1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <net/ip.h> 24 #include <net/ipv6.h> 25 #include <linux/io.h> 26 #include <net/tso.h> 27 #include <linux/of.h> 28 #include <linux/of_irq.h> 29 #include <linux/of_mdio.h> 30 #include <linux/of_net.h> 31 #include <linux/of_address.h> 32 #include <linux/phy.h> 33 #include <linux/clk.h> 34 35 /* Registers */ 36 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 37 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 38 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 39 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 40 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 41 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 42 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 43 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 44 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 45 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 46 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 47 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 48 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 49 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 50 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 51 #define MVNETA_PORT_RX_RESET 0x1cc0 52 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 53 #define MVNETA_PHY_ADDR 0x2000 54 #define MVNETA_PHY_ADDR_MASK 0x1f 55 #define MVNETA_MBUS_RETRY 0x2010 56 #define MVNETA_UNIT_INTR_CAUSE 0x2080 57 #define MVNETA_UNIT_CONTROL 0x20B0 58 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 59 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 60 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 61 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 62 #define MVNETA_BASE_ADDR_ENABLE 0x2290 63 #define MVNETA_PORT_CONFIG 0x2400 64 #define MVNETA_UNI_PROMISC_MODE BIT(0) 65 #define MVNETA_DEF_RXQ(q) ((q) << 1) 66 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 67 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 68 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 69 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 70 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 71 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 72 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 73 MVNETA_DEF_RXQ_ARP(q) | \ 74 MVNETA_DEF_RXQ_TCP(q) | \ 75 MVNETA_DEF_RXQ_UDP(q) | \ 76 MVNETA_DEF_RXQ_BPDU(q) | \ 77 MVNETA_TX_UNSET_ERR_SUM | \ 78 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 79 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 80 #define MVNETA_MAC_ADDR_LOW 0x2414 81 #define MVNETA_MAC_ADDR_HIGH 0x2418 82 #define MVNETA_SDMA_CONFIG 0x241c 83 #define MVNETA_SDMA_BRST_SIZE_16 4 84 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 85 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 86 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 87 #define MVNETA_DESC_SWAP BIT(6) 88 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 89 #define MVNETA_PORT_STATUS 0x2444 90 #define MVNETA_TX_IN_PRGRS BIT(1) 91 #define MVNETA_TX_FIFO_EMPTY BIT(8) 92 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 93 #define MVNETA_SERDES_CFG 0x24A0 94 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 95 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 96 #define MVNETA_TYPE_PRIO 0x24bc 97 #define MVNETA_FORCE_UNI BIT(21) 98 #define MVNETA_TXQ_CMD_1 0x24e4 99 #define MVNETA_TXQ_CMD 0x2448 100 #define MVNETA_TXQ_DISABLE_SHIFT 8 101 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 102 #define MVNETA_ACC_MODE 0x2500 103 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 104 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 105 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 106 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 107 108 /* Exception Interrupt Port/Queue Cause register */ 109 110 #define MVNETA_INTR_NEW_CAUSE 0x25a0 111 #define MVNETA_INTR_NEW_MASK 0x25a4 112 113 /* bits 0..7 = TXQ SENT, one bit per queue. 114 * bits 8..15 = RXQ OCCUP, one bit per queue. 115 * bits 16..23 = RXQ FREE, one bit per queue. 116 * bit 29 = OLD_REG_SUM, see old reg ? 117 * bit 30 = TX_ERR_SUM, one bit for 4 ports 118 * bit 31 = MISC_SUM, one bit for 4 ports 119 */ 120 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 121 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 122 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 123 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 124 125 #define MVNETA_INTR_OLD_CAUSE 0x25a8 126 #define MVNETA_INTR_OLD_MASK 0x25ac 127 128 /* Data Path Port/Queue Cause Register */ 129 #define MVNETA_INTR_MISC_CAUSE 0x25b0 130 #define MVNETA_INTR_MISC_MASK 0x25b4 131 132 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 133 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 134 #define MVNETA_CAUSE_PTP BIT(4) 135 136 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 137 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 138 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 139 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 140 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 141 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 142 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 143 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 144 145 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 146 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 147 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 148 149 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 150 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 151 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 152 153 #define MVNETA_INTR_ENABLE 0x25b8 154 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 155 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 156 157 #define MVNETA_RXQ_CMD 0x2680 158 #define MVNETA_RXQ_DISABLE_SHIFT 8 159 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 160 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 161 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 162 #define MVNETA_GMAC_CTRL_0 0x2c00 163 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 164 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 165 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 166 #define MVNETA_GMAC_CTRL_2 0x2c08 167 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 168 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 169 #define MVNETA_GMAC2_PORT_RESET BIT(6) 170 #define MVNETA_GMAC_STATUS 0x2c10 171 #define MVNETA_GMAC_LINK_UP BIT(0) 172 #define MVNETA_GMAC_SPEED_1000 BIT(1) 173 #define MVNETA_GMAC_SPEED_100 BIT(2) 174 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 175 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 176 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 177 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 178 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 179 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 180 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 181 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 182 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 183 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 184 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 185 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 186 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 187 #define MVNETA_MIB_COUNTERS_BASE 0x3080 188 #define MVNETA_MIB_LATE_COLLISION 0x7c 189 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 190 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 191 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 192 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 193 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 194 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 195 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 196 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 197 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 198 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 199 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 200 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 201 #define MVNETA_PORT_TX_RESET 0x3cf0 202 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 203 #define MVNETA_TX_MTU 0x3e0c 204 #define MVNETA_TX_TOKEN_SIZE 0x3e14 205 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 206 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 207 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 208 209 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 210 211 /* Descriptor ring Macros */ 212 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 213 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 214 215 /* Various constants */ 216 217 /* Coalescing */ 218 #define MVNETA_TXDONE_COAL_PKTS 16 219 #define MVNETA_RX_COAL_PKTS 32 220 #define MVNETA_RX_COAL_USEC 100 221 222 /* The two bytes Marvell header. Either contains a special value used 223 * by Marvell switches when a specific hardware mode is enabled (not 224 * supported by this driver) or is filled automatically by zeroes on 225 * the RX side. Those two bytes being at the front of the Ethernet 226 * header, they allow to have the IP header aligned on a 4 bytes 227 * boundary automatically: the hardware skips those two bytes on its 228 * own. 229 */ 230 #define MVNETA_MH_SIZE 2 231 232 #define MVNETA_VLAN_TAG_LEN 4 233 234 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 235 #define MVNETA_TX_CSUM_MAX_SIZE 9800 236 #define MVNETA_ACC_MODE_EXT 1 237 238 /* Timeout constants */ 239 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 240 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 241 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 242 243 #define MVNETA_TX_MTU_MAX 0x3ffff 244 245 /* TSO header size */ 246 #define TSO_HEADER_SIZE 128 247 248 /* Max number of Rx descriptors */ 249 #define MVNETA_MAX_RXD 128 250 251 /* Max number of Tx descriptors */ 252 #define MVNETA_MAX_TXD 532 253 254 /* Max number of allowed TCP segments for software TSO */ 255 #define MVNETA_MAX_TSO_SEGS 100 256 257 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 258 259 /* descriptor aligned size */ 260 #define MVNETA_DESC_ALIGNED_SIZE 32 261 262 #define MVNETA_RX_PKT_SIZE(mtu) \ 263 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 264 ETH_HLEN + ETH_FCS_LEN, \ 265 MVNETA_CPU_D_CACHE_LINE_SIZE) 266 267 #define IS_TSO_HEADER(txq, addr) \ 268 ((addr >= txq->tso_hdrs_phys) && \ 269 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 270 271 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 272 273 struct mvneta_pcpu_stats { 274 struct u64_stats_sync syncp; 275 u64 rx_packets; 276 u64 rx_bytes; 277 u64 tx_packets; 278 u64 tx_bytes; 279 }; 280 281 struct mvneta_port { 282 int pkt_size; 283 unsigned int frag_size; 284 void __iomem *base; 285 struct mvneta_rx_queue *rxqs; 286 struct mvneta_tx_queue *txqs; 287 struct net_device *dev; 288 289 u32 cause_rx_tx; 290 struct napi_struct napi; 291 292 /* Core clock */ 293 struct clk *clk; 294 u8 mcast_count[256]; 295 u16 tx_ring_size; 296 u16 rx_ring_size; 297 struct mvneta_pcpu_stats *stats; 298 299 struct mii_bus *mii_bus; 300 struct phy_device *phy_dev; 301 phy_interface_t phy_interface; 302 struct device_node *phy_node; 303 unsigned int link; 304 unsigned int duplex; 305 unsigned int speed; 306 }; 307 308 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 309 * layout of the transmit and reception DMA descriptors, and their 310 * layout is therefore defined by the hardware design 311 */ 312 313 #define MVNETA_TX_L3_OFF_SHIFT 0 314 #define MVNETA_TX_IP_HLEN_SHIFT 8 315 #define MVNETA_TX_L4_UDP BIT(16) 316 #define MVNETA_TX_L3_IP6 BIT(17) 317 #define MVNETA_TXD_IP_CSUM BIT(18) 318 #define MVNETA_TXD_Z_PAD BIT(19) 319 #define MVNETA_TXD_L_DESC BIT(20) 320 #define MVNETA_TXD_F_DESC BIT(21) 321 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 322 MVNETA_TXD_L_DESC | \ 323 MVNETA_TXD_F_DESC) 324 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 325 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 326 327 #define MVNETA_RXD_ERR_CRC 0x0 328 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 329 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 330 #define MVNETA_RXD_ERR_LEN BIT(18) 331 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 332 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 333 #define MVNETA_RXD_L3_IP4 BIT(25) 334 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 335 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 336 337 #if defined(__LITTLE_ENDIAN) 338 struct mvneta_tx_desc { 339 u32 command; /* Options used by HW for packet transmitting.*/ 340 u16 reserverd1; /* csum_l4 (for future use) */ 341 u16 data_size; /* Data size of transmitted packet in bytes */ 342 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 343 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 344 u32 reserved3[4]; /* Reserved - (for future use) */ 345 }; 346 347 struct mvneta_rx_desc { 348 u32 status; /* Info about received packet */ 349 u16 reserved1; /* pnc_info - (for future use, PnC) */ 350 u16 data_size; /* Size of received packet in bytes */ 351 352 u32 buf_phys_addr; /* Physical address of the buffer */ 353 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 354 355 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 356 u16 reserved3; /* prefetch_cmd, for future use */ 357 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 358 359 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 360 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 361 }; 362 #else 363 struct mvneta_tx_desc { 364 u16 data_size; /* Data size of transmitted packet in bytes */ 365 u16 reserverd1; /* csum_l4 (for future use) */ 366 u32 command; /* Options used by HW for packet transmitting.*/ 367 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 368 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 369 u32 reserved3[4]; /* Reserved - (for future use) */ 370 }; 371 372 struct mvneta_rx_desc { 373 u16 data_size; /* Size of received packet in bytes */ 374 u16 reserved1; /* pnc_info - (for future use, PnC) */ 375 u32 status; /* Info about received packet */ 376 377 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 378 u32 buf_phys_addr; /* Physical address of the buffer */ 379 380 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 381 u16 reserved3; /* prefetch_cmd, for future use */ 382 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 383 384 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 385 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 386 }; 387 #endif 388 389 struct mvneta_tx_queue { 390 /* Number of this TX queue, in the range 0-7 */ 391 u8 id; 392 393 /* Number of TX DMA descriptors in the descriptor ring */ 394 int size; 395 396 /* Number of currently used TX DMA descriptor in the 397 * descriptor ring 398 */ 399 int count; 400 int tx_stop_threshold; 401 int tx_wake_threshold; 402 403 /* Array of transmitted skb */ 404 struct sk_buff **tx_skb; 405 406 /* Index of last TX DMA descriptor that was inserted */ 407 int txq_put_index; 408 409 /* Index of the TX DMA descriptor to be cleaned up */ 410 int txq_get_index; 411 412 u32 done_pkts_coal; 413 414 /* Virtual address of the TX DMA descriptors array */ 415 struct mvneta_tx_desc *descs; 416 417 /* DMA address of the TX DMA descriptors array */ 418 dma_addr_t descs_phys; 419 420 /* Index of the last TX DMA descriptor */ 421 int last_desc; 422 423 /* Index of the next TX DMA descriptor to process */ 424 int next_desc_to_proc; 425 426 /* DMA buffers for TSO headers */ 427 char *tso_hdrs; 428 429 /* DMA address of TSO headers */ 430 dma_addr_t tso_hdrs_phys; 431 }; 432 433 struct mvneta_rx_queue { 434 /* rx queue number, in the range 0-7 */ 435 u8 id; 436 437 /* num of rx descriptors in the rx descriptor ring */ 438 int size; 439 440 /* counter of times when mvneta_refill() failed */ 441 int missed; 442 443 u32 pkts_coal; 444 u32 time_coal; 445 446 /* Virtual address of the RX DMA descriptors array */ 447 struct mvneta_rx_desc *descs; 448 449 /* DMA address of the RX DMA descriptors array */ 450 dma_addr_t descs_phys; 451 452 /* Index of the last RX DMA descriptor */ 453 int last_desc; 454 455 /* Index of the next RX DMA descriptor to process */ 456 int next_desc_to_proc; 457 }; 458 459 /* The hardware supports eight (8) rx queues, but we are only allowing 460 * the first one to be used. Therefore, let's just allocate one queue. 461 */ 462 static int rxq_number = 1; 463 static int txq_number = 8; 464 465 static int rxq_def; 466 467 static int rx_copybreak __read_mostly = 256; 468 469 #define MVNETA_DRIVER_NAME "mvneta" 470 #define MVNETA_DRIVER_VERSION "1.0" 471 472 /* Utility/helper methods */ 473 474 /* Write helper method */ 475 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 476 { 477 writel(data, pp->base + offset); 478 } 479 480 /* Read helper method */ 481 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 482 { 483 return readl(pp->base + offset); 484 } 485 486 /* Increment txq get counter */ 487 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 488 { 489 txq->txq_get_index++; 490 if (txq->txq_get_index == txq->size) 491 txq->txq_get_index = 0; 492 } 493 494 /* Increment txq put counter */ 495 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 496 { 497 txq->txq_put_index++; 498 if (txq->txq_put_index == txq->size) 499 txq->txq_put_index = 0; 500 } 501 502 503 /* Clear all MIB counters */ 504 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 505 { 506 int i; 507 u32 dummy; 508 509 /* Perform dummy reads from MIB counters */ 510 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 511 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 512 } 513 514 /* Get System Network Statistics */ 515 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 516 struct rtnl_link_stats64 *stats) 517 { 518 struct mvneta_port *pp = netdev_priv(dev); 519 unsigned int start; 520 int cpu; 521 522 for_each_possible_cpu(cpu) { 523 struct mvneta_pcpu_stats *cpu_stats; 524 u64 rx_packets; 525 u64 rx_bytes; 526 u64 tx_packets; 527 u64 tx_bytes; 528 529 cpu_stats = per_cpu_ptr(pp->stats, cpu); 530 do { 531 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 532 rx_packets = cpu_stats->rx_packets; 533 rx_bytes = cpu_stats->rx_bytes; 534 tx_packets = cpu_stats->tx_packets; 535 tx_bytes = cpu_stats->tx_bytes; 536 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 537 538 stats->rx_packets += rx_packets; 539 stats->rx_bytes += rx_bytes; 540 stats->tx_packets += tx_packets; 541 stats->tx_bytes += tx_bytes; 542 } 543 544 stats->rx_errors = dev->stats.rx_errors; 545 stats->rx_dropped = dev->stats.rx_dropped; 546 547 stats->tx_dropped = dev->stats.tx_dropped; 548 549 return stats; 550 } 551 552 /* Rx descriptors helper methods */ 553 554 /* Checks whether the RX descriptor having this status is both the first 555 * and the last descriptor for the RX packet. Each RX packet is currently 556 * received through a single RX descriptor, so not having each RX 557 * descriptor with its first and last bits set is an error 558 */ 559 static int mvneta_rxq_desc_is_first_last(u32 status) 560 { 561 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 562 MVNETA_RXD_FIRST_LAST_DESC; 563 } 564 565 /* Add number of descriptors ready to receive new packets */ 566 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 567 struct mvneta_rx_queue *rxq, 568 int ndescs) 569 { 570 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 571 * be added at once 572 */ 573 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 574 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 575 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 576 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 577 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 578 } 579 580 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 581 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 582 } 583 584 /* Get number of RX descriptors occupied by received packets */ 585 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 586 struct mvneta_rx_queue *rxq) 587 { 588 u32 val; 589 590 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 591 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 592 } 593 594 /* Update num of rx desc called upon return from rx path or 595 * from mvneta_rxq_drop_pkts(). 596 */ 597 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 598 struct mvneta_rx_queue *rxq, 599 int rx_done, int rx_filled) 600 { 601 u32 val; 602 603 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 604 val = rx_done | 605 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 606 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 607 return; 608 } 609 610 /* Only 255 descriptors can be added at once */ 611 while ((rx_done > 0) || (rx_filled > 0)) { 612 if (rx_done <= 0xff) { 613 val = rx_done; 614 rx_done = 0; 615 } else { 616 val = 0xff; 617 rx_done -= 0xff; 618 } 619 if (rx_filled <= 0xff) { 620 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 621 rx_filled = 0; 622 } else { 623 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 624 rx_filled -= 0xff; 625 } 626 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 627 } 628 } 629 630 /* Get pointer to next RX descriptor to be processed by SW */ 631 static struct mvneta_rx_desc * 632 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 633 { 634 int rx_desc = rxq->next_desc_to_proc; 635 636 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 637 prefetch(rxq->descs + rxq->next_desc_to_proc); 638 return rxq->descs + rx_desc; 639 } 640 641 /* Change maximum receive size of the port. */ 642 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 643 { 644 u32 val; 645 646 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 647 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 648 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 649 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 650 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 651 } 652 653 654 /* Set rx queue offset */ 655 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 656 struct mvneta_rx_queue *rxq, 657 int offset) 658 { 659 u32 val; 660 661 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 662 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 663 664 /* Offset is in */ 665 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 666 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 667 } 668 669 670 /* Tx descriptors helper methods */ 671 672 /* Update HW with number of TX descriptors to be sent */ 673 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 674 struct mvneta_tx_queue *txq, 675 int pend_desc) 676 { 677 u32 val; 678 679 /* Only 255 descriptors can be added at once ; Assume caller 680 * process TX desriptors in quanta less than 256 681 */ 682 val = pend_desc; 683 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 684 } 685 686 /* Get pointer to next TX descriptor to be processed (send) by HW */ 687 static struct mvneta_tx_desc * 688 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 689 { 690 int tx_desc = txq->next_desc_to_proc; 691 692 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 693 return txq->descs + tx_desc; 694 } 695 696 /* Release the last allocated TX descriptor. Useful to handle DMA 697 * mapping failures in the TX path. 698 */ 699 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 700 { 701 if (txq->next_desc_to_proc == 0) 702 txq->next_desc_to_proc = txq->last_desc - 1; 703 else 704 txq->next_desc_to_proc--; 705 } 706 707 /* Set rxq buf size */ 708 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 709 struct mvneta_rx_queue *rxq, 710 int buf_size) 711 { 712 u32 val; 713 714 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 715 716 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 717 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 718 719 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 720 } 721 722 /* Disable buffer management (BM) */ 723 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 724 struct mvneta_rx_queue *rxq) 725 { 726 u32 val; 727 728 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 729 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 730 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 731 } 732 733 /* Start the Ethernet port RX and TX activity */ 734 static void mvneta_port_up(struct mvneta_port *pp) 735 { 736 int queue; 737 u32 q_map; 738 739 /* Enable all initialized TXs. */ 740 mvneta_mib_counters_clear(pp); 741 q_map = 0; 742 for (queue = 0; queue < txq_number; queue++) { 743 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 744 if (txq->descs != NULL) 745 q_map |= (1 << queue); 746 } 747 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 748 749 /* Enable all initialized RXQs. */ 750 q_map = 0; 751 for (queue = 0; queue < rxq_number; queue++) { 752 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 753 if (rxq->descs != NULL) 754 q_map |= (1 << queue); 755 } 756 757 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 758 } 759 760 /* Stop the Ethernet port activity */ 761 static void mvneta_port_down(struct mvneta_port *pp) 762 { 763 u32 val; 764 int count; 765 766 /* Stop Rx port activity. Check port Rx activity. */ 767 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 768 769 /* Issue stop command for active channels only */ 770 if (val != 0) 771 mvreg_write(pp, MVNETA_RXQ_CMD, 772 val << MVNETA_RXQ_DISABLE_SHIFT); 773 774 /* Wait for all Rx activity to terminate. */ 775 count = 0; 776 do { 777 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 778 netdev_warn(pp->dev, 779 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 780 val); 781 break; 782 } 783 mdelay(1); 784 785 val = mvreg_read(pp, MVNETA_RXQ_CMD); 786 } while (val & 0xff); 787 788 /* Stop Tx port activity. Check port Tx activity. Issue stop 789 * command for active channels only 790 */ 791 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 792 793 if (val != 0) 794 mvreg_write(pp, MVNETA_TXQ_CMD, 795 (val << MVNETA_TXQ_DISABLE_SHIFT)); 796 797 /* Wait for all Tx activity to terminate. */ 798 count = 0; 799 do { 800 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 801 netdev_warn(pp->dev, 802 "TIMEOUT for TX stopped status=0x%08x\n", 803 val); 804 break; 805 } 806 mdelay(1); 807 808 /* Check TX Command reg that all Txqs are stopped */ 809 val = mvreg_read(pp, MVNETA_TXQ_CMD); 810 811 } while (val & 0xff); 812 813 /* Double check to verify that TX FIFO is empty */ 814 count = 0; 815 do { 816 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 817 netdev_warn(pp->dev, 818 "TX FIFO empty timeout status=0x08%x\n", 819 val); 820 break; 821 } 822 mdelay(1); 823 824 val = mvreg_read(pp, MVNETA_PORT_STATUS); 825 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 826 (val & MVNETA_TX_IN_PRGRS)); 827 828 udelay(200); 829 } 830 831 /* Enable the port by setting the port enable bit of the MAC control register */ 832 static void mvneta_port_enable(struct mvneta_port *pp) 833 { 834 u32 val; 835 836 /* Enable port */ 837 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 838 val |= MVNETA_GMAC0_PORT_ENABLE; 839 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 840 } 841 842 /* Disable the port and wait for about 200 usec before retuning */ 843 static void mvneta_port_disable(struct mvneta_port *pp) 844 { 845 u32 val; 846 847 /* Reset the Enable bit in the Serial Control Register */ 848 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 849 val &= ~MVNETA_GMAC0_PORT_ENABLE; 850 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 851 852 udelay(200); 853 } 854 855 /* Multicast tables methods */ 856 857 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 858 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 859 { 860 int offset; 861 u32 val; 862 863 if (queue == -1) { 864 val = 0; 865 } else { 866 val = 0x1 | (queue << 1); 867 val |= (val << 24) | (val << 16) | (val << 8); 868 } 869 870 for (offset = 0; offset <= 0xc; offset += 4) 871 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 872 } 873 874 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 875 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 876 { 877 int offset; 878 u32 val; 879 880 if (queue == -1) { 881 val = 0; 882 } else { 883 val = 0x1 | (queue << 1); 884 val |= (val << 24) | (val << 16) | (val << 8); 885 } 886 887 for (offset = 0; offset <= 0xfc; offset += 4) 888 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 889 890 } 891 892 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 893 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 894 { 895 int offset; 896 u32 val; 897 898 if (queue == -1) { 899 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 900 val = 0; 901 } else { 902 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 903 val = 0x1 | (queue << 1); 904 val |= (val << 24) | (val << 16) | (val << 8); 905 } 906 907 for (offset = 0; offset <= 0xfc; offset += 4) 908 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 909 } 910 911 /* This method sets defaults to the NETA port: 912 * Clears interrupt Cause and Mask registers. 913 * Clears all MAC tables. 914 * Sets defaults to all registers. 915 * Resets RX and TX descriptor rings. 916 * Resets PHY. 917 * This method can be called after mvneta_port_down() to return the port 918 * settings to defaults. 919 */ 920 static void mvneta_defaults_set(struct mvneta_port *pp) 921 { 922 int cpu; 923 int queue; 924 u32 val; 925 926 /* Clear all Cause registers */ 927 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 928 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 929 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 930 931 /* Mask all interrupts */ 932 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 933 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 934 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 935 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 936 937 /* Enable MBUS Retry bit16 */ 938 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 939 940 /* Set CPU queue access map - all CPUs have access to all RX 941 * queues and to all TX queues 942 */ 943 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 944 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 945 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 946 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 947 948 /* Reset RX and TX DMAs */ 949 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 950 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 951 952 /* Disable Legacy WRR, Disable EJP, Release from reset */ 953 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 954 for (queue = 0; queue < txq_number; queue++) { 955 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 956 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 957 } 958 959 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 960 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 961 962 /* Set Port Acceleration Mode */ 963 val = MVNETA_ACC_MODE_EXT; 964 mvreg_write(pp, MVNETA_ACC_MODE, val); 965 966 /* Update val of portCfg register accordingly with all RxQueue types */ 967 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 968 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 969 970 val = 0; 971 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 972 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 973 974 /* Build PORT_SDMA_CONFIG_REG */ 975 val = 0; 976 977 /* Default burst size */ 978 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 979 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 980 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 981 982 #if defined(__BIG_ENDIAN) 983 val |= MVNETA_DESC_SWAP; 984 #endif 985 986 /* Assign port SDMA configuration */ 987 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 988 989 /* Disable PHY polling in hardware, since we're using the 990 * kernel phylib to do this. 991 */ 992 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 993 val &= ~MVNETA_PHY_POLLING_ENABLE; 994 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 995 996 mvneta_set_ucast_table(pp, -1); 997 mvneta_set_special_mcast_table(pp, -1); 998 mvneta_set_other_mcast_table(pp, -1); 999 1000 /* Set port interrupt enable register - default enable all */ 1001 mvreg_write(pp, MVNETA_INTR_ENABLE, 1002 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1003 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1004 } 1005 1006 /* Set max sizes for tx queues */ 1007 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1008 1009 { 1010 u32 val, size, mtu; 1011 int queue; 1012 1013 mtu = max_tx_size * 8; 1014 if (mtu > MVNETA_TX_MTU_MAX) 1015 mtu = MVNETA_TX_MTU_MAX; 1016 1017 /* Set MTU */ 1018 val = mvreg_read(pp, MVNETA_TX_MTU); 1019 val &= ~MVNETA_TX_MTU_MAX; 1020 val |= mtu; 1021 mvreg_write(pp, MVNETA_TX_MTU, val); 1022 1023 /* TX token size and all TXQs token size must be larger that MTU */ 1024 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1025 1026 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1027 if (size < mtu) { 1028 size = mtu; 1029 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1030 val |= size; 1031 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1032 } 1033 for (queue = 0; queue < txq_number; queue++) { 1034 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1035 1036 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1037 if (size < mtu) { 1038 size = mtu; 1039 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1040 val |= size; 1041 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1042 } 1043 } 1044 } 1045 1046 /* Set unicast address */ 1047 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1048 int queue) 1049 { 1050 unsigned int unicast_reg; 1051 unsigned int tbl_offset; 1052 unsigned int reg_offset; 1053 1054 /* Locate the Unicast table entry */ 1055 last_nibble = (0xf & last_nibble); 1056 1057 /* offset from unicast tbl base */ 1058 tbl_offset = (last_nibble / 4) * 4; 1059 1060 /* offset within the above reg */ 1061 reg_offset = last_nibble % 4; 1062 1063 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1064 1065 if (queue == -1) { 1066 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1067 unicast_reg &= ~(0xff << (8 * reg_offset)); 1068 } else { 1069 unicast_reg &= ~(0xff << (8 * reg_offset)); 1070 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1071 } 1072 1073 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1074 } 1075 1076 /* Set mac address */ 1077 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1078 int queue) 1079 { 1080 unsigned int mac_h; 1081 unsigned int mac_l; 1082 1083 if (queue != -1) { 1084 mac_l = (addr[4] << 8) | (addr[5]); 1085 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1086 (addr[2] << 8) | (addr[3] << 0); 1087 1088 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1089 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1090 } 1091 1092 /* Accept frames of this address */ 1093 mvneta_set_ucast_addr(pp, addr[5], queue); 1094 } 1095 1096 /* Set the number of packets that will be received before RX interrupt 1097 * will be generated by HW. 1098 */ 1099 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1100 struct mvneta_rx_queue *rxq, u32 value) 1101 { 1102 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1103 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1104 rxq->pkts_coal = value; 1105 } 1106 1107 /* Set the time delay in usec before RX interrupt will be generated by 1108 * HW. 1109 */ 1110 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1111 struct mvneta_rx_queue *rxq, u32 value) 1112 { 1113 u32 val; 1114 unsigned long clk_rate; 1115 1116 clk_rate = clk_get_rate(pp->clk); 1117 val = (clk_rate / 1000000) * value; 1118 1119 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1120 rxq->time_coal = value; 1121 } 1122 1123 /* Set threshold for TX_DONE pkts coalescing */ 1124 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1125 struct mvneta_tx_queue *txq, u32 value) 1126 { 1127 u32 val; 1128 1129 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1130 1131 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1132 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1133 1134 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1135 1136 txq->done_pkts_coal = value; 1137 } 1138 1139 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1140 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1141 u32 phys_addr, u32 cookie) 1142 { 1143 rx_desc->buf_cookie = cookie; 1144 rx_desc->buf_phys_addr = phys_addr; 1145 } 1146 1147 /* Decrement sent descriptors counter */ 1148 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1149 struct mvneta_tx_queue *txq, 1150 int sent_desc) 1151 { 1152 u32 val; 1153 1154 /* Only 255 TX descriptors can be updated at once */ 1155 while (sent_desc > 0xff) { 1156 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1157 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1158 sent_desc = sent_desc - 0xff; 1159 } 1160 1161 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1162 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1163 } 1164 1165 /* Get number of TX descriptors already sent by HW */ 1166 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1167 struct mvneta_tx_queue *txq) 1168 { 1169 u32 val; 1170 int sent_desc; 1171 1172 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1173 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1174 MVNETA_TXQ_SENT_DESC_SHIFT; 1175 1176 return sent_desc; 1177 } 1178 1179 /* Get number of sent descriptors and decrement counter. 1180 * The number of sent descriptors is returned. 1181 */ 1182 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1183 struct mvneta_tx_queue *txq) 1184 { 1185 int sent_desc; 1186 1187 /* Get number of sent descriptors */ 1188 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1189 1190 /* Decrement sent descriptors counter */ 1191 if (sent_desc) 1192 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1193 1194 return sent_desc; 1195 } 1196 1197 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1198 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1199 int ip_hdr_len, int l4_proto) 1200 { 1201 u32 command; 1202 1203 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1204 * G_L4_chk, L4_type; required only for checksum 1205 * calculation 1206 */ 1207 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1208 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1209 1210 if (l3_proto == htons(ETH_P_IP)) 1211 command |= MVNETA_TXD_IP_CSUM; 1212 else 1213 command |= MVNETA_TX_L3_IP6; 1214 1215 if (l4_proto == IPPROTO_TCP) 1216 command |= MVNETA_TX_L4_CSUM_FULL; 1217 else if (l4_proto == IPPROTO_UDP) 1218 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1219 else 1220 command |= MVNETA_TX_L4_CSUM_NOT; 1221 1222 return command; 1223 } 1224 1225 1226 /* Display more error info */ 1227 static void mvneta_rx_error(struct mvneta_port *pp, 1228 struct mvneta_rx_desc *rx_desc) 1229 { 1230 u32 status = rx_desc->status; 1231 1232 if (!mvneta_rxq_desc_is_first_last(status)) { 1233 netdev_err(pp->dev, 1234 "bad rx status %08x (buffer oversize), size=%d\n", 1235 status, rx_desc->data_size); 1236 return; 1237 } 1238 1239 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1240 case MVNETA_RXD_ERR_CRC: 1241 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1242 status, rx_desc->data_size); 1243 break; 1244 case MVNETA_RXD_ERR_OVERRUN: 1245 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1246 status, rx_desc->data_size); 1247 break; 1248 case MVNETA_RXD_ERR_LEN: 1249 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1250 status, rx_desc->data_size); 1251 break; 1252 case MVNETA_RXD_ERR_RESOURCE: 1253 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1254 status, rx_desc->data_size); 1255 break; 1256 } 1257 } 1258 1259 /* Handle RX checksum offload based on the descriptor's status */ 1260 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1261 struct sk_buff *skb) 1262 { 1263 if ((status & MVNETA_RXD_L3_IP4) && 1264 (status & MVNETA_RXD_L4_CSUM_OK)) { 1265 skb->csum = 0; 1266 skb->ip_summed = CHECKSUM_UNNECESSARY; 1267 return; 1268 } 1269 1270 skb->ip_summed = CHECKSUM_NONE; 1271 } 1272 1273 /* Return tx queue pointer (find last set bit) according to <cause> returned 1274 * form tx_done reg. <cause> must not be null. The return value is always a 1275 * valid queue for matching the first one found in <cause>. 1276 */ 1277 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1278 u32 cause) 1279 { 1280 int queue = fls(cause) - 1; 1281 1282 return &pp->txqs[queue]; 1283 } 1284 1285 /* Free tx queue skbuffs */ 1286 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1287 struct mvneta_tx_queue *txq, int num) 1288 { 1289 int i; 1290 1291 for (i = 0; i < num; i++) { 1292 struct mvneta_tx_desc *tx_desc = txq->descs + 1293 txq->txq_get_index; 1294 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1295 1296 mvneta_txq_inc_get(txq); 1297 1298 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1299 dma_unmap_single(pp->dev->dev.parent, 1300 tx_desc->buf_phys_addr, 1301 tx_desc->data_size, DMA_TO_DEVICE); 1302 if (!skb) 1303 continue; 1304 dev_kfree_skb_any(skb); 1305 } 1306 } 1307 1308 /* Handle end of transmission */ 1309 static void mvneta_txq_done(struct mvneta_port *pp, 1310 struct mvneta_tx_queue *txq) 1311 { 1312 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1313 int tx_done; 1314 1315 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1316 if (!tx_done) 1317 return; 1318 1319 mvneta_txq_bufs_free(pp, txq, tx_done); 1320 1321 txq->count -= tx_done; 1322 1323 if (netif_tx_queue_stopped(nq)) { 1324 if (txq->count <= txq->tx_wake_threshold) 1325 netif_tx_wake_queue(nq); 1326 } 1327 } 1328 1329 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1330 { 1331 if (likely(pp->frag_size <= PAGE_SIZE)) 1332 return netdev_alloc_frag(pp->frag_size); 1333 else 1334 return kmalloc(pp->frag_size, GFP_ATOMIC); 1335 } 1336 1337 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1338 { 1339 if (likely(pp->frag_size <= PAGE_SIZE)) 1340 put_page(virt_to_head_page(data)); 1341 else 1342 kfree(data); 1343 } 1344 1345 /* Refill processing */ 1346 static int mvneta_rx_refill(struct mvneta_port *pp, 1347 struct mvneta_rx_desc *rx_desc) 1348 1349 { 1350 dma_addr_t phys_addr; 1351 void *data; 1352 1353 data = mvneta_frag_alloc(pp); 1354 if (!data) 1355 return -ENOMEM; 1356 1357 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1358 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1359 DMA_FROM_DEVICE); 1360 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1361 mvneta_frag_free(pp, data); 1362 return -ENOMEM; 1363 } 1364 1365 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1366 return 0; 1367 } 1368 1369 /* Handle tx checksum */ 1370 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1371 { 1372 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1373 int ip_hdr_len = 0; 1374 u8 l4_proto; 1375 1376 if (skb->protocol == htons(ETH_P_IP)) { 1377 struct iphdr *ip4h = ip_hdr(skb); 1378 1379 /* Calculate IPv4 checksum and L4 checksum */ 1380 ip_hdr_len = ip4h->ihl; 1381 l4_proto = ip4h->protocol; 1382 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1383 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1384 1385 /* Read l4_protocol from one of IPv6 extra headers */ 1386 if (skb_network_header_len(skb) > 0) 1387 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1388 l4_proto = ip6h->nexthdr; 1389 } else 1390 return MVNETA_TX_L4_CSUM_NOT; 1391 1392 return mvneta_txq_desc_csum(skb_network_offset(skb), 1393 skb->protocol, ip_hdr_len, l4_proto); 1394 } 1395 1396 return MVNETA_TX_L4_CSUM_NOT; 1397 } 1398 1399 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1400 * value 1401 */ 1402 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1403 u32 cause) 1404 { 1405 int queue = fls(cause >> 8) - 1; 1406 1407 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1408 } 1409 1410 /* Drop packets received by the RXQ and free buffers */ 1411 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1412 struct mvneta_rx_queue *rxq) 1413 { 1414 int rx_done, i; 1415 1416 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1417 for (i = 0; i < rxq->size; i++) { 1418 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1419 void *data = (void *)rx_desc->buf_cookie; 1420 1421 mvneta_frag_free(pp, data); 1422 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1423 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1424 } 1425 1426 if (rx_done) 1427 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1428 } 1429 1430 /* Main rx processing */ 1431 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1432 struct mvneta_rx_queue *rxq) 1433 { 1434 struct net_device *dev = pp->dev; 1435 int rx_done, rx_filled; 1436 u32 rcvd_pkts = 0; 1437 u32 rcvd_bytes = 0; 1438 1439 /* Get number of received packets */ 1440 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1441 1442 if (rx_todo > rx_done) 1443 rx_todo = rx_done; 1444 1445 rx_done = 0; 1446 rx_filled = 0; 1447 1448 /* Fairness NAPI loop */ 1449 while (rx_done < rx_todo) { 1450 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1451 struct sk_buff *skb; 1452 unsigned char *data; 1453 u32 rx_status; 1454 int rx_bytes, err; 1455 1456 rx_done++; 1457 rx_filled++; 1458 rx_status = rx_desc->status; 1459 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1460 data = (unsigned char *)rx_desc->buf_cookie; 1461 1462 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1463 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1464 err_drop_frame: 1465 dev->stats.rx_errors++; 1466 mvneta_rx_error(pp, rx_desc); 1467 /* leave the descriptor untouched */ 1468 continue; 1469 } 1470 1471 if (rx_bytes <= rx_copybreak) { 1472 /* better copy a small frame and not unmap the DMA region */ 1473 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1474 if (unlikely(!skb)) 1475 goto err_drop_frame; 1476 1477 dma_sync_single_range_for_cpu(dev->dev.parent, 1478 rx_desc->buf_phys_addr, 1479 MVNETA_MH_SIZE + NET_SKB_PAD, 1480 rx_bytes, 1481 DMA_FROM_DEVICE); 1482 memcpy(skb_put(skb, rx_bytes), 1483 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1484 rx_bytes); 1485 1486 skb->protocol = eth_type_trans(skb, dev); 1487 mvneta_rx_csum(pp, rx_status, skb); 1488 napi_gro_receive(&pp->napi, skb); 1489 1490 rcvd_pkts++; 1491 rcvd_bytes += rx_bytes; 1492 1493 /* leave the descriptor and buffer untouched */ 1494 continue; 1495 } 1496 1497 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1498 if (!skb) 1499 goto err_drop_frame; 1500 1501 dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr, 1502 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1503 1504 rcvd_pkts++; 1505 rcvd_bytes += rx_bytes; 1506 1507 /* Linux processing */ 1508 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1509 skb_put(skb, rx_bytes); 1510 1511 skb->protocol = eth_type_trans(skb, dev); 1512 1513 mvneta_rx_csum(pp, rx_status, skb); 1514 1515 napi_gro_receive(&pp->napi, skb); 1516 1517 /* Refill processing */ 1518 err = mvneta_rx_refill(pp, rx_desc); 1519 if (err) { 1520 netdev_err(dev, "Linux processing - Can't refill\n"); 1521 rxq->missed++; 1522 rx_filled--; 1523 } 1524 } 1525 1526 if (rcvd_pkts) { 1527 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1528 1529 u64_stats_update_begin(&stats->syncp); 1530 stats->rx_packets += rcvd_pkts; 1531 stats->rx_bytes += rcvd_bytes; 1532 u64_stats_update_end(&stats->syncp); 1533 } 1534 1535 /* Update rxq management counters */ 1536 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1537 1538 return rx_done; 1539 } 1540 1541 static inline void 1542 mvneta_tso_put_hdr(struct sk_buff *skb, 1543 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1544 { 1545 struct mvneta_tx_desc *tx_desc; 1546 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1547 1548 txq->tx_skb[txq->txq_put_index] = NULL; 1549 tx_desc = mvneta_txq_next_desc_get(txq); 1550 tx_desc->data_size = hdr_len; 1551 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1552 tx_desc->command |= MVNETA_TXD_F_DESC; 1553 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1554 txq->txq_put_index * TSO_HEADER_SIZE; 1555 mvneta_txq_inc_put(txq); 1556 } 1557 1558 static inline int 1559 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1560 struct sk_buff *skb, char *data, int size, 1561 bool last_tcp, bool is_last) 1562 { 1563 struct mvneta_tx_desc *tx_desc; 1564 1565 tx_desc = mvneta_txq_next_desc_get(txq); 1566 tx_desc->data_size = size; 1567 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1568 size, DMA_TO_DEVICE); 1569 if (unlikely(dma_mapping_error(dev->dev.parent, 1570 tx_desc->buf_phys_addr))) { 1571 mvneta_txq_desc_put(txq); 1572 return -ENOMEM; 1573 } 1574 1575 tx_desc->command = 0; 1576 txq->tx_skb[txq->txq_put_index] = NULL; 1577 1578 if (last_tcp) { 1579 /* last descriptor in the TCP packet */ 1580 tx_desc->command = MVNETA_TXD_L_DESC; 1581 1582 /* last descriptor in SKB */ 1583 if (is_last) 1584 txq->tx_skb[txq->txq_put_index] = skb; 1585 } 1586 mvneta_txq_inc_put(txq); 1587 return 0; 1588 } 1589 1590 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1591 struct mvneta_tx_queue *txq) 1592 { 1593 int total_len, data_left; 1594 int desc_count = 0; 1595 struct mvneta_port *pp = netdev_priv(dev); 1596 struct tso_t tso; 1597 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1598 int i; 1599 1600 /* Count needed descriptors */ 1601 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1602 return 0; 1603 1604 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1605 pr_info("*** Is this even possible???!?!?\n"); 1606 return 0; 1607 } 1608 1609 /* Initialize the TSO handler, and prepare the first payload */ 1610 tso_start(skb, &tso); 1611 1612 total_len = skb->len - hdr_len; 1613 while (total_len > 0) { 1614 char *hdr; 1615 1616 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1617 total_len -= data_left; 1618 desc_count++; 1619 1620 /* prepare packet headers: MAC + IP + TCP */ 1621 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1622 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1623 1624 mvneta_tso_put_hdr(skb, pp, txq); 1625 1626 while (data_left > 0) { 1627 int size; 1628 desc_count++; 1629 1630 size = min_t(int, tso.size, data_left); 1631 1632 if (mvneta_tso_put_data(dev, txq, skb, 1633 tso.data, size, 1634 size == data_left, 1635 total_len == 0)) 1636 goto err_release; 1637 data_left -= size; 1638 1639 tso_build_data(skb, &tso, size); 1640 } 1641 } 1642 1643 return desc_count; 1644 1645 err_release: 1646 /* Release all used data descriptors; header descriptors must not 1647 * be DMA-unmapped. 1648 */ 1649 for (i = desc_count - 1; i >= 0; i--) { 1650 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1651 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1652 dma_unmap_single(pp->dev->dev.parent, 1653 tx_desc->buf_phys_addr, 1654 tx_desc->data_size, 1655 DMA_TO_DEVICE); 1656 mvneta_txq_desc_put(txq); 1657 } 1658 return 0; 1659 } 1660 1661 /* Handle tx fragmentation processing */ 1662 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1663 struct mvneta_tx_queue *txq) 1664 { 1665 struct mvneta_tx_desc *tx_desc; 1666 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1667 1668 for (i = 0; i < nr_frags; i++) { 1669 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1670 void *addr = page_address(frag->page.p) + frag->page_offset; 1671 1672 tx_desc = mvneta_txq_next_desc_get(txq); 1673 tx_desc->data_size = frag->size; 1674 1675 tx_desc->buf_phys_addr = 1676 dma_map_single(pp->dev->dev.parent, addr, 1677 tx_desc->data_size, DMA_TO_DEVICE); 1678 1679 if (dma_mapping_error(pp->dev->dev.parent, 1680 tx_desc->buf_phys_addr)) { 1681 mvneta_txq_desc_put(txq); 1682 goto error; 1683 } 1684 1685 if (i == nr_frags - 1) { 1686 /* Last descriptor */ 1687 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1688 txq->tx_skb[txq->txq_put_index] = skb; 1689 } else { 1690 /* Descriptor in the middle: Not First, Not Last */ 1691 tx_desc->command = 0; 1692 txq->tx_skb[txq->txq_put_index] = NULL; 1693 } 1694 mvneta_txq_inc_put(txq); 1695 } 1696 1697 return 0; 1698 1699 error: 1700 /* Release all descriptors that were used to map fragments of 1701 * this packet, as well as the corresponding DMA mappings 1702 */ 1703 for (i = i - 1; i >= 0; i--) { 1704 tx_desc = txq->descs + i; 1705 dma_unmap_single(pp->dev->dev.parent, 1706 tx_desc->buf_phys_addr, 1707 tx_desc->data_size, 1708 DMA_TO_DEVICE); 1709 mvneta_txq_desc_put(txq); 1710 } 1711 1712 return -ENOMEM; 1713 } 1714 1715 /* Main tx processing */ 1716 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1717 { 1718 struct mvneta_port *pp = netdev_priv(dev); 1719 u16 txq_id = skb_get_queue_mapping(skb); 1720 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1721 struct mvneta_tx_desc *tx_desc; 1722 int frags = 0; 1723 u32 tx_cmd; 1724 1725 if (!netif_running(dev)) 1726 goto out; 1727 1728 if (skb_is_gso(skb)) { 1729 frags = mvneta_tx_tso(skb, dev, txq); 1730 goto out; 1731 } 1732 1733 frags = skb_shinfo(skb)->nr_frags + 1; 1734 1735 /* Get a descriptor for the first part of the packet */ 1736 tx_desc = mvneta_txq_next_desc_get(txq); 1737 1738 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1739 1740 tx_desc->data_size = skb_headlen(skb); 1741 1742 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1743 tx_desc->data_size, 1744 DMA_TO_DEVICE); 1745 if (unlikely(dma_mapping_error(dev->dev.parent, 1746 tx_desc->buf_phys_addr))) { 1747 mvneta_txq_desc_put(txq); 1748 frags = 0; 1749 goto out; 1750 } 1751 1752 if (frags == 1) { 1753 /* First and Last descriptor */ 1754 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1755 tx_desc->command = tx_cmd; 1756 txq->tx_skb[txq->txq_put_index] = skb; 1757 mvneta_txq_inc_put(txq); 1758 } else { 1759 /* First but not Last */ 1760 tx_cmd |= MVNETA_TXD_F_DESC; 1761 txq->tx_skb[txq->txq_put_index] = NULL; 1762 mvneta_txq_inc_put(txq); 1763 tx_desc->command = tx_cmd; 1764 /* Continue with other skb fragments */ 1765 if (mvneta_tx_frag_process(pp, skb, txq)) { 1766 dma_unmap_single(dev->dev.parent, 1767 tx_desc->buf_phys_addr, 1768 tx_desc->data_size, 1769 DMA_TO_DEVICE); 1770 mvneta_txq_desc_put(txq); 1771 frags = 0; 1772 goto out; 1773 } 1774 } 1775 1776 out: 1777 if (frags > 0) { 1778 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1779 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1780 1781 txq->count += frags; 1782 mvneta_txq_pend_desc_add(pp, txq, frags); 1783 1784 if (txq->count >= txq->tx_stop_threshold) 1785 netif_tx_stop_queue(nq); 1786 1787 u64_stats_update_begin(&stats->syncp); 1788 stats->tx_packets++; 1789 stats->tx_bytes += skb->len; 1790 u64_stats_update_end(&stats->syncp); 1791 } else { 1792 dev->stats.tx_dropped++; 1793 dev_kfree_skb_any(skb); 1794 } 1795 1796 return NETDEV_TX_OK; 1797 } 1798 1799 1800 /* Free tx resources, when resetting a port */ 1801 static void mvneta_txq_done_force(struct mvneta_port *pp, 1802 struct mvneta_tx_queue *txq) 1803 1804 { 1805 int tx_done = txq->count; 1806 1807 mvneta_txq_bufs_free(pp, txq, tx_done); 1808 1809 /* reset txq */ 1810 txq->count = 0; 1811 txq->txq_put_index = 0; 1812 txq->txq_get_index = 0; 1813 } 1814 1815 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1816 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1817 */ 1818 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1819 { 1820 struct mvneta_tx_queue *txq; 1821 struct netdev_queue *nq; 1822 1823 while (cause_tx_done) { 1824 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1825 1826 nq = netdev_get_tx_queue(pp->dev, txq->id); 1827 __netif_tx_lock(nq, smp_processor_id()); 1828 1829 if (txq->count) 1830 mvneta_txq_done(pp, txq); 1831 1832 __netif_tx_unlock(nq); 1833 cause_tx_done &= ~((1 << txq->id)); 1834 } 1835 } 1836 1837 /* Compute crc8 of the specified address, using a unique algorithm , 1838 * according to hw spec, different than generic crc8 algorithm 1839 */ 1840 static int mvneta_addr_crc(unsigned char *addr) 1841 { 1842 int crc = 0; 1843 int i; 1844 1845 for (i = 0; i < ETH_ALEN; i++) { 1846 int j; 1847 1848 crc = (crc ^ addr[i]) << 8; 1849 for (j = 7; j >= 0; j--) { 1850 if (crc & (0x100 << j)) 1851 crc ^= 0x107 << j; 1852 } 1853 } 1854 1855 return crc; 1856 } 1857 1858 /* This method controls the net device special MAC multicast support. 1859 * The Special Multicast Table for MAC addresses supports MAC of the form 1860 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1861 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1862 * Table entries in the DA-Filter table. This method set the Special 1863 * Multicast Table appropriate entry. 1864 */ 1865 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1866 unsigned char last_byte, 1867 int queue) 1868 { 1869 unsigned int smc_table_reg; 1870 unsigned int tbl_offset; 1871 unsigned int reg_offset; 1872 1873 /* Register offset from SMC table base */ 1874 tbl_offset = (last_byte / 4); 1875 /* Entry offset within the above reg */ 1876 reg_offset = last_byte % 4; 1877 1878 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1879 + tbl_offset * 4)); 1880 1881 if (queue == -1) 1882 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1883 else { 1884 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1885 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1886 } 1887 1888 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1889 smc_table_reg); 1890 } 1891 1892 /* This method controls the network device Other MAC multicast support. 1893 * The Other Multicast Table is used for multicast of another type. 1894 * A CRC-8 is used as an index to the Other Multicast Table entries 1895 * in the DA-Filter table. 1896 * The method gets the CRC-8 value from the calling routine and 1897 * sets the Other Multicast Table appropriate entry according to the 1898 * specified CRC-8 . 1899 */ 1900 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1901 unsigned char crc8, 1902 int queue) 1903 { 1904 unsigned int omc_table_reg; 1905 unsigned int tbl_offset; 1906 unsigned int reg_offset; 1907 1908 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1909 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1910 1911 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1912 1913 if (queue == -1) { 1914 /* Clear accepts frame bit at specified Other DA table entry */ 1915 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1916 } else { 1917 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1918 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1919 } 1920 1921 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1922 } 1923 1924 /* The network device supports multicast using two tables: 1925 * 1) Special Multicast Table for MAC addresses of the form 1926 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1927 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1928 * Table entries in the DA-Filter table. 1929 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1930 * is used as an index to the Other Multicast Table entries in the 1931 * DA-Filter table. 1932 */ 1933 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1934 int queue) 1935 { 1936 unsigned char crc_result = 0; 1937 1938 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1939 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1940 return 0; 1941 } 1942 1943 crc_result = mvneta_addr_crc(p_addr); 1944 if (queue == -1) { 1945 if (pp->mcast_count[crc_result] == 0) { 1946 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1947 crc_result); 1948 return -EINVAL; 1949 } 1950 1951 pp->mcast_count[crc_result]--; 1952 if (pp->mcast_count[crc_result] != 0) { 1953 netdev_info(pp->dev, 1954 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1955 pp->mcast_count[crc_result], crc_result); 1956 return -EINVAL; 1957 } 1958 } else 1959 pp->mcast_count[crc_result]++; 1960 1961 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1962 1963 return 0; 1964 } 1965 1966 /* Configure Fitering mode of Ethernet port */ 1967 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1968 int is_promisc) 1969 { 1970 u32 port_cfg_reg, val; 1971 1972 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1973 1974 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1975 1976 /* Set / Clear UPM bit in port configuration register */ 1977 if (is_promisc) { 1978 /* Accept all Unicast addresses */ 1979 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 1980 val |= MVNETA_FORCE_UNI; 1981 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 1982 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 1983 } else { 1984 /* Reject all Unicast addresses */ 1985 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 1986 val &= ~MVNETA_FORCE_UNI; 1987 } 1988 1989 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 1990 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 1991 } 1992 1993 /* register unicast and multicast addresses */ 1994 static void mvneta_set_rx_mode(struct net_device *dev) 1995 { 1996 struct mvneta_port *pp = netdev_priv(dev); 1997 struct netdev_hw_addr *ha; 1998 1999 if (dev->flags & IFF_PROMISC) { 2000 /* Accept all: Multicast + Unicast */ 2001 mvneta_rx_unicast_promisc_set(pp, 1); 2002 mvneta_set_ucast_table(pp, rxq_def); 2003 mvneta_set_special_mcast_table(pp, rxq_def); 2004 mvneta_set_other_mcast_table(pp, rxq_def); 2005 } else { 2006 /* Accept single Unicast */ 2007 mvneta_rx_unicast_promisc_set(pp, 0); 2008 mvneta_set_ucast_table(pp, -1); 2009 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2010 2011 if (dev->flags & IFF_ALLMULTI) { 2012 /* Accept all multicast */ 2013 mvneta_set_special_mcast_table(pp, rxq_def); 2014 mvneta_set_other_mcast_table(pp, rxq_def); 2015 } else { 2016 /* Accept only initialized multicast */ 2017 mvneta_set_special_mcast_table(pp, -1); 2018 mvneta_set_other_mcast_table(pp, -1); 2019 2020 if (!netdev_mc_empty(dev)) { 2021 netdev_for_each_mc_addr(ha, dev) { 2022 mvneta_mcast_addr_set(pp, ha->addr, 2023 rxq_def); 2024 } 2025 } 2026 } 2027 } 2028 } 2029 2030 /* Interrupt handling - the callback for request_irq() */ 2031 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2032 { 2033 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2034 2035 /* Mask all interrupts */ 2036 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2037 2038 napi_schedule(&pp->napi); 2039 2040 return IRQ_HANDLED; 2041 } 2042 2043 /* NAPI handler 2044 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2045 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2046 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2047 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2048 * Each CPU has its own causeRxTx register 2049 */ 2050 static int mvneta_poll(struct napi_struct *napi, int budget) 2051 { 2052 int rx_done = 0; 2053 u32 cause_rx_tx; 2054 unsigned long flags; 2055 struct mvneta_port *pp = netdev_priv(napi->dev); 2056 2057 if (!netif_running(pp->dev)) { 2058 napi_complete(napi); 2059 return rx_done; 2060 } 2061 2062 /* Read cause register */ 2063 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) & 2064 (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 2065 2066 /* Release Tx descriptors */ 2067 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2068 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2069 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2070 } 2071 2072 /* For the case where the last mvneta_poll did not process all 2073 * RX packets 2074 */ 2075 cause_rx_tx |= pp->cause_rx_tx; 2076 if (rxq_number > 1) { 2077 while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) { 2078 int count; 2079 struct mvneta_rx_queue *rxq; 2080 /* get rx queue number from cause_rx_tx */ 2081 rxq = mvneta_rx_policy(pp, cause_rx_tx); 2082 if (!rxq) 2083 break; 2084 2085 /* process the packet in that rx queue */ 2086 count = mvneta_rx(pp, budget, rxq); 2087 rx_done += count; 2088 budget -= count; 2089 if (budget > 0) { 2090 /* set off the rx bit of the 2091 * corresponding bit in the cause rx 2092 * tx register, so that next iteration 2093 * will find the next rx queue where 2094 * packets are received on 2095 */ 2096 cause_rx_tx &= ~((1 << rxq->id) << 8); 2097 } 2098 } 2099 } else { 2100 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2101 budget -= rx_done; 2102 } 2103 2104 if (budget > 0) { 2105 cause_rx_tx = 0; 2106 napi_complete(napi); 2107 local_irq_save(flags); 2108 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2109 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 2110 local_irq_restore(flags); 2111 } 2112 2113 pp->cause_rx_tx = cause_rx_tx; 2114 return rx_done; 2115 } 2116 2117 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2118 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2119 int num) 2120 { 2121 int i; 2122 2123 for (i = 0; i < num; i++) { 2124 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2125 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2126 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2127 __func__, rxq->id, i, num); 2128 break; 2129 } 2130 } 2131 2132 /* Add this number of RX descriptors as non occupied (ready to 2133 * get packets) 2134 */ 2135 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2136 2137 return i; 2138 } 2139 2140 /* Free all packets pending transmit from all TXQs and reset TX port */ 2141 static void mvneta_tx_reset(struct mvneta_port *pp) 2142 { 2143 int queue; 2144 2145 /* free the skb's in the tx ring */ 2146 for (queue = 0; queue < txq_number; queue++) 2147 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2148 2149 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2150 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2151 } 2152 2153 static void mvneta_rx_reset(struct mvneta_port *pp) 2154 { 2155 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2156 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2157 } 2158 2159 /* Rx/Tx queue initialization/cleanup methods */ 2160 2161 /* Create a specified RX queue */ 2162 static int mvneta_rxq_init(struct mvneta_port *pp, 2163 struct mvneta_rx_queue *rxq) 2164 2165 { 2166 rxq->size = pp->rx_ring_size; 2167 2168 /* Allocate memory for RX descriptors */ 2169 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2170 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2171 &rxq->descs_phys, GFP_KERNEL); 2172 if (rxq->descs == NULL) 2173 return -ENOMEM; 2174 2175 BUG_ON(rxq->descs != 2176 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2177 2178 rxq->last_desc = rxq->size - 1; 2179 2180 /* Set Rx descriptors queue starting address */ 2181 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2182 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2183 2184 /* Set Offset */ 2185 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2186 2187 /* Set coalescing pkts and time */ 2188 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2189 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2190 2191 /* Fill RXQ with buffers from RX pool */ 2192 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2193 mvneta_rxq_bm_disable(pp, rxq); 2194 mvneta_rxq_fill(pp, rxq, rxq->size); 2195 2196 return 0; 2197 } 2198 2199 /* Cleanup Rx queue */ 2200 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2201 struct mvneta_rx_queue *rxq) 2202 { 2203 mvneta_rxq_drop_pkts(pp, rxq); 2204 2205 if (rxq->descs) 2206 dma_free_coherent(pp->dev->dev.parent, 2207 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2208 rxq->descs, 2209 rxq->descs_phys); 2210 2211 rxq->descs = NULL; 2212 rxq->last_desc = 0; 2213 rxq->next_desc_to_proc = 0; 2214 rxq->descs_phys = 0; 2215 } 2216 2217 /* Create and initialize a tx queue */ 2218 static int mvneta_txq_init(struct mvneta_port *pp, 2219 struct mvneta_tx_queue *txq) 2220 { 2221 txq->size = pp->tx_ring_size; 2222 2223 /* A queue must always have room for at least one skb. 2224 * Therefore, stop the queue when the free entries reaches 2225 * the maximum number of descriptors per skb. 2226 */ 2227 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2228 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2229 2230 2231 /* Allocate memory for TX descriptors */ 2232 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2233 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2234 &txq->descs_phys, GFP_KERNEL); 2235 if (txq->descs == NULL) 2236 return -ENOMEM; 2237 2238 /* Make sure descriptor address is cache line size aligned */ 2239 BUG_ON(txq->descs != 2240 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2241 2242 txq->last_desc = txq->size - 1; 2243 2244 /* Set maximum bandwidth for enabled TXQs */ 2245 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2246 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2247 2248 /* Set Tx descriptors queue starting address */ 2249 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2250 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2251 2252 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2253 if (txq->tx_skb == NULL) { 2254 dma_free_coherent(pp->dev->dev.parent, 2255 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2256 txq->descs, txq->descs_phys); 2257 return -ENOMEM; 2258 } 2259 2260 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2261 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2262 txq->size * TSO_HEADER_SIZE, 2263 &txq->tso_hdrs_phys, GFP_KERNEL); 2264 if (txq->tso_hdrs == NULL) { 2265 kfree(txq->tx_skb); 2266 dma_free_coherent(pp->dev->dev.parent, 2267 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2268 txq->descs, txq->descs_phys); 2269 return -ENOMEM; 2270 } 2271 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2272 2273 return 0; 2274 } 2275 2276 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2277 static void mvneta_txq_deinit(struct mvneta_port *pp, 2278 struct mvneta_tx_queue *txq) 2279 { 2280 kfree(txq->tx_skb); 2281 2282 if (txq->tso_hdrs) 2283 dma_free_coherent(pp->dev->dev.parent, 2284 txq->size * TSO_HEADER_SIZE, 2285 txq->tso_hdrs, txq->tso_hdrs_phys); 2286 if (txq->descs) 2287 dma_free_coherent(pp->dev->dev.parent, 2288 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2289 txq->descs, txq->descs_phys); 2290 2291 txq->descs = NULL; 2292 txq->last_desc = 0; 2293 txq->next_desc_to_proc = 0; 2294 txq->descs_phys = 0; 2295 2296 /* Set minimum bandwidth for disabled TXQs */ 2297 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2298 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2299 2300 /* Set Tx descriptors queue starting address and size */ 2301 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2302 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2303 } 2304 2305 /* Cleanup all Tx queues */ 2306 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2307 { 2308 int queue; 2309 2310 for (queue = 0; queue < txq_number; queue++) 2311 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2312 } 2313 2314 /* Cleanup all Rx queues */ 2315 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2316 { 2317 int queue; 2318 2319 for (queue = 0; queue < rxq_number; queue++) 2320 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2321 } 2322 2323 2324 /* Init all Rx queues */ 2325 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2326 { 2327 int queue; 2328 2329 for (queue = 0; queue < rxq_number; queue++) { 2330 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2331 if (err) { 2332 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2333 __func__, queue); 2334 mvneta_cleanup_rxqs(pp); 2335 return err; 2336 } 2337 } 2338 2339 return 0; 2340 } 2341 2342 /* Init all tx queues */ 2343 static int mvneta_setup_txqs(struct mvneta_port *pp) 2344 { 2345 int queue; 2346 2347 for (queue = 0; queue < txq_number; queue++) { 2348 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2349 if (err) { 2350 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2351 __func__, queue); 2352 mvneta_cleanup_txqs(pp); 2353 return err; 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 2360 static void mvneta_start_dev(struct mvneta_port *pp) 2361 { 2362 mvneta_max_rx_size_set(pp, pp->pkt_size); 2363 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2364 2365 /* start the Rx/Tx activity */ 2366 mvneta_port_enable(pp); 2367 2368 /* Enable polling on the port */ 2369 napi_enable(&pp->napi); 2370 2371 /* Unmask interrupts */ 2372 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2373 MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number)); 2374 2375 phy_start(pp->phy_dev); 2376 netif_tx_start_all_queues(pp->dev); 2377 } 2378 2379 static void mvneta_stop_dev(struct mvneta_port *pp) 2380 { 2381 phy_stop(pp->phy_dev); 2382 2383 napi_disable(&pp->napi); 2384 2385 netif_carrier_off(pp->dev); 2386 2387 mvneta_port_down(pp); 2388 netif_tx_stop_all_queues(pp->dev); 2389 2390 /* Stop the port activity */ 2391 mvneta_port_disable(pp); 2392 2393 /* Clear all ethernet port interrupts */ 2394 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2395 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2396 2397 /* Mask all ethernet port interrupts */ 2398 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2399 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2400 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2401 2402 mvneta_tx_reset(pp); 2403 mvneta_rx_reset(pp); 2404 } 2405 2406 /* Return positive if MTU is valid */ 2407 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2408 { 2409 if (mtu < 68) { 2410 netdev_err(dev, "cannot change mtu to less than 68\n"); 2411 return -EINVAL; 2412 } 2413 2414 /* 9676 == 9700 - 20 and rounding to 8 */ 2415 if (mtu > 9676) { 2416 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2417 mtu = 9676; 2418 } 2419 2420 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2421 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2422 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2423 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2424 } 2425 2426 return mtu; 2427 } 2428 2429 /* Change the device mtu */ 2430 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2431 { 2432 struct mvneta_port *pp = netdev_priv(dev); 2433 int ret; 2434 2435 mtu = mvneta_check_mtu_valid(dev, mtu); 2436 if (mtu < 0) 2437 return -EINVAL; 2438 2439 dev->mtu = mtu; 2440 2441 if (!netif_running(dev)) 2442 return 0; 2443 2444 /* The interface is running, so we have to force a 2445 * reallocation of the queues 2446 */ 2447 mvneta_stop_dev(pp); 2448 2449 mvneta_cleanup_txqs(pp); 2450 mvneta_cleanup_rxqs(pp); 2451 2452 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2453 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2454 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2455 2456 ret = mvneta_setup_rxqs(pp); 2457 if (ret) { 2458 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2459 return ret; 2460 } 2461 2462 ret = mvneta_setup_txqs(pp); 2463 if (ret) { 2464 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2465 return ret; 2466 } 2467 2468 mvneta_start_dev(pp); 2469 mvneta_port_up(pp); 2470 2471 return 0; 2472 } 2473 2474 /* Get mac address */ 2475 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2476 { 2477 u32 mac_addr_l, mac_addr_h; 2478 2479 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2480 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2481 addr[0] = (mac_addr_h >> 24) & 0xFF; 2482 addr[1] = (mac_addr_h >> 16) & 0xFF; 2483 addr[2] = (mac_addr_h >> 8) & 0xFF; 2484 addr[3] = mac_addr_h & 0xFF; 2485 addr[4] = (mac_addr_l >> 8) & 0xFF; 2486 addr[5] = mac_addr_l & 0xFF; 2487 } 2488 2489 /* Handle setting mac address */ 2490 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2491 { 2492 struct mvneta_port *pp = netdev_priv(dev); 2493 struct sockaddr *sockaddr = addr; 2494 int ret; 2495 2496 ret = eth_prepare_mac_addr_change(dev, addr); 2497 if (ret < 0) 2498 return ret; 2499 /* Remove previous address table entry */ 2500 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2501 2502 /* Set new addr in hw */ 2503 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2504 2505 eth_commit_mac_addr_change(dev, addr); 2506 return 0; 2507 } 2508 2509 static void mvneta_adjust_link(struct net_device *ndev) 2510 { 2511 struct mvneta_port *pp = netdev_priv(ndev); 2512 struct phy_device *phydev = pp->phy_dev; 2513 int status_change = 0; 2514 2515 if (phydev->link) { 2516 if ((pp->speed != phydev->speed) || 2517 (pp->duplex != phydev->duplex)) { 2518 u32 val; 2519 2520 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2521 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2522 MVNETA_GMAC_CONFIG_GMII_SPEED | 2523 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 2524 MVNETA_GMAC_AN_SPEED_EN | 2525 MVNETA_GMAC_AN_DUPLEX_EN); 2526 2527 if (phydev->duplex) 2528 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2529 2530 if (phydev->speed == SPEED_1000) 2531 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2532 else if (phydev->speed == SPEED_100) 2533 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2534 2535 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2536 2537 pp->duplex = phydev->duplex; 2538 pp->speed = phydev->speed; 2539 } 2540 } 2541 2542 if (phydev->link != pp->link) { 2543 if (!phydev->link) { 2544 pp->duplex = -1; 2545 pp->speed = 0; 2546 } 2547 2548 pp->link = phydev->link; 2549 status_change = 1; 2550 } 2551 2552 if (status_change) { 2553 if (phydev->link) { 2554 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2555 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 2556 MVNETA_GMAC_FORCE_LINK_DOWN); 2557 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2558 mvneta_port_up(pp); 2559 netdev_info(pp->dev, "link up\n"); 2560 } else { 2561 mvneta_port_down(pp); 2562 netdev_info(pp->dev, "link down\n"); 2563 } 2564 } 2565 } 2566 2567 static int mvneta_mdio_probe(struct mvneta_port *pp) 2568 { 2569 struct phy_device *phy_dev; 2570 2571 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2572 pp->phy_interface); 2573 if (!phy_dev) { 2574 netdev_err(pp->dev, "could not find the PHY\n"); 2575 return -ENODEV; 2576 } 2577 2578 phy_dev->supported &= PHY_GBIT_FEATURES; 2579 phy_dev->advertising = phy_dev->supported; 2580 2581 pp->phy_dev = phy_dev; 2582 pp->link = 0; 2583 pp->duplex = 0; 2584 pp->speed = 0; 2585 2586 return 0; 2587 } 2588 2589 static void mvneta_mdio_remove(struct mvneta_port *pp) 2590 { 2591 phy_disconnect(pp->phy_dev); 2592 pp->phy_dev = NULL; 2593 } 2594 2595 static int mvneta_open(struct net_device *dev) 2596 { 2597 struct mvneta_port *pp = netdev_priv(dev); 2598 int ret; 2599 2600 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2601 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2602 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2603 2604 ret = mvneta_setup_rxqs(pp); 2605 if (ret) 2606 return ret; 2607 2608 ret = mvneta_setup_txqs(pp); 2609 if (ret) 2610 goto err_cleanup_rxqs; 2611 2612 /* Connect to port interrupt line */ 2613 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2614 MVNETA_DRIVER_NAME, pp); 2615 if (ret) { 2616 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2617 goto err_cleanup_txqs; 2618 } 2619 2620 /* In default link is down */ 2621 netif_carrier_off(pp->dev); 2622 2623 ret = mvneta_mdio_probe(pp); 2624 if (ret < 0) { 2625 netdev_err(dev, "cannot probe MDIO bus\n"); 2626 goto err_free_irq; 2627 } 2628 2629 mvneta_start_dev(pp); 2630 2631 return 0; 2632 2633 err_free_irq: 2634 free_irq(pp->dev->irq, pp); 2635 err_cleanup_txqs: 2636 mvneta_cleanup_txqs(pp); 2637 err_cleanup_rxqs: 2638 mvneta_cleanup_rxqs(pp); 2639 return ret; 2640 } 2641 2642 /* Stop the port, free port interrupt line */ 2643 static int mvneta_stop(struct net_device *dev) 2644 { 2645 struct mvneta_port *pp = netdev_priv(dev); 2646 2647 mvneta_stop_dev(pp); 2648 mvneta_mdio_remove(pp); 2649 free_irq(dev->irq, pp); 2650 mvneta_cleanup_rxqs(pp); 2651 mvneta_cleanup_txqs(pp); 2652 2653 return 0; 2654 } 2655 2656 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2657 { 2658 struct mvneta_port *pp = netdev_priv(dev); 2659 int ret; 2660 2661 if (!pp->phy_dev) 2662 return -ENOTSUPP; 2663 2664 ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2665 if (!ret) 2666 mvneta_adjust_link(dev); 2667 2668 return ret; 2669 } 2670 2671 /* Ethtool methods */ 2672 2673 /* Get settings (phy address, speed) for ethtools */ 2674 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2675 { 2676 struct mvneta_port *pp = netdev_priv(dev); 2677 2678 if (!pp->phy_dev) 2679 return -ENODEV; 2680 2681 return phy_ethtool_gset(pp->phy_dev, cmd); 2682 } 2683 2684 /* Set settings (phy address, speed) for ethtools */ 2685 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2686 { 2687 struct mvneta_port *pp = netdev_priv(dev); 2688 2689 if (!pp->phy_dev) 2690 return -ENODEV; 2691 2692 return phy_ethtool_sset(pp->phy_dev, cmd); 2693 } 2694 2695 /* Set interrupt coalescing for ethtools */ 2696 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2697 struct ethtool_coalesce *c) 2698 { 2699 struct mvneta_port *pp = netdev_priv(dev); 2700 int queue; 2701 2702 for (queue = 0; queue < rxq_number; queue++) { 2703 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2704 rxq->time_coal = c->rx_coalesce_usecs; 2705 rxq->pkts_coal = c->rx_max_coalesced_frames; 2706 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2707 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2708 } 2709 2710 for (queue = 0; queue < txq_number; queue++) { 2711 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2712 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2713 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2714 } 2715 2716 return 0; 2717 } 2718 2719 /* get coalescing for ethtools */ 2720 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2721 struct ethtool_coalesce *c) 2722 { 2723 struct mvneta_port *pp = netdev_priv(dev); 2724 2725 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2726 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2727 2728 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2729 return 0; 2730 } 2731 2732 2733 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2734 struct ethtool_drvinfo *drvinfo) 2735 { 2736 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2737 sizeof(drvinfo->driver)); 2738 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2739 sizeof(drvinfo->version)); 2740 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2741 sizeof(drvinfo->bus_info)); 2742 } 2743 2744 2745 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2746 struct ethtool_ringparam *ring) 2747 { 2748 struct mvneta_port *pp = netdev_priv(netdev); 2749 2750 ring->rx_max_pending = MVNETA_MAX_RXD; 2751 ring->tx_max_pending = MVNETA_MAX_TXD; 2752 ring->rx_pending = pp->rx_ring_size; 2753 ring->tx_pending = pp->tx_ring_size; 2754 } 2755 2756 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2757 struct ethtool_ringparam *ring) 2758 { 2759 struct mvneta_port *pp = netdev_priv(dev); 2760 2761 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2762 return -EINVAL; 2763 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2764 ring->rx_pending : MVNETA_MAX_RXD; 2765 2766 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 2767 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 2768 if (pp->tx_ring_size != ring->tx_pending) 2769 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 2770 pp->tx_ring_size, ring->tx_pending); 2771 2772 if (netif_running(dev)) { 2773 mvneta_stop(dev); 2774 if (mvneta_open(dev)) { 2775 netdev_err(dev, 2776 "error on opening device after ring param change\n"); 2777 return -ENOMEM; 2778 } 2779 } 2780 2781 return 0; 2782 } 2783 2784 static const struct net_device_ops mvneta_netdev_ops = { 2785 .ndo_open = mvneta_open, 2786 .ndo_stop = mvneta_stop, 2787 .ndo_start_xmit = mvneta_tx, 2788 .ndo_set_rx_mode = mvneta_set_rx_mode, 2789 .ndo_set_mac_address = mvneta_set_mac_addr, 2790 .ndo_change_mtu = mvneta_change_mtu, 2791 .ndo_get_stats64 = mvneta_get_stats64, 2792 .ndo_do_ioctl = mvneta_ioctl, 2793 }; 2794 2795 const struct ethtool_ops mvneta_eth_tool_ops = { 2796 .get_link = ethtool_op_get_link, 2797 .get_settings = mvneta_ethtool_get_settings, 2798 .set_settings = mvneta_ethtool_set_settings, 2799 .set_coalesce = mvneta_ethtool_set_coalesce, 2800 .get_coalesce = mvneta_ethtool_get_coalesce, 2801 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2802 .get_ringparam = mvneta_ethtool_get_ringparam, 2803 .set_ringparam = mvneta_ethtool_set_ringparam, 2804 }; 2805 2806 /* Initialize hw */ 2807 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 2808 { 2809 int queue; 2810 2811 /* Disable port */ 2812 mvneta_port_disable(pp); 2813 2814 /* Set port default values */ 2815 mvneta_defaults_set(pp); 2816 2817 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 2818 GFP_KERNEL); 2819 if (!pp->txqs) 2820 return -ENOMEM; 2821 2822 /* Initialize TX descriptor rings */ 2823 for (queue = 0; queue < txq_number; queue++) { 2824 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2825 txq->id = queue; 2826 txq->size = pp->tx_ring_size; 2827 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2828 } 2829 2830 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 2831 GFP_KERNEL); 2832 if (!pp->rxqs) 2833 return -ENOMEM; 2834 2835 /* Create Rx descriptor rings */ 2836 for (queue = 0; queue < rxq_number; queue++) { 2837 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2838 rxq->id = queue; 2839 rxq->size = pp->rx_ring_size; 2840 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2841 rxq->time_coal = MVNETA_RX_COAL_USEC; 2842 } 2843 2844 return 0; 2845 } 2846 2847 /* platform glue : initialize decoding windows */ 2848 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2849 const struct mbus_dram_target_info *dram) 2850 { 2851 u32 win_enable; 2852 u32 win_protect; 2853 int i; 2854 2855 for (i = 0; i < 6; i++) { 2856 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2857 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2858 2859 if (i < 4) 2860 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2861 } 2862 2863 win_enable = 0x3f; 2864 win_protect = 0; 2865 2866 for (i = 0; i < dram->num_cs; i++) { 2867 const struct mbus_dram_window *cs = dram->cs + i; 2868 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2869 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2870 2871 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2872 (cs->size - 1) & 0xffff0000); 2873 2874 win_enable &= ~(1 << i); 2875 win_protect |= 3 << (2 * i); 2876 } 2877 2878 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2879 } 2880 2881 /* Power up the port */ 2882 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2883 { 2884 u32 ctrl; 2885 2886 /* MAC Cause register should be cleared */ 2887 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2888 2889 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2890 2891 /* Even though it might look weird, when we're configured in 2892 * SGMII or QSGMII mode, the RGMII bit needs to be set. 2893 */ 2894 switch(phy_mode) { 2895 case PHY_INTERFACE_MODE_QSGMII: 2896 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 2897 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2898 break; 2899 case PHY_INTERFACE_MODE_SGMII: 2900 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 2901 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 2902 break; 2903 case PHY_INTERFACE_MODE_RGMII: 2904 case PHY_INTERFACE_MODE_RGMII_ID: 2905 ctrl |= MVNETA_GMAC2_PORT_RGMII; 2906 break; 2907 default: 2908 return -EINVAL; 2909 } 2910 2911 /* Cancel Port Reset */ 2912 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 2913 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 2914 2915 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2916 MVNETA_GMAC2_PORT_RESET) != 0) 2917 continue; 2918 2919 return 0; 2920 } 2921 2922 /* Device initialization routine */ 2923 static int mvneta_probe(struct platform_device *pdev) 2924 { 2925 const struct mbus_dram_target_info *dram_target_info; 2926 struct resource *res; 2927 struct device_node *dn = pdev->dev.of_node; 2928 struct device_node *phy_node; 2929 struct mvneta_port *pp; 2930 struct net_device *dev; 2931 const char *dt_mac_addr; 2932 char hw_mac_addr[ETH_ALEN]; 2933 const char *mac_from; 2934 int phy_mode; 2935 int err; 2936 2937 /* Our multiqueue support is not complete, so for now, only 2938 * allow the usage of the first RX queue 2939 */ 2940 if (rxq_def != 0) { 2941 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 2942 return -EINVAL; 2943 } 2944 2945 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 2946 if (!dev) 2947 return -ENOMEM; 2948 2949 dev->irq = irq_of_parse_and_map(dn, 0); 2950 if (dev->irq == 0) { 2951 err = -EINVAL; 2952 goto err_free_netdev; 2953 } 2954 2955 phy_node = of_parse_phandle(dn, "phy", 0); 2956 if (!phy_node) { 2957 if (!of_phy_is_fixed_link(dn)) { 2958 dev_err(&pdev->dev, "no PHY specified\n"); 2959 err = -ENODEV; 2960 goto err_free_irq; 2961 } 2962 2963 err = of_phy_register_fixed_link(dn); 2964 if (err < 0) { 2965 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 2966 goto err_free_irq; 2967 } 2968 2969 /* In the case of a fixed PHY, the DT node associated 2970 * to the PHY is the Ethernet MAC DT node. 2971 */ 2972 phy_node = of_node_get(dn); 2973 } 2974 2975 phy_mode = of_get_phy_mode(dn); 2976 if (phy_mode < 0) { 2977 dev_err(&pdev->dev, "incorrect phy-mode\n"); 2978 err = -EINVAL; 2979 goto err_put_phy_node; 2980 } 2981 2982 dev->tx_queue_len = MVNETA_MAX_TXD; 2983 dev->watchdog_timeo = 5 * HZ; 2984 dev->netdev_ops = &mvneta_netdev_ops; 2985 2986 dev->ethtool_ops = &mvneta_eth_tool_ops; 2987 2988 pp = netdev_priv(dev); 2989 pp->phy_node = phy_node; 2990 pp->phy_interface = phy_mode; 2991 2992 pp->clk = devm_clk_get(&pdev->dev, NULL); 2993 if (IS_ERR(pp->clk)) { 2994 err = PTR_ERR(pp->clk); 2995 goto err_put_phy_node; 2996 } 2997 2998 clk_prepare_enable(pp->clk); 2999 3000 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3001 pp->base = devm_ioremap_resource(&pdev->dev, res); 3002 if (IS_ERR(pp->base)) { 3003 err = PTR_ERR(pp->base); 3004 goto err_clk; 3005 } 3006 3007 /* Alloc per-cpu stats */ 3008 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3009 if (!pp->stats) { 3010 err = -ENOMEM; 3011 goto err_clk; 3012 } 3013 3014 dt_mac_addr = of_get_mac_address(dn); 3015 if (dt_mac_addr) { 3016 mac_from = "device tree"; 3017 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3018 } else { 3019 mvneta_get_mac_addr(pp, hw_mac_addr); 3020 if (is_valid_ether_addr(hw_mac_addr)) { 3021 mac_from = "hardware"; 3022 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3023 } else { 3024 mac_from = "random"; 3025 eth_hw_addr_random(dev); 3026 } 3027 } 3028 3029 pp->tx_ring_size = MVNETA_MAX_TXD; 3030 pp->rx_ring_size = MVNETA_MAX_RXD; 3031 3032 pp->dev = dev; 3033 SET_NETDEV_DEV(dev, &pdev->dev); 3034 3035 err = mvneta_init(&pdev->dev, pp); 3036 if (err < 0) 3037 goto err_free_stats; 3038 3039 err = mvneta_port_power_up(pp, phy_mode); 3040 if (err < 0) { 3041 dev_err(&pdev->dev, "can't power up port\n"); 3042 goto err_free_stats; 3043 } 3044 3045 dram_target_info = mv_mbus_dram_info(); 3046 if (dram_target_info) 3047 mvneta_conf_mbus_windows(pp, dram_target_info); 3048 3049 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3050 3051 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3052 dev->hw_features |= dev->features; 3053 dev->vlan_features |= dev->features; 3054 dev->priv_flags |= IFF_UNICAST_FLT; 3055 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3056 3057 err = register_netdev(dev); 3058 if (err < 0) { 3059 dev_err(&pdev->dev, "failed to register\n"); 3060 goto err_free_stats; 3061 } 3062 3063 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3064 dev->dev_addr); 3065 3066 platform_set_drvdata(pdev, pp->dev); 3067 3068 return 0; 3069 3070 err_free_stats: 3071 free_percpu(pp->stats); 3072 err_clk: 3073 clk_disable_unprepare(pp->clk); 3074 err_put_phy_node: 3075 of_node_put(phy_node); 3076 err_free_irq: 3077 irq_dispose_mapping(dev->irq); 3078 err_free_netdev: 3079 free_netdev(dev); 3080 return err; 3081 } 3082 3083 /* Device removal routine */ 3084 static int mvneta_remove(struct platform_device *pdev) 3085 { 3086 struct net_device *dev = platform_get_drvdata(pdev); 3087 struct mvneta_port *pp = netdev_priv(dev); 3088 3089 unregister_netdev(dev); 3090 clk_disable_unprepare(pp->clk); 3091 free_percpu(pp->stats); 3092 irq_dispose_mapping(dev->irq); 3093 of_node_put(pp->phy_node); 3094 free_netdev(dev); 3095 3096 return 0; 3097 } 3098 3099 static const struct of_device_id mvneta_match[] = { 3100 { .compatible = "marvell,armada-370-neta" }, 3101 { } 3102 }; 3103 MODULE_DEVICE_TABLE(of, mvneta_match); 3104 3105 static struct platform_driver mvneta_driver = { 3106 .probe = mvneta_probe, 3107 .remove = mvneta_remove, 3108 .driver = { 3109 .name = MVNETA_DRIVER_NAME, 3110 .of_match_table = mvneta_match, 3111 }, 3112 }; 3113 3114 module_platform_driver(mvneta_driver); 3115 3116 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3117 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3118 MODULE_LICENSE("GPL"); 3119 3120 module_param(rxq_number, int, S_IRUGO); 3121 module_param(txq_number, int, S_IRUGO); 3122 3123 module_param(rxq_def, int, S_IRUGO); 3124 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3125