1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <net/ip.h>
24 #include <net/ipv6.h>
25 #include <linux/io.h>
26 #include <net/tso.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/of_address.h>
32 #include <linux/phy.h>
33 #include <linux/clk.h>
34 
35 /* Registers */
36 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
37 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
38 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
39 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
40 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
41 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
42 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
43 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
44 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
45 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
46 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
47 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
48 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
49 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
50 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
51 #define MVNETA_PORT_RX_RESET                    0x1cc0
52 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
53 #define MVNETA_PHY_ADDR                         0x2000
54 #define      MVNETA_PHY_ADDR_MASK               0x1f
55 #define MVNETA_MBUS_RETRY                       0x2010
56 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
57 #define MVNETA_UNIT_CONTROL                     0x20B0
58 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
59 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
60 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
61 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
62 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
63 #define MVNETA_PORT_CONFIG                      0x2400
64 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
65 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
66 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
67 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
68 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
69 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
70 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
71 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
72 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
73 						 MVNETA_DEF_RXQ_ARP(q)	 | \
74 						 MVNETA_DEF_RXQ_TCP(q)	 | \
75 						 MVNETA_DEF_RXQ_UDP(q)	 | \
76 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
77 						 MVNETA_TX_UNSET_ERR_SUM | \
78 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
79 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
80 #define MVNETA_MAC_ADDR_LOW                      0x2414
81 #define MVNETA_MAC_ADDR_HIGH                     0x2418
82 #define MVNETA_SDMA_CONFIG                       0x241c
83 #define      MVNETA_SDMA_BRST_SIZE_16            4
84 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
85 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
86 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
87 #define      MVNETA_DESC_SWAP                    BIT(6)
88 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
89 #define MVNETA_PORT_STATUS                       0x2444
90 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
91 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
92 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
93 #define MVNETA_SERDES_CFG			 0x24A0
94 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
95 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
96 #define MVNETA_TYPE_PRIO                         0x24bc
97 #define      MVNETA_FORCE_UNI                    BIT(21)
98 #define MVNETA_TXQ_CMD_1                         0x24e4
99 #define MVNETA_TXQ_CMD                           0x2448
100 #define      MVNETA_TXQ_DISABLE_SHIFT            8
101 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
102 #define MVNETA_ACC_MODE                          0x2500
103 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
104 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
105 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
106 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
107 
108 /* Exception Interrupt Port/Queue Cause register */
109 
110 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
111 #define MVNETA_INTR_NEW_MASK                     0x25a4
112 
113 /* bits  0..7  = TXQ SENT, one bit per queue.
114  * bits  8..15 = RXQ OCCUP, one bit per queue.
115  * bits 16..23 = RXQ FREE, one bit per queue.
116  * bit  29 = OLD_REG_SUM, see old reg ?
117  * bit  30 = TX_ERR_SUM, one bit for 4 ports
118  * bit  31 = MISC_SUM,   one bit for 4 ports
119  */
120 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
121 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
122 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
123 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
124 
125 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
126 #define MVNETA_INTR_OLD_MASK                     0x25ac
127 
128 /* Data Path Port/Queue Cause Register */
129 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
130 #define MVNETA_INTR_MISC_MASK                    0x25b4
131 
132 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
133 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
134 #define      MVNETA_CAUSE_PTP                    BIT(4)
135 
136 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
137 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
138 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
139 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
140 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
141 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
142 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
143 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
144 
145 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
146 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
147 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
148 
149 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
150 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
151 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
152 
153 #define MVNETA_INTR_ENABLE                       0x25b8
154 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
155 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
156 
157 #define MVNETA_RXQ_CMD                           0x2680
158 #define      MVNETA_RXQ_DISABLE_SHIFT            8
159 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
160 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
161 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
162 #define MVNETA_GMAC_CTRL_0                       0x2c00
163 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
164 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
165 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
166 #define MVNETA_GMAC_CTRL_2                       0x2c08
167 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
168 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
169 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
170 #define MVNETA_GMAC_STATUS                       0x2c10
171 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
172 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
173 #define      MVNETA_GMAC_SPEED_100               BIT(2)
174 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
175 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
176 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
177 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
178 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
179 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
180 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
181 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
182 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
183 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
184 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
185 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
186 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
187 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
188 #define      MVNETA_MIB_LATE_COLLISION           0x7c
189 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
190 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
191 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
192 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
193 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
194 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
195 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
196 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
197 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
198 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
199 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
200 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
201 #define MVNETA_PORT_TX_RESET                     0x3cf0
202 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
203 #define MVNETA_TX_MTU                            0x3e0c
204 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
205 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
206 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
207 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
208 
209 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
210 
211 /* Descriptor ring Macros */
212 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
213 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
214 
215 /* Various constants */
216 
217 /* Coalescing */
218 #define MVNETA_TXDONE_COAL_PKTS		16
219 #define MVNETA_RX_COAL_PKTS		32
220 #define MVNETA_RX_COAL_USEC		100
221 
222 /* The two bytes Marvell header. Either contains a special value used
223  * by Marvell switches when a specific hardware mode is enabled (not
224  * supported by this driver) or is filled automatically by zeroes on
225  * the RX side. Those two bytes being at the front of the Ethernet
226  * header, they allow to have the IP header aligned on a 4 bytes
227  * boundary automatically: the hardware skips those two bytes on its
228  * own.
229  */
230 #define MVNETA_MH_SIZE			2
231 
232 #define MVNETA_VLAN_TAG_LEN             4
233 
234 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
235 #define MVNETA_TX_CSUM_MAX_SIZE		9800
236 #define MVNETA_ACC_MODE_EXT		1
237 
238 /* Timeout constants */
239 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
240 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
241 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
242 
243 #define MVNETA_TX_MTU_MAX		0x3ffff
244 
245 /* TSO header size */
246 #define TSO_HEADER_SIZE 128
247 
248 /* Max number of Rx descriptors */
249 #define MVNETA_MAX_RXD 128
250 
251 /* Max number of Tx descriptors */
252 #define MVNETA_MAX_TXD 532
253 
254 /* Max number of allowed TCP segments for software TSO */
255 #define MVNETA_MAX_TSO_SEGS 100
256 
257 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
258 
259 /* descriptor aligned size */
260 #define MVNETA_DESC_ALIGNED_SIZE	32
261 
262 #define MVNETA_RX_PKT_SIZE(mtu) \
263 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
264 	      ETH_HLEN + ETH_FCS_LEN,			     \
265 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
266 
267 #define IS_TSO_HEADER(txq, addr) \
268 	((addr >= txq->tso_hdrs_phys) && \
269 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
270 
271 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
272 
273 struct mvneta_pcpu_stats {
274 	struct	u64_stats_sync syncp;
275 	u64	rx_packets;
276 	u64	rx_bytes;
277 	u64	tx_packets;
278 	u64	tx_bytes;
279 };
280 
281 struct mvneta_port {
282 	int pkt_size;
283 	unsigned int frag_size;
284 	void __iomem *base;
285 	struct mvneta_rx_queue *rxqs;
286 	struct mvneta_tx_queue *txqs;
287 	struct net_device *dev;
288 
289 	u32 cause_rx_tx;
290 	struct napi_struct napi;
291 
292 	/* Core clock */
293 	struct clk *clk;
294 	u8 mcast_count[256];
295 	u16 tx_ring_size;
296 	u16 rx_ring_size;
297 	struct mvneta_pcpu_stats *stats;
298 
299 	struct mii_bus *mii_bus;
300 	struct phy_device *phy_dev;
301 	phy_interface_t phy_interface;
302 	struct device_node *phy_node;
303 	unsigned int link;
304 	unsigned int duplex;
305 	unsigned int speed;
306 };
307 
308 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
309  * layout of the transmit and reception DMA descriptors, and their
310  * layout is therefore defined by the hardware design
311  */
312 
313 #define MVNETA_TX_L3_OFF_SHIFT	0
314 #define MVNETA_TX_IP_HLEN_SHIFT	8
315 #define MVNETA_TX_L4_UDP	BIT(16)
316 #define MVNETA_TX_L3_IP6	BIT(17)
317 #define MVNETA_TXD_IP_CSUM	BIT(18)
318 #define MVNETA_TXD_Z_PAD	BIT(19)
319 #define MVNETA_TXD_L_DESC	BIT(20)
320 #define MVNETA_TXD_F_DESC	BIT(21)
321 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
322 				 MVNETA_TXD_L_DESC | \
323 				 MVNETA_TXD_F_DESC)
324 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
325 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
326 
327 #define MVNETA_RXD_ERR_CRC		0x0
328 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
329 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
330 #define MVNETA_RXD_ERR_LEN		BIT(18)
331 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
332 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
333 #define MVNETA_RXD_L3_IP4		BIT(25)
334 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
335 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
336 
337 #if defined(__LITTLE_ENDIAN)
338 struct mvneta_tx_desc {
339 	u32  command;		/* Options used by HW for packet transmitting.*/
340 	u16  reserverd1;	/* csum_l4 (for future use)		*/
341 	u16  data_size;		/* Data size of transmitted packet in bytes */
342 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
343 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
344 	u32  reserved3[4];	/* Reserved - (for future use)		*/
345 };
346 
347 struct mvneta_rx_desc {
348 	u32  status;		/* Info about received packet		*/
349 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
350 	u16  data_size;		/* Size of received packet in bytes	*/
351 
352 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
353 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
354 
355 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
356 	u16  reserved3;		/* prefetch_cmd, for future use		*/
357 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
358 
359 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
360 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
361 };
362 #else
363 struct mvneta_tx_desc {
364 	u16  data_size;		/* Data size of transmitted packet in bytes */
365 	u16  reserverd1;	/* csum_l4 (for future use)		*/
366 	u32  command;		/* Options used by HW for packet transmitting.*/
367 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
368 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
369 	u32  reserved3[4];	/* Reserved - (for future use)		*/
370 };
371 
372 struct mvneta_rx_desc {
373 	u16  data_size;		/* Size of received packet in bytes	*/
374 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
375 	u32  status;		/* Info about received packet		*/
376 
377 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
378 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
379 
380 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
381 	u16  reserved3;		/* prefetch_cmd, for future use		*/
382 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
383 
384 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
385 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
386 };
387 #endif
388 
389 struct mvneta_tx_queue {
390 	/* Number of this TX queue, in the range 0-7 */
391 	u8 id;
392 
393 	/* Number of TX DMA descriptors in the descriptor ring */
394 	int size;
395 
396 	/* Number of currently used TX DMA descriptor in the
397 	 * descriptor ring
398 	 */
399 	int count;
400 	int tx_stop_threshold;
401 	int tx_wake_threshold;
402 
403 	/* Array of transmitted skb */
404 	struct sk_buff **tx_skb;
405 
406 	/* Index of last TX DMA descriptor that was inserted */
407 	int txq_put_index;
408 
409 	/* Index of the TX DMA descriptor to be cleaned up */
410 	int txq_get_index;
411 
412 	u32 done_pkts_coal;
413 
414 	/* Virtual address of the TX DMA descriptors array */
415 	struct mvneta_tx_desc *descs;
416 
417 	/* DMA address of the TX DMA descriptors array */
418 	dma_addr_t descs_phys;
419 
420 	/* Index of the last TX DMA descriptor */
421 	int last_desc;
422 
423 	/* Index of the next TX DMA descriptor to process */
424 	int next_desc_to_proc;
425 
426 	/* DMA buffers for TSO headers */
427 	char *tso_hdrs;
428 
429 	/* DMA address of TSO headers */
430 	dma_addr_t tso_hdrs_phys;
431 };
432 
433 struct mvneta_rx_queue {
434 	/* rx queue number, in the range 0-7 */
435 	u8 id;
436 
437 	/* num of rx descriptors in the rx descriptor ring */
438 	int size;
439 
440 	/* counter of times when mvneta_refill() failed */
441 	int missed;
442 
443 	u32 pkts_coal;
444 	u32 time_coal;
445 
446 	/* Virtual address of the RX DMA descriptors array */
447 	struct mvneta_rx_desc *descs;
448 
449 	/* DMA address of the RX DMA descriptors array */
450 	dma_addr_t descs_phys;
451 
452 	/* Index of the last RX DMA descriptor */
453 	int last_desc;
454 
455 	/* Index of the next RX DMA descriptor to process */
456 	int next_desc_to_proc;
457 };
458 
459 /* The hardware supports eight (8) rx queues, but we are only allowing
460  * the first one to be used. Therefore, let's just allocate one queue.
461  */
462 static int rxq_number = 1;
463 static int txq_number = 8;
464 
465 static int rxq_def;
466 
467 static int rx_copybreak __read_mostly = 256;
468 
469 #define MVNETA_DRIVER_NAME "mvneta"
470 #define MVNETA_DRIVER_VERSION "1.0"
471 
472 /* Utility/helper methods */
473 
474 /* Write helper method */
475 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
476 {
477 	writel(data, pp->base + offset);
478 }
479 
480 /* Read helper method */
481 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
482 {
483 	return readl(pp->base + offset);
484 }
485 
486 /* Increment txq get counter */
487 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
488 {
489 	txq->txq_get_index++;
490 	if (txq->txq_get_index == txq->size)
491 		txq->txq_get_index = 0;
492 }
493 
494 /* Increment txq put counter */
495 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
496 {
497 	txq->txq_put_index++;
498 	if (txq->txq_put_index == txq->size)
499 		txq->txq_put_index = 0;
500 }
501 
502 
503 /* Clear all MIB counters */
504 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
505 {
506 	int i;
507 	u32 dummy;
508 
509 	/* Perform dummy reads from MIB counters */
510 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
511 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
512 }
513 
514 /* Get System Network Statistics */
515 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
516 					     struct rtnl_link_stats64 *stats)
517 {
518 	struct mvneta_port *pp = netdev_priv(dev);
519 	unsigned int start;
520 	int cpu;
521 
522 	for_each_possible_cpu(cpu) {
523 		struct mvneta_pcpu_stats *cpu_stats;
524 		u64 rx_packets;
525 		u64 rx_bytes;
526 		u64 tx_packets;
527 		u64 tx_bytes;
528 
529 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
530 		do {
531 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
532 			rx_packets = cpu_stats->rx_packets;
533 			rx_bytes   = cpu_stats->rx_bytes;
534 			tx_packets = cpu_stats->tx_packets;
535 			tx_bytes   = cpu_stats->tx_bytes;
536 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
537 
538 		stats->rx_packets += rx_packets;
539 		stats->rx_bytes   += rx_bytes;
540 		stats->tx_packets += tx_packets;
541 		stats->tx_bytes   += tx_bytes;
542 	}
543 
544 	stats->rx_errors	= dev->stats.rx_errors;
545 	stats->rx_dropped	= dev->stats.rx_dropped;
546 
547 	stats->tx_dropped	= dev->stats.tx_dropped;
548 
549 	return stats;
550 }
551 
552 /* Rx descriptors helper methods */
553 
554 /* Checks whether the RX descriptor having this status is both the first
555  * and the last descriptor for the RX packet. Each RX packet is currently
556  * received through a single RX descriptor, so not having each RX
557  * descriptor with its first and last bits set is an error
558  */
559 static int mvneta_rxq_desc_is_first_last(u32 status)
560 {
561 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
562 		MVNETA_RXD_FIRST_LAST_DESC;
563 }
564 
565 /* Add number of descriptors ready to receive new packets */
566 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
567 					  struct mvneta_rx_queue *rxq,
568 					  int ndescs)
569 {
570 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
571 	 * be added at once
572 	 */
573 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
574 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
575 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
576 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
577 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
578 	}
579 
580 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
581 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
582 }
583 
584 /* Get number of RX descriptors occupied by received packets */
585 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
586 					struct mvneta_rx_queue *rxq)
587 {
588 	u32 val;
589 
590 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
591 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
592 }
593 
594 /* Update num of rx desc called upon return from rx path or
595  * from mvneta_rxq_drop_pkts().
596  */
597 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
598 				       struct mvneta_rx_queue *rxq,
599 				       int rx_done, int rx_filled)
600 {
601 	u32 val;
602 
603 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
604 		val = rx_done |
605 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
606 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
607 		return;
608 	}
609 
610 	/* Only 255 descriptors can be added at once */
611 	while ((rx_done > 0) || (rx_filled > 0)) {
612 		if (rx_done <= 0xff) {
613 			val = rx_done;
614 			rx_done = 0;
615 		} else {
616 			val = 0xff;
617 			rx_done -= 0xff;
618 		}
619 		if (rx_filled <= 0xff) {
620 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
621 			rx_filled = 0;
622 		} else {
623 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
624 			rx_filled -= 0xff;
625 		}
626 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
627 	}
628 }
629 
630 /* Get pointer to next RX descriptor to be processed by SW */
631 static struct mvneta_rx_desc *
632 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
633 {
634 	int rx_desc = rxq->next_desc_to_proc;
635 
636 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
637 	prefetch(rxq->descs + rxq->next_desc_to_proc);
638 	return rxq->descs + rx_desc;
639 }
640 
641 /* Change maximum receive size of the port. */
642 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
643 {
644 	u32 val;
645 
646 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
647 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
648 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
649 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
650 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
651 }
652 
653 
654 /* Set rx queue offset */
655 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
656 				  struct mvneta_rx_queue *rxq,
657 				  int offset)
658 {
659 	u32 val;
660 
661 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
662 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
663 
664 	/* Offset is in */
665 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
666 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
667 }
668 
669 
670 /* Tx descriptors helper methods */
671 
672 /* Update HW with number of TX descriptors to be sent */
673 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
674 				     struct mvneta_tx_queue *txq,
675 				     int pend_desc)
676 {
677 	u32 val;
678 
679 	/* Only 255 descriptors can be added at once ; Assume caller
680 	 * process TX desriptors in quanta less than 256
681 	 */
682 	val = pend_desc;
683 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
684 }
685 
686 /* Get pointer to next TX descriptor to be processed (send) by HW */
687 static struct mvneta_tx_desc *
688 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
689 {
690 	int tx_desc = txq->next_desc_to_proc;
691 
692 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
693 	return txq->descs + tx_desc;
694 }
695 
696 /* Release the last allocated TX descriptor. Useful to handle DMA
697  * mapping failures in the TX path.
698  */
699 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
700 {
701 	if (txq->next_desc_to_proc == 0)
702 		txq->next_desc_to_proc = txq->last_desc - 1;
703 	else
704 		txq->next_desc_to_proc--;
705 }
706 
707 /* Set rxq buf size */
708 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
709 				    struct mvneta_rx_queue *rxq,
710 				    int buf_size)
711 {
712 	u32 val;
713 
714 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
715 
716 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
717 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
718 
719 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
720 }
721 
722 /* Disable buffer management (BM) */
723 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
724 				  struct mvneta_rx_queue *rxq)
725 {
726 	u32 val;
727 
728 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
729 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
730 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
731 }
732 
733 /* Start the Ethernet port RX and TX activity */
734 static void mvneta_port_up(struct mvneta_port *pp)
735 {
736 	int queue;
737 	u32 q_map;
738 
739 	/* Enable all initialized TXs. */
740 	mvneta_mib_counters_clear(pp);
741 	q_map = 0;
742 	for (queue = 0; queue < txq_number; queue++) {
743 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
744 		if (txq->descs != NULL)
745 			q_map |= (1 << queue);
746 	}
747 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
748 
749 	/* Enable all initialized RXQs. */
750 	q_map = 0;
751 	for (queue = 0; queue < rxq_number; queue++) {
752 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
753 		if (rxq->descs != NULL)
754 			q_map |= (1 << queue);
755 	}
756 
757 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
758 }
759 
760 /* Stop the Ethernet port activity */
761 static void mvneta_port_down(struct mvneta_port *pp)
762 {
763 	u32 val;
764 	int count;
765 
766 	/* Stop Rx port activity. Check port Rx activity. */
767 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
768 
769 	/* Issue stop command for active channels only */
770 	if (val != 0)
771 		mvreg_write(pp, MVNETA_RXQ_CMD,
772 			    val << MVNETA_RXQ_DISABLE_SHIFT);
773 
774 	/* Wait for all Rx activity to terminate. */
775 	count = 0;
776 	do {
777 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
778 			netdev_warn(pp->dev,
779 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
780 				    val);
781 			break;
782 		}
783 		mdelay(1);
784 
785 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
786 	} while (val & 0xff);
787 
788 	/* Stop Tx port activity. Check port Tx activity. Issue stop
789 	 * command for active channels only
790 	 */
791 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
792 
793 	if (val != 0)
794 		mvreg_write(pp, MVNETA_TXQ_CMD,
795 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
796 
797 	/* Wait for all Tx activity to terminate. */
798 	count = 0;
799 	do {
800 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
801 			netdev_warn(pp->dev,
802 				    "TIMEOUT for TX stopped status=0x%08x\n",
803 				    val);
804 			break;
805 		}
806 		mdelay(1);
807 
808 		/* Check TX Command reg that all Txqs are stopped */
809 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
810 
811 	} while (val & 0xff);
812 
813 	/* Double check to verify that TX FIFO is empty */
814 	count = 0;
815 	do {
816 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
817 			netdev_warn(pp->dev,
818 				    "TX FIFO empty timeout status=0x08%x\n",
819 				    val);
820 			break;
821 		}
822 		mdelay(1);
823 
824 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
825 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
826 		 (val & MVNETA_TX_IN_PRGRS));
827 
828 	udelay(200);
829 }
830 
831 /* Enable the port by setting the port enable bit of the MAC control register */
832 static void mvneta_port_enable(struct mvneta_port *pp)
833 {
834 	u32 val;
835 
836 	/* Enable port */
837 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
838 	val |= MVNETA_GMAC0_PORT_ENABLE;
839 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
840 }
841 
842 /* Disable the port and wait for about 200 usec before retuning */
843 static void mvneta_port_disable(struct mvneta_port *pp)
844 {
845 	u32 val;
846 
847 	/* Reset the Enable bit in the Serial Control Register */
848 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
849 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
850 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
851 
852 	udelay(200);
853 }
854 
855 /* Multicast tables methods */
856 
857 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
858 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
859 {
860 	int offset;
861 	u32 val;
862 
863 	if (queue == -1) {
864 		val = 0;
865 	} else {
866 		val = 0x1 | (queue << 1);
867 		val |= (val << 24) | (val << 16) | (val << 8);
868 	}
869 
870 	for (offset = 0; offset <= 0xc; offset += 4)
871 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
872 }
873 
874 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
875 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
876 {
877 	int offset;
878 	u32 val;
879 
880 	if (queue == -1) {
881 		val = 0;
882 	} else {
883 		val = 0x1 | (queue << 1);
884 		val |= (val << 24) | (val << 16) | (val << 8);
885 	}
886 
887 	for (offset = 0; offset <= 0xfc; offset += 4)
888 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
889 
890 }
891 
892 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
893 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
894 {
895 	int offset;
896 	u32 val;
897 
898 	if (queue == -1) {
899 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
900 		val = 0;
901 	} else {
902 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
903 		val = 0x1 | (queue << 1);
904 		val |= (val << 24) | (val << 16) | (val << 8);
905 	}
906 
907 	for (offset = 0; offset <= 0xfc; offset += 4)
908 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
909 }
910 
911 /* This method sets defaults to the NETA port:
912  *	Clears interrupt Cause and Mask registers.
913  *	Clears all MAC tables.
914  *	Sets defaults to all registers.
915  *	Resets RX and TX descriptor rings.
916  *	Resets PHY.
917  * This method can be called after mvneta_port_down() to return the port
918  *	settings to defaults.
919  */
920 static void mvneta_defaults_set(struct mvneta_port *pp)
921 {
922 	int cpu;
923 	int queue;
924 	u32 val;
925 
926 	/* Clear all Cause registers */
927 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
928 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
929 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
930 
931 	/* Mask all interrupts */
932 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
933 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
934 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
935 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
936 
937 	/* Enable MBUS Retry bit16 */
938 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
939 
940 	/* Set CPU queue access map - all CPUs have access to all RX
941 	 * queues and to all TX queues
942 	 */
943 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
944 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
945 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
946 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
947 
948 	/* Reset RX and TX DMAs */
949 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
950 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
951 
952 	/* Disable Legacy WRR, Disable EJP, Release from reset */
953 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
954 	for (queue = 0; queue < txq_number; queue++) {
955 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
956 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
957 	}
958 
959 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
960 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
961 
962 	/* Set Port Acceleration Mode */
963 	val = MVNETA_ACC_MODE_EXT;
964 	mvreg_write(pp, MVNETA_ACC_MODE, val);
965 
966 	/* Update val of portCfg register accordingly with all RxQueue types */
967 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
968 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
969 
970 	val = 0;
971 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
972 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
973 
974 	/* Build PORT_SDMA_CONFIG_REG */
975 	val = 0;
976 
977 	/* Default burst size */
978 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
979 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
980 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
981 
982 #if defined(__BIG_ENDIAN)
983 	val |= MVNETA_DESC_SWAP;
984 #endif
985 
986 	/* Assign port SDMA configuration */
987 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
988 
989 	/* Disable PHY polling in hardware, since we're using the
990 	 * kernel phylib to do this.
991 	 */
992 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
993 	val &= ~MVNETA_PHY_POLLING_ENABLE;
994 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
995 
996 	mvneta_set_ucast_table(pp, -1);
997 	mvneta_set_special_mcast_table(pp, -1);
998 	mvneta_set_other_mcast_table(pp, -1);
999 
1000 	/* Set port interrupt enable register - default enable all */
1001 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1002 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1003 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1004 }
1005 
1006 /* Set max sizes for tx queues */
1007 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1008 
1009 {
1010 	u32 val, size, mtu;
1011 	int queue;
1012 
1013 	mtu = max_tx_size * 8;
1014 	if (mtu > MVNETA_TX_MTU_MAX)
1015 		mtu = MVNETA_TX_MTU_MAX;
1016 
1017 	/* Set MTU */
1018 	val = mvreg_read(pp, MVNETA_TX_MTU);
1019 	val &= ~MVNETA_TX_MTU_MAX;
1020 	val |= mtu;
1021 	mvreg_write(pp, MVNETA_TX_MTU, val);
1022 
1023 	/* TX token size and all TXQs token size must be larger that MTU */
1024 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1025 
1026 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1027 	if (size < mtu) {
1028 		size = mtu;
1029 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1030 		val |= size;
1031 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1032 	}
1033 	for (queue = 0; queue < txq_number; queue++) {
1034 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1035 
1036 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1037 		if (size < mtu) {
1038 			size = mtu;
1039 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1040 			val |= size;
1041 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1042 		}
1043 	}
1044 }
1045 
1046 /* Set unicast address */
1047 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1048 				  int queue)
1049 {
1050 	unsigned int unicast_reg;
1051 	unsigned int tbl_offset;
1052 	unsigned int reg_offset;
1053 
1054 	/* Locate the Unicast table entry */
1055 	last_nibble = (0xf & last_nibble);
1056 
1057 	/* offset from unicast tbl base */
1058 	tbl_offset = (last_nibble / 4) * 4;
1059 
1060 	/* offset within the above reg  */
1061 	reg_offset = last_nibble % 4;
1062 
1063 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1064 
1065 	if (queue == -1) {
1066 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1067 		unicast_reg &= ~(0xff << (8 * reg_offset));
1068 	} else {
1069 		unicast_reg &= ~(0xff << (8 * reg_offset));
1070 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1071 	}
1072 
1073 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1074 }
1075 
1076 /* Set mac address */
1077 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1078 				int queue)
1079 {
1080 	unsigned int mac_h;
1081 	unsigned int mac_l;
1082 
1083 	if (queue != -1) {
1084 		mac_l = (addr[4] << 8) | (addr[5]);
1085 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1086 			(addr[2] << 8) | (addr[3] << 0);
1087 
1088 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1089 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1090 	}
1091 
1092 	/* Accept frames of this address */
1093 	mvneta_set_ucast_addr(pp, addr[5], queue);
1094 }
1095 
1096 /* Set the number of packets that will be received before RX interrupt
1097  * will be generated by HW.
1098  */
1099 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1100 				    struct mvneta_rx_queue *rxq, u32 value)
1101 {
1102 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1103 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1104 	rxq->pkts_coal = value;
1105 }
1106 
1107 /* Set the time delay in usec before RX interrupt will be generated by
1108  * HW.
1109  */
1110 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1111 				    struct mvneta_rx_queue *rxq, u32 value)
1112 {
1113 	u32 val;
1114 	unsigned long clk_rate;
1115 
1116 	clk_rate = clk_get_rate(pp->clk);
1117 	val = (clk_rate / 1000000) * value;
1118 
1119 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1120 	rxq->time_coal = value;
1121 }
1122 
1123 /* Set threshold for TX_DONE pkts coalescing */
1124 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1125 					 struct mvneta_tx_queue *txq, u32 value)
1126 {
1127 	u32 val;
1128 
1129 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1130 
1131 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1132 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1133 
1134 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1135 
1136 	txq->done_pkts_coal = value;
1137 }
1138 
1139 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1140 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1141 				u32 phys_addr, u32 cookie)
1142 {
1143 	rx_desc->buf_cookie = cookie;
1144 	rx_desc->buf_phys_addr = phys_addr;
1145 }
1146 
1147 /* Decrement sent descriptors counter */
1148 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1149 				     struct mvneta_tx_queue *txq,
1150 				     int sent_desc)
1151 {
1152 	u32 val;
1153 
1154 	/* Only 255 TX descriptors can be updated at once */
1155 	while (sent_desc > 0xff) {
1156 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1157 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1158 		sent_desc = sent_desc - 0xff;
1159 	}
1160 
1161 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1162 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1163 }
1164 
1165 /* Get number of TX descriptors already sent by HW */
1166 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1167 					struct mvneta_tx_queue *txq)
1168 {
1169 	u32 val;
1170 	int sent_desc;
1171 
1172 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1173 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1174 		MVNETA_TXQ_SENT_DESC_SHIFT;
1175 
1176 	return sent_desc;
1177 }
1178 
1179 /* Get number of sent descriptors and decrement counter.
1180  *  The number of sent descriptors is returned.
1181  */
1182 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1183 				     struct mvneta_tx_queue *txq)
1184 {
1185 	int sent_desc;
1186 
1187 	/* Get number of sent descriptors */
1188 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1189 
1190 	/* Decrement sent descriptors counter */
1191 	if (sent_desc)
1192 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1193 
1194 	return sent_desc;
1195 }
1196 
1197 /* Set TXQ descriptors fields relevant for CSUM calculation */
1198 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1199 				int ip_hdr_len, int l4_proto)
1200 {
1201 	u32 command;
1202 
1203 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1204 	 * G_L4_chk, L4_type; required only for checksum
1205 	 * calculation
1206 	 */
1207 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1208 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1209 
1210 	if (l3_proto == htons(ETH_P_IP))
1211 		command |= MVNETA_TXD_IP_CSUM;
1212 	else
1213 		command |= MVNETA_TX_L3_IP6;
1214 
1215 	if (l4_proto == IPPROTO_TCP)
1216 		command |=  MVNETA_TX_L4_CSUM_FULL;
1217 	else if (l4_proto == IPPROTO_UDP)
1218 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1219 	else
1220 		command |= MVNETA_TX_L4_CSUM_NOT;
1221 
1222 	return command;
1223 }
1224 
1225 
1226 /* Display more error info */
1227 static void mvneta_rx_error(struct mvneta_port *pp,
1228 			    struct mvneta_rx_desc *rx_desc)
1229 {
1230 	u32 status = rx_desc->status;
1231 
1232 	if (!mvneta_rxq_desc_is_first_last(status)) {
1233 		netdev_err(pp->dev,
1234 			   "bad rx status %08x (buffer oversize), size=%d\n",
1235 			   status, rx_desc->data_size);
1236 		return;
1237 	}
1238 
1239 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1240 	case MVNETA_RXD_ERR_CRC:
1241 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1242 			   status, rx_desc->data_size);
1243 		break;
1244 	case MVNETA_RXD_ERR_OVERRUN:
1245 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1246 			   status, rx_desc->data_size);
1247 		break;
1248 	case MVNETA_RXD_ERR_LEN:
1249 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1250 			   status, rx_desc->data_size);
1251 		break;
1252 	case MVNETA_RXD_ERR_RESOURCE:
1253 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1254 			   status, rx_desc->data_size);
1255 		break;
1256 	}
1257 }
1258 
1259 /* Handle RX checksum offload based on the descriptor's status */
1260 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1261 			   struct sk_buff *skb)
1262 {
1263 	if ((status & MVNETA_RXD_L3_IP4) &&
1264 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1265 		skb->csum = 0;
1266 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1267 		return;
1268 	}
1269 
1270 	skb->ip_summed = CHECKSUM_NONE;
1271 }
1272 
1273 /* Return tx queue pointer (find last set bit) according to <cause> returned
1274  * form tx_done reg. <cause> must not be null. The return value is always a
1275  * valid queue for matching the first one found in <cause>.
1276  */
1277 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1278 						     u32 cause)
1279 {
1280 	int queue = fls(cause) - 1;
1281 
1282 	return &pp->txqs[queue];
1283 }
1284 
1285 /* Free tx queue skbuffs */
1286 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1287 				 struct mvneta_tx_queue *txq, int num)
1288 {
1289 	int i;
1290 
1291 	for (i = 0; i < num; i++) {
1292 		struct mvneta_tx_desc *tx_desc = txq->descs +
1293 			txq->txq_get_index;
1294 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1295 
1296 		mvneta_txq_inc_get(txq);
1297 
1298 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1299 			dma_unmap_single(pp->dev->dev.parent,
1300 					 tx_desc->buf_phys_addr,
1301 					 tx_desc->data_size, DMA_TO_DEVICE);
1302 		if (!skb)
1303 			continue;
1304 		dev_kfree_skb_any(skb);
1305 	}
1306 }
1307 
1308 /* Handle end of transmission */
1309 static void mvneta_txq_done(struct mvneta_port *pp,
1310 			   struct mvneta_tx_queue *txq)
1311 {
1312 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1313 	int tx_done;
1314 
1315 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1316 	if (!tx_done)
1317 		return;
1318 
1319 	mvneta_txq_bufs_free(pp, txq, tx_done);
1320 
1321 	txq->count -= tx_done;
1322 
1323 	if (netif_tx_queue_stopped(nq)) {
1324 		if (txq->count <= txq->tx_wake_threshold)
1325 			netif_tx_wake_queue(nq);
1326 	}
1327 }
1328 
1329 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1330 {
1331 	if (likely(pp->frag_size <= PAGE_SIZE))
1332 		return netdev_alloc_frag(pp->frag_size);
1333 	else
1334 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1335 }
1336 
1337 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1338 {
1339 	if (likely(pp->frag_size <= PAGE_SIZE))
1340 		put_page(virt_to_head_page(data));
1341 	else
1342 		kfree(data);
1343 }
1344 
1345 /* Refill processing */
1346 static int mvneta_rx_refill(struct mvneta_port *pp,
1347 			    struct mvneta_rx_desc *rx_desc)
1348 
1349 {
1350 	dma_addr_t phys_addr;
1351 	void *data;
1352 
1353 	data = mvneta_frag_alloc(pp);
1354 	if (!data)
1355 		return -ENOMEM;
1356 
1357 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1358 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1359 				   DMA_FROM_DEVICE);
1360 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1361 		mvneta_frag_free(pp, data);
1362 		return -ENOMEM;
1363 	}
1364 
1365 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1366 	return 0;
1367 }
1368 
1369 /* Handle tx checksum */
1370 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1371 {
1372 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1373 		int ip_hdr_len = 0;
1374 		u8 l4_proto;
1375 
1376 		if (skb->protocol == htons(ETH_P_IP)) {
1377 			struct iphdr *ip4h = ip_hdr(skb);
1378 
1379 			/* Calculate IPv4 checksum and L4 checksum */
1380 			ip_hdr_len = ip4h->ihl;
1381 			l4_proto = ip4h->protocol;
1382 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1383 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1384 
1385 			/* Read l4_protocol from one of IPv6 extra headers */
1386 			if (skb_network_header_len(skb) > 0)
1387 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1388 			l4_proto = ip6h->nexthdr;
1389 		} else
1390 			return MVNETA_TX_L4_CSUM_NOT;
1391 
1392 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1393 				skb->protocol, ip_hdr_len, l4_proto);
1394 	}
1395 
1396 	return MVNETA_TX_L4_CSUM_NOT;
1397 }
1398 
1399 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1400  * value
1401  */
1402 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1403 						u32 cause)
1404 {
1405 	int queue = fls(cause >> 8) - 1;
1406 
1407 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1408 }
1409 
1410 /* Drop packets received by the RXQ and free buffers */
1411 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1412 				 struct mvneta_rx_queue *rxq)
1413 {
1414 	int rx_done, i;
1415 
1416 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1417 	for (i = 0; i < rxq->size; i++) {
1418 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1419 		void *data = (void *)rx_desc->buf_cookie;
1420 
1421 		mvneta_frag_free(pp, data);
1422 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1423 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1424 	}
1425 
1426 	if (rx_done)
1427 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1428 }
1429 
1430 /* Main rx processing */
1431 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1432 		     struct mvneta_rx_queue *rxq)
1433 {
1434 	struct net_device *dev = pp->dev;
1435 	int rx_done, rx_filled;
1436 	u32 rcvd_pkts = 0;
1437 	u32 rcvd_bytes = 0;
1438 
1439 	/* Get number of received packets */
1440 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1441 
1442 	if (rx_todo > rx_done)
1443 		rx_todo = rx_done;
1444 
1445 	rx_done = 0;
1446 	rx_filled = 0;
1447 
1448 	/* Fairness NAPI loop */
1449 	while (rx_done < rx_todo) {
1450 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1451 		struct sk_buff *skb;
1452 		unsigned char *data;
1453 		u32 rx_status;
1454 		int rx_bytes, err;
1455 
1456 		rx_done++;
1457 		rx_filled++;
1458 		rx_status = rx_desc->status;
1459 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1460 		data = (unsigned char *)rx_desc->buf_cookie;
1461 
1462 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1463 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1464 		err_drop_frame:
1465 			dev->stats.rx_errors++;
1466 			mvneta_rx_error(pp, rx_desc);
1467 			/* leave the descriptor untouched */
1468 			continue;
1469 		}
1470 
1471 		if (rx_bytes <= rx_copybreak) {
1472 			/* better copy a small frame and not unmap the DMA region */
1473 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1474 			if (unlikely(!skb))
1475 				goto err_drop_frame;
1476 
1477 			dma_sync_single_range_for_cpu(dev->dev.parent,
1478 			                              rx_desc->buf_phys_addr,
1479 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1480 			                              rx_bytes,
1481 			                              DMA_FROM_DEVICE);
1482 			memcpy(skb_put(skb, rx_bytes),
1483 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1484 			       rx_bytes);
1485 
1486 			skb->protocol = eth_type_trans(skb, dev);
1487 			mvneta_rx_csum(pp, rx_status, skb);
1488 			napi_gro_receive(&pp->napi, skb);
1489 
1490 			rcvd_pkts++;
1491 			rcvd_bytes += rx_bytes;
1492 
1493 			/* leave the descriptor and buffer untouched */
1494 			continue;
1495 		}
1496 
1497 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1498 		if (!skb)
1499 			goto err_drop_frame;
1500 
1501 		dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
1502 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1503 
1504 		rcvd_pkts++;
1505 		rcvd_bytes += rx_bytes;
1506 
1507 		/* Linux processing */
1508 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1509 		skb_put(skb, rx_bytes);
1510 
1511 		skb->protocol = eth_type_trans(skb, dev);
1512 
1513 		mvneta_rx_csum(pp, rx_status, skb);
1514 
1515 		napi_gro_receive(&pp->napi, skb);
1516 
1517 		/* Refill processing */
1518 		err = mvneta_rx_refill(pp, rx_desc);
1519 		if (err) {
1520 			netdev_err(dev, "Linux processing - Can't refill\n");
1521 			rxq->missed++;
1522 			rx_filled--;
1523 		}
1524 	}
1525 
1526 	if (rcvd_pkts) {
1527 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1528 
1529 		u64_stats_update_begin(&stats->syncp);
1530 		stats->rx_packets += rcvd_pkts;
1531 		stats->rx_bytes   += rcvd_bytes;
1532 		u64_stats_update_end(&stats->syncp);
1533 	}
1534 
1535 	/* Update rxq management counters */
1536 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1537 
1538 	return rx_done;
1539 }
1540 
1541 static inline void
1542 mvneta_tso_put_hdr(struct sk_buff *skb,
1543 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1544 {
1545 	struct mvneta_tx_desc *tx_desc;
1546 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1547 
1548 	txq->tx_skb[txq->txq_put_index] = NULL;
1549 	tx_desc = mvneta_txq_next_desc_get(txq);
1550 	tx_desc->data_size = hdr_len;
1551 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1552 	tx_desc->command |= MVNETA_TXD_F_DESC;
1553 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1554 				 txq->txq_put_index * TSO_HEADER_SIZE;
1555 	mvneta_txq_inc_put(txq);
1556 }
1557 
1558 static inline int
1559 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1560 		    struct sk_buff *skb, char *data, int size,
1561 		    bool last_tcp, bool is_last)
1562 {
1563 	struct mvneta_tx_desc *tx_desc;
1564 
1565 	tx_desc = mvneta_txq_next_desc_get(txq);
1566 	tx_desc->data_size = size;
1567 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1568 						size, DMA_TO_DEVICE);
1569 	if (unlikely(dma_mapping_error(dev->dev.parent,
1570 		     tx_desc->buf_phys_addr))) {
1571 		mvneta_txq_desc_put(txq);
1572 		return -ENOMEM;
1573 	}
1574 
1575 	tx_desc->command = 0;
1576 	txq->tx_skb[txq->txq_put_index] = NULL;
1577 
1578 	if (last_tcp) {
1579 		/* last descriptor in the TCP packet */
1580 		tx_desc->command = MVNETA_TXD_L_DESC;
1581 
1582 		/* last descriptor in SKB */
1583 		if (is_last)
1584 			txq->tx_skb[txq->txq_put_index] = skb;
1585 	}
1586 	mvneta_txq_inc_put(txq);
1587 	return 0;
1588 }
1589 
1590 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1591 			 struct mvneta_tx_queue *txq)
1592 {
1593 	int total_len, data_left;
1594 	int desc_count = 0;
1595 	struct mvneta_port *pp = netdev_priv(dev);
1596 	struct tso_t tso;
1597 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1598 	int i;
1599 
1600 	/* Count needed descriptors */
1601 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1602 		return 0;
1603 
1604 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1605 		pr_info("*** Is this even  possible???!?!?\n");
1606 		return 0;
1607 	}
1608 
1609 	/* Initialize the TSO handler, and prepare the first payload */
1610 	tso_start(skb, &tso);
1611 
1612 	total_len = skb->len - hdr_len;
1613 	while (total_len > 0) {
1614 		char *hdr;
1615 
1616 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1617 		total_len -= data_left;
1618 		desc_count++;
1619 
1620 		/* prepare packet headers: MAC + IP + TCP */
1621 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1622 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1623 
1624 		mvneta_tso_put_hdr(skb, pp, txq);
1625 
1626 		while (data_left > 0) {
1627 			int size;
1628 			desc_count++;
1629 
1630 			size = min_t(int, tso.size, data_left);
1631 
1632 			if (mvneta_tso_put_data(dev, txq, skb,
1633 						 tso.data, size,
1634 						 size == data_left,
1635 						 total_len == 0))
1636 				goto err_release;
1637 			data_left -= size;
1638 
1639 			tso_build_data(skb, &tso, size);
1640 		}
1641 	}
1642 
1643 	return desc_count;
1644 
1645 err_release:
1646 	/* Release all used data descriptors; header descriptors must not
1647 	 * be DMA-unmapped.
1648 	 */
1649 	for (i = desc_count - 1; i >= 0; i--) {
1650 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1651 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1652 			dma_unmap_single(pp->dev->dev.parent,
1653 					 tx_desc->buf_phys_addr,
1654 					 tx_desc->data_size,
1655 					 DMA_TO_DEVICE);
1656 		mvneta_txq_desc_put(txq);
1657 	}
1658 	return 0;
1659 }
1660 
1661 /* Handle tx fragmentation processing */
1662 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1663 				  struct mvneta_tx_queue *txq)
1664 {
1665 	struct mvneta_tx_desc *tx_desc;
1666 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1667 
1668 	for (i = 0; i < nr_frags; i++) {
1669 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1670 		void *addr = page_address(frag->page.p) + frag->page_offset;
1671 
1672 		tx_desc = mvneta_txq_next_desc_get(txq);
1673 		tx_desc->data_size = frag->size;
1674 
1675 		tx_desc->buf_phys_addr =
1676 			dma_map_single(pp->dev->dev.parent, addr,
1677 				       tx_desc->data_size, DMA_TO_DEVICE);
1678 
1679 		if (dma_mapping_error(pp->dev->dev.parent,
1680 				      tx_desc->buf_phys_addr)) {
1681 			mvneta_txq_desc_put(txq);
1682 			goto error;
1683 		}
1684 
1685 		if (i == nr_frags - 1) {
1686 			/* Last descriptor */
1687 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1688 			txq->tx_skb[txq->txq_put_index] = skb;
1689 		} else {
1690 			/* Descriptor in the middle: Not First, Not Last */
1691 			tx_desc->command = 0;
1692 			txq->tx_skb[txq->txq_put_index] = NULL;
1693 		}
1694 		mvneta_txq_inc_put(txq);
1695 	}
1696 
1697 	return 0;
1698 
1699 error:
1700 	/* Release all descriptors that were used to map fragments of
1701 	 * this packet, as well as the corresponding DMA mappings
1702 	 */
1703 	for (i = i - 1; i >= 0; i--) {
1704 		tx_desc = txq->descs + i;
1705 		dma_unmap_single(pp->dev->dev.parent,
1706 				 tx_desc->buf_phys_addr,
1707 				 tx_desc->data_size,
1708 				 DMA_TO_DEVICE);
1709 		mvneta_txq_desc_put(txq);
1710 	}
1711 
1712 	return -ENOMEM;
1713 }
1714 
1715 /* Main tx processing */
1716 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1717 {
1718 	struct mvneta_port *pp = netdev_priv(dev);
1719 	u16 txq_id = skb_get_queue_mapping(skb);
1720 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1721 	struct mvneta_tx_desc *tx_desc;
1722 	int frags = 0;
1723 	u32 tx_cmd;
1724 
1725 	if (!netif_running(dev))
1726 		goto out;
1727 
1728 	if (skb_is_gso(skb)) {
1729 		frags = mvneta_tx_tso(skb, dev, txq);
1730 		goto out;
1731 	}
1732 
1733 	frags = skb_shinfo(skb)->nr_frags + 1;
1734 
1735 	/* Get a descriptor for the first part of the packet */
1736 	tx_desc = mvneta_txq_next_desc_get(txq);
1737 
1738 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1739 
1740 	tx_desc->data_size = skb_headlen(skb);
1741 
1742 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1743 						tx_desc->data_size,
1744 						DMA_TO_DEVICE);
1745 	if (unlikely(dma_mapping_error(dev->dev.parent,
1746 				       tx_desc->buf_phys_addr))) {
1747 		mvneta_txq_desc_put(txq);
1748 		frags = 0;
1749 		goto out;
1750 	}
1751 
1752 	if (frags == 1) {
1753 		/* First and Last descriptor */
1754 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1755 		tx_desc->command = tx_cmd;
1756 		txq->tx_skb[txq->txq_put_index] = skb;
1757 		mvneta_txq_inc_put(txq);
1758 	} else {
1759 		/* First but not Last */
1760 		tx_cmd |= MVNETA_TXD_F_DESC;
1761 		txq->tx_skb[txq->txq_put_index] = NULL;
1762 		mvneta_txq_inc_put(txq);
1763 		tx_desc->command = tx_cmd;
1764 		/* Continue with other skb fragments */
1765 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1766 			dma_unmap_single(dev->dev.parent,
1767 					 tx_desc->buf_phys_addr,
1768 					 tx_desc->data_size,
1769 					 DMA_TO_DEVICE);
1770 			mvneta_txq_desc_put(txq);
1771 			frags = 0;
1772 			goto out;
1773 		}
1774 	}
1775 
1776 out:
1777 	if (frags > 0) {
1778 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1779 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1780 
1781 		txq->count += frags;
1782 		mvneta_txq_pend_desc_add(pp, txq, frags);
1783 
1784 		if (txq->count >= txq->tx_stop_threshold)
1785 			netif_tx_stop_queue(nq);
1786 
1787 		u64_stats_update_begin(&stats->syncp);
1788 		stats->tx_packets++;
1789 		stats->tx_bytes  += skb->len;
1790 		u64_stats_update_end(&stats->syncp);
1791 	} else {
1792 		dev->stats.tx_dropped++;
1793 		dev_kfree_skb_any(skb);
1794 	}
1795 
1796 	return NETDEV_TX_OK;
1797 }
1798 
1799 
1800 /* Free tx resources, when resetting a port */
1801 static void mvneta_txq_done_force(struct mvneta_port *pp,
1802 				  struct mvneta_tx_queue *txq)
1803 
1804 {
1805 	int tx_done = txq->count;
1806 
1807 	mvneta_txq_bufs_free(pp, txq, tx_done);
1808 
1809 	/* reset txq */
1810 	txq->count = 0;
1811 	txq->txq_put_index = 0;
1812 	txq->txq_get_index = 0;
1813 }
1814 
1815 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1816  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1817  */
1818 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1819 {
1820 	struct mvneta_tx_queue *txq;
1821 	struct netdev_queue *nq;
1822 
1823 	while (cause_tx_done) {
1824 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1825 
1826 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1827 		__netif_tx_lock(nq, smp_processor_id());
1828 
1829 		if (txq->count)
1830 			mvneta_txq_done(pp, txq);
1831 
1832 		__netif_tx_unlock(nq);
1833 		cause_tx_done &= ~((1 << txq->id));
1834 	}
1835 }
1836 
1837 /* Compute crc8 of the specified address, using a unique algorithm ,
1838  * according to hw spec, different than generic crc8 algorithm
1839  */
1840 static int mvneta_addr_crc(unsigned char *addr)
1841 {
1842 	int crc = 0;
1843 	int i;
1844 
1845 	for (i = 0; i < ETH_ALEN; i++) {
1846 		int j;
1847 
1848 		crc = (crc ^ addr[i]) << 8;
1849 		for (j = 7; j >= 0; j--) {
1850 			if (crc & (0x100 << j))
1851 				crc ^= 0x107 << j;
1852 		}
1853 	}
1854 
1855 	return crc;
1856 }
1857 
1858 /* This method controls the net device special MAC multicast support.
1859  * The Special Multicast Table for MAC addresses supports MAC of the form
1860  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1861  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1862  * Table entries in the DA-Filter table. This method set the Special
1863  * Multicast Table appropriate entry.
1864  */
1865 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1866 					  unsigned char last_byte,
1867 					  int queue)
1868 {
1869 	unsigned int smc_table_reg;
1870 	unsigned int tbl_offset;
1871 	unsigned int reg_offset;
1872 
1873 	/* Register offset from SMC table base    */
1874 	tbl_offset = (last_byte / 4);
1875 	/* Entry offset within the above reg */
1876 	reg_offset = last_byte % 4;
1877 
1878 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1879 					+ tbl_offset * 4));
1880 
1881 	if (queue == -1)
1882 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1883 	else {
1884 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1885 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1886 	}
1887 
1888 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1889 		    smc_table_reg);
1890 }
1891 
1892 /* This method controls the network device Other MAC multicast support.
1893  * The Other Multicast Table is used for multicast of another type.
1894  * A CRC-8 is used as an index to the Other Multicast Table entries
1895  * in the DA-Filter table.
1896  * The method gets the CRC-8 value from the calling routine and
1897  * sets the Other Multicast Table appropriate entry according to the
1898  * specified CRC-8 .
1899  */
1900 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1901 					unsigned char crc8,
1902 					int queue)
1903 {
1904 	unsigned int omc_table_reg;
1905 	unsigned int tbl_offset;
1906 	unsigned int reg_offset;
1907 
1908 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1909 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1910 
1911 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1912 
1913 	if (queue == -1) {
1914 		/* Clear accepts frame bit at specified Other DA table entry */
1915 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1916 	} else {
1917 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1918 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1919 	}
1920 
1921 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1922 }
1923 
1924 /* The network device supports multicast using two tables:
1925  *    1) Special Multicast Table for MAC addresses of the form
1926  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1927  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1928  *       Table entries in the DA-Filter table.
1929  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1930  *       is used as an index to the Other Multicast Table entries in the
1931  *       DA-Filter table.
1932  */
1933 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1934 				 int queue)
1935 {
1936 	unsigned char crc_result = 0;
1937 
1938 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1939 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1940 		return 0;
1941 	}
1942 
1943 	crc_result = mvneta_addr_crc(p_addr);
1944 	if (queue == -1) {
1945 		if (pp->mcast_count[crc_result] == 0) {
1946 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1947 				    crc_result);
1948 			return -EINVAL;
1949 		}
1950 
1951 		pp->mcast_count[crc_result]--;
1952 		if (pp->mcast_count[crc_result] != 0) {
1953 			netdev_info(pp->dev,
1954 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1955 				    pp->mcast_count[crc_result], crc_result);
1956 			return -EINVAL;
1957 		}
1958 	} else
1959 		pp->mcast_count[crc_result]++;
1960 
1961 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1962 
1963 	return 0;
1964 }
1965 
1966 /* Configure Fitering mode of Ethernet port */
1967 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1968 					  int is_promisc)
1969 {
1970 	u32 port_cfg_reg, val;
1971 
1972 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1973 
1974 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1975 
1976 	/* Set / Clear UPM bit in port configuration register */
1977 	if (is_promisc) {
1978 		/* Accept all Unicast addresses */
1979 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1980 		val |= MVNETA_FORCE_UNI;
1981 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1982 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1983 	} else {
1984 		/* Reject all Unicast addresses */
1985 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1986 		val &= ~MVNETA_FORCE_UNI;
1987 	}
1988 
1989 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1990 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1991 }
1992 
1993 /* register unicast and multicast addresses */
1994 static void mvneta_set_rx_mode(struct net_device *dev)
1995 {
1996 	struct mvneta_port *pp = netdev_priv(dev);
1997 	struct netdev_hw_addr *ha;
1998 
1999 	if (dev->flags & IFF_PROMISC) {
2000 		/* Accept all: Multicast + Unicast */
2001 		mvneta_rx_unicast_promisc_set(pp, 1);
2002 		mvneta_set_ucast_table(pp, rxq_def);
2003 		mvneta_set_special_mcast_table(pp, rxq_def);
2004 		mvneta_set_other_mcast_table(pp, rxq_def);
2005 	} else {
2006 		/* Accept single Unicast */
2007 		mvneta_rx_unicast_promisc_set(pp, 0);
2008 		mvneta_set_ucast_table(pp, -1);
2009 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2010 
2011 		if (dev->flags & IFF_ALLMULTI) {
2012 			/* Accept all multicast */
2013 			mvneta_set_special_mcast_table(pp, rxq_def);
2014 			mvneta_set_other_mcast_table(pp, rxq_def);
2015 		} else {
2016 			/* Accept only initialized multicast */
2017 			mvneta_set_special_mcast_table(pp, -1);
2018 			mvneta_set_other_mcast_table(pp, -1);
2019 
2020 			if (!netdev_mc_empty(dev)) {
2021 				netdev_for_each_mc_addr(ha, dev) {
2022 					mvneta_mcast_addr_set(pp, ha->addr,
2023 							      rxq_def);
2024 				}
2025 			}
2026 		}
2027 	}
2028 }
2029 
2030 /* Interrupt handling - the callback for request_irq() */
2031 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2032 {
2033 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2034 
2035 	/* Mask all interrupts */
2036 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2037 
2038 	napi_schedule(&pp->napi);
2039 
2040 	return IRQ_HANDLED;
2041 }
2042 
2043 /* NAPI handler
2044  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2045  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2046  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2047  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2048  * Each CPU has its own causeRxTx register
2049  */
2050 static int mvneta_poll(struct napi_struct *napi, int budget)
2051 {
2052 	int rx_done = 0;
2053 	u32 cause_rx_tx;
2054 	unsigned long flags;
2055 	struct mvneta_port *pp = netdev_priv(napi->dev);
2056 
2057 	if (!netif_running(pp->dev)) {
2058 		napi_complete(napi);
2059 		return rx_done;
2060 	}
2061 
2062 	/* Read cause register */
2063 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
2064 		(MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2065 
2066 	/* Release Tx descriptors */
2067 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2068 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2069 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2070 	}
2071 
2072 	/* For the case where the last mvneta_poll did not process all
2073 	 * RX packets
2074 	 */
2075 	cause_rx_tx |= pp->cause_rx_tx;
2076 	if (rxq_number > 1) {
2077 		while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
2078 			int count;
2079 			struct mvneta_rx_queue *rxq;
2080 			/* get rx queue number from cause_rx_tx */
2081 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
2082 			if (!rxq)
2083 				break;
2084 
2085 			/* process the packet in that rx queue */
2086 			count = mvneta_rx(pp, budget, rxq);
2087 			rx_done += count;
2088 			budget -= count;
2089 			if (budget > 0) {
2090 				/* set off the rx bit of the
2091 				 * corresponding bit in the cause rx
2092 				 * tx register, so that next iteration
2093 				 * will find the next rx queue where
2094 				 * packets are received on
2095 				 */
2096 				cause_rx_tx &= ~((1 << rxq->id) << 8);
2097 			}
2098 		}
2099 	} else {
2100 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2101 		budget -= rx_done;
2102 	}
2103 
2104 	if (budget > 0) {
2105 		cause_rx_tx = 0;
2106 		napi_complete(napi);
2107 		local_irq_save(flags);
2108 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2109 			    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2110 		local_irq_restore(flags);
2111 	}
2112 
2113 	pp->cause_rx_tx = cause_rx_tx;
2114 	return rx_done;
2115 }
2116 
2117 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2118 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2119 			   int num)
2120 {
2121 	int i;
2122 
2123 	for (i = 0; i < num; i++) {
2124 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2125 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2126 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2127 				__func__, rxq->id, i, num);
2128 			break;
2129 		}
2130 	}
2131 
2132 	/* Add this number of RX descriptors as non occupied (ready to
2133 	 * get packets)
2134 	 */
2135 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2136 
2137 	return i;
2138 }
2139 
2140 /* Free all packets pending transmit from all TXQs and reset TX port */
2141 static void mvneta_tx_reset(struct mvneta_port *pp)
2142 {
2143 	int queue;
2144 
2145 	/* free the skb's in the tx ring */
2146 	for (queue = 0; queue < txq_number; queue++)
2147 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2148 
2149 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2150 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2151 }
2152 
2153 static void mvneta_rx_reset(struct mvneta_port *pp)
2154 {
2155 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2156 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2157 }
2158 
2159 /* Rx/Tx queue initialization/cleanup methods */
2160 
2161 /* Create a specified RX queue */
2162 static int mvneta_rxq_init(struct mvneta_port *pp,
2163 			   struct mvneta_rx_queue *rxq)
2164 
2165 {
2166 	rxq->size = pp->rx_ring_size;
2167 
2168 	/* Allocate memory for RX descriptors */
2169 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2170 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2171 					&rxq->descs_phys, GFP_KERNEL);
2172 	if (rxq->descs == NULL)
2173 		return -ENOMEM;
2174 
2175 	BUG_ON(rxq->descs !=
2176 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2177 
2178 	rxq->last_desc = rxq->size - 1;
2179 
2180 	/* Set Rx descriptors queue starting address */
2181 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2182 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2183 
2184 	/* Set Offset */
2185 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2186 
2187 	/* Set coalescing pkts and time */
2188 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2189 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2190 
2191 	/* Fill RXQ with buffers from RX pool */
2192 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2193 	mvneta_rxq_bm_disable(pp, rxq);
2194 	mvneta_rxq_fill(pp, rxq, rxq->size);
2195 
2196 	return 0;
2197 }
2198 
2199 /* Cleanup Rx queue */
2200 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2201 			      struct mvneta_rx_queue *rxq)
2202 {
2203 	mvneta_rxq_drop_pkts(pp, rxq);
2204 
2205 	if (rxq->descs)
2206 		dma_free_coherent(pp->dev->dev.parent,
2207 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2208 				  rxq->descs,
2209 				  rxq->descs_phys);
2210 
2211 	rxq->descs             = NULL;
2212 	rxq->last_desc         = 0;
2213 	rxq->next_desc_to_proc = 0;
2214 	rxq->descs_phys        = 0;
2215 }
2216 
2217 /* Create and initialize a tx queue */
2218 static int mvneta_txq_init(struct mvneta_port *pp,
2219 			   struct mvneta_tx_queue *txq)
2220 {
2221 	txq->size = pp->tx_ring_size;
2222 
2223 	/* A queue must always have room for at least one skb.
2224 	 * Therefore, stop the queue when the free entries reaches
2225 	 * the maximum number of descriptors per skb.
2226 	 */
2227 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2228 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2229 
2230 
2231 	/* Allocate memory for TX descriptors */
2232 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2233 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2234 					&txq->descs_phys, GFP_KERNEL);
2235 	if (txq->descs == NULL)
2236 		return -ENOMEM;
2237 
2238 	/* Make sure descriptor address is cache line size aligned  */
2239 	BUG_ON(txq->descs !=
2240 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2241 
2242 	txq->last_desc = txq->size - 1;
2243 
2244 	/* Set maximum bandwidth for enabled TXQs */
2245 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2246 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2247 
2248 	/* Set Tx descriptors queue starting address */
2249 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2250 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2251 
2252 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2253 	if (txq->tx_skb == NULL) {
2254 		dma_free_coherent(pp->dev->dev.parent,
2255 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2256 				  txq->descs, txq->descs_phys);
2257 		return -ENOMEM;
2258 	}
2259 
2260 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2261 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2262 					   txq->size * TSO_HEADER_SIZE,
2263 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2264 	if (txq->tso_hdrs == NULL) {
2265 		kfree(txq->tx_skb);
2266 		dma_free_coherent(pp->dev->dev.parent,
2267 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2268 				  txq->descs, txq->descs_phys);
2269 		return -ENOMEM;
2270 	}
2271 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2272 
2273 	return 0;
2274 }
2275 
2276 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2277 static void mvneta_txq_deinit(struct mvneta_port *pp,
2278 			      struct mvneta_tx_queue *txq)
2279 {
2280 	kfree(txq->tx_skb);
2281 
2282 	if (txq->tso_hdrs)
2283 		dma_free_coherent(pp->dev->dev.parent,
2284 				  txq->size * TSO_HEADER_SIZE,
2285 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2286 	if (txq->descs)
2287 		dma_free_coherent(pp->dev->dev.parent,
2288 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2289 				  txq->descs, txq->descs_phys);
2290 
2291 	txq->descs             = NULL;
2292 	txq->last_desc         = 0;
2293 	txq->next_desc_to_proc = 0;
2294 	txq->descs_phys        = 0;
2295 
2296 	/* Set minimum bandwidth for disabled TXQs */
2297 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2298 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2299 
2300 	/* Set Tx descriptors queue starting address and size */
2301 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2302 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2303 }
2304 
2305 /* Cleanup all Tx queues */
2306 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2307 {
2308 	int queue;
2309 
2310 	for (queue = 0; queue < txq_number; queue++)
2311 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2312 }
2313 
2314 /* Cleanup all Rx queues */
2315 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2316 {
2317 	int queue;
2318 
2319 	for (queue = 0; queue < rxq_number; queue++)
2320 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2321 }
2322 
2323 
2324 /* Init all Rx queues */
2325 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2326 {
2327 	int queue;
2328 
2329 	for (queue = 0; queue < rxq_number; queue++) {
2330 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2331 		if (err) {
2332 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2333 				   __func__, queue);
2334 			mvneta_cleanup_rxqs(pp);
2335 			return err;
2336 		}
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 /* Init all tx queues */
2343 static int mvneta_setup_txqs(struct mvneta_port *pp)
2344 {
2345 	int queue;
2346 
2347 	for (queue = 0; queue < txq_number; queue++) {
2348 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2349 		if (err) {
2350 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2351 				   __func__, queue);
2352 			mvneta_cleanup_txqs(pp);
2353 			return err;
2354 		}
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static void mvneta_start_dev(struct mvneta_port *pp)
2361 {
2362 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2363 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2364 
2365 	/* start the Rx/Tx activity */
2366 	mvneta_port_enable(pp);
2367 
2368 	/* Enable polling on the port */
2369 	napi_enable(&pp->napi);
2370 
2371 	/* Unmask interrupts */
2372 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2373 		    MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
2374 
2375 	phy_start(pp->phy_dev);
2376 	netif_tx_start_all_queues(pp->dev);
2377 }
2378 
2379 static void mvneta_stop_dev(struct mvneta_port *pp)
2380 {
2381 	phy_stop(pp->phy_dev);
2382 
2383 	napi_disable(&pp->napi);
2384 
2385 	netif_carrier_off(pp->dev);
2386 
2387 	mvneta_port_down(pp);
2388 	netif_tx_stop_all_queues(pp->dev);
2389 
2390 	/* Stop the port activity */
2391 	mvneta_port_disable(pp);
2392 
2393 	/* Clear all ethernet port interrupts */
2394 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2395 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2396 
2397 	/* Mask all ethernet port interrupts */
2398 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2399 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2400 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2401 
2402 	mvneta_tx_reset(pp);
2403 	mvneta_rx_reset(pp);
2404 }
2405 
2406 /* Return positive if MTU is valid */
2407 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2408 {
2409 	if (mtu < 68) {
2410 		netdev_err(dev, "cannot change mtu to less than 68\n");
2411 		return -EINVAL;
2412 	}
2413 
2414 	/* 9676 == 9700 - 20 and rounding to 8 */
2415 	if (mtu > 9676) {
2416 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2417 		mtu = 9676;
2418 	}
2419 
2420 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2421 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2422 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2423 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2424 	}
2425 
2426 	return mtu;
2427 }
2428 
2429 /* Change the device mtu */
2430 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2431 {
2432 	struct mvneta_port *pp = netdev_priv(dev);
2433 	int ret;
2434 
2435 	mtu = mvneta_check_mtu_valid(dev, mtu);
2436 	if (mtu < 0)
2437 		return -EINVAL;
2438 
2439 	dev->mtu = mtu;
2440 
2441 	if (!netif_running(dev))
2442 		return 0;
2443 
2444 	/* The interface is running, so we have to force a
2445 	 * reallocation of the queues
2446 	 */
2447 	mvneta_stop_dev(pp);
2448 
2449 	mvneta_cleanup_txqs(pp);
2450 	mvneta_cleanup_rxqs(pp);
2451 
2452 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2453 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2454 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2455 
2456 	ret = mvneta_setup_rxqs(pp);
2457 	if (ret) {
2458 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2459 		return ret;
2460 	}
2461 
2462 	ret = mvneta_setup_txqs(pp);
2463 	if (ret) {
2464 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2465 		return ret;
2466 	}
2467 
2468 	mvneta_start_dev(pp);
2469 	mvneta_port_up(pp);
2470 
2471 	return 0;
2472 }
2473 
2474 /* Get mac address */
2475 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2476 {
2477 	u32 mac_addr_l, mac_addr_h;
2478 
2479 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2480 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2481 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2482 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2483 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2484 	addr[3] = mac_addr_h & 0xFF;
2485 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2486 	addr[5] = mac_addr_l & 0xFF;
2487 }
2488 
2489 /* Handle setting mac address */
2490 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2491 {
2492 	struct mvneta_port *pp = netdev_priv(dev);
2493 	struct sockaddr *sockaddr = addr;
2494 	int ret;
2495 
2496 	ret = eth_prepare_mac_addr_change(dev, addr);
2497 	if (ret < 0)
2498 		return ret;
2499 	/* Remove previous address table entry */
2500 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2501 
2502 	/* Set new addr in hw */
2503 	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2504 
2505 	eth_commit_mac_addr_change(dev, addr);
2506 	return 0;
2507 }
2508 
2509 static void mvneta_adjust_link(struct net_device *ndev)
2510 {
2511 	struct mvneta_port *pp = netdev_priv(ndev);
2512 	struct phy_device *phydev = pp->phy_dev;
2513 	int status_change = 0;
2514 
2515 	if (phydev->link) {
2516 		if ((pp->speed != phydev->speed) ||
2517 		    (pp->duplex != phydev->duplex)) {
2518 			u32 val;
2519 
2520 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2521 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2522 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2523 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX |
2524 				 MVNETA_GMAC_AN_SPEED_EN |
2525 				 MVNETA_GMAC_AN_DUPLEX_EN);
2526 
2527 			if (phydev->duplex)
2528 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2529 
2530 			if (phydev->speed == SPEED_1000)
2531 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2532 			else if (phydev->speed == SPEED_100)
2533 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2534 
2535 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2536 
2537 			pp->duplex = phydev->duplex;
2538 			pp->speed  = phydev->speed;
2539 		}
2540 	}
2541 
2542 	if (phydev->link != pp->link) {
2543 		if (!phydev->link) {
2544 			pp->duplex = -1;
2545 			pp->speed = 0;
2546 		}
2547 
2548 		pp->link = phydev->link;
2549 		status_change = 1;
2550 	}
2551 
2552 	if (status_change) {
2553 		if (phydev->link) {
2554 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2555 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2556 				MVNETA_GMAC_FORCE_LINK_DOWN);
2557 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2558 			mvneta_port_up(pp);
2559 			netdev_info(pp->dev, "link up\n");
2560 		} else {
2561 			mvneta_port_down(pp);
2562 			netdev_info(pp->dev, "link down\n");
2563 		}
2564 	}
2565 }
2566 
2567 static int mvneta_mdio_probe(struct mvneta_port *pp)
2568 {
2569 	struct phy_device *phy_dev;
2570 
2571 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2572 				 pp->phy_interface);
2573 	if (!phy_dev) {
2574 		netdev_err(pp->dev, "could not find the PHY\n");
2575 		return -ENODEV;
2576 	}
2577 
2578 	phy_dev->supported &= PHY_GBIT_FEATURES;
2579 	phy_dev->advertising = phy_dev->supported;
2580 
2581 	pp->phy_dev = phy_dev;
2582 	pp->link    = 0;
2583 	pp->duplex  = 0;
2584 	pp->speed   = 0;
2585 
2586 	return 0;
2587 }
2588 
2589 static void mvneta_mdio_remove(struct mvneta_port *pp)
2590 {
2591 	phy_disconnect(pp->phy_dev);
2592 	pp->phy_dev = NULL;
2593 }
2594 
2595 static int mvneta_open(struct net_device *dev)
2596 {
2597 	struct mvneta_port *pp = netdev_priv(dev);
2598 	int ret;
2599 
2600 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2601 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2602 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2603 
2604 	ret = mvneta_setup_rxqs(pp);
2605 	if (ret)
2606 		return ret;
2607 
2608 	ret = mvneta_setup_txqs(pp);
2609 	if (ret)
2610 		goto err_cleanup_rxqs;
2611 
2612 	/* Connect to port interrupt line */
2613 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2614 			  MVNETA_DRIVER_NAME, pp);
2615 	if (ret) {
2616 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2617 		goto err_cleanup_txqs;
2618 	}
2619 
2620 	/* In default link is down */
2621 	netif_carrier_off(pp->dev);
2622 
2623 	ret = mvneta_mdio_probe(pp);
2624 	if (ret < 0) {
2625 		netdev_err(dev, "cannot probe MDIO bus\n");
2626 		goto err_free_irq;
2627 	}
2628 
2629 	mvneta_start_dev(pp);
2630 
2631 	return 0;
2632 
2633 err_free_irq:
2634 	free_irq(pp->dev->irq, pp);
2635 err_cleanup_txqs:
2636 	mvneta_cleanup_txqs(pp);
2637 err_cleanup_rxqs:
2638 	mvneta_cleanup_rxqs(pp);
2639 	return ret;
2640 }
2641 
2642 /* Stop the port, free port interrupt line */
2643 static int mvneta_stop(struct net_device *dev)
2644 {
2645 	struct mvneta_port *pp = netdev_priv(dev);
2646 
2647 	mvneta_stop_dev(pp);
2648 	mvneta_mdio_remove(pp);
2649 	free_irq(dev->irq, pp);
2650 	mvneta_cleanup_rxqs(pp);
2651 	mvneta_cleanup_txqs(pp);
2652 
2653 	return 0;
2654 }
2655 
2656 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2657 {
2658 	struct mvneta_port *pp = netdev_priv(dev);
2659 	int ret;
2660 
2661 	if (!pp->phy_dev)
2662 		return -ENOTSUPP;
2663 
2664 	ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2665 	if (!ret)
2666 		mvneta_adjust_link(dev);
2667 
2668 	return ret;
2669 }
2670 
2671 /* Ethtool methods */
2672 
2673 /* Get settings (phy address, speed) for ethtools */
2674 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2675 {
2676 	struct mvneta_port *pp = netdev_priv(dev);
2677 
2678 	if (!pp->phy_dev)
2679 		return -ENODEV;
2680 
2681 	return phy_ethtool_gset(pp->phy_dev, cmd);
2682 }
2683 
2684 /* Set settings (phy address, speed) for ethtools */
2685 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2686 {
2687 	struct mvneta_port *pp = netdev_priv(dev);
2688 
2689 	if (!pp->phy_dev)
2690 		return -ENODEV;
2691 
2692 	return phy_ethtool_sset(pp->phy_dev, cmd);
2693 }
2694 
2695 /* Set interrupt coalescing for ethtools */
2696 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2697 				       struct ethtool_coalesce *c)
2698 {
2699 	struct mvneta_port *pp = netdev_priv(dev);
2700 	int queue;
2701 
2702 	for (queue = 0; queue < rxq_number; queue++) {
2703 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2704 		rxq->time_coal = c->rx_coalesce_usecs;
2705 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2706 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2707 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2708 	}
2709 
2710 	for (queue = 0; queue < txq_number; queue++) {
2711 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2712 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2713 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 /* get coalescing for ethtools */
2720 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2721 				       struct ethtool_coalesce *c)
2722 {
2723 	struct mvneta_port *pp = netdev_priv(dev);
2724 
2725 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2726 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2727 
2728 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2729 	return 0;
2730 }
2731 
2732 
2733 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2734 				    struct ethtool_drvinfo *drvinfo)
2735 {
2736 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2737 		sizeof(drvinfo->driver));
2738 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2739 		sizeof(drvinfo->version));
2740 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2741 		sizeof(drvinfo->bus_info));
2742 }
2743 
2744 
2745 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2746 					 struct ethtool_ringparam *ring)
2747 {
2748 	struct mvneta_port *pp = netdev_priv(netdev);
2749 
2750 	ring->rx_max_pending = MVNETA_MAX_RXD;
2751 	ring->tx_max_pending = MVNETA_MAX_TXD;
2752 	ring->rx_pending = pp->rx_ring_size;
2753 	ring->tx_pending = pp->tx_ring_size;
2754 }
2755 
2756 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2757 					struct ethtool_ringparam *ring)
2758 {
2759 	struct mvneta_port *pp = netdev_priv(dev);
2760 
2761 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2762 		return -EINVAL;
2763 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2764 		ring->rx_pending : MVNETA_MAX_RXD;
2765 
2766 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
2767 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
2768 	if (pp->tx_ring_size != ring->tx_pending)
2769 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
2770 			    pp->tx_ring_size, ring->tx_pending);
2771 
2772 	if (netif_running(dev)) {
2773 		mvneta_stop(dev);
2774 		if (mvneta_open(dev)) {
2775 			netdev_err(dev,
2776 				   "error on opening device after ring param change\n");
2777 			return -ENOMEM;
2778 		}
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 static const struct net_device_ops mvneta_netdev_ops = {
2785 	.ndo_open            = mvneta_open,
2786 	.ndo_stop            = mvneta_stop,
2787 	.ndo_start_xmit      = mvneta_tx,
2788 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2789 	.ndo_set_mac_address = mvneta_set_mac_addr,
2790 	.ndo_change_mtu      = mvneta_change_mtu,
2791 	.ndo_get_stats64     = mvneta_get_stats64,
2792 	.ndo_do_ioctl        = mvneta_ioctl,
2793 };
2794 
2795 const struct ethtool_ops mvneta_eth_tool_ops = {
2796 	.get_link       = ethtool_op_get_link,
2797 	.get_settings   = mvneta_ethtool_get_settings,
2798 	.set_settings   = mvneta_ethtool_set_settings,
2799 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2800 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2801 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2802 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2803 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2804 };
2805 
2806 /* Initialize hw */
2807 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
2808 {
2809 	int queue;
2810 
2811 	/* Disable port */
2812 	mvneta_port_disable(pp);
2813 
2814 	/* Set port default values */
2815 	mvneta_defaults_set(pp);
2816 
2817 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
2818 				GFP_KERNEL);
2819 	if (!pp->txqs)
2820 		return -ENOMEM;
2821 
2822 	/* Initialize TX descriptor rings */
2823 	for (queue = 0; queue < txq_number; queue++) {
2824 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2825 		txq->id = queue;
2826 		txq->size = pp->tx_ring_size;
2827 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2828 	}
2829 
2830 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
2831 				GFP_KERNEL);
2832 	if (!pp->rxqs)
2833 		return -ENOMEM;
2834 
2835 	/* Create Rx descriptor rings */
2836 	for (queue = 0; queue < rxq_number; queue++) {
2837 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2838 		rxq->id = queue;
2839 		rxq->size = pp->rx_ring_size;
2840 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2841 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2842 	}
2843 
2844 	return 0;
2845 }
2846 
2847 /* platform glue : initialize decoding windows */
2848 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2849 				     const struct mbus_dram_target_info *dram)
2850 {
2851 	u32 win_enable;
2852 	u32 win_protect;
2853 	int i;
2854 
2855 	for (i = 0; i < 6; i++) {
2856 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2857 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2858 
2859 		if (i < 4)
2860 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2861 	}
2862 
2863 	win_enable = 0x3f;
2864 	win_protect = 0;
2865 
2866 	for (i = 0; i < dram->num_cs; i++) {
2867 		const struct mbus_dram_window *cs = dram->cs + i;
2868 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2869 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2870 
2871 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2872 			    (cs->size - 1) & 0xffff0000);
2873 
2874 		win_enable &= ~(1 << i);
2875 		win_protect |= 3 << (2 * i);
2876 	}
2877 
2878 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2879 }
2880 
2881 /* Power up the port */
2882 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2883 {
2884 	u32 ctrl;
2885 
2886 	/* MAC Cause register should be cleared */
2887 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2888 
2889 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2890 
2891 	/* Even though it might look weird, when we're configured in
2892 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
2893 	 */
2894 	switch(phy_mode) {
2895 	case PHY_INTERFACE_MODE_QSGMII:
2896 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
2897 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2898 		break;
2899 	case PHY_INTERFACE_MODE_SGMII:
2900 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
2901 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
2902 		break;
2903 	case PHY_INTERFACE_MODE_RGMII:
2904 	case PHY_INTERFACE_MODE_RGMII_ID:
2905 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
2906 		break;
2907 	default:
2908 		return -EINVAL;
2909 	}
2910 
2911 	/* Cancel Port Reset */
2912 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
2913 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
2914 
2915 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2916 		MVNETA_GMAC2_PORT_RESET) != 0)
2917 		continue;
2918 
2919 	return 0;
2920 }
2921 
2922 /* Device initialization routine */
2923 static int mvneta_probe(struct platform_device *pdev)
2924 {
2925 	const struct mbus_dram_target_info *dram_target_info;
2926 	struct resource *res;
2927 	struct device_node *dn = pdev->dev.of_node;
2928 	struct device_node *phy_node;
2929 	struct mvneta_port *pp;
2930 	struct net_device *dev;
2931 	const char *dt_mac_addr;
2932 	char hw_mac_addr[ETH_ALEN];
2933 	const char *mac_from;
2934 	int phy_mode;
2935 	int err;
2936 
2937 	/* Our multiqueue support is not complete, so for now, only
2938 	 * allow the usage of the first RX queue
2939 	 */
2940 	if (rxq_def != 0) {
2941 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2942 		return -EINVAL;
2943 	}
2944 
2945 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
2946 	if (!dev)
2947 		return -ENOMEM;
2948 
2949 	dev->irq = irq_of_parse_and_map(dn, 0);
2950 	if (dev->irq == 0) {
2951 		err = -EINVAL;
2952 		goto err_free_netdev;
2953 	}
2954 
2955 	phy_node = of_parse_phandle(dn, "phy", 0);
2956 	if (!phy_node) {
2957 		if (!of_phy_is_fixed_link(dn)) {
2958 			dev_err(&pdev->dev, "no PHY specified\n");
2959 			err = -ENODEV;
2960 			goto err_free_irq;
2961 		}
2962 
2963 		err = of_phy_register_fixed_link(dn);
2964 		if (err < 0) {
2965 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
2966 			goto err_free_irq;
2967 		}
2968 
2969 		/* In the case of a fixed PHY, the DT node associated
2970 		 * to the PHY is the Ethernet MAC DT node.
2971 		 */
2972 		phy_node = of_node_get(dn);
2973 	}
2974 
2975 	phy_mode = of_get_phy_mode(dn);
2976 	if (phy_mode < 0) {
2977 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2978 		err = -EINVAL;
2979 		goto err_put_phy_node;
2980 	}
2981 
2982 	dev->tx_queue_len = MVNETA_MAX_TXD;
2983 	dev->watchdog_timeo = 5 * HZ;
2984 	dev->netdev_ops = &mvneta_netdev_ops;
2985 
2986 	dev->ethtool_ops = &mvneta_eth_tool_ops;
2987 
2988 	pp = netdev_priv(dev);
2989 	pp->phy_node = phy_node;
2990 	pp->phy_interface = phy_mode;
2991 
2992 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2993 	if (IS_ERR(pp->clk)) {
2994 		err = PTR_ERR(pp->clk);
2995 		goto err_put_phy_node;
2996 	}
2997 
2998 	clk_prepare_enable(pp->clk);
2999 
3000 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3001 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3002 	if (IS_ERR(pp->base)) {
3003 		err = PTR_ERR(pp->base);
3004 		goto err_clk;
3005 	}
3006 
3007 	/* Alloc per-cpu stats */
3008 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3009 	if (!pp->stats) {
3010 		err = -ENOMEM;
3011 		goto err_clk;
3012 	}
3013 
3014 	dt_mac_addr = of_get_mac_address(dn);
3015 	if (dt_mac_addr) {
3016 		mac_from = "device tree";
3017 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3018 	} else {
3019 		mvneta_get_mac_addr(pp, hw_mac_addr);
3020 		if (is_valid_ether_addr(hw_mac_addr)) {
3021 			mac_from = "hardware";
3022 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3023 		} else {
3024 			mac_from = "random";
3025 			eth_hw_addr_random(dev);
3026 		}
3027 	}
3028 
3029 	pp->tx_ring_size = MVNETA_MAX_TXD;
3030 	pp->rx_ring_size = MVNETA_MAX_RXD;
3031 
3032 	pp->dev = dev;
3033 	SET_NETDEV_DEV(dev, &pdev->dev);
3034 
3035 	err = mvneta_init(&pdev->dev, pp);
3036 	if (err < 0)
3037 		goto err_free_stats;
3038 
3039 	err = mvneta_port_power_up(pp, phy_mode);
3040 	if (err < 0) {
3041 		dev_err(&pdev->dev, "can't power up port\n");
3042 		goto err_free_stats;
3043 	}
3044 
3045 	dram_target_info = mv_mbus_dram_info();
3046 	if (dram_target_info)
3047 		mvneta_conf_mbus_windows(pp, dram_target_info);
3048 
3049 	netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3050 
3051 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3052 	dev->hw_features |= dev->features;
3053 	dev->vlan_features |= dev->features;
3054 	dev->priv_flags |= IFF_UNICAST_FLT;
3055 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3056 
3057 	err = register_netdev(dev);
3058 	if (err < 0) {
3059 		dev_err(&pdev->dev, "failed to register\n");
3060 		goto err_free_stats;
3061 	}
3062 
3063 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3064 		    dev->dev_addr);
3065 
3066 	platform_set_drvdata(pdev, pp->dev);
3067 
3068 	return 0;
3069 
3070 err_free_stats:
3071 	free_percpu(pp->stats);
3072 err_clk:
3073 	clk_disable_unprepare(pp->clk);
3074 err_put_phy_node:
3075 	of_node_put(phy_node);
3076 err_free_irq:
3077 	irq_dispose_mapping(dev->irq);
3078 err_free_netdev:
3079 	free_netdev(dev);
3080 	return err;
3081 }
3082 
3083 /* Device removal routine */
3084 static int mvneta_remove(struct platform_device *pdev)
3085 {
3086 	struct net_device  *dev = platform_get_drvdata(pdev);
3087 	struct mvneta_port *pp = netdev_priv(dev);
3088 
3089 	unregister_netdev(dev);
3090 	clk_disable_unprepare(pp->clk);
3091 	free_percpu(pp->stats);
3092 	irq_dispose_mapping(dev->irq);
3093 	of_node_put(pp->phy_node);
3094 	free_netdev(dev);
3095 
3096 	return 0;
3097 }
3098 
3099 static const struct of_device_id mvneta_match[] = {
3100 	{ .compatible = "marvell,armada-370-neta" },
3101 	{ }
3102 };
3103 MODULE_DEVICE_TABLE(of, mvneta_match);
3104 
3105 static struct platform_driver mvneta_driver = {
3106 	.probe = mvneta_probe,
3107 	.remove = mvneta_remove,
3108 	.driver = {
3109 		.name = MVNETA_DRIVER_NAME,
3110 		.of_match_table = mvneta_match,
3111 	},
3112 };
3113 
3114 module_platform_driver(mvneta_driver);
3115 
3116 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3117 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3118 MODULE_LICENSE("GPL");
3119 
3120 module_param(rxq_number, int, S_IRUGO);
3121 module_param(txq_number, int, S_IRUGO);
3122 
3123 module_param(rxq_def, int, S_IRUGO);
3124 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3125