xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
334 
335 #define IS_TSO_HEADER(txq, addr) \
336 	((addr >= txq->tso_hdrs_phys) && \
337 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
338 
339 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
340 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
341 
342 enum {
343 	ETHTOOL_STAT_EEE_WAKEUP,
344 	ETHTOOL_STAT_SKB_ALLOC_ERR,
345 	ETHTOOL_STAT_REFILL_ERR,
346 	ETHTOOL_XDP_REDIRECT,
347 	ETHTOOL_XDP_PASS,
348 	ETHTOOL_XDP_DROP,
349 	ETHTOOL_XDP_TX,
350 	ETHTOOL_XDP_TX_ERR,
351 	ETHTOOL_XDP_XMIT,
352 	ETHTOOL_XDP_XMIT_ERR,
353 	ETHTOOL_MAX_STATS,
354 };
355 
356 struct mvneta_statistic {
357 	unsigned short offset;
358 	unsigned short type;
359 	const char name[ETH_GSTRING_LEN];
360 };
361 
362 #define T_REG_32	32
363 #define T_REG_64	64
364 #define T_SW		1
365 
366 #define MVNETA_XDP_PASS		0
367 #define MVNETA_XDP_DROPPED	BIT(0)
368 #define MVNETA_XDP_TX		BIT(1)
369 #define MVNETA_XDP_REDIR	BIT(2)
370 
371 static const struct mvneta_statistic mvneta_statistics[] = {
372 	{ 0x3000, T_REG_64, "good_octets_received", },
373 	{ 0x3010, T_REG_32, "good_frames_received", },
374 	{ 0x3008, T_REG_32, "bad_octets_received", },
375 	{ 0x3014, T_REG_32, "bad_frames_received", },
376 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
377 	{ 0x301c, T_REG_32, "multicast_frames_received", },
378 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
379 	{ 0x3058, T_REG_32, "good_fc_received", },
380 	{ 0x305c, T_REG_32, "bad_fc_received", },
381 	{ 0x3060, T_REG_32, "undersize_received", },
382 	{ 0x3064, T_REG_32, "fragments_received", },
383 	{ 0x3068, T_REG_32, "oversize_received", },
384 	{ 0x306c, T_REG_32, "jabber_received", },
385 	{ 0x3070, T_REG_32, "mac_receive_error", },
386 	{ 0x3074, T_REG_32, "bad_crc_event", },
387 	{ 0x3078, T_REG_32, "collision", },
388 	{ 0x307c, T_REG_32, "late_collision", },
389 	{ 0x2484, T_REG_32, "rx_discard", },
390 	{ 0x2488, T_REG_32, "rx_overrun", },
391 	{ 0x3020, T_REG_32, "frames_64_octets", },
392 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
393 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
394 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
395 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
396 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
397 	{ 0x3038, T_REG_64, "good_octets_sent", },
398 	{ 0x3040, T_REG_32, "good_frames_sent", },
399 	{ 0x3044, T_REG_32, "excessive_collision", },
400 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
401 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
402 	{ 0x3054, T_REG_32, "fc_sent", },
403 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
404 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
405 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
406 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
407 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
408 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
409 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
410 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
411 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
412 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
413 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
414 };
415 
416 struct mvneta_stats {
417 	u64	rx_packets;
418 	u64	rx_bytes;
419 	u64	tx_packets;
420 	u64	tx_bytes;
421 	/* xdp */
422 	u64	xdp_redirect;
423 	u64	xdp_pass;
424 	u64	xdp_drop;
425 	u64	xdp_xmit;
426 	u64	xdp_xmit_err;
427 	u64	xdp_tx;
428 	u64	xdp_tx_err;
429 };
430 
431 struct mvneta_ethtool_stats {
432 	struct mvneta_stats ps;
433 	u64	skb_alloc_error;
434 	u64	refill_error;
435 };
436 
437 struct mvneta_pcpu_stats {
438 	struct u64_stats_sync syncp;
439 
440 	struct mvneta_ethtool_stats es;
441 	u64	rx_dropped;
442 	u64	rx_errors;
443 };
444 
445 struct mvneta_pcpu_port {
446 	/* Pointer to the shared port */
447 	struct mvneta_port	*pp;
448 
449 	/* Pointer to the CPU-local NAPI struct */
450 	struct napi_struct	napi;
451 
452 	/* Cause of the previous interrupt */
453 	u32			cause_rx_tx;
454 };
455 
456 enum {
457 	__MVNETA_DOWN,
458 };
459 
460 struct mvneta_port {
461 	u8 id;
462 	struct mvneta_pcpu_port __percpu	*ports;
463 	struct mvneta_pcpu_stats __percpu	*stats;
464 
465 	unsigned long state;
466 
467 	int pkt_size;
468 	void __iomem *base;
469 	struct mvneta_rx_queue *rxqs;
470 	struct mvneta_tx_queue *txqs;
471 	struct net_device *dev;
472 	struct hlist_node node_online;
473 	struct hlist_node node_dead;
474 	int rxq_def;
475 	/* Protect the access to the percpu interrupt registers,
476 	 * ensuring that the configuration remains coherent.
477 	 */
478 	spinlock_t lock;
479 	bool is_stopped;
480 
481 	u32 cause_rx_tx;
482 	struct napi_struct napi;
483 
484 	struct bpf_prog *xdp_prog;
485 
486 	/* Core clock */
487 	struct clk *clk;
488 	/* AXI clock */
489 	struct clk *clk_bus;
490 	u8 mcast_count[256];
491 	u16 tx_ring_size;
492 	u16 rx_ring_size;
493 
494 	phy_interface_t phy_interface;
495 	struct device_node *dn;
496 	unsigned int tx_csum_limit;
497 	struct phylink *phylink;
498 	struct phylink_config phylink_config;
499 	struct phy *comphy;
500 
501 	struct mvneta_bm *bm_priv;
502 	struct mvneta_bm_pool *pool_long;
503 	struct mvneta_bm_pool *pool_short;
504 	int bm_win_id;
505 
506 	bool eee_enabled;
507 	bool eee_active;
508 	bool tx_lpi_enabled;
509 
510 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
511 
512 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
513 
514 	/* Flags for special SoC configurations */
515 	bool neta_armada3700;
516 	u16 rx_offset_correction;
517 	const struct mbus_dram_target_info *dram_target_info;
518 };
519 
520 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
521  * layout of the transmit and reception DMA descriptors, and their
522  * layout is therefore defined by the hardware design
523  */
524 
525 #define MVNETA_TX_L3_OFF_SHIFT	0
526 #define MVNETA_TX_IP_HLEN_SHIFT	8
527 #define MVNETA_TX_L4_UDP	BIT(16)
528 #define MVNETA_TX_L3_IP6	BIT(17)
529 #define MVNETA_TXD_IP_CSUM	BIT(18)
530 #define MVNETA_TXD_Z_PAD	BIT(19)
531 #define MVNETA_TXD_L_DESC	BIT(20)
532 #define MVNETA_TXD_F_DESC	BIT(21)
533 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
534 				 MVNETA_TXD_L_DESC | \
535 				 MVNETA_TXD_F_DESC)
536 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
537 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
538 
539 #define MVNETA_RXD_ERR_CRC		0x0
540 #define MVNETA_RXD_BM_POOL_SHIFT	13
541 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
542 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
543 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
544 #define MVNETA_RXD_ERR_LEN		BIT(18)
545 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
546 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
547 #define MVNETA_RXD_L3_IP4		BIT(25)
548 #define MVNETA_RXD_LAST_DESC		BIT(26)
549 #define MVNETA_RXD_FIRST_DESC		BIT(27)
550 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
551 					 MVNETA_RXD_LAST_DESC)
552 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
553 
554 #if defined(__LITTLE_ENDIAN)
555 struct mvneta_tx_desc {
556 	u32  command;		/* Options used by HW for packet transmitting.*/
557 	u16  reserved1;		/* csum_l4 (for future use)		*/
558 	u16  data_size;		/* Data size of transmitted packet in bytes */
559 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
560 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
561 	u32  reserved3[4];	/* Reserved - (for future use)		*/
562 };
563 
564 struct mvneta_rx_desc {
565 	u32  status;		/* Info about received packet		*/
566 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
567 	u16  data_size;		/* Size of received packet in bytes	*/
568 
569 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
570 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
571 
572 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
573 	u16  reserved3;		/* prefetch_cmd, for future use		*/
574 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
575 
576 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
577 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
578 };
579 #else
580 struct mvneta_tx_desc {
581 	u16  data_size;		/* Data size of transmitted packet in bytes */
582 	u16  reserved1;		/* csum_l4 (for future use)		*/
583 	u32  command;		/* Options used by HW for packet transmitting.*/
584 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
585 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
586 	u32  reserved3[4];	/* Reserved - (for future use)		*/
587 };
588 
589 struct mvneta_rx_desc {
590 	u16  data_size;		/* Size of received packet in bytes	*/
591 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
592 	u32  status;		/* Info about received packet		*/
593 
594 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
595 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
596 
597 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
598 	u16  reserved3;		/* prefetch_cmd, for future use		*/
599 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
600 
601 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
602 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
603 };
604 #endif
605 
606 enum mvneta_tx_buf_type {
607 	MVNETA_TYPE_SKB,
608 	MVNETA_TYPE_XDP_TX,
609 	MVNETA_TYPE_XDP_NDO,
610 };
611 
612 struct mvneta_tx_buf {
613 	enum mvneta_tx_buf_type type;
614 	union {
615 		struct xdp_frame *xdpf;
616 		struct sk_buff *skb;
617 	};
618 };
619 
620 struct mvneta_tx_queue {
621 	/* Number of this TX queue, in the range 0-7 */
622 	u8 id;
623 
624 	/* Number of TX DMA descriptors in the descriptor ring */
625 	int size;
626 
627 	/* Number of currently used TX DMA descriptor in the
628 	 * descriptor ring
629 	 */
630 	int count;
631 	int pending;
632 	int tx_stop_threshold;
633 	int tx_wake_threshold;
634 
635 	/* Array of transmitted buffers */
636 	struct mvneta_tx_buf *buf;
637 
638 	/* Index of last TX DMA descriptor that was inserted */
639 	int txq_put_index;
640 
641 	/* Index of the TX DMA descriptor to be cleaned up */
642 	int txq_get_index;
643 
644 	u32 done_pkts_coal;
645 
646 	/* Virtual address of the TX DMA descriptors array */
647 	struct mvneta_tx_desc *descs;
648 
649 	/* DMA address of the TX DMA descriptors array */
650 	dma_addr_t descs_phys;
651 
652 	/* Index of the last TX DMA descriptor */
653 	int last_desc;
654 
655 	/* Index of the next TX DMA descriptor to process */
656 	int next_desc_to_proc;
657 
658 	/* DMA buffers for TSO headers */
659 	char *tso_hdrs;
660 
661 	/* DMA address of TSO headers */
662 	dma_addr_t tso_hdrs_phys;
663 
664 	/* Affinity mask for CPUs*/
665 	cpumask_t affinity_mask;
666 };
667 
668 struct mvneta_rx_queue {
669 	/* rx queue number, in the range 0-7 */
670 	u8 id;
671 
672 	/* num of rx descriptors in the rx descriptor ring */
673 	int size;
674 
675 	u32 pkts_coal;
676 	u32 time_coal;
677 
678 	/* page_pool */
679 	struct page_pool *page_pool;
680 	struct xdp_rxq_info xdp_rxq;
681 
682 	/* Virtual address of the RX buffer */
683 	void  **buf_virt_addr;
684 
685 	/* Virtual address of the RX DMA descriptors array */
686 	struct mvneta_rx_desc *descs;
687 
688 	/* DMA address of the RX DMA descriptors array */
689 	dma_addr_t descs_phys;
690 
691 	/* Index of the last RX DMA descriptor */
692 	int last_desc;
693 
694 	/* Index of the next RX DMA descriptor to process */
695 	int next_desc_to_proc;
696 
697 	/* Index of first RX DMA descriptor to refill */
698 	int first_to_refill;
699 	u32 refill_num;
700 };
701 
702 static enum cpuhp_state online_hpstate;
703 /* The hardware supports eight (8) rx queues, but we are only allowing
704  * the first one to be used. Therefore, let's just allocate one queue.
705  */
706 static int rxq_number = 8;
707 static int txq_number = 8;
708 
709 static int rxq_def;
710 
711 static int rx_copybreak __read_mostly = 256;
712 
713 /* HW BM need that each port be identify by a unique ID */
714 static int global_port_id;
715 
716 #define MVNETA_DRIVER_NAME "mvneta"
717 #define MVNETA_DRIVER_VERSION "1.0"
718 
719 /* Utility/helper methods */
720 
721 /* Write helper method */
722 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
723 {
724 	writel(data, pp->base + offset);
725 }
726 
727 /* Read helper method */
728 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
729 {
730 	return readl(pp->base + offset);
731 }
732 
733 /* Increment txq get counter */
734 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
735 {
736 	txq->txq_get_index++;
737 	if (txq->txq_get_index == txq->size)
738 		txq->txq_get_index = 0;
739 }
740 
741 /* Increment txq put counter */
742 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
743 {
744 	txq->txq_put_index++;
745 	if (txq->txq_put_index == txq->size)
746 		txq->txq_put_index = 0;
747 }
748 
749 
750 /* Clear all MIB counters */
751 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
752 {
753 	int i;
754 	u32 dummy;
755 
756 	/* Perform dummy reads from MIB counters */
757 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
758 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
759 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
760 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
761 }
762 
763 /* Get System Network Statistics */
764 static void
765 mvneta_get_stats64(struct net_device *dev,
766 		   struct rtnl_link_stats64 *stats)
767 {
768 	struct mvneta_port *pp = netdev_priv(dev);
769 	unsigned int start;
770 	int cpu;
771 
772 	for_each_possible_cpu(cpu) {
773 		struct mvneta_pcpu_stats *cpu_stats;
774 		u64 rx_packets;
775 		u64 rx_bytes;
776 		u64 rx_dropped;
777 		u64 rx_errors;
778 		u64 tx_packets;
779 		u64 tx_bytes;
780 
781 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
782 		do {
783 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
784 			rx_packets = cpu_stats->es.ps.rx_packets;
785 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
786 			rx_dropped = cpu_stats->rx_dropped;
787 			rx_errors  = cpu_stats->rx_errors;
788 			tx_packets = cpu_stats->es.ps.tx_packets;
789 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
790 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
791 
792 		stats->rx_packets += rx_packets;
793 		stats->rx_bytes   += rx_bytes;
794 		stats->rx_dropped += rx_dropped;
795 		stats->rx_errors  += rx_errors;
796 		stats->tx_packets += tx_packets;
797 		stats->tx_bytes   += tx_bytes;
798 	}
799 
800 	stats->tx_dropped	= dev->stats.tx_dropped;
801 }
802 
803 /* Rx descriptors helper methods */
804 
805 /* Checks whether the RX descriptor having this status is both the first
806  * and the last descriptor for the RX packet. Each RX packet is currently
807  * received through a single RX descriptor, so not having each RX
808  * descriptor with its first and last bits set is an error
809  */
810 static int mvneta_rxq_desc_is_first_last(u32 status)
811 {
812 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
813 		MVNETA_RXD_FIRST_LAST_DESC;
814 }
815 
816 /* Add number of descriptors ready to receive new packets */
817 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
818 					  struct mvneta_rx_queue *rxq,
819 					  int ndescs)
820 {
821 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
822 	 * be added at once
823 	 */
824 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
825 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
826 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
827 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
828 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
829 	}
830 
831 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
832 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
833 }
834 
835 /* Get number of RX descriptors occupied by received packets */
836 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
837 					struct mvneta_rx_queue *rxq)
838 {
839 	u32 val;
840 
841 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
842 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
843 }
844 
845 /* Update num of rx desc called upon return from rx path or
846  * from mvneta_rxq_drop_pkts().
847  */
848 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
849 				       struct mvneta_rx_queue *rxq,
850 				       int rx_done, int rx_filled)
851 {
852 	u32 val;
853 
854 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
855 		val = rx_done |
856 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
857 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
858 		return;
859 	}
860 
861 	/* Only 255 descriptors can be added at once */
862 	while ((rx_done > 0) || (rx_filled > 0)) {
863 		if (rx_done <= 0xff) {
864 			val = rx_done;
865 			rx_done = 0;
866 		} else {
867 			val = 0xff;
868 			rx_done -= 0xff;
869 		}
870 		if (rx_filled <= 0xff) {
871 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
872 			rx_filled = 0;
873 		} else {
874 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
875 			rx_filled -= 0xff;
876 		}
877 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
878 	}
879 }
880 
881 /* Get pointer to next RX descriptor to be processed by SW */
882 static struct mvneta_rx_desc *
883 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
884 {
885 	int rx_desc = rxq->next_desc_to_proc;
886 
887 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
888 	prefetch(rxq->descs + rxq->next_desc_to_proc);
889 	return rxq->descs + rx_desc;
890 }
891 
892 /* Change maximum receive size of the port. */
893 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
894 {
895 	u32 val;
896 
897 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
898 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
899 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
900 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
901 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
902 }
903 
904 
905 /* Set rx queue offset */
906 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
907 				  struct mvneta_rx_queue *rxq,
908 				  int offset)
909 {
910 	u32 val;
911 
912 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
913 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
914 
915 	/* Offset is in */
916 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
917 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
918 }
919 
920 
921 /* Tx descriptors helper methods */
922 
923 /* Update HW with number of TX descriptors to be sent */
924 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
925 				     struct mvneta_tx_queue *txq,
926 				     int pend_desc)
927 {
928 	u32 val;
929 
930 	pend_desc += txq->pending;
931 
932 	/* Only 255 Tx descriptors can be added at once */
933 	do {
934 		val = min(pend_desc, 255);
935 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
936 		pend_desc -= val;
937 	} while (pend_desc > 0);
938 	txq->pending = 0;
939 }
940 
941 /* Get pointer to next TX descriptor to be processed (send) by HW */
942 static struct mvneta_tx_desc *
943 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
944 {
945 	int tx_desc = txq->next_desc_to_proc;
946 
947 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
948 	return txq->descs + tx_desc;
949 }
950 
951 /* Release the last allocated TX descriptor. Useful to handle DMA
952  * mapping failures in the TX path.
953  */
954 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
955 {
956 	if (txq->next_desc_to_proc == 0)
957 		txq->next_desc_to_proc = txq->last_desc - 1;
958 	else
959 		txq->next_desc_to_proc--;
960 }
961 
962 /* Set rxq buf size */
963 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
964 				    struct mvneta_rx_queue *rxq,
965 				    int buf_size)
966 {
967 	u32 val;
968 
969 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
970 
971 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
972 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
973 
974 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
975 }
976 
977 /* Disable buffer management (BM) */
978 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
979 				  struct mvneta_rx_queue *rxq)
980 {
981 	u32 val;
982 
983 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
984 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
985 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
986 }
987 
988 /* Enable buffer management (BM) */
989 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
990 				 struct mvneta_rx_queue *rxq)
991 {
992 	u32 val;
993 
994 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
995 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
996 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
997 }
998 
999 /* Notify HW about port's assignment of pool for bigger packets */
1000 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1001 				     struct mvneta_rx_queue *rxq)
1002 {
1003 	u32 val;
1004 
1005 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1006 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1007 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1008 
1009 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1010 }
1011 
1012 /* Notify HW about port's assignment of pool for smaller packets */
1013 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1014 				      struct mvneta_rx_queue *rxq)
1015 {
1016 	u32 val;
1017 
1018 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1019 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1020 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1021 
1022 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1023 }
1024 
1025 /* Set port's receive buffer size for assigned BM pool */
1026 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1027 					      int buf_size,
1028 					      u8 pool_id)
1029 {
1030 	u32 val;
1031 
1032 	if (!IS_ALIGNED(buf_size, 8)) {
1033 		dev_warn(pp->dev->dev.parent,
1034 			 "illegal buf_size value %d, round to %d\n",
1035 			 buf_size, ALIGN(buf_size, 8));
1036 		buf_size = ALIGN(buf_size, 8);
1037 	}
1038 
1039 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1040 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1041 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1042 }
1043 
1044 /* Configure MBUS window in order to enable access BM internal SRAM */
1045 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1046 				  u8 target, u8 attr)
1047 {
1048 	u32 win_enable, win_protect;
1049 	int i;
1050 
1051 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1052 
1053 	if (pp->bm_win_id < 0) {
1054 		/* Find first not occupied window */
1055 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1056 			if (win_enable & (1 << i)) {
1057 				pp->bm_win_id = i;
1058 				break;
1059 			}
1060 		}
1061 		if (i == MVNETA_MAX_DECODE_WIN)
1062 			return -ENOMEM;
1063 	} else {
1064 		i = pp->bm_win_id;
1065 	}
1066 
1067 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1068 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1069 
1070 	if (i < 4)
1071 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1072 
1073 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1074 		    (attr << 8) | target);
1075 
1076 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1077 
1078 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1079 	win_protect |= 3 << (2 * i);
1080 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1081 
1082 	win_enable &= ~(1 << i);
1083 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1084 
1085 	return 0;
1086 }
1087 
1088 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1089 {
1090 	u32 wsize;
1091 	u8 target, attr;
1092 	int err;
1093 
1094 	/* Get BM window information */
1095 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1096 					 &target, &attr);
1097 	if (err < 0)
1098 		return err;
1099 
1100 	pp->bm_win_id = -1;
1101 
1102 	/* Open NETA -> BM window */
1103 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1104 				     target, attr);
1105 	if (err < 0) {
1106 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1107 		return err;
1108 	}
1109 	return 0;
1110 }
1111 
1112 /* Assign and initialize pools for port. In case of fail
1113  * buffer manager will remain disabled for current port.
1114  */
1115 static int mvneta_bm_port_init(struct platform_device *pdev,
1116 			       struct mvneta_port *pp)
1117 {
1118 	struct device_node *dn = pdev->dev.of_node;
1119 	u32 long_pool_id, short_pool_id;
1120 
1121 	if (!pp->neta_armada3700) {
1122 		int ret;
1123 
1124 		ret = mvneta_bm_port_mbus_init(pp);
1125 		if (ret)
1126 			return ret;
1127 	}
1128 
1129 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1130 		netdev_info(pp->dev, "missing long pool id\n");
1131 		return -EINVAL;
1132 	}
1133 
1134 	/* Create port's long pool depending on mtu */
1135 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1136 					   MVNETA_BM_LONG, pp->id,
1137 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1138 	if (!pp->pool_long) {
1139 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1140 		return -ENOMEM;
1141 	}
1142 
1143 	pp->pool_long->port_map |= 1 << pp->id;
1144 
1145 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1146 				   pp->pool_long->id);
1147 
1148 	/* If short pool id is not defined, assume using single pool */
1149 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1150 		short_pool_id = long_pool_id;
1151 
1152 	/* Create port's short pool */
1153 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1154 					    MVNETA_BM_SHORT, pp->id,
1155 					    MVNETA_BM_SHORT_PKT_SIZE);
1156 	if (!pp->pool_short) {
1157 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1158 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1159 		return -ENOMEM;
1160 	}
1161 
1162 	if (short_pool_id != long_pool_id) {
1163 		pp->pool_short->port_map |= 1 << pp->id;
1164 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1165 					   pp->pool_short->id);
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 /* Update settings of a pool for bigger packets */
1172 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1173 {
1174 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1175 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1176 	int num;
1177 
1178 	/* Release all buffers from long pool */
1179 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1180 	if (hwbm_pool->buf_num) {
1181 		WARN(1, "cannot free all buffers in pool %d\n",
1182 		     bm_pool->id);
1183 		goto bm_mtu_err;
1184 	}
1185 
1186 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1187 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1188 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1189 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1190 
1191 	/* Fill entire long pool */
1192 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1193 	if (num != hwbm_pool->size) {
1194 		WARN(1, "pool %d: %d of %d allocated\n",
1195 		     bm_pool->id, num, hwbm_pool->size);
1196 		goto bm_mtu_err;
1197 	}
1198 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1199 
1200 	return;
1201 
1202 bm_mtu_err:
1203 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1204 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1205 
1206 	pp->bm_priv = NULL;
1207 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1208 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1209 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1210 }
1211 
1212 /* Start the Ethernet port RX and TX activity */
1213 static void mvneta_port_up(struct mvneta_port *pp)
1214 {
1215 	int queue;
1216 	u32 q_map;
1217 
1218 	/* Enable all initialized TXs. */
1219 	q_map = 0;
1220 	for (queue = 0; queue < txq_number; queue++) {
1221 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1222 		if (txq->descs)
1223 			q_map |= (1 << queue);
1224 	}
1225 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1226 
1227 	q_map = 0;
1228 	/* Enable all initialized RXQs. */
1229 	for (queue = 0; queue < rxq_number; queue++) {
1230 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1231 
1232 		if (rxq->descs)
1233 			q_map |= (1 << queue);
1234 	}
1235 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1236 }
1237 
1238 /* Stop the Ethernet port activity */
1239 static void mvneta_port_down(struct mvneta_port *pp)
1240 {
1241 	u32 val;
1242 	int count;
1243 
1244 	/* Stop Rx port activity. Check port Rx activity. */
1245 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1246 
1247 	/* Issue stop command for active channels only */
1248 	if (val != 0)
1249 		mvreg_write(pp, MVNETA_RXQ_CMD,
1250 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1251 
1252 	/* Wait for all Rx activity to terminate. */
1253 	count = 0;
1254 	do {
1255 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1256 			netdev_warn(pp->dev,
1257 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1258 				    val);
1259 			break;
1260 		}
1261 		mdelay(1);
1262 
1263 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1264 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1265 
1266 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1267 	 * command for active channels only
1268 	 */
1269 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1270 
1271 	if (val != 0)
1272 		mvreg_write(pp, MVNETA_TXQ_CMD,
1273 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1274 
1275 	/* Wait for all Tx activity to terminate. */
1276 	count = 0;
1277 	do {
1278 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1279 			netdev_warn(pp->dev,
1280 				    "TIMEOUT for TX stopped status=0x%08x\n",
1281 				    val);
1282 			break;
1283 		}
1284 		mdelay(1);
1285 
1286 		/* Check TX Command reg that all Txqs are stopped */
1287 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1288 
1289 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1290 
1291 	/* Double check to verify that TX FIFO is empty */
1292 	count = 0;
1293 	do {
1294 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1295 			netdev_warn(pp->dev,
1296 				    "TX FIFO empty timeout status=0x%08x\n",
1297 				    val);
1298 			break;
1299 		}
1300 		mdelay(1);
1301 
1302 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1303 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1304 		 (val & MVNETA_TX_IN_PRGRS));
1305 
1306 	udelay(200);
1307 }
1308 
1309 /* Enable the port by setting the port enable bit of the MAC control register */
1310 static void mvneta_port_enable(struct mvneta_port *pp)
1311 {
1312 	u32 val;
1313 
1314 	/* Enable port */
1315 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1316 	val |= MVNETA_GMAC0_PORT_ENABLE;
1317 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1318 }
1319 
1320 /* Disable the port and wait for about 200 usec before retuning */
1321 static void mvneta_port_disable(struct mvneta_port *pp)
1322 {
1323 	u32 val;
1324 
1325 	/* Reset the Enable bit in the Serial Control Register */
1326 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1327 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1328 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1329 
1330 	udelay(200);
1331 }
1332 
1333 /* Multicast tables methods */
1334 
1335 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1336 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1337 {
1338 	int offset;
1339 	u32 val;
1340 
1341 	if (queue == -1) {
1342 		val = 0;
1343 	} else {
1344 		val = 0x1 | (queue << 1);
1345 		val |= (val << 24) | (val << 16) | (val << 8);
1346 	}
1347 
1348 	for (offset = 0; offset <= 0xc; offset += 4)
1349 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1350 }
1351 
1352 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1353 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1354 {
1355 	int offset;
1356 	u32 val;
1357 
1358 	if (queue == -1) {
1359 		val = 0;
1360 	} else {
1361 		val = 0x1 | (queue << 1);
1362 		val |= (val << 24) | (val << 16) | (val << 8);
1363 	}
1364 
1365 	for (offset = 0; offset <= 0xfc; offset += 4)
1366 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1367 
1368 }
1369 
1370 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1371 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1372 {
1373 	int offset;
1374 	u32 val;
1375 
1376 	if (queue == -1) {
1377 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1378 		val = 0;
1379 	} else {
1380 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1381 		val = 0x1 | (queue << 1);
1382 		val |= (val << 24) | (val << 16) | (val << 8);
1383 	}
1384 
1385 	for (offset = 0; offset <= 0xfc; offset += 4)
1386 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1387 }
1388 
1389 static void mvneta_percpu_unmask_interrupt(void *arg)
1390 {
1391 	struct mvneta_port *pp = arg;
1392 
1393 	/* All the queue are unmasked, but actually only the ones
1394 	 * mapped to this CPU will be unmasked
1395 	 */
1396 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1397 		    MVNETA_RX_INTR_MASK_ALL |
1398 		    MVNETA_TX_INTR_MASK_ALL |
1399 		    MVNETA_MISCINTR_INTR_MASK);
1400 }
1401 
1402 static void mvneta_percpu_mask_interrupt(void *arg)
1403 {
1404 	struct mvneta_port *pp = arg;
1405 
1406 	/* All the queue are masked, but actually only the ones
1407 	 * mapped to this CPU will be masked
1408 	 */
1409 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1410 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1411 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1412 }
1413 
1414 static void mvneta_percpu_clear_intr_cause(void *arg)
1415 {
1416 	struct mvneta_port *pp = arg;
1417 
1418 	/* All the queue are cleared, but actually only the ones
1419 	 * mapped to this CPU will be cleared
1420 	 */
1421 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1422 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1423 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1424 }
1425 
1426 /* This method sets defaults to the NETA port:
1427  *	Clears interrupt Cause and Mask registers.
1428  *	Clears all MAC tables.
1429  *	Sets defaults to all registers.
1430  *	Resets RX and TX descriptor rings.
1431  *	Resets PHY.
1432  * This method can be called after mvneta_port_down() to return the port
1433  *	settings to defaults.
1434  */
1435 static void mvneta_defaults_set(struct mvneta_port *pp)
1436 {
1437 	int cpu;
1438 	int queue;
1439 	u32 val;
1440 	int max_cpu = num_present_cpus();
1441 
1442 	/* Clear all Cause registers */
1443 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1444 
1445 	/* Mask all interrupts */
1446 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1447 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1448 
1449 	/* Enable MBUS Retry bit16 */
1450 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1451 
1452 	/* Set CPU queue access map. CPUs are assigned to the RX and
1453 	 * TX queues modulo their number. If there is only one TX
1454 	 * queue then it is assigned to the CPU associated to the
1455 	 * default RX queue.
1456 	 */
1457 	for_each_present_cpu(cpu) {
1458 		int rxq_map = 0, txq_map = 0;
1459 		int rxq, txq;
1460 		if (!pp->neta_armada3700) {
1461 			for (rxq = 0; rxq < rxq_number; rxq++)
1462 				if ((rxq % max_cpu) == cpu)
1463 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1464 
1465 			for (txq = 0; txq < txq_number; txq++)
1466 				if ((txq % max_cpu) == cpu)
1467 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1468 
1469 			/* With only one TX queue we configure a special case
1470 			 * which will allow to get all the irq on a single
1471 			 * CPU
1472 			 */
1473 			if (txq_number == 1)
1474 				txq_map = (cpu == pp->rxq_def) ?
1475 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1476 
1477 		} else {
1478 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1479 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1480 		}
1481 
1482 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1483 	}
1484 
1485 	/* Reset RX and TX DMAs */
1486 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1487 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1488 
1489 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1490 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1491 	for (queue = 0; queue < txq_number; queue++) {
1492 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1493 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1494 	}
1495 
1496 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1497 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1498 
1499 	/* Set Port Acceleration Mode */
1500 	if (pp->bm_priv)
1501 		/* HW buffer management + legacy parser */
1502 		val = MVNETA_ACC_MODE_EXT2;
1503 	else
1504 		/* SW buffer management + legacy parser */
1505 		val = MVNETA_ACC_MODE_EXT1;
1506 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1507 
1508 	if (pp->bm_priv)
1509 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1510 
1511 	/* Update val of portCfg register accordingly with all RxQueue types */
1512 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1513 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1514 
1515 	val = 0;
1516 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1517 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1518 
1519 	/* Build PORT_SDMA_CONFIG_REG */
1520 	val = 0;
1521 
1522 	/* Default burst size */
1523 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1525 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1526 
1527 #if defined(__BIG_ENDIAN)
1528 	val |= MVNETA_DESC_SWAP;
1529 #endif
1530 
1531 	/* Assign port SDMA configuration */
1532 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1533 
1534 	/* Disable PHY polling in hardware, since we're using the
1535 	 * kernel phylib to do this.
1536 	 */
1537 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1538 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1539 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1540 
1541 	mvneta_set_ucast_table(pp, -1);
1542 	mvneta_set_special_mcast_table(pp, -1);
1543 	mvneta_set_other_mcast_table(pp, -1);
1544 
1545 	/* Set port interrupt enable register - default enable all */
1546 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1547 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1548 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1549 
1550 	mvneta_mib_counters_clear(pp);
1551 }
1552 
1553 /* Set max sizes for tx queues */
1554 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1555 
1556 {
1557 	u32 val, size, mtu;
1558 	int queue;
1559 
1560 	mtu = max_tx_size * 8;
1561 	if (mtu > MVNETA_TX_MTU_MAX)
1562 		mtu = MVNETA_TX_MTU_MAX;
1563 
1564 	/* Set MTU */
1565 	val = mvreg_read(pp, MVNETA_TX_MTU);
1566 	val &= ~MVNETA_TX_MTU_MAX;
1567 	val |= mtu;
1568 	mvreg_write(pp, MVNETA_TX_MTU, val);
1569 
1570 	/* TX token size and all TXQs token size must be larger that MTU */
1571 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1572 
1573 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1574 	if (size < mtu) {
1575 		size = mtu;
1576 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1577 		val |= size;
1578 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1579 	}
1580 	for (queue = 0; queue < txq_number; queue++) {
1581 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1582 
1583 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1584 		if (size < mtu) {
1585 			size = mtu;
1586 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1587 			val |= size;
1588 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1589 		}
1590 	}
1591 }
1592 
1593 /* Set unicast address */
1594 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1595 				  int queue)
1596 {
1597 	unsigned int unicast_reg;
1598 	unsigned int tbl_offset;
1599 	unsigned int reg_offset;
1600 
1601 	/* Locate the Unicast table entry */
1602 	last_nibble = (0xf & last_nibble);
1603 
1604 	/* offset from unicast tbl base */
1605 	tbl_offset = (last_nibble / 4) * 4;
1606 
1607 	/* offset within the above reg  */
1608 	reg_offset = last_nibble % 4;
1609 
1610 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1611 
1612 	if (queue == -1) {
1613 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1614 		unicast_reg &= ~(0xff << (8 * reg_offset));
1615 	} else {
1616 		unicast_reg &= ~(0xff << (8 * reg_offset));
1617 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1618 	}
1619 
1620 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1621 }
1622 
1623 /* Set mac address */
1624 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1625 				int queue)
1626 {
1627 	unsigned int mac_h;
1628 	unsigned int mac_l;
1629 
1630 	if (queue != -1) {
1631 		mac_l = (addr[4] << 8) | (addr[5]);
1632 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1633 			(addr[2] << 8) | (addr[3] << 0);
1634 
1635 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1636 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1637 	}
1638 
1639 	/* Accept frames of this address */
1640 	mvneta_set_ucast_addr(pp, addr[5], queue);
1641 }
1642 
1643 /* Set the number of packets that will be received before RX interrupt
1644  * will be generated by HW.
1645  */
1646 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1647 				    struct mvneta_rx_queue *rxq, u32 value)
1648 {
1649 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1650 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1651 }
1652 
1653 /* Set the time delay in usec before RX interrupt will be generated by
1654  * HW.
1655  */
1656 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1657 				    struct mvneta_rx_queue *rxq, u32 value)
1658 {
1659 	u32 val;
1660 	unsigned long clk_rate;
1661 
1662 	clk_rate = clk_get_rate(pp->clk);
1663 	val = (clk_rate / 1000000) * value;
1664 
1665 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1666 }
1667 
1668 /* Set threshold for TX_DONE pkts coalescing */
1669 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1670 					 struct mvneta_tx_queue *txq, u32 value)
1671 {
1672 	u32 val;
1673 
1674 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1675 
1676 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1677 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1678 
1679 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1680 }
1681 
1682 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1683 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1684 				u32 phys_addr, void *virt_addr,
1685 				struct mvneta_rx_queue *rxq)
1686 {
1687 	int i;
1688 
1689 	rx_desc->buf_phys_addr = phys_addr;
1690 	i = rx_desc - rxq->descs;
1691 	rxq->buf_virt_addr[i] = virt_addr;
1692 }
1693 
1694 /* Decrement sent descriptors counter */
1695 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1696 				     struct mvneta_tx_queue *txq,
1697 				     int sent_desc)
1698 {
1699 	u32 val;
1700 
1701 	/* Only 255 TX descriptors can be updated at once */
1702 	while (sent_desc > 0xff) {
1703 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1704 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1705 		sent_desc = sent_desc - 0xff;
1706 	}
1707 
1708 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1709 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1710 }
1711 
1712 /* Get number of TX descriptors already sent by HW */
1713 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1714 					struct mvneta_tx_queue *txq)
1715 {
1716 	u32 val;
1717 	int sent_desc;
1718 
1719 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1720 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1721 		MVNETA_TXQ_SENT_DESC_SHIFT;
1722 
1723 	return sent_desc;
1724 }
1725 
1726 /* Get number of sent descriptors and decrement counter.
1727  *  The number of sent descriptors is returned.
1728  */
1729 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1730 				     struct mvneta_tx_queue *txq)
1731 {
1732 	int sent_desc;
1733 
1734 	/* Get number of sent descriptors */
1735 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1736 
1737 	/* Decrement sent descriptors counter */
1738 	if (sent_desc)
1739 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1740 
1741 	return sent_desc;
1742 }
1743 
1744 /* Set TXQ descriptors fields relevant for CSUM calculation */
1745 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1746 				int ip_hdr_len, int l4_proto)
1747 {
1748 	u32 command;
1749 
1750 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1751 	 * G_L4_chk, L4_type; required only for checksum
1752 	 * calculation
1753 	 */
1754 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1755 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1756 
1757 	if (l3_proto == htons(ETH_P_IP))
1758 		command |= MVNETA_TXD_IP_CSUM;
1759 	else
1760 		command |= MVNETA_TX_L3_IP6;
1761 
1762 	if (l4_proto == IPPROTO_TCP)
1763 		command |=  MVNETA_TX_L4_CSUM_FULL;
1764 	else if (l4_proto == IPPROTO_UDP)
1765 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1766 	else
1767 		command |= MVNETA_TX_L4_CSUM_NOT;
1768 
1769 	return command;
1770 }
1771 
1772 
1773 /* Display more error info */
1774 static void mvneta_rx_error(struct mvneta_port *pp,
1775 			    struct mvneta_rx_desc *rx_desc)
1776 {
1777 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1778 	u32 status = rx_desc->status;
1779 
1780 	/* update per-cpu counter */
1781 	u64_stats_update_begin(&stats->syncp);
1782 	stats->rx_errors++;
1783 	u64_stats_update_end(&stats->syncp);
1784 
1785 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1786 	case MVNETA_RXD_ERR_CRC:
1787 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1788 			   status, rx_desc->data_size);
1789 		break;
1790 	case MVNETA_RXD_ERR_OVERRUN:
1791 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1792 			   status, rx_desc->data_size);
1793 		break;
1794 	case MVNETA_RXD_ERR_LEN:
1795 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1796 			   status, rx_desc->data_size);
1797 		break;
1798 	case MVNETA_RXD_ERR_RESOURCE:
1799 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1800 			   status, rx_desc->data_size);
1801 		break;
1802 	}
1803 }
1804 
1805 /* Handle RX checksum offload based on the descriptor's status */
1806 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1807 			   struct sk_buff *skb)
1808 {
1809 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1810 	    (status & MVNETA_RXD_L3_IP4) &&
1811 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1812 		skb->csum = 0;
1813 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1814 		return;
1815 	}
1816 
1817 	skb->ip_summed = CHECKSUM_NONE;
1818 }
1819 
1820 /* Return tx queue pointer (find last set bit) according to <cause> returned
1821  * form tx_done reg. <cause> must not be null. The return value is always a
1822  * valid queue for matching the first one found in <cause>.
1823  */
1824 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1825 						     u32 cause)
1826 {
1827 	int queue = fls(cause) - 1;
1828 
1829 	return &pp->txqs[queue];
1830 }
1831 
1832 /* Free tx queue skbuffs */
1833 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1834 				 struct mvneta_tx_queue *txq, int num,
1835 				 struct netdev_queue *nq)
1836 {
1837 	unsigned int bytes_compl = 0, pkts_compl = 0;
1838 	int i;
1839 
1840 	for (i = 0; i < num; i++) {
1841 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1842 		struct mvneta_tx_desc *tx_desc = txq->descs +
1843 			txq->txq_get_index;
1844 
1845 		mvneta_txq_inc_get(txq);
1846 
1847 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1848 		    buf->type != MVNETA_TYPE_XDP_TX)
1849 			dma_unmap_single(pp->dev->dev.parent,
1850 					 tx_desc->buf_phys_addr,
1851 					 tx_desc->data_size, DMA_TO_DEVICE);
1852 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1853 			bytes_compl += buf->skb->len;
1854 			pkts_compl++;
1855 			dev_kfree_skb_any(buf->skb);
1856 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1857 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1858 			xdp_return_frame(buf->xdpf);
1859 		}
1860 	}
1861 
1862 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1863 }
1864 
1865 /* Handle end of transmission */
1866 static void mvneta_txq_done(struct mvneta_port *pp,
1867 			   struct mvneta_tx_queue *txq)
1868 {
1869 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1870 	int tx_done;
1871 
1872 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1873 	if (!tx_done)
1874 		return;
1875 
1876 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1877 
1878 	txq->count -= tx_done;
1879 
1880 	if (netif_tx_queue_stopped(nq)) {
1881 		if (txq->count <= txq->tx_wake_threshold)
1882 			netif_tx_wake_queue(nq);
1883 	}
1884 }
1885 
1886 /* Refill processing for SW buffer management */
1887 /* Allocate page per descriptor */
1888 static int mvneta_rx_refill(struct mvneta_port *pp,
1889 			    struct mvneta_rx_desc *rx_desc,
1890 			    struct mvneta_rx_queue *rxq,
1891 			    gfp_t gfp_mask)
1892 {
1893 	dma_addr_t phys_addr;
1894 	struct page *page;
1895 
1896 	page = page_pool_alloc_pages(rxq->page_pool,
1897 				     gfp_mask | __GFP_NOWARN);
1898 	if (!page)
1899 		return -ENOMEM;
1900 
1901 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1902 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1903 
1904 	return 0;
1905 }
1906 
1907 /* Handle tx checksum */
1908 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1909 {
1910 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1911 		int ip_hdr_len = 0;
1912 		__be16 l3_proto = vlan_get_protocol(skb);
1913 		u8 l4_proto;
1914 
1915 		if (l3_proto == htons(ETH_P_IP)) {
1916 			struct iphdr *ip4h = ip_hdr(skb);
1917 
1918 			/* Calculate IPv4 checksum and L4 checksum */
1919 			ip_hdr_len = ip4h->ihl;
1920 			l4_proto = ip4h->protocol;
1921 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1922 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1923 
1924 			/* Read l4_protocol from one of IPv6 extra headers */
1925 			if (skb_network_header_len(skb) > 0)
1926 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1927 			l4_proto = ip6h->nexthdr;
1928 		} else
1929 			return MVNETA_TX_L4_CSUM_NOT;
1930 
1931 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1932 					    l3_proto, ip_hdr_len, l4_proto);
1933 	}
1934 
1935 	return MVNETA_TX_L4_CSUM_NOT;
1936 }
1937 
1938 /* Drop packets received by the RXQ and free buffers */
1939 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1940 				 struct mvneta_rx_queue *rxq)
1941 {
1942 	int rx_done, i;
1943 
1944 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1945 	if (rx_done)
1946 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1947 
1948 	if (pp->bm_priv) {
1949 		for (i = 0; i < rx_done; i++) {
1950 			struct mvneta_rx_desc *rx_desc =
1951 						  mvneta_rxq_next_desc_get(rxq);
1952 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1953 			struct mvneta_bm_pool *bm_pool;
1954 
1955 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1956 			/* Return dropped buffer to the pool */
1957 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1958 					      rx_desc->buf_phys_addr);
1959 		}
1960 		return;
1961 	}
1962 
1963 	for (i = 0; i < rxq->size; i++) {
1964 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1965 		void *data = rxq->buf_virt_addr[i];
1966 		if (!data || !(rx_desc->buf_phys_addr))
1967 			continue;
1968 
1969 		page_pool_put_full_page(rxq->page_pool, data, false);
1970 	}
1971 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1972 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1973 	page_pool_destroy(rxq->page_pool);
1974 	rxq->page_pool = NULL;
1975 }
1976 
1977 static void
1978 mvneta_update_stats(struct mvneta_port *pp,
1979 		    struct mvneta_stats *ps)
1980 {
1981 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1982 
1983 	u64_stats_update_begin(&stats->syncp);
1984 	stats->es.ps.rx_packets += ps->rx_packets;
1985 	stats->es.ps.rx_bytes += ps->rx_bytes;
1986 	/* xdp */
1987 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1988 	stats->es.ps.xdp_pass += ps->xdp_pass;
1989 	stats->es.ps.xdp_drop += ps->xdp_drop;
1990 	u64_stats_update_end(&stats->syncp);
1991 }
1992 
1993 static inline
1994 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1995 {
1996 	struct mvneta_rx_desc *rx_desc;
1997 	int curr_desc = rxq->first_to_refill;
1998 	int i;
1999 
2000 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2001 		rx_desc = rxq->descs + curr_desc;
2002 		if (!(rx_desc->buf_phys_addr)) {
2003 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2004 				struct mvneta_pcpu_stats *stats;
2005 
2006 				pr_err("Can't refill queue %d. Done %d from %d\n",
2007 				       rxq->id, i, rxq->refill_num);
2008 
2009 				stats = this_cpu_ptr(pp->stats);
2010 				u64_stats_update_begin(&stats->syncp);
2011 				stats->es.refill_error++;
2012 				u64_stats_update_end(&stats->syncp);
2013 				break;
2014 			}
2015 		}
2016 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2017 	}
2018 	rxq->refill_num -= i;
2019 	rxq->first_to_refill = curr_desc;
2020 
2021 	return i;
2022 }
2023 
2024 static void
2025 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2026 		    struct xdp_buff *xdp, int sync_len, bool napi)
2027 {
2028 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2029 	int i;
2030 
2031 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2032 			   sync_len, napi);
2033 	for (i = 0; i < sinfo->nr_frags; i++)
2034 		page_pool_put_full_page(rxq->page_pool,
2035 					skb_frag_page(&sinfo->frags[i]), napi);
2036 }
2037 
2038 static int
2039 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2040 			struct xdp_frame *xdpf, bool dma_map)
2041 {
2042 	struct mvneta_tx_desc *tx_desc;
2043 	struct mvneta_tx_buf *buf;
2044 	dma_addr_t dma_addr;
2045 
2046 	if (txq->count >= txq->tx_stop_threshold)
2047 		return MVNETA_XDP_DROPPED;
2048 
2049 	tx_desc = mvneta_txq_next_desc_get(txq);
2050 
2051 	buf = &txq->buf[txq->txq_put_index];
2052 	if (dma_map) {
2053 		/* ndo_xdp_xmit */
2054 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2055 					  xdpf->len, DMA_TO_DEVICE);
2056 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2057 			mvneta_txq_desc_put(txq);
2058 			return MVNETA_XDP_DROPPED;
2059 		}
2060 		buf->type = MVNETA_TYPE_XDP_NDO;
2061 	} else {
2062 		struct page *page = virt_to_page(xdpf->data);
2063 
2064 		dma_addr = page_pool_get_dma_addr(page) +
2065 			   sizeof(*xdpf) + xdpf->headroom;
2066 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2067 					   xdpf->len, DMA_BIDIRECTIONAL);
2068 		buf->type = MVNETA_TYPE_XDP_TX;
2069 	}
2070 	buf->xdpf = xdpf;
2071 
2072 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2073 	tx_desc->buf_phys_addr = dma_addr;
2074 	tx_desc->data_size = xdpf->len;
2075 
2076 	mvneta_txq_inc_put(txq);
2077 	txq->pending++;
2078 	txq->count++;
2079 
2080 	return MVNETA_XDP_TX;
2081 }
2082 
2083 static int
2084 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2085 {
2086 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2087 	struct mvneta_tx_queue *txq;
2088 	struct netdev_queue *nq;
2089 	struct xdp_frame *xdpf;
2090 	int cpu;
2091 	u32 ret;
2092 
2093 	xdpf = xdp_convert_buff_to_frame(xdp);
2094 	if (unlikely(!xdpf))
2095 		return MVNETA_XDP_DROPPED;
2096 
2097 	cpu = smp_processor_id();
2098 	txq = &pp->txqs[cpu % txq_number];
2099 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2100 
2101 	__netif_tx_lock(nq, cpu);
2102 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2103 	if (ret == MVNETA_XDP_TX) {
2104 		u64_stats_update_begin(&stats->syncp);
2105 		stats->es.ps.tx_bytes += xdpf->len;
2106 		stats->es.ps.tx_packets++;
2107 		stats->es.ps.xdp_tx++;
2108 		u64_stats_update_end(&stats->syncp);
2109 
2110 		mvneta_txq_pend_desc_add(pp, txq, 0);
2111 	} else {
2112 		u64_stats_update_begin(&stats->syncp);
2113 		stats->es.ps.xdp_tx_err++;
2114 		u64_stats_update_end(&stats->syncp);
2115 	}
2116 	__netif_tx_unlock(nq);
2117 
2118 	return ret;
2119 }
2120 
2121 static int
2122 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2123 		struct xdp_frame **frames, u32 flags)
2124 {
2125 	struct mvneta_port *pp = netdev_priv(dev);
2126 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2127 	int i, nxmit_byte = 0, nxmit = num_frame;
2128 	int cpu = smp_processor_id();
2129 	struct mvneta_tx_queue *txq;
2130 	struct netdev_queue *nq;
2131 	u32 ret;
2132 
2133 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2134 		return -ENETDOWN;
2135 
2136 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2137 		return -EINVAL;
2138 
2139 	txq = &pp->txqs[cpu % txq_number];
2140 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2141 
2142 	__netif_tx_lock(nq, cpu);
2143 	for (i = 0; i < num_frame; i++) {
2144 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2145 		if (ret == MVNETA_XDP_TX) {
2146 			nxmit_byte += frames[i]->len;
2147 		} else {
2148 			xdp_return_frame_rx_napi(frames[i]);
2149 			nxmit--;
2150 		}
2151 	}
2152 
2153 	if (unlikely(flags & XDP_XMIT_FLUSH))
2154 		mvneta_txq_pend_desc_add(pp, txq, 0);
2155 	__netif_tx_unlock(nq);
2156 
2157 	u64_stats_update_begin(&stats->syncp);
2158 	stats->es.ps.tx_bytes += nxmit_byte;
2159 	stats->es.ps.tx_packets += nxmit;
2160 	stats->es.ps.xdp_xmit += nxmit;
2161 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2162 	u64_stats_update_end(&stats->syncp);
2163 
2164 	return nxmit;
2165 }
2166 
2167 static int
2168 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2169 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2170 	       u32 frame_sz, struct mvneta_stats *stats)
2171 {
2172 	unsigned int len, data_len, sync;
2173 	u32 ret, act;
2174 
2175 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2176 	data_len = xdp->data_end - xdp->data;
2177 	act = bpf_prog_run_xdp(prog, xdp);
2178 
2179 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2180 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2181 	sync = max(sync, len);
2182 
2183 	switch (act) {
2184 	case XDP_PASS:
2185 		stats->xdp_pass++;
2186 		return MVNETA_XDP_PASS;
2187 	case XDP_REDIRECT: {
2188 		int err;
2189 
2190 		err = xdp_do_redirect(pp->dev, xdp, prog);
2191 		if (unlikely(err)) {
2192 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2193 			ret = MVNETA_XDP_DROPPED;
2194 		} else {
2195 			ret = MVNETA_XDP_REDIR;
2196 			stats->xdp_redirect++;
2197 		}
2198 		break;
2199 	}
2200 	case XDP_TX:
2201 		ret = mvneta_xdp_xmit_back(pp, xdp);
2202 		if (ret != MVNETA_XDP_TX)
2203 			mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2204 		break;
2205 	default:
2206 		bpf_warn_invalid_xdp_action(act);
2207 		fallthrough;
2208 	case XDP_ABORTED:
2209 		trace_xdp_exception(pp->dev, prog, act);
2210 		fallthrough;
2211 	case XDP_DROP:
2212 		mvneta_xdp_put_buff(pp, rxq, xdp, sync, true);
2213 		ret = MVNETA_XDP_DROPPED;
2214 		stats->xdp_drop++;
2215 		break;
2216 	}
2217 
2218 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2219 	stats->rx_packets++;
2220 
2221 	return ret;
2222 }
2223 
2224 static void
2225 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2226 		     struct mvneta_rx_desc *rx_desc,
2227 		     struct mvneta_rx_queue *rxq,
2228 		     struct xdp_buff *xdp, int *size,
2229 		     struct page *page)
2230 {
2231 	unsigned char *data = page_address(page);
2232 	int data_len = -MVNETA_MH_SIZE, len;
2233 	struct net_device *dev = pp->dev;
2234 	enum dma_data_direction dma_dir;
2235 	struct skb_shared_info *sinfo;
2236 
2237 	if (rx_desc->data_size > MVNETA_MAX_RX_BUF_SIZE) {
2238 		len = MVNETA_MAX_RX_BUF_SIZE;
2239 		data_len += len;
2240 	} else {
2241 		len = rx_desc->data_size;
2242 		data_len += len - ETH_FCS_LEN;
2243 	}
2244 
2245 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2246 	dma_sync_single_for_cpu(dev->dev.parent,
2247 				rx_desc->buf_phys_addr,
2248 				len, dma_dir);
2249 
2250 	/* Prefetch header */
2251 	prefetch(data);
2252 
2253 	xdp->data_hard_start = data;
2254 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2255 	xdp->data_end = xdp->data + data_len;
2256 	xdp_set_data_meta_invalid(xdp);
2257 
2258 	sinfo = xdp_get_shared_info_from_buff(xdp);
2259 	sinfo->nr_frags = 0;
2260 
2261 	*size = rx_desc->data_size - len;
2262 	rx_desc->buf_phys_addr = 0;
2263 }
2264 
2265 static void
2266 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2267 			    struct mvneta_rx_desc *rx_desc,
2268 			    struct mvneta_rx_queue *rxq,
2269 			    struct xdp_buff *xdp, int *size,
2270 			    struct page *page)
2271 {
2272 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2273 	struct net_device *dev = pp->dev;
2274 	enum dma_data_direction dma_dir;
2275 	int data_len, len;
2276 
2277 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2278 		len = MVNETA_MAX_RX_BUF_SIZE;
2279 		data_len = len;
2280 	} else {
2281 		len = *size;
2282 		data_len = len - ETH_FCS_LEN;
2283 	}
2284 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2285 	dma_sync_single_for_cpu(dev->dev.parent,
2286 				rx_desc->buf_phys_addr,
2287 				len, dma_dir);
2288 
2289 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2290 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags];
2291 
2292 		skb_frag_off_set(frag, pp->rx_offset_correction);
2293 		skb_frag_size_set(frag, data_len);
2294 		__skb_frag_set_page(frag, page);
2295 		sinfo->nr_frags++;
2296 
2297 		rx_desc->buf_phys_addr = 0;
2298 	}
2299 	*size -= len;
2300 }
2301 
2302 static struct sk_buff *
2303 mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2304 		      struct xdp_buff *xdp, u32 desc_status)
2305 {
2306 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2307 	int i, num_frags = sinfo->nr_frags;
2308 	skb_frag_t frags[MAX_SKB_FRAGS];
2309 	struct sk_buff *skb;
2310 
2311 	memcpy(frags, sinfo->frags, sizeof(skb_frag_t) * num_frags);
2312 
2313 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2314 	if (!skb)
2315 		return ERR_PTR(-ENOMEM);
2316 
2317 	page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2318 
2319 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2320 	skb_put(skb, xdp->data_end - xdp->data);
2321 	mvneta_rx_csum(pp, desc_status, skb);
2322 
2323 	for (i = 0; i < num_frags; i++) {
2324 		struct page *page = skb_frag_page(&frags[i]);
2325 
2326 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2327 				page, skb_frag_off(&frags[i]),
2328 				skb_frag_size(&frags[i]), PAGE_SIZE);
2329 		page_pool_release_page(rxq->page_pool, page);
2330 	}
2331 
2332 	return skb;
2333 }
2334 
2335 /* Main rx processing when using software buffer management */
2336 static int mvneta_rx_swbm(struct napi_struct *napi,
2337 			  struct mvneta_port *pp, int budget,
2338 			  struct mvneta_rx_queue *rxq)
2339 {
2340 	int rx_proc = 0, rx_todo, refill, size = 0;
2341 	struct net_device *dev = pp->dev;
2342 	struct xdp_buff xdp_buf = {
2343 		.frame_sz = PAGE_SIZE,
2344 		.rxq = &rxq->xdp_rxq,
2345 	};
2346 	struct mvneta_stats ps = {};
2347 	struct bpf_prog *xdp_prog;
2348 	u32 desc_status, frame_sz;
2349 
2350 	/* Get number of received packets */
2351 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2352 
2353 	rcu_read_lock();
2354 	xdp_prog = READ_ONCE(pp->xdp_prog);
2355 
2356 	/* Fairness NAPI loop */
2357 	while (rx_proc < budget && rx_proc < rx_todo) {
2358 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2359 		u32 rx_status, index;
2360 		struct sk_buff *skb;
2361 		struct page *page;
2362 
2363 		index = rx_desc - rxq->descs;
2364 		page = (struct page *)rxq->buf_virt_addr[index];
2365 
2366 		rx_status = rx_desc->status;
2367 		rx_proc++;
2368 		rxq->refill_num++;
2369 
2370 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2371 			/* Check errors only for FIRST descriptor */
2372 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2373 				mvneta_rx_error(pp, rx_desc);
2374 				goto next;
2375 			}
2376 
2377 			size = rx_desc->data_size;
2378 			frame_sz = size - ETH_FCS_LEN;
2379 			desc_status = rx_desc->status;
2380 
2381 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2382 					     &size, page);
2383 		} else {
2384 			if (unlikely(!xdp_buf.data_hard_start))
2385 				continue;
2386 
2387 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2388 						    &size, page);
2389 		} /* Middle or Last descriptor */
2390 
2391 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2392 			/* no last descriptor this time */
2393 			continue;
2394 
2395 		if (size) {
2396 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2397 			goto next;
2398 		}
2399 
2400 		if (xdp_prog &&
2401 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2402 			goto next;
2403 
2404 		skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2405 		if (IS_ERR(skb)) {
2406 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2407 
2408 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2409 
2410 			u64_stats_update_begin(&stats->syncp);
2411 			stats->es.skb_alloc_error++;
2412 			stats->rx_dropped++;
2413 			u64_stats_update_end(&stats->syncp);
2414 
2415 			goto next;
2416 		}
2417 
2418 		ps.rx_bytes += skb->len;
2419 		ps.rx_packets++;
2420 
2421 		skb->protocol = eth_type_trans(skb, dev);
2422 		napi_gro_receive(napi, skb);
2423 next:
2424 		xdp_buf.data_hard_start = NULL;
2425 	}
2426 	rcu_read_unlock();
2427 
2428 	if (xdp_buf.data_hard_start)
2429 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1, true);
2430 
2431 	if (ps.xdp_redirect)
2432 		xdp_do_flush_map();
2433 
2434 	if (ps.rx_packets)
2435 		mvneta_update_stats(pp, &ps);
2436 
2437 	/* return some buffers to hardware queue, one at a time is too slow */
2438 	refill = mvneta_rx_refill_queue(pp, rxq);
2439 
2440 	/* Update rxq management counters */
2441 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2442 
2443 	return ps.rx_packets;
2444 }
2445 
2446 /* Main rx processing when using hardware buffer management */
2447 static int mvneta_rx_hwbm(struct napi_struct *napi,
2448 			  struct mvneta_port *pp, int rx_todo,
2449 			  struct mvneta_rx_queue *rxq)
2450 {
2451 	struct net_device *dev = pp->dev;
2452 	int rx_done;
2453 	u32 rcvd_pkts = 0;
2454 	u32 rcvd_bytes = 0;
2455 
2456 	/* Get number of received packets */
2457 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2458 
2459 	if (rx_todo > rx_done)
2460 		rx_todo = rx_done;
2461 
2462 	rx_done = 0;
2463 
2464 	/* Fairness NAPI loop */
2465 	while (rx_done < rx_todo) {
2466 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2467 		struct mvneta_bm_pool *bm_pool = NULL;
2468 		struct sk_buff *skb;
2469 		unsigned char *data;
2470 		dma_addr_t phys_addr;
2471 		u32 rx_status, frag_size;
2472 		int rx_bytes, err;
2473 		u8 pool_id;
2474 
2475 		rx_done++;
2476 		rx_status = rx_desc->status;
2477 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2478 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2479 		phys_addr = rx_desc->buf_phys_addr;
2480 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2481 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2482 
2483 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2484 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2485 err_drop_frame_ret_pool:
2486 			/* Return the buffer to the pool */
2487 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2488 					      rx_desc->buf_phys_addr);
2489 err_drop_frame:
2490 			mvneta_rx_error(pp, rx_desc);
2491 			/* leave the descriptor untouched */
2492 			continue;
2493 		}
2494 
2495 		if (rx_bytes <= rx_copybreak) {
2496 			/* better copy a small frame and not unmap the DMA region */
2497 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2498 			if (unlikely(!skb))
2499 				goto err_drop_frame_ret_pool;
2500 
2501 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2502 			                              rx_desc->buf_phys_addr,
2503 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2504 			                              rx_bytes,
2505 			                              DMA_FROM_DEVICE);
2506 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2507 				     rx_bytes);
2508 
2509 			skb->protocol = eth_type_trans(skb, dev);
2510 			mvneta_rx_csum(pp, rx_status, skb);
2511 			napi_gro_receive(napi, skb);
2512 
2513 			rcvd_pkts++;
2514 			rcvd_bytes += rx_bytes;
2515 
2516 			/* Return the buffer to the pool */
2517 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2518 					      rx_desc->buf_phys_addr);
2519 
2520 			/* leave the descriptor and buffer untouched */
2521 			continue;
2522 		}
2523 
2524 		/* Refill processing */
2525 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2526 		if (err) {
2527 			struct mvneta_pcpu_stats *stats;
2528 
2529 			netdev_err(dev, "Linux processing - Can't refill\n");
2530 
2531 			stats = this_cpu_ptr(pp->stats);
2532 			u64_stats_update_begin(&stats->syncp);
2533 			stats->es.refill_error++;
2534 			u64_stats_update_end(&stats->syncp);
2535 
2536 			goto err_drop_frame_ret_pool;
2537 		}
2538 
2539 		frag_size = bm_pool->hwbm_pool.frag_size;
2540 
2541 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2542 
2543 		/* After refill old buffer has to be unmapped regardless
2544 		 * the skb is successfully built or not.
2545 		 */
2546 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2547 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2548 		if (!skb)
2549 			goto err_drop_frame;
2550 
2551 		rcvd_pkts++;
2552 		rcvd_bytes += rx_bytes;
2553 
2554 		/* Linux processing */
2555 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2556 		skb_put(skb, rx_bytes);
2557 
2558 		skb->protocol = eth_type_trans(skb, dev);
2559 
2560 		mvneta_rx_csum(pp, rx_status, skb);
2561 
2562 		napi_gro_receive(napi, skb);
2563 	}
2564 
2565 	if (rcvd_pkts) {
2566 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2567 
2568 		u64_stats_update_begin(&stats->syncp);
2569 		stats->es.ps.rx_packets += rcvd_pkts;
2570 		stats->es.ps.rx_bytes += rcvd_bytes;
2571 		u64_stats_update_end(&stats->syncp);
2572 	}
2573 
2574 	/* Update rxq management counters */
2575 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2576 
2577 	return rx_done;
2578 }
2579 
2580 static inline void
2581 mvneta_tso_put_hdr(struct sk_buff *skb,
2582 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2583 {
2584 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2585 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2586 	struct mvneta_tx_desc *tx_desc;
2587 
2588 	tx_desc = mvneta_txq_next_desc_get(txq);
2589 	tx_desc->data_size = hdr_len;
2590 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2591 	tx_desc->command |= MVNETA_TXD_F_DESC;
2592 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2593 				 txq->txq_put_index * TSO_HEADER_SIZE;
2594 	buf->type = MVNETA_TYPE_SKB;
2595 	buf->skb = NULL;
2596 
2597 	mvneta_txq_inc_put(txq);
2598 }
2599 
2600 static inline int
2601 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2602 		    struct sk_buff *skb, char *data, int size,
2603 		    bool last_tcp, bool is_last)
2604 {
2605 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2606 	struct mvneta_tx_desc *tx_desc;
2607 
2608 	tx_desc = mvneta_txq_next_desc_get(txq);
2609 	tx_desc->data_size = size;
2610 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2611 						size, DMA_TO_DEVICE);
2612 	if (unlikely(dma_mapping_error(dev->dev.parent,
2613 		     tx_desc->buf_phys_addr))) {
2614 		mvneta_txq_desc_put(txq);
2615 		return -ENOMEM;
2616 	}
2617 
2618 	tx_desc->command = 0;
2619 	buf->type = MVNETA_TYPE_SKB;
2620 	buf->skb = NULL;
2621 
2622 	if (last_tcp) {
2623 		/* last descriptor in the TCP packet */
2624 		tx_desc->command = MVNETA_TXD_L_DESC;
2625 
2626 		/* last descriptor in SKB */
2627 		if (is_last)
2628 			buf->skb = skb;
2629 	}
2630 	mvneta_txq_inc_put(txq);
2631 	return 0;
2632 }
2633 
2634 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2635 			 struct mvneta_tx_queue *txq)
2636 {
2637 	int hdr_len, total_len, data_left;
2638 	int desc_count = 0;
2639 	struct mvneta_port *pp = netdev_priv(dev);
2640 	struct tso_t tso;
2641 	int i;
2642 
2643 	/* Count needed descriptors */
2644 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2645 		return 0;
2646 
2647 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2648 		pr_info("*** Is this even  possible???!?!?\n");
2649 		return 0;
2650 	}
2651 
2652 	/* Initialize the TSO handler, and prepare the first payload */
2653 	hdr_len = tso_start(skb, &tso);
2654 
2655 	total_len = skb->len - hdr_len;
2656 	while (total_len > 0) {
2657 		char *hdr;
2658 
2659 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2660 		total_len -= data_left;
2661 		desc_count++;
2662 
2663 		/* prepare packet headers: MAC + IP + TCP */
2664 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2665 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2666 
2667 		mvneta_tso_put_hdr(skb, pp, txq);
2668 
2669 		while (data_left > 0) {
2670 			int size;
2671 			desc_count++;
2672 
2673 			size = min_t(int, tso.size, data_left);
2674 
2675 			if (mvneta_tso_put_data(dev, txq, skb,
2676 						 tso.data, size,
2677 						 size == data_left,
2678 						 total_len == 0))
2679 				goto err_release;
2680 			data_left -= size;
2681 
2682 			tso_build_data(skb, &tso, size);
2683 		}
2684 	}
2685 
2686 	return desc_count;
2687 
2688 err_release:
2689 	/* Release all used data descriptors; header descriptors must not
2690 	 * be DMA-unmapped.
2691 	 */
2692 	for (i = desc_count - 1; i >= 0; i--) {
2693 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2694 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2695 			dma_unmap_single(pp->dev->dev.parent,
2696 					 tx_desc->buf_phys_addr,
2697 					 tx_desc->data_size,
2698 					 DMA_TO_DEVICE);
2699 		mvneta_txq_desc_put(txq);
2700 	}
2701 	return 0;
2702 }
2703 
2704 /* Handle tx fragmentation processing */
2705 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2706 				  struct mvneta_tx_queue *txq)
2707 {
2708 	struct mvneta_tx_desc *tx_desc;
2709 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2710 
2711 	for (i = 0; i < nr_frags; i++) {
2712 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2713 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2714 		void *addr = skb_frag_address(frag);
2715 
2716 		tx_desc = mvneta_txq_next_desc_get(txq);
2717 		tx_desc->data_size = skb_frag_size(frag);
2718 
2719 		tx_desc->buf_phys_addr =
2720 			dma_map_single(pp->dev->dev.parent, addr,
2721 				       tx_desc->data_size, DMA_TO_DEVICE);
2722 
2723 		if (dma_mapping_error(pp->dev->dev.parent,
2724 				      tx_desc->buf_phys_addr)) {
2725 			mvneta_txq_desc_put(txq);
2726 			goto error;
2727 		}
2728 
2729 		if (i == nr_frags - 1) {
2730 			/* Last descriptor */
2731 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2732 			buf->skb = skb;
2733 		} else {
2734 			/* Descriptor in the middle: Not First, Not Last */
2735 			tx_desc->command = 0;
2736 			buf->skb = NULL;
2737 		}
2738 		buf->type = MVNETA_TYPE_SKB;
2739 		mvneta_txq_inc_put(txq);
2740 	}
2741 
2742 	return 0;
2743 
2744 error:
2745 	/* Release all descriptors that were used to map fragments of
2746 	 * this packet, as well as the corresponding DMA mappings
2747 	 */
2748 	for (i = i - 1; i >= 0; i--) {
2749 		tx_desc = txq->descs + i;
2750 		dma_unmap_single(pp->dev->dev.parent,
2751 				 tx_desc->buf_phys_addr,
2752 				 tx_desc->data_size,
2753 				 DMA_TO_DEVICE);
2754 		mvneta_txq_desc_put(txq);
2755 	}
2756 
2757 	return -ENOMEM;
2758 }
2759 
2760 /* Main tx processing */
2761 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2762 {
2763 	struct mvneta_port *pp = netdev_priv(dev);
2764 	u16 txq_id = skb_get_queue_mapping(skb);
2765 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2766 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2767 	struct mvneta_tx_desc *tx_desc;
2768 	int len = skb->len;
2769 	int frags = 0;
2770 	u32 tx_cmd;
2771 
2772 	if (!netif_running(dev))
2773 		goto out;
2774 
2775 	if (skb_is_gso(skb)) {
2776 		frags = mvneta_tx_tso(skb, dev, txq);
2777 		goto out;
2778 	}
2779 
2780 	frags = skb_shinfo(skb)->nr_frags + 1;
2781 
2782 	/* Get a descriptor for the first part of the packet */
2783 	tx_desc = mvneta_txq_next_desc_get(txq);
2784 
2785 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2786 
2787 	tx_desc->data_size = skb_headlen(skb);
2788 
2789 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2790 						tx_desc->data_size,
2791 						DMA_TO_DEVICE);
2792 	if (unlikely(dma_mapping_error(dev->dev.parent,
2793 				       tx_desc->buf_phys_addr))) {
2794 		mvneta_txq_desc_put(txq);
2795 		frags = 0;
2796 		goto out;
2797 	}
2798 
2799 	buf->type = MVNETA_TYPE_SKB;
2800 	if (frags == 1) {
2801 		/* First and Last descriptor */
2802 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2803 		tx_desc->command = tx_cmd;
2804 		buf->skb = skb;
2805 		mvneta_txq_inc_put(txq);
2806 	} else {
2807 		/* First but not Last */
2808 		tx_cmd |= MVNETA_TXD_F_DESC;
2809 		buf->skb = NULL;
2810 		mvneta_txq_inc_put(txq);
2811 		tx_desc->command = tx_cmd;
2812 		/* Continue with other skb fragments */
2813 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2814 			dma_unmap_single(dev->dev.parent,
2815 					 tx_desc->buf_phys_addr,
2816 					 tx_desc->data_size,
2817 					 DMA_TO_DEVICE);
2818 			mvneta_txq_desc_put(txq);
2819 			frags = 0;
2820 			goto out;
2821 		}
2822 	}
2823 
2824 out:
2825 	if (frags > 0) {
2826 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2827 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2828 
2829 		netdev_tx_sent_queue(nq, len);
2830 
2831 		txq->count += frags;
2832 		if (txq->count >= txq->tx_stop_threshold)
2833 			netif_tx_stop_queue(nq);
2834 
2835 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2836 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2837 			mvneta_txq_pend_desc_add(pp, txq, frags);
2838 		else
2839 			txq->pending += frags;
2840 
2841 		u64_stats_update_begin(&stats->syncp);
2842 		stats->es.ps.tx_bytes += len;
2843 		stats->es.ps.tx_packets++;
2844 		u64_stats_update_end(&stats->syncp);
2845 	} else {
2846 		dev->stats.tx_dropped++;
2847 		dev_kfree_skb_any(skb);
2848 	}
2849 
2850 	return NETDEV_TX_OK;
2851 }
2852 
2853 
2854 /* Free tx resources, when resetting a port */
2855 static void mvneta_txq_done_force(struct mvneta_port *pp,
2856 				  struct mvneta_tx_queue *txq)
2857 
2858 {
2859 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2860 	int tx_done = txq->count;
2861 
2862 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2863 
2864 	/* reset txq */
2865 	txq->count = 0;
2866 	txq->txq_put_index = 0;
2867 	txq->txq_get_index = 0;
2868 }
2869 
2870 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2871  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2872  */
2873 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2874 {
2875 	struct mvneta_tx_queue *txq;
2876 	struct netdev_queue *nq;
2877 	int cpu = smp_processor_id();
2878 
2879 	while (cause_tx_done) {
2880 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2881 
2882 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2883 		__netif_tx_lock(nq, cpu);
2884 
2885 		if (txq->count)
2886 			mvneta_txq_done(pp, txq);
2887 
2888 		__netif_tx_unlock(nq);
2889 		cause_tx_done &= ~((1 << txq->id));
2890 	}
2891 }
2892 
2893 /* Compute crc8 of the specified address, using a unique algorithm ,
2894  * according to hw spec, different than generic crc8 algorithm
2895  */
2896 static int mvneta_addr_crc(unsigned char *addr)
2897 {
2898 	int crc = 0;
2899 	int i;
2900 
2901 	for (i = 0; i < ETH_ALEN; i++) {
2902 		int j;
2903 
2904 		crc = (crc ^ addr[i]) << 8;
2905 		for (j = 7; j >= 0; j--) {
2906 			if (crc & (0x100 << j))
2907 				crc ^= 0x107 << j;
2908 		}
2909 	}
2910 
2911 	return crc;
2912 }
2913 
2914 /* This method controls the net device special MAC multicast support.
2915  * The Special Multicast Table for MAC addresses supports MAC of the form
2916  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2917  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2918  * Table entries in the DA-Filter table. This method set the Special
2919  * Multicast Table appropriate entry.
2920  */
2921 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2922 					  unsigned char last_byte,
2923 					  int queue)
2924 {
2925 	unsigned int smc_table_reg;
2926 	unsigned int tbl_offset;
2927 	unsigned int reg_offset;
2928 
2929 	/* Register offset from SMC table base    */
2930 	tbl_offset = (last_byte / 4);
2931 	/* Entry offset within the above reg */
2932 	reg_offset = last_byte % 4;
2933 
2934 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2935 					+ tbl_offset * 4));
2936 
2937 	if (queue == -1)
2938 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2939 	else {
2940 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2941 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2942 	}
2943 
2944 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2945 		    smc_table_reg);
2946 }
2947 
2948 /* This method controls the network device Other MAC multicast support.
2949  * The Other Multicast Table is used for multicast of another type.
2950  * A CRC-8 is used as an index to the Other Multicast Table entries
2951  * in the DA-Filter table.
2952  * The method gets the CRC-8 value from the calling routine and
2953  * sets the Other Multicast Table appropriate entry according to the
2954  * specified CRC-8 .
2955  */
2956 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2957 					unsigned char crc8,
2958 					int queue)
2959 {
2960 	unsigned int omc_table_reg;
2961 	unsigned int tbl_offset;
2962 	unsigned int reg_offset;
2963 
2964 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2965 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2966 
2967 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2968 
2969 	if (queue == -1) {
2970 		/* Clear accepts frame bit at specified Other DA table entry */
2971 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2972 	} else {
2973 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2974 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2975 	}
2976 
2977 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2978 }
2979 
2980 /* The network device supports multicast using two tables:
2981  *    1) Special Multicast Table for MAC addresses of the form
2982  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2983  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2984  *       Table entries in the DA-Filter table.
2985  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2986  *       is used as an index to the Other Multicast Table entries in the
2987  *       DA-Filter table.
2988  */
2989 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2990 				 int queue)
2991 {
2992 	unsigned char crc_result = 0;
2993 
2994 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2995 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2996 		return 0;
2997 	}
2998 
2999 	crc_result = mvneta_addr_crc(p_addr);
3000 	if (queue == -1) {
3001 		if (pp->mcast_count[crc_result] == 0) {
3002 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3003 				    crc_result);
3004 			return -EINVAL;
3005 		}
3006 
3007 		pp->mcast_count[crc_result]--;
3008 		if (pp->mcast_count[crc_result] != 0) {
3009 			netdev_info(pp->dev,
3010 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3011 				    pp->mcast_count[crc_result], crc_result);
3012 			return -EINVAL;
3013 		}
3014 	} else
3015 		pp->mcast_count[crc_result]++;
3016 
3017 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3018 
3019 	return 0;
3020 }
3021 
3022 /* Configure Fitering mode of Ethernet port */
3023 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3024 					  int is_promisc)
3025 {
3026 	u32 port_cfg_reg, val;
3027 
3028 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3029 
3030 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3031 
3032 	/* Set / Clear UPM bit in port configuration register */
3033 	if (is_promisc) {
3034 		/* Accept all Unicast addresses */
3035 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3036 		val |= MVNETA_FORCE_UNI;
3037 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3038 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3039 	} else {
3040 		/* Reject all Unicast addresses */
3041 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3042 		val &= ~MVNETA_FORCE_UNI;
3043 	}
3044 
3045 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3046 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3047 }
3048 
3049 /* register unicast and multicast addresses */
3050 static void mvneta_set_rx_mode(struct net_device *dev)
3051 {
3052 	struct mvneta_port *pp = netdev_priv(dev);
3053 	struct netdev_hw_addr *ha;
3054 
3055 	if (dev->flags & IFF_PROMISC) {
3056 		/* Accept all: Multicast + Unicast */
3057 		mvneta_rx_unicast_promisc_set(pp, 1);
3058 		mvneta_set_ucast_table(pp, pp->rxq_def);
3059 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3060 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3061 	} else {
3062 		/* Accept single Unicast */
3063 		mvneta_rx_unicast_promisc_set(pp, 0);
3064 		mvneta_set_ucast_table(pp, -1);
3065 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3066 
3067 		if (dev->flags & IFF_ALLMULTI) {
3068 			/* Accept all multicast */
3069 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3070 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3071 		} else {
3072 			/* Accept only initialized multicast */
3073 			mvneta_set_special_mcast_table(pp, -1);
3074 			mvneta_set_other_mcast_table(pp, -1);
3075 
3076 			if (!netdev_mc_empty(dev)) {
3077 				netdev_for_each_mc_addr(ha, dev) {
3078 					mvneta_mcast_addr_set(pp, ha->addr,
3079 							      pp->rxq_def);
3080 				}
3081 			}
3082 		}
3083 	}
3084 }
3085 
3086 /* Interrupt handling - the callback for request_irq() */
3087 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3088 {
3089 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3090 
3091 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3092 	napi_schedule(&pp->napi);
3093 
3094 	return IRQ_HANDLED;
3095 }
3096 
3097 /* Interrupt handling - the callback for request_percpu_irq() */
3098 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3099 {
3100 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3101 
3102 	disable_percpu_irq(port->pp->dev->irq);
3103 	napi_schedule(&port->napi);
3104 
3105 	return IRQ_HANDLED;
3106 }
3107 
3108 static void mvneta_link_change(struct mvneta_port *pp)
3109 {
3110 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3111 
3112 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3113 }
3114 
3115 /* NAPI handler
3116  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3117  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3118  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3119  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3120  * Each CPU has its own causeRxTx register
3121  */
3122 static int mvneta_poll(struct napi_struct *napi, int budget)
3123 {
3124 	int rx_done = 0;
3125 	u32 cause_rx_tx;
3126 	int rx_queue;
3127 	struct mvneta_port *pp = netdev_priv(napi->dev);
3128 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3129 
3130 	if (!netif_running(pp->dev)) {
3131 		napi_complete(napi);
3132 		return rx_done;
3133 	}
3134 
3135 	/* Read cause register */
3136 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3137 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3138 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3139 
3140 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3141 
3142 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3143 				  MVNETA_CAUSE_LINK_CHANGE))
3144 			mvneta_link_change(pp);
3145 	}
3146 
3147 	/* Release Tx descriptors */
3148 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3149 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3150 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3151 	}
3152 
3153 	/* For the case where the last mvneta_poll did not process all
3154 	 * RX packets
3155 	 */
3156 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3157 		port->cause_rx_tx;
3158 
3159 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3160 	if (rx_queue) {
3161 		rx_queue = rx_queue - 1;
3162 		if (pp->bm_priv)
3163 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3164 						 &pp->rxqs[rx_queue]);
3165 		else
3166 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3167 						 &pp->rxqs[rx_queue]);
3168 	}
3169 
3170 	if (rx_done < budget) {
3171 		cause_rx_tx = 0;
3172 		napi_complete_done(napi, rx_done);
3173 
3174 		if (pp->neta_armada3700) {
3175 			unsigned long flags;
3176 
3177 			local_irq_save(flags);
3178 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3179 				    MVNETA_RX_INTR_MASK(rxq_number) |
3180 				    MVNETA_TX_INTR_MASK(txq_number) |
3181 				    MVNETA_MISCINTR_INTR_MASK);
3182 			local_irq_restore(flags);
3183 		} else {
3184 			enable_percpu_irq(pp->dev->irq, 0);
3185 		}
3186 	}
3187 
3188 	if (pp->neta_armada3700)
3189 		pp->cause_rx_tx = cause_rx_tx;
3190 	else
3191 		port->cause_rx_tx = cause_rx_tx;
3192 
3193 	return rx_done;
3194 }
3195 
3196 static int mvneta_create_page_pool(struct mvneta_port *pp,
3197 				   struct mvneta_rx_queue *rxq, int size)
3198 {
3199 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3200 	struct page_pool_params pp_params = {
3201 		.order = 0,
3202 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3203 		.pool_size = size,
3204 		.nid = NUMA_NO_NODE,
3205 		.dev = pp->dev->dev.parent,
3206 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3207 		.offset = pp->rx_offset_correction,
3208 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3209 	};
3210 	int err;
3211 
3212 	rxq->page_pool = page_pool_create(&pp_params);
3213 	if (IS_ERR(rxq->page_pool)) {
3214 		err = PTR_ERR(rxq->page_pool);
3215 		rxq->page_pool = NULL;
3216 		return err;
3217 	}
3218 
3219 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3220 	if (err < 0)
3221 		goto err_free_pp;
3222 
3223 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3224 					 rxq->page_pool);
3225 	if (err)
3226 		goto err_unregister_rxq;
3227 
3228 	return 0;
3229 
3230 err_unregister_rxq:
3231 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3232 err_free_pp:
3233 	page_pool_destroy(rxq->page_pool);
3234 	rxq->page_pool = NULL;
3235 	return err;
3236 }
3237 
3238 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3239 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3240 			   int num)
3241 {
3242 	int i, err;
3243 
3244 	err = mvneta_create_page_pool(pp, rxq, num);
3245 	if (err < 0)
3246 		return err;
3247 
3248 	for (i = 0; i < num; i++) {
3249 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3250 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3251 				     GFP_KERNEL) != 0) {
3252 			netdev_err(pp->dev,
3253 				   "%s:rxq %d, %d of %d buffs  filled\n",
3254 				   __func__, rxq->id, i, num);
3255 			break;
3256 		}
3257 	}
3258 
3259 	/* Add this number of RX descriptors as non occupied (ready to
3260 	 * get packets)
3261 	 */
3262 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3263 
3264 	return i;
3265 }
3266 
3267 /* Free all packets pending transmit from all TXQs and reset TX port */
3268 static void mvneta_tx_reset(struct mvneta_port *pp)
3269 {
3270 	int queue;
3271 
3272 	/* free the skb's in the tx ring */
3273 	for (queue = 0; queue < txq_number; queue++)
3274 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3275 
3276 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3277 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3278 }
3279 
3280 static void mvneta_rx_reset(struct mvneta_port *pp)
3281 {
3282 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3283 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3284 }
3285 
3286 /* Rx/Tx queue initialization/cleanup methods */
3287 
3288 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3289 			      struct mvneta_rx_queue *rxq)
3290 {
3291 	rxq->size = pp->rx_ring_size;
3292 
3293 	/* Allocate memory for RX descriptors */
3294 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3295 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3296 					&rxq->descs_phys, GFP_KERNEL);
3297 	if (!rxq->descs)
3298 		return -ENOMEM;
3299 
3300 	rxq->last_desc = rxq->size - 1;
3301 
3302 	return 0;
3303 }
3304 
3305 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3306 			       struct mvneta_rx_queue *rxq)
3307 {
3308 	/* Set Rx descriptors queue starting address */
3309 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3310 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3311 
3312 	/* Set coalescing pkts and time */
3313 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3314 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3315 
3316 	if (!pp->bm_priv) {
3317 		/* Set Offset */
3318 		mvneta_rxq_offset_set(pp, rxq, 0);
3319 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3320 					MVNETA_MAX_RX_BUF_SIZE :
3321 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3322 		mvneta_rxq_bm_disable(pp, rxq);
3323 		mvneta_rxq_fill(pp, rxq, rxq->size);
3324 	} else {
3325 		/* Set Offset */
3326 		mvneta_rxq_offset_set(pp, rxq,
3327 				      NET_SKB_PAD - pp->rx_offset_correction);
3328 
3329 		mvneta_rxq_bm_enable(pp, rxq);
3330 		/* Fill RXQ with buffers from RX pool */
3331 		mvneta_rxq_long_pool_set(pp, rxq);
3332 		mvneta_rxq_short_pool_set(pp, rxq);
3333 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3334 	}
3335 }
3336 
3337 /* Create a specified RX queue */
3338 static int mvneta_rxq_init(struct mvneta_port *pp,
3339 			   struct mvneta_rx_queue *rxq)
3340 
3341 {
3342 	int ret;
3343 
3344 	ret = mvneta_rxq_sw_init(pp, rxq);
3345 	if (ret < 0)
3346 		return ret;
3347 
3348 	mvneta_rxq_hw_init(pp, rxq);
3349 
3350 	return 0;
3351 }
3352 
3353 /* Cleanup Rx queue */
3354 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3355 			      struct mvneta_rx_queue *rxq)
3356 {
3357 	mvneta_rxq_drop_pkts(pp, rxq);
3358 
3359 	if (rxq->descs)
3360 		dma_free_coherent(pp->dev->dev.parent,
3361 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3362 				  rxq->descs,
3363 				  rxq->descs_phys);
3364 
3365 	rxq->descs             = NULL;
3366 	rxq->last_desc         = 0;
3367 	rxq->next_desc_to_proc = 0;
3368 	rxq->descs_phys        = 0;
3369 	rxq->first_to_refill   = 0;
3370 	rxq->refill_num        = 0;
3371 }
3372 
3373 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3374 			      struct mvneta_tx_queue *txq)
3375 {
3376 	int cpu;
3377 
3378 	txq->size = pp->tx_ring_size;
3379 
3380 	/* A queue must always have room for at least one skb.
3381 	 * Therefore, stop the queue when the free entries reaches
3382 	 * the maximum number of descriptors per skb.
3383 	 */
3384 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3385 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3386 
3387 	/* Allocate memory for TX descriptors */
3388 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3389 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3390 					&txq->descs_phys, GFP_KERNEL);
3391 	if (!txq->descs)
3392 		return -ENOMEM;
3393 
3394 	txq->last_desc = txq->size - 1;
3395 
3396 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3397 	if (!txq->buf) {
3398 		dma_free_coherent(pp->dev->dev.parent,
3399 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3400 				  txq->descs, txq->descs_phys);
3401 		return -ENOMEM;
3402 	}
3403 
3404 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3405 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3406 					   txq->size * TSO_HEADER_SIZE,
3407 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3408 	if (!txq->tso_hdrs) {
3409 		kfree(txq->buf);
3410 		dma_free_coherent(pp->dev->dev.parent,
3411 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3412 				  txq->descs, txq->descs_phys);
3413 		return -ENOMEM;
3414 	}
3415 
3416 	/* Setup XPS mapping */
3417 	if (txq_number > 1)
3418 		cpu = txq->id % num_present_cpus();
3419 	else
3420 		cpu = pp->rxq_def % num_present_cpus();
3421 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3422 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3423 
3424 	return 0;
3425 }
3426 
3427 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3428 			       struct mvneta_tx_queue *txq)
3429 {
3430 	/* Set maximum bandwidth for enabled TXQs */
3431 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3432 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3433 
3434 	/* Set Tx descriptors queue starting address */
3435 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3436 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3437 
3438 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3439 }
3440 
3441 /* Create and initialize a tx queue */
3442 static int mvneta_txq_init(struct mvneta_port *pp,
3443 			   struct mvneta_tx_queue *txq)
3444 {
3445 	int ret;
3446 
3447 	ret = mvneta_txq_sw_init(pp, txq);
3448 	if (ret < 0)
3449 		return ret;
3450 
3451 	mvneta_txq_hw_init(pp, txq);
3452 
3453 	return 0;
3454 }
3455 
3456 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3457 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3458 				 struct mvneta_tx_queue *txq)
3459 {
3460 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3461 
3462 	kfree(txq->buf);
3463 
3464 	if (txq->tso_hdrs)
3465 		dma_free_coherent(pp->dev->dev.parent,
3466 				  txq->size * TSO_HEADER_SIZE,
3467 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3468 	if (txq->descs)
3469 		dma_free_coherent(pp->dev->dev.parent,
3470 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3471 				  txq->descs, txq->descs_phys);
3472 
3473 	netdev_tx_reset_queue(nq);
3474 
3475 	txq->descs             = NULL;
3476 	txq->last_desc         = 0;
3477 	txq->next_desc_to_proc = 0;
3478 	txq->descs_phys        = 0;
3479 }
3480 
3481 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3482 				 struct mvneta_tx_queue *txq)
3483 {
3484 	/* Set minimum bandwidth for disabled TXQs */
3485 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3486 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3487 
3488 	/* Set Tx descriptors queue starting address and size */
3489 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3490 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3491 }
3492 
3493 static void mvneta_txq_deinit(struct mvneta_port *pp,
3494 			      struct mvneta_tx_queue *txq)
3495 {
3496 	mvneta_txq_sw_deinit(pp, txq);
3497 	mvneta_txq_hw_deinit(pp, txq);
3498 }
3499 
3500 /* Cleanup all Tx queues */
3501 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3502 {
3503 	int queue;
3504 
3505 	for (queue = 0; queue < txq_number; queue++)
3506 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3507 }
3508 
3509 /* Cleanup all Rx queues */
3510 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3511 {
3512 	int queue;
3513 
3514 	for (queue = 0; queue < rxq_number; queue++)
3515 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3516 }
3517 
3518 
3519 /* Init all Rx queues */
3520 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3521 {
3522 	int queue;
3523 
3524 	for (queue = 0; queue < rxq_number; queue++) {
3525 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3526 
3527 		if (err) {
3528 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3529 				   __func__, queue);
3530 			mvneta_cleanup_rxqs(pp);
3531 			return err;
3532 		}
3533 	}
3534 
3535 	return 0;
3536 }
3537 
3538 /* Init all tx queues */
3539 static int mvneta_setup_txqs(struct mvneta_port *pp)
3540 {
3541 	int queue;
3542 
3543 	for (queue = 0; queue < txq_number; queue++) {
3544 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3545 		if (err) {
3546 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3547 				   __func__, queue);
3548 			mvneta_cleanup_txqs(pp);
3549 			return err;
3550 		}
3551 	}
3552 
3553 	return 0;
3554 }
3555 
3556 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3557 {
3558 	int ret;
3559 
3560 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3561 	if (ret)
3562 		return ret;
3563 
3564 	return phy_power_on(pp->comphy);
3565 }
3566 
3567 static int mvneta_config_interface(struct mvneta_port *pp,
3568 				   phy_interface_t interface)
3569 {
3570 	int ret = 0;
3571 
3572 	if (pp->comphy) {
3573 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3574 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3575 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3576 			ret = mvneta_comphy_init(pp, interface);
3577 		}
3578 	} else {
3579 		switch (interface) {
3580 		case PHY_INTERFACE_MODE_QSGMII:
3581 			mvreg_write(pp, MVNETA_SERDES_CFG,
3582 				    MVNETA_QSGMII_SERDES_PROTO);
3583 			break;
3584 
3585 		case PHY_INTERFACE_MODE_SGMII:
3586 		case PHY_INTERFACE_MODE_1000BASEX:
3587 			mvreg_write(pp, MVNETA_SERDES_CFG,
3588 				    MVNETA_SGMII_SERDES_PROTO);
3589 			break;
3590 
3591 		case PHY_INTERFACE_MODE_2500BASEX:
3592 			mvreg_write(pp, MVNETA_SERDES_CFG,
3593 				    MVNETA_HSGMII_SERDES_PROTO);
3594 			break;
3595 		default:
3596 			break;
3597 		}
3598 	}
3599 
3600 	pp->phy_interface = interface;
3601 
3602 	return ret;
3603 }
3604 
3605 static void mvneta_start_dev(struct mvneta_port *pp)
3606 {
3607 	int cpu;
3608 
3609 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3610 
3611 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3612 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3613 
3614 	/* start the Rx/Tx activity */
3615 	mvneta_port_enable(pp);
3616 
3617 	if (!pp->neta_armada3700) {
3618 		/* Enable polling on the port */
3619 		for_each_online_cpu(cpu) {
3620 			struct mvneta_pcpu_port *port =
3621 				per_cpu_ptr(pp->ports, cpu);
3622 
3623 			napi_enable(&port->napi);
3624 		}
3625 	} else {
3626 		napi_enable(&pp->napi);
3627 	}
3628 
3629 	/* Unmask interrupts. It has to be done from each CPU */
3630 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3631 
3632 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3633 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3634 		    MVNETA_CAUSE_LINK_CHANGE);
3635 
3636 	phylink_start(pp->phylink);
3637 
3638 	/* We may have called phylink_speed_down before */
3639 	phylink_speed_up(pp->phylink);
3640 
3641 	netif_tx_start_all_queues(pp->dev);
3642 
3643 	clear_bit(__MVNETA_DOWN, &pp->state);
3644 }
3645 
3646 static void mvneta_stop_dev(struct mvneta_port *pp)
3647 {
3648 	unsigned int cpu;
3649 
3650 	set_bit(__MVNETA_DOWN, &pp->state);
3651 
3652 	if (device_may_wakeup(&pp->dev->dev))
3653 		phylink_speed_down(pp->phylink, false);
3654 
3655 	phylink_stop(pp->phylink);
3656 
3657 	if (!pp->neta_armada3700) {
3658 		for_each_online_cpu(cpu) {
3659 			struct mvneta_pcpu_port *port =
3660 				per_cpu_ptr(pp->ports, cpu);
3661 
3662 			napi_disable(&port->napi);
3663 		}
3664 	} else {
3665 		napi_disable(&pp->napi);
3666 	}
3667 
3668 	netif_carrier_off(pp->dev);
3669 
3670 	mvneta_port_down(pp);
3671 	netif_tx_stop_all_queues(pp->dev);
3672 
3673 	/* Stop the port activity */
3674 	mvneta_port_disable(pp);
3675 
3676 	/* Clear all ethernet port interrupts */
3677 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3678 
3679 	/* Mask all ethernet port interrupts */
3680 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3681 
3682 	mvneta_tx_reset(pp);
3683 	mvneta_rx_reset(pp);
3684 
3685 	WARN_ON(phy_power_off(pp->comphy));
3686 }
3687 
3688 static void mvneta_percpu_enable(void *arg)
3689 {
3690 	struct mvneta_port *pp = arg;
3691 
3692 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3693 }
3694 
3695 static void mvneta_percpu_disable(void *arg)
3696 {
3697 	struct mvneta_port *pp = arg;
3698 
3699 	disable_percpu_irq(pp->dev->irq);
3700 }
3701 
3702 /* Change the device mtu */
3703 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3704 {
3705 	struct mvneta_port *pp = netdev_priv(dev);
3706 	int ret;
3707 
3708 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3709 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3710 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3711 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3712 	}
3713 
3714 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3715 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3716 		return -EINVAL;
3717 	}
3718 
3719 	dev->mtu = mtu;
3720 
3721 	if (!netif_running(dev)) {
3722 		if (pp->bm_priv)
3723 			mvneta_bm_update_mtu(pp, mtu);
3724 
3725 		netdev_update_features(dev);
3726 		return 0;
3727 	}
3728 
3729 	/* The interface is running, so we have to force a
3730 	 * reallocation of the queues
3731 	 */
3732 	mvneta_stop_dev(pp);
3733 	on_each_cpu(mvneta_percpu_disable, pp, true);
3734 
3735 	mvneta_cleanup_txqs(pp);
3736 	mvneta_cleanup_rxqs(pp);
3737 
3738 	if (pp->bm_priv)
3739 		mvneta_bm_update_mtu(pp, mtu);
3740 
3741 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3742 
3743 	ret = mvneta_setup_rxqs(pp);
3744 	if (ret) {
3745 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3746 		return ret;
3747 	}
3748 
3749 	ret = mvneta_setup_txqs(pp);
3750 	if (ret) {
3751 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3752 		return ret;
3753 	}
3754 
3755 	on_each_cpu(mvneta_percpu_enable, pp, true);
3756 	mvneta_start_dev(pp);
3757 
3758 	netdev_update_features(dev);
3759 
3760 	return 0;
3761 }
3762 
3763 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3764 					     netdev_features_t features)
3765 {
3766 	struct mvneta_port *pp = netdev_priv(dev);
3767 
3768 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3769 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3770 		netdev_info(dev,
3771 			    "Disable IP checksum for MTU greater than %dB\n",
3772 			    pp->tx_csum_limit);
3773 	}
3774 
3775 	return features;
3776 }
3777 
3778 /* Get mac address */
3779 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3780 {
3781 	u32 mac_addr_l, mac_addr_h;
3782 
3783 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3784 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3785 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3786 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3787 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3788 	addr[3] = mac_addr_h & 0xFF;
3789 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3790 	addr[5] = mac_addr_l & 0xFF;
3791 }
3792 
3793 /* Handle setting mac address */
3794 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3795 {
3796 	struct mvneta_port *pp = netdev_priv(dev);
3797 	struct sockaddr *sockaddr = addr;
3798 	int ret;
3799 
3800 	ret = eth_prepare_mac_addr_change(dev, addr);
3801 	if (ret < 0)
3802 		return ret;
3803 	/* Remove previous address table entry */
3804 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3805 
3806 	/* Set new addr in hw */
3807 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3808 
3809 	eth_commit_mac_addr_change(dev, addr);
3810 	return 0;
3811 }
3812 
3813 static void mvneta_validate(struct phylink_config *config,
3814 			    unsigned long *supported,
3815 			    struct phylink_link_state *state)
3816 {
3817 	struct net_device *ndev = to_net_dev(config->dev);
3818 	struct mvneta_port *pp = netdev_priv(ndev);
3819 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3820 
3821 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3822 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3823 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3824 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3825 	    !phy_interface_mode_is_8023z(state->interface) &&
3826 	    !phy_interface_mode_is_rgmii(state->interface)) {
3827 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3828 		return;
3829 	}
3830 
3831 	/* Allow all the expected bits */
3832 	phylink_set(mask, Autoneg);
3833 	phylink_set_port_modes(mask);
3834 
3835 	/* Asymmetric pause is unsupported */
3836 	phylink_set(mask, Pause);
3837 
3838 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3839 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3840 		phylink_set(mask, 1000baseT_Full);
3841 		phylink_set(mask, 1000baseX_Full);
3842 	}
3843 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3844 		phylink_set(mask, 2500baseT_Full);
3845 		phylink_set(mask, 2500baseX_Full);
3846 	}
3847 
3848 	if (!phy_interface_mode_is_8023z(state->interface)) {
3849 		/* 10M and 100M are only supported in non-802.3z mode */
3850 		phylink_set(mask, 10baseT_Half);
3851 		phylink_set(mask, 10baseT_Full);
3852 		phylink_set(mask, 100baseT_Half);
3853 		phylink_set(mask, 100baseT_Full);
3854 	}
3855 
3856 	bitmap_and(supported, supported, mask,
3857 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3858 	bitmap_and(state->advertising, state->advertising, mask,
3859 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3860 
3861 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3862 	 * to advertise both, only report advertising at 2500BaseX.
3863 	 */
3864 	phylink_helper_basex_speed(state);
3865 }
3866 
3867 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3868 				     struct phylink_link_state *state)
3869 {
3870 	struct net_device *ndev = to_net_dev(config->dev);
3871 	struct mvneta_port *pp = netdev_priv(ndev);
3872 	u32 gmac_stat;
3873 
3874 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3875 
3876 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3877 		state->speed =
3878 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3879 			SPEED_2500 : SPEED_1000;
3880 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3881 		state->speed = SPEED_100;
3882 	else
3883 		state->speed = SPEED_10;
3884 
3885 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3886 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3887 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3888 
3889 	state->pause = 0;
3890 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3891 		state->pause |= MLO_PAUSE_RX;
3892 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3893 		state->pause |= MLO_PAUSE_TX;
3894 }
3895 
3896 static void mvneta_mac_an_restart(struct phylink_config *config)
3897 {
3898 	struct net_device *ndev = to_net_dev(config->dev);
3899 	struct mvneta_port *pp = netdev_priv(ndev);
3900 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3901 
3902 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3903 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3904 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3905 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3906 }
3907 
3908 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3909 			      const struct phylink_link_state *state)
3910 {
3911 	struct net_device *ndev = to_net_dev(config->dev);
3912 	struct mvneta_port *pp = netdev_priv(ndev);
3913 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3914 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3915 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3916 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3917 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3918 
3919 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3920 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3921 				   MVNETA_GMAC2_PORT_RESET);
3922 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3923 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3924 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3925 			     MVNETA_GMAC_INBAND_RESTART_AN |
3926 			     MVNETA_GMAC_AN_SPEED_EN |
3927 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3928 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3929 			     MVNETA_GMAC_AN_DUPLEX_EN);
3930 
3931 	/* Even though it might look weird, when we're configured in
3932 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3933 	 */
3934 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3935 
3936 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3937 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3938 	    phy_interface_mode_is_8023z(state->interface))
3939 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3940 
3941 	if (phylink_test(state->advertising, Pause))
3942 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3943 
3944 	if (!phylink_autoneg_inband(mode)) {
3945 		/* Phy or fixed speed - nothing to do, leave the
3946 		 * configured speed, duplex and flow control as-is.
3947 		 */
3948 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3949 		/* SGMII mode receives the state from the PHY */
3950 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3951 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3952 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3953 				     MVNETA_GMAC_FORCE_LINK_PASS |
3954 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3955 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3956 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3957 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3958 			 MVNETA_GMAC_AN_SPEED_EN |
3959 			 MVNETA_GMAC_AN_DUPLEX_EN;
3960 	} else {
3961 		/* 802.3z negotiation - only 1000base-X */
3962 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3963 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3964 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3965 				     MVNETA_GMAC_FORCE_LINK_PASS |
3966 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3967 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3968 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3969 			 /* The MAC only supports FD mode */
3970 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3971 
3972 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3973 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3974 	}
3975 
3976 	/* Armada 370 documentation says we can only change the port mode
3977 	 * and in-band enable when the link is down, so force it down
3978 	 * while making these changes. We also do this for GMAC_CTRL2 */
3979 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3980 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3981 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3982 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3983 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3984 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3985 	}
3986 
3987 
3988 	/* When at 2.5G, the link partner can send frames with shortened
3989 	 * preambles.
3990 	 */
3991 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3992 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3993 
3994 	if (pp->phy_interface != state->interface) {
3995 		if (pp->comphy)
3996 			WARN_ON(phy_power_off(pp->comphy));
3997 		WARN_ON(mvneta_config_interface(pp, state->interface));
3998 	}
3999 
4000 	if (new_ctrl0 != gmac_ctrl0)
4001 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4002 	if (new_ctrl2 != gmac_ctrl2)
4003 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4004 	if (new_ctrl4 != gmac_ctrl4)
4005 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4006 	if (new_clk != gmac_clk)
4007 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4008 	if (new_an != gmac_an)
4009 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4010 
4011 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4012 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4013 			MVNETA_GMAC2_PORT_RESET) != 0)
4014 			continue;
4015 	}
4016 }
4017 
4018 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4019 {
4020 	u32 lpi_ctl1;
4021 
4022 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4023 	if (enable)
4024 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4025 	else
4026 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4027 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4028 }
4029 
4030 static void mvneta_mac_link_down(struct phylink_config *config,
4031 				 unsigned int mode, phy_interface_t interface)
4032 {
4033 	struct net_device *ndev = to_net_dev(config->dev);
4034 	struct mvneta_port *pp = netdev_priv(ndev);
4035 	u32 val;
4036 
4037 	mvneta_port_down(pp);
4038 
4039 	if (!phylink_autoneg_inband(mode)) {
4040 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4041 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4042 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4043 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4044 	}
4045 
4046 	pp->eee_active = false;
4047 	mvneta_set_eee(pp, false);
4048 }
4049 
4050 static void mvneta_mac_link_up(struct phylink_config *config,
4051 			       struct phy_device *phy,
4052 			       unsigned int mode, phy_interface_t interface,
4053 			       int speed, int duplex,
4054 			       bool tx_pause, bool rx_pause)
4055 {
4056 	struct net_device *ndev = to_net_dev(config->dev);
4057 	struct mvneta_port *pp = netdev_priv(ndev);
4058 	u32 val;
4059 
4060 	if (!phylink_autoneg_inband(mode)) {
4061 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4062 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4063 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4064 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4065 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4066 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4067 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4068 
4069 		if (speed == SPEED_1000 || speed == SPEED_2500)
4070 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4071 		else if (speed == SPEED_100)
4072 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4073 
4074 		if (duplex == DUPLEX_FULL)
4075 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4076 
4077 		if (tx_pause || rx_pause)
4078 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4079 
4080 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4081 	} else {
4082 		/* When inband doesn't cover flow control or flow control is
4083 		 * disabled, we need to manually configure it. This bit will
4084 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4085 		 */
4086 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4087 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4088 
4089 		if (tx_pause || rx_pause)
4090 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4091 
4092 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4093 	}
4094 
4095 	mvneta_port_up(pp);
4096 
4097 	if (phy && pp->eee_enabled) {
4098 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4099 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4100 	}
4101 }
4102 
4103 static const struct phylink_mac_ops mvneta_phylink_ops = {
4104 	.validate = mvneta_validate,
4105 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4106 	.mac_an_restart = mvneta_mac_an_restart,
4107 	.mac_config = mvneta_mac_config,
4108 	.mac_link_down = mvneta_mac_link_down,
4109 	.mac_link_up = mvneta_mac_link_up,
4110 };
4111 
4112 static int mvneta_mdio_probe(struct mvneta_port *pp)
4113 {
4114 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4115 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4116 
4117 	if (err)
4118 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4119 
4120 	phylink_ethtool_get_wol(pp->phylink, &wol);
4121 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4122 
4123 	/* PHY WoL may be enabled but device wakeup disabled */
4124 	if (wol.supported)
4125 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4126 
4127 	return err;
4128 }
4129 
4130 static void mvneta_mdio_remove(struct mvneta_port *pp)
4131 {
4132 	phylink_disconnect_phy(pp->phylink);
4133 }
4134 
4135 /* Electing a CPU must be done in an atomic way: it should be done
4136  * after or before the removal/insertion of a CPU and this function is
4137  * not reentrant.
4138  */
4139 static void mvneta_percpu_elect(struct mvneta_port *pp)
4140 {
4141 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4142 
4143 	/* Use the cpu associated to the rxq when it is online, in all
4144 	 * the other cases, use the cpu 0 which can't be offline.
4145 	 */
4146 	if (cpu_online(pp->rxq_def))
4147 		elected_cpu = pp->rxq_def;
4148 
4149 	max_cpu = num_present_cpus();
4150 
4151 	for_each_online_cpu(cpu) {
4152 		int rxq_map = 0, txq_map = 0;
4153 		int rxq;
4154 
4155 		for (rxq = 0; rxq < rxq_number; rxq++)
4156 			if ((rxq % max_cpu) == cpu)
4157 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4158 
4159 		if (cpu == elected_cpu)
4160 			/* Map the default receive queue queue to the
4161 			 * elected CPU
4162 			 */
4163 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4164 
4165 		/* We update the TX queue map only if we have one
4166 		 * queue. In this case we associate the TX queue to
4167 		 * the CPU bound to the default RX queue
4168 		 */
4169 		if (txq_number == 1)
4170 			txq_map = (cpu == elected_cpu) ?
4171 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4172 		else
4173 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4174 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4175 
4176 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4177 
4178 		/* Update the interrupt mask on each CPU according the
4179 		 * new mapping
4180 		 */
4181 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4182 					 pp, true);
4183 		i++;
4184 
4185 	}
4186 };
4187 
4188 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4189 {
4190 	int other_cpu;
4191 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4192 						  node_online);
4193 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4194 
4195 
4196 	spin_lock(&pp->lock);
4197 	/*
4198 	 * Configuring the driver for a new CPU while the driver is
4199 	 * stopping is racy, so just avoid it.
4200 	 */
4201 	if (pp->is_stopped) {
4202 		spin_unlock(&pp->lock);
4203 		return 0;
4204 	}
4205 	netif_tx_stop_all_queues(pp->dev);
4206 
4207 	/*
4208 	 * We have to synchronise on tha napi of each CPU except the one
4209 	 * just being woken up
4210 	 */
4211 	for_each_online_cpu(other_cpu) {
4212 		if (other_cpu != cpu) {
4213 			struct mvneta_pcpu_port *other_port =
4214 				per_cpu_ptr(pp->ports, other_cpu);
4215 
4216 			napi_synchronize(&other_port->napi);
4217 		}
4218 	}
4219 
4220 	/* Mask all ethernet port interrupts */
4221 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4222 	napi_enable(&port->napi);
4223 
4224 	/*
4225 	 * Enable per-CPU interrupts on the CPU that is
4226 	 * brought up.
4227 	 */
4228 	mvneta_percpu_enable(pp);
4229 
4230 	/*
4231 	 * Enable per-CPU interrupt on the one CPU we care
4232 	 * about.
4233 	 */
4234 	mvneta_percpu_elect(pp);
4235 
4236 	/* Unmask all ethernet port interrupts */
4237 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4238 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4239 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4240 		    MVNETA_CAUSE_LINK_CHANGE);
4241 	netif_tx_start_all_queues(pp->dev);
4242 	spin_unlock(&pp->lock);
4243 	return 0;
4244 }
4245 
4246 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4247 {
4248 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4249 						  node_online);
4250 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4251 
4252 	/*
4253 	 * Thanks to this lock we are sure that any pending cpu election is
4254 	 * done.
4255 	 */
4256 	spin_lock(&pp->lock);
4257 	/* Mask all ethernet port interrupts */
4258 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4259 	spin_unlock(&pp->lock);
4260 
4261 	napi_synchronize(&port->napi);
4262 	napi_disable(&port->napi);
4263 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4264 	mvneta_percpu_disable(pp);
4265 	return 0;
4266 }
4267 
4268 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4269 {
4270 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4271 						  node_dead);
4272 
4273 	/* Check if a new CPU must be elected now this on is down */
4274 	spin_lock(&pp->lock);
4275 	mvneta_percpu_elect(pp);
4276 	spin_unlock(&pp->lock);
4277 	/* Unmask all ethernet port interrupts */
4278 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4279 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4280 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4281 		    MVNETA_CAUSE_LINK_CHANGE);
4282 	netif_tx_start_all_queues(pp->dev);
4283 	return 0;
4284 }
4285 
4286 static int mvneta_open(struct net_device *dev)
4287 {
4288 	struct mvneta_port *pp = netdev_priv(dev);
4289 	int ret;
4290 
4291 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4292 
4293 	ret = mvneta_setup_rxqs(pp);
4294 	if (ret)
4295 		return ret;
4296 
4297 	ret = mvneta_setup_txqs(pp);
4298 	if (ret)
4299 		goto err_cleanup_rxqs;
4300 
4301 	/* Connect to port interrupt line */
4302 	if (pp->neta_armada3700)
4303 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4304 				  dev->name, pp);
4305 	else
4306 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4307 					 dev->name, pp->ports);
4308 	if (ret) {
4309 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4310 		goto err_cleanup_txqs;
4311 	}
4312 
4313 	if (!pp->neta_armada3700) {
4314 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4315 		 * queue interrupts
4316 		 */
4317 		on_each_cpu(mvneta_percpu_enable, pp, true);
4318 
4319 		pp->is_stopped = false;
4320 		/* Register a CPU notifier to handle the case where our CPU
4321 		 * might be taken offline.
4322 		 */
4323 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4324 						       &pp->node_online);
4325 		if (ret)
4326 			goto err_free_irq;
4327 
4328 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4329 						       &pp->node_dead);
4330 		if (ret)
4331 			goto err_free_online_hp;
4332 	}
4333 
4334 	ret = mvneta_mdio_probe(pp);
4335 	if (ret < 0) {
4336 		netdev_err(dev, "cannot probe MDIO bus\n");
4337 		goto err_free_dead_hp;
4338 	}
4339 
4340 	mvneta_start_dev(pp);
4341 
4342 	return 0;
4343 
4344 err_free_dead_hp:
4345 	if (!pp->neta_armada3700)
4346 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4347 						    &pp->node_dead);
4348 err_free_online_hp:
4349 	if (!pp->neta_armada3700)
4350 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4351 						    &pp->node_online);
4352 err_free_irq:
4353 	if (pp->neta_armada3700) {
4354 		free_irq(pp->dev->irq, pp);
4355 	} else {
4356 		on_each_cpu(mvneta_percpu_disable, pp, true);
4357 		free_percpu_irq(pp->dev->irq, pp->ports);
4358 	}
4359 err_cleanup_txqs:
4360 	mvneta_cleanup_txqs(pp);
4361 err_cleanup_rxqs:
4362 	mvneta_cleanup_rxqs(pp);
4363 	return ret;
4364 }
4365 
4366 /* Stop the port, free port interrupt line */
4367 static int mvneta_stop(struct net_device *dev)
4368 {
4369 	struct mvneta_port *pp = netdev_priv(dev);
4370 
4371 	if (!pp->neta_armada3700) {
4372 		/* Inform that we are stopping so we don't want to setup the
4373 		 * driver for new CPUs in the notifiers. The code of the
4374 		 * notifier for CPU online is protected by the same spinlock,
4375 		 * so when we get the lock, the notifer work is done.
4376 		 */
4377 		spin_lock(&pp->lock);
4378 		pp->is_stopped = true;
4379 		spin_unlock(&pp->lock);
4380 
4381 		mvneta_stop_dev(pp);
4382 		mvneta_mdio_remove(pp);
4383 
4384 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4385 						    &pp->node_online);
4386 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4387 						    &pp->node_dead);
4388 		on_each_cpu(mvneta_percpu_disable, pp, true);
4389 		free_percpu_irq(dev->irq, pp->ports);
4390 	} else {
4391 		mvneta_stop_dev(pp);
4392 		mvneta_mdio_remove(pp);
4393 		free_irq(dev->irq, pp);
4394 	}
4395 
4396 	mvneta_cleanup_rxqs(pp);
4397 	mvneta_cleanup_txqs(pp);
4398 
4399 	return 0;
4400 }
4401 
4402 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4403 {
4404 	struct mvneta_port *pp = netdev_priv(dev);
4405 
4406 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4407 }
4408 
4409 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4410 			    struct netlink_ext_ack *extack)
4411 {
4412 	bool need_update, running = netif_running(dev);
4413 	struct mvneta_port *pp = netdev_priv(dev);
4414 	struct bpf_prog *old_prog;
4415 
4416 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4417 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4418 		return -EOPNOTSUPP;
4419 	}
4420 
4421 	if (pp->bm_priv) {
4422 		NL_SET_ERR_MSG_MOD(extack,
4423 				   "Hardware Buffer Management not supported on XDP");
4424 		return -EOPNOTSUPP;
4425 	}
4426 
4427 	need_update = !!pp->xdp_prog != !!prog;
4428 	if (running && need_update)
4429 		mvneta_stop(dev);
4430 
4431 	old_prog = xchg(&pp->xdp_prog, prog);
4432 	if (old_prog)
4433 		bpf_prog_put(old_prog);
4434 
4435 	if (running && need_update)
4436 		return mvneta_open(dev);
4437 
4438 	return 0;
4439 }
4440 
4441 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4442 {
4443 	switch (xdp->command) {
4444 	case XDP_SETUP_PROG:
4445 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4446 	default:
4447 		return -EINVAL;
4448 	}
4449 }
4450 
4451 /* Ethtool methods */
4452 
4453 /* Set link ksettings (phy address, speed) for ethtools */
4454 static int
4455 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4456 				  const struct ethtool_link_ksettings *cmd)
4457 {
4458 	struct mvneta_port *pp = netdev_priv(ndev);
4459 
4460 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4461 }
4462 
4463 /* Get link ksettings for ethtools */
4464 static int
4465 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4466 				  struct ethtool_link_ksettings *cmd)
4467 {
4468 	struct mvneta_port *pp = netdev_priv(ndev);
4469 
4470 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4471 }
4472 
4473 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4474 {
4475 	struct mvneta_port *pp = netdev_priv(dev);
4476 
4477 	return phylink_ethtool_nway_reset(pp->phylink);
4478 }
4479 
4480 /* Set interrupt coalescing for ethtools */
4481 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4482 				       struct ethtool_coalesce *c)
4483 {
4484 	struct mvneta_port *pp = netdev_priv(dev);
4485 	int queue;
4486 
4487 	for (queue = 0; queue < rxq_number; queue++) {
4488 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4489 		rxq->time_coal = c->rx_coalesce_usecs;
4490 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4491 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4492 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4493 	}
4494 
4495 	for (queue = 0; queue < txq_number; queue++) {
4496 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4497 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4498 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4499 	}
4500 
4501 	return 0;
4502 }
4503 
4504 /* get coalescing for ethtools */
4505 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4506 				       struct ethtool_coalesce *c)
4507 {
4508 	struct mvneta_port *pp = netdev_priv(dev);
4509 
4510 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4511 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4512 
4513 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4514 	return 0;
4515 }
4516 
4517 
4518 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4519 				    struct ethtool_drvinfo *drvinfo)
4520 {
4521 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4522 		sizeof(drvinfo->driver));
4523 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4524 		sizeof(drvinfo->version));
4525 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4526 		sizeof(drvinfo->bus_info));
4527 }
4528 
4529 
4530 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4531 					 struct ethtool_ringparam *ring)
4532 {
4533 	struct mvneta_port *pp = netdev_priv(netdev);
4534 
4535 	ring->rx_max_pending = MVNETA_MAX_RXD;
4536 	ring->tx_max_pending = MVNETA_MAX_TXD;
4537 	ring->rx_pending = pp->rx_ring_size;
4538 	ring->tx_pending = pp->tx_ring_size;
4539 }
4540 
4541 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4542 					struct ethtool_ringparam *ring)
4543 {
4544 	struct mvneta_port *pp = netdev_priv(dev);
4545 
4546 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4547 		return -EINVAL;
4548 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4549 		ring->rx_pending : MVNETA_MAX_RXD;
4550 
4551 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4552 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4553 	if (pp->tx_ring_size != ring->tx_pending)
4554 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4555 			    pp->tx_ring_size, ring->tx_pending);
4556 
4557 	if (netif_running(dev)) {
4558 		mvneta_stop(dev);
4559 		if (mvneta_open(dev)) {
4560 			netdev_err(dev,
4561 				   "error on opening device after ring param change\n");
4562 			return -ENOMEM;
4563 		}
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4570 					  struct ethtool_pauseparam *pause)
4571 {
4572 	struct mvneta_port *pp = netdev_priv(dev);
4573 
4574 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4575 }
4576 
4577 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4578 					 struct ethtool_pauseparam *pause)
4579 {
4580 	struct mvneta_port *pp = netdev_priv(dev);
4581 
4582 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4583 }
4584 
4585 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4586 				       u8 *data)
4587 {
4588 	if (sset == ETH_SS_STATS) {
4589 		int i;
4590 
4591 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4592 			memcpy(data + i * ETH_GSTRING_LEN,
4593 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4594 	}
4595 }
4596 
4597 static void
4598 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4599 				 struct mvneta_ethtool_stats *es)
4600 {
4601 	unsigned int start;
4602 	int cpu;
4603 
4604 	for_each_possible_cpu(cpu) {
4605 		struct mvneta_pcpu_stats *stats;
4606 		u64 skb_alloc_error;
4607 		u64 refill_error;
4608 		u64 xdp_redirect;
4609 		u64 xdp_xmit_err;
4610 		u64 xdp_tx_err;
4611 		u64 xdp_pass;
4612 		u64 xdp_drop;
4613 		u64 xdp_xmit;
4614 		u64 xdp_tx;
4615 
4616 		stats = per_cpu_ptr(pp->stats, cpu);
4617 		do {
4618 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4619 			skb_alloc_error = stats->es.skb_alloc_error;
4620 			refill_error = stats->es.refill_error;
4621 			xdp_redirect = stats->es.ps.xdp_redirect;
4622 			xdp_pass = stats->es.ps.xdp_pass;
4623 			xdp_drop = stats->es.ps.xdp_drop;
4624 			xdp_xmit = stats->es.ps.xdp_xmit;
4625 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4626 			xdp_tx = stats->es.ps.xdp_tx;
4627 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4628 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4629 
4630 		es->skb_alloc_error += skb_alloc_error;
4631 		es->refill_error += refill_error;
4632 		es->ps.xdp_redirect += xdp_redirect;
4633 		es->ps.xdp_pass += xdp_pass;
4634 		es->ps.xdp_drop += xdp_drop;
4635 		es->ps.xdp_xmit += xdp_xmit;
4636 		es->ps.xdp_xmit_err += xdp_xmit_err;
4637 		es->ps.xdp_tx += xdp_tx;
4638 		es->ps.xdp_tx_err += xdp_tx_err;
4639 	}
4640 }
4641 
4642 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4643 {
4644 	struct mvneta_ethtool_stats stats = {};
4645 	const struct mvneta_statistic *s;
4646 	void __iomem *base = pp->base;
4647 	u32 high, low;
4648 	u64 val;
4649 	int i;
4650 
4651 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4652 	for (i = 0, s = mvneta_statistics;
4653 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4654 	     s++, i++) {
4655 		switch (s->type) {
4656 		case T_REG_32:
4657 			val = readl_relaxed(base + s->offset);
4658 			pp->ethtool_stats[i] += val;
4659 			break;
4660 		case T_REG_64:
4661 			/* Docs say to read low 32-bit then high */
4662 			low = readl_relaxed(base + s->offset);
4663 			high = readl_relaxed(base + s->offset + 4);
4664 			val = (u64)high << 32 | low;
4665 			pp->ethtool_stats[i] += val;
4666 			break;
4667 		case T_SW:
4668 			switch (s->offset) {
4669 			case ETHTOOL_STAT_EEE_WAKEUP:
4670 				val = phylink_get_eee_err(pp->phylink);
4671 				pp->ethtool_stats[i] += val;
4672 				break;
4673 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4674 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4675 				break;
4676 			case ETHTOOL_STAT_REFILL_ERR:
4677 				pp->ethtool_stats[i] = stats.refill_error;
4678 				break;
4679 			case ETHTOOL_XDP_REDIRECT:
4680 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4681 				break;
4682 			case ETHTOOL_XDP_PASS:
4683 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4684 				break;
4685 			case ETHTOOL_XDP_DROP:
4686 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4687 				break;
4688 			case ETHTOOL_XDP_TX:
4689 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4690 				break;
4691 			case ETHTOOL_XDP_TX_ERR:
4692 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4693 				break;
4694 			case ETHTOOL_XDP_XMIT:
4695 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4696 				break;
4697 			case ETHTOOL_XDP_XMIT_ERR:
4698 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4699 				break;
4700 			}
4701 			break;
4702 		}
4703 	}
4704 }
4705 
4706 static void mvneta_ethtool_get_stats(struct net_device *dev,
4707 				     struct ethtool_stats *stats, u64 *data)
4708 {
4709 	struct mvneta_port *pp = netdev_priv(dev);
4710 	int i;
4711 
4712 	mvneta_ethtool_update_stats(pp);
4713 
4714 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4715 		*data++ = pp->ethtool_stats[i];
4716 }
4717 
4718 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4719 {
4720 	if (sset == ETH_SS_STATS)
4721 		return ARRAY_SIZE(mvneta_statistics);
4722 	return -EOPNOTSUPP;
4723 }
4724 
4725 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4726 {
4727 	return MVNETA_RSS_LU_TABLE_SIZE;
4728 }
4729 
4730 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4731 				    struct ethtool_rxnfc *info,
4732 				    u32 *rules __always_unused)
4733 {
4734 	switch (info->cmd) {
4735 	case ETHTOOL_GRXRINGS:
4736 		info->data =  rxq_number;
4737 		return 0;
4738 	case ETHTOOL_GRXFH:
4739 		return -EOPNOTSUPP;
4740 	default:
4741 		return -EOPNOTSUPP;
4742 	}
4743 }
4744 
4745 static int  mvneta_config_rss(struct mvneta_port *pp)
4746 {
4747 	int cpu;
4748 	u32 val;
4749 
4750 	netif_tx_stop_all_queues(pp->dev);
4751 
4752 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4753 
4754 	if (!pp->neta_armada3700) {
4755 		/* We have to synchronise on the napi of each CPU */
4756 		for_each_online_cpu(cpu) {
4757 			struct mvneta_pcpu_port *pcpu_port =
4758 				per_cpu_ptr(pp->ports, cpu);
4759 
4760 			napi_synchronize(&pcpu_port->napi);
4761 			napi_disable(&pcpu_port->napi);
4762 		}
4763 	} else {
4764 		napi_synchronize(&pp->napi);
4765 		napi_disable(&pp->napi);
4766 	}
4767 
4768 	pp->rxq_def = pp->indir[0];
4769 
4770 	/* Update unicast mapping */
4771 	mvneta_set_rx_mode(pp->dev);
4772 
4773 	/* Update val of portCfg register accordingly with all RxQueue types */
4774 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4775 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4776 
4777 	/* Update the elected CPU matching the new rxq_def */
4778 	spin_lock(&pp->lock);
4779 	mvneta_percpu_elect(pp);
4780 	spin_unlock(&pp->lock);
4781 
4782 	if (!pp->neta_armada3700) {
4783 		/* We have to synchronise on the napi of each CPU */
4784 		for_each_online_cpu(cpu) {
4785 			struct mvneta_pcpu_port *pcpu_port =
4786 				per_cpu_ptr(pp->ports, cpu);
4787 
4788 			napi_enable(&pcpu_port->napi);
4789 		}
4790 	} else {
4791 		napi_enable(&pp->napi);
4792 	}
4793 
4794 	netif_tx_start_all_queues(pp->dev);
4795 
4796 	return 0;
4797 }
4798 
4799 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4800 				   const u8 *key, const u8 hfunc)
4801 {
4802 	struct mvneta_port *pp = netdev_priv(dev);
4803 
4804 	/* Current code for Armada 3700 doesn't support RSS features yet */
4805 	if (pp->neta_armada3700)
4806 		return -EOPNOTSUPP;
4807 
4808 	/* We require at least one supported parameter to be changed
4809 	 * and no change in any of the unsupported parameters
4810 	 */
4811 	if (key ||
4812 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4813 		return -EOPNOTSUPP;
4814 
4815 	if (!indir)
4816 		return 0;
4817 
4818 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4819 
4820 	return mvneta_config_rss(pp);
4821 }
4822 
4823 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4824 				   u8 *hfunc)
4825 {
4826 	struct mvneta_port *pp = netdev_priv(dev);
4827 
4828 	/* Current code for Armada 3700 doesn't support RSS features yet */
4829 	if (pp->neta_armada3700)
4830 		return -EOPNOTSUPP;
4831 
4832 	if (hfunc)
4833 		*hfunc = ETH_RSS_HASH_TOP;
4834 
4835 	if (!indir)
4836 		return 0;
4837 
4838 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4839 
4840 	return 0;
4841 }
4842 
4843 static void mvneta_ethtool_get_wol(struct net_device *dev,
4844 				   struct ethtool_wolinfo *wol)
4845 {
4846 	struct mvneta_port *pp = netdev_priv(dev);
4847 
4848 	phylink_ethtool_get_wol(pp->phylink, wol);
4849 }
4850 
4851 static int mvneta_ethtool_set_wol(struct net_device *dev,
4852 				  struct ethtool_wolinfo *wol)
4853 {
4854 	struct mvneta_port *pp = netdev_priv(dev);
4855 	int ret;
4856 
4857 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4858 	if (!ret)
4859 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4860 
4861 	return ret;
4862 }
4863 
4864 static int mvneta_ethtool_get_eee(struct net_device *dev,
4865 				  struct ethtool_eee *eee)
4866 {
4867 	struct mvneta_port *pp = netdev_priv(dev);
4868 	u32 lpi_ctl0;
4869 
4870 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4871 
4872 	eee->eee_enabled = pp->eee_enabled;
4873 	eee->eee_active = pp->eee_active;
4874 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4875 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4876 
4877 	return phylink_ethtool_get_eee(pp->phylink, eee);
4878 }
4879 
4880 static int mvneta_ethtool_set_eee(struct net_device *dev,
4881 				  struct ethtool_eee *eee)
4882 {
4883 	struct mvneta_port *pp = netdev_priv(dev);
4884 	u32 lpi_ctl0;
4885 
4886 	/* The Armada 37x documents do not give limits for this other than
4887 	 * it being an 8-bit register. */
4888 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4889 		return -EINVAL;
4890 
4891 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4892 	lpi_ctl0 &= ~(0xff << 8);
4893 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4894 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4895 
4896 	pp->eee_enabled = eee->eee_enabled;
4897 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4898 
4899 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4900 
4901 	return phylink_ethtool_set_eee(pp->phylink, eee);
4902 }
4903 
4904 static const struct net_device_ops mvneta_netdev_ops = {
4905 	.ndo_open            = mvneta_open,
4906 	.ndo_stop            = mvneta_stop,
4907 	.ndo_start_xmit      = mvneta_tx,
4908 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4909 	.ndo_set_mac_address = mvneta_set_mac_addr,
4910 	.ndo_change_mtu      = mvneta_change_mtu,
4911 	.ndo_fix_features    = mvneta_fix_features,
4912 	.ndo_get_stats64     = mvneta_get_stats64,
4913 	.ndo_do_ioctl        = mvneta_ioctl,
4914 	.ndo_bpf	     = mvneta_xdp,
4915 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4916 };
4917 
4918 static const struct ethtool_ops mvneta_eth_tool_ops = {
4919 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4920 				     ETHTOOL_COALESCE_MAX_FRAMES,
4921 	.nway_reset	= mvneta_ethtool_nway_reset,
4922 	.get_link       = ethtool_op_get_link,
4923 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4924 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4925 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4926 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4927 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4928 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4929 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4930 	.get_strings	= mvneta_ethtool_get_strings,
4931 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4932 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4933 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4934 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4935 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4936 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4937 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4938 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4939 	.get_wol        = mvneta_ethtool_get_wol,
4940 	.set_wol        = mvneta_ethtool_set_wol,
4941 	.get_eee	= mvneta_ethtool_get_eee,
4942 	.set_eee	= mvneta_ethtool_set_eee,
4943 };
4944 
4945 /* Initialize hw */
4946 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4947 {
4948 	int queue;
4949 
4950 	/* Disable port */
4951 	mvneta_port_disable(pp);
4952 
4953 	/* Set port default values */
4954 	mvneta_defaults_set(pp);
4955 
4956 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4957 	if (!pp->txqs)
4958 		return -ENOMEM;
4959 
4960 	/* Initialize TX descriptor rings */
4961 	for (queue = 0; queue < txq_number; queue++) {
4962 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4963 		txq->id = queue;
4964 		txq->size = pp->tx_ring_size;
4965 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4966 	}
4967 
4968 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4969 	if (!pp->rxqs)
4970 		return -ENOMEM;
4971 
4972 	/* Create Rx descriptor rings */
4973 	for (queue = 0; queue < rxq_number; queue++) {
4974 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4975 		rxq->id = queue;
4976 		rxq->size = pp->rx_ring_size;
4977 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4978 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4979 		rxq->buf_virt_addr
4980 			= devm_kmalloc_array(pp->dev->dev.parent,
4981 					     rxq->size,
4982 					     sizeof(*rxq->buf_virt_addr),
4983 					     GFP_KERNEL);
4984 		if (!rxq->buf_virt_addr)
4985 			return -ENOMEM;
4986 	}
4987 
4988 	return 0;
4989 }
4990 
4991 /* platform glue : initialize decoding windows */
4992 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4993 				     const struct mbus_dram_target_info *dram)
4994 {
4995 	u32 win_enable;
4996 	u32 win_protect;
4997 	int i;
4998 
4999 	for (i = 0; i < 6; i++) {
5000 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5001 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5002 
5003 		if (i < 4)
5004 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5005 	}
5006 
5007 	win_enable = 0x3f;
5008 	win_protect = 0;
5009 
5010 	if (dram) {
5011 		for (i = 0; i < dram->num_cs; i++) {
5012 			const struct mbus_dram_window *cs = dram->cs + i;
5013 
5014 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5015 				    (cs->base & 0xffff0000) |
5016 				    (cs->mbus_attr << 8) |
5017 				    dram->mbus_dram_target_id);
5018 
5019 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5020 				    (cs->size - 1) & 0xffff0000);
5021 
5022 			win_enable &= ~(1 << i);
5023 			win_protect |= 3 << (2 * i);
5024 		}
5025 	} else {
5026 		/* For Armada3700 open default 4GB Mbus window, leaving
5027 		 * arbitration of target/attribute to a different layer
5028 		 * of configuration.
5029 		 */
5030 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5031 		win_enable &= ~BIT(0);
5032 		win_protect = 3;
5033 	}
5034 
5035 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5036 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5037 }
5038 
5039 /* Power up the port */
5040 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5041 {
5042 	/* MAC Cause register should be cleared */
5043 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5044 
5045 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5046 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5047 	    !phy_interface_mode_is_8023z(phy_mode) &&
5048 	    !phy_interface_mode_is_rgmii(phy_mode))
5049 		return -EINVAL;
5050 
5051 	return 0;
5052 }
5053 
5054 /* Device initialization routine */
5055 static int mvneta_probe(struct platform_device *pdev)
5056 {
5057 	struct device_node *dn = pdev->dev.of_node;
5058 	struct device_node *bm_node;
5059 	struct mvneta_port *pp;
5060 	struct net_device *dev;
5061 	struct phylink *phylink;
5062 	struct phy *comphy;
5063 	const char *dt_mac_addr;
5064 	char hw_mac_addr[ETH_ALEN];
5065 	phy_interface_t phy_mode;
5066 	const char *mac_from;
5067 	int tx_csum_limit;
5068 	int err;
5069 	int cpu;
5070 
5071 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5072 				      txq_number, rxq_number);
5073 	if (!dev)
5074 		return -ENOMEM;
5075 
5076 	dev->irq = irq_of_parse_and_map(dn, 0);
5077 	if (dev->irq == 0)
5078 		return -EINVAL;
5079 
5080 	err = of_get_phy_mode(dn, &phy_mode);
5081 	if (err) {
5082 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5083 		goto err_free_irq;
5084 	}
5085 
5086 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5087 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5088 		err = -EPROBE_DEFER;
5089 		goto err_free_irq;
5090 	} else if (IS_ERR(comphy)) {
5091 		comphy = NULL;
5092 	}
5093 
5094 	pp = netdev_priv(dev);
5095 	spin_lock_init(&pp->lock);
5096 
5097 	pp->phylink_config.dev = &dev->dev;
5098 	pp->phylink_config.type = PHYLINK_NETDEV;
5099 
5100 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5101 				 phy_mode, &mvneta_phylink_ops);
5102 	if (IS_ERR(phylink)) {
5103 		err = PTR_ERR(phylink);
5104 		goto err_free_irq;
5105 	}
5106 
5107 	dev->tx_queue_len = MVNETA_MAX_TXD;
5108 	dev->watchdog_timeo = 5 * HZ;
5109 	dev->netdev_ops = &mvneta_netdev_ops;
5110 
5111 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5112 
5113 	pp->phylink = phylink;
5114 	pp->comphy = comphy;
5115 	pp->phy_interface = phy_mode;
5116 	pp->dn = dn;
5117 
5118 	pp->rxq_def = rxq_def;
5119 	pp->indir[0] = rxq_def;
5120 
5121 	/* Get special SoC configurations */
5122 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5123 		pp->neta_armada3700 = true;
5124 
5125 	pp->clk = devm_clk_get(&pdev->dev, "core");
5126 	if (IS_ERR(pp->clk))
5127 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5128 	if (IS_ERR(pp->clk)) {
5129 		err = PTR_ERR(pp->clk);
5130 		goto err_free_phylink;
5131 	}
5132 
5133 	clk_prepare_enable(pp->clk);
5134 
5135 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5136 	if (!IS_ERR(pp->clk_bus))
5137 		clk_prepare_enable(pp->clk_bus);
5138 
5139 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5140 	if (IS_ERR(pp->base)) {
5141 		err = PTR_ERR(pp->base);
5142 		goto err_clk;
5143 	}
5144 
5145 	/* Alloc per-cpu port structure */
5146 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5147 	if (!pp->ports) {
5148 		err = -ENOMEM;
5149 		goto err_clk;
5150 	}
5151 
5152 	/* Alloc per-cpu stats */
5153 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5154 	if (!pp->stats) {
5155 		err = -ENOMEM;
5156 		goto err_free_ports;
5157 	}
5158 
5159 	dt_mac_addr = of_get_mac_address(dn);
5160 	if (!IS_ERR(dt_mac_addr)) {
5161 		mac_from = "device tree";
5162 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5163 	} else {
5164 		mvneta_get_mac_addr(pp, hw_mac_addr);
5165 		if (is_valid_ether_addr(hw_mac_addr)) {
5166 			mac_from = "hardware";
5167 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5168 		} else {
5169 			mac_from = "random";
5170 			eth_hw_addr_random(dev);
5171 		}
5172 	}
5173 
5174 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5175 		if (tx_csum_limit < 0 ||
5176 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5177 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5178 			dev_info(&pdev->dev,
5179 				 "Wrong TX csum limit in DT, set to %dB\n",
5180 				 MVNETA_TX_CSUM_DEF_SIZE);
5181 		}
5182 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5183 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5184 	} else {
5185 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5186 	}
5187 
5188 	pp->tx_csum_limit = tx_csum_limit;
5189 
5190 	pp->dram_target_info = mv_mbus_dram_info();
5191 	/* Armada3700 requires setting default configuration of Mbus
5192 	 * windows, however without using filled mbus_dram_target_info
5193 	 * structure.
5194 	 */
5195 	if (pp->dram_target_info || pp->neta_armada3700)
5196 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5197 
5198 	pp->tx_ring_size = MVNETA_MAX_TXD;
5199 	pp->rx_ring_size = MVNETA_MAX_RXD;
5200 
5201 	pp->dev = dev;
5202 	SET_NETDEV_DEV(dev, &pdev->dev);
5203 
5204 	pp->id = global_port_id++;
5205 
5206 	/* Obtain access to BM resources if enabled and already initialized */
5207 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5208 	if (bm_node) {
5209 		pp->bm_priv = mvneta_bm_get(bm_node);
5210 		if (pp->bm_priv) {
5211 			err = mvneta_bm_port_init(pdev, pp);
5212 			if (err < 0) {
5213 				dev_info(&pdev->dev,
5214 					 "use SW buffer management\n");
5215 				mvneta_bm_put(pp->bm_priv);
5216 				pp->bm_priv = NULL;
5217 			}
5218 		}
5219 		/* Set RX packet offset correction for platforms, whose
5220 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5221 		 * platforms and 0B for 32-bit ones.
5222 		 */
5223 		pp->rx_offset_correction = max(0,
5224 					       NET_SKB_PAD -
5225 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5226 	}
5227 	of_node_put(bm_node);
5228 
5229 	/* sw buffer management */
5230 	if (!pp->bm_priv)
5231 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5232 
5233 	err = mvneta_init(&pdev->dev, pp);
5234 	if (err < 0)
5235 		goto err_netdev;
5236 
5237 	err = mvneta_port_power_up(pp, pp->phy_interface);
5238 	if (err < 0) {
5239 		dev_err(&pdev->dev, "can't power up port\n");
5240 		return err;
5241 	}
5242 
5243 	/* Armada3700 network controller does not support per-cpu
5244 	 * operation, so only single NAPI should be initialized.
5245 	 */
5246 	if (pp->neta_armada3700) {
5247 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5248 	} else {
5249 		for_each_present_cpu(cpu) {
5250 			struct mvneta_pcpu_port *port =
5251 				per_cpu_ptr(pp->ports, cpu);
5252 
5253 			netif_napi_add(dev, &port->napi, mvneta_poll,
5254 				       NAPI_POLL_WEIGHT);
5255 			port->pp = pp;
5256 		}
5257 	}
5258 
5259 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5260 			NETIF_F_TSO | NETIF_F_RXCSUM;
5261 	dev->hw_features |= dev->features;
5262 	dev->vlan_features |= dev->features;
5263 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5264 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5265 
5266 	/* MTU range: 68 - 9676 */
5267 	dev->min_mtu = ETH_MIN_MTU;
5268 	/* 9676 == 9700 - 20 and rounding to 8 */
5269 	dev->max_mtu = 9676;
5270 
5271 	err = register_netdev(dev);
5272 	if (err < 0) {
5273 		dev_err(&pdev->dev, "failed to register\n");
5274 		goto err_netdev;
5275 	}
5276 
5277 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5278 		    dev->dev_addr);
5279 
5280 	platform_set_drvdata(pdev, pp->dev);
5281 
5282 	return 0;
5283 
5284 err_netdev:
5285 	if (pp->bm_priv) {
5286 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5287 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5288 				       1 << pp->id);
5289 		mvneta_bm_put(pp->bm_priv);
5290 	}
5291 	free_percpu(pp->stats);
5292 err_free_ports:
5293 	free_percpu(pp->ports);
5294 err_clk:
5295 	clk_disable_unprepare(pp->clk_bus);
5296 	clk_disable_unprepare(pp->clk);
5297 err_free_phylink:
5298 	if (pp->phylink)
5299 		phylink_destroy(pp->phylink);
5300 err_free_irq:
5301 	irq_dispose_mapping(dev->irq);
5302 	return err;
5303 }
5304 
5305 /* Device removal routine */
5306 static int mvneta_remove(struct platform_device *pdev)
5307 {
5308 	struct net_device  *dev = platform_get_drvdata(pdev);
5309 	struct mvneta_port *pp = netdev_priv(dev);
5310 
5311 	unregister_netdev(dev);
5312 	clk_disable_unprepare(pp->clk_bus);
5313 	clk_disable_unprepare(pp->clk);
5314 	free_percpu(pp->ports);
5315 	free_percpu(pp->stats);
5316 	irq_dispose_mapping(dev->irq);
5317 	phylink_destroy(pp->phylink);
5318 
5319 	if (pp->bm_priv) {
5320 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5321 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5322 				       1 << pp->id);
5323 		mvneta_bm_put(pp->bm_priv);
5324 	}
5325 
5326 	return 0;
5327 }
5328 
5329 #ifdef CONFIG_PM_SLEEP
5330 static int mvneta_suspend(struct device *device)
5331 {
5332 	int queue;
5333 	struct net_device *dev = dev_get_drvdata(device);
5334 	struct mvneta_port *pp = netdev_priv(dev);
5335 
5336 	if (!netif_running(dev))
5337 		goto clean_exit;
5338 
5339 	if (!pp->neta_armada3700) {
5340 		spin_lock(&pp->lock);
5341 		pp->is_stopped = true;
5342 		spin_unlock(&pp->lock);
5343 
5344 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5345 						    &pp->node_online);
5346 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5347 						    &pp->node_dead);
5348 	}
5349 
5350 	rtnl_lock();
5351 	mvneta_stop_dev(pp);
5352 	rtnl_unlock();
5353 
5354 	for (queue = 0; queue < rxq_number; queue++) {
5355 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5356 
5357 		mvneta_rxq_drop_pkts(pp, rxq);
5358 	}
5359 
5360 	for (queue = 0; queue < txq_number; queue++) {
5361 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5362 
5363 		mvneta_txq_hw_deinit(pp, txq);
5364 	}
5365 
5366 clean_exit:
5367 	netif_device_detach(dev);
5368 	clk_disable_unprepare(pp->clk_bus);
5369 	clk_disable_unprepare(pp->clk);
5370 
5371 	return 0;
5372 }
5373 
5374 static int mvneta_resume(struct device *device)
5375 {
5376 	struct platform_device *pdev = to_platform_device(device);
5377 	struct net_device *dev = dev_get_drvdata(device);
5378 	struct mvneta_port *pp = netdev_priv(dev);
5379 	int err, queue;
5380 
5381 	clk_prepare_enable(pp->clk);
5382 	if (!IS_ERR(pp->clk_bus))
5383 		clk_prepare_enable(pp->clk_bus);
5384 	if (pp->dram_target_info || pp->neta_armada3700)
5385 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5386 	if (pp->bm_priv) {
5387 		err = mvneta_bm_port_init(pdev, pp);
5388 		if (err < 0) {
5389 			dev_info(&pdev->dev, "use SW buffer management\n");
5390 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5391 			pp->bm_priv = NULL;
5392 		}
5393 	}
5394 	mvneta_defaults_set(pp);
5395 	err = mvneta_port_power_up(pp, pp->phy_interface);
5396 	if (err < 0) {
5397 		dev_err(device, "can't power up port\n");
5398 		return err;
5399 	}
5400 
5401 	netif_device_attach(dev);
5402 
5403 	if (!netif_running(dev))
5404 		return 0;
5405 
5406 	for (queue = 0; queue < rxq_number; queue++) {
5407 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5408 
5409 		rxq->next_desc_to_proc = 0;
5410 		mvneta_rxq_hw_init(pp, rxq);
5411 	}
5412 
5413 	for (queue = 0; queue < txq_number; queue++) {
5414 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5415 
5416 		txq->next_desc_to_proc = 0;
5417 		mvneta_txq_hw_init(pp, txq);
5418 	}
5419 
5420 	if (!pp->neta_armada3700) {
5421 		spin_lock(&pp->lock);
5422 		pp->is_stopped = false;
5423 		spin_unlock(&pp->lock);
5424 		cpuhp_state_add_instance_nocalls(online_hpstate,
5425 						 &pp->node_online);
5426 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5427 						 &pp->node_dead);
5428 	}
5429 
5430 	rtnl_lock();
5431 	mvneta_start_dev(pp);
5432 	rtnl_unlock();
5433 	mvneta_set_rx_mode(dev);
5434 
5435 	return 0;
5436 }
5437 #endif
5438 
5439 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5440 
5441 static const struct of_device_id mvneta_match[] = {
5442 	{ .compatible = "marvell,armada-370-neta" },
5443 	{ .compatible = "marvell,armada-xp-neta" },
5444 	{ .compatible = "marvell,armada-3700-neta" },
5445 	{ }
5446 };
5447 MODULE_DEVICE_TABLE(of, mvneta_match);
5448 
5449 static struct platform_driver mvneta_driver = {
5450 	.probe = mvneta_probe,
5451 	.remove = mvneta_remove,
5452 	.driver = {
5453 		.name = MVNETA_DRIVER_NAME,
5454 		.of_match_table = mvneta_match,
5455 		.pm = &mvneta_pm_ops,
5456 	},
5457 };
5458 
5459 static int __init mvneta_driver_init(void)
5460 {
5461 	int ret;
5462 
5463 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5464 				      mvneta_cpu_online,
5465 				      mvneta_cpu_down_prepare);
5466 	if (ret < 0)
5467 		goto out;
5468 	online_hpstate = ret;
5469 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5470 				      NULL, mvneta_cpu_dead);
5471 	if (ret)
5472 		goto err_dead;
5473 
5474 	ret = platform_driver_register(&mvneta_driver);
5475 	if (ret)
5476 		goto err;
5477 	return 0;
5478 
5479 err:
5480 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5481 err_dead:
5482 	cpuhp_remove_multi_state(online_hpstate);
5483 out:
5484 	return ret;
5485 }
5486 module_init(mvneta_driver_init);
5487 
5488 static void __exit mvneta_driver_exit(void)
5489 {
5490 	platform_driver_unregister(&mvneta_driver);
5491 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5492 	cpuhp_remove_multi_state(online_hpstate);
5493 }
5494 module_exit(mvneta_driver_exit);
5495 
5496 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5497 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5498 MODULE_LICENSE("GPL");
5499 
5500 module_param(rxq_number, int, 0444);
5501 module_param(txq_number, int, 0444);
5502 
5503 module_param(rxq_def, int, 0444);
5504 module_param(rx_copybreak, int, 0644);
5505