1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
334 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
335 
336 #define IS_TSO_HEADER(txq, addr) \
337 	((addr >= txq->tso_hdrs_phys) && \
338 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
339 
340 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
341 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
342 
343 enum {
344 	ETHTOOL_STAT_EEE_WAKEUP,
345 	ETHTOOL_STAT_SKB_ALLOC_ERR,
346 	ETHTOOL_STAT_REFILL_ERR,
347 	ETHTOOL_XDP_REDIRECT,
348 	ETHTOOL_XDP_PASS,
349 	ETHTOOL_XDP_DROP,
350 	ETHTOOL_XDP_TX,
351 	ETHTOOL_XDP_TX_ERR,
352 	ETHTOOL_XDP_XMIT,
353 	ETHTOOL_XDP_XMIT_ERR,
354 	ETHTOOL_MAX_STATS,
355 };
356 
357 struct mvneta_statistic {
358 	unsigned short offset;
359 	unsigned short type;
360 	const char name[ETH_GSTRING_LEN];
361 };
362 
363 #define T_REG_32	32
364 #define T_REG_64	64
365 #define T_SW		1
366 
367 #define MVNETA_XDP_PASS		0
368 #define MVNETA_XDP_DROPPED	BIT(0)
369 #define MVNETA_XDP_TX		BIT(1)
370 #define MVNETA_XDP_REDIR	BIT(2)
371 
372 static const struct mvneta_statistic mvneta_statistics[] = {
373 	{ 0x3000, T_REG_64, "good_octets_received", },
374 	{ 0x3010, T_REG_32, "good_frames_received", },
375 	{ 0x3008, T_REG_32, "bad_octets_received", },
376 	{ 0x3014, T_REG_32, "bad_frames_received", },
377 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
378 	{ 0x301c, T_REG_32, "multicast_frames_received", },
379 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
380 	{ 0x3058, T_REG_32, "good_fc_received", },
381 	{ 0x305c, T_REG_32, "bad_fc_received", },
382 	{ 0x3060, T_REG_32, "undersize_received", },
383 	{ 0x3064, T_REG_32, "fragments_received", },
384 	{ 0x3068, T_REG_32, "oversize_received", },
385 	{ 0x306c, T_REG_32, "jabber_received", },
386 	{ 0x3070, T_REG_32, "mac_receive_error", },
387 	{ 0x3074, T_REG_32, "bad_crc_event", },
388 	{ 0x3078, T_REG_32, "collision", },
389 	{ 0x307c, T_REG_32, "late_collision", },
390 	{ 0x2484, T_REG_32, "rx_discard", },
391 	{ 0x2488, T_REG_32, "rx_overrun", },
392 	{ 0x3020, T_REG_32, "frames_64_octets", },
393 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
394 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
395 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
396 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
397 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
398 	{ 0x3038, T_REG_64, "good_octets_sent", },
399 	{ 0x3040, T_REG_32, "good_frames_sent", },
400 	{ 0x3044, T_REG_32, "excessive_collision", },
401 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
402 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
403 	{ 0x3054, T_REG_32, "fc_sent", },
404 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
405 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
406 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
407 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
408 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
409 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
410 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
411 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
412 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
413 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
414 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
415 };
416 
417 struct mvneta_stats {
418 	u64	rx_packets;
419 	u64	rx_bytes;
420 	u64	tx_packets;
421 	u64	tx_bytes;
422 	/* xdp */
423 	u64	xdp_redirect;
424 	u64	xdp_pass;
425 	u64	xdp_drop;
426 	u64	xdp_xmit;
427 	u64	xdp_xmit_err;
428 	u64	xdp_tx;
429 	u64	xdp_tx_err;
430 };
431 
432 struct mvneta_ethtool_stats {
433 	struct mvneta_stats ps;
434 	u64	skb_alloc_error;
435 	u64	refill_error;
436 };
437 
438 struct mvneta_pcpu_stats {
439 	struct u64_stats_sync syncp;
440 
441 	struct mvneta_ethtool_stats es;
442 	u64	rx_dropped;
443 	u64	rx_errors;
444 };
445 
446 struct mvneta_pcpu_port {
447 	/* Pointer to the shared port */
448 	struct mvneta_port	*pp;
449 
450 	/* Pointer to the CPU-local NAPI struct */
451 	struct napi_struct	napi;
452 
453 	/* Cause of the previous interrupt */
454 	u32			cause_rx_tx;
455 };
456 
457 enum {
458 	__MVNETA_DOWN,
459 };
460 
461 struct mvneta_port {
462 	u8 id;
463 	struct mvneta_pcpu_port __percpu	*ports;
464 	struct mvneta_pcpu_stats __percpu	*stats;
465 
466 	unsigned long state;
467 
468 	int pkt_size;
469 	void __iomem *base;
470 	struct mvneta_rx_queue *rxqs;
471 	struct mvneta_tx_queue *txqs;
472 	struct net_device *dev;
473 	struct hlist_node node_online;
474 	struct hlist_node node_dead;
475 	int rxq_def;
476 	/* Protect the access to the percpu interrupt registers,
477 	 * ensuring that the configuration remains coherent.
478 	 */
479 	spinlock_t lock;
480 	bool is_stopped;
481 
482 	u32 cause_rx_tx;
483 	struct napi_struct napi;
484 
485 	struct bpf_prog *xdp_prog;
486 
487 	/* Core clock */
488 	struct clk *clk;
489 	/* AXI clock */
490 	struct clk *clk_bus;
491 	u8 mcast_count[256];
492 	u16 tx_ring_size;
493 	u16 rx_ring_size;
494 
495 	phy_interface_t phy_interface;
496 	struct device_node *dn;
497 	unsigned int tx_csum_limit;
498 	struct phylink *phylink;
499 	struct phylink_config phylink_config;
500 	struct phy *comphy;
501 
502 	struct mvneta_bm *bm_priv;
503 	struct mvneta_bm_pool *pool_long;
504 	struct mvneta_bm_pool *pool_short;
505 	int bm_win_id;
506 
507 	bool eee_enabled;
508 	bool eee_active;
509 	bool tx_lpi_enabled;
510 
511 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
512 
513 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
514 
515 	/* Flags for special SoC configurations */
516 	bool neta_armada3700;
517 	u16 rx_offset_correction;
518 	const struct mbus_dram_target_info *dram_target_info;
519 };
520 
521 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
522  * layout of the transmit and reception DMA descriptors, and their
523  * layout is therefore defined by the hardware design
524  */
525 
526 #define MVNETA_TX_L3_OFF_SHIFT	0
527 #define MVNETA_TX_IP_HLEN_SHIFT	8
528 #define MVNETA_TX_L4_UDP	BIT(16)
529 #define MVNETA_TX_L3_IP6	BIT(17)
530 #define MVNETA_TXD_IP_CSUM	BIT(18)
531 #define MVNETA_TXD_Z_PAD	BIT(19)
532 #define MVNETA_TXD_L_DESC	BIT(20)
533 #define MVNETA_TXD_F_DESC	BIT(21)
534 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
535 				 MVNETA_TXD_L_DESC | \
536 				 MVNETA_TXD_F_DESC)
537 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
538 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
539 
540 #define MVNETA_RXD_ERR_CRC		0x0
541 #define MVNETA_RXD_BM_POOL_SHIFT	13
542 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
543 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
544 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
545 #define MVNETA_RXD_ERR_LEN		BIT(18)
546 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
547 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
548 #define MVNETA_RXD_L3_IP4		BIT(25)
549 #define MVNETA_RXD_LAST_DESC		BIT(26)
550 #define MVNETA_RXD_FIRST_DESC		BIT(27)
551 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
552 					 MVNETA_RXD_LAST_DESC)
553 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
554 
555 #if defined(__LITTLE_ENDIAN)
556 struct mvneta_tx_desc {
557 	u32  command;		/* Options used by HW for packet transmitting.*/
558 	u16  reserved1;		/* csum_l4 (for future use)		*/
559 	u16  data_size;		/* Data size of transmitted packet in bytes */
560 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
561 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
562 	u32  reserved3[4];	/* Reserved - (for future use)		*/
563 };
564 
565 struct mvneta_rx_desc {
566 	u32  status;		/* Info about received packet		*/
567 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
568 	u16  data_size;		/* Size of received packet in bytes	*/
569 
570 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
571 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
572 
573 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
574 	u16  reserved3;		/* prefetch_cmd, for future use		*/
575 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
576 
577 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
578 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
579 };
580 #else
581 struct mvneta_tx_desc {
582 	u16  data_size;		/* Data size of transmitted packet in bytes */
583 	u16  reserved1;		/* csum_l4 (for future use)		*/
584 	u32  command;		/* Options used by HW for packet transmitting.*/
585 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
586 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
587 	u32  reserved3[4];	/* Reserved - (for future use)		*/
588 };
589 
590 struct mvneta_rx_desc {
591 	u16  data_size;		/* Size of received packet in bytes	*/
592 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
593 	u32  status;		/* Info about received packet		*/
594 
595 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
596 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
597 
598 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
599 	u16  reserved3;		/* prefetch_cmd, for future use		*/
600 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
601 
602 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
603 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
604 };
605 #endif
606 
607 enum mvneta_tx_buf_type {
608 	MVNETA_TYPE_SKB,
609 	MVNETA_TYPE_XDP_TX,
610 	MVNETA_TYPE_XDP_NDO,
611 };
612 
613 struct mvneta_tx_buf {
614 	enum mvneta_tx_buf_type type;
615 	union {
616 		struct xdp_frame *xdpf;
617 		struct sk_buff *skb;
618 	};
619 };
620 
621 struct mvneta_tx_queue {
622 	/* Number of this TX queue, in the range 0-7 */
623 	u8 id;
624 
625 	/* Number of TX DMA descriptors in the descriptor ring */
626 	int size;
627 
628 	/* Number of currently used TX DMA descriptor in the
629 	 * descriptor ring
630 	 */
631 	int count;
632 	int pending;
633 	int tx_stop_threshold;
634 	int tx_wake_threshold;
635 
636 	/* Array of transmitted buffers */
637 	struct mvneta_tx_buf *buf;
638 
639 	/* Index of last TX DMA descriptor that was inserted */
640 	int txq_put_index;
641 
642 	/* Index of the TX DMA descriptor to be cleaned up */
643 	int txq_get_index;
644 
645 	u32 done_pkts_coal;
646 
647 	/* Virtual address of the TX DMA descriptors array */
648 	struct mvneta_tx_desc *descs;
649 
650 	/* DMA address of the TX DMA descriptors array */
651 	dma_addr_t descs_phys;
652 
653 	/* Index of the last TX DMA descriptor */
654 	int last_desc;
655 
656 	/* Index of the next TX DMA descriptor to process */
657 	int next_desc_to_proc;
658 
659 	/* DMA buffers for TSO headers */
660 	char *tso_hdrs;
661 
662 	/* DMA address of TSO headers */
663 	dma_addr_t tso_hdrs_phys;
664 
665 	/* Affinity mask for CPUs*/
666 	cpumask_t affinity_mask;
667 };
668 
669 struct mvneta_rx_queue {
670 	/* rx queue number, in the range 0-7 */
671 	u8 id;
672 
673 	/* num of rx descriptors in the rx descriptor ring */
674 	int size;
675 
676 	u32 pkts_coal;
677 	u32 time_coal;
678 
679 	/* page_pool */
680 	struct page_pool *page_pool;
681 	struct xdp_rxq_info xdp_rxq;
682 
683 	/* Virtual address of the RX buffer */
684 	void  **buf_virt_addr;
685 
686 	/* Virtual address of the RX DMA descriptors array */
687 	struct mvneta_rx_desc *descs;
688 
689 	/* DMA address of the RX DMA descriptors array */
690 	dma_addr_t descs_phys;
691 
692 	/* Index of the last RX DMA descriptor */
693 	int last_desc;
694 
695 	/* Index of the next RX DMA descriptor to process */
696 	int next_desc_to_proc;
697 
698 	/* Index of first RX DMA descriptor to refill */
699 	int first_to_refill;
700 	u32 refill_num;
701 };
702 
703 static enum cpuhp_state online_hpstate;
704 /* The hardware supports eight (8) rx queues, but we are only allowing
705  * the first one to be used. Therefore, let's just allocate one queue.
706  */
707 static int rxq_number = 8;
708 static int txq_number = 8;
709 
710 static int rxq_def;
711 
712 static int rx_copybreak __read_mostly = 256;
713 
714 /* HW BM need that each port be identify by a unique ID */
715 static int global_port_id;
716 
717 #define MVNETA_DRIVER_NAME "mvneta"
718 #define MVNETA_DRIVER_VERSION "1.0"
719 
720 /* Utility/helper methods */
721 
722 /* Write helper method */
723 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
724 {
725 	writel(data, pp->base + offset);
726 }
727 
728 /* Read helper method */
729 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
730 {
731 	return readl(pp->base + offset);
732 }
733 
734 /* Increment txq get counter */
735 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
736 {
737 	txq->txq_get_index++;
738 	if (txq->txq_get_index == txq->size)
739 		txq->txq_get_index = 0;
740 }
741 
742 /* Increment txq put counter */
743 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
744 {
745 	txq->txq_put_index++;
746 	if (txq->txq_put_index == txq->size)
747 		txq->txq_put_index = 0;
748 }
749 
750 
751 /* Clear all MIB counters */
752 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
753 {
754 	int i;
755 	u32 dummy;
756 
757 	/* Perform dummy reads from MIB counters */
758 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
759 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
760 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
761 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
762 }
763 
764 /* Get System Network Statistics */
765 static void
766 mvneta_get_stats64(struct net_device *dev,
767 		   struct rtnl_link_stats64 *stats)
768 {
769 	struct mvneta_port *pp = netdev_priv(dev);
770 	unsigned int start;
771 	int cpu;
772 
773 	for_each_possible_cpu(cpu) {
774 		struct mvneta_pcpu_stats *cpu_stats;
775 		u64 rx_packets;
776 		u64 rx_bytes;
777 		u64 rx_dropped;
778 		u64 rx_errors;
779 		u64 tx_packets;
780 		u64 tx_bytes;
781 
782 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
783 		do {
784 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
785 			rx_packets = cpu_stats->es.ps.rx_packets;
786 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
787 			rx_dropped = cpu_stats->rx_dropped;
788 			rx_errors  = cpu_stats->rx_errors;
789 			tx_packets = cpu_stats->es.ps.tx_packets;
790 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
791 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
792 
793 		stats->rx_packets += rx_packets;
794 		stats->rx_bytes   += rx_bytes;
795 		stats->rx_dropped += rx_dropped;
796 		stats->rx_errors  += rx_errors;
797 		stats->tx_packets += tx_packets;
798 		stats->tx_bytes   += tx_bytes;
799 	}
800 
801 	stats->tx_dropped	= dev->stats.tx_dropped;
802 }
803 
804 /* Rx descriptors helper methods */
805 
806 /* Checks whether the RX descriptor having this status is both the first
807  * and the last descriptor for the RX packet. Each RX packet is currently
808  * received through a single RX descriptor, so not having each RX
809  * descriptor with its first and last bits set is an error
810  */
811 static int mvneta_rxq_desc_is_first_last(u32 status)
812 {
813 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
814 		MVNETA_RXD_FIRST_LAST_DESC;
815 }
816 
817 /* Add number of descriptors ready to receive new packets */
818 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
819 					  struct mvneta_rx_queue *rxq,
820 					  int ndescs)
821 {
822 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
823 	 * be added at once
824 	 */
825 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
826 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
827 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
828 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
829 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
830 	}
831 
832 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
833 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
834 }
835 
836 /* Get number of RX descriptors occupied by received packets */
837 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
838 					struct mvneta_rx_queue *rxq)
839 {
840 	u32 val;
841 
842 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
843 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
844 }
845 
846 /* Update num of rx desc called upon return from rx path or
847  * from mvneta_rxq_drop_pkts().
848  */
849 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
850 				       struct mvneta_rx_queue *rxq,
851 				       int rx_done, int rx_filled)
852 {
853 	u32 val;
854 
855 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
856 		val = rx_done |
857 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
858 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
859 		return;
860 	}
861 
862 	/* Only 255 descriptors can be added at once */
863 	while ((rx_done > 0) || (rx_filled > 0)) {
864 		if (rx_done <= 0xff) {
865 			val = rx_done;
866 			rx_done = 0;
867 		} else {
868 			val = 0xff;
869 			rx_done -= 0xff;
870 		}
871 		if (rx_filled <= 0xff) {
872 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
873 			rx_filled = 0;
874 		} else {
875 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
876 			rx_filled -= 0xff;
877 		}
878 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
879 	}
880 }
881 
882 /* Get pointer to next RX descriptor to be processed by SW */
883 static struct mvneta_rx_desc *
884 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
885 {
886 	int rx_desc = rxq->next_desc_to_proc;
887 
888 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
889 	prefetch(rxq->descs + rxq->next_desc_to_proc);
890 	return rxq->descs + rx_desc;
891 }
892 
893 /* Change maximum receive size of the port. */
894 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
895 {
896 	u32 val;
897 
898 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
899 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
900 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
901 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
902 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
903 }
904 
905 
906 /* Set rx queue offset */
907 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
908 				  struct mvneta_rx_queue *rxq,
909 				  int offset)
910 {
911 	u32 val;
912 
913 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
914 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
915 
916 	/* Offset is in */
917 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
918 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
919 }
920 
921 
922 /* Tx descriptors helper methods */
923 
924 /* Update HW with number of TX descriptors to be sent */
925 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
926 				     struct mvneta_tx_queue *txq,
927 				     int pend_desc)
928 {
929 	u32 val;
930 
931 	pend_desc += txq->pending;
932 
933 	/* Only 255 Tx descriptors can be added at once */
934 	do {
935 		val = min(pend_desc, 255);
936 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
937 		pend_desc -= val;
938 	} while (pend_desc > 0);
939 	txq->pending = 0;
940 }
941 
942 /* Get pointer to next TX descriptor to be processed (send) by HW */
943 static struct mvneta_tx_desc *
944 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
945 {
946 	int tx_desc = txq->next_desc_to_proc;
947 
948 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
949 	return txq->descs + tx_desc;
950 }
951 
952 /* Release the last allocated TX descriptor. Useful to handle DMA
953  * mapping failures in the TX path.
954  */
955 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
956 {
957 	if (txq->next_desc_to_proc == 0)
958 		txq->next_desc_to_proc = txq->last_desc - 1;
959 	else
960 		txq->next_desc_to_proc--;
961 }
962 
963 /* Set rxq buf size */
964 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
965 				    struct mvneta_rx_queue *rxq,
966 				    int buf_size)
967 {
968 	u32 val;
969 
970 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
971 
972 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
973 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
974 
975 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
976 }
977 
978 /* Disable buffer management (BM) */
979 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
980 				  struct mvneta_rx_queue *rxq)
981 {
982 	u32 val;
983 
984 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
985 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
986 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
987 }
988 
989 /* Enable buffer management (BM) */
990 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
991 				 struct mvneta_rx_queue *rxq)
992 {
993 	u32 val;
994 
995 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
996 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
997 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
998 }
999 
1000 /* Notify HW about port's assignment of pool for bigger packets */
1001 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1002 				     struct mvneta_rx_queue *rxq)
1003 {
1004 	u32 val;
1005 
1006 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1007 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1008 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1009 
1010 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1011 }
1012 
1013 /* Notify HW about port's assignment of pool for smaller packets */
1014 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1015 				      struct mvneta_rx_queue *rxq)
1016 {
1017 	u32 val;
1018 
1019 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1020 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1021 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1022 
1023 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1024 }
1025 
1026 /* Set port's receive buffer size for assigned BM pool */
1027 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1028 					      int buf_size,
1029 					      u8 pool_id)
1030 {
1031 	u32 val;
1032 
1033 	if (!IS_ALIGNED(buf_size, 8)) {
1034 		dev_warn(pp->dev->dev.parent,
1035 			 "illegal buf_size value %d, round to %d\n",
1036 			 buf_size, ALIGN(buf_size, 8));
1037 		buf_size = ALIGN(buf_size, 8);
1038 	}
1039 
1040 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1041 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1042 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1043 }
1044 
1045 /* Configure MBUS window in order to enable access BM internal SRAM */
1046 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1047 				  u8 target, u8 attr)
1048 {
1049 	u32 win_enable, win_protect;
1050 	int i;
1051 
1052 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1053 
1054 	if (pp->bm_win_id < 0) {
1055 		/* Find first not occupied window */
1056 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1057 			if (win_enable & (1 << i)) {
1058 				pp->bm_win_id = i;
1059 				break;
1060 			}
1061 		}
1062 		if (i == MVNETA_MAX_DECODE_WIN)
1063 			return -ENOMEM;
1064 	} else {
1065 		i = pp->bm_win_id;
1066 	}
1067 
1068 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1069 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1070 
1071 	if (i < 4)
1072 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1073 
1074 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1075 		    (attr << 8) | target);
1076 
1077 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1078 
1079 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1080 	win_protect |= 3 << (2 * i);
1081 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1082 
1083 	win_enable &= ~(1 << i);
1084 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1085 
1086 	return 0;
1087 }
1088 
1089 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1090 {
1091 	u32 wsize;
1092 	u8 target, attr;
1093 	int err;
1094 
1095 	/* Get BM window information */
1096 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1097 					 &target, &attr);
1098 	if (err < 0)
1099 		return err;
1100 
1101 	pp->bm_win_id = -1;
1102 
1103 	/* Open NETA -> BM window */
1104 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1105 				     target, attr);
1106 	if (err < 0) {
1107 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1108 		return err;
1109 	}
1110 	return 0;
1111 }
1112 
1113 /* Assign and initialize pools for port. In case of fail
1114  * buffer manager will remain disabled for current port.
1115  */
1116 static int mvneta_bm_port_init(struct platform_device *pdev,
1117 			       struct mvneta_port *pp)
1118 {
1119 	struct device_node *dn = pdev->dev.of_node;
1120 	u32 long_pool_id, short_pool_id;
1121 
1122 	if (!pp->neta_armada3700) {
1123 		int ret;
1124 
1125 		ret = mvneta_bm_port_mbus_init(pp);
1126 		if (ret)
1127 			return ret;
1128 	}
1129 
1130 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1131 		netdev_info(pp->dev, "missing long pool id\n");
1132 		return -EINVAL;
1133 	}
1134 
1135 	/* Create port's long pool depending on mtu */
1136 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1137 					   MVNETA_BM_LONG, pp->id,
1138 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1139 	if (!pp->pool_long) {
1140 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1141 		return -ENOMEM;
1142 	}
1143 
1144 	pp->pool_long->port_map |= 1 << pp->id;
1145 
1146 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1147 				   pp->pool_long->id);
1148 
1149 	/* If short pool id is not defined, assume using single pool */
1150 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1151 		short_pool_id = long_pool_id;
1152 
1153 	/* Create port's short pool */
1154 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1155 					    MVNETA_BM_SHORT, pp->id,
1156 					    MVNETA_BM_SHORT_PKT_SIZE);
1157 	if (!pp->pool_short) {
1158 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1159 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1160 		return -ENOMEM;
1161 	}
1162 
1163 	if (short_pool_id != long_pool_id) {
1164 		pp->pool_short->port_map |= 1 << pp->id;
1165 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1166 					   pp->pool_short->id);
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /* Update settings of a pool for bigger packets */
1173 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1174 {
1175 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1176 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1177 	int num;
1178 
1179 	/* Release all buffers from long pool */
1180 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1181 	if (hwbm_pool->buf_num) {
1182 		WARN(1, "cannot free all buffers in pool %d\n",
1183 		     bm_pool->id);
1184 		goto bm_mtu_err;
1185 	}
1186 
1187 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1188 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1189 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1190 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1191 
1192 	/* Fill entire long pool */
1193 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1194 	if (num != hwbm_pool->size) {
1195 		WARN(1, "pool %d: %d of %d allocated\n",
1196 		     bm_pool->id, num, hwbm_pool->size);
1197 		goto bm_mtu_err;
1198 	}
1199 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1200 
1201 	return;
1202 
1203 bm_mtu_err:
1204 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1205 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1206 
1207 	pp->bm_priv = NULL;
1208 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1209 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1210 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1211 }
1212 
1213 /* Start the Ethernet port RX and TX activity */
1214 static void mvneta_port_up(struct mvneta_port *pp)
1215 {
1216 	int queue;
1217 	u32 q_map;
1218 
1219 	/* Enable all initialized TXs. */
1220 	q_map = 0;
1221 	for (queue = 0; queue < txq_number; queue++) {
1222 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1223 		if (txq->descs)
1224 			q_map |= (1 << queue);
1225 	}
1226 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1227 
1228 	q_map = 0;
1229 	/* Enable all initialized RXQs. */
1230 	for (queue = 0; queue < rxq_number; queue++) {
1231 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1232 
1233 		if (rxq->descs)
1234 			q_map |= (1 << queue);
1235 	}
1236 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1237 }
1238 
1239 /* Stop the Ethernet port activity */
1240 static void mvneta_port_down(struct mvneta_port *pp)
1241 {
1242 	u32 val;
1243 	int count;
1244 
1245 	/* Stop Rx port activity. Check port Rx activity. */
1246 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1247 
1248 	/* Issue stop command for active channels only */
1249 	if (val != 0)
1250 		mvreg_write(pp, MVNETA_RXQ_CMD,
1251 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1252 
1253 	/* Wait for all Rx activity to terminate. */
1254 	count = 0;
1255 	do {
1256 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1257 			netdev_warn(pp->dev,
1258 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1259 				    val);
1260 			break;
1261 		}
1262 		mdelay(1);
1263 
1264 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1265 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1266 
1267 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1268 	 * command for active channels only
1269 	 */
1270 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1271 
1272 	if (val != 0)
1273 		mvreg_write(pp, MVNETA_TXQ_CMD,
1274 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1275 
1276 	/* Wait for all Tx activity to terminate. */
1277 	count = 0;
1278 	do {
1279 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1280 			netdev_warn(pp->dev,
1281 				    "TIMEOUT for TX stopped status=0x%08x\n",
1282 				    val);
1283 			break;
1284 		}
1285 		mdelay(1);
1286 
1287 		/* Check TX Command reg that all Txqs are stopped */
1288 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1289 
1290 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1291 
1292 	/* Double check to verify that TX FIFO is empty */
1293 	count = 0;
1294 	do {
1295 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1296 			netdev_warn(pp->dev,
1297 				    "TX FIFO empty timeout status=0x%08x\n",
1298 				    val);
1299 			break;
1300 		}
1301 		mdelay(1);
1302 
1303 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1304 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1305 		 (val & MVNETA_TX_IN_PRGRS));
1306 
1307 	udelay(200);
1308 }
1309 
1310 /* Enable the port by setting the port enable bit of the MAC control register */
1311 static void mvneta_port_enable(struct mvneta_port *pp)
1312 {
1313 	u32 val;
1314 
1315 	/* Enable port */
1316 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1317 	val |= MVNETA_GMAC0_PORT_ENABLE;
1318 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1319 }
1320 
1321 /* Disable the port and wait for about 200 usec before retuning */
1322 static void mvneta_port_disable(struct mvneta_port *pp)
1323 {
1324 	u32 val;
1325 
1326 	/* Reset the Enable bit in the Serial Control Register */
1327 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1328 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1329 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1330 
1331 	udelay(200);
1332 }
1333 
1334 /* Multicast tables methods */
1335 
1336 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1337 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1338 {
1339 	int offset;
1340 	u32 val;
1341 
1342 	if (queue == -1) {
1343 		val = 0;
1344 	} else {
1345 		val = 0x1 | (queue << 1);
1346 		val |= (val << 24) | (val << 16) | (val << 8);
1347 	}
1348 
1349 	for (offset = 0; offset <= 0xc; offset += 4)
1350 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1351 }
1352 
1353 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1354 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1355 {
1356 	int offset;
1357 	u32 val;
1358 
1359 	if (queue == -1) {
1360 		val = 0;
1361 	} else {
1362 		val = 0x1 | (queue << 1);
1363 		val |= (val << 24) | (val << 16) | (val << 8);
1364 	}
1365 
1366 	for (offset = 0; offset <= 0xfc; offset += 4)
1367 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1368 
1369 }
1370 
1371 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1372 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1373 {
1374 	int offset;
1375 	u32 val;
1376 
1377 	if (queue == -1) {
1378 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1379 		val = 0;
1380 	} else {
1381 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1382 		val = 0x1 | (queue << 1);
1383 		val |= (val << 24) | (val << 16) | (val << 8);
1384 	}
1385 
1386 	for (offset = 0; offset <= 0xfc; offset += 4)
1387 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1388 }
1389 
1390 static void mvneta_percpu_unmask_interrupt(void *arg)
1391 {
1392 	struct mvneta_port *pp = arg;
1393 
1394 	/* All the queue are unmasked, but actually only the ones
1395 	 * mapped to this CPU will be unmasked
1396 	 */
1397 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1398 		    MVNETA_RX_INTR_MASK_ALL |
1399 		    MVNETA_TX_INTR_MASK_ALL |
1400 		    MVNETA_MISCINTR_INTR_MASK);
1401 }
1402 
1403 static void mvneta_percpu_mask_interrupt(void *arg)
1404 {
1405 	struct mvneta_port *pp = arg;
1406 
1407 	/* All the queue are masked, but actually only the ones
1408 	 * mapped to this CPU will be masked
1409 	 */
1410 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1411 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1412 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1413 }
1414 
1415 static void mvneta_percpu_clear_intr_cause(void *arg)
1416 {
1417 	struct mvneta_port *pp = arg;
1418 
1419 	/* All the queue are cleared, but actually only the ones
1420 	 * mapped to this CPU will be cleared
1421 	 */
1422 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1423 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1424 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1425 }
1426 
1427 /* This method sets defaults to the NETA port:
1428  *	Clears interrupt Cause and Mask registers.
1429  *	Clears all MAC tables.
1430  *	Sets defaults to all registers.
1431  *	Resets RX and TX descriptor rings.
1432  *	Resets PHY.
1433  * This method can be called after mvneta_port_down() to return the port
1434  *	settings to defaults.
1435  */
1436 static void mvneta_defaults_set(struct mvneta_port *pp)
1437 {
1438 	int cpu;
1439 	int queue;
1440 	u32 val;
1441 	int max_cpu = num_present_cpus();
1442 
1443 	/* Clear all Cause registers */
1444 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1445 
1446 	/* Mask all interrupts */
1447 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1448 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1449 
1450 	/* Enable MBUS Retry bit16 */
1451 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1452 
1453 	/* Set CPU queue access map. CPUs are assigned to the RX and
1454 	 * TX queues modulo their number. If there is only one TX
1455 	 * queue then it is assigned to the CPU associated to the
1456 	 * default RX queue.
1457 	 */
1458 	for_each_present_cpu(cpu) {
1459 		int rxq_map = 0, txq_map = 0;
1460 		int rxq, txq;
1461 		if (!pp->neta_armada3700) {
1462 			for (rxq = 0; rxq < rxq_number; rxq++)
1463 				if ((rxq % max_cpu) == cpu)
1464 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1465 
1466 			for (txq = 0; txq < txq_number; txq++)
1467 				if ((txq % max_cpu) == cpu)
1468 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1469 
1470 			/* With only one TX queue we configure a special case
1471 			 * which will allow to get all the irq on a single
1472 			 * CPU
1473 			 */
1474 			if (txq_number == 1)
1475 				txq_map = (cpu == pp->rxq_def) ?
1476 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1477 
1478 		} else {
1479 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1480 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1481 		}
1482 
1483 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1484 	}
1485 
1486 	/* Reset RX and TX DMAs */
1487 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1488 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1489 
1490 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1491 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1492 	for (queue = 0; queue < txq_number; queue++) {
1493 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1494 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1495 	}
1496 
1497 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1498 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1499 
1500 	/* Set Port Acceleration Mode */
1501 	if (pp->bm_priv)
1502 		/* HW buffer management + legacy parser */
1503 		val = MVNETA_ACC_MODE_EXT2;
1504 	else
1505 		/* SW buffer management + legacy parser */
1506 		val = MVNETA_ACC_MODE_EXT1;
1507 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1508 
1509 	if (pp->bm_priv)
1510 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1511 
1512 	/* Update val of portCfg register accordingly with all RxQueue types */
1513 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1514 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1515 
1516 	val = 0;
1517 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1518 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1519 
1520 	/* Build PORT_SDMA_CONFIG_REG */
1521 	val = 0;
1522 
1523 	/* Default burst size */
1524 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1525 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1526 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1527 
1528 #if defined(__BIG_ENDIAN)
1529 	val |= MVNETA_DESC_SWAP;
1530 #endif
1531 
1532 	/* Assign port SDMA configuration */
1533 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1534 
1535 	/* Disable PHY polling in hardware, since we're using the
1536 	 * kernel phylib to do this.
1537 	 */
1538 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1539 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1540 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1541 
1542 	mvneta_set_ucast_table(pp, -1);
1543 	mvneta_set_special_mcast_table(pp, -1);
1544 	mvneta_set_other_mcast_table(pp, -1);
1545 
1546 	/* Set port interrupt enable register - default enable all */
1547 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1548 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1549 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1550 
1551 	mvneta_mib_counters_clear(pp);
1552 }
1553 
1554 /* Set max sizes for tx queues */
1555 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1556 
1557 {
1558 	u32 val, size, mtu;
1559 	int queue;
1560 
1561 	mtu = max_tx_size * 8;
1562 	if (mtu > MVNETA_TX_MTU_MAX)
1563 		mtu = MVNETA_TX_MTU_MAX;
1564 
1565 	/* Set MTU */
1566 	val = mvreg_read(pp, MVNETA_TX_MTU);
1567 	val &= ~MVNETA_TX_MTU_MAX;
1568 	val |= mtu;
1569 	mvreg_write(pp, MVNETA_TX_MTU, val);
1570 
1571 	/* TX token size and all TXQs token size must be larger that MTU */
1572 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1573 
1574 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1575 	if (size < mtu) {
1576 		size = mtu;
1577 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1578 		val |= size;
1579 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1580 	}
1581 	for (queue = 0; queue < txq_number; queue++) {
1582 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1583 
1584 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1585 		if (size < mtu) {
1586 			size = mtu;
1587 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1588 			val |= size;
1589 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1590 		}
1591 	}
1592 }
1593 
1594 /* Set unicast address */
1595 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1596 				  int queue)
1597 {
1598 	unsigned int unicast_reg;
1599 	unsigned int tbl_offset;
1600 	unsigned int reg_offset;
1601 
1602 	/* Locate the Unicast table entry */
1603 	last_nibble = (0xf & last_nibble);
1604 
1605 	/* offset from unicast tbl base */
1606 	tbl_offset = (last_nibble / 4) * 4;
1607 
1608 	/* offset within the above reg  */
1609 	reg_offset = last_nibble % 4;
1610 
1611 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1612 
1613 	if (queue == -1) {
1614 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1615 		unicast_reg &= ~(0xff << (8 * reg_offset));
1616 	} else {
1617 		unicast_reg &= ~(0xff << (8 * reg_offset));
1618 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1619 	}
1620 
1621 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1622 }
1623 
1624 /* Set mac address */
1625 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1626 				int queue)
1627 {
1628 	unsigned int mac_h;
1629 	unsigned int mac_l;
1630 
1631 	if (queue != -1) {
1632 		mac_l = (addr[4] << 8) | (addr[5]);
1633 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1634 			(addr[2] << 8) | (addr[3] << 0);
1635 
1636 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1637 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1638 	}
1639 
1640 	/* Accept frames of this address */
1641 	mvneta_set_ucast_addr(pp, addr[5], queue);
1642 }
1643 
1644 /* Set the number of packets that will be received before RX interrupt
1645  * will be generated by HW.
1646  */
1647 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1648 				    struct mvneta_rx_queue *rxq, u32 value)
1649 {
1650 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1651 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1652 }
1653 
1654 /* Set the time delay in usec before RX interrupt will be generated by
1655  * HW.
1656  */
1657 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1658 				    struct mvneta_rx_queue *rxq, u32 value)
1659 {
1660 	u32 val;
1661 	unsigned long clk_rate;
1662 
1663 	clk_rate = clk_get_rate(pp->clk);
1664 	val = (clk_rate / 1000000) * value;
1665 
1666 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1667 }
1668 
1669 /* Set threshold for TX_DONE pkts coalescing */
1670 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1671 					 struct mvneta_tx_queue *txq, u32 value)
1672 {
1673 	u32 val;
1674 
1675 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1676 
1677 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1678 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1679 
1680 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1681 }
1682 
1683 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1684 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1685 				u32 phys_addr, void *virt_addr,
1686 				struct mvneta_rx_queue *rxq)
1687 {
1688 	int i;
1689 
1690 	rx_desc->buf_phys_addr = phys_addr;
1691 	i = rx_desc - rxq->descs;
1692 	rxq->buf_virt_addr[i] = virt_addr;
1693 }
1694 
1695 /* Decrement sent descriptors counter */
1696 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1697 				     struct mvneta_tx_queue *txq,
1698 				     int sent_desc)
1699 {
1700 	u32 val;
1701 
1702 	/* Only 255 TX descriptors can be updated at once */
1703 	while (sent_desc > 0xff) {
1704 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1705 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1706 		sent_desc = sent_desc - 0xff;
1707 	}
1708 
1709 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1710 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1711 }
1712 
1713 /* Get number of TX descriptors already sent by HW */
1714 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1715 					struct mvneta_tx_queue *txq)
1716 {
1717 	u32 val;
1718 	int sent_desc;
1719 
1720 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1721 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1722 		MVNETA_TXQ_SENT_DESC_SHIFT;
1723 
1724 	return sent_desc;
1725 }
1726 
1727 /* Get number of sent descriptors and decrement counter.
1728  *  The number of sent descriptors is returned.
1729  */
1730 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1731 				     struct mvneta_tx_queue *txq)
1732 {
1733 	int sent_desc;
1734 
1735 	/* Get number of sent descriptors */
1736 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1737 
1738 	/* Decrement sent descriptors counter */
1739 	if (sent_desc)
1740 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1741 
1742 	return sent_desc;
1743 }
1744 
1745 /* Set TXQ descriptors fields relevant for CSUM calculation */
1746 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1747 				int ip_hdr_len, int l4_proto)
1748 {
1749 	u32 command;
1750 
1751 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1752 	 * G_L4_chk, L4_type; required only for checksum
1753 	 * calculation
1754 	 */
1755 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1756 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1757 
1758 	if (l3_proto == htons(ETH_P_IP))
1759 		command |= MVNETA_TXD_IP_CSUM;
1760 	else
1761 		command |= MVNETA_TX_L3_IP6;
1762 
1763 	if (l4_proto == IPPROTO_TCP)
1764 		command |=  MVNETA_TX_L4_CSUM_FULL;
1765 	else if (l4_proto == IPPROTO_UDP)
1766 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1767 	else
1768 		command |= MVNETA_TX_L4_CSUM_NOT;
1769 
1770 	return command;
1771 }
1772 
1773 
1774 /* Display more error info */
1775 static void mvneta_rx_error(struct mvneta_port *pp,
1776 			    struct mvneta_rx_desc *rx_desc)
1777 {
1778 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1779 	u32 status = rx_desc->status;
1780 
1781 	/* update per-cpu counter */
1782 	u64_stats_update_begin(&stats->syncp);
1783 	stats->rx_errors++;
1784 	u64_stats_update_end(&stats->syncp);
1785 
1786 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1787 	case MVNETA_RXD_ERR_CRC:
1788 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1789 			   status, rx_desc->data_size);
1790 		break;
1791 	case MVNETA_RXD_ERR_OVERRUN:
1792 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1793 			   status, rx_desc->data_size);
1794 		break;
1795 	case MVNETA_RXD_ERR_LEN:
1796 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1797 			   status, rx_desc->data_size);
1798 		break;
1799 	case MVNETA_RXD_ERR_RESOURCE:
1800 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1801 			   status, rx_desc->data_size);
1802 		break;
1803 	}
1804 }
1805 
1806 /* Handle RX checksum offload based on the descriptor's status */
1807 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1808 			   struct sk_buff *skb)
1809 {
1810 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1811 	    (status & MVNETA_RXD_L3_IP4) &&
1812 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1813 		skb->csum = 0;
1814 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1815 		return;
1816 	}
1817 
1818 	skb->ip_summed = CHECKSUM_NONE;
1819 }
1820 
1821 /* Return tx queue pointer (find last set bit) according to <cause> returned
1822  * form tx_done reg. <cause> must not be null. The return value is always a
1823  * valid queue for matching the first one found in <cause>.
1824  */
1825 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1826 						     u32 cause)
1827 {
1828 	int queue = fls(cause) - 1;
1829 
1830 	return &pp->txqs[queue];
1831 }
1832 
1833 /* Free tx queue skbuffs */
1834 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1835 				 struct mvneta_tx_queue *txq, int num,
1836 				 struct netdev_queue *nq)
1837 {
1838 	unsigned int bytes_compl = 0, pkts_compl = 0;
1839 	int i;
1840 
1841 	for (i = 0; i < num; i++) {
1842 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1843 		struct mvneta_tx_desc *tx_desc = txq->descs +
1844 			txq->txq_get_index;
1845 
1846 		mvneta_txq_inc_get(txq);
1847 
1848 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1849 		    buf->type != MVNETA_TYPE_XDP_TX)
1850 			dma_unmap_single(pp->dev->dev.parent,
1851 					 tx_desc->buf_phys_addr,
1852 					 tx_desc->data_size, DMA_TO_DEVICE);
1853 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1854 			bytes_compl += buf->skb->len;
1855 			pkts_compl++;
1856 			dev_kfree_skb_any(buf->skb);
1857 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1858 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1859 			xdp_return_frame(buf->xdpf);
1860 		}
1861 	}
1862 
1863 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1864 }
1865 
1866 /* Handle end of transmission */
1867 static void mvneta_txq_done(struct mvneta_port *pp,
1868 			   struct mvneta_tx_queue *txq)
1869 {
1870 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1871 	int tx_done;
1872 
1873 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1874 	if (!tx_done)
1875 		return;
1876 
1877 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1878 
1879 	txq->count -= tx_done;
1880 
1881 	if (netif_tx_queue_stopped(nq)) {
1882 		if (txq->count <= txq->tx_wake_threshold)
1883 			netif_tx_wake_queue(nq);
1884 	}
1885 }
1886 
1887 /* Refill processing for SW buffer management */
1888 /* Allocate page per descriptor */
1889 static int mvneta_rx_refill(struct mvneta_port *pp,
1890 			    struct mvneta_rx_desc *rx_desc,
1891 			    struct mvneta_rx_queue *rxq,
1892 			    gfp_t gfp_mask)
1893 {
1894 	dma_addr_t phys_addr;
1895 	struct page *page;
1896 
1897 	page = page_pool_alloc_pages(rxq->page_pool,
1898 				     gfp_mask | __GFP_NOWARN);
1899 	if (!page)
1900 		return -ENOMEM;
1901 
1902 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1903 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1904 
1905 	return 0;
1906 }
1907 
1908 /* Handle tx checksum */
1909 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1910 {
1911 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1912 		int ip_hdr_len = 0;
1913 		__be16 l3_proto = vlan_get_protocol(skb);
1914 		u8 l4_proto;
1915 
1916 		if (l3_proto == htons(ETH_P_IP)) {
1917 			struct iphdr *ip4h = ip_hdr(skb);
1918 
1919 			/* Calculate IPv4 checksum and L4 checksum */
1920 			ip_hdr_len = ip4h->ihl;
1921 			l4_proto = ip4h->protocol;
1922 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1923 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1924 
1925 			/* Read l4_protocol from one of IPv6 extra headers */
1926 			if (skb_network_header_len(skb) > 0)
1927 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1928 			l4_proto = ip6h->nexthdr;
1929 		} else
1930 			return MVNETA_TX_L4_CSUM_NOT;
1931 
1932 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1933 					    l3_proto, ip_hdr_len, l4_proto);
1934 	}
1935 
1936 	return MVNETA_TX_L4_CSUM_NOT;
1937 }
1938 
1939 /* Drop packets received by the RXQ and free buffers */
1940 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1941 				 struct mvneta_rx_queue *rxq)
1942 {
1943 	int rx_done, i;
1944 
1945 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1946 	if (rx_done)
1947 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1948 
1949 	if (pp->bm_priv) {
1950 		for (i = 0; i < rx_done; i++) {
1951 			struct mvneta_rx_desc *rx_desc =
1952 						  mvneta_rxq_next_desc_get(rxq);
1953 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1954 			struct mvneta_bm_pool *bm_pool;
1955 
1956 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1957 			/* Return dropped buffer to the pool */
1958 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1959 					      rx_desc->buf_phys_addr);
1960 		}
1961 		return;
1962 	}
1963 
1964 	for (i = 0; i < rxq->size; i++) {
1965 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1966 		void *data = rxq->buf_virt_addr[i];
1967 		if (!data || !(rx_desc->buf_phys_addr))
1968 			continue;
1969 
1970 		page_pool_put_full_page(rxq->page_pool, data, false);
1971 	}
1972 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1973 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1974 	page_pool_destroy(rxq->page_pool);
1975 	rxq->page_pool = NULL;
1976 }
1977 
1978 static void
1979 mvneta_update_stats(struct mvneta_port *pp,
1980 		    struct mvneta_stats *ps)
1981 {
1982 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1983 
1984 	u64_stats_update_begin(&stats->syncp);
1985 	stats->es.ps.rx_packets += ps->rx_packets;
1986 	stats->es.ps.rx_bytes += ps->rx_bytes;
1987 	/* xdp */
1988 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1989 	stats->es.ps.xdp_pass += ps->xdp_pass;
1990 	stats->es.ps.xdp_drop += ps->xdp_drop;
1991 	u64_stats_update_end(&stats->syncp);
1992 }
1993 
1994 static inline
1995 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1996 {
1997 	struct mvneta_rx_desc *rx_desc;
1998 	int curr_desc = rxq->first_to_refill;
1999 	int i;
2000 
2001 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2002 		rx_desc = rxq->descs + curr_desc;
2003 		if (!(rx_desc->buf_phys_addr)) {
2004 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2005 				struct mvneta_pcpu_stats *stats;
2006 
2007 				pr_err("Can't refill queue %d. Done %d from %d\n",
2008 				       rxq->id, i, rxq->refill_num);
2009 
2010 				stats = this_cpu_ptr(pp->stats);
2011 				u64_stats_update_begin(&stats->syncp);
2012 				stats->es.refill_error++;
2013 				u64_stats_update_end(&stats->syncp);
2014 				break;
2015 			}
2016 		}
2017 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2018 	}
2019 	rxq->refill_num -= i;
2020 	rxq->first_to_refill = curr_desc;
2021 
2022 	return i;
2023 }
2024 
2025 static void
2026 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2027 		    struct xdp_buff *xdp, int sync_len, bool napi)
2028 {
2029 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2030 	int i;
2031 
2032 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2033 			   sync_len, napi);
2034 	for (i = 0; i < sinfo->nr_frags; i++)
2035 		page_pool_put_full_page(rxq->page_pool,
2036 					skb_frag_page(&sinfo->frags[i]), napi);
2037 }
2038 
2039 static int
2040 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2041 			struct xdp_frame *xdpf, bool dma_map)
2042 {
2043 	struct mvneta_tx_desc *tx_desc;
2044 	struct mvneta_tx_buf *buf;
2045 	dma_addr_t dma_addr;
2046 
2047 	if (txq->count >= txq->tx_stop_threshold)
2048 		return MVNETA_XDP_DROPPED;
2049 
2050 	tx_desc = mvneta_txq_next_desc_get(txq);
2051 
2052 	buf = &txq->buf[txq->txq_put_index];
2053 	if (dma_map) {
2054 		/* ndo_xdp_xmit */
2055 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2056 					  xdpf->len, DMA_TO_DEVICE);
2057 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2058 			mvneta_txq_desc_put(txq);
2059 			return MVNETA_XDP_DROPPED;
2060 		}
2061 		buf->type = MVNETA_TYPE_XDP_NDO;
2062 	} else {
2063 		struct page *page = virt_to_page(xdpf->data);
2064 
2065 		dma_addr = page_pool_get_dma_addr(page) +
2066 			   sizeof(*xdpf) + xdpf->headroom;
2067 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2068 					   xdpf->len, DMA_BIDIRECTIONAL);
2069 		buf->type = MVNETA_TYPE_XDP_TX;
2070 	}
2071 	buf->xdpf = xdpf;
2072 
2073 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2074 	tx_desc->buf_phys_addr = dma_addr;
2075 	tx_desc->data_size = xdpf->len;
2076 
2077 	mvneta_txq_inc_put(txq);
2078 	txq->pending++;
2079 	txq->count++;
2080 
2081 	return MVNETA_XDP_TX;
2082 }
2083 
2084 static int
2085 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2086 {
2087 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2088 	struct mvneta_tx_queue *txq;
2089 	struct netdev_queue *nq;
2090 	struct xdp_frame *xdpf;
2091 	int cpu;
2092 	u32 ret;
2093 
2094 	xdpf = xdp_convert_buff_to_frame(xdp);
2095 	if (unlikely(!xdpf))
2096 		return MVNETA_XDP_DROPPED;
2097 
2098 	cpu = smp_processor_id();
2099 	txq = &pp->txqs[cpu % txq_number];
2100 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2101 
2102 	__netif_tx_lock(nq, cpu);
2103 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2104 	if (ret == MVNETA_XDP_TX) {
2105 		u64_stats_update_begin(&stats->syncp);
2106 		stats->es.ps.tx_bytes += xdpf->len;
2107 		stats->es.ps.tx_packets++;
2108 		stats->es.ps.xdp_tx++;
2109 		u64_stats_update_end(&stats->syncp);
2110 
2111 		mvneta_txq_pend_desc_add(pp, txq, 0);
2112 	} else {
2113 		u64_stats_update_begin(&stats->syncp);
2114 		stats->es.ps.xdp_tx_err++;
2115 		u64_stats_update_end(&stats->syncp);
2116 	}
2117 	__netif_tx_unlock(nq);
2118 
2119 	return ret;
2120 }
2121 
2122 static int
2123 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2124 		struct xdp_frame **frames, u32 flags)
2125 {
2126 	struct mvneta_port *pp = netdev_priv(dev);
2127 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2128 	int i, nxmit_byte = 0, nxmit = num_frame;
2129 	int cpu = smp_processor_id();
2130 	struct mvneta_tx_queue *txq;
2131 	struct netdev_queue *nq;
2132 	u32 ret;
2133 
2134 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2135 		return -ENETDOWN;
2136 
2137 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2138 		return -EINVAL;
2139 
2140 	txq = &pp->txqs[cpu % txq_number];
2141 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2142 
2143 	__netif_tx_lock(nq, cpu);
2144 	for (i = 0; i < num_frame; i++) {
2145 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2146 		if (ret == MVNETA_XDP_TX) {
2147 			nxmit_byte += frames[i]->len;
2148 		} else {
2149 			xdp_return_frame_rx_napi(frames[i]);
2150 			nxmit--;
2151 		}
2152 	}
2153 
2154 	if (unlikely(flags & XDP_XMIT_FLUSH))
2155 		mvneta_txq_pend_desc_add(pp, txq, 0);
2156 	__netif_tx_unlock(nq);
2157 
2158 	u64_stats_update_begin(&stats->syncp);
2159 	stats->es.ps.tx_bytes += nxmit_byte;
2160 	stats->es.ps.tx_packets += nxmit;
2161 	stats->es.ps.xdp_xmit += nxmit;
2162 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2163 	u64_stats_update_end(&stats->syncp);
2164 
2165 	return nxmit;
2166 }
2167 
2168 static int
2169 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2170 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2171 	       u32 frame_sz, struct mvneta_stats *stats)
2172 {
2173 	unsigned int len, data_len, sync;
2174 	u32 ret, act;
2175 
2176 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2177 	data_len = xdp->data_end - xdp->data;
2178 	act = bpf_prog_run_xdp(prog, xdp);
2179 
2180 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2181 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2182 	sync = max(sync, len);
2183 
2184 	switch (act) {
2185 	case XDP_PASS:
2186 		stats->xdp_pass++;
2187 		return MVNETA_XDP_PASS;
2188 	case XDP_REDIRECT: {
2189 		int err;
2190 
2191 		err = xdp_do_redirect(pp->dev, xdp, prog);
2192 		if (unlikely(err)) {
2193 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2194 			ret = MVNETA_XDP_DROPPED;
2195 		} else {
2196 			ret = MVNETA_XDP_REDIR;
2197 			stats->xdp_redirect++;
2198 		}
2199 		break;
2200 	}
2201 	case XDP_TX:
2202 		ret = mvneta_xdp_xmit_back(pp, xdp);
2203 		if (ret != MVNETA_XDP_TX)
2204 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2205 		break;
2206 	default:
2207 		bpf_warn_invalid_xdp_action(act);
2208 		/* fall through */
2209 	case XDP_ABORTED:
2210 		trace_xdp_exception(pp->dev, prog, act);
2211 		/* fall through */
2212 	case XDP_DROP:
2213 		mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2214 		ret = MVNETA_XDP_DROPPED;
2215 		stats->xdp_drop++;
2216 		break;
2217 	}
2218 
2219 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2220 	stats->rx_packets++;
2221 
2222 	return ret;
2223 }
2224 
2225 static void
2226 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2227 		     struct mvneta_rx_desc *rx_desc,
2228 		     struct mvneta_rx_queue *rxq,
2229 		     struct xdp_buff *xdp, int *size,
2230 		     struct page *page,
2231 		     struct mvneta_stats *stats)
2232 {
2233 	unsigned char *data = page_address(page);
2234 	int data_len = -MVNETA_MH_SIZE, len;
2235 	struct net_device *dev = pp->dev;
2236 	enum dma_data_direction dma_dir;
2237 	struct skb_shared_info *sinfo;
2238 
2239 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2240 		len = MVNETA_MAX_RX_BUF_SIZE;
2241 		data_len += len;
2242 	} else {
2243 		len = rx_desc->data_size;
2244 		data_len += len - ETH_FCS_LEN;
2245 	}
2246 
2247 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2248 	dma_sync_single_for_cpu(dev->dev.parent,
2249 				rx_desc->buf_phys_addr,
2250 				len, dma_dir);
2251 
2252 	/* Prefetch header */
2253 	prefetch(data);
2254 
2255 	xdp->data_hard_start = data;
2256 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2257 	xdp->data_end = xdp->data + data_len;
2258 	xdp_set_data_meta_invalid(xdp);
2259 
2260 	sinfo = xdp_get_shared_info_from_buff(xdp);
2261 	sinfo->nr_frags = 0;
2262 
2263 	*size = rx_desc->data_size - len;
2264 	rx_desc->buf_phys_addr = 0;
2265 }
2266 
2267 static void
2268 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2269 			    struct mvneta_rx_desc *rx_desc,
2270 			    struct mvneta_rx_queue *rxq,
2271 			    struct xdp_buff *xdp, int *size,
2272 			    struct page *page)
2273 {
2274 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2275 	struct net_device *dev = pp->dev;
2276 	enum dma_data_direction dma_dir;
2277 	int data_len, len;
2278 
2279 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2280 		len = MVNETA_MAX_RX_BUF_SIZE;
2281 		data_len = len;
2282 	} else {
2283 		len = *size;
2284 		data_len = len - ETH_FCS_LEN;
2285 	}
2286 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2287 	dma_sync_single_for_cpu(dev->dev.parent,
2288 				rx_desc->buf_phys_addr,
2289 				len, dma_dir);
2290 
2291 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2292 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2293 
2294 		skb_frag_off_set(frag, pp->rx_offset_correction);
2295 		skb_frag_size_set(frag, data_len);
2296 		__skb_frag_set_page(frag, page);
2297 		sinfo->nr_frags++;
2298 
2299 		rx_desc->buf_phys_addr = 0;
2300 	}
2301 	*size -= len;
2302 }
2303 
2304 static struct sk_buff *
2305 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2306 		      struct xdp_buff *xdp, u32 desc_status)
2307 {
2308 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2309 	int i, num_frags = sinfo->nr_frags;
2310 	skb_frag_t frags[MAX_SKB_FRAGS];
2311 	struct sk_buff *skb;
2312 
2313 	memcpy(frags, sinfo->frags, sizeof(skb_frag_t) * num_frags);
2314 
2315 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2316 	if (!skb)
2317 		return ERR_PTR(-ENOMEM);
2318 
2319 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2320 
2321 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2322 	skb_put(skb, xdp->data_end - xdp->data);
2323 	mvneta_rx_csum(pp, desc_status, skb);
2324 
2325 	for (i = 0; i < num_frags; i++) {
2326 		struct page *page = skb_frag_page(&frags[i]);
2327 
2328 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2329 				page, skb_frag_off(&frags[i]),
2330 				skb_frag_size(&frags[i]), PAGE_SIZE);
2331 		page_pool_release_page(rxq->page_pool, page);
2332 	}
2333 
2334 	return skb;
2335 }
2336 
2337 /* Main rx processing when using software buffer management */
2338 static int mvneta_rx_swbm(struct napi_struct *napi,
2339 			  struct mvneta_port *pp, int budget,
2340 			  struct mvneta_rx_queue *rxq)
2341 {
2342 	int rx_proc = 0, rx_todo, refill, size = 0;
2343 	struct net_device *dev = pp->dev;
2344 	struct xdp_buff xdp_buf = {
2345 		.frame_sz = PAGE_SIZE,
2346 		.rxq = &rxq->xdp_rxq,
2347 	};
2348 	struct mvneta_stats ps = {};
2349 	struct bpf_prog *xdp_prog;
2350 	u32 desc_status, frame_sz;
2351 
2352 	/* Get number of received packets */
2353 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2354 
2355 	rcu_read_lock();
2356 	xdp_prog = READ_ONCE(pp->xdp_prog);
2357 
2358 	/* Fairness NAPI loop */
2359 	while (rx_proc < budget && rx_proc < rx_todo) {
2360 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2361 		u32 rx_status, index;
2362 		struct sk_buff *skb;
2363 		struct page *page;
2364 
2365 		index = rx_desc - rxq->descs;
2366 		page = (struct page *)rxq->buf_virt_addr[index];
2367 
2368 		rx_status = rx_desc->status;
2369 		rx_proc++;
2370 		rxq->refill_num++;
2371 
2372 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2373 			/* Check errors only for FIRST descriptor */
2374 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2375 				mvneta_rx_error(pp, rx_desc);
2376 				goto next;
2377 			}
2378 
2379 			size = rx_desc->data_size;
2380 			frame_sz = size - ETH_FCS_LEN;
2381 			desc_status = rx_desc->status;
2382 
2383 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2384 					     &size, page, &ps);
2385 		} else {
2386 			if (unlikely(!xdp_buf.data_hard_start))
2387 				continue;
2388 
2389 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2390 						    &size, page);
2391 		} /* Middle or Last descriptor */
2392 
2393 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2394 			/* no last descriptor this time */
2395 			continue;
2396 
2397 		if (size) {
2398 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2399 			goto next;
2400 		}
2401 
2402 		if (xdp_prog &&
2403 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2404 			goto next;
2405 
2406 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2407 		if (IS_ERR(skb)) {
2408 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2409 
2410 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2411 
2412 			u64_stats_update_begin(&stats->syncp);
2413 			stats->es.skb_alloc_error++;
2414 			stats->rx_dropped++;
2415 			u64_stats_update_end(&stats->syncp);
2416 
2417 			goto next;
2418 		}
2419 
2420 		ps.rx_bytes += skb->len;
2421 		ps.rx_packets++;
2422 
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		napi_gro_receive(napi, skb);
2425 next:
2426 		xdp_buf.data_hard_start = NULL;
2427 	}
2428 	rcu_read_unlock();
2429 
2430 	if (xdp_buf.data_hard_start)
2431 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2432 
2433 	if (ps.xdp_redirect)
2434 		xdp_do_flush_map();
2435 
2436 	if (ps.rx_packets)
2437 		mvneta_update_stats(pp, &ps);
2438 
2439 	/* return some buffers to hardware queue, one at a time is too slow */
2440 	refill = mvneta_rx_refill_queue(pp, rxq);
2441 
2442 	/* Update rxq management counters */
2443 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2444 
2445 	return ps.rx_packets;
2446 }
2447 
2448 /* Main rx processing when using hardware buffer management */
2449 static int mvneta_rx_hwbm(struct napi_struct *napi,
2450 			  struct mvneta_port *pp, int rx_todo,
2451 			  struct mvneta_rx_queue *rxq)
2452 {
2453 	struct net_device *dev = pp->dev;
2454 	int rx_done;
2455 	u32 rcvd_pkts = 0;
2456 	u32 rcvd_bytes = 0;
2457 
2458 	/* Get number of received packets */
2459 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2460 
2461 	if (rx_todo > rx_done)
2462 		rx_todo = rx_done;
2463 
2464 	rx_done = 0;
2465 
2466 	/* Fairness NAPI loop */
2467 	while (rx_done < rx_todo) {
2468 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2469 		struct mvneta_bm_pool *bm_pool = NULL;
2470 		struct sk_buff *skb;
2471 		unsigned char *data;
2472 		dma_addr_t phys_addr;
2473 		u32 rx_status, frag_size;
2474 		int rx_bytes, err;
2475 		u8 pool_id;
2476 
2477 		rx_done++;
2478 		rx_status = rx_desc->status;
2479 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2480 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2481 		phys_addr = rx_desc->buf_phys_addr;
2482 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2483 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2484 
2485 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2486 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2487 err_drop_frame_ret_pool:
2488 			/* Return the buffer to the pool */
2489 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2490 					      rx_desc->buf_phys_addr);
2491 err_drop_frame:
2492 			mvneta_rx_error(pp, rx_desc);
2493 			/* leave the descriptor untouched */
2494 			continue;
2495 		}
2496 
2497 		if (rx_bytes <= rx_copybreak) {
2498 			/* better copy a small frame and not unmap the DMA region */
2499 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2500 			if (unlikely(!skb))
2501 				goto err_drop_frame_ret_pool;
2502 
2503 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2504 			                              rx_desc->buf_phys_addr,
2505 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2506 			                              rx_bytes,
2507 			                              DMA_FROM_DEVICE);
2508 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2509 				     rx_bytes);
2510 
2511 			skb->protocol = eth_type_trans(skb, dev);
2512 			mvneta_rx_csum(pp, rx_status, skb);
2513 			napi_gro_receive(napi, skb);
2514 
2515 			rcvd_pkts++;
2516 			rcvd_bytes += rx_bytes;
2517 
2518 			/* Return the buffer to the pool */
2519 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2520 					      rx_desc->buf_phys_addr);
2521 
2522 			/* leave the descriptor and buffer untouched */
2523 			continue;
2524 		}
2525 
2526 		/* Refill processing */
2527 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2528 		if (err) {
2529 			struct mvneta_pcpu_stats *stats;
2530 
2531 			netdev_err(dev, "Linux processing - Can't refill\n");
2532 
2533 			stats = this_cpu_ptr(pp->stats);
2534 			u64_stats_update_begin(&stats->syncp);
2535 			stats->es.refill_error++;
2536 			u64_stats_update_end(&stats->syncp);
2537 
2538 			goto err_drop_frame_ret_pool;
2539 		}
2540 
2541 		frag_size = bm_pool->hwbm_pool.frag_size;
2542 
2543 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2544 
2545 		/* After refill old buffer has to be unmapped regardless
2546 		 * the skb is successfully built or not.
2547 		 */
2548 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2549 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2550 		if (!skb)
2551 			goto err_drop_frame;
2552 
2553 		rcvd_pkts++;
2554 		rcvd_bytes += rx_bytes;
2555 
2556 		/* Linux processing */
2557 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2558 		skb_put(skb, rx_bytes);
2559 
2560 		skb->protocol = eth_type_trans(skb, dev);
2561 
2562 		mvneta_rx_csum(pp, rx_status, skb);
2563 
2564 		napi_gro_receive(napi, skb);
2565 	}
2566 
2567 	if (rcvd_pkts) {
2568 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2569 
2570 		u64_stats_update_begin(&stats->syncp);
2571 		stats->es.ps.rx_packets += rcvd_pkts;
2572 		stats->es.ps.rx_bytes += rcvd_bytes;
2573 		u64_stats_update_end(&stats->syncp);
2574 	}
2575 
2576 	/* Update rxq management counters */
2577 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2578 
2579 	return rx_done;
2580 }
2581 
2582 static inline void
2583 mvneta_tso_put_hdr(struct sk_buff *skb,
2584 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2585 {
2586 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2587 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2588 	struct mvneta_tx_desc *tx_desc;
2589 
2590 	tx_desc = mvneta_txq_next_desc_get(txq);
2591 	tx_desc->data_size = hdr_len;
2592 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2593 	tx_desc->command |= MVNETA_TXD_F_DESC;
2594 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2595 				 txq->txq_put_index * TSO_HEADER_SIZE;
2596 	buf->type = MVNETA_TYPE_SKB;
2597 	buf->skb = NULL;
2598 
2599 	mvneta_txq_inc_put(txq);
2600 }
2601 
2602 static inline int
2603 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2604 		    struct sk_buff *skb, char *data, int size,
2605 		    bool last_tcp, bool is_last)
2606 {
2607 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2608 	struct mvneta_tx_desc *tx_desc;
2609 
2610 	tx_desc = mvneta_txq_next_desc_get(txq);
2611 	tx_desc->data_size = size;
2612 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2613 						size, DMA_TO_DEVICE);
2614 	if (unlikely(dma_mapping_error(dev->dev.parent,
2615 		     tx_desc->buf_phys_addr))) {
2616 		mvneta_txq_desc_put(txq);
2617 		return -ENOMEM;
2618 	}
2619 
2620 	tx_desc->command = 0;
2621 	buf->type = MVNETA_TYPE_SKB;
2622 	buf->skb = NULL;
2623 
2624 	if (last_tcp) {
2625 		/* last descriptor in the TCP packet */
2626 		tx_desc->command = MVNETA_TXD_L_DESC;
2627 
2628 		/* last descriptor in SKB */
2629 		if (is_last)
2630 			buf->skb = skb;
2631 	}
2632 	mvneta_txq_inc_put(txq);
2633 	return 0;
2634 }
2635 
2636 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2637 			 struct mvneta_tx_queue *txq)
2638 {
2639 	int hdr_len, total_len, data_left;
2640 	int desc_count = 0;
2641 	struct mvneta_port *pp = netdev_priv(dev);
2642 	struct tso_t tso;
2643 	int i;
2644 
2645 	/* Count needed descriptors */
2646 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2647 		return 0;
2648 
2649 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2650 		pr_info("*** Is this even  possible???!?!?\n");
2651 		return 0;
2652 	}
2653 
2654 	/* Initialize the TSO handler, and prepare the first payload */
2655 	hdr_len = tso_start(skb, &tso);
2656 
2657 	total_len = skb->len - hdr_len;
2658 	while (total_len > 0) {
2659 		char *hdr;
2660 
2661 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2662 		total_len -= data_left;
2663 		desc_count++;
2664 
2665 		/* prepare packet headers: MAC + IP + TCP */
2666 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2667 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2668 
2669 		mvneta_tso_put_hdr(skb, pp, txq);
2670 
2671 		while (data_left > 0) {
2672 			int size;
2673 			desc_count++;
2674 
2675 			size = min_t(int, tso.size, data_left);
2676 
2677 			if (mvneta_tso_put_data(dev, txq, skb,
2678 						 tso.data, size,
2679 						 size == data_left,
2680 						 total_len == 0))
2681 				goto err_release;
2682 			data_left -= size;
2683 
2684 			tso_build_data(skb, &tso, size);
2685 		}
2686 	}
2687 
2688 	return desc_count;
2689 
2690 err_release:
2691 	/* Release all used data descriptors; header descriptors must not
2692 	 * be DMA-unmapped.
2693 	 */
2694 	for (i = desc_count - 1; i >= 0; i--) {
2695 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2696 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2697 			dma_unmap_single(pp->dev->dev.parent,
2698 					 tx_desc->buf_phys_addr,
2699 					 tx_desc->data_size,
2700 					 DMA_TO_DEVICE);
2701 		mvneta_txq_desc_put(txq);
2702 	}
2703 	return 0;
2704 }
2705 
2706 /* Handle tx fragmentation processing */
2707 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2708 				  struct mvneta_tx_queue *txq)
2709 {
2710 	struct mvneta_tx_desc *tx_desc;
2711 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2712 
2713 	for (i = 0; i < nr_frags; i++) {
2714 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2715 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2716 		void *addr = skb_frag_address(frag);
2717 
2718 		tx_desc = mvneta_txq_next_desc_get(txq);
2719 		tx_desc->data_size = skb_frag_size(frag);
2720 
2721 		tx_desc->buf_phys_addr =
2722 			dma_map_single(pp->dev->dev.parent, addr,
2723 				       tx_desc->data_size, DMA_TO_DEVICE);
2724 
2725 		if (dma_mapping_error(pp->dev->dev.parent,
2726 				      tx_desc->buf_phys_addr)) {
2727 			mvneta_txq_desc_put(txq);
2728 			goto error;
2729 		}
2730 
2731 		if (i == nr_frags - 1) {
2732 			/* Last descriptor */
2733 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2734 			buf->skb = skb;
2735 		} else {
2736 			/* Descriptor in the middle: Not First, Not Last */
2737 			tx_desc->command = 0;
2738 			buf->skb = NULL;
2739 		}
2740 		buf->type = MVNETA_TYPE_SKB;
2741 		mvneta_txq_inc_put(txq);
2742 	}
2743 
2744 	return 0;
2745 
2746 error:
2747 	/* Release all descriptors that were used to map fragments of
2748 	 * this packet, as well as the corresponding DMA mappings
2749 	 */
2750 	for (i = i - 1; i >= 0; i--) {
2751 		tx_desc = txq->descs + i;
2752 		dma_unmap_single(pp->dev->dev.parent,
2753 				 tx_desc->buf_phys_addr,
2754 				 tx_desc->data_size,
2755 				 DMA_TO_DEVICE);
2756 		mvneta_txq_desc_put(txq);
2757 	}
2758 
2759 	return -ENOMEM;
2760 }
2761 
2762 /* Main tx processing */
2763 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2764 {
2765 	struct mvneta_port *pp = netdev_priv(dev);
2766 	u16 txq_id = skb_get_queue_mapping(skb);
2767 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2768 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2769 	struct mvneta_tx_desc *tx_desc;
2770 	int len = skb->len;
2771 	int frags = 0;
2772 	u32 tx_cmd;
2773 
2774 	if (!netif_running(dev))
2775 		goto out;
2776 
2777 	if (skb_is_gso(skb)) {
2778 		frags = mvneta_tx_tso(skb, dev, txq);
2779 		goto out;
2780 	}
2781 
2782 	frags = skb_shinfo(skb)->nr_frags + 1;
2783 
2784 	/* Get a descriptor for the first part of the packet */
2785 	tx_desc = mvneta_txq_next_desc_get(txq);
2786 
2787 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2788 
2789 	tx_desc->data_size = skb_headlen(skb);
2790 
2791 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2792 						tx_desc->data_size,
2793 						DMA_TO_DEVICE);
2794 	if (unlikely(dma_mapping_error(dev->dev.parent,
2795 				       tx_desc->buf_phys_addr))) {
2796 		mvneta_txq_desc_put(txq);
2797 		frags = 0;
2798 		goto out;
2799 	}
2800 
2801 	buf->type = MVNETA_TYPE_SKB;
2802 	if (frags == 1) {
2803 		/* First and Last descriptor */
2804 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2805 		tx_desc->command = tx_cmd;
2806 		buf->skb = skb;
2807 		mvneta_txq_inc_put(txq);
2808 	} else {
2809 		/* First but not Last */
2810 		tx_cmd |= MVNETA_TXD_F_DESC;
2811 		buf->skb = NULL;
2812 		mvneta_txq_inc_put(txq);
2813 		tx_desc->command = tx_cmd;
2814 		/* Continue with other skb fragments */
2815 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2816 			dma_unmap_single(dev->dev.parent,
2817 					 tx_desc->buf_phys_addr,
2818 					 tx_desc->data_size,
2819 					 DMA_TO_DEVICE);
2820 			mvneta_txq_desc_put(txq);
2821 			frags = 0;
2822 			goto out;
2823 		}
2824 	}
2825 
2826 out:
2827 	if (frags > 0) {
2828 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2829 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2830 
2831 		netdev_tx_sent_queue(nq, len);
2832 
2833 		txq->count += frags;
2834 		if (txq->count >= txq->tx_stop_threshold)
2835 			netif_tx_stop_queue(nq);
2836 
2837 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2838 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2839 			mvneta_txq_pend_desc_add(pp, txq, frags);
2840 		else
2841 			txq->pending += frags;
2842 
2843 		u64_stats_update_begin(&stats->syncp);
2844 		stats->es.ps.tx_bytes += len;
2845 		stats->es.ps.tx_packets++;
2846 		u64_stats_update_end(&stats->syncp);
2847 	} else {
2848 		dev->stats.tx_dropped++;
2849 		dev_kfree_skb_any(skb);
2850 	}
2851 
2852 	return NETDEV_TX_OK;
2853 }
2854 
2855 
2856 /* Free tx resources, when resetting a port */
2857 static void mvneta_txq_done_force(struct mvneta_port *pp,
2858 				  struct mvneta_tx_queue *txq)
2859 
2860 {
2861 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2862 	int tx_done = txq->count;
2863 
2864 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2865 
2866 	/* reset txq */
2867 	txq->count = 0;
2868 	txq->txq_put_index = 0;
2869 	txq->txq_get_index = 0;
2870 }
2871 
2872 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2873  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2874  */
2875 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2876 {
2877 	struct mvneta_tx_queue *txq;
2878 	struct netdev_queue *nq;
2879 	int cpu = smp_processor_id();
2880 
2881 	while (cause_tx_done) {
2882 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2883 
2884 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2885 		__netif_tx_lock(nq, cpu);
2886 
2887 		if (txq->count)
2888 			mvneta_txq_done(pp, txq);
2889 
2890 		__netif_tx_unlock(nq);
2891 		cause_tx_done &= ~((1 << txq->id));
2892 	}
2893 }
2894 
2895 /* Compute crc8 of the specified address, using a unique algorithm ,
2896  * according to hw spec, different than generic crc8 algorithm
2897  */
2898 static int mvneta_addr_crc(unsigned char *addr)
2899 {
2900 	int crc = 0;
2901 	int i;
2902 
2903 	for (i = 0; i < ETH_ALEN; i++) {
2904 		int j;
2905 
2906 		crc = (crc ^ addr[i]) << 8;
2907 		for (j = 7; j >= 0; j--) {
2908 			if (crc & (0x100 << j))
2909 				crc ^= 0x107 << j;
2910 		}
2911 	}
2912 
2913 	return crc;
2914 }
2915 
2916 /* This method controls the net device special MAC multicast support.
2917  * The Special Multicast Table for MAC addresses supports MAC of the form
2918  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2919  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2920  * Table entries in the DA-Filter table. This method set the Special
2921  * Multicast Table appropriate entry.
2922  */
2923 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2924 					  unsigned char last_byte,
2925 					  int queue)
2926 {
2927 	unsigned int smc_table_reg;
2928 	unsigned int tbl_offset;
2929 	unsigned int reg_offset;
2930 
2931 	/* Register offset from SMC table base    */
2932 	tbl_offset = (last_byte / 4);
2933 	/* Entry offset within the above reg */
2934 	reg_offset = last_byte % 4;
2935 
2936 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2937 					+ tbl_offset * 4));
2938 
2939 	if (queue == -1)
2940 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2941 	else {
2942 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2943 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2944 	}
2945 
2946 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2947 		    smc_table_reg);
2948 }
2949 
2950 /* This method controls the network device Other MAC multicast support.
2951  * The Other Multicast Table is used for multicast of another type.
2952  * A CRC-8 is used as an index to the Other Multicast Table entries
2953  * in the DA-Filter table.
2954  * The method gets the CRC-8 value from the calling routine and
2955  * sets the Other Multicast Table appropriate entry according to the
2956  * specified CRC-8 .
2957  */
2958 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2959 					unsigned char crc8,
2960 					int queue)
2961 {
2962 	unsigned int omc_table_reg;
2963 	unsigned int tbl_offset;
2964 	unsigned int reg_offset;
2965 
2966 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2967 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2968 
2969 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2970 
2971 	if (queue == -1) {
2972 		/* Clear accepts frame bit at specified Other DA table entry */
2973 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2974 	} else {
2975 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2976 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2977 	}
2978 
2979 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2980 }
2981 
2982 /* The network device supports multicast using two tables:
2983  *    1) Special Multicast Table for MAC addresses of the form
2984  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2985  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2986  *       Table entries in the DA-Filter table.
2987  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2988  *       is used as an index to the Other Multicast Table entries in the
2989  *       DA-Filter table.
2990  */
2991 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2992 				 int queue)
2993 {
2994 	unsigned char crc_result = 0;
2995 
2996 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2997 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2998 		return 0;
2999 	}
3000 
3001 	crc_result = mvneta_addr_crc(p_addr);
3002 	if (queue == -1) {
3003 		if (pp->mcast_count[crc_result] == 0) {
3004 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3005 				    crc_result);
3006 			return -EINVAL;
3007 		}
3008 
3009 		pp->mcast_count[crc_result]--;
3010 		if (pp->mcast_count[crc_result] != 0) {
3011 			netdev_info(pp->dev,
3012 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3013 				    pp->mcast_count[crc_result], crc_result);
3014 			return -EINVAL;
3015 		}
3016 	} else
3017 		pp->mcast_count[crc_result]++;
3018 
3019 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3020 
3021 	return 0;
3022 }
3023 
3024 /* Configure Fitering mode of Ethernet port */
3025 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3026 					  int is_promisc)
3027 {
3028 	u32 port_cfg_reg, val;
3029 
3030 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3031 
3032 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3033 
3034 	/* Set / Clear UPM bit in port configuration register */
3035 	if (is_promisc) {
3036 		/* Accept all Unicast addresses */
3037 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3038 		val |= MVNETA_FORCE_UNI;
3039 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3040 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3041 	} else {
3042 		/* Reject all Unicast addresses */
3043 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3044 		val &= ~MVNETA_FORCE_UNI;
3045 	}
3046 
3047 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3048 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3049 }
3050 
3051 /* register unicast and multicast addresses */
3052 static void mvneta_set_rx_mode(struct net_device *dev)
3053 {
3054 	struct mvneta_port *pp = netdev_priv(dev);
3055 	struct netdev_hw_addr *ha;
3056 
3057 	if (dev->flags & IFF_PROMISC) {
3058 		/* Accept all: Multicast + Unicast */
3059 		mvneta_rx_unicast_promisc_set(pp, 1);
3060 		mvneta_set_ucast_table(pp, pp->rxq_def);
3061 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3062 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3063 	} else {
3064 		/* Accept single Unicast */
3065 		mvneta_rx_unicast_promisc_set(pp, 0);
3066 		mvneta_set_ucast_table(pp, -1);
3067 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3068 
3069 		if (dev->flags & IFF_ALLMULTI) {
3070 			/* Accept all multicast */
3071 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3072 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3073 		} else {
3074 			/* Accept only initialized multicast */
3075 			mvneta_set_special_mcast_table(pp, -1);
3076 			mvneta_set_other_mcast_table(pp, -1);
3077 
3078 			if (!netdev_mc_empty(dev)) {
3079 				netdev_for_each_mc_addr(ha, dev) {
3080 					mvneta_mcast_addr_set(pp, ha->addr,
3081 							      pp->rxq_def);
3082 				}
3083 			}
3084 		}
3085 	}
3086 }
3087 
3088 /* Interrupt handling - the callback for request_irq() */
3089 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3090 {
3091 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3092 
3093 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3094 	napi_schedule(&pp->napi);
3095 
3096 	return IRQ_HANDLED;
3097 }
3098 
3099 /* Interrupt handling - the callback for request_percpu_irq() */
3100 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3101 {
3102 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3103 
3104 	disable_percpu_irq(port->pp->dev->irq);
3105 	napi_schedule(&port->napi);
3106 
3107 	return IRQ_HANDLED;
3108 }
3109 
3110 static void mvneta_link_change(struct mvneta_port *pp)
3111 {
3112 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3113 
3114 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3115 }
3116 
3117 /* NAPI handler
3118  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3119  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3120  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3121  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3122  * Each CPU has its own causeRxTx register
3123  */
3124 static int mvneta_poll(struct napi_struct *napi, int budget)
3125 {
3126 	int rx_done = 0;
3127 	u32 cause_rx_tx;
3128 	int rx_queue;
3129 	struct mvneta_port *pp = netdev_priv(napi->dev);
3130 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3131 
3132 	if (!netif_running(pp->dev)) {
3133 		napi_complete(napi);
3134 		return rx_done;
3135 	}
3136 
3137 	/* Read cause register */
3138 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3139 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3140 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3141 
3142 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3143 
3144 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3145 				  MVNETA_CAUSE_LINK_CHANGE))
3146 			mvneta_link_change(pp);
3147 	}
3148 
3149 	/* Release Tx descriptors */
3150 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3151 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3152 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3153 	}
3154 
3155 	/* For the case where the last mvneta_poll did not process all
3156 	 * RX packets
3157 	 */
3158 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3159 		port->cause_rx_tx;
3160 
3161 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3162 	if (rx_queue) {
3163 		rx_queue = rx_queue - 1;
3164 		if (pp->bm_priv)
3165 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3166 						 &pp->rxqs[rx_queue]);
3167 		else
3168 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3169 						 &pp->rxqs[rx_queue]);
3170 	}
3171 
3172 	if (rx_done < budget) {
3173 		cause_rx_tx = 0;
3174 		napi_complete_done(napi, rx_done);
3175 
3176 		if (pp->neta_armada3700) {
3177 			unsigned long flags;
3178 
3179 			local_irq_save(flags);
3180 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3181 				    MVNETA_RX_INTR_MASK(rxq_number) |
3182 				    MVNETA_TX_INTR_MASK(txq_number) |
3183 				    MVNETA_MISCINTR_INTR_MASK);
3184 			local_irq_restore(flags);
3185 		} else {
3186 			enable_percpu_irq(pp->dev->irq, 0);
3187 		}
3188 	}
3189 
3190 	if (pp->neta_armada3700)
3191 		pp->cause_rx_tx = cause_rx_tx;
3192 	else
3193 		port->cause_rx_tx = cause_rx_tx;
3194 
3195 	return rx_done;
3196 }
3197 
3198 static int mvneta_create_page_pool(struct mvneta_port *pp,
3199 				   struct mvneta_rx_queue *rxq, int size)
3200 {
3201 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3202 	struct page_pool_params pp_params = {
3203 		.order = 0,
3204 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3205 		.pool_size = size,
3206 		.nid = NUMA_NO_NODE,
3207 		.dev = pp->dev->dev.parent,
3208 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3209 		.offset = pp->rx_offset_correction,
3210 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3211 	};
3212 	int err;
3213 
3214 	rxq->page_pool = page_pool_create(&pp_params);
3215 	if (IS_ERR(rxq->page_pool)) {
3216 		err = PTR_ERR(rxq->page_pool);
3217 		rxq->page_pool = NULL;
3218 		return err;
3219 	}
3220 
3221 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3222 	if (err < 0)
3223 		goto err_free_pp;
3224 
3225 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3226 					 rxq->page_pool);
3227 	if (err)
3228 		goto err_unregister_rxq;
3229 
3230 	return 0;
3231 
3232 err_unregister_rxq:
3233 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3234 err_free_pp:
3235 	page_pool_destroy(rxq->page_pool);
3236 	rxq->page_pool = NULL;
3237 	return err;
3238 }
3239 
3240 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3241 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3242 			   int num)
3243 {
3244 	int i, err;
3245 
3246 	err = mvneta_create_page_pool(pp, rxq, num);
3247 	if (err < 0)
3248 		return err;
3249 
3250 	for (i = 0; i < num; i++) {
3251 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3252 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3253 				     GFP_KERNEL) != 0) {
3254 			netdev_err(pp->dev,
3255 				   "%s:rxq %d, %d of %d buffs  filled\n",
3256 				   __func__, rxq->id, i, num);
3257 			break;
3258 		}
3259 	}
3260 
3261 	/* Add this number of RX descriptors as non occupied (ready to
3262 	 * get packets)
3263 	 */
3264 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3265 
3266 	return i;
3267 }
3268 
3269 /* Free all packets pending transmit from all TXQs and reset TX port */
3270 static void mvneta_tx_reset(struct mvneta_port *pp)
3271 {
3272 	int queue;
3273 
3274 	/* free the skb's in the tx ring */
3275 	for (queue = 0; queue < txq_number; queue++)
3276 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3277 
3278 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3279 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3280 }
3281 
3282 static void mvneta_rx_reset(struct mvneta_port *pp)
3283 {
3284 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3285 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3286 }
3287 
3288 /* Rx/Tx queue initialization/cleanup methods */
3289 
3290 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3291 			      struct mvneta_rx_queue *rxq)
3292 {
3293 	rxq->size = pp->rx_ring_size;
3294 
3295 	/* Allocate memory for RX descriptors */
3296 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3297 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3298 					&rxq->descs_phys, GFP_KERNEL);
3299 	if (!rxq->descs)
3300 		return -ENOMEM;
3301 
3302 	rxq->last_desc = rxq->size - 1;
3303 
3304 	return 0;
3305 }
3306 
3307 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3308 			       struct mvneta_rx_queue *rxq)
3309 {
3310 	/* Set Rx descriptors queue starting address */
3311 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3312 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3313 
3314 	/* Set coalescing pkts and time */
3315 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3316 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3317 
3318 	if (!pp->bm_priv) {
3319 		/* Set Offset */
3320 		mvneta_rxq_offset_set(pp, rxq, 0);
3321 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3322 					MVNETA_MAX_RX_BUF_SIZE :
3323 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3324 		mvneta_rxq_bm_disable(pp, rxq);
3325 		mvneta_rxq_fill(pp, rxq, rxq->size);
3326 	} else {
3327 		/* Set Offset */
3328 		mvneta_rxq_offset_set(pp, rxq,
3329 				      NET_SKB_PAD - pp->rx_offset_correction);
3330 
3331 		mvneta_rxq_bm_enable(pp, rxq);
3332 		/* Fill RXQ with buffers from RX pool */
3333 		mvneta_rxq_long_pool_set(pp, rxq);
3334 		mvneta_rxq_short_pool_set(pp, rxq);
3335 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3336 	}
3337 }
3338 
3339 /* Create a specified RX queue */
3340 static int mvneta_rxq_init(struct mvneta_port *pp,
3341 			   struct mvneta_rx_queue *rxq)
3342 
3343 {
3344 	int ret;
3345 
3346 	ret = mvneta_rxq_sw_init(pp, rxq);
3347 	if (ret < 0)
3348 		return ret;
3349 
3350 	mvneta_rxq_hw_init(pp, rxq);
3351 
3352 	return 0;
3353 }
3354 
3355 /* Cleanup Rx queue */
3356 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3357 			      struct mvneta_rx_queue *rxq)
3358 {
3359 	mvneta_rxq_drop_pkts(pp, rxq);
3360 
3361 	if (rxq->descs)
3362 		dma_free_coherent(pp->dev->dev.parent,
3363 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3364 				  rxq->descs,
3365 				  rxq->descs_phys);
3366 
3367 	rxq->descs             = NULL;
3368 	rxq->last_desc         = 0;
3369 	rxq->next_desc_to_proc = 0;
3370 	rxq->descs_phys        = 0;
3371 	rxq->first_to_refill   = 0;
3372 	rxq->refill_num        = 0;
3373 }
3374 
3375 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3376 			      struct mvneta_tx_queue *txq)
3377 {
3378 	int cpu;
3379 
3380 	txq->size = pp->tx_ring_size;
3381 
3382 	/* A queue must always have room for at least one skb.
3383 	 * Therefore, stop the queue when the free entries reaches
3384 	 * the maximum number of descriptors per skb.
3385 	 */
3386 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3387 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3388 
3389 	/* Allocate memory for TX descriptors */
3390 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3391 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3392 					&txq->descs_phys, GFP_KERNEL);
3393 	if (!txq->descs)
3394 		return -ENOMEM;
3395 
3396 	txq->last_desc = txq->size - 1;
3397 
3398 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3399 	if (!txq->buf) {
3400 		dma_free_coherent(pp->dev->dev.parent,
3401 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3402 				  txq->descs, txq->descs_phys);
3403 		return -ENOMEM;
3404 	}
3405 
3406 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3407 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3408 					   txq->size * TSO_HEADER_SIZE,
3409 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3410 	if (!txq->tso_hdrs) {
3411 		kfree(txq->buf);
3412 		dma_free_coherent(pp->dev->dev.parent,
3413 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3414 				  txq->descs, txq->descs_phys);
3415 		return -ENOMEM;
3416 	}
3417 
3418 	/* Setup XPS mapping */
3419 	if (txq_number > 1)
3420 		cpu = txq->id % num_present_cpus();
3421 	else
3422 		cpu = pp->rxq_def % num_present_cpus();
3423 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3424 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3425 
3426 	return 0;
3427 }
3428 
3429 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3430 			       struct mvneta_tx_queue *txq)
3431 {
3432 	/* Set maximum bandwidth for enabled TXQs */
3433 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3434 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3435 
3436 	/* Set Tx descriptors queue starting address */
3437 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3438 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3439 
3440 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3441 }
3442 
3443 /* Create and initialize a tx queue */
3444 static int mvneta_txq_init(struct mvneta_port *pp,
3445 			   struct mvneta_tx_queue *txq)
3446 {
3447 	int ret;
3448 
3449 	ret = mvneta_txq_sw_init(pp, txq);
3450 	if (ret < 0)
3451 		return ret;
3452 
3453 	mvneta_txq_hw_init(pp, txq);
3454 
3455 	return 0;
3456 }
3457 
3458 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3459 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3460 				 struct mvneta_tx_queue *txq)
3461 {
3462 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3463 
3464 	kfree(txq->buf);
3465 
3466 	if (txq->tso_hdrs)
3467 		dma_free_coherent(pp->dev->dev.parent,
3468 				  txq->size * TSO_HEADER_SIZE,
3469 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3470 	if (txq->descs)
3471 		dma_free_coherent(pp->dev->dev.parent,
3472 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3473 				  txq->descs, txq->descs_phys);
3474 
3475 	netdev_tx_reset_queue(nq);
3476 
3477 	txq->descs             = NULL;
3478 	txq->last_desc         = 0;
3479 	txq->next_desc_to_proc = 0;
3480 	txq->descs_phys        = 0;
3481 }
3482 
3483 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3484 				 struct mvneta_tx_queue *txq)
3485 {
3486 	/* Set minimum bandwidth for disabled TXQs */
3487 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3488 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3489 
3490 	/* Set Tx descriptors queue starting address and size */
3491 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3492 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3493 }
3494 
3495 static void mvneta_txq_deinit(struct mvneta_port *pp,
3496 			      struct mvneta_tx_queue *txq)
3497 {
3498 	mvneta_txq_sw_deinit(pp, txq);
3499 	mvneta_txq_hw_deinit(pp, txq);
3500 }
3501 
3502 /* Cleanup all Tx queues */
3503 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3504 {
3505 	int queue;
3506 
3507 	for (queue = 0; queue < txq_number; queue++)
3508 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3509 }
3510 
3511 /* Cleanup all Rx queues */
3512 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3513 {
3514 	int queue;
3515 
3516 	for (queue = 0; queue < rxq_number; queue++)
3517 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3518 }
3519 
3520 
3521 /* Init all Rx queues */
3522 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3523 {
3524 	int queue;
3525 
3526 	for (queue = 0; queue < rxq_number; queue++) {
3527 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3528 
3529 		if (err) {
3530 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3531 				   __func__, queue);
3532 			mvneta_cleanup_rxqs(pp);
3533 			return err;
3534 		}
3535 	}
3536 
3537 	return 0;
3538 }
3539 
3540 /* Init all tx queues */
3541 static int mvneta_setup_txqs(struct mvneta_port *pp)
3542 {
3543 	int queue;
3544 
3545 	for (queue = 0; queue < txq_number; queue++) {
3546 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3547 		if (err) {
3548 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3549 				   __func__, queue);
3550 			mvneta_cleanup_txqs(pp);
3551 			return err;
3552 		}
3553 	}
3554 
3555 	return 0;
3556 }
3557 
3558 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3559 {
3560 	int ret;
3561 
3562 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3563 	if (ret)
3564 		return ret;
3565 
3566 	return phy_power_on(pp->comphy);
3567 }
3568 
3569 static int mvneta_config_interface(struct mvneta_port *pp,
3570 				   phy_interface_t interface)
3571 {
3572 	int ret = 0;
3573 
3574 	if (pp->comphy) {
3575 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3576 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3577 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3578 			ret = mvneta_comphy_init(pp, interface);
3579 		}
3580 	} else {
3581 		switch (interface) {
3582 		case PHY_INTERFACE_MODE_QSGMII:
3583 			mvreg_write(pp, MVNETA_SERDES_CFG,
3584 				    MVNETA_QSGMII_SERDES_PROTO);
3585 			break;
3586 
3587 		case PHY_INTERFACE_MODE_SGMII:
3588 		case PHY_INTERFACE_MODE_1000BASEX:
3589 			mvreg_write(pp, MVNETA_SERDES_CFG,
3590 				    MVNETA_SGMII_SERDES_PROTO);
3591 			break;
3592 
3593 		case PHY_INTERFACE_MODE_2500BASEX:
3594 			mvreg_write(pp, MVNETA_SERDES_CFG,
3595 				    MVNETA_HSGMII_SERDES_PROTO);
3596 			break;
3597 		default:
3598 			break;
3599 		}
3600 	}
3601 
3602 	pp->phy_interface = interface;
3603 
3604 	return ret;
3605 }
3606 
3607 static void mvneta_start_dev(struct mvneta_port *pp)
3608 {
3609 	int cpu;
3610 
3611 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3612 
3613 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3614 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3615 
3616 	/* start the Rx/Tx activity */
3617 	mvneta_port_enable(pp);
3618 
3619 	if (!pp->neta_armada3700) {
3620 		/* Enable polling on the port */
3621 		for_each_online_cpu(cpu) {
3622 			struct mvneta_pcpu_port *port =
3623 				per_cpu_ptr(pp->ports, cpu);
3624 
3625 			napi_enable(&port->napi);
3626 		}
3627 	} else {
3628 		napi_enable(&pp->napi);
3629 	}
3630 
3631 	/* Unmask interrupts. It has to be done from each CPU */
3632 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3633 
3634 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3635 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3636 		    MVNETA_CAUSE_LINK_CHANGE);
3637 
3638 	phylink_start(pp->phylink);
3639 
3640 	/* We may have called phylink_speed_down before */
3641 	phylink_speed_up(pp->phylink);
3642 
3643 	netif_tx_start_all_queues(pp->dev);
3644 
3645 	clear_bit(__MVNETA_DOWN, &pp->state);
3646 }
3647 
3648 static void mvneta_stop_dev(struct mvneta_port *pp)
3649 {
3650 	unsigned int cpu;
3651 
3652 	set_bit(__MVNETA_DOWN, &pp->state);
3653 
3654 	if (device_may_wakeup(&pp->dev->dev))
3655 		phylink_speed_down(pp->phylink, false);
3656 
3657 	phylink_stop(pp->phylink);
3658 
3659 	if (!pp->neta_armada3700) {
3660 		for_each_online_cpu(cpu) {
3661 			struct mvneta_pcpu_port *port =
3662 				per_cpu_ptr(pp->ports, cpu);
3663 
3664 			napi_disable(&port->napi);
3665 		}
3666 	} else {
3667 		napi_disable(&pp->napi);
3668 	}
3669 
3670 	netif_carrier_off(pp->dev);
3671 
3672 	mvneta_port_down(pp);
3673 	netif_tx_stop_all_queues(pp->dev);
3674 
3675 	/* Stop the port activity */
3676 	mvneta_port_disable(pp);
3677 
3678 	/* Clear all ethernet port interrupts */
3679 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3680 
3681 	/* Mask all ethernet port interrupts */
3682 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3683 
3684 	mvneta_tx_reset(pp);
3685 	mvneta_rx_reset(pp);
3686 
3687 	WARN_ON(phy_power_off(pp->comphy));
3688 }
3689 
3690 static void mvneta_percpu_enable(void *arg)
3691 {
3692 	struct mvneta_port *pp = arg;
3693 
3694 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3695 }
3696 
3697 static void mvneta_percpu_disable(void *arg)
3698 {
3699 	struct mvneta_port *pp = arg;
3700 
3701 	disable_percpu_irq(pp->dev->irq);
3702 }
3703 
3704 /* Change the device mtu */
3705 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3706 {
3707 	struct mvneta_port *pp = netdev_priv(dev);
3708 	int ret;
3709 
3710 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3711 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3712 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3713 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3714 	}
3715 
3716 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3717 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3718 		return -EINVAL;
3719 	}
3720 
3721 	dev->mtu = mtu;
3722 
3723 	if (!netif_running(dev)) {
3724 		if (pp->bm_priv)
3725 			mvneta_bm_update_mtu(pp, mtu);
3726 
3727 		netdev_update_features(dev);
3728 		return 0;
3729 	}
3730 
3731 	/* The interface is running, so we have to force a
3732 	 * reallocation of the queues
3733 	 */
3734 	mvneta_stop_dev(pp);
3735 	on_each_cpu(mvneta_percpu_disable, pp, true);
3736 
3737 	mvneta_cleanup_txqs(pp);
3738 	mvneta_cleanup_rxqs(pp);
3739 
3740 	if (pp->bm_priv)
3741 		mvneta_bm_update_mtu(pp, mtu);
3742 
3743 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3744 
3745 	ret = mvneta_setup_rxqs(pp);
3746 	if (ret) {
3747 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3748 		return ret;
3749 	}
3750 
3751 	ret = mvneta_setup_txqs(pp);
3752 	if (ret) {
3753 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3754 		return ret;
3755 	}
3756 
3757 	on_each_cpu(mvneta_percpu_enable, pp, true);
3758 	mvneta_start_dev(pp);
3759 
3760 	netdev_update_features(dev);
3761 
3762 	return 0;
3763 }
3764 
3765 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3766 					     netdev_features_t features)
3767 {
3768 	struct mvneta_port *pp = netdev_priv(dev);
3769 
3770 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3771 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3772 		netdev_info(dev,
3773 			    "Disable IP checksum for MTU greater than %dB\n",
3774 			    pp->tx_csum_limit);
3775 	}
3776 
3777 	return features;
3778 }
3779 
3780 /* Get mac address */
3781 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3782 {
3783 	u32 mac_addr_l, mac_addr_h;
3784 
3785 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3786 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3787 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3788 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3789 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3790 	addr[3] = mac_addr_h & 0xFF;
3791 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3792 	addr[5] = mac_addr_l & 0xFF;
3793 }
3794 
3795 /* Handle setting mac address */
3796 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3797 {
3798 	struct mvneta_port *pp = netdev_priv(dev);
3799 	struct sockaddr *sockaddr = addr;
3800 	int ret;
3801 
3802 	ret = eth_prepare_mac_addr_change(dev, addr);
3803 	if (ret < 0)
3804 		return ret;
3805 	/* Remove previous address table entry */
3806 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3807 
3808 	/* Set new addr in hw */
3809 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3810 
3811 	eth_commit_mac_addr_change(dev, addr);
3812 	return 0;
3813 }
3814 
3815 static void mvneta_validate(struct phylink_config *config,
3816 			    unsigned long *supported,
3817 			    struct phylink_link_state *state)
3818 {
3819 	struct net_device *ndev = to_net_dev(config->dev);
3820 	struct mvneta_port *pp = netdev_priv(ndev);
3821 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3822 
3823 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3824 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3825 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3826 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3827 	    !phy_interface_mode_is_8023z(state->interface) &&
3828 	    !phy_interface_mode_is_rgmii(state->interface)) {
3829 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3830 		return;
3831 	}
3832 
3833 	/* Allow all the expected bits */
3834 	phylink_set(mask, Autoneg);
3835 	phylink_set_port_modes(mask);
3836 
3837 	/* Asymmetric pause is unsupported */
3838 	phylink_set(mask, Pause);
3839 
3840 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3841 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3842 		phylink_set(mask, 1000baseT_Full);
3843 		phylink_set(mask, 1000baseX_Full);
3844 	}
3845 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3846 		phylink_set(mask, 2500baseT_Full);
3847 		phylink_set(mask, 2500baseX_Full);
3848 	}
3849 
3850 	if (!phy_interface_mode_is_8023z(state->interface)) {
3851 		/* 10M and 100M are only supported in non-802.3z mode */
3852 		phylink_set(mask, 10baseT_Half);
3853 		phylink_set(mask, 10baseT_Full);
3854 		phylink_set(mask, 100baseT_Half);
3855 		phylink_set(mask, 100baseT_Full);
3856 	}
3857 
3858 	bitmap_and(supported, supported, mask,
3859 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3860 	bitmap_and(state->advertising, state->advertising, mask,
3861 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3862 
3863 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3864 	 * to advertise both, only report advertising at 2500BaseX.
3865 	 */
3866 	phylink_helper_basex_speed(state);
3867 }
3868 
3869 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3870 				     struct phylink_link_state *state)
3871 {
3872 	struct net_device *ndev = to_net_dev(config->dev);
3873 	struct mvneta_port *pp = netdev_priv(ndev);
3874 	u32 gmac_stat;
3875 
3876 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3877 
3878 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3879 		state->speed =
3880 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3881 			SPEED_2500 : SPEED_1000;
3882 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3883 		state->speed = SPEED_100;
3884 	else
3885 		state->speed = SPEED_10;
3886 
3887 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3888 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3889 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3890 
3891 	state->pause = 0;
3892 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3893 		state->pause |= MLO_PAUSE_RX;
3894 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3895 		state->pause |= MLO_PAUSE_TX;
3896 }
3897 
3898 static void mvneta_mac_an_restart(struct phylink_config *config)
3899 {
3900 	struct net_device *ndev = to_net_dev(config->dev);
3901 	struct mvneta_port *pp = netdev_priv(ndev);
3902 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3903 
3904 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3905 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3906 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3907 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3908 }
3909 
3910 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3911 			      const struct phylink_link_state *state)
3912 {
3913 	struct net_device *ndev = to_net_dev(config->dev);
3914 	struct mvneta_port *pp = netdev_priv(ndev);
3915 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3916 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3917 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3918 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3919 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3920 
3921 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3922 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3923 				   MVNETA_GMAC2_PORT_RESET);
3924 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3925 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3926 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3927 			     MVNETA_GMAC_INBAND_RESTART_AN |
3928 			     MVNETA_GMAC_AN_SPEED_EN |
3929 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3930 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3931 			     MVNETA_GMAC_AN_DUPLEX_EN);
3932 
3933 	/* Even though it might look weird, when we're configured in
3934 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3935 	 */
3936 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3937 
3938 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3939 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3940 	    phy_interface_mode_is_8023z(state->interface))
3941 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3942 
3943 	if (phylink_test(state->advertising, Pause))
3944 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3945 
3946 	if (!phylink_autoneg_inband(mode)) {
3947 		/* Phy or fixed speed - nothing to do, leave the
3948 		 * configured speed, duplex and flow control as-is.
3949 		 */
3950 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3951 		/* SGMII mode receives the state from the PHY */
3952 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3953 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3954 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3955 				     MVNETA_GMAC_FORCE_LINK_PASS |
3956 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3957 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3958 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3959 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3960 			 MVNETA_GMAC_AN_SPEED_EN |
3961 			 MVNETA_GMAC_AN_DUPLEX_EN;
3962 	} else {
3963 		/* 802.3z negotiation - only 1000base-X */
3964 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3965 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3966 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3967 				     MVNETA_GMAC_FORCE_LINK_PASS |
3968 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3969 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3970 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3971 			 /* The MAC only supports FD mode */
3972 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3973 
3974 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3975 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3976 	}
3977 
3978 	/* Armada 370 documentation says we can only change the port mode
3979 	 * and in-band enable when the link is down, so force it down
3980 	 * while making these changes. We also do this for GMAC_CTRL2 */
3981 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3982 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3983 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3984 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3985 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3986 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3987 	}
3988 
3989 
3990 	/* When at 2.5G, the link partner can send frames with shortened
3991 	 * preambles.
3992 	 */
3993 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3994 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3995 
3996 	if (pp->phy_interface != state->interface) {
3997 		if (pp->comphy)
3998 			WARN_ON(phy_power_off(pp->comphy));
3999 		WARN_ON(mvneta_config_interface(pp, state->interface));
4000 	}
4001 
4002 	if (new_ctrl0 != gmac_ctrl0)
4003 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4004 	if (new_ctrl2 != gmac_ctrl2)
4005 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4006 	if (new_ctrl4 != gmac_ctrl4)
4007 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4008 	if (new_clk != gmac_clk)
4009 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4010 	if (new_an != gmac_an)
4011 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4012 
4013 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4014 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4015 			MVNETA_GMAC2_PORT_RESET) != 0)
4016 			continue;
4017 	}
4018 }
4019 
4020 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4021 {
4022 	u32 lpi_ctl1;
4023 
4024 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4025 	if (enable)
4026 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4027 	else
4028 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4029 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4030 }
4031 
4032 static void mvneta_mac_link_down(struct phylink_config *config,
4033 				 unsigned int mode, phy_interface_t interface)
4034 {
4035 	struct net_device *ndev = to_net_dev(config->dev);
4036 	struct mvneta_port *pp = netdev_priv(ndev);
4037 	u32 val;
4038 
4039 	mvneta_port_down(pp);
4040 
4041 	if (!phylink_autoneg_inband(mode)) {
4042 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4043 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4044 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4045 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4046 	}
4047 
4048 	pp->eee_active = false;
4049 	mvneta_set_eee(pp, false);
4050 }
4051 
4052 static void mvneta_mac_link_up(struct phylink_config *config,
4053 			       struct phy_device *phy,
4054 			       unsigned int mode, phy_interface_t interface,
4055 			       int speed, int duplex,
4056 			       bool tx_pause, bool rx_pause)
4057 {
4058 	struct net_device *ndev = to_net_dev(config->dev);
4059 	struct mvneta_port *pp = netdev_priv(ndev);
4060 	u32 val;
4061 
4062 	if (!phylink_autoneg_inband(mode)) {
4063 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4064 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4065 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4066 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4067 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4068 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4069 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4070 
4071 		if (speed == SPEED_1000 || speed == SPEED_2500)
4072 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4073 		else if (speed == SPEED_100)
4074 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4075 
4076 		if (duplex == DUPLEX_FULL)
4077 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4078 
4079 		if (tx_pause || rx_pause)
4080 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4081 
4082 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4083 	} else {
4084 		/* When inband doesn't cover flow control or flow control is
4085 		 * disabled, we need to manually configure it. This bit will
4086 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4087 		 */
4088 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4089 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4090 
4091 		if (tx_pause || rx_pause)
4092 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4093 
4094 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4095 	}
4096 
4097 	mvneta_port_up(pp);
4098 
4099 	if (phy && pp->eee_enabled) {
4100 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4101 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4102 	}
4103 }
4104 
4105 static const struct phylink_mac_ops mvneta_phylink_ops = {
4106 	.validate = mvneta_validate,
4107 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4108 	.mac_an_restart = mvneta_mac_an_restart,
4109 	.mac_config = mvneta_mac_config,
4110 	.mac_link_down = mvneta_mac_link_down,
4111 	.mac_link_up = mvneta_mac_link_up,
4112 };
4113 
4114 static int mvneta_mdio_probe(struct mvneta_port *pp)
4115 {
4116 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4117 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4118 
4119 	if (err)
4120 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4121 
4122 	phylink_ethtool_get_wol(pp->phylink, &wol);
4123 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4124 
4125 	/* PHY WoL may be enabled but device wakeup disabled */
4126 	if (wol.supported)
4127 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4128 
4129 	return err;
4130 }
4131 
4132 static void mvneta_mdio_remove(struct mvneta_port *pp)
4133 {
4134 	phylink_disconnect_phy(pp->phylink);
4135 }
4136 
4137 /* Electing a CPU must be done in an atomic way: it should be done
4138  * after or before the removal/insertion of a CPU and this function is
4139  * not reentrant.
4140  */
4141 static void mvneta_percpu_elect(struct mvneta_port *pp)
4142 {
4143 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4144 
4145 	/* Use the cpu associated to the rxq when it is online, in all
4146 	 * the other cases, use the cpu 0 which can't be offline.
4147 	 */
4148 	if (cpu_online(pp->rxq_def))
4149 		elected_cpu = pp->rxq_def;
4150 
4151 	max_cpu = num_present_cpus();
4152 
4153 	for_each_online_cpu(cpu) {
4154 		int rxq_map = 0, txq_map = 0;
4155 		int rxq;
4156 
4157 		for (rxq = 0; rxq < rxq_number; rxq++)
4158 			if ((rxq % max_cpu) == cpu)
4159 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4160 
4161 		if (cpu == elected_cpu)
4162 			/* Map the default receive queue queue to the
4163 			 * elected CPU
4164 			 */
4165 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4166 
4167 		/* We update the TX queue map only if we have one
4168 		 * queue. In this case we associate the TX queue to
4169 		 * the CPU bound to the default RX queue
4170 		 */
4171 		if (txq_number == 1)
4172 			txq_map = (cpu == elected_cpu) ?
4173 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4174 		else
4175 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4176 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4177 
4178 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4179 
4180 		/* Update the interrupt mask on each CPU according the
4181 		 * new mapping
4182 		 */
4183 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4184 					 pp, true);
4185 		i++;
4186 
4187 	}
4188 };
4189 
4190 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4191 {
4192 	int other_cpu;
4193 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4194 						  node_online);
4195 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4196 
4197 
4198 	spin_lock(&pp->lock);
4199 	/*
4200 	 * Configuring the driver for a new CPU while the driver is
4201 	 * stopping is racy, so just avoid it.
4202 	 */
4203 	if (pp->is_stopped) {
4204 		spin_unlock(&pp->lock);
4205 		return 0;
4206 	}
4207 	netif_tx_stop_all_queues(pp->dev);
4208 
4209 	/*
4210 	 * We have to synchronise on tha napi of each CPU except the one
4211 	 * just being woken up
4212 	 */
4213 	for_each_online_cpu(other_cpu) {
4214 		if (other_cpu != cpu) {
4215 			struct mvneta_pcpu_port *other_port =
4216 				per_cpu_ptr(pp->ports, other_cpu);
4217 
4218 			napi_synchronize(&other_port->napi);
4219 		}
4220 	}
4221 
4222 	/* Mask all ethernet port interrupts */
4223 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4224 	napi_enable(&port->napi);
4225 
4226 	/*
4227 	 * Enable per-CPU interrupts on the CPU that is
4228 	 * brought up.
4229 	 */
4230 	mvneta_percpu_enable(pp);
4231 
4232 	/*
4233 	 * Enable per-CPU interrupt on the one CPU we care
4234 	 * about.
4235 	 */
4236 	mvneta_percpu_elect(pp);
4237 
4238 	/* Unmask all ethernet port interrupts */
4239 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4240 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4241 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4242 		    MVNETA_CAUSE_LINK_CHANGE);
4243 	netif_tx_start_all_queues(pp->dev);
4244 	spin_unlock(&pp->lock);
4245 	return 0;
4246 }
4247 
4248 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4249 {
4250 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4251 						  node_online);
4252 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4253 
4254 	/*
4255 	 * Thanks to this lock we are sure that any pending cpu election is
4256 	 * done.
4257 	 */
4258 	spin_lock(&pp->lock);
4259 	/* Mask all ethernet port interrupts */
4260 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4261 	spin_unlock(&pp->lock);
4262 
4263 	napi_synchronize(&port->napi);
4264 	napi_disable(&port->napi);
4265 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4266 	mvneta_percpu_disable(pp);
4267 	return 0;
4268 }
4269 
4270 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4271 {
4272 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4273 						  node_dead);
4274 
4275 	/* Check if a new CPU must be elected now this on is down */
4276 	spin_lock(&pp->lock);
4277 	mvneta_percpu_elect(pp);
4278 	spin_unlock(&pp->lock);
4279 	/* Unmask all ethernet port interrupts */
4280 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4281 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4282 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4283 		    MVNETA_CAUSE_LINK_CHANGE);
4284 	netif_tx_start_all_queues(pp->dev);
4285 	return 0;
4286 }
4287 
4288 static int mvneta_open(struct net_device *dev)
4289 {
4290 	struct mvneta_port *pp = netdev_priv(dev);
4291 	int ret;
4292 
4293 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4294 
4295 	ret = mvneta_setup_rxqs(pp);
4296 	if (ret)
4297 		return ret;
4298 
4299 	ret = mvneta_setup_txqs(pp);
4300 	if (ret)
4301 		goto err_cleanup_rxqs;
4302 
4303 	/* Connect to port interrupt line */
4304 	if (pp->neta_armada3700)
4305 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4306 				  dev->name, pp);
4307 	else
4308 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4309 					 dev->name, pp->ports);
4310 	if (ret) {
4311 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4312 		goto err_cleanup_txqs;
4313 	}
4314 
4315 	if (!pp->neta_armada3700) {
4316 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4317 		 * queue interrupts
4318 		 */
4319 		on_each_cpu(mvneta_percpu_enable, pp, true);
4320 
4321 		pp->is_stopped = false;
4322 		/* Register a CPU notifier to handle the case where our CPU
4323 		 * might be taken offline.
4324 		 */
4325 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4326 						       &pp->node_online);
4327 		if (ret)
4328 			goto err_free_irq;
4329 
4330 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4331 						       &pp->node_dead);
4332 		if (ret)
4333 			goto err_free_online_hp;
4334 	}
4335 
4336 	ret = mvneta_mdio_probe(pp);
4337 	if (ret < 0) {
4338 		netdev_err(dev, "cannot probe MDIO bus\n");
4339 		goto err_free_dead_hp;
4340 	}
4341 
4342 	mvneta_start_dev(pp);
4343 
4344 	return 0;
4345 
4346 err_free_dead_hp:
4347 	if (!pp->neta_armada3700)
4348 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4349 						    &pp->node_dead);
4350 err_free_online_hp:
4351 	if (!pp->neta_armada3700)
4352 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4353 						    &pp->node_online);
4354 err_free_irq:
4355 	if (pp->neta_armada3700) {
4356 		free_irq(pp->dev->irq, pp);
4357 	} else {
4358 		on_each_cpu(mvneta_percpu_disable, pp, true);
4359 		free_percpu_irq(pp->dev->irq, pp->ports);
4360 	}
4361 err_cleanup_txqs:
4362 	mvneta_cleanup_txqs(pp);
4363 err_cleanup_rxqs:
4364 	mvneta_cleanup_rxqs(pp);
4365 	return ret;
4366 }
4367 
4368 /* Stop the port, free port interrupt line */
4369 static int mvneta_stop(struct net_device *dev)
4370 {
4371 	struct mvneta_port *pp = netdev_priv(dev);
4372 
4373 	if (!pp->neta_armada3700) {
4374 		/* Inform that we are stopping so we don't want to setup the
4375 		 * driver for new CPUs in the notifiers. The code of the
4376 		 * notifier for CPU online is protected by the same spinlock,
4377 		 * so when we get the lock, the notifer work is done.
4378 		 */
4379 		spin_lock(&pp->lock);
4380 		pp->is_stopped = true;
4381 		spin_unlock(&pp->lock);
4382 
4383 		mvneta_stop_dev(pp);
4384 		mvneta_mdio_remove(pp);
4385 
4386 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4387 						    &pp->node_online);
4388 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4389 						    &pp->node_dead);
4390 		on_each_cpu(mvneta_percpu_disable, pp, true);
4391 		free_percpu_irq(dev->irq, pp->ports);
4392 	} else {
4393 		mvneta_stop_dev(pp);
4394 		mvneta_mdio_remove(pp);
4395 		free_irq(dev->irq, pp);
4396 	}
4397 
4398 	mvneta_cleanup_rxqs(pp);
4399 	mvneta_cleanup_txqs(pp);
4400 
4401 	return 0;
4402 }
4403 
4404 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4405 {
4406 	struct mvneta_port *pp = netdev_priv(dev);
4407 
4408 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4409 }
4410 
4411 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4412 			    struct netlink_ext_ack *extack)
4413 {
4414 	bool need_update, running = netif_running(dev);
4415 	struct mvneta_port *pp = netdev_priv(dev);
4416 	struct bpf_prog *old_prog;
4417 
4418 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4419 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4420 		return -EOPNOTSUPP;
4421 	}
4422 
4423 	if (pp->bm_priv) {
4424 		NL_SET_ERR_MSG_MOD(extack,
4425 				   "Hardware Buffer Management not supported on XDP");
4426 		return -EOPNOTSUPP;
4427 	}
4428 
4429 	need_update = !!pp->xdp_prog != !!prog;
4430 	if (running && need_update)
4431 		mvneta_stop(dev);
4432 
4433 	old_prog = xchg(&pp->xdp_prog, prog);
4434 	if (old_prog)
4435 		bpf_prog_put(old_prog);
4436 
4437 	if (running && need_update)
4438 		return mvneta_open(dev);
4439 
4440 	return 0;
4441 }
4442 
4443 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4444 {
4445 	switch (xdp->command) {
4446 	case XDP_SETUP_PROG:
4447 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4448 	default:
4449 		return -EINVAL;
4450 	}
4451 }
4452 
4453 /* Ethtool methods */
4454 
4455 /* Set link ksettings (phy address, speed) for ethtools */
4456 static int
4457 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4458 				  const struct ethtool_link_ksettings *cmd)
4459 {
4460 	struct mvneta_port *pp = netdev_priv(ndev);
4461 
4462 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4463 }
4464 
4465 /* Get link ksettings for ethtools */
4466 static int
4467 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4468 				  struct ethtool_link_ksettings *cmd)
4469 {
4470 	struct mvneta_port *pp = netdev_priv(ndev);
4471 
4472 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4473 }
4474 
4475 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4476 {
4477 	struct mvneta_port *pp = netdev_priv(dev);
4478 
4479 	return phylink_ethtool_nway_reset(pp->phylink);
4480 }
4481 
4482 /* Set interrupt coalescing for ethtools */
4483 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4484 				       struct ethtool_coalesce *c)
4485 {
4486 	struct mvneta_port *pp = netdev_priv(dev);
4487 	int queue;
4488 
4489 	for (queue = 0; queue < rxq_number; queue++) {
4490 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4491 		rxq->time_coal = c->rx_coalesce_usecs;
4492 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4493 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4494 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4495 	}
4496 
4497 	for (queue = 0; queue < txq_number; queue++) {
4498 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4499 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4500 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4501 	}
4502 
4503 	return 0;
4504 }
4505 
4506 /* get coalescing for ethtools */
4507 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4508 				       struct ethtool_coalesce *c)
4509 {
4510 	struct mvneta_port *pp = netdev_priv(dev);
4511 
4512 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4513 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4514 
4515 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4516 	return 0;
4517 }
4518 
4519 
4520 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4521 				    struct ethtool_drvinfo *drvinfo)
4522 {
4523 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4524 		sizeof(drvinfo->driver));
4525 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4526 		sizeof(drvinfo->version));
4527 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4528 		sizeof(drvinfo->bus_info));
4529 }
4530 
4531 
4532 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4533 					 struct ethtool_ringparam *ring)
4534 {
4535 	struct mvneta_port *pp = netdev_priv(netdev);
4536 
4537 	ring->rx_max_pending = MVNETA_MAX_RXD;
4538 	ring->tx_max_pending = MVNETA_MAX_TXD;
4539 	ring->rx_pending = pp->rx_ring_size;
4540 	ring->tx_pending = pp->tx_ring_size;
4541 }
4542 
4543 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4544 					struct ethtool_ringparam *ring)
4545 {
4546 	struct mvneta_port *pp = netdev_priv(dev);
4547 
4548 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4549 		return -EINVAL;
4550 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4551 		ring->rx_pending : MVNETA_MAX_RXD;
4552 
4553 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4554 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4555 	if (pp->tx_ring_size != ring->tx_pending)
4556 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4557 			    pp->tx_ring_size, ring->tx_pending);
4558 
4559 	if (netif_running(dev)) {
4560 		mvneta_stop(dev);
4561 		if (mvneta_open(dev)) {
4562 			netdev_err(dev,
4563 				   "error on opening device after ring param change\n");
4564 			return -ENOMEM;
4565 		}
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4572 					  struct ethtool_pauseparam *pause)
4573 {
4574 	struct mvneta_port *pp = netdev_priv(dev);
4575 
4576 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4577 }
4578 
4579 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4580 					 struct ethtool_pauseparam *pause)
4581 {
4582 	struct mvneta_port *pp = netdev_priv(dev);
4583 
4584 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4585 }
4586 
4587 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4588 				       u8 *data)
4589 {
4590 	if (sset == ETH_SS_STATS) {
4591 		int i;
4592 
4593 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4594 			memcpy(data + i * ETH_GSTRING_LEN,
4595 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4596 	}
4597 }
4598 
4599 static void
4600 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4601 				 struct mvneta_ethtool_stats *es)
4602 {
4603 	unsigned int start;
4604 	int cpu;
4605 
4606 	for_each_possible_cpu(cpu) {
4607 		struct mvneta_pcpu_stats *stats;
4608 		u64 skb_alloc_error;
4609 		u64 refill_error;
4610 		u64 xdp_redirect;
4611 		u64 xdp_xmit_err;
4612 		u64 xdp_tx_err;
4613 		u64 xdp_pass;
4614 		u64 xdp_drop;
4615 		u64 xdp_xmit;
4616 		u64 xdp_tx;
4617 
4618 		stats = per_cpu_ptr(pp->stats, cpu);
4619 		do {
4620 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4621 			skb_alloc_error = stats->es.skb_alloc_error;
4622 			refill_error = stats->es.refill_error;
4623 			xdp_redirect = stats->es.ps.xdp_redirect;
4624 			xdp_pass = stats->es.ps.xdp_pass;
4625 			xdp_drop = stats->es.ps.xdp_drop;
4626 			xdp_xmit = stats->es.ps.xdp_xmit;
4627 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4628 			xdp_tx = stats->es.ps.xdp_tx;
4629 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4630 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4631 
4632 		es->skb_alloc_error += skb_alloc_error;
4633 		es->refill_error += refill_error;
4634 		es->ps.xdp_redirect += xdp_redirect;
4635 		es->ps.xdp_pass += xdp_pass;
4636 		es->ps.xdp_drop += xdp_drop;
4637 		es->ps.xdp_xmit += xdp_xmit;
4638 		es->ps.xdp_xmit_err += xdp_xmit_err;
4639 		es->ps.xdp_tx += xdp_tx;
4640 		es->ps.xdp_tx_err += xdp_tx_err;
4641 	}
4642 }
4643 
4644 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4645 {
4646 	struct mvneta_ethtool_stats stats = {};
4647 	const struct mvneta_statistic *s;
4648 	void __iomem *base = pp->base;
4649 	u32 high, low;
4650 	u64 val;
4651 	int i;
4652 
4653 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4654 	for (i = 0, s = mvneta_statistics;
4655 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4656 	     s++, i++) {
4657 		switch (s->type) {
4658 		case T_REG_32:
4659 			val = readl_relaxed(base + s->offset);
4660 			pp->ethtool_stats[i] += val;
4661 			break;
4662 		case T_REG_64:
4663 			/* Docs say to read low 32-bit then high */
4664 			low = readl_relaxed(base + s->offset);
4665 			high = readl_relaxed(base + s->offset + 4);
4666 			val = (u64)high << 32 | low;
4667 			pp->ethtool_stats[i] += val;
4668 			break;
4669 		case T_SW:
4670 			switch (s->offset) {
4671 			case ETHTOOL_STAT_EEE_WAKEUP:
4672 				val = phylink_get_eee_err(pp->phylink);
4673 				pp->ethtool_stats[i] += val;
4674 				break;
4675 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4676 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4677 				break;
4678 			case ETHTOOL_STAT_REFILL_ERR:
4679 				pp->ethtool_stats[i] = stats.refill_error;
4680 				break;
4681 			case ETHTOOL_XDP_REDIRECT:
4682 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4683 				break;
4684 			case ETHTOOL_XDP_PASS:
4685 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4686 				break;
4687 			case ETHTOOL_XDP_DROP:
4688 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4689 				break;
4690 			case ETHTOOL_XDP_TX:
4691 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4692 				break;
4693 			case ETHTOOL_XDP_TX_ERR:
4694 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4695 				break;
4696 			case ETHTOOL_XDP_XMIT:
4697 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4698 				break;
4699 			case ETHTOOL_XDP_XMIT_ERR:
4700 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4701 				break;
4702 			}
4703 			break;
4704 		}
4705 	}
4706 }
4707 
4708 static void mvneta_ethtool_get_stats(struct net_device *dev,
4709 				     struct ethtool_stats *stats, u64 *data)
4710 {
4711 	struct mvneta_port *pp = netdev_priv(dev);
4712 	int i;
4713 
4714 	mvneta_ethtool_update_stats(pp);
4715 
4716 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4717 		*data++ = pp->ethtool_stats[i];
4718 }
4719 
4720 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4721 {
4722 	if (sset == ETH_SS_STATS)
4723 		return ARRAY_SIZE(mvneta_statistics);
4724 	return -EOPNOTSUPP;
4725 }
4726 
4727 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4728 {
4729 	return MVNETA_RSS_LU_TABLE_SIZE;
4730 }
4731 
4732 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4733 				    struct ethtool_rxnfc *info,
4734 				    u32 *rules __always_unused)
4735 {
4736 	switch (info->cmd) {
4737 	case ETHTOOL_GRXRINGS:
4738 		info->data =  rxq_number;
4739 		return 0;
4740 	case ETHTOOL_GRXFH:
4741 		return -EOPNOTSUPP;
4742 	default:
4743 		return -EOPNOTSUPP;
4744 	}
4745 }
4746 
4747 static int  mvneta_config_rss(struct mvneta_port *pp)
4748 {
4749 	int cpu;
4750 	u32 val;
4751 
4752 	netif_tx_stop_all_queues(pp->dev);
4753 
4754 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4755 
4756 	if (!pp->neta_armada3700) {
4757 		/* We have to synchronise on the napi of each CPU */
4758 		for_each_online_cpu(cpu) {
4759 			struct mvneta_pcpu_port *pcpu_port =
4760 				per_cpu_ptr(pp->ports, cpu);
4761 
4762 			napi_synchronize(&pcpu_port->napi);
4763 			napi_disable(&pcpu_port->napi);
4764 		}
4765 	} else {
4766 		napi_synchronize(&pp->napi);
4767 		napi_disable(&pp->napi);
4768 	}
4769 
4770 	pp->rxq_def = pp->indir[0];
4771 
4772 	/* Update unicast mapping */
4773 	mvneta_set_rx_mode(pp->dev);
4774 
4775 	/* Update val of portCfg register accordingly with all RxQueue types */
4776 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4777 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4778 
4779 	/* Update the elected CPU matching the new rxq_def */
4780 	spin_lock(&pp->lock);
4781 	mvneta_percpu_elect(pp);
4782 	spin_unlock(&pp->lock);
4783 
4784 	if (!pp->neta_armada3700) {
4785 		/* We have to synchronise on the napi of each CPU */
4786 		for_each_online_cpu(cpu) {
4787 			struct mvneta_pcpu_port *pcpu_port =
4788 				per_cpu_ptr(pp->ports, cpu);
4789 
4790 			napi_enable(&pcpu_port->napi);
4791 		}
4792 	} else {
4793 		napi_enable(&pp->napi);
4794 	}
4795 
4796 	netif_tx_start_all_queues(pp->dev);
4797 
4798 	return 0;
4799 }
4800 
4801 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4802 				   const u8 *key, const u8 hfunc)
4803 {
4804 	struct mvneta_port *pp = netdev_priv(dev);
4805 
4806 	/* Current code for Armada 3700 doesn't support RSS features yet */
4807 	if (pp->neta_armada3700)
4808 		return -EOPNOTSUPP;
4809 
4810 	/* We require at least one supported parameter to be changed
4811 	 * and no change in any of the unsupported parameters
4812 	 */
4813 	if (key ||
4814 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4815 		return -EOPNOTSUPP;
4816 
4817 	if (!indir)
4818 		return 0;
4819 
4820 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4821 
4822 	return mvneta_config_rss(pp);
4823 }
4824 
4825 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4826 				   u8 *hfunc)
4827 {
4828 	struct mvneta_port *pp = netdev_priv(dev);
4829 
4830 	/* Current code for Armada 3700 doesn't support RSS features yet */
4831 	if (pp->neta_armada3700)
4832 		return -EOPNOTSUPP;
4833 
4834 	if (hfunc)
4835 		*hfunc = ETH_RSS_HASH_TOP;
4836 
4837 	if (!indir)
4838 		return 0;
4839 
4840 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4841 
4842 	return 0;
4843 }
4844 
4845 static void mvneta_ethtool_get_wol(struct net_device *dev,
4846 				   struct ethtool_wolinfo *wol)
4847 {
4848 	struct mvneta_port *pp = netdev_priv(dev);
4849 
4850 	phylink_ethtool_get_wol(pp->phylink, wol);
4851 }
4852 
4853 static int mvneta_ethtool_set_wol(struct net_device *dev,
4854 				  struct ethtool_wolinfo *wol)
4855 {
4856 	struct mvneta_port *pp = netdev_priv(dev);
4857 	int ret;
4858 
4859 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4860 	if (!ret)
4861 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4862 
4863 	return ret;
4864 }
4865 
4866 static int mvneta_ethtool_get_eee(struct net_device *dev,
4867 				  struct ethtool_eee *eee)
4868 {
4869 	struct mvneta_port *pp = netdev_priv(dev);
4870 	u32 lpi_ctl0;
4871 
4872 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4873 
4874 	eee->eee_enabled = pp->eee_enabled;
4875 	eee->eee_active = pp->eee_active;
4876 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4877 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4878 
4879 	return phylink_ethtool_get_eee(pp->phylink, eee);
4880 }
4881 
4882 static int mvneta_ethtool_set_eee(struct net_device *dev,
4883 				  struct ethtool_eee *eee)
4884 {
4885 	struct mvneta_port *pp = netdev_priv(dev);
4886 	u32 lpi_ctl0;
4887 
4888 	/* The Armada 37x documents do not give limits for this other than
4889 	 * it being an 8-bit register. */
4890 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4891 		return -EINVAL;
4892 
4893 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4894 	lpi_ctl0 &= ~(0xff << 8);
4895 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4896 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4897 
4898 	pp->eee_enabled = eee->eee_enabled;
4899 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4900 
4901 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4902 
4903 	return phylink_ethtool_set_eee(pp->phylink, eee);
4904 }
4905 
4906 static const struct net_device_ops mvneta_netdev_ops = {
4907 	.ndo_open            = mvneta_open,
4908 	.ndo_stop            = mvneta_stop,
4909 	.ndo_start_xmit      = mvneta_tx,
4910 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4911 	.ndo_set_mac_address = mvneta_set_mac_addr,
4912 	.ndo_change_mtu      = mvneta_change_mtu,
4913 	.ndo_fix_features    = mvneta_fix_features,
4914 	.ndo_get_stats64     = mvneta_get_stats64,
4915 	.ndo_do_ioctl        = mvneta_ioctl,
4916 	.ndo_bpf	     = mvneta_xdp,
4917 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4918 };
4919 
4920 static const struct ethtool_ops mvneta_eth_tool_ops = {
4921 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4922 				     ETHTOOL_COALESCE_MAX_FRAMES,
4923 	.nway_reset	= mvneta_ethtool_nway_reset,
4924 	.get_link       = ethtool_op_get_link,
4925 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4926 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4927 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4928 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4929 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4930 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4931 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4932 	.get_strings	= mvneta_ethtool_get_strings,
4933 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4934 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4935 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4936 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4937 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4938 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4939 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4940 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4941 	.get_wol        = mvneta_ethtool_get_wol,
4942 	.set_wol        = mvneta_ethtool_set_wol,
4943 	.get_eee	= mvneta_ethtool_get_eee,
4944 	.set_eee	= mvneta_ethtool_set_eee,
4945 };
4946 
4947 /* Initialize hw */
4948 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4949 {
4950 	int queue;
4951 
4952 	/* Disable port */
4953 	mvneta_port_disable(pp);
4954 
4955 	/* Set port default values */
4956 	mvneta_defaults_set(pp);
4957 
4958 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4959 	if (!pp->txqs)
4960 		return -ENOMEM;
4961 
4962 	/* Initialize TX descriptor rings */
4963 	for (queue = 0; queue < txq_number; queue++) {
4964 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4965 		txq->id = queue;
4966 		txq->size = pp->tx_ring_size;
4967 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4968 	}
4969 
4970 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4971 	if (!pp->rxqs)
4972 		return -ENOMEM;
4973 
4974 	/* Create Rx descriptor rings */
4975 	for (queue = 0; queue < rxq_number; queue++) {
4976 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4977 		rxq->id = queue;
4978 		rxq->size = pp->rx_ring_size;
4979 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4980 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4981 		rxq->buf_virt_addr
4982 			= devm_kmalloc_array(pp->dev->dev.parent,
4983 					     rxq->size,
4984 					     sizeof(*rxq->buf_virt_addr),
4985 					     GFP_KERNEL);
4986 		if (!rxq->buf_virt_addr)
4987 			return -ENOMEM;
4988 	}
4989 
4990 	return 0;
4991 }
4992 
4993 /* platform glue : initialize decoding windows */
4994 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4995 				     const struct mbus_dram_target_info *dram)
4996 {
4997 	u32 win_enable;
4998 	u32 win_protect;
4999 	int i;
5000 
5001 	for (i = 0; i < 6; i++) {
5002 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5003 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5004 
5005 		if (i < 4)
5006 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5007 	}
5008 
5009 	win_enable = 0x3f;
5010 	win_protect = 0;
5011 
5012 	if (dram) {
5013 		for (i = 0; i < dram->num_cs; i++) {
5014 			const struct mbus_dram_window *cs = dram->cs + i;
5015 
5016 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5017 				    (cs->base & 0xffff0000) |
5018 				    (cs->mbus_attr << 8) |
5019 				    dram->mbus_dram_target_id);
5020 
5021 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5022 				    (cs->size - 1) & 0xffff0000);
5023 
5024 			win_enable &= ~(1 << i);
5025 			win_protect |= 3 << (2 * i);
5026 		}
5027 	} else {
5028 		/* For Armada3700 open default 4GB Mbus window, leaving
5029 		 * arbitration of target/attribute to a different layer
5030 		 * of configuration.
5031 		 */
5032 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5033 		win_enable &= ~BIT(0);
5034 		win_protect = 3;
5035 	}
5036 
5037 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5038 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5039 }
5040 
5041 /* Power up the port */
5042 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5043 {
5044 	/* MAC Cause register should be cleared */
5045 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5046 
5047 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5048 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5049 	    !phy_interface_mode_is_8023z(phy_mode) &&
5050 	    !phy_interface_mode_is_rgmii(phy_mode))
5051 		return -EINVAL;
5052 
5053 	return 0;
5054 }
5055 
5056 /* Device initialization routine */
5057 static int mvneta_probe(struct platform_device *pdev)
5058 {
5059 	struct device_node *dn = pdev->dev.of_node;
5060 	struct device_node *bm_node;
5061 	struct mvneta_port *pp;
5062 	struct net_device *dev;
5063 	struct phylink *phylink;
5064 	struct phy *comphy;
5065 	const char *dt_mac_addr;
5066 	char hw_mac_addr[ETH_ALEN];
5067 	phy_interface_t phy_mode;
5068 	const char *mac_from;
5069 	int tx_csum_limit;
5070 	int err;
5071 	int cpu;
5072 
5073 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5074 				      txq_number, rxq_number);
5075 	if (!dev)
5076 		return -ENOMEM;
5077 
5078 	dev->irq = irq_of_parse_and_map(dn, 0);
5079 	if (dev->irq == 0)
5080 		return -EINVAL;
5081 
5082 	err = of_get_phy_mode(dn, &phy_mode);
5083 	if (err) {
5084 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5085 		goto err_free_irq;
5086 	}
5087 
5088 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5089 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5090 		err = -EPROBE_DEFER;
5091 		goto err_free_irq;
5092 	} else if (IS_ERR(comphy)) {
5093 		comphy = NULL;
5094 	}
5095 
5096 	pp = netdev_priv(dev);
5097 	spin_lock_init(&pp->lock);
5098 
5099 	pp->phylink_config.dev = &dev->dev;
5100 	pp->phylink_config.type = PHYLINK_NETDEV;
5101 
5102 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5103 				 phy_mode, &mvneta_phylink_ops);
5104 	if (IS_ERR(phylink)) {
5105 		err = PTR_ERR(phylink);
5106 		goto err_free_irq;
5107 	}
5108 
5109 	dev->tx_queue_len = MVNETA_MAX_TXD;
5110 	dev->watchdog_timeo = 5 * HZ;
5111 	dev->netdev_ops = &mvneta_netdev_ops;
5112 
5113 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5114 
5115 	pp->phylink = phylink;
5116 	pp->comphy = comphy;
5117 	pp->phy_interface = phy_mode;
5118 	pp->dn = dn;
5119 
5120 	pp->rxq_def = rxq_def;
5121 	pp->indir[0] = rxq_def;
5122 
5123 	/* Get special SoC configurations */
5124 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5125 		pp->neta_armada3700 = true;
5126 
5127 	pp->clk = devm_clk_get(&pdev->dev, "core");
5128 	if (IS_ERR(pp->clk))
5129 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5130 	if (IS_ERR(pp->clk)) {
5131 		err = PTR_ERR(pp->clk);
5132 		goto err_free_phylink;
5133 	}
5134 
5135 	clk_prepare_enable(pp->clk);
5136 
5137 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5138 	if (!IS_ERR(pp->clk_bus))
5139 		clk_prepare_enable(pp->clk_bus);
5140 
5141 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5142 	if (IS_ERR(pp->base)) {
5143 		err = PTR_ERR(pp->base);
5144 		goto err_clk;
5145 	}
5146 
5147 	/* Alloc per-cpu port structure */
5148 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5149 	if (!pp->ports) {
5150 		err = -ENOMEM;
5151 		goto err_clk;
5152 	}
5153 
5154 	/* Alloc per-cpu stats */
5155 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5156 	if (!pp->stats) {
5157 		err = -ENOMEM;
5158 		goto err_free_ports;
5159 	}
5160 
5161 	dt_mac_addr = of_get_mac_address(dn);
5162 	if (!IS_ERR(dt_mac_addr)) {
5163 		mac_from = "device tree";
5164 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5165 	} else {
5166 		mvneta_get_mac_addr(pp, hw_mac_addr);
5167 		if (is_valid_ether_addr(hw_mac_addr)) {
5168 			mac_from = "hardware";
5169 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5170 		} else {
5171 			mac_from = "random";
5172 			eth_hw_addr_random(dev);
5173 		}
5174 	}
5175 
5176 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5177 		if (tx_csum_limit < 0 ||
5178 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5179 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5180 			dev_info(&pdev->dev,
5181 				 "Wrong TX csum limit in DT, set to %dB\n",
5182 				 MVNETA_TX_CSUM_DEF_SIZE);
5183 		}
5184 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5185 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5186 	} else {
5187 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5188 	}
5189 
5190 	pp->tx_csum_limit = tx_csum_limit;
5191 
5192 	pp->dram_target_info = mv_mbus_dram_info();
5193 	/* Armada3700 requires setting default configuration of Mbus
5194 	 * windows, however without using filled mbus_dram_target_info
5195 	 * structure.
5196 	 */
5197 	if (pp->dram_target_info || pp->neta_armada3700)
5198 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5199 
5200 	pp->tx_ring_size = MVNETA_MAX_TXD;
5201 	pp->rx_ring_size = MVNETA_MAX_RXD;
5202 
5203 	pp->dev = dev;
5204 	SET_NETDEV_DEV(dev, &pdev->dev);
5205 
5206 	pp->id = global_port_id++;
5207 
5208 	/* Obtain access to BM resources if enabled and already initialized */
5209 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5210 	if (bm_node) {
5211 		pp->bm_priv = mvneta_bm_get(bm_node);
5212 		if (pp->bm_priv) {
5213 			err = mvneta_bm_port_init(pdev, pp);
5214 			if (err < 0) {
5215 				dev_info(&pdev->dev,
5216 					 "use SW buffer management\n");
5217 				mvneta_bm_put(pp->bm_priv);
5218 				pp->bm_priv = NULL;
5219 			}
5220 		}
5221 		/* Set RX packet offset correction for platforms, whose
5222 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5223 		 * platforms and 0B for 32-bit ones.
5224 		 */
5225 		pp->rx_offset_correction = max(0,
5226 					       NET_SKB_PAD -
5227 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5228 	}
5229 	of_node_put(bm_node);
5230 
5231 	/* sw buffer management */
5232 	if (!pp->bm_priv)
5233 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5234 
5235 	err = mvneta_init(&pdev->dev, pp);
5236 	if (err < 0)
5237 		goto err_netdev;
5238 
5239 	err = mvneta_port_power_up(pp, pp->phy_interface);
5240 	if (err < 0) {
5241 		dev_err(&pdev->dev, "can't power up port\n");
5242 		return err;
5243 	}
5244 
5245 	/* Armada3700 network controller does not support per-cpu
5246 	 * operation, so only single NAPI should be initialized.
5247 	 */
5248 	if (pp->neta_armada3700) {
5249 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5250 	} else {
5251 		for_each_present_cpu(cpu) {
5252 			struct mvneta_pcpu_port *port =
5253 				per_cpu_ptr(pp->ports, cpu);
5254 
5255 			netif_napi_add(dev, &port->napi, mvneta_poll,
5256 				       NAPI_POLL_WEIGHT);
5257 			port->pp = pp;
5258 		}
5259 	}
5260 
5261 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5262 			NETIF_F_TSO | NETIF_F_RXCSUM;
5263 	dev->hw_features |= dev->features;
5264 	dev->vlan_features |= dev->features;
5265 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5266 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5267 
5268 	/* MTU range: 68 - 9676 */
5269 	dev->min_mtu = ETH_MIN_MTU;
5270 	/* 9676 == 9700 - 20 and rounding to 8 */
5271 	dev->max_mtu = 9676;
5272 
5273 	err = register_netdev(dev);
5274 	if (err < 0) {
5275 		dev_err(&pdev->dev, "failed to register\n");
5276 		goto err_netdev;
5277 	}
5278 
5279 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5280 		    dev->dev_addr);
5281 
5282 	platform_set_drvdata(pdev, pp->dev);
5283 
5284 	return 0;
5285 
5286 err_netdev:
5287 	if (pp->bm_priv) {
5288 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5289 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5290 				       1 << pp->id);
5291 		mvneta_bm_put(pp->bm_priv);
5292 	}
5293 	free_percpu(pp->stats);
5294 err_free_ports:
5295 	free_percpu(pp->ports);
5296 err_clk:
5297 	clk_disable_unprepare(pp->clk_bus);
5298 	clk_disable_unprepare(pp->clk);
5299 err_free_phylink:
5300 	if (pp->phylink)
5301 		phylink_destroy(pp->phylink);
5302 err_free_irq:
5303 	irq_dispose_mapping(dev->irq);
5304 	return err;
5305 }
5306 
5307 /* Device removal routine */
5308 static int mvneta_remove(struct platform_device *pdev)
5309 {
5310 	struct net_device  *dev = platform_get_drvdata(pdev);
5311 	struct mvneta_port *pp = netdev_priv(dev);
5312 
5313 	unregister_netdev(dev);
5314 	clk_disable_unprepare(pp->clk_bus);
5315 	clk_disable_unprepare(pp->clk);
5316 	free_percpu(pp->ports);
5317 	free_percpu(pp->stats);
5318 	irq_dispose_mapping(dev->irq);
5319 	phylink_destroy(pp->phylink);
5320 
5321 	if (pp->bm_priv) {
5322 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5323 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5324 				       1 << pp->id);
5325 		mvneta_bm_put(pp->bm_priv);
5326 	}
5327 
5328 	return 0;
5329 }
5330 
5331 #ifdef CONFIG_PM_SLEEP
5332 static int mvneta_suspend(struct device *device)
5333 {
5334 	int queue;
5335 	struct net_device *dev = dev_get_drvdata(device);
5336 	struct mvneta_port *pp = netdev_priv(dev);
5337 
5338 	if (!netif_running(dev))
5339 		goto clean_exit;
5340 
5341 	if (!pp->neta_armada3700) {
5342 		spin_lock(&pp->lock);
5343 		pp->is_stopped = true;
5344 		spin_unlock(&pp->lock);
5345 
5346 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5347 						    &pp->node_online);
5348 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5349 						    &pp->node_dead);
5350 	}
5351 
5352 	rtnl_lock();
5353 	mvneta_stop_dev(pp);
5354 	rtnl_unlock();
5355 
5356 	for (queue = 0; queue < rxq_number; queue++) {
5357 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5358 
5359 		mvneta_rxq_drop_pkts(pp, rxq);
5360 	}
5361 
5362 	for (queue = 0; queue < txq_number; queue++) {
5363 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5364 
5365 		mvneta_txq_hw_deinit(pp, txq);
5366 	}
5367 
5368 clean_exit:
5369 	netif_device_detach(dev);
5370 	clk_disable_unprepare(pp->clk_bus);
5371 	clk_disable_unprepare(pp->clk);
5372 
5373 	return 0;
5374 }
5375 
5376 static int mvneta_resume(struct device *device)
5377 {
5378 	struct platform_device *pdev = to_platform_device(device);
5379 	struct net_device *dev = dev_get_drvdata(device);
5380 	struct mvneta_port *pp = netdev_priv(dev);
5381 	int err, queue;
5382 
5383 	clk_prepare_enable(pp->clk);
5384 	if (!IS_ERR(pp->clk_bus))
5385 		clk_prepare_enable(pp->clk_bus);
5386 	if (pp->dram_target_info || pp->neta_armada3700)
5387 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5388 	if (pp->bm_priv) {
5389 		err = mvneta_bm_port_init(pdev, pp);
5390 		if (err < 0) {
5391 			dev_info(&pdev->dev, "use SW buffer management\n");
5392 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5393 			pp->bm_priv = NULL;
5394 		}
5395 	}
5396 	mvneta_defaults_set(pp);
5397 	err = mvneta_port_power_up(pp, pp->phy_interface);
5398 	if (err < 0) {
5399 		dev_err(device, "can't power up port\n");
5400 		return err;
5401 	}
5402 
5403 	netif_device_attach(dev);
5404 
5405 	if (!netif_running(dev))
5406 		return 0;
5407 
5408 	for (queue = 0; queue < rxq_number; queue++) {
5409 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5410 
5411 		rxq->next_desc_to_proc = 0;
5412 		mvneta_rxq_hw_init(pp, rxq);
5413 	}
5414 
5415 	for (queue = 0; queue < txq_number; queue++) {
5416 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5417 
5418 		txq->next_desc_to_proc = 0;
5419 		mvneta_txq_hw_init(pp, txq);
5420 	}
5421 
5422 	if (!pp->neta_armada3700) {
5423 		spin_lock(&pp->lock);
5424 		pp->is_stopped = false;
5425 		spin_unlock(&pp->lock);
5426 		cpuhp_state_add_instance_nocalls(online_hpstate,
5427 						 &pp->node_online);
5428 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5429 						 &pp->node_dead);
5430 	}
5431 
5432 	rtnl_lock();
5433 	mvneta_start_dev(pp);
5434 	rtnl_unlock();
5435 	mvneta_set_rx_mode(dev);
5436 
5437 	return 0;
5438 }
5439 #endif
5440 
5441 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5442 
5443 static const struct of_device_id mvneta_match[] = {
5444 	{ .compatible = "marvell,armada-370-neta" },
5445 	{ .compatible = "marvell,armada-xp-neta" },
5446 	{ .compatible = "marvell,armada-3700-neta" },
5447 	{ }
5448 };
5449 MODULE_DEVICE_TABLE(of, mvneta_match);
5450 
5451 static struct platform_driver mvneta_driver = {
5452 	.probe = mvneta_probe,
5453 	.remove = mvneta_remove,
5454 	.driver = {
5455 		.name = MVNETA_DRIVER_NAME,
5456 		.of_match_table = mvneta_match,
5457 		.pm = &mvneta_pm_ops,
5458 	},
5459 };
5460 
5461 static int __init mvneta_driver_init(void)
5462 {
5463 	int ret;
5464 
5465 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5466 				      mvneta_cpu_online,
5467 				      mvneta_cpu_down_prepare);
5468 	if (ret < 0)
5469 		goto out;
5470 	online_hpstate = ret;
5471 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5472 				      NULL, mvneta_cpu_dead);
5473 	if (ret)
5474 		goto err_dead;
5475 
5476 	ret = platform_driver_register(&mvneta_driver);
5477 	if (ret)
5478 		goto err;
5479 	return 0;
5480 
5481 err:
5482 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5483 err_dead:
5484 	cpuhp_remove_multi_state(online_hpstate);
5485 out:
5486 	return ret;
5487 }
5488 module_init(mvneta_driver_init);
5489 
5490 static void __exit mvneta_driver_exit(void)
5491 {
5492 	platform_driver_unregister(&mvneta_driver);
5493 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5494 	cpuhp_remove_multi_state(online_hpstate);
5495 }
5496 module_exit(mvneta_driver_exit);
5497 
5498 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5499 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5500 MODULE_LICENSE("GPL");
5501 
5502 module_param(rxq_number, int, 0444);
5503 module_param(txq_number, int, 0444);
5504 
5505 module_param(rxq_def, int, 0444);
5506 module_param(rx_copybreak, int, 0644);
5507