu_elect(pp); 4271 spin_unlock(&pp->lock); 4272 /* Unmask all ethernet port interrupts */ 4273 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4274 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4275 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4276 MVNETA_CAUSE_LINK_CHANGE); 4277 netif_tx_start_all_queues(pp->dev); 4278 return 0; 4279 } 4280 4281 static int mvneta_open(struct net_device *dev) 4282 { 4283 struct mvneta_port *pp = netdev_priv(dev); 4284 int ret; 4285 4286 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4287 4288 ret = mvneta_setup_rxqs(pp); 4289 if (ret) 4290 return ret; 4291 4292 ret = mvneta_setup_txqs(pp); 4293 if (ret) 4294 goto err_cleanup_rxqs; 4295 4296 /* Connect to port interrupt line */ 4297 if (pp->neta_armada3700) 4298 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4299 dev->name, pp); 4300 else 4301 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4302 dev->name, pp->ports); 4303 if (ret) { 4304 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4305 goto err_cleanup_txqs; 4306 } 4307 4308 if (!pp->neta_armada3700) { 4309 /* Enable per-CPU interrupt on all the CPU to handle our RX 4310 * queue interrupts 4311 */ 4312 on_each_cpu(mvneta_percpu_enable, pp, true); 4313 4314 pp->is_stopped = false; 4315 /* Register a CPU notifier to handle the case where our CPU 4316 * might be taken offline. 4317 */ 4318 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4319 &pp->node_online); 4320 if (ret) 4321 goto err_free_irq; 4322 4323 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4324 &pp->node_dead); 4325 if (ret) 4326 goto err_free_online_hp; 4327 } 4328 4329 ret = mvneta_mdio_probe(pp); 4330 if (ret < 0) { 4331 netdev_err(dev, "cannot probe MDIO bus\n"); 4332 goto err_free_dead_hp; 4333 } 4334 4335 mvneta_start_dev(pp); 4336 4337 return 0; 4338 4339 err_free_dead_hp: 4340 if (!pp->neta_armada3700) 4341 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4342 &pp->node_dead); 4343 err_free_online_hp: 4344 if (!pp->neta_armada3700) 4345 cpuhp_state_remove_instance_nocalls(online_hpstate, 4346 &pp->node_online); 4347 err_free_irq: 4348 if (pp->neta_armada3700) { 4349 free_irq(pp->dev->irq, pp); 4350 } else { 4351 on_each_cpu(mvneta_percpu_disable, pp, true); 4352 free_percpu_irq(pp->dev->irq, pp->ports); 4353 } 4354 err_cleanup_txqs: 4355 mvneta_cleanup_txqs(pp); 4356 err_cleanup_rxqs: 4357 mvneta_cleanup_rxqs(pp); 4358 return ret; 4359 } 4360 4361 /* Stop the port, free port interrupt line */ 4362 static int mvneta_stop(struct net_device *dev) 4363 { 4364 struct mvneta_port *pp = netdev_priv(dev); 4365 4366 if (!pp->neta_armada3700) { 4367 /* Inform that we are stopping so we don't want to setup the 4368 * driver for new CPUs in the notifiers. The code of the 4369 * notifier for CPU online is protected by the same spinlock, 4370 * so when we get the lock, the notifer work is done. 4371 */ 4372 spin_lock(&pp->lock); 4373 pp->is_stopped = true; 4374 spin_unlock(&pp->lock); 4375 4376 mvneta_stop_dev(pp); 4377 mvneta_mdio_remove(pp); 4378 4379 cpuhp_state_remove_instance_nocalls(online_hpstate, 4380 &pp->node_online); 4381 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4382 &pp->node_dead); 4383 on_each_cpu(mvneta_percpu_disable, pp, true); 4384 free_percpu_irq(dev->irq, pp->ports); 4385 } else { 4386 mvneta_stop_dev(pp); 4387 mvneta_mdio_remove(pp); 4388 free_irq(dev->irq, pp); 4389 } 4390 4391 mvneta_cleanup_rxqs(pp); 4392 mvneta_cleanup_txqs(pp); 4393 4394 return 0; 4395 } 4396 4397 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4398 { 4399 struct mvneta_port *pp = netdev_priv(dev); 4400 4401 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4402 } 4403 4404 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4405 struct netlink_ext_ack *extack) 4406 { 4407 bool need_update, running = netif_running(dev); 4408 struct mvneta_port *pp = netdev_priv(dev); 4409 struct bpf_prog *old_prog; 4410 4411 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4412 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4413 return -EOPNOTSUPP; 4414 } 4415 4416 if (pp->bm_priv) { 4417 NL_SET_ERR_MSG_MOD(extack, 4418 "Hardware Buffer Management not supported on XDP"); 4419 return -EOPNOTSUPP; 4420 } 4421 4422 need_update = !!pp->xdp_prog != !!prog; 4423 if (running && need_update) 4424 mvneta_stop(dev); 4425 4426 old_prog = xchg(&pp->xdp_prog, prog); 4427 if (old_prog) 4428 bpf_prog_put(old_prog); 4429 4430 if (running && need_update) 4431 return mvneta_open(dev); 4432 4433 return 0; 4434 } 4435 4436 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4437 { 4438 switch (xdp->command) { 4439 case XDP_SETUP_PROG: 4440 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4441 default: 4442 return -EINVAL; 4443 } 4444 } 4445 4446 /* Ethtool methods */ 4447 4448 /* Set link ksettings (phy address, speed) for ethtools */ 4449 static int 4450 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4451 const struct ethtool_link_ksettings *cmd) 4452 { 4453 struct mvneta_port *pp = netdev_priv(ndev); 4454 4455 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4456 } 4457 4458 /* Get link ksettings for ethtools */ 4459 static int 4460 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4461 struct ethtool_link_ksettings *cmd) 4462 { 4463 struct mvneta_port *pp = netdev_priv(ndev); 4464 4465 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4466 } 4467 4468 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4469 { 4470 struct mvneta_port *pp = netdev_priv(dev); 4471 4472 return phylink_ethtool_nway_reset(pp->phylink); 4473 } 4474 4475 /* Set interrupt coalescing for ethtools */ 4476 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4477 struct ethtool_coalesce *c) 4478 { 4479 struct mvneta_port *pp = netdev_priv(dev); 4480 int queue; 4481 4482 for (queue = 0; queue < rxq_number; queue++) { 4483 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4484 rxq->time_coal = c->rx_coalesce_usecs; 4485 rxq->pkts_coal = c->rx_max_coalesced_frames; 4486 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4487 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4488 } 4489 4490 for (queue = 0; queue < txq_number; queue++) { 4491 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4492 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4493 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4494 } 4495 4496 return 0; 4497 } 4498 4499 /* get coalescing for ethtools */ 4500 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4501 struct ethtool_coalesce *c) 4502 { 4503 struct mvneta_port *pp = netdev_priv(dev); 4504 4505 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4506 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4507 4508 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4509 return 0; 4510 } 4511 4512 4513 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4514 struct ethtool_drvinfo *drvinfo) 4515 { 4516 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4517 sizeof(drvinfo->driver)); 4518 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4519 sizeof(drvinfo->version)); 4520 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4521 sizeof(drvinfo->bus_info)); 4522 } 4523 4524 4525 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4526 struct ethtool_ringparam *ring) 4527 { 4528 struct mvneta_port *pp = netdev_priv(netdev); 4529 4530 ring->rx_max_pending = MVNETA_MAX_RXD; 4531 ring->tx_max_pending = MVNETA_MAX_TXD; 4532 ring->rx_pending = pp->rx_ring_size; 4533 ring->tx_pending = pp->tx_ring_size; 4534 } 4535 4536 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4537 struct ethtool_ringparam *ring) 4538 { 4539 struct mvneta_port *pp = netdev_priv(dev); 4540 4541 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4542 return -EINVAL; 4543 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4544 ring->rx_pending : MVNETA_MAX_RXD; 4545 4546 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4547 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4548 if (pp->tx_ring_size != ring->tx_pending) 4549 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4550 pp->tx_ring_size, ring->tx_pending); 4551 4552 if (netif_running(dev)) { 4553 mvneta_stop(dev); 4554 if (mvneta_open(dev)) { 4555 netdev_err(dev, 4556 "error on opening device after ring param change\n"); 4557 return -ENOMEM; 4558 } 4559 } 4560 4561 return 0; 4562 } 4563 4564 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4565 struct ethtool_pauseparam *pause) 4566 { 4567 struct mvneta_port *pp = netdev_priv(dev); 4568 4569 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4570 } 4571 4572 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4573 struct ethtool_pauseparam *pause) 4574 { 4575 struct mvneta_port *pp = netdev_priv(dev); 4576 4577 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4578 } 4579 4580 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4581 u8 *data) 4582 { 4583 if (sset == ETH_SS_STATS) { 4584 int i; 4585 4586 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4587 memcpy(data + i * ETH_GSTRING_LEN, 4588 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4589 } 4590 } 4591 4592 static void 4593 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4594 struct mvneta_ethtool_stats *es) 4595 { 4596 unsigned int start; 4597 int cpu; 4598 4599 for_each_possible_cpu(cpu) { 4600 struct mvneta_pcpu_stats *stats; 4601 u64 skb_alloc_error; 4602 u64 refill_error; 4603 u64 xdp_redirect; 4604 u64 xdp_xmit_err; 4605 u64 xdp_tx_err; 4606 u64 xdp_pass; 4607 u64 xdp_drop; 4608 u64 xdp_xmit; 4609 u64 xdp_tx; 4610 4611 stats = per_cpu_ptr(pp->stats, cpu); 4612 do { 4613 start = u64_stats_fetch_begin_irq(&stats->syncp); 4614 skb_alloc_error = stats->es.skb_alloc_error; 4615 refill_error = stats->es.refill_error; 4616 xdp_redirect = stats->es.ps.xdp_redirect; 4617 xdp_pass = stats->es.ps.xdp_pass; 4618 xdp_drop = stats->es.ps.xdp_drop; 4619 xdp_xmit = stats->es.ps.xdp_xmit; 4620 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4621 xdp_tx = stats->es.ps.xdp_tx; 4622 xdp_tx_err = stats->es.ps.xdp_tx_err; 4623 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4624 4625 es->skb_alloc_error += skb_alloc_error; 4626 es->refill_error += refill_error; 4627 es->ps.xdp_redirect += xdp_redirect; 4628 es->ps.xdp_pass += xdp_pass; 4629 es->ps.xdp_drop += xdp_drop; 4630 es->ps.xdp_xmit += xdp_xmit; 4631 es->ps.xdp_xmit_err += xdp_xmit_err; 4632 es->ps.xdp_tx += xdp_tx; 4633 es->ps.xdp_tx_err += xdp_tx_err; 4634 } 4635 } 4636 4637 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4638 { 4639 struct mvneta_ethtool_stats stats = {}; 4640 const struct mvneta_statistic *s; 4641 void __iomem *base = pp->base; 4642 u32 high, low; 4643 u64 val; 4644 int i; 4645 4646 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4647 for (i = 0, s = mvneta_statistics; 4648 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4649 s++, i++) { 4650 switch (s->type) { 4651 case T_REG_32: 4652 val = readl_relaxed(base + s->offset); 4653 pp->ethtool_stats[i] += val; 4654 break; 4655 case T_REG_64: 4656 /* Docs say to read low 32-bit then high */ 4657 low = readl_relaxed(base + s->offset); 4658 high = readl_relaxed(base + s->offset + 4); 4659 val = (u64)high << 32 | low; 4660 pp->ethtool_stats[i] += val; 4661 break; 4662 case T_SW: 4663 switch (s->offset) { 4664 case ETHTOOL_STAT_EEE_WAKEUP: 4665 val = phylink_get_eee_err(pp->phylink); 4666 pp->ethtool_stats[i] += val; 4667 break; 4668 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4669 pp->ethtool_stats[i] = stats.skb_alloc_error; 4670 break; 4671 case ETHTOOL_STAT_REFILL_ERR: 4672 pp->ethtool_stats[i] = stats.refill_error; 4673 break; 4674 case ETHTOOL_XDP_REDIRECT: 4675 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4676 break; 4677 case ETHTOOL_XDP_PASS: 4678 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4679 break; 4680 case ETHTOOL_XDP_DROP: 4681 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4682 break; 4683 case ETHTOOL_XDP_TX: 4684 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4685 break; 4686 case ETHTOOL_XDP_TX_ERR: 4687 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4688 break; 4689 case ETHTOOL_XDP_XMIT: 4690 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4691 break; 4692 case ETHTOOL_XDP_XMIT_ERR: 4693 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4694 break; 4695 } 4696 break; 4697 } 4698 } 4699 } 4700 4701 static void mvneta_ethtool_get_stats(struct net_device *dev, 4702 struct ethtool_stats *stats, u64 *data) 4703 { 4704 struct mvneta_port *pp = netdev_priv(dev); 4705 int i; 4706 4707 mvneta_ethtool_update_stats(pp); 4708 4709 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4710 *data++ = pp->ethtool_stats[i]; 4711 } 4712 4713 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4714 { 4715 if (sset == ETH_SS_STATS) 4716 return ARRAY_SIZE(mvneta_statistics); 4717 return -EOPNOTSUPP; 4718 } 4719 4720 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4721 { 4722 return MVNETA_RSS_LU_TABLE_SIZE; 4723 } 4724 4725 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4726 struct ethtool_rxnfc *info, 4727 u32 *rules __always_unused) 4728 { 4729 switch (info->cmd) { 4730 case ETHTOOL_GRXRINGS: 4731 info->data = rxq_number; 4732 return 0; 4733 case ETHTOOL_GRXFH: 4734 return -EOPNOTSUPP; 4735 default: 4736 return -EOPNOTSUPP; 4737 } 4738 } 4739 4740 static int mvneta_config_rss(struct mvneta_port *pp) 4741 { 4742 int cpu; 4743 u32 val; 4744 4745 netif_tx_stop_all_queues(pp->dev); 4746 4747 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4748 4749 if (!pp->neta_armada3700) { 4750 /* We have to synchronise on the napi of each CPU */ 4751 for_each_online_cpu(cpu) { 4752 struct mvneta_pcpu_port *pcpu_port = 4753 per_cpu_ptr(pp->ports, cpu); 4754 4755 napi_synchronize(&pcpu_port->napi); 4756 napi_disable(&pcpu_port->napi); 4757 } 4758 } else { 4759 napi_synchronize(&pp->napi); 4760 napi_disable(&pp->napi); 4761 } 4762 4763 pp->rxq_def = pp->indir[0]; 4764 4765 /* Update unicast mapping */ 4766 mvneta_set_rx_mode(pp->dev); 4767 4768 /* Update val of portCfg register accordingly with all RxQueue types */ 4769 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4770 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4771 4772 /* Update the elected CPU matching the new rxq_def */ 4773 spin_lock(&pp->lock); 4774 mvneta_percpu_elect(pp); 4775 spin_unlock(&pp->lock); 4776 4777 if (!pp->neta_armada3700) { 4778 /* We have to synchronise on the napi of each CPU */ 4779 for_each_online_cpu(cpu) { 4780 struct mvneta_pcpu_port *pcpu_port = 4781 per_cpu_ptr(pp->ports, cpu); 4782 4783 napi_enable(&pcpu_port->napi); 4784 } 4785 } else { 4786 napi_enable(&pp->napi); 4787 } 4788 4789 netif_tx_start_all_queues(pp->dev); 4790 4791 return 0; 4792 } 4793 4794 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4795 const u8 *key, const u8 hfunc) 4796 { 4797 struct mvneta_port *pp = netdev_priv(dev); 4798 4799 /* Current code for Armada 3700 doesn't support RSS features yet */ 4800 if (pp->neta_armada3700) 4801 return -EOPNOTSUPP; 4802 4803 /* We require at least one supported parameter to be changed 4804 * and no change in any of the unsupported parameters 4805 */ 4806 if (key || 4807 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4808 return -EOPNOTSUPP; 4809 4810 if (!indir) 4811 return 0; 4812 4813 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4814 4815 return mvneta_config_rss(pp); 4816 } 4817 4818 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4819 u8 *hfunc) 4820 { 4821 struct mvneta_port *pp = netdev_priv(dev); 4822 4823 /* Current code for Armada 3700 doesn't support RSS features yet */ 4824 if (pp->neta_armada3700) 4825 return -EOPNOTSUPP; 4826 4827 if (hfunc) 4828 *hfunc = ETH_RSS_HASH_TOP; 4829 4830 if (!indir) 4831 return 0; 4832 4833 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4834 4835 return 0; 4836 } 4837 4838 static void mvneta_ethtool_get_wol(struct net_device *dev, 4839 struct ethtool_wolinfo *wol) 4840 { 4841 struct mvneta_port *pp = netdev_priv(dev); 4842 4843 phylink_ethtool_get_wol(pp->phylink, wol); 4844 } 4845 4846 static int mvneta_ethtool_set_wol(struct net_device *dev, 4847 struct ethtool_wolinfo *wol) 4848 { 4849 struct mvneta_port *pp = netdev_priv(dev); 4850 int ret; 4851 4852 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4853 if (!ret) 4854 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4855 4856 return ret; 4857 } 4858 4859 static int mvneta_ethtool_get_eee(struct net_device *dev, 4860 struct ethtool_eee *eee) 4861 { 4862 struct mvneta_port *pp = netdev_priv(dev); 4863 u32 lpi_ctl0; 4864 4865 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4866 4867 eee->eee_enabled = pp->eee_enabled; 4868 eee->eee_active = pp->eee_active; 4869 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4870 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4871 4872 return phylink_ethtool_get_eee(pp->phylink, eee); 4873 } 4874 4875 static int mvneta_ethtool_set_eee(struct net_device *dev, 4876 struct ethtool_eee *eee) 4877 { 4878 struct mvneta_port *pp = netdev_priv(dev); 4879 u32 lpi_ctl0; 4880 4881 /* The Armada 37x documents do not give limits for this other than 4882 * it being an 8-bit register. */ 4883 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4884 return -EINVAL; 4885 4886 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4887 lpi_ctl0 &= ~(0xff << 8); 4888 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4889 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4890 4891 pp->eee_enabled = eee->eee_enabled; 4892 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4893 4894 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4895 4896 return phylink_ethtool_set_eee(pp->phylink, eee); 4897 } 4898 4899 static const struct net_device_ops mvneta_netdev_ops = { 4900 .ndo_open = mvneta_open, 4901 .ndo_stop = mvneta_stop, 4902 .ndo_start_xmit = mvneta_tx, 4903 .ndo_set_rx_mode = mvneta_set_rx_mode, 4904 .ndo_set_mac_address = mvneta_set_mac_addr, 4905 .ndo_change_mtu = mvneta_change_mtu, 4906 .ndo_fix_features = mvneta_fix_features, 4907 .ndo_get_stats64 = mvneta_get_stats64, 4908 .ndo_do_ioctl = mvneta_ioctl, 4909 .ndo_bpf = mvneta_xdp, 4910 .ndo_xdp_xmit = mvneta_xdp_xmit, 4911 }; 4912 4913 static const struct ethtool_ops mvneta_eth_tool_ops = { 4914 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 4915 ETHTOOL_COALESCE_MAX_FRAMES, 4916 .nway_reset = mvneta_ethtool_nway_reset, 4917 .get_link = ethtool_op_get_link, 4918 .set_coalesce = mvneta_ethtool_set_coalesce, 4919 .get_coalesce = mvneta_ethtool_get_coalesce, 4920 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4921 .get_ringparam = mvneta_ethtool_get_ringparam, 4922 .set_ringparam = mvneta_ethtool_set_ringparam, 4923 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4924 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4925 .get_strings = mvneta_ethtool_get_strings, 4926 .get_ethtool_stats = mvneta_ethtool_get_stats, 4927 .get_sset_count = mvneta_ethtool_get_sset_count, 4928 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4929 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4930 .get_rxfh = mvneta_ethtool_get_rxfh, 4931 .set_rxfh = mvneta_ethtool_set_rxfh, 4932 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4933 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4934 .get_wol = mvneta_ethtool_get_wol, 4935 .set_wol = mvneta_ethtool_set_wol, 4936 .get_eee = mvneta_ethtool_get_eee, 4937 .set_eee = mvneta_ethtool_set_eee, 4938 }; 4939 4940 /* Initialize hw */ 4941 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4942 { 4943 int queue; 4944 4945 /* Disable port */ 4946 mvneta_port_disable(pp); 4947 4948 /* Set port default values */ 4949 mvneta_defaults_set(pp); 4950 4951 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4952 if (!pp->txqs) 4953 return -ENOMEM; 4954 4955 /* Initialize TX descriptor rings */ 4956 for (queue = 0; queue < txq_number; queue++) { 4957 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4958 txq->id = queue; 4959 txq->size = pp->tx_ring_size; 4960 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4961 } 4962 4963 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4964 if (!pp->rxqs) 4965 return -ENOMEM; 4966 4967 /* Create Rx descriptor rings */ 4968 for (queue = 0; queue < rxq_number; queue++) { 4969 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4970 rxq->id = queue; 4971 rxq->size = pp->rx_ring_size; 4972 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4973 rxq->time_coal = MVNETA_RX_COAL_USEC; 4974 rxq->buf_virt_addr 4975 = devm_kmalloc_array(pp->dev->dev.parent, 4976 rxq->size, 4977 sizeof(*rxq->buf_virt_addr), 4978 GFP_KERNEL); 4979 if (!rxq->buf_virt_addr) 4980 return -ENOMEM; 4981 } 4982 4983 return 0; 4984 } 4985 4986 /* platform glue : initialize decoding windows */ 4987 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4988 const struct mbus_dram_target_info *dram) 4989 { 4990 u32 win_enable; 4991 u32 win_protect; 4992 int i; 4993 4994 for (i = 0; i < 6; i++) { 4995 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4996 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4997 4998 if (i < 4) 4999 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5000 } 5001 5002 win_enable = 0x3f; 5003 win_protect = 0; 5004 5005 if (dram) { 5006 for (i = 0; i < dram->num_cs; i++) { 5007 const struct mbus_dram_window *cs = dram->cs + i; 5008 5009 mvreg_write(pp, MVNETA_WIN_BASE(i), 5010 (cs->base & 0xffff0000) | 5011 (cs->mbus_attr << 8) | 5012 dram->mbus_dram_target_id); 5013 5014 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5015 (cs->size - 1) & 0xffff0000); 5016 5017 win_enable &= ~(1 << i); 5018 win_protect |= 3 << (2 * i); 5019 } 5020 } else { 5021 /* For Armada3700 open default 4GB Mbus window, leaving 5022 * arbitration of target/attribute to a different layer 5023 * of configuration. 5024 */ 5025 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5026 win_enable &= ~BIT(0); 5027 win_protect = 3; 5028 } 5029 5030 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5031 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5032 } 5033 5034 /* Power up the port */ 5035 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5036 { 5037 /* MAC Cause register should be cleared */ 5038 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5039 5040 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5041 phy_mode != PHY_INTERFACE_MODE_SGMII && 5042 !phy_interface_mode_is_8023z(phy_mode) && 5043 !phy_interface_mode_is_rgmii(phy_mode)) 5044 return -EINVAL; 5045 5046 return 0; 5047 } 5048 5049 /* Device initialization routine */ 5050 static int mvneta_probe(struct platform_device *pdev) 5051 { 5052 struct device_node *dn = pdev->dev.of_node; 5053 struct device_node *bm_node; 5054 struct mvneta_port *pp; 5055 struct net_device *dev; 5056 struct phylink *phylink; 5057 struct phy *comphy; 5058 const char *dt_mac_addr; 5059 char hw_mac_addr[ETH_ALEN]; 5060 phy_interface_t phy_mode; 5061 const char *mac_from; 5062 int tx_csum_limit; 5063 int err; 5064 int cpu; 5065 5066 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5067 txq_number, rxq_number); 5068 if (!dev) 5069 return -ENOMEM; 5070 5071 dev->irq = irq_of_parse_and_map(dn, 0); 5072 if (dev->irq == 0) 5073 return -EINVAL; 5074 5075 err = of_get_phy_mode(dn, &phy_mode); 5076 if (err) { 5077 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5078 goto err_free_irq; 5079 } 5080 5081 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5082 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5083 err = -EPROBE_DEFER; 5084 goto err_free_irq; 5085 } else if (IS_ERR(comphy)) { 5086 comphy = NULL; 5087 } 5088 5089 pp = netdev_priv(dev); 5090 spin_lock_init(&pp->lock); 5091 5092 pp->phylink_config.dev = &dev->dev; 5093 pp->phylink_config.type = PHYLINK_NETDEV; 5094 5095 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5096 phy_mode, &mvneta_phylink_ops); 5097 if (IS_ERR(phylink)) { 5098 err = PTR_ERR(phylink); 5099 goto err_free_irq; 5100 } 5101 5102 dev->tx_queue_len = MVNETA_MAX_TXD; 5103 dev->watchdog_timeo = 5 * HZ; 5104 dev->netdev_ops = &mvneta_netdev_ops; 5105 5106 dev->ethtool_ops = &mvneta_eth_tool_ops; 5107 5108 pp->phylink = phylink; 5109 pp->comphy = comphy; 5110 pp->phy_interface = phy_mode; 5111 pp->dn = dn; 5112 5113 pp->rxq_def = rxq_def; 5114 pp->indir[0] = rxq_def; 5115 5116 /* Get special SoC configurations */ 5117 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5118 pp->neta_armada3700 = true; 5119 5120 pp->clk = devm_clk_get(&pdev->dev, "core"); 5121 if (IS_ERR(pp->clk)) 5122 pp->clk = devm_clk_get(&pdev->dev, NULL); 5123 if (IS_ERR(pp->clk)) { 5124 err = PTR_ERR(pp->clk); 5125 goto err_free_phylink; 5126 } 5127 5128 clk_prepare_enable(pp->clk); 5129 5130 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5131 if (!IS_ERR(pp->clk_bus)) 5132 clk_prepare_enable(pp->clk_bus); 5133 5134 pp->base = devm_platform_ioremap_resource(pdev, 0); 5135 if (IS_ERR(pp->base)) { 5136 err = PTR_ERR(pp->base); 5137 goto err_clk; 5138 } 5139 5140 /* Alloc per-cpu port structure */ 5141 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5142 if (!pp->ports) { 5143 err = -ENOMEM; 5144 goto err_clk; 5145 } 5146 5147 /* Alloc per-cpu stats */ 5148 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5149 if (!pp->stats) { 5150 err = -ENOMEM; 5151 goto err_free_ports; 5152 } 5153 5154 dt_mac_addr = of_get_mac_address(dn); 5155 if (!IS_ERR(dt_mac_addr)) { 5156 mac_from = "device tree"; 5157 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5158 } else { 5159 mvneta_get_mac_addr(pp, hw_mac_addr); 5160 if (is_valid_ether_addr(hw_mac_addr)) { 5161 mac_from = "hardware"; 5162 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5163 } else { 5164 mac_from = "random"; 5165 eth_hw_addr_random(dev); 5166 } 5167 } 5168 5169 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5170 if (tx_csum_limit < 0 || 5171 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5172 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5173 dev_info(&pdev->dev, 5174 "Wrong TX csum limit in DT, set to %dB\n", 5175 MVNETA_TX_CSUM_DEF_SIZE); 5176 } 5177 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5178 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5179 } else { 5180 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5181 } 5182 5183 pp->tx_csum_limit = tx_csum_limit; 5184 5185 pp->dram_target_info = mv_mbus_dram_info(); 5186 /* Armada3700 requires setting default configuration of Mbus 5187 * windows, however without using filled mbus_dram_target_info 5188 * structure. 5189 */ 5190 if (pp->dram_target_info || pp->neta_armada3700) 5191 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5192 5193 pp->tx_ring_size = MVNETA_MAX_TXD; 5194 pp->rx_ring_size = MVNETA_MAX_RXD; 5195 5196 pp->dev = dev; 5197 SET_NETDEV_DEV(dev, &pdev->dev); 5198 5199 pp->id = global_port_id++; 5200 5201 /* Obtain access to BM resources if enabled and already initialized */ 5202 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5203 if (bm_node) { 5204 pp->bm_priv = mvneta_bm_get(bm_node); 5205 if (pp->bm_priv) { 5206 err = mvneta_bm_port_init(pdev, pp); 5207 if (err < 0) { 5208 dev_info(&pdev->dev, 5209 "use SW buffer management\n"); 5210 mvneta_bm_put(pp->bm_priv); 5211 pp->bm_priv = NULL; 5212 } 5213 } 5214 /* Set RX packet offset correction for platforms, whose 5215 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5216 * platforms and 0B for 32-bit ones. 5217 */ 5218 pp->rx_offset_correction = max(0, 5219 NET_SKB_PAD - 5220 MVNETA_RX_PKT_OFFSET_CORRECTION); 5221 } 5222 of_node_put(bm_node); 5223 5224 /* sw buffer management */ 5225 if (!pp->bm_priv) 5226 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5227 5228 err = mvneta_init(&pdev->dev, pp); 5229 if (err < 0) 5230 goto err_netdev; 5231 5232 err = mvneta_port_power_up(pp, pp->phy_interface); 5233 if (err < 0) { 5234 dev_err(&pdev->dev, "can't power up port\n"); 5235 return err; 5236 } 5237 5238 /* Armada3700 network controller does not support per-cpu 5239 * operation, so only single NAPI should be initialized. 5240 */ 5241 if (pp->neta_armada3700) { 5242 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5243 } else { 5244 for_each_present_cpu(cpu) { 5245 struct mvneta_pcpu_port *port = 5246 per_cpu_ptr(pp->ports, cpu); 5247 5248 netif_napi_add(dev, &port->napi, mvneta_poll, 5249 NAPI_POLL_WEIGHT); 5250 port->pp = pp; 5251 } 5252 } 5253 5254 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5255 NETIF_F_TSO | NETIF_F_RXCSUM; 5256 dev->hw_features |= dev->features; 5257 dev->vlan_features |= dev->features; 5258 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5259 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5260 5261 /* MTU range: 68 - 9676 */ 5262 dev->min_mtu = ETH_MIN_MTU; 5263 /* 9676 == 9700 - 20 and rounding to 8 */ 5264 dev->max_mtu = 9676; 5265 5266 err = register_netdev(dev); 5267 if (err < 0) { 5268 dev_err(&pdev->dev, "failed to register\n"); 5269 goto err_netdev; 5270 } 5271 5272 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5273 dev->dev_addr); 5274 5275 platform_set_drvdata(pdev, pp->dev); 5276 5277 return 0; 5278 5279 err_netdev: 5280 if (pp->bm_priv) { 5281 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5282 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5283 1 << pp->id); 5284 mvneta_bm_put(pp->bm_priv); 5285 } 5286 free_percpu(pp->stats); 5287 err_free_ports: 5288 free_percpu(pp->ports); 5289 err_clk: 5290 clk_disable_unprepare(pp->clk_bus); 5291 clk_disable_unprepare(pp->clk); 5292 err_free_phylink: 5293 if (pp->phylink) 5294 phylink_destroy(pp->phylink); 5295 err_free_irq: 5296 irq_dispose_mapping(dev->irq); 5297 return err; 5298 } 5299 5300 /* Device removal routine */ 5301 static int mvneta_remove(struct platform_device *pdev) 5302 { 5303 struct net_device *dev = platform_get_drvdata(pdev); 5304 struct mvneta_port *pp = netdev_priv(dev); 5305 5306 unregister_netdev(dev); 5307 clk_disable_unprepare(pp->clk_bus); 5308 clk_disable_unprepare(pp->clk); 5309 free_percpu(pp->ports); 5310 free_percpu(pp->stats); 5311 irq_dispose_mapping(dev->irq); 5312 phylink_destroy(pp->phylink); 5313 5314 if (pp->bm_priv) { 5315 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5316 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5317 1 << pp->id); 5318 mvneta_bm_put(pp->bm_priv); 5319 } 5320 5321 return 0; 5322 } 5323 5324 #ifdef CONFIG_PM_SLEEP 5325 static int mvneta_suspend(struct device *device) 5326 { 5327 int queue; 5328 struct net_device *dev = dev_get_drvdata(device); 5329 struct mvneta_port *pp = netdev_priv(dev); 5330 5331 if (!netif_running(dev)) 5332 goto clean_exit; 5333 5334 if (!pp->neta_armada3700) { 5335 spin_lock(&pp->lock); 5336 pp->is_stopped = true; 5337 spin_unlock(&pp->lock); 5338 5339 cpuhp_state_remove_instance_nocalls(online_hpstate, 5340 &pp->node_online); 5341 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5342 &pp->node_dead); 5343 } 5344 5345 rtnl_lock(); 5346 mvneta_stop_dev(pp); 5347 rtnl_unlock(); 5348 5349 for (queue = 0; queue < rxq_number; queue++) { 5350 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5351 5352 mvneta_rxq_drop_pkts(pp, rxq); 5353 } 5354 5355 for (queue = 0; queue < txq_number; queue++) { 5356 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5357 5358 mvneta_txq_hw_deinit(pp, txq); 5359 } 5360 5361 clean_exit: 5362 netif_device_detach(dev); 5363 clk_disable_unprepare(pp->clk_bus); 5364 clk_disable_unprepare(pp->clk); 5365 5366 return 0; 5367 } 5368 5369 static int mvneta_resume(struct device *device) 5370 { 5371 struct platform_device *pdev = to_platform_device(device); 5372 struct net_device *dev = dev_get_drvdata(device); 5373 struct mvneta_port *pp = netdev_priv(dev); 5374 int err, queue; 5375 5376 clk_prepare_enable(pp->clk); 5377 if (!IS_ERR(pp->clk_bus)) 5378 clk_prepare_enable(pp->clk_bus); 5379 if (pp->dram_target_info || pp->neta_armada3700) 5380 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5381 if (pp->bm_priv) { 5382 err = mvneta_bm_port_init(pdev, pp); 5383 if (err < 0) { 5384 dev_info(&pdev->dev, "use SW buffer management\n"); 5385 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5386 pp->bm_priv = NULL; 5387 } 5388 } 5389 mvneta_defaults_set(pp); 5390 err = mvneta_port_power_up(pp, pp->phy_interface); 5391 if (err < 0) { 5392 dev_err(device, "can't power up port\n"); 5393 return err; 5394 } 5395 5396 netif_device_attach(dev); 5397 5398 if (!netif_running(dev)) 5399 return 0; 5400 5401 for (queue = 0; queue < rxq_number; queue++) { 5402 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5403 5404 rxq->next_desc_to_proc = 0; 5405 mvneta_rxq_hw_init(pp, rxq); 5406 } 5407 5408 for (queue = 0; queue < txq_number; queue++) { 5409 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5410 5411 txq->next_desc_to_proc = 0; 5412 mvneta_txq_hw_init(pp, txq); 5413 } 5414 5415 if (!pp->neta_armada3700) { 5416 spin_lock(&pp->lock); 5417 pp->is_stopped = false; 5418 spin_unlock(&pp->lock); 5419 cpuhp_state_add_instance_nocalls(online_hpstate, 5420 &pp->node_online); 5421 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5422 &pp->node_dead); 5423 } 5424 5425 rtnl_lock(); 5426 mvneta_start_dev(pp); 5427 rtnl_unlock(); 5428 mvneta_set_rx_mode(dev); 5429 5430 return 0; 5431 } 5432 #endif 5433 5434 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5435 5436 static const struct of_device_id mvneta_match[] = { 5437 { .compatible = "marvell,armada-370-neta" }, 5438 { .compatible = "marvell,armada-xp-neta" }, 5439 { .compatible = "marvell,armada-3700-neta" }, 5440 { } 5441 }; 5442 MODULE_DEVICE_TABLE(of, mvneta_match); 5443 5444 static struct platform_driver mvneta_driver = { 5445 .probe = mvneta_probe, 5446 .remove = mvneta_remove, 5447 .driver = { 5448 .name = MVNETA_DRIVER_NAME, 5449 .of_match_table = mvneta_match, 5450 .pm = &mvneta_pm_ops, 5451 }, 5452 }; 5453 5454 static int __init mvneta_driver_init(void) 5455 { 5456 int ret; 5457 5458 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5459 mvneta_cpu_online, 5460 mvneta_cpu_down_prepare); 5461 if (ret < 0) 5462 goto out; 5463 online_hpstate = ret; 5464 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5465 NULL, mvneta_cpu_dead); 5466 if (ret) 5467 goto err_dead; 5468 5469 ret = platform_driver_register(&mvneta_driver); 5470 if (ret) 5471 goto err; 5472 return 0; 5473 5474 err: 5475 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5476 err_dead: 5477 cpuhp_remove_multi_state(online_hpstate); 5478 out: 5479 return ret; 5480 } 5481 module_init(mvneta_driver_init); 5482 5483 static void __exit mvneta_driver_exit(void) 5484 { 5485 platform_driver_unregister(&mvneta_driver); 5486 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5487 cpuhp_remove_multi_state(online_hpstate); 5488 } 5489 module_exit(mvneta_driver_exit); 5490 5491 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5492 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5493 MODULE_LICENSE("GPL"); 5494 5495 module_param(rxq_number, int, 0444); 5496 module_param(txq_number, int, 0444); 5497 5498 module_param(rxq_def, int, 0444); 5499 module_param(rx_copybreak, int, 0644); 5500