1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 #define MVNETA_SKB_HEADROOM max(XDP_PACKET_HEADROOM, NET_SKB_PAD) 328 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 329 MVNETA_SKB_HEADROOM)) 330 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 331 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 332 333 #define IS_TSO_HEADER(txq, addr) \ 334 ((addr >= txq->tso_hdrs_phys) && \ 335 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 336 337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 338 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 339 340 enum { 341 ETHTOOL_STAT_EEE_WAKEUP, 342 ETHTOOL_STAT_SKB_ALLOC_ERR, 343 ETHTOOL_STAT_REFILL_ERR, 344 ETHTOOL_MAX_STATS, 345 }; 346 347 struct mvneta_statistic { 348 unsigned short offset; 349 unsigned short type; 350 const char name[ETH_GSTRING_LEN]; 351 }; 352 353 #define T_REG_32 32 354 #define T_REG_64 64 355 #define T_SW 1 356 357 #define MVNETA_XDP_PASS BIT(0) 358 #define MVNETA_XDP_DROPPED BIT(1) 359 #define MVNETA_XDP_TX BIT(2) 360 #define MVNETA_XDP_REDIR BIT(3) 361 362 static const struct mvneta_statistic mvneta_statistics[] = { 363 { 0x3000, T_REG_64, "good_octets_received", }, 364 { 0x3010, T_REG_32, "good_frames_received", }, 365 { 0x3008, T_REG_32, "bad_octets_received", }, 366 { 0x3014, T_REG_32, "bad_frames_received", }, 367 { 0x3018, T_REG_32, "broadcast_frames_received", }, 368 { 0x301c, T_REG_32, "multicast_frames_received", }, 369 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 370 { 0x3058, T_REG_32, "good_fc_received", }, 371 { 0x305c, T_REG_32, "bad_fc_received", }, 372 { 0x3060, T_REG_32, "undersize_received", }, 373 { 0x3064, T_REG_32, "fragments_received", }, 374 { 0x3068, T_REG_32, "oversize_received", }, 375 { 0x306c, T_REG_32, "jabber_received", }, 376 { 0x3070, T_REG_32, "mac_receive_error", }, 377 { 0x3074, T_REG_32, "bad_crc_event", }, 378 { 0x3078, T_REG_32, "collision", }, 379 { 0x307c, T_REG_32, "late_collision", }, 380 { 0x2484, T_REG_32, "rx_discard", }, 381 { 0x2488, T_REG_32, "rx_overrun", }, 382 { 0x3020, T_REG_32, "frames_64_octets", }, 383 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 384 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 385 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 386 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 387 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 388 { 0x3038, T_REG_64, "good_octets_sent", }, 389 { 0x3040, T_REG_32, "good_frames_sent", }, 390 { 0x3044, T_REG_32, "excessive_collision", }, 391 { 0x3048, T_REG_32, "multicast_frames_sent", }, 392 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 393 { 0x3054, T_REG_32, "fc_sent", }, 394 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 395 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 396 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 397 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 398 }; 399 400 struct mvneta_pcpu_stats { 401 struct u64_stats_sync syncp; 402 u64 rx_packets; 403 u64 rx_bytes; 404 u64 rx_dropped; 405 u64 rx_errors; 406 u64 tx_packets; 407 u64 tx_bytes; 408 }; 409 410 struct mvneta_pcpu_port { 411 /* Pointer to the shared port */ 412 struct mvneta_port *pp; 413 414 /* Pointer to the CPU-local NAPI struct */ 415 struct napi_struct napi; 416 417 /* Cause of the previous interrupt */ 418 u32 cause_rx_tx; 419 }; 420 421 struct mvneta_port { 422 u8 id; 423 struct mvneta_pcpu_port __percpu *ports; 424 struct mvneta_pcpu_stats __percpu *stats; 425 426 int pkt_size; 427 void __iomem *base; 428 struct mvneta_rx_queue *rxqs; 429 struct mvneta_tx_queue *txqs; 430 struct net_device *dev; 431 struct hlist_node node_online; 432 struct hlist_node node_dead; 433 int rxq_def; 434 /* Protect the access to the percpu interrupt registers, 435 * ensuring that the configuration remains coherent. 436 */ 437 spinlock_t lock; 438 bool is_stopped; 439 440 u32 cause_rx_tx; 441 struct napi_struct napi; 442 443 struct bpf_prog *xdp_prog; 444 445 /* Core clock */ 446 struct clk *clk; 447 /* AXI clock */ 448 struct clk *clk_bus; 449 u8 mcast_count[256]; 450 u16 tx_ring_size; 451 u16 rx_ring_size; 452 453 phy_interface_t phy_interface; 454 struct device_node *dn; 455 unsigned int tx_csum_limit; 456 struct phylink *phylink; 457 struct phylink_config phylink_config; 458 struct phy *comphy; 459 460 struct mvneta_bm *bm_priv; 461 struct mvneta_bm_pool *pool_long; 462 struct mvneta_bm_pool *pool_short; 463 int bm_win_id; 464 465 bool eee_enabled; 466 bool eee_active; 467 bool tx_lpi_enabled; 468 469 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 470 471 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 472 473 /* Flags for special SoC configurations */ 474 bool neta_armada3700; 475 u16 rx_offset_correction; 476 const struct mbus_dram_target_info *dram_target_info; 477 }; 478 479 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 480 * layout of the transmit and reception DMA descriptors, and their 481 * layout is therefore defined by the hardware design 482 */ 483 484 #define MVNETA_TX_L3_OFF_SHIFT 0 485 #define MVNETA_TX_IP_HLEN_SHIFT 8 486 #define MVNETA_TX_L4_UDP BIT(16) 487 #define MVNETA_TX_L3_IP6 BIT(17) 488 #define MVNETA_TXD_IP_CSUM BIT(18) 489 #define MVNETA_TXD_Z_PAD BIT(19) 490 #define MVNETA_TXD_L_DESC BIT(20) 491 #define MVNETA_TXD_F_DESC BIT(21) 492 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 493 MVNETA_TXD_L_DESC | \ 494 MVNETA_TXD_F_DESC) 495 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 496 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 497 498 #define MVNETA_RXD_ERR_CRC 0x0 499 #define MVNETA_RXD_BM_POOL_SHIFT 13 500 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 501 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 502 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 503 #define MVNETA_RXD_ERR_LEN BIT(18) 504 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 505 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 506 #define MVNETA_RXD_L3_IP4 BIT(25) 507 #define MVNETA_RXD_LAST_DESC BIT(26) 508 #define MVNETA_RXD_FIRST_DESC BIT(27) 509 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 510 MVNETA_RXD_LAST_DESC) 511 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 512 513 #if defined(__LITTLE_ENDIAN) 514 struct mvneta_tx_desc { 515 u32 command; /* Options used by HW for packet transmitting.*/ 516 u16 reserved1; /* csum_l4 (for future use) */ 517 u16 data_size; /* Data size of transmitted packet in bytes */ 518 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 519 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 520 u32 reserved3[4]; /* Reserved - (for future use) */ 521 }; 522 523 struct mvneta_rx_desc { 524 u32 status; /* Info about received packet */ 525 u16 reserved1; /* pnc_info - (for future use, PnC) */ 526 u16 data_size; /* Size of received packet in bytes */ 527 528 u32 buf_phys_addr; /* Physical address of the buffer */ 529 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 530 531 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 532 u16 reserved3; /* prefetch_cmd, for future use */ 533 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 534 535 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 536 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 537 }; 538 #else 539 struct mvneta_tx_desc { 540 u16 data_size; /* Data size of transmitted packet in bytes */ 541 u16 reserved1; /* csum_l4 (for future use) */ 542 u32 command; /* Options used by HW for packet transmitting.*/ 543 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 544 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 545 u32 reserved3[4]; /* Reserved - (for future use) */ 546 }; 547 548 struct mvneta_rx_desc { 549 u16 data_size; /* Size of received packet in bytes */ 550 u16 reserved1; /* pnc_info - (for future use, PnC) */ 551 u32 status; /* Info about received packet */ 552 553 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 554 u32 buf_phys_addr; /* Physical address of the buffer */ 555 556 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 557 u16 reserved3; /* prefetch_cmd, for future use */ 558 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 559 560 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 561 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 562 }; 563 #endif 564 565 enum mvneta_tx_buf_type { 566 MVNETA_TYPE_SKB, 567 MVNETA_TYPE_XDP_TX, 568 MVNETA_TYPE_XDP_NDO, 569 }; 570 571 struct mvneta_tx_buf { 572 enum mvneta_tx_buf_type type; 573 union { 574 struct xdp_frame *xdpf; 575 struct sk_buff *skb; 576 }; 577 }; 578 579 struct mvneta_tx_queue { 580 /* Number of this TX queue, in the range 0-7 */ 581 u8 id; 582 583 /* Number of TX DMA descriptors in the descriptor ring */ 584 int size; 585 586 /* Number of currently used TX DMA descriptor in the 587 * descriptor ring 588 */ 589 int count; 590 int pending; 591 int tx_stop_threshold; 592 int tx_wake_threshold; 593 594 /* Array of transmitted buffers */ 595 struct mvneta_tx_buf *buf; 596 597 /* Index of last TX DMA descriptor that was inserted */ 598 int txq_put_index; 599 600 /* Index of the TX DMA descriptor to be cleaned up */ 601 int txq_get_index; 602 603 u32 done_pkts_coal; 604 605 /* Virtual address of the TX DMA descriptors array */ 606 struct mvneta_tx_desc *descs; 607 608 /* DMA address of the TX DMA descriptors array */ 609 dma_addr_t descs_phys; 610 611 /* Index of the last TX DMA descriptor */ 612 int last_desc; 613 614 /* Index of the next TX DMA descriptor to process */ 615 int next_desc_to_proc; 616 617 /* DMA buffers for TSO headers */ 618 char *tso_hdrs; 619 620 /* DMA address of TSO headers */ 621 dma_addr_t tso_hdrs_phys; 622 623 /* Affinity mask for CPUs*/ 624 cpumask_t affinity_mask; 625 }; 626 627 struct mvneta_rx_queue { 628 /* rx queue number, in the range 0-7 */ 629 u8 id; 630 631 /* num of rx descriptors in the rx descriptor ring */ 632 int size; 633 634 u32 pkts_coal; 635 u32 time_coal; 636 637 /* page_pool */ 638 struct page_pool *page_pool; 639 struct xdp_rxq_info xdp_rxq; 640 641 /* Virtual address of the RX buffer */ 642 void **buf_virt_addr; 643 644 /* Virtual address of the RX DMA descriptors array */ 645 struct mvneta_rx_desc *descs; 646 647 /* DMA address of the RX DMA descriptors array */ 648 dma_addr_t descs_phys; 649 650 /* Index of the last RX DMA descriptor */ 651 int last_desc; 652 653 /* Index of the next RX DMA descriptor to process */ 654 int next_desc_to_proc; 655 656 /* Index of first RX DMA descriptor to refill */ 657 int first_to_refill; 658 u32 refill_num; 659 660 /* pointer to uncomplete skb buffer */ 661 struct sk_buff *skb; 662 int left_size; 663 664 /* error counters */ 665 u32 skb_alloc_err; 666 u32 refill_err; 667 }; 668 669 static enum cpuhp_state online_hpstate; 670 /* The hardware supports eight (8) rx queues, but we are only allowing 671 * the first one to be used. Therefore, let's just allocate one queue. 672 */ 673 static int rxq_number = 8; 674 static int txq_number = 8; 675 676 static int rxq_def; 677 678 static int rx_copybreak __read_mostly = 256; 679 680 /* HW BM need that each port be identify by a unique ID */ 681 static int global_port_id; 682 683 #define MVNETA_DRIVER_NAME "mvneta" 684 #define MVNETA_DRIVER_VERSION "1.0" 685 686 /* Utility/helper methods */ 687 688 /* Write helper method */ 689 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 690 { 691 writel(data, pp->base + offset); 692 } 693 694 /* Read helper method */ 695 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 696 { 697 return readl(pp->base + offset); 698 } 699 700 /* Increment txq get counter */ 701 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 702 { 703 txq->txq_get_index++; 704 if (txq->txq_get_index == txq->size) 705 txq->txq_get_index = 0; 706 } 707 708 /* Increment txq put counter */ 709 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 710 { 711 txq->txq_put_index++; 712 if (txq->txq_put_index == txq->size) 713 txq->txq_put_index = 0; 714 } 715 716 717 /* Clear all MIB counters */ 718 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 719 { 720 int i; 721 u32 dummy; 722 723 /* Perform dummy reads from MIB counters */ 724 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 725 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 726 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 727 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 728 } 729 730 /* Get System Network Statistics */ 731 static void 732 mvneta_get_stats64(struct net_device *dev, 733 struct rtnl_link_stats64 *stats) 734 { 735 struct mvneta_port *pp = netdev_priv(dev); 736 unsigned int start; 737 int cpu; 738 739 for_each_possible_cpu(cpu) { 740 struct mvneta_pcpu_stats *cpu_stats; 741 u64 rx_packets; 742 u64 rx_bytes; 743 u64 rx_dropped; 744 u64 rx_errors; 745 u64 tx_packets; 746 u64 tx_bytes; 747 748 cpu_stats = per_cpu_ptr(pp->stats, cpu); 749 do { 750 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 751 rx_packets = cpu_stats->rx_packets; 752 rx_bytes = cpu_stats->rx_bytes; 753 rx_dropped = cpu_stats->rx_dropped; 754 rx_errors = cpu_stats->rx_errors; 755 tx_packets = cpu_stats->tx_packets; 756 tx_bytes = cpu_stats->tx_bytes; 757 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 758 759 stats->rx_packets += rx_packets; 760 stats->rx_bytes += rx_bytes; 761 stats->rx_dropped += rx_dropped; 762 stats->rx_errors += rx_errors; 763 stats->tx_packets += tx_packets; 764 stats->tx_bytes += tx_bytes; 765 } 766 767 stats->tx_dropped = dev->stats.tx_dropped; 768 } 769 770 /* Rx descriptors helper methods */ 771 772 /* Checks whether the RX descriptor having this status is both the first 773 * and the last descriptor for the RX packet. Each RX packet is currently 774 * received through a single RX descriptor, so not having each RX 775 * descriptor with its first and last bits set is an error 776 */ 777 static int mvneta_rxq_desc_is_first_last(u32 status) 778 { 779 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 780 MVNETA_RXD_FIRST_LAST_DESC; 781 } 782 783 /* Add number of descriptors ready to receive new packets */ 784 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 785 struct mvneta_rx_queue *rxq, 786 int ndescs) 787 { 788 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 789 * be added at once 790 */ 791 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 792 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 793 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 794 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 795 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 796 } 797 798 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 799 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 800 } 801 802 /* Get number of RX descriptors occupied by received packets */ 803 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 804 struct mvneta_rx_queue *rxq) 805 { 806 u32 val; 807 808 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 809 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 810 } 811 812 /* Update num of rx desc called upon return from rx path or 813 * from mvneta_rxq_drop_pkts(). 814 */ 815 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 816 struct mvneta_rx_queue *rxq, 817 int rx_done, int rx_filled) 818 { 819 u32 val; 820 821 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 822 val = rx_done | 823 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 824 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 825 return; 826 } 827 828 /* Only 255 descriptors can be added at once */ 829 while ((rx_done > 0) || (rx_filled > 0)) { 830 if (rx_done <= 0xff) { 831 val = rx_done; 832 rx_done = 0; 833 } else { 834 val = 0xff; 835 rx_done -= 0xff; 836 } 837 if (rx_filled <= 0xff) { 838 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 839 rx_filled = 0; 840 } else { 841 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 842 rx_filled -= 0xff; 843 } 844 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 845 } 846 } 847 848 /* Get pointer to next RX descriptor to be processed by SW */ 849 static struct mvneta_rx_desc * 850 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 851 { 852 int rx_desc = rxq->next_desc_to_proc; 853 854 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 855 prefetch(rxq->descs + rxq->next_desc_to_proc); 856 return rxq->descs + rx_desc; 857 } 858 859 /* Change maximum receive size of the port. */ 860 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 861 { 862 u32 val; 863 864 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 865 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 866 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 867 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 868 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 869 } 870 871 872 /* Set rx queue offset */ 873 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 874 struct mvneta_rx_queue *rxq, 875 int offset) 876 { 877 u32 val; 878 879 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 880 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 881 882 /* Offset is in */ 883 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 884 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 885 } 886 887 888 /* Tx descriptors helper methods */ 889 890 /* Update HW with number of TX descriptors to be sent */ 891 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 892 struct mvneta_tx_queue *txq, 893 int pend_desc) 894 { 895 u32 val; 896 897 pend_desc += txq->pending; 898 899 /* Only 255 Tx descriptors can be added at once */ 900 do { 901 val = min(pend_desc, 255); 902 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 903 pend_desc -= val; 904 } while (pend_desc > 0); 905 txq->pending = 0; 906 } 907 908 /* Get pointer to next TX descriptor to be processed (send) by HW */ 909 static struct mvneta_tx_desc * 910 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 911 { 912 int tx_desc = txq->next_desc_to_proc; 913 914 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 915 return txq->descs + tx_desc; 916 } 917 918 /* Release the last allocated TX descriptor. Useful to handle DMA 919 * mapping failures in the TX path. 920 */ 921 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 922 { 923 if (txq->next_desc_to_proc == 0) 924 txq->next_desc_to_proc = txq->last_desc - 1; 925 else 926 txq->next_desc_to_proc--; 927 } 928 929 /* Set rxq buf size */ 930 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 931 struct mvneta_rx_queue *rxq, 932 int buf_size) 933 { 934 u32 val; 935 936 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 937 938 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 939 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 940 941 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 942 } 943 944 /* Disable buffer management (BM) */ 945 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 946 struct mvneta_rx_queue *rxq) 947 { 948 u32 val; 949 950 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 951 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 952 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 953 } 954 955 /* Enable buffer management (BM) */ 956 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 957 struct mvneta_rx_queue *rxq) 958 { 959 u32 val; 960 961 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 962 val |= MVNETA_RXQ_HW_BUF_ALLOC; 963 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 964 } 965 966 /* Notify HW about port's assignment of pool for bigger packets */ 967 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 968 struct mvneta_rx_queue *rxq) 969 { 970 u32 val; 971 972 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 973 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 974 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 975 976 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 977 } 978 979 /* Notify HW about port's assignment of pool for smaller packets */ 980 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 981 struct mvneta_rx_queue *rxq) 982 { 983 u32 val; 984 985 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 986 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 987 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 988 989 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 990 } 991 992 /* Set port's receive buffer size for assigned BM pool */ 993 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 994 int buf_size, 995 u8 pool_id) 996 { 997 u32 val; 998 999 if (!IS_ALIGNED(buf_size, 8)) { 1000 dev_warn(pp->dev->dev.parent, 1001 "illegal buf_size value %d, round to %d\n", 1002 buf_size, ALIGN(buf_size, 8)); 1003 buf_size = ALIGN(buf_size, 8); 1004 } 1005 1006 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1007 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1008 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1009 } 1010 1011 /* Configure MBUS window in order to enable access BM internal SRAM */ 1012 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1013 u8 target, u8 attr) 1014 { 1015 u32 win_enable, win_protect; 1016 int i; 1017 1018 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1019 1020 if (pp->bm_win_id < 0) { 1021 /* Find first not occupied window */ 1022 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1023 if (win_enable & (1 << i)) { 1024 pp->bm_win_id = i; 1025 break; 1026 } 1027 } 1028 if (i == MVNETA_MAX_DECODE_WIN) 1029 return -ENOMEM; 1030 } else { 1031 i = pp->bm_win_id; 1032 } 1033 1034 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1035 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1036 1037 if (i < 4) 1038 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1039 1040 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1041 (attr << 8) | target); 1042 1043 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1044 1045 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1046 win_protect |= 3 << (2 * i); 1047 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1048 1049 win_enable &= ~(1 << i); 1050 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1051 1052 return 0; 1053 } 1054 1055 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1056 { 1057 u32 wsize; 1058 u8 target, attr; 1059 int err; 1060 1061 /* Get BM window information */ 1062 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1063 &target, &attr); 1064 if (err < 0) 1065 return err; 1066 1067 pp->bm_win_id = -1; 1068 1069 /* Open NETA -> BM window */ 1070 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1071 target, attr); 1072 if (err < 0) { 1073 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1074 return err; 1075 } 1076 return 0; 1077 } 1078 1079 /* Assign and initialize pools for port. In case of fail 1080 * buffer manager will remain disabled for current port. 1081 */ 1082 static int mvneta_bm_port_init(struct platform_device *pdev, 1083 struct mvneta_port *pp) 1084 { 1085 struct device_node *dn = pdev->dev.of_node; 1086 u32 long_pool_id, short_pool_id; 1087 1088 if (!pp->neta_armada3700) { 1089 int ret; 1090 1091 ret = mvneta_bm_port_mbus_init(pp); 1092 if (ret) 1093 return ret; 1094 } 1095 1096 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1097 netdev_info(pp->dev, "missing long pool id\n"); 1098 return -EINVAL; 1099 } 1100 1101 /* Create port's long pool depending on mtu */ 1102 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1103 MVNETA_BM_LONG, pp->id, 1104 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1105 if (!pp->pool_long) { 1106 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1107 return -ENOMEM; 1108 } 1109 1110 pp->pool_long->port_map |= 1 << pp->id; 1111 1112 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1113 pp->pool_long->id); 1114 1115 /* If short pool id is not defined, assume using single pool */ 1116 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1117 short_pool_id = long_pool_id; 1118 1119 /* Create port's short pool */ 1120 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1121 MVNETA_BM_SHORT, pp->id, 1122 MVNETA_BM_SHORT_PKT_SIZE); 1123 if (!pp->pool_short) { 1124 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1125 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1126 return -ENOMEM; 1127 } 1128 1129 if (short_pool_id != long_pool_id) { 1130 pp->pool_short->port_map |= 1 << pp->id; 1131 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1132 pp->pool_short->id); 1133 } 1134 1135 return 0; 1136 } 1137 1138 /* Update settings of a pool for bigger packets */ 1139 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1140 { 1141 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1142 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1143 int num; 1144 1145 /* Release all buffers from long pool */ 1146 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1147 if (hwbm_pool->buf_num) { 1148 WARN(1, "cannot free all buffers in pool %d\n", 1149 bm_pool->id); 1150 goto bm_mtu_err; 1151 } 1152 1153 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1154 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1155 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1156 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1157 1158 /* Fill entire long pool */ 1159 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1160 if (num != hwbm_pool->size) { 1161 WARN(1, "pool %d: %d of %d allocated\n", 1162 bm_pool->id, num, hwbm_pool->size); 1163 goto bm_mtu_err; 1164 } 1165 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1166 1167 return; 1168 1169 bm_mtu_err: 1170 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1171 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1172 1173 pp->bm_priv = NULL; 1174 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1175 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1176 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1177 } 1178 1179 /* Start the Ethernet port RX and TX activity */ 1180 static void mvneta_port_up(struct mvneta_port *pp) 1181 { 1182 int queue; 1183 u32 q_map; 1184 1185 /* Enable all initialized TXs. */ 1186 q_map = 0; 1187 for (queue = 0; queue < txq_number; queue++) { 1188 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1189 if (txq->descs) 1190 q_map |= (1 << queue); 1191 } 1192 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1193 1194 q_map = 0; 1195 /* Enable all initialized RXQs. */ 1196 for (queue = 0; queue < rxq_number; queue++) { 1197 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1198 1199 if (rxq->descs) 1200 q_map |= (1 << queue); 1201 } 1202 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1203 } 1204 1205 /* Stop the Ethernet port activity */ 1206 static void mvneta_port_down(struct mvneta_port *pp) 1207 { 1208 u32 val; 1209 int count; 1210 1211 /* Stop Rx port activity. Check port Rx activity. */ 1212 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1213 1214 /* Issue stop command for active channels only */ 1215 if (val != 0) 1216 mvreg_write(pp, MVNETA_RXQ_CMD, 1217 val << MVNETA_RXQ_DISABLE_SHIFT); 1218 1219 /* Wait for all Rx activity to terminate. */ 1220 count = 0; 1221 do { 1222 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1223 netdev_warn(pp->dev, 1224 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1225 val); 1226 break; 1227 } 1228 mdelay(1); 1229 1230 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1231 } while (val & MVNETA_RXQ_ENABLE_MASK); 1232 1233 /* Stop Tx port activity. Check port Tx activity. Issue stop 1234 * command for active channels only 1235 */ 1236 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1237 1238 if (val != 0) 1239 mvreg_write(pp, MVNETA_TXQ_CMD, 1240 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1241 1242 /* Wait for all Tx activity to terminate. */ 1243 count = 0; 1244 do { 1245 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1246 netdev_warn(pp->dev, 1247 "TIMEOUT for TX stopped status=0x%08x\n", 1248 val); 1249 break; 1250 } 1251 mdelay(1); 1252 1253 /* Check TX Command reg that all Txqs are stopped */ 1254 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1255 1256 } while (val & MVNETA_TXQ_ENABLE_MASK); 1257 1258 /* Double check to verify that TX FIFO is empty */ 1259 count = 0; 1260 do { 1261 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1262 netdev_warn(pp->dev, 1263 "TX FIFO empty timeout status=0x%08x\n", 1264 val); 1265 break; 1266 } 1267 mdelay(1); 1268 1269 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1270 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1271 (val & MVNETA_TX_IN_PRGRS)); 1272 1273 udelay(200); 1274 } 1275 1276 /* Enable the port by setting the port enable bit of the MAC control register */ 1277 static void mvneta_port_enable(struct mvneta_port *pp) 1278 { 1279 u32 val; 1280 1281 /* Enable port */ 1282 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1283 val |= MVNETA_GMAC0_PORT_ENABLE; 1284 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1285 } 1286 1287 /* Disable the port and wait for about 200 usec before retuning */ 1288 static void mvneta_port_disable(struct mvneta_port *pp) 1289 { 1290 u32 val; 1291 1292 /* Reset the Enable bit in the Serial Control Register */ 1293 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1294 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1295 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1296 1297 udelay(200); 1298 } 1299 1300 /* Multicast tables methods */ 1301 1302 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1303 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1304 { 1305 int offset; 1306 u32 val; 1307 1308 if (queue == -1) { 1309 val = 0; 1310 } else { 1311 val = 0x1 | (queue << 1); 1312 val |= (val << 24) | (val << 16) | (val << 8); 1313 } 1314 1315 for (offset = 0; offset <= 0xc; offset += 4) 1316 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1317 } 1318 1319 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1320 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1321 { 1322 int offset; 1323 u32 val; 1324 1325 if (queue == -1) { 1326 val = 0; 1327 } else { 1328 val = 0x1 | (queue << 1); 1329 val |= (val << 24) | (val << 16) | (val << 8); 1330 } 1331 1332 for (offset = 0; offset <= 0xfc; offset += 4) 1333 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1334 1335 } 1336 1337 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1338 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1339 { 1340 int offset; 1341 u32 val; 1342 1343 if (queue == -1) { 1344 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1345 val = 0; 1346 } else { 1347 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1348 val = 0x1 | (queue << 1); 1349 val |= (val << 24) | (val << 16) | (val << 8); 1350 } 1351 1352 for (offset = 0; offset <= 0xfc; offset += 4) 1353 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1354 } 1355 1356 static void mvneta_percpu_unmask_interrupt(void *arg) 1357 { 1358 struct mvneta_port *pp = arg; 1359 1360 /* All the queue are unmasked, but actually only the ones 1361 * mapped to this CPU will be unmasked 1362 */ 1363 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1364 MVNETA_RX_INTR_MASK_ALL | 1365 MVNETA_TX_INTR_MASK_ALL | 1366 MVNETA_MISCINTR_INTR_MASK); 1367 } 1368 1369 static void mvneta_percpu_mask_interrupt(void *arg) 1370 { 1371 struct mvneta_port *pp = arg; 1372 1373 /* All the queue are masked, but actually only the ones 1374 * mapped to this CPU will be masked 1375 */ 1376 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1377 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1378 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1379 } 1380 1381 static void mvneta_percpu_clear_intr_cause(void *arg) 1382 { 1383 struct mvneta_port *pp = arg; 1384 1385 /* All the queue are cleared, but actually only the ones 1386 * mapped to this CPU will be cleared 1387 */ 1388 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1389 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1390 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1391 } 1392 1393 /* This method sets defaults to the NETA port: 1394 * Clears interrupt Cause and Mask registers. 1395 * Clears all MAC tables. 1396 * Sets defaults to all registers. 1397 * Resets RX and TX descriptor rings. 1398 * Resets PHY. 1399 * This method can be called after mvneta_port_down() to return the port 1400 * settings to defaults. 1401 */ 1402 static void mvneta_defaults_set(struct mvneta_port *pp) 1403 { 1404 int cpu; 1405 int queue; 1406 u32 val; 1407 int max_cpu = num_present_cpus(); 1408 1409 /* Clear all Cause registers */ 1410 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1411 1412 /* Mask all interrupts */ 1413 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1414 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1415 1416 /* Enable MBUS Retry bit16 */ 1417 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1418 1419 /* Set CPU queue access map. CPUs are assigned to the RX and 1420 * TX queues modulo their number. If there is only one TX 1421 * queue then it is assigned to the CPU associated to the 1422 * default RX queue. 1423 */ 1424 for_each_present_cpu(cpu) { 1425 int rxq_map = 0, txq_map = 0; 1426 int rxq, txq; 1427 if (!pp->neta_armada3700) { 1428 for (rxq = 0; rxq < rxq_number; rxq++) 1429 if ((rxq % max_cpu) == cpu) 1430 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1431 1432 for (txq = 0; txq < txq_number; txq++) 1433 if ((txq % max_cpu) == cpu) 1434 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1435 1436 /* With only one TX queue we configure a special case 1437 * which will allow to get all the irq on a single 1438 * CPU 1439 */ 1440 if (txq_number == 1) 1441 txq_map = (cpu == pp->rxq_def) ? 1442 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1443 1444 } else { 1445 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1446 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1447 } 1448 1449 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1450 } 1451 1452 /* Reset RX and TX DMAs */ 1453 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1454 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1455 1456 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1457 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1458 for (queue = 0; queue < txq_number; queue++) { 1459 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1460 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1461 } 1462 1463 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1464 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1465 1466 /* Set Port Acceleration Mode */ 1467 if (pp->bm_priv) 1468 /* HW buffer management + legacy parser */ 1469 val = MVNETA_ACC_MODE_EXT2; 1470 else 1471 /* SW buffer management + legacy parser */ 1472 val = MVNETA_ACC_MODE_EXT1; 1473 mvreg_write(pp, MVNETA_ACC_MODE, val); 1474 1475 if (pp->bm_priv) 1476 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1477 1478 /* Update val of portCfg register accordingly with all RxQueue types */ 1479 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1480 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1481 1482 val = 0; 1483 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1484 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1485 1486 /* Build PORT_SDMA_CONFIG_REG */ 1487 val = 0; 1488 1489 /* Default burst size */ 1490 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1491 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1492 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1493 1494 #if defined(__BIG_ENDIAN) 1495 val |= MVNETA_DESC_SWAP; 1496 #endif 1497 1498 /* Assign port SDMA configuration */ 1499 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1500 1501 /* Disable PHY polling in hardware, since we're using the 1502 * kernel phylib to do this. 1503 */ 1504 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1505 val &= ~MVNETA_PHY_POLLING_ENABLE; 1506 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1507 1508 mvneta_set_ucast_table(pp, -1); 1509 mvneta_set_special_mcast_table(pp, -1); 1510 mvneta_set_other_mcast_table(pp, -1); 1511 1512 /* Set port interrupt enable register - default enable all */ 1513 mvreg_write(pp, MVNETA_INTR_ENABLE, 1514 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1515 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1516 1517 mvneta_mib_counters_clear(pp); 1518 } 1519 1520 /* Set max sizes for tx queues */ 1521 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1522 1523 { 1524 u32 val, size, mtu; 1525 int queue; 1526 1527 mtu = max_tx_size * 8; 1528 if (mtu > MVNETA_TX_MTU_MAX) 1529 mtu = MVNETA_TX_MTU_MAX; 1530 1531 /* Set MTU */ 1532 val = mvreg_read(pp, MVNETA_TX_MTU); 1533 val &= ~MVNETA_TX_MTU_MAX; 1534 val |= mtu; 1535 mvreg_write(pp, MVNETA_TX_MTU, val); 1536 1537 /* TX token size and all TXQs token size must be larger that MTU */ 1538 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1539 1540 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1541 if (size < mtu) { 1542 size = mtu; 1543 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1544 val |= size; 1545 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1546 } 1547 for (queue = 0; queue < txq_number; queue++) { 1548 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1549 1550 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1551 if (size < mtu) { 1552 size = mtu; 1553 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1554 val |= size; 1555 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1556 } 1557 } 1558 } 1559 1560 /* Set unicast address */ 1561 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1562 int queue) 1563 { 1564 unsigned int unicast_reg; 1565 unsigned int tbl_offset; 1566 unsigned int reg_offset; 1567 1568 /* Locate the Unicast table entry */ 1569 last_nibble = (0xf & last_nibble); 1570 1571 /* offset from unicast tbl base */ 1572 tbl_offset = (last_nibble / 4) * 4; 1573 1574 /* offset within the above reg */ 1575 reg_offset = last_nibble % 4; 1576 1577 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1578 1579 if (queue == -1) { 1580 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1581 unicast_reg &= ~(0xff << (8 * reg_offset)); 1582 } else { 1583 unicast_reg &= ~(0xff << (8 * reg_offset)); 1584 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1585 } 1586 1587 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1588 } 1589 1590 /* Set mac address */ 1591 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1592 int queue) 1593 { 1594 unsigned int mac_h; 1595 unsigned int mac_l; 1596 1597 if (queue != -1) { 1598 mac_l = (addr[4] << 8) | (addr[5]); 1599 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1600 (addr[2] << 8) | (addr[3] << 0); 1601 1602 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1603 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1604 } 1605 1606 /* Accept frames of this address */ 1607 mvneta_set_ucast_addr(pp, addr[5], queue); 1608 } 1609 1610 /* Set the number of packets that will be received before RX interrupt 1611 * will be generated by HW. 1612 */ 1613 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1614 struct mvneta_rx_queue *rxq, u32 value) 1615 { 1616 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1617 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1618 } 1619 1620 /* Set the time delay in usec before RX interrupt will be generated by 1621 * HW. 1622 */ 1623 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1624 struct mvneta_rx_queue *rxq, u32 value) 1625 { 1626 u32 val; 1627 unsigned long clk_rate; 1628 1629 clk_rate = clk_get_rate(pp->clk); 1630 val = (clk_rate / 1000000) * value; 1631 1632 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1633 } 1634 1635 /* Set threshold for TX_DONE pkts coalescing */ 1636 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1637 struct mvneta_tx_queue *txq, u32 value) 1638 { 1639 u32 val; 1640 1641 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1642 1643 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1644 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1645 1646 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1647 } 1648 1649 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1650 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1651 u32 phys_addr, void *virt_addr, 1652 struct mvneta_rx_queue *rxq) 1653 { 1654 int i; 1655 1656 rx_desc->buf_phys_addr = phys_addr; 1657 i = rx_desc - rxq->descs; 1658 rxq->buf_virt_addr[i] = virt_addr; 1659 } 1660 1661 /* Decrement sent descriptors counter */ 1662 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1663 struct mvneta_tx_queue *txq, 1664 int sent_desc) 1665 { 1666 u32 val; 1667 1668 /* Only 255 TX descriptors can be updated at once */ 1669 while (sent_desc > 0xff) { 1670 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1671 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1672 sent_desc = sent_desc - 0xff; 1673 } 1674 1675 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1676 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1677 } 1678 1679 /* Get number of TX descriptors already sent by HW */ 1680 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1681 struct mvneta_tx_queue *txq) 1682 { 1683 u32 val; 1684 int sent_desc; 1685 1686 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1687 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1688 MVNETA_TXQ_SENT_DESC_SHIFT; 1689 1690 return sent_desc; 1691 } 1692 1693 /* Get number of sent descriptors and decrement counter. 1694 * The number of sent descriptors is returned. 1695 */ 1696 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1697 struct mvneta_tx_queue *txq) 1698 { 1699 int sent_desc; 1700 1701 /* Get number of sent descriptors */ 1702 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1703 1704 /* Decrement sent descriptors counter */ 1705 if (sent_desc) 1706 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1707 1708 return sent_desc; 1709 } 1710 1711 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1712 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1713 int ip_hdr_len, int l4_proto) 1714 { 1715 u32 command; 1716 1717 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1718 * G_L4_chk, L4_type; required only for checksum 1719 * calculation 1720 */ 1721 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1722 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1723 1724 if (l3_proto == htons(ETH_P_IP)) 1725 command |= MVNETA_TXD_IP_CSUM; 1726 else 1727 command |= MVNETA_TX_L3_IP6; 1728 1729 if (l4_proto == IPPROTO_TCP) 1730 command |= MVNETA_TX_L4_CSUM_FULL; 1731 else if (l4_proto == IPPROTO_UDP) 1732 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1733 else 1734 command |= MVNETA_TX_L4_CSUM_NOT; 1735 1736 return command; 1737 } 1738 1739 1740 /* Display more error info */ 1741 static void mvneta_rx_error(struct mvneta_port *pp, 1742 struct mvneta_rx_desc *rx_desc) 1743 { 1744 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1745 u32 status = rx_desc->status; 1746 1747 /* update per-cpu counter */ 1748 u64_stats_update_begin(&stats->syncp); 1749 stats->rx_errors++; 1750 u64_stats_update_end(&stats->syncp); 1751 1752 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1753 case MVNETA_RXD_ERR_CRC: 1754 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1755 status, rx_desc->data_size); 1756 break; 1757 case MVNETA_RXD_ERR_OVERRUN: 1758 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1759 status, rx_desc->data_size); 1760 break; 1761 case MVNETA_RXD_ERR_LEN: 1762 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1763 status, rx_desc->data_size); 1764 break; 1765 case MVNETA_RXD_ERR_RESOURCE: 1766 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1767 status, rx_desc->data_size); 1768 break; 1769 } 1770 } 1771 1772 /* Handle RX checksum offload based on the descriptor's status */ 1773 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1774 struct sk_buff *skb) 1775 { 1776 if ((pp->dev->features & NETIF_F_RXCSUM) && 1777 (status & MVNETA_RXD_L3_IP4) && 1778 (status & MVNETA_RXD_L4_CSUM_OK)) { 1779 skb->csum = 0; 1780 skb->ip_summed = CHECKSUM_UNNECESSARY; 1781 return; 1782 } 1783 1784 skb->ip_summed = CHECKSUM_NONE; 1785 } 1786 1787 /* Return tx queue pointer (find last set bit) according to <cause> returned 1788 * form tx_done reg. <cause> must not be null. The return value is always a 1789 * valid queue for matching the first one found in <cause>. 1790 */ 1791 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1792 u32 cause) 1793 { 1794 int queue = fls(cause) - 1; 1795 1796 return &pp->txqs[queue]; 1797 } 1798 1799 /* Free tx queue skbuffs */ 1800 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1801 struct mvneta_tx_queue *txq, int num, 1802 struct netdev_queue *nq) 1803 { 1804 unsigned int bytes_compl = 0, pkts_compl = 0; 1805 int i; 1806 1807 for (i = 0; i < num; i++) { 1808 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1809 struct mvneta_tx_desc *tx_desc = txq->descs + 1810 txq->txq_get_index; 1811 1812 mvneta_txq_inc_get(txq); 1813 1814 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1815 buf->type != MVNETA_TYPE_XDP_TX) 1816 dma_unmap_single(pp->dev->dev.parent, 1817 tx_desc->buf_phys_addr, 1818 tx_desc->data_size, DMA_TO_DEVICE); 1819 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1820 bytes_compl += buf->skb->len; 1821 pkts_compl++; 1822 dev_kfree_skb_any(buf->skb); 1823 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1824 buf->type == MVNETA_TYPE_XDP_NDO) { 1825 xdp_return_frame(buf->xdpf); 1826 } 1827 } 1828 1829 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1830 } 1831 1832 /* Handle end of transmission */ 1833 static void mvneta_txq_done(struct mvneta_port *pp, 1834 struct mvneta_tx_queue *txq) 1835 { 1836 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1837 int tx_done; 1838 1839 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1840 if (!tx_done) 1841 return; 1842 1843 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1844 1845 txq->count -= tx_done; 1846 1847 if (netif_tx_queue_stopped(nq)) { 1848 if (txq->count <= txq->tx_wake_threshold) 1849 netif_tx_wake_queue(nq); 1850 } 1851 } 1852 1853 /* Refill processing for SW buffer management */ 1854 /* Allocate page per descriptor */ 1855 static int mvneta_rx_refill(struct mvneta_port *pp, 1856 struct mvneta_rx_desc *rx_desc, 1857 struct mvneta_rx_queue *rxq, 1858 gfp_t gfp_mask) 1859 { 1860 dma_addr_t phys_addr; 1861 struct page *page; 1862 1863 page = page_pool_alloc_pages(rxq->page_pool, 1864 gfp_mask | __GFP_NOWARN); 1865 if (!page) 1866 return -ENOMEM; 1867 1868 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1869 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1870 1871 return 0; 1872 } 1873 1874 /* Handle tx checksum */ 1875 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1876 { 1877 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1878 int ip_hdr_len = 0; 1879 __be16 l3_proto = vlan_get_protocol(skb); 1880 u8 l4_proto; 1881 1882 if (l3_proto == htons(ETH_P_IP)) { 1883 struct iphdr *ip4h = ip_hdr(skb); 1884 1885 /* Calculate IPv4 checksum and L4 checksum */ 1886 ip_hdr_len = ip4h->ihl; 1887 l4_proto = ip4h->protocol; 1888 } else if (l3_proto == htons(ETH_P_IPV6)) { 1889 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1890 1891 /* Read l4_protocol from one of IPv6 extra headers */ 1892 if (skb_network_header_len(skb) > 0) 1893 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1894 l4_proto = ip6h->nexthdr; 1895 } else 1896 return MVNETA_TX_L4_CSUM_NOT; 1897 1898 return mvneta_txq_desc_csum(skb_network_offset(skb), 1899 l3_proto, ip_hdr_len, l4_proto); 1900 } 1901 1902 return MVNETA_TX_L4_CSUM_NOT; 1903 } 1904 1905 /* Drop packets received by the RXQ and free buffers */ 1906 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1907 struct mvneta_rx_queue *rxq) 1908 { 1909 int rx_done, i; 1910 1911 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1912 if (rx_done) 1913 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1914 1915 if (pp->bm_priv) { 1916 for (i = 0; i < rx_done; i++) { 1917 struct mvneta_rx_desc *rx_desc = 1918 mvneta_rxq_next_desc_get(rxq); 1919 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1920 struct mvneta_bm_pool *bm_pool; 1921 1922 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1923 /* Return dropped buffer to the pool */ 1924 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1925 rx_desc->buf_phys_addr); 1926 } 1927 return; 1928 } 1929 1930 for (i = 0; i < rxq->size; i++) { 1931 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1932 void *data = rxq->buf_virt_addr[i]; 1933 if (!data || !(rx_desc->buf_phys_addr)) 1934 continue; 1935 1936 page_pool_put_page(rxq->page_pool, data, false); 1937 } 1938 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1939 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1940 page_pool_destroy(rxq->page_pool); 1941 rxq->page_pool = NULL; 1942 } 1943 1944 static void 1945 mvneta_update_stats(struct mvneta_port *pp, u32 pkts, 1946 u32 len, bool tx) 1947 { 1948 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1949 1950 u64_stats_update_begin(&stats->syncp); 1951 if (tx) { 1952 stats->tx_packets += pkts; 1953 stats->tx_bytes += len; 1954 } else { 1955 stats->rx_packets += pkts; 1956 stats->rx_bytes += len; 1957 } 1958 u64_stats_update_end(&stats->syncp); 1959 } 1960 1961 static inline 1962 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1963 { 1964 struct mvneta_rx_desc *rx_desc; 1965 int curr_desc = rxq->first_to_refill; 1966 int i; 1967 1968 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1969 rx_desc = rxq->descs + curr_desc; 1970 if (!(rx_desc->buf_phys_addr)) { 1971 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 1972 pr_err("Can't refill queue %d. Done %d from %d\n", 1973 rxq->id, i, rxq->refill_num); 1974 rxq->refill_err++; 1975 break; 1976 } 1977 } 1978 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 1979 } 1980 rxq->refill_num -= i; 1981 rxq->first_to_refill = curr_desc; 1982 1983 return i; 1984 } 1985 1986 static int 1987 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 1988 struct xdp_frame *xdpf, bool dma_map) 1989 { 1990 struct mvneta_tx_desc *tx_desc; 1991 struct mvneta_tx_buf *buf; 1992 dma_addr_t dma_addr; 1993 1994 if (txq->count >= txq->tx_stop_threshold) 1995 return MVNETA_XDP_DROPPED; 1996 1997 tx_desc = mvneta_txq_next_desc_get(txq); 1998 1999 buf = &txq->buf[txq->txq_put_index]; 2000 if (dma_map) { 2001 /* ndo_xdp_xmit */ 2002 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2003 xdpf->len, DMA_TO_DEVICE); 2004 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2005 mvneta_txq_desc_put(txq); 2006 return MVNETA_XDP_DROPPED; 2007 } 2008 buf->type = MVNETA_TYPE_XDP_NDO; 2009 } else { 2010 struct page *page = virt_to_page(xdpf->data); 2011 2012 dma_addr = page_pool_get_dma_addr(page) + 2013 sizeof(*xdpf) + xdpf->headroom; 2014 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2015 xdpf->len, DMA_BIDIRECTIONAL); 2016 buf->type = MVNETA_TYPE_XDP_TX; 2017 } 2018 buf->xdpf = xdpf; 2019 2020 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2021 tx_desc->buf_phys_addr = dma_addr; 2022 tx_desc->data_size = xdpf->len; 2023 2024 mvneta_update_stats(pp, 1, xdpf->len, true); 2025 mvneta_txq_inc_put(txq); 2026 txq->pending++; 2027 txq->count++; 2028 2029 return MVNETA_XDP_TX; 2030 } 2031 2032 static int 2033 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2034 { 2035 struct mvneta_tx_queue *txq; 2036 struct netdev_queue *nq; 2037 struct xdp_frame *xdpf; 2038 int cpu; 2039 u32 ret; 2040 2041 xdpf = convert_to_xdp_frame(xdp); 2042 if (unlikely(!xdpf)) 2043 return MVNETA_XDP_DROPPED; 2044 2045 cpu = smp_processor_id(); 2046 txq = &pp->txqs[cpu % txq_number]; 2047 nq = netdev_get_tx_queue(pp->dev, txq->id); 2048 2049 __netif_tx_lock(nq, cpu); 2050 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2051 if (ret == MVNETA_XDP_TX) 2052 mvneta_txq_pend_desc_add(pp, txq, 0); 2053 __netif_tx_unlock(nq); 2054 2055 return ret; 2056 } 2057 2058 static int 2059 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2060 struct xdp_frame **frames, u32 flags) 2061 { 2062 struct mvneta_port *pp = netdev_priv(dev); 2063 int cpu = smp_processor_id(); 2064 struct mvneta_tx_queue *txq; 2065 struct netdev_queue *nq; 2066 int i, drops = 0; 2067 u32 ret; 2068 2069 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2070 return -EINVAL; 2071 2072 txq = &pp->txqs[cpu % txq_number]; 2073 nq = netdev_get_tx_queue(pp->dev, txq->id); 2074 2075 __netif_tx_lock(nq, cpu); 2076 for (i = 0; i < num_frame; i++) { 2077 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2078 if (ret != MVNETA_XDP_TX) { 2079 xdp_return_frame_rx_napi(frames[i]); 2080 drops++; 2081 } 2082 } 2083 2084 if (unlikely(flags & XDP_XMIT_FLUSH)) 2085 mvneta_txq_pend_desc_add(pp, txq, 0); 2086 __netif_tx_unlock(nq); 2087 2088 return num_frame - drops; 2089 } 2090 2091 static int 2092 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2093 struct bpf_prog *prog, struct xdp_buff *xdp) 2094 { 2095 unsigned int len; 2096 u32 ret, act; 2097 2098 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2099 act = bpf_prog_run_xdp(prog, xdp); 2100 2101 switch (act) { 2102 case XDP_PASS: 2103 ret = MVNETA_XDP_PASS; 2104 break; 2105 case XDP_REDIRECT: { 2106 int err; 2107 2108 err = xdp_do_redirect(pp->dev, xdp, prog); 2109 if (err) { 2110 ret = MVNETA_XDP_DROPPED; 2111 __page_pool_put_page(rxq->page_pool, 2112 virt_to_head_page(xdp->data), 2113 len, true); 2114 } else { 2115 ret = MVNETA_XDP_REDIR; 2116 } 2117 break; 2118 } 2119 case XDP_TX: 2120 ret = mvneta_xdp_xmit_back(pp, xdp); 2121 if (ret != MVNETA_XDP_TX) 2122 __page_pool_put_page(rxq->page_pool, 2123 virt_to_head_page(xdp->data), 2124 len, true); 2125 break; 2126 default: 2127 bpf_warn_invalid_xdp_action(act); 2128 /* fall through */ 2129 case XDP_ABORTED: 2130 trace_xdp_exception(pp->dev, prog, act); 2131 /* fall through */ 2132 case XDP_DROP: 2133 __page_pool_put_page(rxq->page_pool, 2134 virt_to_head_page(xdp->data), 2135 len, true); 2136 ret = MVNETA_XDP_DROPPED; 2137 break; 2138 } 2139 2140 return ret; 2141 } 2142 2143 static int 2144 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2145 struct mvneta_rx_desc *rx_desc, 2146 struct mvneta_rx_queue *rxq, 2147 struct xdp_buff *xdp, 2148 struct bpf_prog *xdp_prog, 2149 struct page *page, u32 *xdp_ret) 2150 { 2151 unsigned char *data = page_address(page); 2152 int data_len = -MVNETA_MH_SIZE, len; 2153 struct net_device *dev = pp->dev; 2154 enum dma_data_direction dma_dir; 2155 2156 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2157 len = MVNETA_MAX_RX_BUF_SIZE; 2158 data_len += len; 2159 } else { 2160 len = rx_desc->data_size; 2161 data_len += len - ETH_FCS_LEN; 2162 } 2163 2164 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2165 dma_sync_single_for_cpu(dev->dev.parent, 2166 rx_desc->buf_phys_addr, 2167 len, dma_dir); 2168 2169 /* Prefetch header */ 2170 prefetch(data); 2171 2172 xdp->data_hard_start = data; 2173 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2174 xdp->data_end = xdp->data + data_len; 2175 xdp_set_data_meta_invalid(xdp); 2176 2177 if (xdp_prog) { 2178 u32 ret; 2179 2180 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp); 2181 if (ret != MVNETA_XDP_PASS) { 2182 mvneta_update_stats(pp, 1, 2183 xdp->data_end - xdp->data, 2184 false); 2185 rx_desc->buf_phys_addr = 0; 2186 *xdp_ret |= ret; 2187 return ret; 2188 } 2189 } 2190 2191 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2192 if (unlikely(!rxq->skb)) { 2193 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2194 2195 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2196 rxq->skb_alloc_err++; 2197 2198 u64_stats_update_begin(&stats->syncp); 2199 stats->rx_dropped++; 2200 u64_stats_update_end(&stats->syncp); 2201 2202 return -ENOMEM; 2203 } 2204 page_pool_release_page(rxq->page_pool, page); 2205 2206 skb_reserve(rxq->skb, 2207 xdp->data - xdp->data_hard_start); 2208 skb_put(rxq->skb, xdp->data_end - xdp->data); 2209 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2210 2211 rxq->left_size = rx_desc->data_size - len; 2212 rx_desc->buf_phys_addr = 0; 2213 2214 return 0; 2215 } 2216 2217 static void 2218 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2219 struct mvneta_rx_desc *rx_desc, 2220 struct mvneta_rx_queue *rxq, 2221 struct page *page) 2222 { 2223 struct net_device *dev = pp->dev; 2224 enum dma_data_direction dma_dir; 2225 int data_len, len; 2226 2227 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2228 len = MVNETA_MAX_RX_BUF_SIZE; 2229 data_len = len; 2230 } else { 2231 len = rxq->left_size; 2232 data_len = len - ETH_FCS_LEN; 2233 } 2234 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2235 dma_sync_single_for_cpu(dev->dev.parent, 2236 rx_desc->buf_phys_addr, 2237 len, dma_dir); 2238 if (data_len > 0) { 2239 /* refill descriptor with new buffer later */ 2240 skb_add_rx_frag(rxq->skb, 2241 skb_shinfo(rxq->skb)->nr_frags, 2242 page, pp->rx_offset_correction, data_len, 2243 PAGE_SIZE); 2244 } 2245 page_pool_release_page(rxq->page_pool, page); 2246 rx_desc->buf_phys_addr = 0; 2247 rxq->left_size -= len; 2248 } 2249 2250 /* Main rx processing when using software buffer management */ 2251 static int mvneta_rx_swbm(struct napi_struct *napi, 2252 struct mvneta_port *pp, int budget, 2253 struct mvneta_rx_queue *rxq) 2254 { 2255 int rcvd_pkts = 0, rcvd_bytes = 0, rx_proc = 0; 2256 struct net_device *dev = pp->dev; 2257 struct bpf_prog *xdp_prog; 2258 struct xdp_buff xdp_buf; 2259 int rx_todo, refill; 2260 u32 xdp_ret = 0; 2261 2262 /* Get number of received packets */ 2263 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2264 2265 rcu_read_lock(); 2266 xdp_prog = READ_ONCE(pp->xdp_prog); 2267 xdp_buf.rxq = &rxq->xdp_rxq; 2268 2269 /* Fairness NAPI loop */ 2270 while (rx_proc < budget && rx_proc < rx_todo) { 2271 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2272 u32 rx_status, index; 2273 struct page *page; 2274 2275 index = rx_desc - rxq->descs; 2276 page = (struct page *)rxq->buf_virt_addr[index]; 2277 2278 rx_status = rx_desc->status; 2279 rx_proc++; 2280 rxq->refill_num++; 2281 2282 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2283 int err; 2284 2285 /* Check errors only for FIRST descriptor */ 2286 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2287 mvneta_rx_error(pp, rx_desc); 2288 /* leave the descriptor untouched */ 2289 continue; 2290 } 2291 2292 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2293 xdp_prog, page, &xdp_ret); 2294 if (err) 2295 continue; 2296 } else { 2297 if (unlikely(!rxq->skb)) { 2298 pr_debug("no skb for rx_status 0x%x\n", 2299 rx_status); 2300 continue; 2301 } 2302 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2303 } /* Middle or Last descriptor */ 2304 2305 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2306 /* no last descriptor this time */ 2307 continue; 2308 2309 if (rxq->left_size) { 2310 pr_err("get last desc, but left_size (%d) != 0\n", 2311 rxq->left_size); 2312 dev_kfree_skb_any(rxq->skb); 2313 rxq->left_size = 0; 2314 rxq->skb = NULL; 2315 continue; 2316 } 2317 rcvd_pkts++; 2318 rcvd_bytes += rxq->skb->len; 2319 2320 /* Linux processing */ 2321 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2322 2323 napi_gro_receive(napi, rxq->skb); 2324 2325 /* clean uncomplete skb pointer in queue */ 2326 rxq->skb = NULL; 2327 } 2328 rcu_read_unlock(); 2329 2330 if (xdp_ret & MVNETA_XDP_REDIR) 2331 xdp_do_flush_map(); 2332 2333 if (rcvd_pkts) 2334 mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false); 2335 2336 /* return some buffers to hardware queue, one at a time is too slow */ 2337 refill = mvneta_rx_refill_queue(pp, rxq); 2338 2339 /* Update rxq management counters */ 2340 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2341 2342 return rcvd_pkts; 2343 } 2344 2345 /* Main rx processing when using hardware buffer management */ 2346 static int mvneta_rx_hwbm(struct napi_struct *napi, 2347 struct mvneta_port *pp, int rx_todo, 2348 struct mvneta_rx_queue *rxq) 2349 { 2350 struct net_device *dev = pp->dev; 2351 int rx_done; 2352 u32 rcvd_pkts = 0; 2353 u32 rcvd_bytes = 0; 2354 2355 /* Get number of received packets */ 2356 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2357 2358 if (rx_todo > rx_done) 2359 rx_todo = rx_done; 2360 2361 rx_done = 0; 2362 2363 /* Fairness NAPI loop */ 2364 while (rx_done < rx_todo) { 2365 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2366 struct mvneta_bm_pool *bm_pool = NULL; 2367 struct sk_buff *skb; 2368 unsigned char *data; 2369 dma_addr_t phys_addr; 2370 u32 rx_status, frag_size; 2371 int rx_bytes, err; 2372 u8 pool_id; 2373 2374 rx_done++; 2375 rx_status = rx_desc->status; 2376 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2377 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2378 phys_addr = rx_desc->buf_phys_addr; 2379 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2380 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2381 2382 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2383 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2384 err_drop_frame_ret_pool: 2385 /* Return the buffer to the pool */ 2386 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2387 rx_desc->buf_phys_addr); 2388 err_drop_frame: 2389 mvneta_rx_error(pp, rx_desc); 2390 /* leave the descriptor untouched */ 2391 continue; 2392 } 2393 2394 if (rx_bytes <= rx_copybreak) { 2395 /* better copy a small frame and not unmap the DMA region */ 2396 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2397 if (unlikely(!skb)) 2398 goto err_drop_frame_ret_pool; 2399 2400 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2401 rx_desc->buf_phys_addr, 2402 MVNETA_MH_SIZE + NET_SKB_PAD, 2403 rx_bytes, 2404 DMA_FROM_DEVICE); 2405 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2406 rx_bytes); 2407 2408 skb->protocol = eth_type_trans(skb, dev); 2409 mvneta_rx_csum(pp, rx_status, skb); 2410 napi_gro_receive(napi, skb); 2411 2412 rcvd_pkts++; 2413 rcvd_bytes += rx_bytes; 2414 2415 /* Return the buffer to the pool */ 2416 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2417 rx_desc->buf_phys_addr); 2418 2419 /* leave the descriptor and buffer untouched */ 2420 continue; 2421 } 2422 2423 /* Refill processing */ 2424 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2425 if (err) { 2426 netdev_err(dev, "Linux processing - Can't refill\n"); 2427 rxq->refill_err++; 2428 goto err_drop_frame_ret_pool; 2429 } 2430 2431 frag_size = bm_pool->hwbm_pool.frag_size; 2432 2433 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2434 2435 /* After refill old buffer has to be unmapped regardless 2436 * the skb is successfully built or not. 2437 */ 2438 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2439 bm_pool->buf_size, DMA_FROM_DEVICE); 2440 if (!skb) 2441 goto err_drop_frame; 2442 2443 rcvd_pkts++; 2444 rcvd_bytes += rx_bytes; 2445 2446 /* Linux processing */ 2447 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2448 skb_put(skb, rx_bytes); 2449 2450 skb->protocol = eth_type_trans(skb, dev); 2451 2452 mvneta_rx_csum(pp, rx_status, skb); 2453 2454 napi_gro_receive(napi, skb); 2455 } 2456 2457 if (rcvd_pkts) 2458 mvneta_update_stats(pp, rcvd_pkts, rcvd_bytes, false); 2459 2460 /* Update rxq management counters */ 2461 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2462 2463 return rx_done; 2464 } 2465 2466 static inline void 2467 mvneta_tso_put_hdr(struct sk_buff *skb, 2468 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2469 { 2470 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2471 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2472 struct mvneta_tx_desc *tx_desc; 2473 2474 tx_desc = mvneta_txq_next_desc_get(txq); 2475 tx_desc->data_size = hdr_len; 2476 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2477 tx_desc->command |= MVNETA_TXD_F_DESC; 2478 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2479 txq->txq_put_index * TSO_HEADER_SIZE; 2480 buf->type = MVNETA_TYPE_SKB; 2481 buf->skb = NULL; 2482 2483 mvneta_txq_inc_put(txq); 2484 } 2485 2486 static inline int 2487 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2488 struct sk_buff *skb, char *data, int size, 2489 bool last_tcp, bool is_last) 2490 { 2491 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2492 struct mvneta_tx_desc *tx_desc; 2493 2494 tx_desc = mvneta_txq_next_desc_get(txq); 2495 tx_desc->data_size = size; 2496 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2497 size, DMA_TO_DEVICE); 2498 if (unlikely(dma_mapping_error(dev->dev.parent, 2499 tx_desc->buf_phys_addr))) { 2500 mvneta_txq_desc_put(txq); 2501 return -ENOMEM; 2502 } 2503 2504 tx_desc->command = 0; 2505 buf->type = MVNETA_TYPE_SKB; 2506 buf->skb = NULL; 2507 2508 if (last_tcp) { 2509 /* last descriptor in the TCP packet */ 2510 tx_desc->command = MVNETA_TXD_L_DESC; 2511 2512 /* last descriptor in SKB */ 2513 if (is_last) 2514 buf->skb = skb; 2515 } 2516 mvneta_txq_inc_put(txq); 2517 return 0; 2518 } 2519 2520 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2521 struct mvneta_tx_queue *txq) 2522 { 2523 int total_len, data_left; 2524 int desc_count = 0; 2525 struct mvneta_port *pp = netdev_priv(dev); 2526 struct tso_t tso; 2527 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2528 int i; 2529 2530 /* Count needed descriptors */ 2531 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2532 return 0; 2533 2534 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2535 pr_info("*** Is this even possible???!?!?\n"); 2536 return 0; 2537 } 2538 2539 /* Initialize the TSO handler, and prepare the first payload */ 2540 tso_start(skb, &tso); 2541 2542 total_len = skb->len - hdr_len; 2543 while (total_len > 0) { 2544 char *hdr; 2545 2546 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2547 total_len -= data_left; 2548 desc_count++; 2549 2550 /* prepare packet headers: MAC + IP + TCP */ 2551 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2552 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2553 2554 mvneta_tso_put_hdr(skb, pp, txq); 2555 2556 while (data_left > 0) { 2557 int size; 2558 desc_count++; 2559 2560 size = min_t(int, tso.size, data_left); 2561 2562 if (mvneta_tso_put_data(dev, txq, skb, 2563 tso.data, size, 2564 size == data_left, 2565 total_len == 0)) 2566 goto err_release; 2567 data_left -= size; 2568 2569 tso_build_data(skb, &tso, size); 2570 } 2571 } 2572 2573 return desc_count; 2574 2575 err_release: 2576 /* Release all used data descriptors; header descriptors must not 2577 * be DMA-unmapped. 2578 */ 2579 for (i = desc_count - 1; i >= 0; i--) { 2580 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2581 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2582 dma_unmap_single(pp->dev->dev.parent, 2583 tx_desc->buf_phys_addr, 2584 tx_desc->data_size, 2585 DMA_TO_DEVICE); 2586 mvneta_txq_desc_put(txq); 2587 } 2588 return 0; 2589 } 2590 2591 /* Handle tx fragmentation processing */ 2592 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2593 struct mvneta_tx_queue *txq) 2594 { 2595 struct mvneta_tx_desc *tx_desc; 2596 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2597 2598 for (i = 0; i < nr_frags; i++) { 2599 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2600 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2601 void *addr = skb_frag_address(frag); 2602 2603 tx_desc = mvneta_txq_next_desc_get(txq); 2604 tx_desc->data_size = skb_frag_size(frag); 2605 2606 tx_desc->buf_phys_addr = 2607 dma_map_single(pp->dev->dev.parent, addr, 2608 tx_desc->data_size, DMA_TO_DEVICE); 2609 2610 if (dma_mapping_error(pp->dev->dev.parent, 2611 tx_desc->buf_phys_addr)) { 2612 mvneta_txq_desc_put(txq); 2613 goto error; 2614 } 2615 2616 if (i == nr_frags - 1) { 2617 /* Last descriptor */ 2618 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2619 buf->skb = skb; 2620 } else { 2621 /* Descriptor in the middle: Not First, Not Last */ 2622 tx_desc->command = 0; 2623 buf->skb = NULL; 2624 } 2625 buf->type = MVNETA_TYPE_SKB; 2626 mvneta_txq_inc_put(txq); 2627 } 2628 2629 return 0; 2630 2631 error: 2632 /* Release all descriptors that were used to map fragments of 2633 * this packet, as well as the corresponding DMA mappings 2634 */ 2635 for (i = i - 1; i >= 0; i--) { 2636 tx_desc = txq->descs + i; 2637 dma_unmap_single(pp->dev->dev.parent, 2638 tx_desc->buf_phys_addr, 2639 tx_desc->data_size, 2640 DMA_TO_DEVICE); 2641 mvneta_txq_desc_put(txq); 2642 } 2643 2644 return -ENOMEM; 2645 } 2646 2647 /* Main tx processing */ 2648 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2649 { 2650 struct mvneta_port *pp = netdev_priv(dev); 2651 u16 txq_id = skb_get_queue_mapping(skb); 2652 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2653 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2654 struct mvneta_tx_desc *tx_desc; 2655 int len = skb->len; 2656 int frags = 0; 2657 u32 tx_cmd; 2658 2659 if (!netif_running(dev)) 2660 goto out; 2661 2662 if (skb_is_gso(skb)) { 2663 frags = mvneta_tx_tso(skb, dev, txq); 2664 goto out; 2665 } 2666 2667 frags = skb_shinfo(skb)->nr_frags + 1; 2668 2669 /* Get a descriptor for the first part of the packet */ 2670 tx_desc = mvneta_txq_next_desc_get(txq); 2671 2672 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2673 2674 tx_desc->data_size = skb_headlen(skb); 2675 2676 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2677 tx_desc->data_size, 2678 DMA_TO_DEVICE); 2679 if (unlikely(dma_mapping_error(dev->dev.parent, 2680 tx_desc->buf_phys_addr))) { 2681 mvneta_txq_desc_put(txq); 2682 frags = 0; 2683 goto out; 2684 } 2685 2686 buf->type = MVNETA_TYPE_SKB; 2687 if (frags == 1) { 2688 /* First and Last descriptor */ 2689 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2690 tx_desc->command = tx_cmd; 2691 buf->skb = skb; 2692 mvneta_txq_inc_put(txq); 2693 } else { 2694 /* First but not Last */ 2695 tx_cmd |= MVNETA_TXD_F_DESC; 2696 buf->skb = NULL; 2697 mvneta_txq_inc_put(txq); 2698 tx_desc->command = tx_cmd; 2699 /* Continue with other skb fragments */ 2700 if (mvneta_tx_frag_process(pp, skb, txq)) { 2701 dma_unmap_single(dev->dev.parent, 2702 tx_desc->buf_phys_addr, 2703 tx_desc->data_size, 2704 DMA_TO_DEVICE); 2705 mvneta_txq_desc_put(txq); 2706 frags = 0; 2707 goto out; 2708 } 2709 } 2710 2711 out: 2712 if (frags > 0) { 2713 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2714 2715 netdev_tx_sent_queue(nq, len); 2716 2717 txq->count += frags; 2718 if (txq->count >= txq->tx_stop_threshold) 2719 netif_tx_stop_queue(nq); 2720 2721 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2722 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2723 mvneta_txq_pend_desc_add(pp, txq, frags); 2724 else 2725 txq->pending += frags; 2726 2727 mvneta_update_stats(pp, 1, len, true); 2728 } else { 2729 dev->stats.tx_dropped++; 2730 dev_kfree_skb_any(skb); 2731 } 2732 2733 return NETDEV_TX_OK; 2734 } 2735 2736 2737 /* Free tx resources, when resetting a port */ 2738 static void mvneta_txq_done_force(struct mvneta_port *pp, 2739 struct mvneta_tx_queue *txq) 2740 2741 { 2742 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2743 int tx_done = txq->count; 2744 2745 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2746 2747 /* reset txq */ 2748 txq->count = 0; 2749 txq->txq_put_index = 0; 2750 txq->txq_get_index = 0; 2751 } 2752 2753 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2754 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2755 */ 2756 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2757 { 2758 struct mvneta_tx_queue *txq; 2759 struct netdev_queue *nq; 2760 int cpu = smp_processor_id(); 2761 2762 while (cause_tx_done) { 2763 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2764 2765 nq = netdev_get_tx_queue(pp->dev, txq->id); 2766 __netif_tx_lock(nq, cpu); 2767 2768 if (txq->count) 2769 mvneta_txq_done(pp, txq); 2770 2771 __netif_tx_unlock(nq); 2772 cause_tx_done &= ~((1 << txq->id)); 2773 } 2774 } 2775 2776 /* Compute crc8 of the specified address, using a unique algorithm , 2777 * according to hw spec, different than generic crc8 algorithm 2778 */ 2779 static int mvneta_addr_crc(unsigned char *addr) 2780 { 2781 int crc = 0; 2782 int i; 2783 2784 for (i = 0; i < ETH_ALEN; i++) { 2785 int j; 2786 2787 crc = (crc ^ addr[i]) << 8; 2788 for (j = 7; j >= 0; j--) { 2789 if (crc & (0x100 << j)) 2790 crc ^= 0x107 << j; 2791 } 2792 } 2793 2794 return crc; 2795 } 2796 2797 /* This method controls the net device special MAC multicast support. 2798 * The Special Multicast Table for MAC addresses supports MAC of the form 2799 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2800 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2801 * Table entries in the DA-Filter table. This method set the Special 2802 * Multicast Table appropriate entry. 2803 */ 2804 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2805 unsigned char last_byte, 2806 int queue) 2807 { 2808 unsigned int smc_table_reg; 2809 unsigned int tbl_offset; 2810 unsigned int reg_offset; 2811 2812 /* Register offset from SMC table base */ 2813 tbl_offset = (last_byte / 4); 2814 /* Entry offset within the above reg */ 2815 reg_offset = last_byte % 4; 2816 2817 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2818 + tbl_offset * 4)); 2819 2820 if (queue == -1) 2821 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2822 else { 2823 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2824 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2825 } 2826 2827 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2828 smc_table_reg); 2829 } 2830 2831 /* This method controls the network device Other MAC multicast support. 2832 * The Other Multicast Table is used for multicast of another type. 2833 * A CRC-8 is used as an index to the Other Multicast Table entries 2834 * in the DA-Filter table. 2835 * The method gets the CRC-8 value from the calling routine and 2836 * sets the Other Multicast Table appropriate entry according to the 2837 * specified CRC-8 . 2838 */ 2839 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2840 unsigned char crc8, 2841 int queue) 2842 { 2843 unsigned int omc_table_reg; 2844 unsigned int tbl_offset; 2845 unsigned int reg_offset; 2846 2847 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2848 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2849 2850 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2851 2852 if (queue == -1) { 2853 /* Clear accepts frame bit at specified Other DA table entry */ 2854 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2855 } else { 2856 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2857 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2858 } 2859 2860 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2861 } 2862 2863 /* The network device supports multicast using two tables: 2864 * 1) Special Multicast Table for MAC addresses of the form 2865 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2866 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2867 * Table entries in the DA-Filter table. 2868 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2869 * is used as an index to the Other Multicast Table entries in the 2870 * DA-Filter table. 2871 */ 2872 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2873 int queue) 2874 { 2875 unsigned char crc_result = 0; 2876 2877 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2878 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2879 return 0; 2880 } 2881 2882 crc_result = mvneta_addr_crc(p_addr); 2883 if (queue == -1) { 2884 if (pp->mcast_count[crc_result] == 0) { 2885 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2886 crc_result); 2887 return -EINVAL; 2888 } 2889 2890 pp->mcast_count[crc_result]--; 2891 if (pp->mcast_count[crc_result] != 0) { 2892 netdev_info(pp->dev, 2893 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2894 pp->mcast_count[crc_result], crc_result); 2895 return -EINVAL; 2896 } 2897 } else 2898 pp->mcast_count[crc_result]++; 2899 2900 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2901 2902 return 0; 2903 } 2904 2905 /* Configure Fitering mode of Ethernet port */ 2906 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2907 int is_promisc) 2908 { 2909 u32 port_cfg_reg, val; 2910 2911 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2912 2913 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2914 2915 /* Set / Clear UPM bit in port configuration register */ 2916 if (is_promisc) { 2917 /* Accept all Unicast addresses */ 2918 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2919 val |= MVNETA_FORCE_UNI; 2920 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2921 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2922 } else { 2923 /* Reject all Unicast addresses */ 2924 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2925 val &= ~MVNETA_FORCE_UNI; 2926 } 2927 2928 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2929 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2930 } 2931 2932 /* register unicast and multicast addresses */ 2933 static void mvneta_set_rx_mode(struct net_device *dev) 2934 { 2935 struct mvneta_port *pp = netdev_priv(dev); 2936 struct netdev_hw_addr *ha; 2937 2938 if (dev->flags & IFF_PROMISC) { 2939 /* Accept all: Multicast + Unicast */ 2940 mvneta_rx_unicast_promisc_set(pp, 1); 2941 mvneta_set_ucast_table(pp, pp->rxq_def); 2942 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2943 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2944 } else { 2945 /* Accept single Unicast */ 2946 mvneta_rx_unicast_promisc_set(pp, 0); 2947 mvneta_set_ucast_table(pp, -1); 2948 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2949 2950 if (dev->flags & IFF_ALLMULTI) { 2951 /* Accept all multicast */ 2952 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2953 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2954 } else { 2955 /* Accept only initialized multicast */ 2956 mvneta_set_special_mcast_table(pp, -1); 2957 mvneta_set_other_mcast_table(pp, -1); 2958 2959 if (!netdev_mc_empty(dev)) { 2960 netdev_for_each_mc_addr(ha, dev) { 2961 mvneta_mcast_addr_set(pp, ha->addr, 2962 pp->rxq_def); 2963 } 2964 } 2965 } 2966 } 2967 } 2968 2969 /* Interrupt handling - the callback for request_irq() */ 2970 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2971 { 2972 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2973 2974 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2975 napi_schedule(&pp->napi); 2976 2977 return IRQ_HANDLED; 2978 } 2979 2980 /* Interrupt handling - the callback for request_percpu_irq() */ 2981 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2982 { 2983 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2984 2985 disable_percpu_irq(port->pp->dev->irq); 2986 napi_schedule(&port->napi); 2987 2988 return IRQ_HANDLED; 2989 } 2990 2991 static void mvneta_link_change(struct mvneta_port *pp) 2992 { 2993 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2994 2995 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2996 } 2997 2998 /* NAPI handler 2999 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3000 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3001 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3002 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3003 * Each CPU has its own causeRxTx register 3004 */ 3005 static int mvneta_poll(struct napi_struct *napi, int budget) 3006 { 3007 int rx_done = 0; 3008 u32 cause_rx_tx; 3009 int rx_queue; 3010 struct mvneta_port *pp = netdev_priv(napi->dev); 3011 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3012 3013 if (!netif_running(pp->dev)) { 3014 napi_complete(napi); 3015 return rx_done; 3016 } 3017 3018 /* Read cause register */ 3019 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3020 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3021 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3022 3023 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3024 3025 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3026 MVNETA_CAUSE_LINK_CHANGE)) 3027 mvneta_link_change(pp); 3028 } 3029 3030 /* Release Tx descriptors */ 3031 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3032 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3033 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3034 } 3035 3036 /* For the case where the last mvneta_poll did not process all 3037 * RX packets 3038 */ 3039 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3040 3041 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3042 port->cause_rx_tx; 3043 3044 if (rx_queue) { 3045 rx_queue = rx_queue - 1; 3046 if (pp->bm_priv) 3047 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3048 &pp->rxqs[rx_queue]); 3049 else 3050 rx_done = mvneta_rx_swbm(napi, pp, budget, 3051 &pp->rxqs[rx_queue]); 3052 } 3053 3054 if (rx_done < budget) { 3055 cause_rx_tx = 0; 3056 napi_complete_done(napi, rx_done); 3057 3058 if (pp->neta_armada3700) { 3059 unsigned long flags; 3060 3061 local_irq_save(flags); 3062 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3063 MVNETA_RX_INTR_MASK(rxq_number) | 3064 MVNETA_TX_INTR_MASK(txq_number) | 3065 MVNETA_MISCINTR_INTR_MASK); 3066 local_irq_restore(flags); 3067 } else { 3068 enable_percpu_irq(pp->dev->irq, 0); 3069 } 3070 } 3071 3072 if (pp->neta_armada3700) 3073 pp->cause_rx_tx = cause_rx_tx; 3074 else 3075 port->cause_rx_tx = cause_rx_tx; 3076 3077 return rx_done; 3078 } 3079 3080 static int mvneta_create_page_pool(struct mvneta_port *pp, 3081 struct mvneta_rx_queue *rxq, int size) 3082 { 3083 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3084 struct page_pool_params pp_params = { 3085 .order = 0, 3086 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3087 .pool_size = size, 3088 .nid = NUMA_NO_NODE, 3089 .dev = pp->dev->dev.parent, 3090 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3091 .offset = pp->rx_offset_correction, 3092 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3093 }; 3094 int err; 3095 3096 rxq->page_pool = page_pool_create(&pp_params); 3097 if (IS_ERR(rxq->page_pool)) { 3098 err = PTR_ERR(rxq->page_pool); 3099 rxq->page_pool = NULL; 3100 return err; 3101 } 3102 3103 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3104 if (err < 0) 3105 goto err_free_pp; 3106 3107 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3108 rxq->page_pool); 3109 if (err) 3110 goto err_unregister_rxq; 3111 3112 return 0; 3113 3114 err_unregister_rxq: 3115 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3116 err_free_pp: 3117 page_pool_destroy(rxq->page_pool); 3118 rxq->page_pool = NULL; 3119 return err; 3120 } 3121 3122 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3123 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3124 int num) 3125 { 3126 int i, err; 3127 3128 err = mvneta_create_page_pool(pp, rxq, num); 3129 if (err < 0) 3130 return err; 3131 3132 for (i = 0; i < num; i++) { 3133 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3134 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3135 GFP_KERNEL) != 0) { 3136 netdev_err(pp->dev, 3137 "%s:rxq %d, %d of %d buffs filled\n", 3138 __func__, rxq->id, i, num); 3139 break; 3140 } 3141 } 3142 3143 /* Add this number of RX descriptors as non occupied (ready to 3144 * get packets) 3145 */ 3146 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3147 3148 return i; 3149 } 3150 3151 /* Free all packets pending transmit from all TXQs and reset TX port */ 3152 static void mvneta_tx_reset(struct mvneta_port *pp) 3153 { 3154 int queue; 3155 3156 /* free the skb's in the tx ring */ 3157 for (queue = 0; queue < txq_number; queue++) 3158 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3159 3160 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3161 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3162 } 3163 3164 static void mvneta_rx_reset(struct mvneta_port *pp) 3165 { 3166 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3167 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3168 } 3169 3170 /* Rx/Tx queue initialization/cleanup methods */ 3171 3172 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3173 struct mvneta_rx_queue *rxq) 3174 { 3175 rxq->size = pp->rx_ring_size; 3176 3177 /* Allocate memory for RX descriptors */ 3178 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3179 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3180 &rxq->descs_phys, GFP_KERNEL); 3181 if (!rxq->descs) 3182 return -ENOMEM; 3183 3184 rxq->last_desc = rxq->size - 1; 3185 3186 return 0; 3187 } 3188 3189 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3190 struct mvneta_rx_queue *rxq) 3191 { 3192 /* Set Rx descriptors queue starting address */ 3193 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3194 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3195 3196 /* Set coalescing pkts and time */ 3197 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3198 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3199 3200 if (!pp->bm_priv) { 3201 /* Set Offset */ 3202 mvneta_rxq_offset_set(pp, rxq, 0); 3203 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3204 MVNETA_MAX_RX_BUF_SIZE : 3205 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3206 mvneta_rxq_bm_disable(pp, rxq); 3207 mvneta_rxq_fill(pp, rxq, rxq->size); 3208 } else { 3209 /* Set Offset */ 3210 mvneta_rxq_offset_set(pp, rxq, 3211 NET_SKB_PAD - pp->rx_offset_correction); 3212 3213 mvneta_rxq_bm_enable(pp, rxq); 3214 /* Fill RXQ with buffers from RX pool */ 3215 mvneta_rxq_long_pool_set(pp, rxq); 3216 mvneta_rxq_short_pool_set(pp, rxq); 3217 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3218 } 3219 } 3220 3221 /* Create a specified RX queue */ 3222 static int mvneta_rxq_init(struct mvneta_port *pp, 3223 struct mvneta_rx_queue *rxq) 3224 3225 { 3226 int ret; 3227 3228 ret = mvneta_rxq_sw_init(pp, rxq); 3229 if (ret < 0) 3230 return ret; 3231 3232 mvneta_rxq_hw_init(pp, rxq); 3233 3234 return 0; 3235 } 3236 3237 /* Cleanup Rx queue */ 3238 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3239 struct mvneta_rx_queue *rxq) 3240 { 3241 mvneta_rxq_drop_pkts(pp, rxq); 3242 3243 if (rxq->skb) 3244 dev_kfree_skb_any(rxq->skb); 3245 3246 if (rxq->descs) 3247 dma_free_coherent(pp->dev->dev.parent, 3248 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3249 rxq->descs, 3250 rxq->descs_phys); 3251 3252 rxq->descs = NULL; 3253 rxq->last_desc = 0; 3254 rxq->next_desc_to_proc = 0; 3255 rxq->descs_phys = 0; 3256 rxq->first_to_refill = 0; 3257 rxq->refill_num = 0; 3258 rxq->skb = NULL; 3259 rxq->left_size = 0; 3260 } 3261 3262 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3263 struct mvneta_tx_queue *txq) 3264 { 3265 int cpu; 3266 3267 txq->size = pp->tx_ring_size; 3268 3269 /* A queue must always have room for at least one skb. 3270 * Therefore, stop the queue when the free entries reaches 3271 * the maximum number of descriptors per skb. 3272 */ 3273 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3274 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3275 3276 /* Allocate memory for TX descriptors */ 3277 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3278 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3279 &txq->descs_phys, GFP_KERNEL); 3280 if (!txq->descs) 3281 return -ENOMEM; 3282 3283 txq->last_desc = txq->size - 1; 3284 3285 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3286 if (!txq->buf) { 3287 dma_free_coherent(pp->dev->dev.parent, 3288 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3289 txq->descs, txq->descs_phys); 3290 return -ENOMEM; 3291 } 3292 3293 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3294 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3295 txq->size * TSO_HEADER_SIZE, 3296 &txq->tso_hdrs_phys, GFP_KERNEL); 3297 if (!txq->tso_hdrs) { 3298 kfree(txq->buf); 3299 dma_free_coherent(pp->dev->dev.parent, 3300 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3301 txq->descs, txq->descs_phys); 3302 return -ENOMEM; 3303 } 3304 3305 /* Setup XPS mapping */ 3306 if (txq_number > 1) 3307 cpu = txq->id % num_present_cpus(); 3308 else 3309 cpu = pp->rxq_def % num_present_cpus(); 3310 cpumask_set_cpu(cpu, &txq->affinity_mask); 3311 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3312 3313 return 0; 3314 } 3315 3316 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3317 struct mvneta_tx_queue *txq) 3318 { 3319 /* Set maximum bandwidth for enabled TXQs */ 3320 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3321 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3322 3323 /* Set Tx descriptors queue starting address */ 3324 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3325 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3326 3327 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3328 } 3329 3330 /* Create and initialize a tx queue */ 3331 static int mvneta_txq_init(struct mvneta_port *pp, 3332 struct mvneta_tx_queue *txq) 3333 { 3334 int ret; 3335 3336 ret = mvneta_txq_sw_init(pp, txq); 3337 if (ret < 0) 3338 return ret; 3339 3340 mvneta_txq_hw_init(pp, txq); 3341 3342 return 0; 3343 } 3344 3345 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3346 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3347 struct mvneta_tx_queue *txq) 3348 { 3349 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3350 3351 kfree(txq->buf); 3352 3353 if (txq->tso_hdrs) 3354 dma_free_coherent(pp->dev->dev.parent, 3355 txq->size * TSO_HEADER_SIZE, 3356 txq->tso_hdrs, txq->tso_hdrs_phys); 3357 if (txq->descs) 3358 dma_free_coherent(pp->dev->dev.parent, 3359 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3360 txq->descs, txq->descs_phys); 3361 3362 netdev_tx_reset_queue(nq); 3363 3364 txq->descs = NULL; 3365 txq->last_desc = 0; 3366 txq->next_desc_to_proc = 0; 3367 txq->descs_phys = 0; 3368 } 3369 3370 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3371 struct mvneta_tx_queue *txq) 3372 { 3373 /* Set minimum bandwidth for disabled TXQs */ 3374 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3375 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3376 3377 /* Set Tx descriptors queue starting address and size */ 3378 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3379 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3380 } 3381 3382 static void mvneta_txq_deinit(struct mvneta_port *pp, 3383 struct mvneta_tx_queue *txq) 3384 { 3385 mvneta_txq_sw_deinit(pp, txq); 3386 mvneta_txq_hw_deinit(pp, txq); 3387 } 3388 3389 /* Cleanup all Tx queues */ 3390 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3391 { 3392 int queue; 3393 3394 for (queue = 0; queue < txq_number; queue++) 3395 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3396 } 3397 3398 /* Cleanup all Rx queues */ 3399 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3400 { 3401 int queue; 3402 3403 for (queue = 0; queue < rxq_number; queue++) 3404 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3405 } 3406 3407 3408 /* Init all Rx queues */ 3409 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3410 { 3411 int queue; 3412 3413 for (queue = 0; queue < rxq_number; queue++) { 3414 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3415 3416 if (err) { 3417 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3418 __func__, queue); 3419 mvneta_cleanup_rxqs(pp); 3420 return err; 3421 } 3422 } 3423 3424 return 0; 3425 } 3426 3427 /* Init all tx queues */ 3428 static int mvneta_setup_txqs(struct mvneta_port *pp) 3429 { 3430 int queue; 3431 3432 for (queue = 0; queue < txq_number; queue++) { 3433 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3434 if (err) { 3435 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3436 __func__, queue); 3437 mvneta_cleanup_txqs(pp); 3438 return err; 3439 } 3440 } 3441 3442 return 0; 3443 } 3444 3445 static int mvneta_comphy_init(struct mvneta_port *pp) 3446 { 3447 int ret; 3448 3449 if (!pp->comphy) 3450 return 0; 3451 3452 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3453 pp->phy_interface); 3454 if (ret) 3455 return ret; 3456 3457 return phy_power_on(pp->comphy); 3458 } 3459 3460 static void mvneta_start_dev(struct mvneta_port *pp) 3461 { 3462 int cpu; 3463 3464 WARN_ON(mvneta_comphy_init(pp)); 3465 3466 mvneta_max_rx_size_set(pp, pp->pkt_size); 3467 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3468 3469 /* start the Rx/Tx activity */ 3470 mvneta_port_enable(pp); 3471 3472 if (!pp->neta_armada3700) { 3473 /* Enable polling on the port */ 3474 for_each_online_cpu(cpu) { 3475 struct mvneta_pcpu_port *port = 3476 per_cpu_ptr(pp->ports, cpu); 3477 3478 napi_enable(&port->napi); 3479 } 3480 } else { 3481 napi_enable(&pp->napi); 3482 } 3483 3484 /* Unmask interrupts. It has to be done from each CPU */ 3485 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3486 3487 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3488 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3489 MVNETA_CAUSE_LINK_CHANGE); 3490 3491 phylink_start(pp->phylink); 3492 netif_tx_start_all_queues(pp->dev); 3493 } 3494 3495 static void mvneta_stop_dev(struct mvneta_port *pp) 3496 { 3497 unsigned int cpu; 3498 3499 phylink_stop(pp->phylink); 3500 3501 if (!pp->neta_armada3700) { 3502 for_each_online_cpu(cpu) { 3503 struct mvneta_pcpu_port *port = 3504 per_cpu_ptr(pp->ports, cpu); 3505 3506 napi_disable(&port->napi); 3507 } 3508 } else { 3509 napi_disable(&pp->napi); 3510 } 3511 3512 netif_carrier_off(pp->dev); 3513 3514 mvneta_port_down(pp); 3515 netif_tx_stop_all_queues(pp->dev); 3516 3517 /* Stop the port activity */ 3518 mvneta_port_disable(pp); 3519 3520 /* Clear all ethernet port interrupts */ 3521 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3522 3523 /* Mask all ethernet port interrupts */ 3524 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3525 3526 mvneta_tx_reset(pp); 3527 mvneta_rx_reset(pp); 3528 3529 WARN_ON(phy_power_off(pp->comphy)); 3530 } 3531 3532 static void mvneta_percpu_enable(void *arg) 3533 { 3534 struct mvneta_port *pp = arg; 3535 3536 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3537 } 3538 3539 static void mvneta_percpu_disable(void *arg) 3540 { 3541 struct mvneta_port *pp = arg; 3542 3543 disable_percpu_irq(pp->dev->irq); 3544 } 3545 3546 /* Change the device mtu */ 3547 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3548 { 3549 struct mvneta_port *pp = netdev_priv(dev); 3550 int ret; 3551 3552 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3553 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3554 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3555 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3556 } 3557 3558 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3559 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3560 return -EINVAL; 3561 } 3562 3563 dev->mtu = mtu; 3564 3565 if (!netif_running(dev)) { 3566 if (pp->bm_priv) 3567 mvneta_bm_update_mtu(pp, mtu); 3568 3569 netdev_update_features(dev); 3570 return 0; 3571 } 3572 3573 /* The interface is running, so we have to force a 3574 * reallocation of the queues 3575 */ 3576 mvneta_stop_dev(pp); 3577 on_each_cpu(mvneta_percpu_disable, pp, true); 3578 3579 mvneta_cleanup_txqs(pp); 3580 mvneta_cleanup_rxqs(pp); 3581 3582 if (pp->bm_priv) 3583 mvneta_bm_update_mtu(pp, mtu); 3584 3585 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3586 3587 ret = mvneta_setup_rxqs(pp); 3588 if (ret) { 3589 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3590 return ret; 3591 } 3592 3593 ret = mvneta_setup_txqs(pp); 3594 if (ret) { 3595 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3596 return ret; 3597 } 3598 3599 on_each_cpu(mvneta_percpu_enable, pp, true); 3600 mvneta_start_dev(pp); 3601 3602 netdev_update_features(dev); 3603 3604 return 0; 3605 } 3606 3607 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3608 netdev_features_t features) 3609 { 3610 struct mvneta_port *pp = netdev_priv(dev); 3611 3612 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3613 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3614 netdev_info(dev, 3615 "Disable IP checksum for MTU greater than %dB\n", 3616 pp->tx_csum_limit); 3617 } 3618 3619 return features; 3620 } 3621 3622 /* Get mac address */ 3623 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3624 { 3625 u32 mac_addr_l, mac_addr_h; 3626 3627 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3628 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3629 addr[0] = (mac_addr_h >> 24) & 0xFF; 3630 addr[1] = (mac_addr_h >> 16) & 0xFF; 3631 addr[2] = (mac_addr_h >> 8) & 0xFF; 3632 addr[3] = mac_addr_h & 0xFF; 3633 addr[4] = (mac_addr_l >> 8) & 0xFF; 3634 addr[5] = mac_addr_l & 0xFF; 3635 } 3636 3637 /* Handle setting mac address */ 3638 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3639 { 3640 struct mvneta_port *pp = netdev_priv(dev); 3641 struct sockaddr *sockaddr = addr; 3642 int ret; 3643 3644 ret = eth_prepare_mac_addr_change(dev, addr); 3645 if (ret < 0) 3646 return ret; 3647 /* Remove previous address table entry */ 3648 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3649 3650 /* Set new addr in hw */ 3651 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3652 3653 eth_commit_mac_addr_change(dev, addr); 3654 return 0; 3655 } 3656 3657 static void mvneta_validate(struct phylink_config *config, 3658 unsigned long *supported, 3659 struct phylink_link_state *state) 3660 { 3661 struct net_device *ndev = to_net_dev(config->dev); 3662 struct mvneta_port *pp = netdev_priv(ndev); 3663 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3664 3665 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3666 if (state->interface != PHY_INTERFACE_MODE_NA && 3667 state->interface != PHY_INTERFACE_MODE_QSGMII && 3668 state->interface != PHY_INTERFACE_MODE_SGMII && 3669 !phy_interface_mode_is_8023z(state->interface) && 3670 !phy_interface_mode_is_rgmii(state->interface)) { 3671 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3672 return; 3673 } 3674 3675 /* Allow all the expected bits */ 3676 phylink_set(mask, Autoneg); 3677 phylink_set_port_modes(mask); 3678 3679 /* Asymmetric pause is unsupported */ 3680 phylink_set(mask, Pause); 3681 3682 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3683 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3684 phylink_set(mask, 1000baseT_Full); 3685 phylink_set(mask, 1000baseX_Full); 3686 } 3687 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3688 phylink_set(mask, 2500baseT_Full); 3689 phylink_set(mask, 2500baseX_Full); 3690 } 3691 3692 if (!phy_interface_mode_is_8023z(state->interface)) { 3693 /* 10M and 100M are only supported in non-802.3z mode */ 3694 phylink_set(mask, 10baseT_Half); 3695 phylink_set(mask, 10baseT_Full); 3696 phylink_set(mask, 100baseT_Half); 3697 phylink_set(mask, 100baseT_Full); 3698 } 3699 3700 bitmap_and(supported, supported, mask, 3701 __ETHTOOL_LINK_MODE_MASK_NBITS); 3702 bitmap_and(state->advertising, state->advertising, mask, 3703 __ETHTOOL_LINK_MODE_MASK_NBITS); 3704 3705 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3706 * to advertise both, only report advertising at 2500BaseX. 3707 */ 3708 phylink_helper_basex_speed(state); 3709 } 3710 3711 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3712 struct phylink_link_state *state) 3713 { 3714 struct net_device *ndev = to_net_dev(config->dev); 3715 struct mvneta_port *pp = netdev_priv(ndev); 3716 u32 gmac_stat; 3717 3718 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3719 3720 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3721 state->speed = 3722 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3723 SPEED_2500 : SPEED_1000; 3724 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3725 state->speed = SPEED_100; 3726 else 3727 state->speed = SPEED_10; 3728 3729 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3730 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3731 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3732 3733 state->pause = 0; 3734 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3735 state->pause |= MLO_PAUSE_RX; 3736 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3737 state->pause |= MLO_PAUSE_TX; 3738 } 3739 3740 static void mvneta_mac_an_restart(struct phylink_config *config) 3741 { 3742 struct net_device *ndev = to_net_dev(config->dev); 3743 struct mvneta_port *pp = netdev_priv(ndev); 3744 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3745 3746 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3747 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3748 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3749 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3750 } 3751 3752 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3753 const struct phylink_link_state *state) 3754 { 3755 struct net_device *ndev = to_net_dev(config->dev); 3756 struct mvneta_port *pp = netdev_priv(ndev); 3757 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3758 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3759 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3760 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3761 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3762 3763 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3764 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3765 MVNETA_GMAC2_PORT_RESET); 3766 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3767 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3768 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3769 MVNETA_GMAC_INBAND_RESTART_AN | 3770 MVNETA_GMAC_CONFIG_MII_SPEED | 3771 MVNETA_GMAC_CONFIG_GMII_SPEED | 3772 MVNETA_GMAC_AN_SPEED_EN | 3773 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3774 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3775 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3776 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3777 MVNETA_GMAC_AN_DUPLEX_EN); 3778 3779 /* Even though it might look weird, when we're configured in 3780 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3781 */ 3782 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3783 3784 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3785 state->interface == PHY_INTERFACE_MODE_SGMII || 3786 phy_interface_mode_is_8023z(state->interface)) 3787 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3788 3789 if (phylink_test(state->advertising, Pause)) 3790 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3791 if (state->pause & MLO_PAUSE_TXRX_MASK) 3792 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3793 3794 if (!phylink_autoneg_inband(mode)) { 3795 /* Phy or fixed speed */ 3796 if (state->duplex) 3797 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3798 3799 if (state->speed == SPEED_1000 || state->speed == SPEED_2500) 3800 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3801 else if (state->speed == SPEED_100) 3802 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3803 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3804 /* SGMII mode receives the state from the PHY */ 3805 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3806 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3807 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3808 MVNETA_GMAC_FORCE_LINK_PASS)) | 3809 MVNETA_GMAC_INBAND_AN_ENABLE | 3810 MVNETA_GMAC_AN_SPEED_EN | 3811 MVNETA_GMAC_AN_DUPLEX_EN; 3812 } else { 3813 /* 802.3z negotiation - only 1000base-X */ 3814 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3815 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3816 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3817 MVNETA_GMAC_FORCE_LINK_PASS)) | 3818 MVNETA_GMAC_INBAND_AN_ENABLE | 3819 MVNETA_GMAC_CONFIG_GMII_SPEED | 3820 /* The MAC only supports FD mode */ 3821 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3822 3823 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3824 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3825 } 3826 3827 /* Armada 370 documentation says we can only change the port mode 3828 * and in-band enable when the link is down, so force it down 3829 * while making these changes. We also do this for GMAC_CTRL2 */ 3830 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3831 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3832 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3833 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3834 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3835 MVNETA_GMAC_FORCE_LINK_DOWN); 3836 } 3837 3838 3839 /* When at 2.5G, the link partner can send frames with shortened 3840 * preambles. 3841 */ 3842 if (state->speed == SPEED_2500) 3843 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3844 3845 if (pp->comphy && pp->phy_interface != state->interface && 3846 (state->interface == PHY_INTERFACE_MODE_SGMII || 3847 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3848 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3849 pp->phy_interface = state->interface; 3850 3851 WARN_ON(phy_power_off(pp->comphy)); 3852 WARN_ON(mvneta_comphy_init(pp)); 3853 } 3854 3855 if (new_ctrl0 != gmac_ctrl0) 3856 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3857 if (new_ctrl2 != gmac_ctrl2) 3858 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3859 if (new_ctrl4 != gmac_ctrl4) 3860 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3861 if (new_clk != gmac_clk) 3862 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3863 if (new_an != gmac_an) 3864 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3865 3866 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3867 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3868 MVNETA_GMAC2_PORT_RESET) != 0) 3869 continue; 3870 } 3871 } 3872 3873 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3874 { 3875 u32 lpi_ctl1; 3876 3877 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3878 if (enable) 3879 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3880 else 3881 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3882 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3883 } 3884 3885 static void mvneta_mac_link_down(struct phylink_config *config, 3886 unsigned int mode, phy_interface_t interface) 3887 { 3888 struct net_device *ndev = to_net_dev(config->dev); 3889 struct mvneta_port *pp = netdev_priv(ndev); 3890 u32 val; 3891 3892 mvneta_port_down(pp); 3893 3894 if (!phylink_autoneg_inband(mode)) { 3895 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3896 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3897 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3898 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3899 } 3900 3901 pp->eee_active = false; 3902 mvneta_set_eee(pp, false); 3903 } 3904 3905 static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode, 3906 phy_interface_t interface, 3907 struct phy_device *phy) 3908 { 3909 struct net_device *ndev = to_net_dev(config->dev); 3910 struct mvneta_port *pp = netdev_priv(ndev); 3911 u32 val; 3912 3913 if (!phylink_autoneg_inband(mode)) { 3914 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3915 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3916 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3917 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3918 } 3919 3920 mvneta_port_up(pp); 3921 3922 if (phy && pp->eee_enabled) { 3923 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3924 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3925 } 3926 } 3927 3928 static const struct phylink_mac_ops mvneta_phylink_ops = { 3929 .validate = mvneta_validate, 3930 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 3931 .mac_an_restart = mvneta_mac_an_restart, 3932 .mac_config = mvneta_mac_config, 3933 .mac_link_down = mvneta_mac_link_down, 3934 .mac_link_up = mvneta_mac_link_up, 3935 }; 3936 3937 static int mvneta_mdio_probe(struct mvneta_port *pp) 3938 { 3939 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3940 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3941 3942 if (err) 3943 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3944 3945 phylink_ethtool_get_wol(pp->phylink, &wol); 3946 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3947 3948 return err; 3949 } 3950 3951 static void mvneta_mdio_remove(struct mvneta_port *pp) 3952 { 3953 phylink_disconnect_phy(pp->phylink); 3954 } 3955 3956 /* Electing a CPU must be done in an atomic way: it should be done 3957 * after or before the removal/insertion of a CPU and this function is 3958 * not reentrant. 3959 */ 3960 static void mvneta_percpu_elect(struct mvneta_port *pp) 3961 { 3962 int elected_cpu = 0, max_cpu, cpu, i = 0; 3963 3964 /* Use the cpu associated to the rxq when it is online, in all 3965 * the other cases, use the cpu 0 which can't be offline. 3966 */ 3967 if (cpu_online(pp->rxq_def)) 3968 elected_cpu = pp->rxq_def; 3969 3970 max_cpu = num_present_cpus(); 3971 3972 for_each_online_cpu(cpu) { 3973 int rxq_map = 0, txq_map = 0; 3974 int rxq; 3975 3976 for (rxq = 0; rxq < rxq_number; rxq++) 3977 if ((rxq % max_cpu) == cpu) 3978 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3979 3980 if (cpu == elected_cpu) 3981 /* Map the default receive queue queue to the 3982 * elected CPU 3983 */ 3984 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3985 3986 /* We update the TX queue map only if we have one 3987 * queue. In this case we associate the TX queue to 3988 * the CPU bound to the default RX queue 3989 */ 3990 if (txq_number == 1) 3991 txq_map = (cpu == elected_cpu) ? 3992 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3993 else 3994 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3995 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3996 3997 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3998 3999 /* Update the interrupt mask on each CPU according the 4000 * new mapping 4001 */ 4002 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4003 pp, true); 4004 i++; 4005 4006 } 4007 }; 4008 4009 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4010 { 4011 int other_cpu; 4012 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4013 node_online); 4014 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4015 4016 4017 spin_lock(&pp->lock); 4018 /* 4019 * Configuring the driver for a new CPU while the driver is 4020 * stopping is racy, so just avoid it. 4021 */ 4022 if (pp->is_stopped) { 4023 spin_unlock(&pp->lock); 4024 return 0; 4025 } 4026 netif_tx_stop_all_queues(pp->dev); 4027 4028 /* 4029 * We have to synchronise on tha napi of each CPU except the one 4030 * just being woken up 4031 */ 4032 for_each_online_cpu(other_cpu) { 4033 if (other_cpu != cpu) { 4034 struct mvneta_pcpu_port *other_port = 4035 per_cpu_ptr(pp->ports, other_cpu); 4036 4037 napi_synchronize(&other_port->napi); 4038 } 4039 } 4040 4041 /* Mask all ethernet port interrupts */ 4042 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4043 napi_enable(&port->napi); 4044 4045 /* 4046 * Enable per-CPU interrupts on the CPU that is 4047 * brought up. 4048 */ 4049 mvneta_percpu_enable(pp); 4050 4051 /* 4052 * Enable per-CPU interrupt on the one CPU we care 4053 * about. 4054 */ 4055 mvneta_percpu_elect(pp); 4056 4057 /* Unmask all ethernet port interrupts */ 4058 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4059 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4060 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4061 MVNETA_CAUSE_LINK_CHANGE); 4062 netif_tx_start_all_queues(pp->dev); 4063 spin_unlock(&pp->lock); 4064 return 0; 4065 } 4066 4067 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4068 { 4069 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4070 node_online); 4071 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4072 4073 /* 4074 * Thanks to this lock we are sure that any pending cpu election is 4075 * done. 4076 */ 4077 spin_lock(&pp->lock); 4078 /* Mask all ethernet port interrupts */ 4079 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4080 spin_unlock(&pp->lock); 4081 4082 napi_synchronize(&port->napi); 4083 napi_disable(&port->napi); 4084 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4085 mvneta_percpu_disable(pp); 4086 return 0; 4087 } 4088 4089 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4090 { 4091 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4092 node_dead); 4093 4094 /* Check if a new CPU must be elected now this on is down */ 4095 spin_lock(&pp->lock); 4096 mvneta_percpu_elect(pp); 4097 spin_unlock(&pp->lock); 4098 /* Unmask all ethernet port interrupts */ 4099 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4100 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4101 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4102 MVNETA_CAUSE_LINK_CHANGE); 4103 netif_tx_start_all_queues(pp->dev); 4104 return 0; 4105 } 4106 4107 static int mvneta_open(struct net_device *dev) 4108 { 4109 struct mvneta_port *pp = netdev_priv(dev); 4110 int ret; 4111 4112 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4113 4114 ret = mvneta_setup_rxqs(pp); 4115 if (ret) 4116 return ret; 4117 4118 ret = mvneta_setup_txqs(pp); 4119 if (ret) 4120 goto err_cleanup_rxqs; 4121 4122 /* Connect to port interrupt line */ 4123 if (pp->neta_armada3700) 4124 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4125 dev->name, pp); 4126 else 4127 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4128 dev->name, pp->ports); 4129 if (ret) { 4130 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4131 goto err_cleanup_txqs; 4132 } 4133 4134 if (!pp->neta_armada3700) { 4135 /* Enable per-CPU interrupt on all the CPU to handle our RX 4136 * queue interrupts 4137 */ 4138 on_each_cpu(mvneta_percpu_enable, pp, true); 4139 4140 pp->is_stopped = false; 4141 /* Register a CPU notifier to handle the case where our CPU 4142 * might be taken offline. 4143 */ 4144 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4145 &pp->node_online); 4146 if (ret) 4147 goto err_free_irq; 4148 4149 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4150 &pp->node_dead); 4151 if (ret) 4152 goto err_free_online_hp; 4153 } 4154 4155 ret = mvneta_mdio_probe(pp); 4156 if (ret < 0) { 4157 netdev_err(dev, "cannot probe MDIO bus\n"); 4158 goto err_free_dead_hp; 4159 } 4160 4161 mvneta_start_dev(pp); 4162 4163 return 0; 4164 4165 err_free_dead_hp: 4166 if (!pp->neta_armada3700) 4167 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4168 &pp->node_dead); 4169 err_free_online_hp: 4170 if (!pp->neta_armada3700) 4171 cpuhp_state_remove_instance_nocalls(online_hpstate, 4172 &pp->node_online); 4173 err_free_irq: 4174 if (pp->neta_armada3700) { 4175 free_irq(pp->dev->irq, pp); 4176 } else { 4177 on_each_cpu(mvneta_percpu_disable, pp, true); 4178 free_percpu_irq(pp->dev->irq, pp->ports); 4179 } 4180 err_cleanup_txqs: 4181 mvneta_cleanup_txqs(pp); 4182 err_cleanup_rxqs: 4183 mvneta_cleanup_rxqs(pp); 4184 return ret; 4185 } 4186 4187 /* Stop the port, free port interrupt line */ 4188 static int mvneta_stop(struct net_device *dev) 4189 { 4190 struct mvneta_port *pp = netdev_priv(dev); 4191 4192 if (!pp->neta_armada3700) { 4193 /* Inform that we are stopping so we don't want to setup the 4194 * driver for new CPUs in the notifiers. The code of the 4195 * notifier for CPU online is protected by the same spinlock, 4196 * so when we get the lock, the notifer work is done. 4197 */ 4198 spin_lock(&pp->lock); 4199 pp->is_stopped = true; 4200 spin_unlock(&pp->lock); 4201 4202 mvneta_stop_dev(pp); 4203 mvneta_mdio_remove(pp); 4204 4205 cpuhp_state_remove_instance_nocalls(online_hpstate, 4206 &pp->node_online); 4207 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4208 &pp->node_dead); 4209 on_each_cpu(mvneta_percpu_disable, pp, true); 4210 free_percpu_irq(dev->irq, pp->ports); 4211 } else { 4212 mvneta_stop_dev(pp); 4213 mvneta_mdio_remove(pp); 4214 free_irq(dev->irq, pp); 4215 } 4216 4217 mvneta_cleanup_rxqs(pp); 4218 mvneta_cleanup_txqs(pp); 4219 4220 return 0; 4221 } 4222 4223 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4224 { 4225 struct mvneta_port *pp = netdev_priv(dev); 4226 4227 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4228 } 4229 4230 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4231 struct netlink_ext_ack *extack) 4232 { 4233 bool need_update, running = netif_running(dev); 4234 struct mvneta_port *pp = netdev_priv(dev); 4235 struct bpf_prog *old_prog; 4236 4237 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4238 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4239 return -EOPNOTSUPP; 4240 } 4241 4242 if (pp->bm_priv) { 4243 NL_SET_ERR_MSG_MOD(extack, 4244 "Hardware Buffer Management not supported on XDP"); 4245 return -EOPNOTSUPP; 4246 } 4247 4248 need_update = !!pp->xdp_prog != !!prog; 4249 if (running && need_update) 4250 mvneta_stop(dev); 4251 4252 old_prog = xchg(&pp->xdp_prog, prog); 4253 if (old_prog) 4254 bpf_prog_put(old_prog); 4255 4256 if (running && need_update) 4257 return mvneta_open(dev); 4258 4259 return 0; 4260 } 4261 4262 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4263 { 4264 struct mvneta_port *pp = netdev_priv(dev); 4265 4266 switch (xdp->command) { 4267 case XDP_SETUP_PROG: 4268 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4269 case XDP_QUERY_PROG: 4270 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4271 return 0; 4272 default: 4273 return -EINVAL; 4274 } 4275 } 4276 4277 /* Ethtool methods */ 4278 4279 /* Set link ksettings (phy address, speed) for ethtools */ 4280 static int 4281 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4282 const struct ethtool_link_ksettings *cmd) 4283 { 4284 struct mvneta_port *pp = netdev_priv(ndev); 4285 4286 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4287 } 4288 4289 /* Get link ksettings for ethtools */ 4290 static int 4291 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4292 struct ethtool_link_ksettings *cmd) 4293 { 4294 struct mvneta_port *pp = netdev_priv(ndev); 4295 4296 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4297 } 4298 4299 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4300 { 4301 struct mvneta_port *pp = netdev_priv(dev); 4302 4303 return phylink_ethtool_nway_reset(pp->phylink); 4304 } 4305 4306 /* Set interrupt coalescing for ethtools */ 4307 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4308 struct ethtool_coalesce *c) 4309 { 4310 struct mvneta_port *pp = netdev_priv(dev); 4311 int queue; 4312 4313 for (queue = 0; queue < rxq_number; queue++) { 4314 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4315 rxq->time_coal = c->rx_coalesce_usecs; 4316 rxq->pkts_coal = c->rx_max_coalesced_frames; 4317 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4318 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4319 } 4320 4321 for (queue = 0; queue < txq_number; queue++) { 4322 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4323 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4324 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4325 } 4326 4327 return 0; 4328 } 4329 4330 /* get coalescing for ethtools */ 4331 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4332 struct ethtool_coalesce *c) 4333 { 4334 struct mvneta_port *pp = netdev_priv(dev); 4335 4336 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4337 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4338 4339 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4340 return 0; 4341 } 4342 4343 4344 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4345 struct ethtool_drvinfo *drvinfo) 4346 { 4347 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4348 sizeof(drvinfo->driver)); 4349 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4350 sizeof(drvinfo->version)); 4351 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4352 sizeof(drvinfo->bus_info)); 4353 } 4354 4355 4356 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4357 struct ethtool_ringparam *ring) 4358 { 4359 struct mvneta_port *pp = netdev_priv(netdev); 4360 4361 ring->rx_max_pending = MVNETA_MAX_RXD; 4362 ring->tx_max_pending = MVNETA_MAX_TXD; 4363 ring->rx_pending = pp->rx_ring_size; 4364 ring->tx_pending = pp->tx_ring_size; 4365 } 4366 4367 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4368 struct ethtool_ringparam *ring) 4369 { 4370 struct mvneta_port *pp = netdev_priv(dev); 4371 4372 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4373 return -EINVAL; 4374 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4375 ring->rx_pending : MVNETA_MAX_RXD; 4376 4377 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4378 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4379 if (pp->tx_ring_size != ring->tx_pending) 4380 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4381 pp->tx_ring_size, ring->tx_pending); 4382 4383 if (netif_running(dev)) { 4384 mvneta_stop(dev); 4385 if (mvneta_open(dev)) { 4386 netdev_err(dev, 4387 "error on opening device after ring param change\n"); 4388 return -ENOMEM; 4389 } 4390 } 4391 4392 return 0; 4393 } 4394 4395 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4396 struct ethtool_pauseparam *pause) 4397 { 4398 struct mvneta_port *pp = netdev_priv(dev); 4399 4400 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4401 } 4402 4403 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4404 struct ethtool_pauseparam *pause) 4405 { 4406 struct mvneta_port *pp = netdev_priv(dev); 4407 4408 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4409 } 4410 4411 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4412 u8 *data) 4413 { 4414 if (sset == ETH_SS_STATS) { 4415 int i; 4416 4417 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4418 memcpy(data + i * ETH_GSTRING_LEN, 4419 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4420 } 4421 } 4422 4423 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4424 { 4425 const struct mvneta_statistic *s; 4426 void __iomem *base = pp->base; 4427 u32 high, low; 4428 u64 val; 4429 int i; 4430 4431 for (i = 0, s = mvneta_statistics; 4432 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4433 s++, i++) { 4434 val = 0; 4435 4436 switch (s->type) { 4437 case T_REG_32: 4438 val = readl_relaxed(base + s->offset); 4439 break; 4440 case T_REG_64: 4441 /* Docs say to read low 32-bit then high */ 4442 low = readl_relaxed(base + s->offset); 4443 high = readl_relaxed(base + s->offset + 4); 4444 val = (u64)high << 32 | low; 4445 break; 4446 case T_SW: 4447 switch (s->offset) { 4448 case ETHTOOL_STAT_EEE_WAKEUP: 4449 val = phylink_get_eee_err(pp->phylink); 4450 break; 4451 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4452 val = pp->rxqs[0].skb_alloc_err; 4453 break; 4454 case ETHTOOL_STAT_REFILL_ERR: 4455 val = pp->rxqs[0].refill_err; 4456 break; 4457 } 4458 break; 4459 } 4460 4461 pp->ethtool_stats[i] += val; 4462 } 4463 } 4464 4465 static void mvneta_ethtool_get_stats(struct net_device *dev, 4466 struct ethtool_stats *stats, u64 *data) 4467 { 4468 struct mvneta_port *pp = netdev_priv(dev); 4469 int i; 4470 4471 mvneta_ethtool_update_stats(pp); 4472 4473 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4474 *data++ = pp->ethtool_stats[i]; 4475 } 4476 4477 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4478 { 4479 if (sset == ETH_SS_STATS) 4480 return ARRAY_SIZE(mvneta_statistics); 4481 return -EOPNOTSUPP; 4482 } 4483 4484 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4485 { 4486 return MVNETA_RSS_LU_TABLE_SIZE; 4487 } 4488 4489 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4490 struct ethtool_rxnfc *info, 4491 u32 *rules __always_unused) 4492 { 4493 switch (info->cmd) { 4494 case ETHTOOL_GRXRINGS: 4495 info->data = rxq_number; 4496 return 0; 4497 case ETHTOOL_GRXFH: 4498 return -EOPNOTSUPP; 4499 default: 4500 return -EOPNOTSUPP; 4501 } 4502 } 4503 4504 static int mvneta_config_rss(struct mvneta_port *pp) 4505 { 4506 int cpu; 4507 u32 val; 4508 4509 netif_tx_stop_all_queues(pp->dev); 4510 4511 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4512 4513 if (!pp->neta_armada3700) { 4514 /* We have to synchronise on the napi of each CPU */ 4515 for_each_online_cpu(cpu) { 4516 struct mvneta_pcpu_port *pcpu_port = 4517 per_cpu_ptr(pp->ports, cpu); 4518 4519 napi_synchronize(&pcpu_port->napi); 4520 napi_disable(&pcpu_port->napi); 4521 } 4522 } else { 4523 napi_synchronize(&pp->napi); 4524 napi_disable(&pp->napi); 4525 } 4526 4527 pp->rxq_def = pp->indir[0]; 4528 4529 /* Update unicast mapping */ 4530 mvneta_set_rx_mode(pp->dev); 4531 4532 /* Update val of portCfg register accordingly with all RxQueue types */ 4533 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4534 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4535 4536 /* Update the elected CPU matching the new rxq_def */ 4537 spin_lock(&pp->lock); 4538 mvneta_percpu_elect(pp); 4539 spin_unlock(&pp->lock); 4540 4541 if (!pp->neta_armada3700) { 4542 /* We have to synchronise on the napi of each CPU */ 4543 for_each_online_cpu(cpu) { 4544 struct mvneta_pcpu_port *pcpu_port = 4545 per_cpu_ptr(pp->ports, cpu); 4546 4547 napi_enable(&pcpu_port->napi); 4548 } 4549 } else { 4550 napi_enable(&pp->napi); 4551 } 4552 4553 netif_tx_start_all_queues(pp->dev); 4554 4555 return 0; 4556 } 4557 4558 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4559 const u8 *key, const u8 hfunc) 4560 { 4561 struct mvneta_port *pp = netdev_priv(dev); 4562 4563 /* Current code for Armada 3700 doesn't support RSS features yet */ 4564 if (pp->neta_armada3700) 4565 return -EOPNOTSUPP; 4566 4567 /* We require at least one supported parameter to be changed 4568 * and no change in any of the unsupported parameters 4569 */ 4570 if (key || 4571 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4572 return -EOPNOTSUPP; 4573 4574 if (!indir) 4575 return 0; 4576 4577 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4578 4579 return mvneta_config_rss(pp); 4580 } 4581 4582 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4583 u8 *hfunc) 4584 { 4585 struct mvneta_port *pp = netdev_priv(dev); 4586 4587 /* Current code for Armada 3700 doesn't support RSS features yet */ 4588 if (pp->neta_armada3700) 4589 return -EOPNOTSUPP; 4590 4591 if (hfunc) 4592 *hfunc = ETH_RSS_HASH_TOP; 4593 4594 if (!indir) 4595 return 0; 4596 4597 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4598 4599 return 0; 4600 } 4601 4602 static void mvneta_ethtool_get_wol(struct net_device *dev, 4603 struct ethtool_wolinfo *wol) 4604 { 4605 struct mvneta_port *pp = netdev_priv(dev); 4606 4607 phylink_ethtool_get_wol(pp->phylink, wol); 4608 } 4609 4610 static int mvneta_ethtool_set_wol(struct net_device *dev, 4611 struct ethtool_wolinfo *wol) 4612 { 4613 struct mvneta_port *pp = netdev_priv(dev); 4614 int ret; 4615 4616 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4617 if (!ret) 4618 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4619 4620 return ret; 4621 } 4622 4623 static int mvneta_ethtool_get_eee(struct net_device *dev, 4624 struct ethtool_eee *eee) 4625 { 4626 struct mvneta_port *pp = netdev_priv(dev); 4627 u32 lpi_ctl0; 4628 4629 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4630 4631 eee->eee_enabled = pp->eee_enabled; 4632 eee->eee_active = pp->eee_active; 4633 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4634 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4635 4636 return phylink_ethtool_get_eee(pp->phylink, eee); 4637 } 4638 4639 static int mvneta_ethtool_set_eee(struct net_device *dev, 4640 struct ethtool_eee *eee) 4641 { 4642 struct mvneta_port *pp = netdev_priv(dev); 4643 u32 lpi_ctl0; 4644 4645 /* The Armada 37x documents do not give limits for this other than 4646 * it being an 8-bit register. */ 4647 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4648 return -EINVAL; 4649 4650 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4651 lpi_ctl0 &= ~(0xff << 8); 4652 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4653 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4654 4655 pp->eee_enabled = eee->eee_enabled; 4656 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4657 4658 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4659 4660 return phylink_ethtool_set_eee(pp->phylink, eee); 4661 } 4662 4663 static const struct net_device_ops mvneta_netdev_ops = { 4664 .ndo_open = mvneta_open, 4665 .ndo_stop = mvneta_stop, 4666 .ndo_start_xmit = mvneta_tx, 4667 .ndo_set_rx_mode = mvneta_set_rx_mode, 4668 .ndo_set_mac_address = mvneta_set_mac_addr, 4669 .ndo_change_mtu = mvneta_change_mtu, 4670 .ndo_fix_features = mvneta_fix_features, 4671 .ndo_get_stats64 = mvneta_get_stats64, 4672 .ndo_do_ioctl = mvneta_ioctl, 4673 .ndo_bpf = mvneta_xdp, 4674 .ndo_xdp_xmit = mvneta_xdp_xmit, 4675 }; 4676 4677 static const struct ethtool_ops mvneta_eth_tool_ops = { 4678 .nway_reset = mvneta_ethtool_nway_reset, 4679 .get_link = ethtool_op_get_link, 4680 .set_coalesce = mvneta_ethtool_set_coalesce, 4681 .get_coalesce = mvneta_ethtool_get_coalesce, 4682 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4683 .get_ringparam = mvneta_ethtool_get_ringparam, 4684 .set_ringparam = mvneta_ethtool_set_ringparam, 4685 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4686 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4687 .get_strings = mvneta_ethtool_get_strings, 4688 .get_ethtool_stats = mvneta_ethtool_get_stats, 4689 .get_sset_count = mvneta_ethtool_get_sset_count, 4690 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4691 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4692 .get_rxfh = mvneta_ethtool_get_rxfh, 4693 .set_rxfh = mvneta_ethtool_set_rxfh, 4694 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4695 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4696 .get_wol = mvneta_ethtool_get_wol, 4697 .set_wol = mvneta_ethtool_set_wol, 4698 .get_eee = mvneta_ethtool_get_eee, 4699 .set_eee = mvneta_ethtool_set_eee, 4700 }; 4701 4702 /* Initialize hw */ 4703 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4704 { 4705 int queue; 4706 4707 /* Disable port */ 4708 mvneta_port_disable(pp); 4709 4710 /* Set port default values */ 4711 mvneta_defaults_set(pp); 4712 4713 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4714 if (!pp->txqs) 4715 return -ENOMEM; 4716 4717 /* Initialize TX descriptor rings */ 4718 for (queue = 0; queue < txq_number; queue++) { 4719 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4720 txq->id = queue; 4721 txq->size = pp->tx_ring_size; 4722 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4723 } 4724 4725 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4726 if (!pp->rxqs) 4727 return -ENOMEM; 4728 4729 /* Create Rx descriptor rings */ 4730 for (queue = 0; queue < rxq_number; queue++) { 4731 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4732 rxq->id = queue; 4733 rxq->size = pp->rx_ring_size; 4734 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4735 rxq->time_coal = MVNETA_RX_COAL_USEC; 4736 rxq->buf_virt_addr 4737 = devm_kmalloc_array(pp->dev->dev.parent, 4738 rxq->size, 4739 sizeof(*rxq->buf_virt_addr), 4740 GFP_KERNEL); 4741 if (!rxq->buf_virt_addr) 4742 return -ENOMEM; 4743 } 4744 4745 return 0; 4746 } 4747 4748 /* platform glue : initialize decoding windows */ 4749 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4750 const struct mbus_dram_target_info *dram) 4751 { 4752 u32 win_enable; 4753 u32 win_protect; 4754 int i; 4755 4756 for (i = 0; i < 6; i++) { 4757 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4758 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4759 4760 if (i < 4) 4761 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4762 } 4763 4764 win_enable = 0x3f; 4765 win_protect = 0; 4766 4767 if (dram) { 4768 for (i = 0; i < dram->num_cs; i++) { 4769 const struct mbus_dram_window *cs = dram->cs + i; 4770 4771 mvreg_write(pp, MVNETA_WIN_BASE(i), 4772 (cs->base & 0xffff0000) | 4773 (cs->mbus_attr << 8) | 4774 dram->mbus_dram_target_id); 4775 4776 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4777 (cs->size - 1) & 0xffff0000); 4778 4779 win_enable &= ~(1 << i); 4780 win_protect |= 3 << (2 * i); 4781 } 4782 } else { 4783 /* For Armada3700 open default 4GB Mbus window, leaving 4784 * arbitration of target/attribute to a different layer 4785 * of configuration. 4786 */ 4787 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4788 win_enable &= ~BIT(0); 4789 win_protect = 3; 4790 } 4791 4792 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4793 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4794 } 4795 4796 /* Power up the port */ 4797 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4798 { 4799 /* MAC Cause register should be cleared */ 4800 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4801 4802 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4803 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4804 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4805 phy_interface_mode_is_8023z(phy_mode)) 4806 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4807 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4808 return -EINVAL; 4809 4810 return 0; 4811 } 4812 4813 /* Device initialization routine */ 4814 static int mvneta_probe(struct platform_device *pdev) 4815 { 4816 struct device_node *dn = pdev->dev.of_node; 4817 struct device_node *bm_node; 4818 struct mvneta_port *pp; 4819 struct net_device *dev; 4820 struct phylink *phylink; 4821 struct phy *comphy; 4822 const char *dt_mac_addr; 4823 char hw_mac_addr[ETH_ALEN]; 4824 phy_interface_t phy_mode; 4825 const char *mac_from; 4826 int tx_csum_limit; 4827 int err; 4828 int cpu; 4829 4830 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 4831 txq_number, rxq_number); 4832 if (!dev) 4833 return -ENOMEM; 4834 4835 dev->irq = irq_of_parse_and_map(dn, 0); 4836 if (dev->irq == 0) 4837 return -EINVAL; 4838 4839 err = of_get_phy_mode(dn, &phy_mode); 4840 if (err) { 4841 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4842 goto err_free_irq; 4843 } 4844 4845 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 4846 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 4847 err = -EPROBE_DEFER; 4848 goto err_free_irq; 4849 } else if (IS_ERR(comphy)) { 4850 comphy = NULL; 4851 } 4852 4853 pp = netdev_priv(dev); 4854 spin_lock_init(&pp->lock); 4855 4856 pp->phylink_config.dev = &dev->dev; 4857 pp->phylink_config.type = PHYLINK_NETDEV; 4858 4859 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 4860 phy_mode, &mvneta_phylink_ops); 4861 if (IS_ERR(phylink)) { 4862 err = PTR_ERR(phylink); 4863 goto err_free_irq; 4864 } 4865 4866 dev->tx_queue_len = MVNETA_MAX_TXD; 4867 dev->watchdog_timeo = 5 * HZ; 4868 dev->netdev_ops = &mvneta_netdev_ops; 4869 4870 dev->ethtool_ops = &mvneta_eth_tool_ops; 4871 4872 pp->phylink = phylink; 4873 pp->comphy = comphy; 4874 pp->phy_interface = phy_mode; 4875 pp->dn = dn; 4876 4877 pp->rxq_def = rxq_def; 4878 pp->indir[0] = rxq_def; 4879 4880 /* Get special SoC configurations */ 4881 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4882 pp->neta_armada3700 = true; 4883 4884 pp->clk = devm_clk_get(&pdev->dev, "core"); 4885 if (IS_ERR(pp->clk)) 4886 pp->clk = devm_clk_get(&pdev->dev, NULL); 4887 if (IS_ERR(pp->clk)) { 4888 err = PTR_ERR(pp->clk); 4889 goto err_free_phylink; 4890 } 4891 4892 clk_prepare_enable(pp->clk); 4893 4894 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4895 if (!IS_ERR(pp->clk_bus)) 4896 clk_prepare_enable(pp->clk_bus); 4897 4898 pp->base = devm_platform_ioremap_resource(pdev, 0); 4899 if (IS_ERR(pp->base)) { 4900 err = PTR_ERR(pp->base); 4901 goto err_clk; 4902 } 4903 4904 /* Alloc per-cpu port structure */ 4905 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4906 if (!pp->ports) { 4907 err = -ENOMEM; 4908 goto err_clk; 4909 } 4910 4911 /* Alloc per-cpu stats */ 4912 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4913 if (!pp->stats) { 4914 err = -ENOMEM; 4915 goto err_free_ports; 4916 } 4917 4918 dt_mac_addr = of_get_mac_address(dn); 4919 if (!IS_ERR(dt_mac_addr)) { 4920 mac_from = "device tree"; 4921 ether_addr_copy(dev->dev_addr, dt_mac_addr); 4922 } else { 4923 mvneta_get_mac_addr(pp, hw_mac_addr); 4924 if (is_valid_ether_addr(hw_mac_addr)) { 4925 mac_from = "hardware"; 4926 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4927 } else { 4928 mac_from = "random"; 4929 eth_hw_addr_random(dev); 4930 } 4931 } 4932 4933 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4934 if (tx_csum_limit < 0 || 4935 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4936 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4937 dev_info(&pdev->dev, 4938 "Wrong TX csum limit in DT, set to %dB\n", 4939 MVNETA_TX_CSUM_DEF_SIZE); 4940 } 4941 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4942 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4943 } else { 4944 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4945 } 4946 4947 pp->tx_csum_limit = tx_csum_limit; 4948 4949 pp->dram_target_info = mv_mbus_dram_info(); 4950 /* Armada3700 requires setting default configuration of Mbus 4951 * windows, however without using filled mbus_dram_target_info 4952 * structure. 4953 */ 4954 if (pp->dram_target_info || pp->neta_armada3700) 4955 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4956 4957 pp->tx_ring_size = MVNETA_MAX_TXD; 4958 pp->rx_ring_size = MVNETA_MAX_RXD; 4959 4960 pp->dev = dev; 4961 SET_NETDEV_DEV(dev, &pdev->dev); 4962 4963 pp->id = global_port_id++; 4964 4965 /* Obtain access to BM resources if enabled and already initialized */ 4966 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4967 if (bm_node) { 4968 pp->bm_priv = mvneta_bm_get(bm_node); 4969 if (pp->bm_priv) { 4970 err = mvneta_bm_port_init(pdev, pp); 4971 if (err < 0) { 4972 dev_info(&pdev->dev, 4973 "use SW buffer management\n"); 4974 mvneta_bm_put(pp->bm_priv); 4975 pp->bm_priv = NULL; 4976 } 4977 } 4978 /* Set RX packet offset correction for platforms, whose 4979 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4980 * platforms and 0B for 32-bit ones. 4981 */ 4982 pp->rx_offset_correction = max(0, 4983 NET_SKB_PAD - 4984 MVNETA_RX_PKT_OFFSET_CORRECTION); 4985 } 4986 of_node_put(bm_node); 4987 4988 /* sw buffer management */ 4989 if (!pp->bm_priv) 4990 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 4991 4992 err = mvneta_init(&pdev->dev, pp); 4993 if (err < 0) 4994 goto err_netdev; 4995 4996 err = mvneta_port_power_up(pp, phy_mode); 4997 if (err < 0) { 4998 dev_err(&pdev->dev, "can't power up port\n"); 4999 goto err_netdev; 5000 } 5001 5002 /* Armada3700 network controller does not support per-cpu 5003 * operation, so only single NAPI should be initialized. 5004 */ 5005 if (pp->neta_armada3700) { 5006 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5007 } else { 5008 for_each_present_cpu(cpu) { 5009 struct mvneta_pcpu_port *port = 5010 per_cpu_ptr(pp->ports, cpu); 5011 5012 netif_napi_add(dev, &port->napi, mvneta_poll, 5013 NAPI_POLL_WEIGHT); 5014 port->pp = pp; 5015 } 5016 } 5017 5018 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5019 NETIF_F_TSO | NETIF_F_RXCSUM; 5020 dev->hw_features |= dev->features; 5021 dev->vlan_features |= dev->features; 5022 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5023 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5024 5025 /* MTU range: 68 - 9676 */ 5026 dev->min_mtu = ETH_MIN_MTU; 5027 /* 9676 == 9700 - 20 and rounding to 8 */ 5028 dev->max_mtu = 9676; 5029 5030 err = register_netdev(dev); 5031 if (err < 0) { 5032 dev_err(&pdev->dev, "failed to register\n"); 5033 goto err_netdev; 5034 } 5035 5036 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5037 dev->dev_addr); 5038 5039 platform_set_drvdata(pdev, pp->dev); 5040 5041 return 0; 5042 5043 err_netdev: 5044 if (pp->bm_priv) { 5045 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5046 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5047 1 << pp->id); 5048 mvneta_bm_put(pp->bm_priv); 5049 } 5050 free_percpu(pp->stats); 5051 err_free_ports: 5052 free_percpu(pp->ports); 5053 err_clk: 5054 clk_disable_unprepare(pp->clk_bus); 5055 clk_disable_unprepare(pp->clk); 5056 err_free_phylink: 5057 if (pp->phylink) 5058 phylink_destroy(pp->phylink); 5059 err_free_irq: 5060 irq_dispose_mapping(dev->irq); 5061 return err; 5062 } 5063 5064 /* Device removal routine */ 5065 static int mvneta_remove(struct platform_device *pdev) 5066 { 5067 struct net_device *dev = platform_get_drvdata(pdev); 5068 struct mvneta_port *pp = netdev_priv(dev); 5069 5070 unregister_netdev(dev); 5071 clk_disable_unprepare(pp->clk_bus); 5072 clk_disable_unprepare(pp->clk); 5073 free_percpu(pp->ports); 5074 free_percpu(pp->stats); 5075 irq_dispose_mapping(dev->irq); 5076 phylink_destroy(pp->phylink); 5077 5078 if (pp->bm_priv) { 5079 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5080 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5081 1 << pp->id); 5082 mvneta_bm_put(pp->bm_priv); 5083 } 5084 5085 return 0; 5086 } 5087 5088 #ifdef CONFIG_PM_SLEEP 5089 static int mvneta_suspend(struct device *device) 5090 { 5091 int queue; 5092 struct net_device *dev = dev_get_drvdata(device); 5093 struct mvneta_port *pp = netdev_priv(dev); 5094 5095 if (!netif_running(dev)) 5096 goto clean_exit; 5097 5098 if (!pp->neta_armada3700) { 5099 spin_lock(&pp->lock); 5100 pp->is_stopped = true; 5101 spin_unlock(&pp->lock); 5102 5103 cpuhp_state_remove_instance_nocalls(online_hpstate, 5104 &pp->node_online); 5105 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5106 &pp->node_dead); 5107 } 5108 5109 rtnl_lock(); 5110 mvneta_stop_dev(pp); 5111 rtnl_unlock(); 5112 5113 for (queue = 0; queue < rxq_number; queue++) { 5114 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5115 5116 mvneta_rxq_drop_pkts(pp, rxq); 5117 } 5118 5119 for (queue = 0; queue < txq_number; queue++) { 5120 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5121 5122 mvneta_txq_hw_deinit(pp, txq); 5123 } 5124 5125 clean_exit: 5126 netif_device_detach(dev); 5127 clk_disable_unprepare(pp->clk_bus); 5128 clk_disable_unprepare(pp->clk); 5129 5130 return 0; 5131 } 5132 5133 static int mvneta_resume(struct device *device) 5134 { 5135 struct platform_device *pdev = to_platform_device(device); 5136 struct net_device *dev = dev_get_drvdata(device); 5137 struct mvneta_port *pp = netdev_priv(dev); 5138 int err, queue; 5139 5140 clk_prepare_enable(pp->clk); 5141 if (!IS_ERR(pp->clk_bus)) 5142 clk_prepare_enable(pp->clk_bus); 5143 if (pp->dram_target_info || pp->neta_armada3700) 5144 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5145 if (pp->bm_priv) { 5146 err = mvneta_bm_port_init(pdev, pp); 5147 if (err < 0) { 5148 dev_info(&pdev->dev, "use SW buffer management\n"); 5149 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5150 pp->bm_priv = NULL; 5151 } 5152 } 5153 mvneta_defaults_set(pp); 5154 err = mvneta_port_power_up(pp, pp->phy_interface); 5155 if (err < 0) { 5156 dev_err(device, "can't power up port\n"); 5157 return err; 5158 } 5159 5160 netif_device_attach(dev); 5161 5162 if (!netif_running(dev)) 5163 return 0; 5164 5165 for (queue = 0; queue < rxq_number; queue++) { 5166 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5167 5168 rxq->next_desc_to_proc = 0; 5169 mvneta_rxq_hw_init(pp, rxq); 5170 } 5171 5172 for (queue = 0; queue < txq_number; queue++) { 5173 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5174 5175 txq->next_desc_to_proc = 0; 5176 mvneta_txq_hw_init(pp, txq); 5177 } 5178 5179 if (!pp->neta_armada3700) { 5180 spin_lock(&pp->lock); 5181 pp->is_stopped = false; 5182 spin_unlock(&pp->lock); 5183 cpuhp_state_add_instance_nocalls(online_hpstate, 5184 &pp->node_online); 5185 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5186 &pp->node_dead); 5187 } 5188 5189 rtnl_lock(); 5190 mvneta_start_dev(pp); 5191 rtnl_unlock(); 5192 mvneta_set_rx_mode(dev); 5193 5194 return 0; 5195 } 5196 #endif 5197 5198 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5199 5200 static const struct of_device_id mvneta_match[] = { 5201 { .compatible = "marvell,armada-370-neta" }, 5202 { .compatible = "marvell,armada-xp-neta" }, 5203 { .compatible = "marvell,armada-3700-neta" }, 5204 { } 5205 }; 5206 MODULE_DEVICE_TABLE(of, mvneta_match); 5207 5208 static struct platform_driver mvneta_driver = { 5209 .probe = mvneta_probe, 5210 .remove = mvneta_remove, 5211 .driver = { 5212 .name = MVNETA_DRIVER_NAME, 5213 .of_match_table = mvneta_match, 5214 .pm = &mvneta_pm_ops, 5215 }, 5216 }; 5217 5218 static int __init mvneta_driver_init(void) 5219 { 5220 int ret; 5221 5222 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 5223 mvneta_cpu_online, 5224 mvneta_cpu_down_prepare); 5225 if (ret < 0) 5226 goto out; 5227 online_hpstate = ret; 5228 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5229 NULL, mvneta_cpu_dead); 5230 if (ret) 5231 goto err_dead; 5232 5233 ret = platform_driver_register(&mvneta_driver); 5234 if (ret) 5235 goto err; 5236 return 0; 5237 5238 err: 5239 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5240 err_dead: 5241 cpuhp_remove_multi_state(online_hpstate); 5242 out: 5243 return ret; 5244 } 5245 module_init(mvneta_driver_init); 5246 5247 static void __exit mvneta_driver_exit(void) 5248 { 5249 platform_driver_unregister(&mvneta_driver); 5250 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5251 cpuhp_remove_multi_state(online_hpstate); 5252 } 5253 module_exit(mvneta_driver_exit); 5254 5255 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5256 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5257 MODULE_LICENSE("GPL"); 5258 5259 module_param(rxq_number, int, 0444); 5260 module_param(txq_number, int, 0444); 5261 5262 module_param(rxq_def, int, 0444); 5263 module_param(rx_copybreak, int, 0644); 5264