1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/platform_device.h> 32 #include <linux/skbuff.h> 33 #include <net/hwbm.h> 34 #include "mvneta_bm.h" 35 #include <net/ip.h> 36 #include <net/ipv6.h> 37 #include <net/tso.h> 38 39 /* Registers */ 40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 62 #define MVNETA_PORT_RX_RESET 0x1cc0 63 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 64 #define MVNETA_PHY_ADDR 0x2000 65 #define MVNETA_PHY_ADDR_MASK 0x1f 66 #define MVNETA_MBUS_RETRY 0x2010 67 #define MVNETA_UNIT_INTR_CAUSE 0x2080 68 #define MVNETA_UNIT_CONTROL 0x20B0 69 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 73 #define MVNETA_BASE_ADDR_ENABLE 0x2290 74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 75 #define MVNETA_PORT_CONFIG 0x2400 76 #define MVNETA_UNI_PROMISC_MODE BIT(0) 77 #define MVNETA_DEF_RXQ(q) ((q) << 1) 78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 85 MVNETA_DEF_RXQ_ARP(q) | \ 86 MVNETA_DEF_RXQ_TCP(q) | \ 87 MVNETA_DEF_RXQ_UDP(q) | \ 88 MVNETA_DEF_RXQ_BPDU(q) | \ 89 MVNETA_TX_UNSET_ERR_SUM | \ 90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 92 #define MVNETA_MAC_ADDR_LOW 0x2414 93 #define MVNETA_MAC_ADDR_HIGH 0x2418 94 #define MVNETA_SDMA_CONFIG 0x241c 95 #define MVNETA_SDMA_BRST_SIZE_16 4 96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 97 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 98 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 99 #define MVNETA_DESC_SWAP BIT(6) 100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 101 #define MVNETA_PORT_STATUS 0x2444 102 #define MVNETA_TX_IN_PRGRS BIT(1) 103 #define MVNETA_TX_FIFO_EMPTY BIT(8) 104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 105 #define MVNETA_SERDES_CFG 0x24A0 106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 108 #define MVNETA_TYPE_PRIO 0x24bc 109 #define MVNETA_FORCE_UNI BIT(21) 110 #define MVNETA_TXQ_CMD_1 0x24e4 111 #define MVNETA_TXQ_CMD 0x2448 112 #define MVNETA_TXQ_DISABLE_SHIFT 8 113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 118 #define MVNETA_ACC_MODE 0x2500 119 #define MVNETA_BM_ADDRESS 0x2504 120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 126 127 /* Exception Interrupt Port/Queue Cause register 128 * 129 * Their behavior depend of the mapping done using the PCPX2Q 130 * registers. For a given CPU if the bit associated to a queue is not 131 * set, then for the register a read from this CPU will always return 132 * 0 and a write won't do anything 133 */ 134 135 #define MVNETA_INTR_NEW_CAUSE 0x25a0 136 #define MVNETA_INTR_NEW_MASK 0x25a4 137 138 /* bits 0..7 = TXQ SENT, one bit per queue. 139 * bits 8..15 = RXQ OCCUP, one bit per queue. 140 * bits 16..23 = RXQ FREE, one bit per queue. 141 * bit 29 = OLD_REG_SUM, see old reg ? 142 * bit 30 = TX_ERR_SUM, one bit for 4 ports 143 * bit 31 = MISC_SUM, one bit for 4 ports 144 */ 145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 149 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 150 151 #define MVNETA_INTR_OLD_CAUSE 0x25a8 152 #define MVNETA_INTR_OLD_MASK 0x25ac 153 154 /* Data Path Port/Queue Cause Register */ 155 #define MVNETA_INTR_MISC_CAUSE 0x25b0 156 #define MVNETA_INTR_MISC_MASK 0x25b4 157 158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 160 #define MVNETA_CAUSE_PTP BIT(4) 161 162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 167 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 170 171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 174 175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 178 179 #define MVNETA_INTR_ENABLE 0x25b8 180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 182 183 #define MVNETA_RXQ_CMD 0x2680 184 #define MVNETA_RXQ_DISABLE_SHIFT 8 185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 188 #define MVNETA_GMAC_CTRL_0 0x2c00 189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 192 #define MVNETA_GMAC_CTRL_2 0x2c08 193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 195 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 196 #define MVNETA_GMAC2_PORT_RESET BIT(6) 197 #define MVNETA_GMAC_STATUS 0x2c10 198 #define MVNETA_GMAC_LINK_UP BIT(0) 199 #define MVNETA_GMAC_SPEED_1000 BIT(1) 200 #define MVNETA_GMAC_SPEED_100 BIT(2) 201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 216 #define MVNETA_MIB_COUNTERS_BASE 0x3000 217 #define MVNETA_MIB_LATE_COLLISION 0x7c 218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 230 #define MVNETA_PORT_TX_RESET 0x3cf0 231 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 232 #define MVNETA_TX_MTU 0x3e0c 233 #define MVNETA_TX_TOKEN_SIZE 0x3e14 234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 237 238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 239 240 /* Descriptor ring Macros */ 241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 242 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 243 244 /* Various constants */ 245 246 /* Coalescing */ 247 #define MVNETA_TXDONE_COAL_PKTS 1 248 #define MVNETA_RX_COAL_PKTS 32 249 #define MVNETA_RX_COAL_USEC 100 250 251 /* The two bytes Marvell header. Either contains a special value used 252 * by Marvell switches when a specific hardware mode is enabled (not 253 * supported by this driver) or is filled automatically by zeroes on 254 * the RX side. Those two bytes being at the front of the Ethernet 255 * header, they allow to have the IP header aligned on a 4 bytes 256 * boundary automatically: the hardware skips those two bytes on its 257 * own. 258 */ 259 #define MVNETA_MH_SIZE 2 260 261 #define MVNETA_VLAN_TAG_LEN 4 262 263 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 264 #define MVNETA_TX_CSUM_DEF_SIZE 1600 265 #define MVNETA_TX_CSUM_MAX_SIZE 9800 266 #define MVNETA_ACC_MODE_EXT1 1 267 #define MVNETA_ACC_MODE_EXT2 2 268 269 #define MVNETA_MAX_DECODE_WIN 6 270 271 /* Timeout constants */ 272 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 273 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 274 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 275 276 #define MVNETA_TX_MTU_MAX 0x3ffff 277 278 /* The RSS lookup table actually has 256 entries but we do not use 279 * them yet 280 */ 281 #define MVNETA_RSS_LU_TABLE_SIZE 1 282 283 /* TSO header size */ 284 #define TSO_HEADER_SIZE 128 285 286 /* Max number of Rx descriptors */ 287 #define MVNETA_MAX_RXD 128 288 289 /* Max number of Tx descriptors */ 290 #define MVNETA_MAX_TXD 532 291 292 /* Max number of allowed TCP segments for software TSO */ 293 #define MVNETA_MAX_TSO_SEGS 100 294 295 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 296 297 /* descriptor aligned size */ 298 #define MVNETA_DESC_ALIGNED_SIZE 32 299 300 #define MVNETA_RX_PKT_SIZE(mtu) \ 301 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 302 ETH_HLEN + ETH_FCS_LEN, \ 303 MVNETA_CPU_D_CACHE_LINE_SIZE) 304 305 #define IS_TSO_HEADER(txq, addr) \ 306 ((addr >= txq->tso_hdrs_phys) && \ 307 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 308 309 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 310 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 311 312 struct mvneta_statistic { 313 unsigned short offset; 314 unsigned short type; 315 const char name[ETH_GSTRING_LEN]; 316 }; 317 318 #define T_REG_32 32 319 #define T_REG_64 64 320 321 static const struct mvneta_statistic mvneta_statistics[] = { 322 { 0x3000, T_REG_64, "good_octets_received", }, 323 { 0x3010, T_REG_32, "good_frames_received", }, 324 { 0x3008, T_REG_32, "bad_octets_received", }, 325 { 0x3014, T_REG_32, "bad_frames_received", }, 326 { 0x3018, T_REG_32, "broadcast_frames_received", }, 327 { 0x301c, T_REG_32, "multicast_frames_received", }, 328 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 329 { 0x3058, T_REG_32, "good_fc_received", }, 330 { 0x305c, T_REG_32, "bad_fc_received", }, 331 { 0x3060, T_REG_32, "undersize_received", }, 332 { 0x3064, T_REG_32, "fragments_received", }, 333 { 0x3068, T_REG_32, "oversize_received", }, 334 { 0x306c, T_REG_32, "jabber_received", }, 335 { 0x3070, T_REG_32, "mac_receive_error", }, 336 { 0x3074, T_REG_32, "bad_crc_event", }, 337 { 0x3078, T_REG_32, "collision", }, 338 { 0x307c, T_REG_32, "late_collision", }, 339 { 0x2484, T_REG_32, "rx_discard", }, 340 { 0x2488, T_REG_32, "rx_overrun", }, 341 { 0x3020, T_REG_32, "frames_64_octets", }, 342 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 343 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 344 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 345 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 346 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 347 { 0x3038, T_REG_64, "good_octets_sent", }, 348 { 0x3040, T_REG_32, "good_frames_sent", }, 349 { 0x3044, T_REG_32, "excessive_collision", }, 350 { 0x3048, T_REG_32, "multicast_frames_sent", }, 351 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 352 { 0x3054, T_REG_32, "fc_sent", }, 353 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 354 }; 355 356 struct mvneta_pcpu_stats { 357 struct u64_stats_sync syncp; 358 u64 rx_packets; 359 u64 rx_bytes; 360 u64 tx_packets; 361 u64 tx_bytes; 362 }; 363 364 struct mvneta_pcpu_port { 365 /* Pointer to the shared port */ 366 struct mvneta_port *pp; 367 368 /* Pointer to the CPU-local NAPI struct */ 369 struct napi_struct napi; 370 371 /* Cause of the previous interrupt */ 372 u32 cause_rx_tx; 373 }; 374 375 struct mvneta_port { 376 u8 id; 377 struct mvneta_pcpu_port __percpu *ports; 378 struct mvneta_pcpu_stats __percpu *stats; 379 380 int pkt_size; 381 unsigned int frag_size; 382 void __iomem *base; 383 struct mvneta_rx_queue *rxqs; 384 struct mvneta_tx_queue *txqs; 385 struct net_device *dev; 386 struct notifier_block cpu_notifier; 387 int rxq_def; 388 /* Protect the access to the percpu interrupt registers, 389 * ensuring that the configuration remains coherent. 390 */ 391 spinlock_t lock; 392 bool is_stopped; 393 394 /* Core clock */ 395 struct clk *clk; 396 /* AXI clock */ 397 struct clk *clk_bus; 398 u8 mcast_count[256]; 399 u16 tx_ring_size; 400 u16 rx_ring_size; 401 402 struct mii_bus *mii_bus; 403 struct phy_device *phy_dev; 404 phy_interface_t phy_interface; 405 struct device_node *phy_node; 406 unsigned int link; 407 unsigned int duplex; 408 unsigned int speed; 409 unsigned int tx_csum_limit; 410 unsigned int use_inband_status:1; 411 412 struct mvneta_bm *bm_priv; 413 struct mvneta_bm_pool *pool_long; 414 struct mvneta_bm_pool *pool_short; 415 int bm_win_id; 416 417 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 418 419 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 420 }; 421 422 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 423 * layout of the transmit and reception DMA descriptors, and their 424 * layout is therefore defined by the hardware design 425 */ 426 427 #define MVNETA_TX_L3_OFF_SHIFT 0 428 #define MVNETA_TX_IP_HLEN_SHIFT 8 429 #define MVNETA_TX_L4_UDP BIT(16) 430 #define MVNETA_TX_L3_IP6 BIT(17) 431 #define MVNETA_TXD_IP_CSUM BIT(18) 432 #define MVNETA_TXD_Z_PAD BIT(19) 433 #define MVNETA_TXD_L_DESC BIT(20) 434 #define MVNETA_TXD_F_DESC BIT(21) 435 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 436 MVNETA_TXD_L_DESC | \ 437 MVNETA_TXD_F_DESC) 438 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 439 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 440 441 #define MVNETA_RXD_ERR_CRC 0x0 442 #define MVNETA_RXD_BM_POOL_SHIFT 13 443 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 444 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 445 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 446 #define MVNETA_RXD_ERR_LEN BIT(18) 447 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 448 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 449 #define MVNETA_RXD_L3_IP4 BIT(25) 450 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 451 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 452 453 #if defined(__LITTLE_ENDIAN) 454 struct mvneta_tx_desc { 455 u32 command; /* Options used by HW for packet transmitting.*/ 456 u16 reserverd1; /* csum_l4 (for future use) */ 457 u16 data_size; /* Data size of transmitted packet in bytes */ 458 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 459 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 460 u32 reserved3[4]; /* Reserved - (for future use) */ 461 }; 462 463 struct mvneta_rx_desc { 464 u32 status; /* Info about received packet */ 465 u16 reserved1; /* pnc_info - (for future use, PnC) */ 466 u16 data_size; /* Size of received packet in bytes */ 467 468 u32 buf_phys_addr; /* Physical address of the buffer */ 469 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 470 471 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 472 u16 reserved3; /* prefetch_cmd, for future use */ 473 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 474 475 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 476 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 477 }; 478 #else 479 struct mvneta_tx_desc { 480 u16 data_size; /* Data size of transmitted packet in bytes */ 481 u16 reserverd1; /* csum_l4 (for future use) */ 482 u32 command; /* Options used by HW for packet transmitting.*/ 483 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 484 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 485 u32 reserved3[4]; /* Reserved - (for future use) */ 486 }; 487 488 struct mvneta_rx_desc { 489 u16 data_size; /* Size of received packet in bytes */ 490 u16 reserved1; /* pnc_info - (for future use, PnC) */ 491 u32 status; /* Info about received packet */ 492 493 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 494 u32 buf_phys_addr; /* Physical address of the buffer */ 495 496 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 497 u16 reserved3; /* prefetch_cmd, for future use */ 498 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 499 500 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 501 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 502 }; 503 #endif 504 505 struct mvneta_tx_queue { 506 /* Number of this TX queue, in the range 0-7 */ 507 u8 id; 508 509 /* Number of TX DMA descriptors in the descriptor ring */ 510 int size; 511 512 /* Number of currently used TX DMA descriptor in the 513 * descriptor ring 514 */ 515 int count; 516 int tx_stop_threshold; 517 int tx_wake_threshold; 518 519 /* Array of transmitted skb */ 520 struct sk_buff **tx_skb; 521 522 /* Index of last TX DMA descriptor that was inserted */ 523 int txq_put_index; 524 525 /* Index of the TX DMA descriptor to be cleaned up */ 526 int txq_get_index; 527 528 u32 done_pkts_coal; 529 530 /* Virtual address of the TX DMA descriptors array */ 531 struct mvneta_tx_desc *descs; 532 533 /* DMA address of the TX DMA descriptors array */ 534 dma_addr_t descs_phys; 535 536 /* Index of the last TX DMA descriptor */ 537 int last_desc; 538 539 /* Index of the next TX DMA descriptor to process */ 540 int next_desc_to_proc; 541 542 /* DMA buffers for TSO headers */ 543 char *tso_hdrs; 544 545 /* DMA address of TSO headers */ 546 dma_addr_t tso_hdrs_phys; 547 548 /* Affinity mask for CPUs*/ 549 cpumask_t affinity_mask; 550 }; 551 552 struct mvneta_rx_queue { 553 /* rx queue number, in the range 0-7 */ 554 u8 id; 555 556 /* num of rx descriptors in the rx descriptor ring */ 557 int size; 558 559 /* counter of times when mvneta_refill() failed */ 560 int missed; 561 562 u32 pkts_coal; 563 u32 time_coal; 564 565 /* Virtual address of the RX DMA descriptors array */ 566 struct mvneta_rx_desc *descs; 567 568 /* DMA address of the RX DMA descriptors array */ 569 dma_addr_t descs_phys; 570 571 /* Index of the last RX DMA descriptor */ 572 int last_desc; 573 574 /* Index of the next RX DMA descriptor to process */ 575 int next_desc_to_proc; 576 }; 577 578 /* The hardware supports eight (8) rx queues, but we are only allowing 579 * the first one to be used. Therefore, let's just allocate one queue. 580 */ 581 static int rxq_number = 8; 582 static int txq_number = 8; 583 584 static int rxq_def; 585 586 static int rx_copybreak __read_mostly = 256; 587 588 /* HW BM need that each port be identify by a unique ID */ 589 static int global_port_id; 590 591 #define MVNETA_DRIVER_NAME "mvneta" 592 #define MVNETA_DRIVER_VERSION "1.0" 593 594 /* Utility/helper methods */ 595 596 /* Write helper method */ 597 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 598 { 599 writel(data, pp->base + offset); 600 } 601 602 /* Read helper method */ 603 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 604 { 605 return readl(pp->base + offset); 606 } 607 608 /* Increment txq get counter */ 609 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 610 { 611 txq->txq_get_index++; 612 if (txq->txq_get_index == txq->size) 613 txq->txq_get_index = 0; 614 } 615 616 /* Increment txq put counter */ 617 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 618 { 619 txq->txq_put_index++; 620 if (txq->txq_put_index == txq->size) 621 txq->txq_put_index = 0; 622 } 623 624 625 /* Clear all MIB counters */ 626 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 627 { 628 int i; 629 u32 dummy; 630 631 /* Perform dummy reads from MIB counters */ 632 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 633 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 634 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 635 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 636 } 637 638 /* Get System Network Statistics */ 639 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 640 struct rtnl_link_stats64 *stats) 641 { 642 struct mvneta_port *pp = netdev_priv(dev); 643 unsigned int start; 644 int cpu; 645 646 for_each_possible_cpu(cpu) { 647 struct mvneta_pcpu_stats *cpu_stats; 648 u64 rx_packets; 649 u64 rx_bytes; 650 u64 tx_packets; 651 u64 tx_bytes; 652 653 cpu_stats = per_cpu_ptr(pp->stats, cpu); 654 do { 655 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 656 rx_packets = cpu_stats->rx_packets; 657 rx_bytes = cpu_stats->rx_bytes; 658 tx_packets = cpu_stats->tx_packets; 659 tx_bytes = cpu_stats->tx_bytes; 660 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 661 662 stats->rx_packets += rx_packets; 663 stats->rx_bytes += rx_bytes; 664 stats->tx_packets += tx_packets; 665 stats->tx_bytes += tx_bytes; 666 } 667 668 stats->rx_errors = dev->stats.rx_errors; 669 stats->rx_dropped = dev->stats.rx_dropped; 670 671 stats->tx_dropped = dev->stats.tx_dropped; 672 673 return stats; 674 } 675 676 /* Rx descriptors helper methods */ 677 678 /* Checks whether the RX descriptor having this status is both the first 679 * and the last descriptor for the RX packet. Each RX packet is currently 680 * received through a single RX descriptor, so not having each RX 681 * descriptor with its first and last bits set is an error 682 */ 683 static int mvneta_rxq_desc_is_first_last(u32 status) 684 { 685 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 686 MVNETA_RXD_FIRST_LAST_DESC; 687 } 688 689 /* Add number of descriptors ready to receive new packets */ 690 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 691 struct mvneta_rx_queue *rxq, 692 int ndescs) 693 { 694 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 695 * be added at once 696 */ 697 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 698 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 699 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 700 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 701 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 702 } 703 704 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 705 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 706 } 707 708 /* Get number of RX descriptors occupied by received packets */ 709 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 710 struct mvneta_rx_queue *rxq) 711 { 712 u32 val; 713 714 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 715 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 716 } 717 718 /* Update num of rx desc called upon return from rx path or 719 * from mvneta_rxq_drop_pkts(). 720 */ 721 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 722 struct mvneta_rx_queue *rxq, 723 int rx_done, int rx_filled) 724 { 725 u32 val; 726 727 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 728 val = rx_done | 729 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 730 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 731 return; 732 } 733 734 /* Only 255 descriptors can be added at once */ 735 while ((rx_done > 0) || (rx_filled > 0)) { 736 if (rx_done <= 0xff) { 737 val = rx_done; 738 rx_done = 0; 739 } else { 740 val = 0xff; 741 rx_done -= 0xff; 742 } 743 if (rx_filled <= 0xff) { 744 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 745 rx_filled = 0; 746 } else { 747 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 748 rx_filled -= 0xff; 749 } 750 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 751 } 752 } 753 754 /* Get pointer to next RX descriptor to be processed by SW */ 755 static struct mvneta_rx_desc * 756 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 757 { 758 int rx_desc = rxq->next_desc_to_proc; 759 760 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 761 prefetch(rxq->descs + rxq->next_desc_to_proc); 762 return rxq->descs + rx_desc; 763 } 764 765 /* Change maximum receive size of the port. */ 766 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 767 { 768 u32 val; 769 770 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 771 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 772 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 773 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 774 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 775 } 776 777 778 /* Set rx queue offset */ 779 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 780 struct mvneta_rx_queue *rxq, 781 int offset) 782 { 783 u32 val; 784 785 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 786 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 787 788 /* Offset is in */ 789 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 790 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 791 } 792 793 794 /* Tx descriptors helper methods */ 795 796 /* Update HW with number of TX descriptors to be sent */ 797 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 798 struct mvneta_tx_queue *txq, 799 int pend_desc) 800 { 801 u32 val; 802 803 /* Only 255 descriptors can be added at once ; Assume caller 804 * process TX desriptors in quanta less than 256 805 */ 806 val = pend_desc; 807 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 808 } 809 810 /* Get pointer to next TX descriptor to be processed (send) by HW */ 811 static struct mvneta_tx_desc * 812 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 813 { 814 int tx_desc = txq->next_desc_to_proc; 815 816 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 817 return txq->descs + tx_desc; 818 } 819 820 /* Release the last allocated TX descriptor. Useful to handle DMA 821 * mapping failures in the TX path. 822 */ 823 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 824 { 825 if (txq->next_desc_to_proc == 0) 826 txq->next_desc_to_proc = txq->last_desc - 1; 827 else 828 txq->next_desc_to_proc--; 829 } 830 831 /* Set rxq buf size */ 832 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq, 834 int buf_size) 835 { 836 u32 val; 837 838 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 839 840 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 841 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 842 843 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 844 } 845 846 /* Disable buffer management (BM) */ 847 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 848 struct mvneta_rx_queue *rxq) 849 { 850 u32 val; 851 852 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 853 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 854 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 855 } 856 857 /* Enable buffer management (BM) */ 858 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 859 struct mvneta_rx_queue *rxq) 860 { 861 u32 val; 862 863 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 864 val |= MVNETA_RXQ_HW_BUF_ALLOC; 865 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 866 } 867 868 /* Notify HW about port's assignment of pool for bigger packets */ 869 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 870 struct mvneta_rx_queue *rxq) 871 { 872 u32 val; 873 874 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 875 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 876 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 877 878 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 879 } 880 881 /* Notify HW about port's assignment of pool for smaller packets */ 882 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 883 struct mvneta_rx_queue *rxq) 884 { 885 u32 val; 886 887 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 888 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 889 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 890 891 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 892 } 893 894 /* Set port's receive buffer size for assigned BM pool */ 895 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 896 int buf_size, 897 u8 pool_id) 898 { 899 u32 val; 900 901 if (!IS_ALIGNED(buf_size, 8)) { 902 dev_warn(pp->dev->dev.parent, 903 "illegal buf_size value %d, round to %d\n", 904 buf_size, ALIGN(buf_size, 8)); 905 buf_size = ALIGN(buf_size, 8); 906 } 907 908 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 909 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 910 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 911 } 912 913 /* Configure MBUS window in order to enable access BM internal SRAM */ 914 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 915 u8 target, u8 attr) 916 { 917 u32 win_enable, win_protect; 918 int i; 919 920 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 921 922 if (pp->bm_win_id < 0) { 923 /* Find first not occupied window */ 924 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 925 if (win_enable & (1 << i)) { 926 pp->bm_win_id = i; 927 break; 928 } 929 } 930 if (i == MVNETA_MAX_DECODE_WIN) 931 return -ENOMEM; 932 } else { 933 i = pp->bm_win_id; 934 } 935 936 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 937 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 938 939 if (i < 4) 940 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 941 942 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 943 (attr << 8) | target); 944 945 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 946 947 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 948 win_protect |= 3 << (2 * i); 949 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 950 951 win_enable &= ~(1 << i); 952 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 953 954 return 0; 955 } 956 957 /* Assign and initialize pools for port. In case of fail 958 * buffer manager will remain disabled for current port. 959 */ 960 static int mvneta_bm_port_init(struct platform_device *pdev, 961 struct mvneta_port *pp) 962 { 963 struct device_node *dn = pdev->dev.of_node; 964 u32 long_pool_id, short_pool_id, wsize; 965 u8 target, attr; 966 int err; 967 968 /* Get BM window information */ 969 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 970 &target, &attr); 971 if (err < 0) 972 return err; 973 974 pp->bm_win_id = -1; 975 976 /* Open NETA -> BM window */ 977 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 978 target, attr); 979 if (err < 0) { 980 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 981 return err; 982 } 983 984 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 985 netdev_info(pp->dev, "missing long pool id\n"); 986 return -EINVAL; 987 } 988 989 /* Create port's long pool depending on mtu */ 990 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 991 MVNETA_BM_LONG, pp->id, 992 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 993 if (!pp->pool_long) { 994 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 995 return -ENOMEM; 996 } 997 998 pp->pool_long->port_map |= 1 << pp->id; 999 1000 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1001 pp->pool_long->id); 1002 1003 /* If short pool id is not defined, assume using single pool */ 1004 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1005 short_pool_id = long_pool_id; 1006 1007 /* Create port's short pool */ 1008 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1009 MVNETA_BM_SHORT, pp->id, 1010 MVNETA_BM_SHORT_PKT_SIZE); 1011 if (!pp->pool_short) { 1012 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1013 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1014 return -ENOMEM; 1015 } 1016 1017 if (short_pool_id != long_pool_id) { 1018 pp->pool_short->port_map |= 1 << pp->id; 1019 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1020 pp->pool_short->id); 1021 } 1022 1023 return 0; 1024 } 1025 1026 /* Update settings of a pool for bigger packets */ 1027 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1028 { 1029 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1030 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1031 int num; 1032 1033 /* Release all buffers from long pool */ 1034 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1035 if (hwbm_pool->buf_num) { 1036 WARN(1, "cannot free all buffers in pool %d\n", 1037 bm_pool->id); 1038 goto bm_mtu_err; 1039 } 1040 1041 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1042 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1043 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1044 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1045 1046 /* Fill entire long pool */ 1047 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1048 if (num != hwbm_pool->size) { 1049 WARN(1, "pool %d: %d of %d allocated\n", 1050 bm_pool->id, num, hwbm_pool->size); 1051 goto bm_mtu_err; 1052 } 1053 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1054 1055 return; 1056 1057 bm_mtu_err: 1058 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1059 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1060 1061 pp->bm_priv = NULL; 1062 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1063 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1064 } 1065 1066 /* Start the Ethernet port RX and TX activity */ 1067 static void mvneta_port_up(struct mvneta_port *pp) 1068 { 1069 int queue; 1070 u32 q_map; 1071 1072 /* Enable all initialized TXs. */ 1073 q_map = 0; 1074 for (queue = 0; queue < txq_number; queue++) { 1075 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1076 if (txq->descs != NULL) 1077 q_map |= (1 << queue); 1078 } 1079 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1080 1081 /* Enable all initialized RXQs. */ 1082 for (queue = 0; queue < rxq_number; queue++) { 1083 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1084 1085 if (rxq->descs != NULL) 1086 q_map |= (1 << queue); 1087 } 1088 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1089 } 1090 1091 /* Stop the Ethernet port activity */ 1092 static void mvneta_port_down(struct mvneta_port *pp) 1093 { 1094 u32 val; 1095 int count; 1096 1097 /* Stop Rx port activity. Check port Rx activity. */ 1098 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1099 1100 /* Issue stop command for active channels only */ 1101 if (val != 0) 1102 mvreg_write(pp, MVNETA_RXQ_CMD, 1103 val << MVNETA_RXQ_DISABLE_SHIFT); 1104 1105 /* Wait for all Rx activity to terminate. */ 1106 count = 0; 1107 do { 1108 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1109 netdev_warn(pp->dev, 1110 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1111 val); 1112 break; 1113 } 1114 mdelay(1); 1115 1116 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1117 } while (val & MVNETA_RXQ_ENABLE_MASK); 1118 1119 /* Stop Tx port activity. Check port Tx activity. Issue stop 1120 * command for active channels only 1121 */ 1122 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1123 1124 if (val != 0) 1125 mvreg_write(pp, MVNETA_TXQ_CMD, 1126 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1127 1128 /* Wait for all Tx activity to terminate. */ 1129 count = 0; 1130 do { 1131 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1132 netdev_warn(pp->dev, 1133 "TIMEOUT for TX stopped status=0x%08x\n", 1134 val); 1135 break; 1136 } 1137 mdelay(1); 1138 1139 /* Check TX Command reg that all Txqs are stopped */ 1140 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1141 1142 } while (val & MVNETA_TXQ_ENABLE_MASK); 1143 1144 /* Double check to verify that TX FIFO is empty */ 1145 count = 0; 1146 do { 1147 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1148 netdev_warn(pp->dev, 1149 "TX FIFO empty timeout status=0x%08x\n", 1150 val); 1151 break; 1152 } 1153 mdelay(1); 1154 1155 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1156 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1157 (val & MVNETA_TX_IN_PRGRS)); 1158 1159 udelay(200); 1160 } 1161 1162 /* Enable the port by setting the port enable bit of the MAC control register */ 1163 static void mvneta_port_enable(struct mvneta_port *pp) 1164 { 1165 u32 val; 1166 1167 /* Enable port */ 1168 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1169 val |= MVNETA_GMAC0_PORT_ENABLE; 1170 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1171 } 1172 1173 /* Disable the port and wait for about 200 usec before retuning */ 1174 static void mvneta_port_disable(struct mvneta_port *pp) 1175 { 1176 u32 val; 1177 1178 /* Reset the Enable bit in the Serial Control Register */ 1179 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1180 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1181 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1182 1183 udelay(200); 1184 } 1185 1186 /* Multicast tables methods */ 1187 1188 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1189 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1190 { 1191 int offset; 1192 u32 val; 1193 1194 if (queue == -1) { 1195 val = 0; 1196 } else { 1197 val = 0x1 | (queue << 1); 1198 val |= (val << 24) | (val << 16) | (val << 8); 1199 } 1200 1201 for (offset = 0; offset <= 0xc; offset += 4) 1202 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1203 } 1204 1205 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1206 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1207 { 1208 int offset; 1209 u32 val; 1210 1211 if (queue == -1) { 1212 val = 0; 1213 } else { 1214 val = 0x1 | (queue << 1); 1215 val |= (val << 24) | (val << 16) | (val << 8); 1216 } 1217 1218 for (offset = 0; offset <= 0xfc; offset += 4) 1219 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1220 1221 } 1222 1223 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1224 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1225 { 1226 int offset; 1227 u32 val; 1228 1229 if (queue == -1) { 1230 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1231 val = 0; 1232 } else { 1233 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1234 val = 0x1 | (queue << 1); 1235 val |= (val << 24) | (val << 16) | (val << 8); 1236 } 1237 1238 for (offset = 0; offset <= 0xfc; offset += 4) 1239 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1240 } 1241 1242 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1243 { 1244 u32 val; 1245 1246 if (enable) { 1247 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1248 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1249 MVNETA_GMAC_FORCE_LINK_DOWN | 1250 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1251 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1252 MVNETA_GMAC_AN_SPEED_EN | 1253 MVNETA_GMAC_AN_DUPLEX_EN; 1254 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1255 1256 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1257 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1258 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1259 1260 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1261 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1262 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1263 } else { 1264 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1265 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1266 MVNETA_GMAC_AN_SPEED_EN | 1267 MVNETA_GMAC_AN_DUPLEX_EN); 1268 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1269 1270 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1271 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1272 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1273 1274 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1275 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1276 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1277 } 1278 } 1279 1280 static void mvneta_percpu_unmask_interrupt(void *arg) 1281 { 1282 struct mvneta_port *pp = arg; 1283 1284 /* All the queue are unmasked, but actually only the ones 1285 * mapped to this CPU will be unmasked 1286 */ 1287 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1288 MVNETA_RX_INTR_MASK_ALL | 1289 MVNETA_TX_INTR_MASK_ALL | 1290 MVNETA_MISCINTR_INTR_MASK); 1291 } 1292 1293 static void mvneta_percpu_mask_interrupt(void *arg) 1294 { 1295 struct mvneta_port *pp = arg; 1296 1297 /* All the queue are masked, but actually only the ones 1298 * mapped to this CPU will be masked 1299 */ 1300 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1301 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1302 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1303 } 1304 1305 static void mvneta_percpu_clear_intr_cause(void *arg) 1306 { 1307 struct mvneta_port *pp = arg; 1308 1309 /* All the queue are cleared, but actually only the ones 1310 * mapped to this CPU will be cleared 1311 */ 1312 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1313 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1314 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1315 } 1316 1317 /* This method sets defaults to the NETA port: 1318 * Clears interrupt Cause and Mask registers. 1319 * Clears all MAC tables. 1320 * Sets defaults to all registers. 1321 * Resets RX and TX descriptor rings. 1322 * Resets PHY. 1323 * This method can be called after mvneta_port_down() to return the port 1324 * settings to defaults. 1325 */ 1326 static void mvneta_defaults_set(struct mvneta_port *pp) 1327 { 1328 int cpu; 1329 int queue; 1330 u32 val; 1331 int max_cpu = num_present_cpus(); 1332 1333 /* Clear all Cause registers */ 1334 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1335 1336 /* Mask all interrupts */ 1337 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1338 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1339 1340 /* Enable MBUS Retry bit16 */ 1341 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1342 1343 /* Set CPU queue access map. CPUs are assigned to the RX and 1344 * TX queues modulo their number. If there is only one TX 1345 * queue then it is assigned to the CPU associated to the 1346 * default RX queue. 1347 */ 1348 for_each_present_cpu(cpu) { 1349 int rxq_map = 0, txq_map = 0; 1350 int rxq, txq; 1351 1352 for (rxq = 0; rxq < rxq_number; rxq++) 1353 if ((rxq % max_cpu) == cpu) 1354 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1355 1356 for (txq = 0; txq < txq_number; txq++) 1357 if ((txq % max_cpu) == cpu) 1358 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1359 1360 /* With only one TX queue we configure a special case 1361 * which will allow to get all the irq on a single 1362 * CPU 1363 */ 1364 if (txq_number == 1) 1365 txq_map = (cpu == pp->rxq_def) ? 1366 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1367 1368 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1369 } 1370 1371 /* Reset RX and TX DMAs */ 1372 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1373 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1374 1375 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1376 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1377 for (queue = 0; queue < txq_number; queue++) { 1378 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1379 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1380 } 1381 1382 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1383 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1384 1385 /* Set Port Acceleration Mode */ 1386 if (pp->bm_priv) 1387 /* HW buffer management + legacy parser */ 1388 val = MVNETA_ACC_MODE_EXT2; 1389 else 1390 /* SW buffer management + legacy parser */ 1391 val = MVNETA_ACC_MODE_EXT1; 1392 mvreg_write(pp, MVNETA_ACC_MODE, val); 1393 1394 if (pp->bm_priv) 1395 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1396 1397 /* Update val of portCfg register accordingly with all RxQueue types */ 1398 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1399 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1400 1401 val = 0; 1402 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1403 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1404 1405 /* Build PORT_SDMA_CONFIG_REG */ 1406 val = 0; 1407 1408 /* Default burst size */ 1409 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1410 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1411 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1412 1413 #if defined(__BIG_ENDIAN) 1414 val |= MVNETA_DESC_SWAP; 1415 #endif 1416 1417 /* Assign port SDMA configuration */ 1418 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1419 1420 /* Disable PHY polling in hardware, since we're using the 1421 * kernel phylib to do this. 1422 */ 1423 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1424 val &= ~MVNETA_PHY_POLLING_ENABLE; 1425 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1426 1427 mvneta_set_autoneg(pp, pp->use_inband_status); 1428 mvneta_set_ucast_table(pp, -1); 1429 mvneta_set_special_mcast_table(pp, -1); 1430 mvneta_set_other_mcast_table(pp, -1); 1431 1432 /* Set port interrupt enable register - default enable all */ 1433 mvreg_write(pp, MVNETA_INTR_ENABLE, 1434 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1435 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1436 1437 mvneta_mib_counters_clear(pp); 1438 } 1439 1440 /* Set max sizes for tx queues */ 1441 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1442 1443 { 1444 u32 val, size, mtu; 1445 int queue; 1446 1447 mtu = max_tx_size * 8; 1448 if (mtu > MVNETA_TX_MTU_MAX) 1449 mtu = MVNETA_TX_MTU_MAX; 1450 1451 /* Set MTU */ 1452 val = mvreg_read(pp, MVNETA_TX_MTU); 1453 val &= ~MVNETA_TX_MTU_MAX; 1454 val |= mtu; 1455 mvreg_write(pp, MVNETA_TX_MTU, val); 1456 1457 /* TX token size and all TXQs token size must be larger that MTU */ 1458 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1459 1460 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1461 if (size < mtu) { 1462 size = mtu; 1463 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1464 val |= size; 1465 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1466 } 1467 for (queue = 0; queue < txq_number; queue++) { 1468 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1469 1470 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1471 if (size < mtu) { 1472 size = mtu; 1473 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1474 val |= size; 1475 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1476 } 1477 } 1478 } 1479 1480 /* Set unicast address */ 1481 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1482 int queue) 1483 { 1484 unsigned int unicast_reg; 1485 unsigned int tbl_offset; 1486 unsigned int reg_offset; 1487 1488 /* Locate the Unicast table entry */ 1489 last_nibble = (0xf & last_nibble); 1490 1491 /* offset from unicast tbl base */ 1492 tbl_offset = (last_nibble / 4) * 4; 1493 1494 /* offset within the above reg */ 1495 reg_offset = last_nibble % 4; 1496 1497 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1498 1499 if (queue == -1) { 1500 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1501 unicast_reg &= ~(0xff << (8 * reg_offset)); 1502 } else { 1503 unicast_reg &= ~(0xff << (8 * reg_offset)); 1504 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1505 } 1506 1507 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1508 } 1509 1510 /* Set mac address */ 1511 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1512 int queue) 1513 { 1514 unsigned int mac_h; 1515 unsigned int mac_l; 1516 1517 if (queue != -1) { 1518 mac_l = (addr[4] << 8) | (addr[5]); 1519 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1520 (addr[2] << 8) | (addr[3] << 0); 1521 1522 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1523 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1524 } 1525 1526 /* Accept frames of this address */ 1527 mvneta_set_ucast_addr(pp, addr[5], queue); 1528 } 1529 1530 /* Set the number of packets that will be received before RX interrupt 1531 * will be generated by HW. 1532 */ 1533 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1534 struct mvneta_rx_queue *rxq, u32 value) 1535 { 1536 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1537 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1538 rxq->pkts_coal = value; 1539 } 1540 1541 /* Set the time delay in usec before RX interrupt will be generated by 1542 * HW. 1543 */ 1544 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1545 struct mvneta_rx_queue *rxq, u32 value) 1546 { 1547 u32 val; 1548 unsigned long clk_rate; 1549 1550 clk_rate = clk_get_rate(pp->clk); 1551 val = (clk_rate / 1000000) * value; 1552 1553 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1554 rxq->time_coal = value; 1555 } 1556 1557 /* Set threshold for TX_DONE pkts coalescing */ 1558 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1559 struct mvneta_tx_queue *txq, u32 value) 1560 { 1561 u32 val; 1562 1563 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1564 1565 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1566 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1567 1568 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1569 1570 txq->done_pkts_coal = value; 1571 } 1572 1573 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1574 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1575 u32 phys_addr, u32 cookie) 1576 { 1577 rx_desc->buf_cookie = cookie; 1578 rx_desc->buf_phys_addr = phys_addr; 1579 } 1580 1581 /* Decrement sent descriptors counter */ 1582 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1583 struct mvneta_tx_queue *txq, 1584 int sent_desc) 1585 { 1586 u32 val; 1587 1588 /* Only 255 TX descriptors can be updated at once */ 1589 while (sent_desc > 0xff) { 1590 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1591 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1592 sent_desc = sent_desc - 0xff; 1593 } 1594 1595 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1596 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1597 } 1598 1599 /* Get number of TX descriptors already sent by HW */ 1600 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1601 struct mvneta_tx_queue *txq) 1602 { 1603 u32 val; 1604 int sent_desc; 1605 1606 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1607 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1608 MVNETA_TXQ_SENT_DESC_SHIFT; 1609 1610 return sent_desc; 1611 } 1612 1613 /* Get number of sent descriptors and decrement counter. 1614 * The number of sent descriptors is returned. 1615 */ 1616 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1617 struct mvneta_tx_queue *txq) 1618 { 1619 int sent_desc; 1620 1621 /* Get number of sent descriptors */ 1622 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1623 1624 /* Decrement sent descriptors counter */ 1625 if (sent_desc) 1626 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1627 1628 return sent_desc; 1629 } 1630 1631 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1632 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1633 int ip_hdr_len, int l4_proto) 1634 { 1635 u32 command; 1636 1637 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1638 * G_L4_chk, L4_type; required only for checksum 1639 * calculation 1640 */ 1641 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1642 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1643 1644 if (l3_proto == htons(ETH_P_IP)) 1645 command |= MVNETA_TXD_IP_CSUM; 1646 else 1647 command |= MVNETA_TX_L3_IP6; 1648 1649 if (l4_proto == IPPROTO_TCP) 1650 command |= MVNETA_TX_L4_CSUM_FULL; 1651 else if (l4_proto == IPPROTO_UDP) 1652 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1653 else 1654 command |= MVNETA_TX_L4_CSUM_NOT; 1655 1656 return command; 1657 } 1658 1659 1660 /* Display more error info */ 1661 static void mvneta_rx_error(struct mvneta_port *pp, 1662 struct mvneta_rx_desc *rx_desc) 1663 { 1664 u32 status = rx_desc->status; 1665 1666 if (!mvneta_rxq_desc_is_first_last(status)) { 1667 netdev_err(pp->dev, 1668 "bad rx status %08x (buffer oversize), size=%d\n", 1669 status, rx_desc->data_size); 1670 return; 1671 } 1672 1673 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1674 case MVNETA_RXD_ERR_CRC: 1675 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1676 status, rx_desc->data_size); 1677 break; 1678 case MVNETA_RXD_ERR_OVERRUN: 1679 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1680 status, rx_desc->data_size); 1681 break; 1682 case MVNETA_RXD_ERR_LEN: 1683 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1684 status, rx_desc->data_size); 1685 break; 1686 case MVNETA_RXD_ERR_RESOURCE: 1687 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1688 status, rx_desc->data_size); 1689 break; 1690 } 1691 } 1692 1693 /* Handle RX checksum offload based on the descriptor's status */ 1694 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1695 struct sk_buff *skb) 1696 { 1697 if ((status & MVNETA_RXD_L3_IP4) && 1698 (status & MVNETA_RXD_L4_CSUM_OK)) { 1699 skb->csum = 0; 1700 skb->ip_summed = CHECKSUM_UNNECESSARY; 1701 return; 1702 } 1703 1704 skb->ip_summed = CHECKSUM_NONE; 1705 } 1706 1707 /* Return tx queue pointer (find last set bit) according to <cause> returned 1708 * form tx_done reg. <cause> must not be null. The return value is always a 1709 * valid queue for matching the first one found in <cause>. 1710 */ 1711 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1712 u32 cause) 1713 { 1714 int queue = fls(cause) - 1; 1715 1716 return &pp->txqs[queue]; 1717 } 1718 1719 /* Free tx queue skbuffs */ 1720 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1721 struct mvneta_tx_queue *txq, int num) 1722 { 1723 int i; 1724 1725 for (i = 0; i < num; i++) { 1726 struct mvneta_tx_desc *tx_desc = txq->descs + 1727 txq->txq_get_index; 1728 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1729 1730 mvneta_txq_inc_get(txq); 1731 1732 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1733 dma_unmap_single(pp->dev->dev.parent, 1734 tx_desc->buf_phys_addr, 1735 tx_desc->data_size, DMA_TO_DEVICE); 1736 if (!skb) 1737 continue; 1738 dev_kfree_skb_any(skb); 1739 } 1740 } 1741 1742 /* Handle end of transmission */ 1743 static void mvneta_txq_done(struct mvneta_port *pp, 1744 struct mvneta_tx_queue *txq) 1745 { 1746 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1747 int tx_done; 1748 1749 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1750 if (!tx_done) 1751 return; 1752 1753 mvneta_txq_bufs_free(pp, txq, tx_done); 1754 1755 txq->count -= tx_done; 1756 1757 if (netif_tx_queue_stopped(nq)) { 1758 if (txq->count <= txq->tx_wake_threshold) 1759 netif_tx_wake_queue(nq); 1760 } 1761 } 1762 1763 void *mvneta_frag_alloc(unsigned int frag_size) 1764 { 1765 if (likely(frag_size <= PAGE_SIZE)) 1766 return netdev_alloc_frag(frag_size); 1767 else 1768 return kmalloc(frag_size, GFP_ATOMIC); 1769 } 1770 EXPORT_SYMBOL_GPL(mvneta_frag_alloc); 1771 1772 void mvneta_frag_free(unsigned int frag_size, void *data) 1773 { 1774 if (likely(frag_size <= PAGE_SIZE)) 1775 skb_free_frag(data); 1776 else 1777 kfree(data); 1778 } 1779 EXPORT_SYMBOL_GPL(mvneta_frag_free); 1780 1781 /* Refill processing for SW buffer management */ 1782 static int mvneta_rx_refill(struct mvneta_port *pp, 1783 struct mvneta_rx_desc *rx_desc) 1784 1785 { 1786 dma_addr_t phys_addr; 1787 void *data; 1788 1789 data = mvneta_frag_alloc(pp->frag_size); 1790 if (!data) 1791 return -ENOMEM; 1792 1793 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1794 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1795 DMA_FROM_DEVICE); 1796 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1797 mvneta_frag_free(pp->frag_size, data); 1798 return -ENOMEM; 1799 } 1800 1801 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1802 return 0; 1803 } 1804 1805 /* Handle tx checksum */ 1806 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1807 { 1808 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1809 int ip_hdr_len = 0; 1810 __be16 l3_proto = vlan_get_protocol(skb); 1811 u8 l4_proto; 1812 1813 if (l3_proto == htons(ETH_P_IP)) { 1814 struct iphdr *ip4h = ip_hdr(skb); 1815 1816 /* Calculate IPv4 checksum and L4 checksum */ 1817 ip_hdr_len = ip4h->ihl; 1818 l4_proto = ip4h->protocol; 1819 } else if (l3_proto == htons(ETH_P_IPV6)) { 1820 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1821 1822 /* Read l4_protocol from one of IPv6 extra headers */ 1823 if (skb_network_header_len(skb) > 0) 1824 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1825 l4_proto = ip6h->nexthdr; 1826 } else 1827 return MVNETA_TX_L4_CSUM_NOT; 1828 1829 return mvneta_txq_desc_csum(skb_network_offset(skb), 1830 l3_proto, ip_hdr_len, l4_proto); 1831 } 1832 1833 return MVNETA_TX_L4_CSUM_NOT; 1834 } 1835 1836 /* Drop packets received by the RXQ and free buffers */ 1837 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1838 struct mvneta_rx_queue *rxq) 1839 { 1840 int rx_done, i; 1841 1842 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1843 if (rx_done) 1844 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1845 1846 if (pp->bm_priv) { 1847 for (i = 0; i < rx_done; i++) { 1848 struct mvneta_rx_desc *rx_desc = 1849 mvneta_rxq_next_desc_get(rxq); 1850 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1851 struct mvneta_bm_pool *bm_pool; 1852 1853 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1854 /* Return dropped buffer to the pool */ 1855 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1856 rx_desc->buf_phys_addr); 1857 } 1858 return; 1859 } 1860 1861 for (i = 0; i < rxq->size; i++) { 1862 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1863 void *data = (void *)rx_desc->buf_cookie; 1864 1865 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1866 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1867 mvneta_frag_free(pp->frag_size, data); 1868 } 1869 } 1870 1871 /* Main rx processing when using software buffer management */ 1872 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo, 1873 struct mvneta_rx_queue *rxq) 1874 { 1875 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1876 struct net_device *dev = pp->dev; 1877 int rx_done; 1878 u32 rcvd_pkts = 0; 1879 u32 rcvd_bytes = 0; 1880 1881 /* Get number of received packets */ 1882 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1883 1884 if (rx_todo > rx_done) 1885 rx_todo = rx_done; 1886 1887 rx_done = 0; 1888 1889 /* Fairness NAPI loop */ 1890 while (rx_done < rx_todo) { 1891 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1892 struct sk_buff *skb; 1893 unsigned char *data; 1894 dma_addr_t phys_addr; 1895 u32 rx_status, frag_size; 1896 int rx_bytes, err; 1897 1898 rx_done++; 1899 rx_status = rx_desc->status; 1900 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1901 data = (unsigned char *)rx_desc->buf_cookie; 1902 phys_addr = rx_desc->buf_phys_addr; 1903 1904 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1905 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1906 err_drop_frame: 1907 dev->stats.rx_errors++; 1908 mvneta_rx_error(pp, rx_desc); 1909 /* leave the descriptor untouched */ 1910 continue; 1911 } 1912 1913 if (rx_bytes <= rx_copybreak) { 1914 /* better copy a small frame and not unmap the DMA region */ 1915 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1916 if (unlikely(!skb)) 1917 goto err_drop_frame; 1918 1919 dma_sync_single_range_for_cpu(dev->dev.parent, 1920 rx_desc->buf_phys_addr, 1921 MVNETA_MH_SIZE + NET_SKB_PAD, 1922 rx_bytes, 1923 DMA_FROM_DEVICE); 1924 memcpy(skb_put(skb, rx_bytes), 1925 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1926 rx_bytes); 1927 1928 skb->protocol = eth_type_trans(skb, dev); 1929 mvneta_rx_csum(pp, rx_status, skb); 1930 napi_gro_receive(&port->napi, skb); 1931 1932 rcvd_pkts++; 1933 rcvd_bytes += rx_bytes; 1934 1935 /* leave the descriptor and buffer untouched */ 1936 continue; 1937 } 1938 1939 /* Refill processing */ 1940 err = mvneta_rx_refill(pp, rx_desc); 1941 if (err) { 1942 netdev_err(dev, "Linux processing - Can't refill\n"); 1943 rxq->missed++; 1944 goto err_drop_frame; 1945 } 1946 1947 frag_size = pp->frag_size; 1948 1949 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 1950 1951 /* After refill old buffer has to be unmapped regardless 1952 * the skb is successfully built or not. 1953 */ 1954 dma_unmap_single(dev->dev.parent, phys_addr, 1955 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1956 DMA_FROM_DEVICE); 1957 1958 if (!skb) 1959 goto err_drop_frame; 1960 1961 rcvd_pkts++; 1962 rcvd_bytes += rx_bytes; 1963 1964 /* Linux processing */ 1965 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1966 skb_put(skb, rx_bytes); 1967 1968 skb->protocol = eth_type_trans(skb, dev); 1969 1970 mvneta_rx_csum(pp, rx_status, skb); 1971 1972 napi_gro_receive(&port->napi, skb); 1973 } 1974 1975 if (rcvd_pkts) { 1976 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1977 1978 u64_stats_update_begin(&stats->syncp); 1979 stats->rx_packets += rcvd_pkts; 1980 stats->rx_bytes += rcvd_bytes; 1981 u64_stats_update_end(&stats->syncp); 1982 } 1983 1984 /* Update rxq management counters */ 1985 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1986 1987 return rx_done; 1988 } 1989 1990 /* Main rx processing when using hardware buffer management */ 1991 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo, 1992 struct mvneta_rx_queue *rxq) 1993 { 1994 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1995 struct net_device *dev = pp->dev; 1996 int rx_done; 1997 u32 rcvd_pkts = 0; 1998 u32 rcvd_bytes = 0; 1999 2000 /* Get number of received packets */ 2001 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2002 2003 if (rx_todo > rx_done) 2004 rx_todo = rx_done; 2005 2006 rx_done = 0; 2007 2008 /* Fairness NAPI loop */ 2009 while (rx_done < rx_todo) { 2010 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2011 struct mvneta_bm_pool *bm_pool = NULL; 2012 struct sk_buff *skb; 2013 unsigned char *data; 2014 dma_addr_t phys_addr; 2015 u32 rx_status, frag_size; 2016 int rx_bytes, err; 2017 u8 pool_id; 2018 2019 rx_done++; 2020 rx_status = rx_desc->status; 2021 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2022 data = (unsigned char *)rx_desc->buf_cookie; 2023 phys_addr = rx_desc->buf_phys_addr; 2024 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2025 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2026 2027 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2028 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2029 err_drop_frame_ret_pool: 2030 /* Return the buffer to the pool */ 2031 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2032 rx_desc->buf_phys_addr); 2033 err_drop_frame: 2034 dev->stats.rx_errors++; 2035 mvneta_rx_error(pp, rx_desc); 2036 /* leave the descriptor untouched */ 2037 continue; 2038 } 2039 2040 if (rx_bytes <= rx_copybreak) { 2041 /* better copy a small frame and not unmap the DMA region */ 2042 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2043 if (unlikely(!skb)) 2044 goto err_drop_frame_ret_pool; 2045 2046 dma_sync_single_range_for_cpu(dev->dev.parent, 2047 rx_desc->buf_phys_addr, 2048 MVNETA_MH_SIZE + NET_SKB_PAD, 2049 rx_bytes, 2050 DMA_FROM_DEVICE); 2051 memcpy(skb_put(skb, rx_bytes), 2052 data + MVNETA_MH_SIZE + NET_SKB_PAD, 2053 rx_bytes); 2054 2055 skb->protocol = eth_type_trans(skb, dev); 2056 mvneta_rx_csum(pp, rx_status, skb); 2057 napi_gro_receive(&port->napi, skb); 2058 2059 rcvd_pkts++; 2060 rcvd_bytes += rx_bytes; 2061 2062 /* Return the buffer to the pool */ 2063 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2064 rx_desc->buf_phys_addr); 2065 2066 /* leave the descriptor and buffer untouched */ 2067 continue; 2068 } 2069 2070 /* Refill processing */ 2071 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2072 if (err) { 2073 netdev_err(dev, "Linux processing - Can't refill\n"); 2074 rxq->missed++; 2075 goto err_drop_frame_ret_pool; 2076 } 2077 2078 frag_size = bm_pool->hwbm_pool.frag_size; 2079 2080 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2081 2082 /* After refill old buffer has to be unmapped regardless 2083 * the skb is successfully built or not. 2084 */ 2085 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2086 bm_pool->buf_size, DMA_FROM_DEVICE); 2087 if (!skb) 2088 goto err_drop_frame; 2089 2090 rcvd_pkts++; 2091 rcvd_bytes += rx_bytes; 2092 2093 /* Linux processing */ 2094 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2095 skb_put(skb, rx_bytes); 2096 2097 skb->protocol = eth_type_trans(skb, dev); 2098 2099 mvneta_rx_csum(pp, rx_status, skb); 2100 2101 napi_gro_receive(&port->napi, skb); 2102 } 2103 2104 if (rcvd_pkts) { 2105 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2106 2107 u64_stats_update_begin(&stats->syncp); 2108 stats->rx_packets += rcvd_pkts; 2109 stats->rx_bytes += rcvd_bytes; 2110 u64_stats_update_end(&stats->syncp); 2111 } 2112 2113 /* Update rxq management counters */ 2114 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2115 2116 return rx_done; 2117 } 2118 2119 static inline void 2120 mvneta_tso_put_hdr(struct sk_buff *skb, 2121 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2122 { 2123 struct mvneta_tx_desc *tx_desc; 2124 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2125 2126 txq->tx_skb[txq->txq_put_index] = NULL; 2127 tx_desc = mvneta_txq_next_desc_get(txq); 2128 tx_desc->data_size = hdr_len; 2129 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2130 tx_desc->command |= MVNETA_TXD_F_DESC; 2131 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2132 txq->txq_put_index * TSO_HEADER_SIZE; 2133 mvneta_txq_inc_put(txq); 2134 } 2135 2136 static inline int 2137 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2138 struct sk_buff *skb, char *data, int size, 2139 bool last_tcp, bool is_last) 2140 { 2141 struct mvneta_tx_desc *tx_desc; 2142 2143 tx_desc = mvneta_txq_next_desc_get(txq); 2144 tx_desc->data_size = size; 2145 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2146 size, DMA_TO_DEVICE); 2147 if (unlikely(dma_mapping_error(dev->dev.parent, 2148 tx_desc->buf_phys_addr))) { 2149 mvneta_txq_desc_put(txq); 2150 return -ENOMEM; 2151 } 2152 2153 tx_desc->command = 0; 2154 txq->tx_skb[txq->txq_put_index] = NULL; 2155 2156 if (last_tcp) { 2157 /* last descriptor in the TCP packet */ 2158 tx_desc->command = MVNETA_TXD_L_DESC; 2159 2160 /* last descriptor in SKB */ 2161 if (is_last) 2162 txq->tx_skb[txq->txq_put_index] = skb; 2163 } 2164 mvneta_txq_inc_put(txq); 2165 return 0; 2166 } 2167 2168 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2169 struct mvneta_tx_queue *txq) 2170 { 2171 int total_len, data_left; 2172 int desc_count = 0; 2173 struct mvneta_port *pp = netdev_priv(dev); 2174 struct tso_t tso; 2175 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2176 int i; 2177 2178 /* Count needed descriptors */ 2179 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2180 return 0; 2181 2182 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2183 pr_info("*** Is this even possible???!?!?\n"); 2184 return 0; 2185 } 2186 2187 /* Initialize the TSO handler, and prepare the first payload */ 2188 tso_start(skb, &tso); 2189 2190 total_len = skb->len - hdr_len; 2191 while (total_len > 0) { 2192 char *hdr; 2193 2194 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2195 total_len -= data_left; 2196 desc_count++; 2197 2198 /* prepare packet headers: MAC + IP + TCP */ 2199 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2200 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2201 2202 mvneta_tso_put_hdr(skb, pp, txq); 2203 2204 while (data_left > 0) { 2205 int size; 2206 desc_count++; 2207 2208 size = min_t(int, tso.size, data_left); 2209 2210 if (mvneta_tso_put_data(dev, txq, skb, 2211 tso.data, size, 2212 size == data_left, 2213 total_len == 0)) 2214 goto err_release; 2215 data_left -= size; 2216 2217 tso_build_data(skb, &tso, size); 2218 } 2219 } 2220 2221 return desc_count; 2222 2223 err_release: 2224 /* Release all used data descriptors; header descriptors must not 2225 * be DMA-unmapped. 2226 */ 2227 for (i = desc_count - 1; i >= 0; i--) { 2228 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2229 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2230 dma_unmap_single(pp->dev->dev.parent, 2231 tx_desc->buf_phys_addr, 2232 tx_desc->data_size, 2233 DMA_TO_DEVICE); 2234 mvneta_txq_desc_put(txq); 2235 } 2236 return 0; 2237 } 2238 2239 /* Handle tx fragmentation processing */ 2240 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2241 struct mvneta_tx_queue *txq) 2242 { 2243 struct mvneta_tx_desc *tx_desc; 2244 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2245 2246 for (i = 0; i < nr_frags; i++) { 2247 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2248 void *addr = page_address(frag->page.p) + frag->page_offset; 2249 2250 tx_desc = mvneta_txq_next_desc_get(txq); 2251 tx_desc->data_size = frag->size; 2252 2253 tx_desc->buf_phys_addr = 2254 dma_map_single(pp->dev->dev.parent, addr, 2255 tx_desc->data_size, DMA_TO_DEVICE); 2256 2257 if (dma_mapping_error(pp->dev->dev.parent, 2258 tx_desc->buf_phys_addr)) { 2259 mvneta_txq_desc_put(txq); 2260 goto error; 2261 } 2262 2263 if (i == nr_frags - 1) { 2264 /* Last descriptor */ 2265 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2266 txq->tx_skb[txq->txq_put_index] = skb; 2267 } else { 2268 /* Descriptor in the middle: Not First, Not Last */ 2269 tx_desc->command = 0; 2270 txq->tx_skb[txq->txq_put_index] = NULL; 2271 } 2272 mvneta_txq_inc_put(txq); 2273 } 2274 2275 return 0; 2276 2277 error: 2278 /* Release all descriptors that were used to map fragments of 2279 * this packet, as well as the corresponding DMA mappings 2280 */ 2281 for (i = i - 1; i >= 0; i--) { 2282 tx_desc = txq->descs + i; 2283 dma_unmap_single(pp->dev->dev.parent, 2284 tx_desc->buf_phys_addr, 2285 tx_desc->data_size, 2286 DMA_TO_DEVICE); 2287 mvneta_txq_desc_put(txq); 2288 } 2289 2290 return -ENOMEM; 2291 } 2292 2293 /* Main tx processing */ 2294 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2295 { 2296 struct mvneta_port *pp = netdev_priv(dev); 2297 u16 txq_id = skb_get_queue_mapping(skb); 2298 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2299 struct mvneta_tx_desc *tx_desc; 2300 int len = skb->len; 2301 int frags = 0; 2302 u32 tx_cmd; 2303 2304 if (!netif_running(dev)) 2305 goto out; 2306 2307 if (skb_is_gso(skb)) { 2308 frags = mvneta_tx_tso(skb, dev, txq); 2309 goto out; 2310 } 2311 2312 frags = skb_shinfo(skb)->nr_frags + 1; 2313 2314 /* Get a descriptor for the first part of the packet */ 2315 tx_desc = mvneta_txq_next_desc_get(txq); 2316 2317 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2318 2319 tx_desc->data_size = skb_headlen(skb); 2320 2321 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2322 tx_desc->data_size, 2323 DMA_TO_DEVICE); 2324 if (unlikely(dma_mapping_error(dev->dev.parent, 2325 tx_desc->buf_phys_addr))) { 2326 mvneta_txq_desc_put(txq); 2327 frags = 0; 2328 goto out; 2329 } 2330 2331 if (frags == 1) { 2332 /* First and Last descriptor */ 2333 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2334 tx_desc->command = tx_cmd; 2335 txq->tx_skb[txq->txq_put_index] = skb; 2336 mvneta_txq_inc_put(txq); 2337 } else { 2338 /* First but not Last */ 2339 tx_cmd |= MVNETA_TXD_F_DESC; 2340 txq->tx_skb[txq->txq_put_index] = NULL; 2341 mvneta_txq_inc_put(txq); 2342 tx_desc->command = tx_cmd; 2343 /* Continue with other skb fragments */ 2344 if (mvneta_tx_frag_process(pp, skb, txq)) { 2345 dma_unmap_single(dev->dev.parent, 2346 tx_desc->buf_phys_addr, 2347 tx_desc->data_size, 2348 DMA_TO_DEVICE); 2349 mvneta_txq_desc_put(txq); 2350 frags = 0; 2351 goto out; 2352 } 2353 } 2354 2355 out: 2356 if (frags > 0) { 2357 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2358 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2359 2360 txq->count += frags; 2361 mvneta_txq_pend_desc_add(pp, txq, frags); 2362 2363 if (txq->count >= txq->tx_stop_threshold) 2364 netif_tx_stop_queue(nq); 2365 2366 u64_stats_update_begin(&stats->syncp); 2367 stats->tx_packets++; 2368 stats->tx_bytes += len; 2369 u64_stats_update_end(&stats->syncp); 2370 } else { 2371 dev->stats.tx_dropped++; 2372 dev_kfree_skb_any(skb); 2373 } 2374 2375 return NETDEV_TX_OK; 2376 } 2377 2378 2379 /* Free tx resources, when resetting a port */ 2380 static void mvneta_txq_done_force(struct mvneta_port *pp, 2381 struct mvneta_tx_queue *txq) 2382 2383 { 2384 int tx_done = txq->count; 2385 2386 mvneta_txq_bufs_free(pp, txq, tx_done); 2387 2388 /* reset txq */ 2389 txq->count = 0; 2390 txq->txq_put_index = 0; 2391 txq->txq_get_index = 0; 2392 } 2393 2394 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2395 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2396 */ 2397 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2398 { 2399 struct mvneta_tx_queue *txq; 2400 struct netdev_queue *nq; 2401 2402 while (cause_tx_done) { 2403 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2404 2405 nq = netdev_get_tx_queue(pp->dev, txq->id); 2406 __netif_tx_lock(nq, smp_processor_id()); 2407 2408 if (txq->count) 2409 mvneta_txq_done(pp, txq); 2410 2411 __netif_tx_unlock(nq); 2412 cause_tx_done &= ~((1 << txq->id)); 2413 } 2414 } 2415 2416 /* Compute crc8 of the specified address, using a unique algorithm , 2417 * according to hw spec, different than generic crc8 algorithm 2418 */ 2419 static int mvneta_addr_crc(unsigned char *addr) 2420 { 2421 int crc = 0; 2422 int i; 2423 2424 for (i = 0; i < ETH_ALEN; i++) { 2425 int j; 2426 2427 crc = (crc ^ addr[i]) << 8; 2428 for (j = 7; j >= 0; j--) { 2429 if (crc & (0x100 << j)) 2430 crc ^= 0x107 << j; 2431 } 2432 } 2433 2434 return crc; 2435 } 2436 2437 /* This method controls the net device special MAC multicast support. 2438 * The Special Multicast Table for MAC addresses supports MAC of the form 2439 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2440 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2441 * Table entries in the DA-Filter table. This method set the Special 2442 * Multicast Table appropriate entry. 2443 */ 2444 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2445 unsigned char last_byte, 2446 int queue) 2447 { 2448 unsigned int smc_table_reg; 2449 unsigned int tbl_offset; 2450 unsigned int reg_offset; 2451 2452 /* Register offset from SMC table base */ 2453 tbl_offset = (last_byte / 4); 2454 /* Entry offset within the above reg */ 2455 reg_offset = last_byte % 4; 2456 2457 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2458 + tbl_offset * 4)); 2459 2460 if (queue == -1) 2461 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2462 else { 2463 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2464 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2465 } 2466 2467 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2468 smc_table_reg); 2469 } 2470 2471 /* This method controls the network device Other MAC multicast support. 2472 * The Other Multicast Table is used for multicast of another type. 2473 * A CRC-8 is used as an index to the Other Multicast Table entries 2474 * in the DA-Filter table. 2475 * The method gets the CRC-8 value from the calling routine and 2476 * sets the Other Multicast Table appropriate entry according to the 2477 * specified CRC-8 . 2478 */ 2479 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2480 unsigned char crc8, 2481 int queue) 2482 { 2483 unsigned int omc_table_reg; 2484 unsigned int tbl_offset; 2485 unsigned int reg_offset; 2486 2487 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2488 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2489 2490 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2491 2492 if (queue == -1) { 2493 /* Clear accepts frame bit at specified Other DA table entry */ 2494 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2495 } else { 2496 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2497 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2498 } 2499 2500 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2501 } 2502 2503 /* The network device supports multicast using two tables: 2504 * 1) Special Multicast Table for MAC addresses of the form 2505 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2506 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2507 * Table entries in the DA-Filter table. 2508 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2509 * is used as an index to the Other Multicast Table entries in the 2510 * DA-Filter table. 2511 */ 2512 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2513 int queue) 2514 { 2515 unsigned char crc_result = 0; 2516 2517 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2518 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2519 return 0; 2520 } 2521 2522 crc_result = mvneta_addr_crc(p_addr); 2523 if (queue == -1) { 2524 if (pp->mcast_count[crc_result] == 0) { 2525 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2526 crc_result); 2527 return -EINVAL; 2528 } 2529 2530 pp->mcast_count[crc_result]--; 2531 if (pp->mcast_count[crc_result] != 0) { 2532 netdev_info(pp->dev, 2533 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2534 pp->mcast_count[crc_result], crc_result); 2535 return -EINVAL; 2536 } 2537 } else 2538 pp->mcast_count[crc_result]++; 2539 2540 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2541 2542 return 0; 2543 } 2544 2545 /* Configure Fitering mode of Ethernet port */ 2546 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2547 int is_promisc) 2548 { 2549 u32 port_cfg_reg, val; 2550 2551 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2552 2553 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2554 2555 /* Set / Clear UPM bit in port configuration register */ 2556 if (is_promisc) { 2557 /* Accept all Unicast addresses */ 2558 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2559 val |= MVNETA_FORCE_UNI; 2560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2562 } else { 2563 /* Reject all Unicast addresses */ 2564 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2565 val &= ~MVNETA_FORCE_UNI; 2566 } 2567 2568 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2569 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2570 } 2571 2572 /* register unicast and multicast addresses */ 2573 static void mvneta_set_rx_mode(struct net_device *dev) 2574 { 2575 struct mvneta_port *pp = netdev_priv(dev); 2576 struct netdev_hw_addr *ha; 2577 2578 if (dev->flags & IFF_PROMISC) { 2579 /* Accept all: Multicast + Unicast */ 2580 mvneta_rx_unicast_promisc_set(pp, 1); 2581 mvneta_set_ucast_table(pp, pp->rxq_def); 2582 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2583 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2584 } else { 2585 /* Accept single Unicast */ 2586 mvneta_rx_unicast_promisc_set(pp, 0); 2587 mvneta_set_ucast_table(pp, -1); 2588 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2589 2590 if (dev->flags & IFF_ALLMULTI) { 2591 /* Accept all multicast */ 2592 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2593 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2594 } else { 2595 /* Accept only initialized multicast */ 2596 mvneta_set_special_mcast_table(pp, -1); 2597 mvneta_set_other_mcast_table(pp, -1); 2598 2599 if (!netdev_mc_empty(dev)) { 2600 netdev_for_each_mc_addr(ha, dev) { 2601 mvneta_mcast_addr_set(pp, ha->addr, 2602 pp->rxq_def); 2603 } 2604 } 2605 } 2606 } 2607 } 2608 2609 /* Interrupt handling - the callback for request_irq() */ 2610 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2611 { 2612 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2613 2614 disable_percpu_irq(port->pp->dev->irq); 2615 napi_schedule(&port->napi); 2616 2617 return IRQ_HANDLED; 2618 } 2619 2620 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2621 struct phy_device *phy) 2622 { 2623 struct fixed_phy_status status; 2624 struct fixed_phy_status changed = {}; 2625 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2626 2627 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2628 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2629 status.speed = SPEED_1000; 2630 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2631 status.speed = SPEED_100; 2632 else 2633 status.speed = SPEED_10; 2634 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2635 changed.link = 1; 2636 changed.speed = 1; 2637 changed.duplex = 1; 2638 fixed_phy_update_state(phy, &status, &changed); 2639 return 0; 2640 } 2641 2642 /* NAPI handler 2643 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2644 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2645 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2646 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2647 * Each CPU has its own causeRxTx register 2648 */ 2649 static int mvneta_poll(struct napi_struct *napi, int budget) 2650 { 2651 int rx_done = 0; 2652 u32 cause_rx_tx; 2653 int rx_queue; 2654 struct mvneta_port *pp = netdev_priv(napi->dev); 2655 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2656 2657 if (!netif_running(pp->dev)) { 2658 napi_complete(&port->napi); 2659 return rx_done; 2660 } 2661 2662 /* Read cause register */ 2663 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2664 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2665 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2666 2667 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2668 if (pp->use_inband_status && (cause_misc & 2669 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2670 MVNETA_CAUSE_LINK_CHANGE | 2671 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2672 mvneta_fixed_link_update(pp, pp->phy_dev); 2673 } 2674 } 2675 2676 /* Release Tx descriptors */ 2677 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2678 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2679 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2680 } 2681 2682 /* For the case where the last mvneta_poll did not process all 2683 * RX packets 2684 */ 2685 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2686 2687 cause_rx_tx |= port->cause_rx_tx; 2688 2689 if (rx_queue) { 2690 rx_queue = rx_queue - 1; 2691 if (pp->bm_priv) 2692 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]); 2693 else 2694 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]); 2695 } 2696 2697 budget -= rx_done; 2698 2699 if (budget > 0) { 2700 cause_rx_tx = 0; 2701 napi_complete(&port->napi); 2702 enable_percpu_irq(pp->dev->irq, 0); 2703 } 2704 2705 port->cause_rx_tx = cause_rx_tx; 2706 return rx_done; 2707 } 2708 2709 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2710 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2711 int num) 2712 { 2713 int i; 2714 2715 for (i = 0; i < num; i++) { 2716 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2717 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2718 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2719 __func__, rxq->id, i, num); 2720 break; 2721 } 2722 } 2723 2724 /* Add this number of RX descriptors as non occupied (ready to 2725 * get packets) 2726 */ 2727 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2728 2729 return i; 2730 } 2731 2732 /* Free all packets pending transmit from all TXQs and reset TX port */ 2733 static void mvneta_tx_reset(struct mvneta_port *pp) 2734 { 2735 int queue; 2736 2737 /* free the skb's in the tx ring */ 2738 for (queue = 0; queue < txq_number; queue++) 2739 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2740 2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2742 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2743 } 2744 2745 static void mvneta_rx_reset(struct mvneta_port *pp) 2746 { 2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2748 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2749 } 2750 2751 /* Rx/Tx queue initialization/cleanup methods */ 2752 2753 /* Create a specified RX queue */ 2754 static int mvneta_rxq_init(struct mvneta_port *pp, 2755 struct mvneta_rx_queue *rxq) 2756 2757 { 2758 rxq->size = pp->rx_ring_size; 2759 2760 /* Allocate memory for RX descriptors */ 2761 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2762 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2763 &rxq->descs_phys, GFP_KERNEL); 2764 if (rxq->descs == NULL) 2765 return -ENOMEM; 2766 2767 BUG_ON(rxq->descs != 2768 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2769 2770 rxq->last_desc = rxq->size - 1; 2771 2772 /* Set Rx descriptors queue starting address */ 2773 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2774 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2775 2776 /* Set Offset */ 2777 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2778 2779 /* Set coalescing pkts and time */ 2780 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2781 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2782 2783 if (!pp->bm_priv) { 2784 /* Fill RXQ with buffers from RX pool */ 2785 mvneta_rxq_buf_size_set(pp, rxq, 2786 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2787 mvneta_rxq_bm_disable(pp, rxq); 2788 } else { 2789 mvneta_rxq_bm_enable(pp, rxq); 2790 mvneta_rxq_long_pool_set(pp, rxq); 2791 mvneta_rxq_short_pool_set(pp, rxq); 2792 } 2793 2794 mvneta_rxq_fill(pp, rxq, rxq->size); 2795 2796 return 0; 2797 } 2798 2799 /* Cleanup Rx queue */ 2800 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2801 struct mvneta_rx_queue *rxq) 2802 { 2803 mvneta_rxq_drop_pkts(pp, rxq); 2804 2805 if (rxq->descs) 2806 dma_free_coherent(pp->dev->dev.parent, 2807 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2808 rxq->descs, 2809 rxq->descs_phys); 2810 2811 rxq->descs = NULL; 2812 rxq->last_desc = 0; 2813 rxq->next_desc_to_proc = 0; 2814 rxq->descs_phys = 0; 2815 } 2816 2817 /* Create and initialize a tx queue */ 2818 static int mvneta_txq_init(struct mvneta_port *pp, 2819 struct mvneta_tx_queue *txq) 2820 { 2821 int cpu; 2822 2823 txq->size = pp->tx_ring_size; 2824 2825 /* A queue must always have room for at least one skb. 2826 * Therefore, stop the queue when the free entries reaches 2827 * the maximum number of descriptors per skb. 2828 */ 2829 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2830 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2831 2832 2833 /* Allocate memory for TX descriptors */ 2834 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2835 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2836 &txq->descs_phys, GFP_KERNEL); 2837 if (txq->descs == NULL) 2838 return -ENOMEM; 2839 2840 /* Make sure descriptor address is cache line size aligned */ 2841 BUG_ON(txq->descs != 2842 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2843 2844 txq->last_desc = txq->size - 1; 2845 2846 /* Set maximum bandwidth for enabled TXQs */ 2847 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2848 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2849 2850 /* Set Tx descriptors queue starting address */ 2851 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2852 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2853 2854 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2855 if (txq->tx_skb == NULL) { 2856 dma_free_coherent(pp->dev->dev.parent, 2857 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2858 txq->descs, txq->descs_phys); 2859 return -ENOMEM; 2860 } 2861 2862 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2863 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2864 txq->size * TSO_HEADER_SIZE, 2865 &txq->tso_hdrs_phys, GFP_KERNEL); 2866 if (txq->tso_hdrs == NULL) { 2867 kfree(txq->tx_skb); 2868 dma_free_coherent(pp->dev->dev.parent, 2869 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2870 txq->descs, txq->descs_phys); 2871 return -ENOMEM; 2872 } 2873 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2874 2875 /* Setup XPS mapping */ 2876 if (txq_number > 1) 2877 cpu = txq->id % num_present_cpus(); 2878 else 2879 cpu = pp->rxq_def % num_present_cpus(); 2880 cpumask_set_cpu(cpu, &txq->affinity_mask); 2881 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2882 2883 return 0; 2884 } 2885 2886 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2887 static void mvneta_txq_deinit(struct mvneta_port *pp, 2888 struct mvneta_tx_queue *txq) 2889 { 2890 kfree(txq->tx_skb); 2891 2892 if (txq->tso_hdrs) 2893 dma_free_coherent(pp->dev->dev.parent, 2894 txq->size * TSO_HEADER_SIZE, 2895 txq->tso_hdrs, txq->tso_hdrs_phys); 2896 if (txq->descs) 2897 dma_free_coherent(pp->dev->dev.parent, 2898 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2899 txq->descs, txq->descs_phys); 2900 2901 txq->descs = NULL; 2902 txq->last_desc = 0; 2903 txq->next_desc_to_proc = 0; 2904 txq->descs_phys = 0; 2905 2906 /* Set minimum bandwidth for disabled TXQs */ 2907 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2908 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2909 2910 /* Set Tx descriptors queue starting address and size */ 2911 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2912 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2913 } 2914 2915 /* Cleanup all Tx queues */ 2916 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2917 { 2918 int queue; 2919 2920 for (queue = 0; queue < txq_number; queue++) 2921 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2922 } 2923 2924 /* Cleanup all Rx queues */ 2925 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2926 { 2927 int queue; 2928 2929 for (queue = 0; queue < txq_number; queue++) 2930 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2931 } 2932 2933 2934 /* Init all Rx queues */ 2935 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2936 { 2937 int queue; 2938 2939 for (queue = 0; queue < rxq_number; queue++) { 2940 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2941 2942 if (err) { 2943 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2944 __func__, queue); 2945 mvneta_cleanup_rxqs(pp); 2946 return err; 2947 } 2948 } 2949 2950 return 0; 2951 } 2952 2953 /* Init all tx queues */ 2954 static int mvneta_setup_txqs(struct mvneta_port *pp) 2955 { 2956 int queue; 2957 2958 for (queue = 0; queue < txq_number; queue++) { 2959 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2960 if (err) { 2961 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2962 __func__, queue); 2963 mvneta_cleanup_txqs(pp); 2964 return err; 2965 } 2966 } 2967 2968 return 0; 2969 } 2970 2971 static void mvneta_start_dev(struct mvneta_port *pp) 2972 { 2973 int cpu; 2974 2975 mvneta_max_rx_size_set(pp, pp->pkt_size); 2976 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2977 2978 /* start the Rx/Tx activity */ 2979 mvneta_port_enable(pp); 2980 2981 /* Enable polling on the port */ 2982 for_each_online_cpu(cpu) { 2983 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2984 2985 napi_enable(&port->napi); 2986 } 2987 2988 /* Unmask interrupts. It has to be done from each CPU */ 2989 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 2990 2991 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2992 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2993 MVNETA_CAUSE_LINK_CHANGE | 2994 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2995 2996 phy_start(pp->phy_dev); 2997 netif_tx_start_all_queues(pp->dev); 2998 } 2999 3000 static void mvneta_stop_dev(struct mvneta_port *pp) 3001 { 3002 unsigned int cpu; 3003 3004 phy_stop(pp->phy_dev); 3005 3006 for_each_online_cpu(cpu) { 3007 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3008 3009 napi_disable(&port->napi); 3010 } 3011 3012 netif_carrier_off(pp->dev); 3013 3014 mvneta_port_down(pp); 3015 netif_tx_stop_all_queues(pp->dev); 3016 3017 /* Stop the port activity */ 3018 mvneta_port_disable(pp); 3019 3020 /* Clear all ethernet port interrupts */ 3021 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3022 3023 /* Mask all ethernet port interrupts */ 3024 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3025 3026 mvneta_tx_reset(pp); 3027 mvneta_rx_reset(pp); 3028 } 3029 3030 /* Return positive if MTU is valid */ 3031 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 3032 { 3033 if (mtu < 68) { 3034 netdev_err(dev, "cannot change mtu to less than 68\n"); 3035 return -EINVAL; 3036 } 3037 3038 /* 9676 == 9700 - 20 and rounding to 8 */ 3039 if (mtu > 9676) { 3040 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 3041 mtu = 9676; 3042 } 3043 3044 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3045 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3046 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3047 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3048 } 3049 3050 return mtu; 3051 } 3052 3053 /* Change the device mtu */ 3054 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3055 { 3056 struct mvneta_port *pp = netdev_priv(dev); 3057 int ret; 3058 3059 mtu = mvneta_check_mtu_valid(dev, mtu); 3060 if (mtu < 0) 3061 return -EINVAL; 3062 3063 dev->mtu = mtu; 3064 3065 if (!netif_running(dev)) { 3066 if (pp->bm_priv) 3067 mvneta_bm_update_mtu(pp, mtu); 3068 3069 netdev_update_features(dev); 3070 return 0; 3071 } 3072 3073 /* The interface is running, so we have to force a 3074 * reallocation of the queues 3075 */ 3076 mvneta_stop_dev(pp); 3077 3078 mvneta_cleanup_txqs(pp); 3079 mvneta_cleanup_rxqs(pp); 3080 3081 if (pp->bm_priv) 3082 mvneta_bm_update_mtu(pp, mtu); 3083 3084 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3085 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3086 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3087 3088 ret = mvneta_setup_rxqs(pp); 3089 if (ret) { 3090 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3091 return ret; 3092 } 3093 3094 ret = mvneta_setup_txqs(pp); 3095 if (ret) { 3096 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3097 return ret; 3098 } 3099 3100 mvneta_start_dev(pp); 3101 mvneta_port_up(pp); 3102 3103 netdev_update_features(dev); 3104 3105 return 0; 3106 } 3107 3108 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3109 netdev_features_t features) 3110 { 3111 struct mvneta_port *pp = netdev_priv(dev); 3112 3113 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3114 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3115 netdev_info(dev, 3116 "Disable IP checksum for MTU greater than %dB\n", 3117 pp->tx_csum_limit); 3118 } 3119 3120 return features; 3121 } 3122 3123 /* Get mac address */ 3124 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3125 { 3126 u32 mac_addr_l, mac_addr_h; 3127 3128 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3129 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3130 addr[0] = (mac_addr_h >> 24) & 0xFF; 3131 addr[1] = (mac_addr_h >> 16) & 0xFF; 3132 addr[2] = (mac_addr_h >> 8) & 0xFF; 3133 addr[3] = mac_addr_h & 0xFF; 3134 addr[4] = (mac_addr_l >> 8) & 0xFF; 3135 addr[5] = mac_addr_l & 0xFF; 3136 } 3137 3138 /* Handle setting mac address */ 3139 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3140 { 3141 struct mvneta_port *pp = netdev_priv(dev); 3142 struct sockaddr *sockaddr = addr; 3143 int ret; 3144 3145 ret = eth_prepare_mac_addr_change(dev, addr); 3146 if (ret < 0) 3147 return ret; 3148 /* Remove previous address table entry */ 3149 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3150 3151 /* Set new addr in hw */ 3152 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3153 3154 eth_commit_mac_addr_change(dev, addr); 3155 return 0; 3156 } 3157 3158 static void mvneta_adjust_link(struct net_device *ndev) 3159 { 3160 struct mvneta_port *pp = netdev_priv(ndev); 3161 struct phy_device *phydev = pp->phy_dev; 3162 int status_change = 0; 3163 3164 if (phydev->link) { 3165 if ((pp->speed != phydev->speed) || 3166 (pp->duplex != phydev->duplex)) { 3167 u32 val; 3168 3169 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3170 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3171 MVNETA_GMAC_CONFIG_GMII_SPEED | 3172 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3173 3174 if (phydev->duplex) 3175 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3176 3177 if (phydev->speed == SPEED_1000) 3178 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3179 else if (phydev->speed == SPEED_100) 3180 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3181 3182 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3183 3184 pp->duplex = phydev->duplex; 3185 pp->speed = phydev->speed; 3186 } 3187 } 3188 3189 if (phydev->link != pp->link) { 3190 if (!phydev->link) { 3191 pp->duplex = -1; 3192 pp->speed = 0; 3193 } 3194 3195 pp->link = phydev->link; 3196 status_change = 1; 3197 } 3198 3199 if (status_change) { 3200 if (phydev->link) { 3201 if (!pp->use_inband_status) { 3202 u32 val = mvreg_read(pp, 3203 MVNETA_GMAC_AUTONEG_CONFIG); 3204 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3205 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3206 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3207 val); 3208 } 3209 mvneta_port_up(pp); 3210 } else { 3211 if (!pp->use_inband_status) { 3212 u32 val = mvreg_read(pp, 3213 MVNETA_GMAC_AUTONEG_CONFIG); 3214 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3215 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3216 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3217 val); 3218 } 3219 mvneta_port_down(pp); 3220 } 3221 phy_print_status(phydev); 3222 } 3223 } 3224 3225 static int mvneta_mdio_probe(struct mvneta_port *pp) 3226 { 3227 struct phy_device *phy_dev; 3228 3229 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 3230 pp->phy_interface); 3231 if (!phy_dev) { 3232 netdev_err(pp->dev, "could not find the PHY\n"); 3233 return -ENODEV; 3234 } 3235 3236 phy_dev->supported &= PHY_GBIT_FEATURES; 3237 phy_dev->advertising = phy_dev->supported; 3238 3239 pp->phy_dev = phy_dev; 3240 pp->link = 0; 3241 pp->duplex = 0; 3242 pp->speed = 0; 3243 3244 return 0; 3245 } 3246 3247 static void mvneta_mdio_remove(struct mvneta_port *pp) 3248 { 3249 phy_disconnect(pp->phy_dev); 3250 pp->phy_dev = NULL; 3251 } 3252 3253 static void mvneta_percpu_enable(void *arg) 3254 { 3255 struct mvneta_port *pp = arg; 3256 3257 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3258 } 3259 3260 static void mvneta_percpu_disable(void *arg) 3261 { 3262 struct mvneta_port *pp = arg; 3263 3264 disable_percpu_irq(pp->dev->irq); 3265 } 3266 3267 /* Electing a CPU must be done in an atomic way: it should be done 3268 * after or before the removal/insertion of a CPU and this function is 3269 * not reentrant. 3270 */ 3271 static void mvneta_percpu_elect(struct mvneta_port *pp) 3272 { 3273 int elected_cpu = 0, max_cpu, cpu, i = 0; 3274 3275 /* Use the cpu associated to the rxq when it is online, in all 3276 * the other cases, use the cpu 0 which can't be offline. 3277 */ 3278 if (cpu_online(pp->rxq_def)) 3279 elected_cpu = pp->rxq_def; 3280 3281 max_cpu = num_present_cpus(); 3282 3283 for_each_online_cpu(cpu) { 3284 int rxq_map = 0, txq_map = 0; 3285 int rxq; 3286 3287 for (rxq = 0; rxq < rxq_number; rxq++) 3288 if ((rxq % max_cpu) == cpu) 3289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3290 3291 if (cpu == elected_cpu) 3292 /* Map the default receive queue queue to the 3293 * elected CPU 3294 */ 3295 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3296 3297 /* We update the TX queue map only if we have one 3298 * queue. In this case we associate the TX queue to 3299 * the CPU bound to the default RX queue 3300 */ 3301 if (txq_number == 1) 3302 txq_map = (cpu == elected_cpu) ? 3303 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3304 else 3305 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3306 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3307 3308 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3309 3310 /* Update the interrupt mask on each CPU according the 3311 * new mapping 3312 */ 3313 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3314 pp, true); 3315 i++; 3316 3317 } 3318 }; 3319 3320 static int mvneta_percpu_notifier(struct notifier_block *nfb, 3321 unsigned long action, void *hcpu) 3322 { 3323 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 3324 cpu_notifier); 3325 int cpu = (unsigned long)hcpu, other_cpu; 3326 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3327 3328 switch (action) { 3329 case CPU_ONLINE: 3330 case CPU_ONLINE_FROZEN: 3331 case CPU_DOWN_FAILED: 3332 case CPU_DOWN_FAILED_FROZEN: 3333 spin_lock(&pp->lock); 3334 /* Configuring the driver for a new CPU while the 3335 * driver is stopping is racy, so just avoid it. 3336 */ 3337 if (pp->is_stopped) { 3338 spin_unlock(&pp->lock); 3339 break; 3340 } 3341 netif_tx_stop_all_queues(pp->dev); 3342 3343 /* We have to synchronise on tha napi of each CPU 3344 * except the one just being waked up 3345 */ 3346 for_each_online_cpu(other_cpu) { 3347 if (other_cpu != cpu) { 3348 struct mvneta_pcpu_port *other_port = 3349 per_cpu_ptr(pp->ports, other_cpu); 3350 3351 napi_synchronize(&other_port->napi); 3352 } 3353 } 3354 3355 /* Mask all ethernet port interrupts */ 3356 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3357 napi_enable(&port->napi); 3358 3359 3360 /* Enable per-CPU interrupts on the CPU that is 3361 * brought up. 3362 */ 3363 smp_call_function_single(cpu, mvneta_percpu_enable, 3364 pp, true); 3365 3366 /* Enable per-CPU interrupt on the one CPU we care 3367 * about. 3368 */ 3369 mvneta_percpu_elect(pp); 3370 3371 /* Unmask all ethernet port interrupts */ 3372 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3373 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3374 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3375 MVNETA_CAUSE_LINK_CHANGE | 3376 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3377 netif_tx_start_all_queues(pp->dev); 3378 spin_unlock(&pp->lock); 3379 break; 3380 case CPU_DOWN_PREPARE: 3381 case CPU_DOWN_PREPARE_FROZEN: 3382 netif_tx_stop_all_queues(pp->dev); 3383 /* Thanks to this lock we are sure that any pending 3384 * cpu election is done 3385 */ 3386 spin_lock(&pp->lock); 3387 /* Mask all ethernet port interrupts */ 3388 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3389 spin_unlock(&pp->lock); 3390 3391 napi_synchronize(&port->napi); 3392 napi_disable(&port->napi); 3393 /* Disable per-CPU interrupts on the CPU that is 3394 * brought down. 3395 */ 3396 smp_call_function_single(cpu, mvneta_percpu_disable, 3397 pp, true); 3398 3399 break; 3400 case CPU_DEAD: 3401 case CPU_DEAD_FROZEN: 3402 /* Check if a new CPU must be elected now this on is down */ 3403 spin_lock(&pp->lock); 3404 mvneta_percpu_elect(pp); 3405 spin_unlock(&pp->lock); 3406 /* Unmask all ethernet port interrupts */ 3407 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3408 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3409 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3410 MVNETA_CAUSE_LINK_CHANGE | 3411 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3412 netif_tx_start_all_queues(pp->dev); 3413 break; 3414 } 3415 3416 return NOTIFY_OK; 3417 } 3418 3419 static int mvneta_open(struct net_device *dev) 3420 { 3421 struct mvneta_port *pp = netdev_priv(dev); 3422 int ret; 3423 3424 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3425 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3426 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3427 3428 ret = mvneta_setup_rxqs(pp); 3429 if (ret) 3430 return ret; 3431 3432 ret = mvneta_setup_txqs(pp); 3433 if (ret) 3434 goto err_cleanup_rxqs; 3435 3436 /* Connect to port interrupt line */ 3437 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 3438 MVNETA_DRIVER_NAME, pp->ports); 3439 if (ret) { 3440 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3441 goto err_cleanup_txqs; 3442 } 3443 3444 /* Enable per-CPU interrupt on all the CPU to handle our RX 3445 * queue interrupts 3446 */ 3447 on_each_cpu(mvneta_percpu_enable, pp, true); 3448 3449 pp->is_stopped = false; 3450 /* Register a CPU notifier to handle the case where our CPU 3451 * might be taken offline. 3452 */ 3453 register_cpu_notifier(&pp->cpu_notifier); 3454 3455 /* In default link is down */ 3456 netif_carrier_off(pp->dev); 3457 3458 ret = mvneta_mdio_probe(pp); 3459 if (ret < 0) { 3460 netdev_err(dev, "cannot probe MDIO bus\n"); 3461 goto err_free_irq; 3462 } 3463 3464 mvneta_start_dev(pp); 3465 3466 return 0; 3467 3468 err_free_irq: 3469 free_percpu_irq(pp->dev->irq, pp->ports); 3470 err_cleanup_txqs: 3471 mvneta_cleanup_txqs(pp); 3472 err_cleanup_rxqs: 3473 mvneta_cleanup_rxqs(pp); 3474 return ret; 3475 } 3476 3477 /* Stop the port, free port interrupt line */ 3478 static int mvneta_stop(struct net_device *dev) 3479 { 3480 struct mvneta_port *pp = netdev_priv(dev); 3481 3482 /* Inform that we are stopping so we don't want to setup the 3483 * driver for new CPUs in the notifiers. The code of the 3484 * notifier for CPU online is protected by the same spinlock, 3485 * so when we get the lock, the notifer work is done. 3486 */ 3487 spin_lock(&pp->lock); 3488 pp->is_stopped = true; 3489 spin_unlock(&pp->lock); 3490 3491 mvneta_stop_dev(pp); 3492 mvneta_mdio_remove(pp); 3493 unregister_cpu_notifier(&pp->cpu_notifier); 3494 on_each_cpu(mvneta_percpu_disable, pp, true); 3495 free_percpu_irq(dev->irq, pp->ports); 3496 mvneta_cleanup_rxqs(pp); 3497 mvneta_cleanup_txqs(pp); 3498 3499 return 0; 3500 } 3501 3502 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3503 { 3504 struct mvneta_port *pp = netdev_priv(dev); 3505 3506 if (!pp->phy_dev) 3507 return -ENOTSUPP; 3508 3509 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 3510 } 3511 3512 /* Ethtool methods */ 3513 3514 /* Get settings (phy address, speed) for ethtools */ 3515 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3516 { 3517 struct mvneta_port *pp = netdev_priv(dev); 3518 3519 if (!pp->phy_dev) 3520 return -ENODEV; 3521 3522 return phy_ethtool_gset(pp->phy_dev, cmd); 3523 } 3524 3525 /* Set settings (phy address, speed) for ethtools */ 3526 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3527 { 3528 struct mvneta_port *pp = netdev_priv(dev); 3529 struct phy_device *phydev = pp->phy_dev; 3530 3531 if (!phydev) 3532 return -ENODEV; 3533 3534 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3535 u32 val; 3536 3537 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE); 3538 3539 if (cmd->autoneg == AUTONEG_DISABLE) { 3540 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3541 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3542 MVNETA_GMAC_CONFIG_GMII_SPEED | 3543 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3544 3545 if (phydev->duplex) 3546 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3547 3548 if (phydev->speed == SPEED_1000) 3549 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3550 else if (phydev->speed == SPEED_100) 3551 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3552 3553 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3554 } 3555 3556 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE); 3557 netdev_info(pp->dev, "autoneg status set to %i\n", 3558 pp->use_inband_status); 3559 3560 if (netif_running(dev)) { 3561 mvneta_port_down(pp); 3562 mvneta_port_up(pp); 3563 } 3564 } 3565 3566 return phy_ethtool_sset(pp->phy_dev, cmd); 3567 } 3568 3569 /* Set interrupt coalescing for ethtools */ 3570 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3571 struct ethtool_coalesce *c) 3572 { 3573 struct mvneta_port *pp = netdev_priv(dev); 3574 int queue; 3575 3576 for (queue = 0; queue < rxq_number; queue++) { 3577 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3578 rxq->time_coal = c->rx_coalesce_usecs; 3579 rxq->pkts_coal = c->rx_max_coalesced_frames; 3580 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3581 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3582 } 3583 3584 for (queue = 0; queue < txq_number; queue++) { 3585 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3586 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3587 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3588 } 3589 3590 return 0; 3591 } 3592 3593 /* get coalescing for ethtools */ 3594 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3595 struct ethtool_coalesce *c) 3596 { 3597 struct mvneta_port *pp = netdev_priv(dev); 3598 3599 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3600 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3601 3602 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3603 return 0; 3604 } 3605 3606 3607 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3608 struct ethtool_drvinfo *drvinfo) 3609 { 3610 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3611 sizeof(drvinfo->driver)); 3612 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3613 sizeof(drvinfo->version)); 3614 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3615 sizeof(drvinfo->bus_info)); 3616 } 3617 3618 3619 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3620 struct ethtool_ringparam *ring) 3621 { 3622 struct mvneta_port *pp = netdev_priv(netdev); 3623 3624 ring->rx_max_pending = MVNETA_MAX_RXD; 3625 ring->tx_max_pending = MVNETA_MAX_TXD; 3626 ring->rx_pending = pp->rx_ring_size; 3627 ring->tx_pending = pp->tx_ring_size; 3628 } 3629 3630 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3631 struct ethtool_ringparam *ring) 3632 { 3633 struct mvneta_port *pp = netdev_priv(dev); 3634 3635 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3636 return -EINVAL; 3637 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3638 ring->rx_pending : MVNETA_MAX_RXD; 3639 3640 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3641 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3642 if (pp->tx_ring_size != ring->tx_pending) 3643 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3644 pp->tx_ring_size, ring->tx_pending); 3645 3646 if (netif_running(dev)) { 3647 mvneta_stop(dev); 3648 if (mvneta_open(dev)) { 3649 netdev_err(dev, 3650 "error on opening device after ring param change\n"); 3651 return -ENOMEM; 3652 } 3653 } 3654 3655 return 0; 3656 } 3657 3658 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3659 u8 *data) 3660 { 3661 if (sset == ETH_SS_STATS) { 3662 int i; 3663 3664 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3665 memcpy(data + i * ETH_GSTRING_LEN, 3666 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3667 } 3668 } 3669 3670 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3671 { 3672 const struct mvneta_statistic *s; 3673 void __iomem *base = pp->base; 3674 u32 high, low, val; 3675 u64 val64; 3676 int i; 3677 3678 for (i = 0, s = mvneta_statistics; 3679 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3680 s++, i++) { 3681 switch (s->type) { 3682 case T_REG_32: 3683 val = readl_relaxed(base + s->offset); 3684 pp->ethtool_stats[i] += val; 3685 break; 3686 case T_REG_64: 3687 /* Docs say to read low 32-bit then high */ 3688 low = readl_relaxed(base + s->offset); 3689 high = readl_relaxed(base + s->offset + 4); 3690 val64 = (u64)high << 32 | low; 3691 pp->ethtool_stats[i] += val64; 3692 break; 3693 } 3694 } 3695 } 3696 3697 static void mvneta_ethtool_get_stats(struct net_device *dev, 3698 struct ethtool_stats *stats, u64 *data) 3699 { 3700 struct mvneta_port *pp = netdev_priv(dev); 3701 int i; 3702 3703 mvneta_ethtool_update_stats(pp); 3704 3705 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3706 *data++ = pp->ethtool_stats[i]; 3707 } 3708 3709 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3710 { 3711 if (sset == ETH_SS_STATS) 3712 return ARRAY_SIZE(mvneta_statistics); 3713 return -EOPNOTSUPP; 3714 } 3715 3716 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3717 { 3718 return MVNETA_RSS_LU_TABLE_SIZE; 3719 } 3720 3721 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3722 struct ethtool_rxnfc *info, 3723 u32 *rules __always_unused) 3724 { 3725 switch (info->cmd) { 3726 case ETHTOOL_GRXRINGS: 3727 info->data = rxq_number; 3728 return 0; 3729 case ETHTOOL_GRXFH: 3730 return -EOPNOTSUPP; 3731 default: 3732 return -EOPNOTSUPP; 3733 } 3734 } 3735 3736 static int mvneta_config_rss(struct mvneta_port *pp) 3737 { 3738 int cpu; 3739 u32 val; 3740 3741 netif_tx_stop_all_queues(pp->dev); 3742 3743 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3744 3745 /* We have to synchronise on the napi of each CPU */ 3746 for_each_online_cpu(cpu) { 3747 struct mvneta_pcpu_port *pcpu_port = 3748 per_cpu_ptr(pp->ports, cpu); 3749 3750 napi_synchronize(&pcpu_port->napi); 3751 napi_disable(&pcpu_port->napi); 3752 } 3753 3754 pp->rxq_def = pp->indir[0]; 3755 3756 /* Update unicast mapping */ 3757 mvneta_set_rx_mode(pp->dev); 3758 3759 /* Update val of portCfg register accordingly with all RxQueue types */ 3760 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3761 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3762 3763 /* Update the elected CPU matching the new rxq_def */ 3764 spin_lock(&pp->lock); 3765 mvneta_percpu_elect(pp); 3766 spin_unlock(&pp->lock); 3767 3768 /* We have to synchronise on the napi of each CPU */ 3769 for_each_online_cpu(cpu) { 3770 struct mvneta_pcpu_port *pcpu_port = 3771 per_cpu_ptr(pp->ports, cpu); 3772 3773 napi_enable(&pcpu_port->napi); 3774 } 3775 3776 netif_tx_start_all_queues(pp->dev); 3777 3778 return 0; 3779 } 3780 3781 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3782 const u8 *key, const u8 hfunc) 3783 { 3784 struct mvneta_port *pp = netdev_priv(dev); 3785 /* We require at least one supported parameter to be changed 3786 * and no change in any of the unsupported parameters 3787 */ 3788 if (key || 3789 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3790 return -EOPNOTSUPP; 3791 3792 if (!indir) 3793 return 0; 3794 3795 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3796 3797 return mvneta_config_rss(pp); 3798 } 3799 3800 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3801 u8 *hfunc) 3802 { 3803 struct mvneta_port *pp = netdev_priv(dev); 3804 3805 if (hfunc) 3806 *hfunc = ETH_RSS_HASH_TOP; 3807 3808 if (!indir) 3809 return 0; 3810 3811 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3812 3813 return 0; 3814 } 3815 3816 static const struct net_device_ops mvneta_netdev_ops = { 3817 .ndo_open = mvneta_open, 3818 .ndo_stop = mvneta_stop, 3819 .ndo_start_xmit = mvneta_tx, 3820 .ndo_set_rx_mode = mvneta_set_rx_mode, 3821 .ndo_set_mac_address = mvneta_set_mac_addr, 3822 .ndo_change_mtu = mvneta_change_mtu, 3823 .ndo_fix_features = mvneta_fix_features, 3824 .ndo_get_stats64 = mvneta_get_stats64, 3825 .ndo_do_ioctl = mvneta_ioctl, 3826 }; 3827 3828 const struct ethtool_ops mvneta_eth_tool_ops = { 3829 .get_link = ethtool_op_get_link, 3830 .get_settings = mvneta_ethtool_get_settings, 3831 .set_settings = mvneta_ethtool_set_settings, 3832 .set_coalesce = mvneta_ethtool_set_coalesce, 3833 .get_coalesce = mvneta_ethtool_get_coalesce, 3834 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3835 .get_ringparam = mvneta_ethtool_get_ringparam, 3836 .set_ringparam = mvneta_ethtool_set_ringparam, 3837 .get_strings = mvneta_ethtool_get_strings, 3838 .get_ethtool_stats = mvneta_ethtool_get_stats, 3839 .get_sset_count = mvneta_ethtool_get_sset_count, 3840 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3841 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3842 .get_rxfh = mvneta_ethtool_get_rxfh, 3843 .set_rxfh = mvneta_ethtool_set_rxfh, 3844 }; 3845 3846 /* Initialize hw */ 3847 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3848 { 3849 int queue; 3850 3851 /* Disable port */ 3852 mvneta_port_disable(pp); 3853 3854 /* Set port default values */ 3855 mvneta_defaults_set(pp); 3856 3857 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3858 GFP_KERNEL); 3859 if (!pp->txqs) 3860 return -ENOMEM; 3861 3862 /* Initialize TX descriptor rings */ 3863 for (queue = 0; queue < txq_number; queue++) { 3864 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3865 txq->id = queue; 3866 txq->size = pp->tx_ring_size; 3867 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3868 } 3869 3870 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3871 GFP_KERNEL); 3872 if (!pp->rxqs) 3873 return -ENOMEM; 3874 3875 /* Create Rx descriptor rings */ 3876 for (queue = 0; queue < rxq_number; queue++) { 3877 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3878 rxq->id = queue; 3879 rxq->size = pp->rx_ring_size; 3880 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3881 rxq->time_coal = MVNETA_RX_COAL_USEC; 3882 } 3883 3884 return 0; 3885 } 3886 3887 /* platform glue : initialize decoding windows */ 3888 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3889 const struct mbus_dram_target_info *dram) 3890 { 3891 u32 win_enable; 3892 u32 win_protect; 3893 int i; 3894 3895 for (i = 0; i < 6; i++) { 3896 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3897 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3898 3899 if (i < 4) 3900 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3901 } 3902 3903 win_enable = 0x3f; 3904 win_protect = 0; 3905 3906 for (i = 0; i < dram->num_cs; i++) { 3907 const struct mbus_dram_window *cs = dram->cs + i; 3908 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3909 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3910 3911 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3912 (cs->size - 1) & 0xffff0000); 3913 3914 win_enable &= ~(1 << i); 3915 win_protect |= 3 << (2 * i); 3916 } 3917 3918 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3919 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3920 } 3921 3922 /* Power up the port */ 3923 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3924 { 3925 u32 ctrl; 3926 3927 /* MAC Cause register should be cleared */ 3928 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3929 3930 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3931 3932 /* Even though it might look weird, when we're configured in 3933 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3934 */ 3935 switch(phy_mode) { 3936 case PHY_INTERFACE_MODE_QSGMII: 3937 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3938 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3939 break; 3940 case PHY_INTERFACE_MODE_SGMII: 3941 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3942 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3943 break; 3944 case PHY_INTERFACE_MODE_RGMII: 3945 case PHY_INTERFACE_MODE_RGMII_ID: 3946 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3947 break; 3948 default: 3949 return -EINVAL; 3950 } 3951 3952 /* Cancel Port Reset */ 3953 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3954 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3955 3956 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3957 MVNETA_GMAC2_PORT_RESET) != 0) 3958 continue; 3959 3960 return 0; 3961 } 3962 3963 /* Device initialization routine */ 3964 static int mvneta_probe(struct platform_device *pdev) 3965 { 3966 const struct mbus_dram_target_info *dram_target_info; 3967 struct resource *res; 3968 struct device_node *dn = pdev->dev.of_node; 3969 struct device_node *phy_node; 3970 struct device_node *bm_node; 3971 struct mvneta_port *pp; 3972 struct net_device *dev; 3973 const char *dt_mac_addr; 3974 char hw_mac_addr[ETH_ALEN]; 3975 const char *mac_from; 3976 const char *managed; 3977 int tx_csum_limit; 3978 int phy_mode; 3979 int err; 3980 int cpu; 3981 3982 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3983 if (!dev) 3984 return -ENOMEM; 3985 3986 dev->irq = irq_of_parse_and_map(dn, 0); 3987 if (dev->irq == 0) { 3988 err = -EINVAL; 3989 goto err_free_netdev; 3990 } 3991 3992 phy_node = of_parse_phandle(dn, "phy", 0); 3993 if (!phy_node) { 3994 if (!of_phy_is_fixed_link(dn)) { 3995 dev_err(&pdev->dev, "no PHY specified\n"); 3996 err = -ENODEV; 3997 goto err_free_irq; 3998 } 3999 4000 err = of_phy_register_fixed_link(dn); 4001 if (err < 0) { 4002 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 4003 goto err_free_irq; 4004 } 4005 4006 /* In the case of a fixed PHY, the DT node associated 4007 * to the PHY is the Ethernet MAC DT node. 4008 */ 4009 phy_node = of_node_get(dn); 4010 } 4011 4012 phy_mode = of_get_phy_mode(dn); 4013 if (phy_mode < 0) { 4014 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4015 err = -EINVAL; 4016 goto err_put_phy_node; 4017 } 4018 4019 dev->tx_queue_len = MVNETA_MAX_TXD; 4020 dev->watchdog_timeo = 5 * HZ; 4021 dev->netdev_ops = &mvneta_netdev_ops; 4022 4023 dev->ethtool_ops = &mvneta_eth_tool_ops; 4024 4025 pp = netdev_priv(dev); 4026 spin_lock_init(&pp->lock); 4027 pp->phy_node = phy_node; 4028 pp->phy_interface = phy_mode; 4029 4030 err = of_property_read_string(dn, "managed", &managed); 4031 pp->use_inband_status = (err == 0 && 4032 strcmp(managed, "in-band-status") == 0); 4033 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 4034 4035 pp->rxq_def = rxq_def; 4036 4037 pp->indir[0] = rxq_def; 4038 4039 pp->clk = devm_clk_get(&pdev->dev, "core"); 4040 if (IS_ERR(pp->clk)) 4041 pp->clk = devm_clk_get(&pdev->dev, NULL); 4042 if (IS_ERR(pp->clk)) { 4043 err = PTR_ERR(pp->clk); 4044 goto err_put_phy_node; 4045 } 4046 4047 clk_prepare_enable(pp->clk); 4048 4049 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4050 if (!IS_ERR(pp->clk_bus)) 4051 clk_prepare_enable(pp->clk_bus); 4052 4053 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4054 pp->base = devm_ioremap_resource(&pdev->dev, res); 4055 if (IS_ERR(pp->base)) { 4056 err = PTR_ERR(pp->base); 4057 goto err_clk; 4058 } 4059 4060 /* Alloc per-cpu port structure */ 4061 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4062 if (!pp->ports) { 4063 err = -ENOMEM; 4064 goto err_clk; 4065 } 4066 4067 /* Alloc per-cpu stats */ 4068 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4069 if (!pp->stats) { 4070 err = -ENOMEM; 4071 goto err_free_ports; 4072 } 4073 4074 dt_mac_addr = of_get_mac_address(dn); 4075 if (dt_mac_addr) { 4076 mac_from = "device tree"; 4077 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4078 } else { 4079 mvneta_get_mac_addr(pp, hw_mac_addr); 4080 if (is_valid_ether_addr(hw_mac_addr)) { 4081 mac_from = "hardware"; 4082 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4083 } else { 4084 mac_from = "random"; 4085 eth_hw_addr_random(dev); 4086 } 4087 } 4088 4089 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4090 if (tx_csum_limit < 0 || 4091 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4092 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4093 dev_info(&pdev->dev, 4094 "Wrong TX csum limit in DT, set to %dB\n", 4095 MVNETA_TX_CSUM_DEF_SIZE); 4096 } 4097 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4098 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4099 } else { 4100 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4101 } 4102 4103 pp->tx_csum_limit = tx_csum_limit; 4104 4105 dram_target_info = mv_mbus_dram_info(); 4106 if (dram_target_info) 4107 mvneta_conf_mbus_windows(pp, dram_target_info); 4108 4109 pp->tx_ring_size = MVNETA_MAX_TXD; 4110 pp->rx_ring_size = MVNETA_MAX_RXD; 4111 4112 pp->dev = dev; 4113 SET_NETDEV_DEV(dev, &pdev->dev); 4114 4115 pp->id = global_port_id++; 4116 4117 /* Obtain access to BM resources if enabled and already initialized */ 4118 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4119 if (bm_node && bm_node->data) { 4120 pp->bm_priv = bm_node->data; 4121 err = mvneta_bm_port_init(pdev, pp); 4122 if (err < 0) { 4123 dev_info(&pdev->dev, "use SW buffer management\n"); 4124 pp->bm_priv = NULL; 4125 } 4126 } 4127 4128 err = mvneta_init(&pdev->dev, pp); 4129 if (err < 0) 4130 goto err_netdev; 4131 4132 err = mvneta_port_power_up(pp, phy_mode); 4133 if (err < 0) { 4134 dev_err(&pdev->dev, "can't power up port\n"); 4135 goto err_netdev; 4136 } 4137 4138 for_each_present_cpu(cpu) { 4139 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4140 4141 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4142 port->pp = pp; 4143 } 4144 4145 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 4146 dev->hw_features |= dev->features; 4147 dev->vlan_features |= dev->features; 4148 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE; 4149 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4150 4151 err = register_netdev(dev); 4152 if (err < 0) { 4153 dev_err(&pdev->dev, "failed to register\n"); 4154 goto err_free_stats; 4155 } 4156 4157 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4158 dev->dev_addr); 4159 4160 platform_set_drvdata(pdev, pp->dev); 4161 4162 if (pp->use_inband_status) { 4163 struct phy_device *phy = of_phy_find_device(dn); 4164 4165 mvneta_fixed_link_update(pp, phy); 4166 4167 put_device(&phy->mdio.dev); 4168 } 4169 4170 return 0; 4171 4172 err_netdev: 4173 unregister_netdev(dev); 4174 if (pp->bm_priv) { 4175 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4176 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4177 1 << pp->id); 4178 } 4179 err_free_stats: 4180 free_percpu(pp->stats); 4181 err_free_ports: 4182 free_percpu(pp->ports); 4183 err_clk: 4184 clk_disable_unprepare(pp->clk_bus); 4185 clk_disable_unprepare(pp->clk); 4186 err_put_phy_node: 4187 of_node_put(phy_node); 4188 err_free_irq: 4189 irq_dispose_mapping(dev->irq); 4190 err_free_netdev: 4191 free_netdev(dev); 4192 return err; 4193 } 4194 4195 /* Device removal routine */ 4196 static int mvneta_remove(struct platform_device *pdev) 4197 { 4198 struct net_device *dev = platform_get_drvdata(pdev); 4199 struct mvneta_port *pp = netdev_priv(dev); 4200 4201 unregister_netdev(dev); 4202 clk_disable_unprepare(pp->clk_bus); 4203 clk_disable_unprepare(pp->clk); 4204 free_percpu(pp->ports); 4205 free_percpu(pp->stats); 4206 irq_dispose_mapping(dev->irq); 4207 of_node_put(pp->phy_node); 4208 free_netdev(dev); 4209 4210 if (pp->bm_priv) { 4211 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4212 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4213 1 << pp->id); 4214 } 4215 4216 return 0; 4217 } 4218 4219 static const struct of_device_id mvneta_match[] = { 4220 { .compatible = "marvell,armada-370-neta" }, 4221 { .compatible = "marvell,armada-xp-neta" }, 4222 { } 4223 }; 4224 MODULE_DEVICE_TABLE(of, mvneta_match); 4225 4226 static struct platform_driver mvneta_driver = { 4227 .probe = mvneta_probe, 4228 .remove = mvneta_remove, 4229 .driver = { 4230 .name = MVNETA_DRIVER_NAME, 4231 .of_match_table = mvneta_match, 4232 }, 4233 }; 4234 4235 module_platform_driver(mvneta_driver); 4236 4237 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4238 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4239 MODULE_LICENSE("GPL"); 4240 4241 module_param(rxq_number, int, S_IRUGO); 4242 module_param(txq_number, int, S_IRUGO); 4243 4244 module_param(rxq_def, int, S_IRUGO); 4245 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 4246