1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 #include <linux/inetdevice.h> 20 #include <linux/mbus.h> 21 #include <linux/module.h> 22 #include <linux/interrupt.h> 23 #include <linux/if_vlan.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/io.h> 27 #include <net/tso.h> 28 #include <linux/of.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/of_address.h> 33 #include <linux/phy.h> 34 #include <linux/clk.h> 35 #include <linux/cpu.h> 36 37 /* Registers */ 38 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 39 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 40 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 41 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 42 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 43 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 44 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 45 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 46 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 47 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 48 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 49 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 52 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 53 #define MVNETA_PORT_RX_RESET 0x1cc0 54 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 55 #define MVNETA_PHY_ADDR 0x2000 56 #define MVNETA_PHY_ADDR_MASK 0x1f 57 #define MVNETA_MBUS_RETRY 0x2010 58 #define MVNETA_UNIT_INTR_CAUSE 0x2080 59 #define MVNETA_UNIT_CONTROL 0x20B0 60 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 61 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 62 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 63 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 64 #define MVNETA_BASE_ADDR_ENABLE 0x2290 65 #define MVNETA_PORT_CONFIG 0x2400 66 #define MVNETA_UNI_PROMISC_MODE BIT(0) 67 #define MVNETA_DEF_RXQ(q) ((q) << 1) 68 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 69 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 70 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 71 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 72 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 73 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 74 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 75 MVNETA_DEF_RXQ_ARP(q) | \ 76 MVNETA_DEF_RXQ_TCP(q) | \ 77 MVNETA_DEF_RXQ_UDP(q) | \ 78 MVNETA_DEF_RXQ_BPDU(q) | \ 79 MVNETA_TX_UNSET_ERR_SUM | \ 80 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 81 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 82 #define MVNETA_MAC_ADDR_LOW 0x2414 83 #define MVNETA_MAC_ADDR_HIGH 0x2418 84 #define MVNETA_SDMA_CONFIG 0x241c 85 #define MVNETA_SDMA_BRST_SIZE_16 4 86 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 87 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 88 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 89 #define MVNETA_DESC_SWAP BIT(6) 90 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 91 #define MVNETA_PORT_STATUS 0x2444 92 #define MVNETA_TX_IN_PRGRS BIT(1) 93 #define MVNETA_TX_FIFO_EMPTY BIT(8) 94 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 95 #define MVNETA_SERDES_CFG 0x24A0 96 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 97 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 98 #define MVNETA_TYPE_PRIO 0x24bc 99 #define MVNETA_FORCE_UNI BIT(21) 100 #define MVNETA_TXQ_CMD_1 0x24e4 101 #define MVNETA_TXQ_CMD 0x2448 102 #define MVNETA_TXQ_DISABLE_SHIFT 8 103 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 104 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 105 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 106 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 107 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 108 #define MVNETA_ACC_MODE 0x2500 109 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 110 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 111 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 112 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 113 114 /* Exception Interrupt Port/Queue Cause register */ 115 116 #define MVNETA_INTR_NEW_CAUSE 0x25a0 117 #define MVNETA_INTR_NEW_MASK 0x25a4 118 119 /* bits 0..7 = TXQ SENT, one bit per queue. 120 * bits 8..15 = RXQ OCCUP, one bit per queue. 121 * bits 16..23 = RXQ FREE, one bit per queue. 122 * bit 29 = OLD_REG_SUM, see old reg ? 123 * bit 30 = TX_ERR_SUM, one bit for 4 ports 124 * bit 31 = MISC_SUM, one bit for 4 ports 125 */ 126 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 127 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 128 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 129 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 130 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 131 132 #define MVNETA_INTR_OLD_CAUSE 0x25a8 133 #define MVNETA_INTR_OLD_MASK 0x25ac 134 135 /* Data Path Port/Queue Cause Register */ 136 #define MVNETA_INTR_MISC_CAUSE 0x25b0 137 #define MVNETA_INTR_MISC_MASK 0x25b4 138 139 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 140 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 141 #define MVNETA_CAUSE_PTP BIT(4) 142 143 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 144 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 145 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 146 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 147 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 148 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 149 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 150 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 151 152 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 153 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 154 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 155 156 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 157 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 158 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 159 160 #define MVNETA_INTR_ENABLE 0x25b8 161 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 162 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF 163 164 #define MVNETA_RXQ_CMD 0x2680 165 #define MVNETA_RXQ_DISABLE_SHIFT 8 166 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 167 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 168 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 169 #define MVNETA_GMAC_CTRL_0 0x2c00 170 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 171 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 172 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 173 #define MVNETA_GMAC_CTRL_2 0x2c08 174 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 175 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 176 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 177 #define MVNETA_GMAC2_PORT_RESET BIT(6) 178 #define MVNETA_GMAC_STATUS 0x2c10 179 #define MVNETA_GMAC_LINK_UP BIT(0) 180 #define MVNETA_GMAC_SPEED_1000 BIT(1) 181 #define MVNETA_GMAC_SPEED_100 BIT(2) 182 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 183 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 184 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 185 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 186 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 187 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 188 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 189 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 190 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 191 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 192 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 193 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 194 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 195 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 196 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 197 #define MVNETA_MIB_COUNTERS_BASE 0x3000 198 #define MVNETA_MIB_LATE_COLLISION 0x7c 199 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 200 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 201 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 202 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 203 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 204 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 205 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 206 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 207 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 208 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 209 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 210 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 211 #define MVNETA_PORT_TX_RESET 0x3cf0 212 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 213 #define MVNETA_TX_MTU 0x3e0c 214 #define MVNETA_TX_TOKEN_SIZE 0x3e14 215 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 216 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 217 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 218 219 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 220 221 /* Descriptor ring Macros */ 222 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 223 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 224 225 /* Various constants */ 226 227 /* Coalescing */ 228 #define MVNETA_TXDONE_COAL_PKTS 1 229 #define MVNETA_RX_COAL_PKTS 32 230 #define MVNETA_RX_COAL_USEC 100 231 232 /* The two bytes Marvell header. Either contains a special value used 233 * by Marvell switches when a specific hardware mode is enabled (not 234 * supported by this driver) or is filled automatically by zeroes on 235 * the RX side. Those two bytes being at the front of the Ethernet 236 * header, they allow to have the IP header aligned on a 4 bytes 237 * boundary automatically: the hardware skips those two bytes on its 238 * own. 239 */ 240 #define MVNETA_MH_SIZE 2 241 242 #define MVNETA_VLAN_TAG_LEN 4 243 244 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 245 #define MVNETA_TX_CSUM_MAX_SIZE 9800 246 #define MVNETA_ACC_MODE_EXT 1 247 248 /* Timeout constants */ 249 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 250 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 251 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 252 253 #define MVNETA_TX_MTU_MAX 0x3ffff 254 255 /* TSO header size */ 256 #define TSO_HEADER_SIZE 128 257 258 /* Max number of Rx descriptors */ 259 #define MVNETA_MAX_RXD 128 260 261 /* Max number of Tx descriptors */ 262 #define MVNETA_MAX_TXD 532 263 264 /* Max number of allowed TCP segments for software TSO */ 265 #define MVNETA_MAX_TSO_SEGS 100 266 267 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 268 269 /* descriptor aligned size */ 270 #define MVNETA_DESC_ALIGNED_SIZE 32 271 272 #define MVNETA_RX_PKT_SIZE(mtu) \ 273 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 274 ETH_HLEN + ETH_FCS_LEN, \ 275 MVNETA_CPU_D_CACHE_LINE_SIZE) 276 277 #define IS_TSO_HEADER(txq, addr) \ 278 ((addr >= txq->tso_hdrs_phys) && \ 279 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 280 281 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 282 283 struct mvneta_statistic { 284 unsigned short offset; 285 unsigned short type; 286 const char name[ETH_GSTRING_LEN]; 287 }; 288 289 #define T_REG_32 32 290 #define T_REG_64 64 291 292 static const struct mvneta_statistic mvneta_statistics[] = { 293 { 0x3000, T_REG_64, "good_octets_received", }, 294 { 0x3010, T_REG_32, "good_frames_received", }, 295 { 0x3008, T_REG_32, "bad_octets_received", }, 296 { 0x3014, T_REG_32, "bad_frames_received", }, 297 { 0x3018, T_REG_32, "broadcast_frames_received", }, 298 { 0x301c, T_REG_32, "multicast_frames_received", }, 299 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 300 { 0x3058, T_REG_32, "good_fc_received", }, 301 { 0x305c, T_REG_32, "bad_fc_received", }, 302 { 0x3060, T_REG_32, "undersize_received", }, 303 { 0x3064, T_REG_32, "fragments_received", }, 304 { 0x3068, T_REG_32, "oversize_received", }, 305 { 0x306c, T_REG_32, "jabber_received", }, 306 { 0x3070, T_REG_32, "mac_receive_error", }, 307 { 0x3074, T_REG_32, "bad_crc_event", }, 308 { 0x3078, T_REG_32, "collision", }, 309 { 0x307c, T_REG_32, "late_collision", }, 310 { 0x2484, T_REG_32, "rx_discard", }, 311 { 0x2488, T_REG_32, "rx_overrun", }, 312 { 0x3020, T_REG_32, "frames_64_octets", }, 313 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 314 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 315 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 316 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 317 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 318 { 0x3038, T_REG_64, "good_octets_sent", }, 319 { 0x3040, T_REG_32, "good_frames_sent", }, 320 { 0x3044, T_REG_32, "excessive_collision", }, 321 { 0x3048, T_REG_32, "multicast_frames_sent", }, 322 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 323 { 0x3054, T_REG_32, "fc_sent", }, 324 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 325 }; 326 327 struct mvneta_pcpu_stats { 328 struct u64_stats_sync syncp; 329 u64 rx_packets; 330 u64 rx_bytes; 331 u64 tx_packets; 332 u64 tx_bytes; 333 }; 334 335 struct mvneta_pcpu_port { 336 /* Pointer to the shared port */ 337 struct mvneta_port *pp; 338 339 /* Pointer to the CPU-local NAPI struct */ 340 struct napi_struct napi; 341 342 /* Cause of the previous interrupt */ 343 u32 cause_rx_tx; 344 }; 345 346 struct mvneta_port { 347 struct mvneta_pcpu_port __percpu *ports; 348 struct mvneta_pcpu_stats __percpu *stats; 349 350 int pkt_size; 351 unsigned int frag_size; 352 void __iomem *base; 353 struct mvneta_rx_queue *rxqs; 354 struct mvneta_tx_queue *txqs; 355 struct net_device *dev; 356 struct notifier_block cpu_notifier; 357 358 /* Core clock */ 359 struct clk *clk; 360 u8 mcast_count[256]; 361 u16 tx_ring_size; 362 u16 rx_ring_size; 363 364 struct mii_bus *mii_bus; 365 struct phy_device *phy_dev; 366 phy_interface_t phy_interface; 367 struct device_node *phy_node; 368 unsigned int link; 369 unsigned int duplex; 370 unsigned int speed; 371 unsigned int tx_csum_limit; 372 int use_inband_status:1; 373 374 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 375 }; 376 377 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 378 * layout of the transmit and reception DMA descriptors, and their 379 * layout is therefore defined by the hardware design 380 */ 381 382 #define MVNETA_TX_L3_OFF_SHIFT 0 383 #define MVNETA_TX_IP_HLEN_SHIFT 8 384 #define MVNETA_TX_L4_UDP BIT(16) 385 #define MVNETA_TX_L3_IP6 BIT(17) 386 #define MVNETA_TXD_IP_CSUM BIT(18) 387 #define MVNETA_TXD_Z_PAD BIT(19) 388 #define MVNETA_TXD_L_DESC BIT(20) 389 #define MVNETA_TXD_F_DESC BIT(21) 390 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 391 MVNETA_TXD_L_DESC | \ 392 MVNETA_TXD_F_DESC) 393 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 394 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 395 396 #define MVNETA_RXD_ERR_CRC 0x0 397 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 398 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 399 #define MVNETA_RXD_ERR_LEN BIT(18) 400 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 401 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 402 #define MVNETA_RXD_L3_IP4 BIT(25) 403 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 404 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 405 406 #if defined(__LITTLE_ENDIAN) 407 struct mvneta_tx_desc { 408 u32 command; /* Options used by HW for packet transmitting.*/ 409 u16 reserverd1; /* csum_l4 (for future use) */ 410 u16 data_size; /* Data size of transmitted packet in bytes */ 411 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 412 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 413 u32 reserved3[4]; /* Reserved - (for future use) */ 414 }; 415 416 struct mvneta_rx_desc { 417 u32 status; /* Info about received packet */ 418 u16 reserved1; /* pnc_info - (for future use, PnC) */ 419 u16 data_size; /* Size of received packet in bytes */ 420 421 u32 buf_phys_addr; /* Physical address of the buffer */ 422 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 423 424 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 425 u16 reserved3; /* prefetch_cmd, for future use */ 426 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 427 428 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 429 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 430 }; 431 #else 432 struct mvneta_tx_desc { 433 u16 data_size; /* Data size of transmitted packet in bytes */ 434 u16 reserverd1; /* csum_l4 (for future use) */ 435 u32 command; /* Options used by HW for packet transmitting.*/ 436 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 437 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 438 u32 reserved3[4]; /* Reserved - (for future use) */ 439 }; 440 441 struct mvneta_rx_desc { 442 u16 data_size; /* Size of received packet in bytes */ 443 u16 reserved1; /* pnc_info - (for future use, PnC) */ 444 u32 status; /* Info about received packet */ 445 446 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 447 u32 buf_phys_addr; /* Physical address of the buffer */ 448 449 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 450 u16 reserved3; /* prefetch_cmd, for future use */ 451 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 452 453 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 454 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 455 }; 456 #endif 457 458 struct mvneta_tx_queue { 459 /* Number of this TX queue, in the range 0-7 */ 460 u8 id; 461 462 /* Number of TX DMA descriptors in the descriptor ring */ 463 int size; 464 465 /* Number of currently used TX DMA descriptor in the 466 * descriptor ring 467 */ 468 int count; 469 int tx_stop_threshold; 470 int tx_wake_threshold; 471 472 /* Array of transmitted skb */ 473 struct sk_buff **tx_skb; 474 475 /* Index of last TX DMA descriptor that was inserted */ 476 int txq_put_index; 477 478 /* Index of the TX DMA descriptor to be cleaned up */ 479 int txq_get_index; 480 481 u32 done_pkts_coal; 482 483 /* Virtual address of the TX DMA descriptors array */ 484 struct mvneta_tx_desc *descs; 485 486 /* DMA address of the TX DMA descriptors array */ 487 dma_addr_t descs_phys; 488 489 /* Index of the last TX DMA descriptor */ 490 int last_desc; 491 492 /* Index of the next TX DMA descriptor to process */ 493 int next_desc_to_proc; 494 495 /* DMA buffers for TSO headers */ 496 char *tso_hdrs; 497 498 /* DMA address of TSO headers */ 499 dma_addr_t tso_hdrs_phys; 500 }; 501 502 struct mvneta_rx_queue { 503 /* rx queue number, in the range 0-7 */ 504 u8 id; 505 506 /* num of rx descriptors in the rx descriptor ring */ 507 int size; 508 509 /* counter of times when mvneta_refill() failed */ 510 int missed; 511 512 u32 pkts_coal; 513 u32 time_coal; 514 515 /* Virtual address of the RX DMA descriptors array */ 516 struct mvneta_rx_desc *descs; 517 518 /* DMA address of the RX DMA descriptors array */ 519 dma_addr_t descs_phys; 520 521 /* Index of the last RX DMA descriptor */ 522 int last_desc; 523 524 /* Index of the next RX DMA descriptor to process */ 525 int next_desc_to_proc; 526 }; 527 528 /* The hardware supports eight (8) rx queues, but we are only allowing 529 * the first one to be used. Therefore, let's just allocate one queue. 530 */ 531 static int rxq_number = 8; 532 static int txq_number = 8; 533 534 static int rxq_def; 535 536 static int rx_copybreak __read_mostly = 256; 537 538 #define MVNETA_DRIVER_NAME "mvneta" 539 #define MVNETA_DRIVER_VERSION "1.0" 540 541 /* Utility/helper methods */ 542 543 /* Write helper method */ 544 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 545 { 546 writel(data, pp->base + offset); 547 } 548 549 /* Read helper method */ 550 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 551 { 552 return readl(pp->base + offset); 553 } 554 555 /* Increment txq get counter */ 556 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 557 { 558 txq->txq_get_index++; 559 if (txq->txq_get_index == txq->size) 560 txq->txq_get_index = 0; 561 } 562 563 /* Increment txq put counter */ 564 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 565 { 566 txq->txq_put_index++; 567 if (txq->txq_put_index == txq->size) 568 txq->txq_put_index = 0; 569 } 570 571 572 /* Clear all MIB counters */ 573 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 574 { 575 int i; 576 u32 dummy; 577 578 /* Perform dummy reads from MIB counters */ 579 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 580 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 581 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 582 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 583 } 584 585 /* Get System Network Statistics */ 586 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 587 struct rtnl_link_stats64 *stats) 588 { 589 struct mvneta_port *pp = netdev_priv(dev); 590 unsigned int start; 591 int cpu; 592 593 for_each_possible_cpu(cpu) { 594 struct mvneta_pcpu_stats *cpu_stats; 595 u64 rx_packets; 596 u64 rx_bytes; 597 u64 tx_packets; 598 u64 tx_bytes; 599 600 cpu_stats = per_cpu_ptr(pp->stats, cpu); 601 do { 602 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 603 rx_packets = cpu_stats->rx_packets; 604 rx_bytes = cpu_stats->rx_bytes; 605 tx_packets = cpu_stats->tx_packets; 606 tx_bytes = cpu_stats->tx_bytes; 607 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 608 609 stats->rx_packets += rx_packets; 610 stats->rx_bytes += rx_bytes; 611 stats->tx_packets += tx_packets; 612 stats->tx_bytes += tx_bytes; 613 } 614 615 stats->rx_errors = dev->stats.rx_errors; 616 stats->rx_dropped = dev->stats.rx_dropped; 617 618 stats->tx_dropped = dev->stats.tx_dropped; 619 620 return stats; 621 } 622 623 /* Rx descriptors helper methods */ 624 625 /* Checks whether the RX descriptor having this status is both the first 626 * and the last descriptor for the RX packet. Each RX packet is currently 627 * received through a single RX descriptor, so not having each RX 628 * descriptor with its first and last bits set is an error 629 */ 630 static int mvneta_rxq_desc_is_first_last(u32 status) 631 { 632 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 633 MVNETA_RXD_FIRST_LAST_DESC; 634 } 635 636 /* Add number of descriptors ready to receive new packets */ 637 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 638 struct mvneta_rx_queue *rxq, 639 int ndescs) 640 { 641 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 642 * be added at once 643 */ 644 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 645 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 646 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 647 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 648 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 649 } 650 651 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 652 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 653 } 654 655 /* Get number of RX descriptors occupied by received packets */ 656 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 657 struct mvneta_rx_queue *rxq) 658 { 659 u32 val; 660 661 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 662 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 663 } 664 665 /* Update num of rx desc called upon return from rx path or 666 * from mvneta_rxq_drop_pkts(). 667 */ 668 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 669 struct mvneta_rx_queue *rxq, 670 int rx_done, int rx_filled) 671 { 672 u32 val; 673 674 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 675 val = rx_done | 676 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 677 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 678 return; 679 } 680 681 /* Only 255 descriptors can be added at once */ 682 while ((rx_done > 0) || (rx_filled > 0)) { 683 if (rx_done <= 0xff) { 684 val = rx_done; 685 rx_done = 0; 686 } else { 687 val = 0xff; 688 rx_done -= 0xff; 689 } 690 if (rx_filled <= 0xff) { 691 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 692 rx_filled = 0; 693 } else { 694 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 695 rx_filled -= 0xff; 696 } 697 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 698 } 699 } 700 701 /* Get pointer to next RX descriptor to be processed by SW */ 702 static struct mvneta_rx_desc * 703 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 704 { 705 int rx_desc = rxq->next_desc_to_proc; 706 707 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 708 prefetch(rxq->descs + rxq->next_desc_to_proc); 709 return rxq->descs + rx_desc; 710 } 711 712 /* Change maximum receive size of the port. */ 713 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 714 { 715 u32 val; 716 717 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 718 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 719 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 720 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 721 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 722 } 723 724 725 /* Set rx queue offset */ 726 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 727 struct mvneta_rx_queue *rxq, 728 int offset) 729 { 730 u32 val; 731 732 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 733 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 734 735 /* Offset is in */ 736 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 737 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 738 } 739 740 741 /* Tx descriptors helper methods */ 742 743 /* Update HW with number of TX descriptors to be sent */ 744 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 745 struct mvneta_tx_queue *txq, 746 int pend_desc) 747 { 748 u32 val; 749 750 /* Only 255 descriptors can be added at once ; Assume caller 751 * process TX desriptors in quanta less than 256 752 */ 753 val = pend_desc; 754 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 755 } 756 757 /* Get pointer to next TX descriptor to be processed (send) by HW */ 758 static struct mvneta_tx_desc * 759 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 760 { 761 int tx_desc = txq->next_desc_to_proc; 762 763 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 764 return txq->descs + tx_desc; 765 } 766 767 /* Release the last allocated TX descriptor. Useful to handle DMA 768 * mapping failures in the TX path. 769 */ 770 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 771 { 772 if (txq->next_desc_to_proc == 0) 773 txq->next_desc_to_proc = txq->last_desc - 1; 774 else 775 txq->next_desc_to_proc--; 776 } 777 778 /* Set rxq buf size */ 779 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 780 struct mvneta_rx_queue *rxq, 781 int buf_size) 782 { 783 u32 val; 784 785 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 786 787 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 788 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 789 790 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 791 } 792 793 /* Disable buffer management (BM) */ 794 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 795 struct mvneta_rx_queue *rxq) 796 { 797 u32 val; 798 799 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 800 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 801 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 802 } 803 804 /* Start the Ethernet port RX and TX activity */ 805 static void mvneta_port_up(struct mvneta_port *pp) 806 { 807 int queue; 808 u32 q_map; 809 810 /* Enable all initialized TXs. */ 811 q_map = 0; 812 for (queue = 0; queue < txq_number; queue++) { 813 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 814 if (txq->descs != NULL) 815 q_map |= (1 << queue); 816 } 817 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 818 819 /* Enable all initialized RXQs. */ 820 mvreg_write(pp, MVNETA_RXQ_CMD, BIT(rxq_def)); 821 } 822 823 /* Stop the Ethernet port activity */ 824 static void mvneta_port_down(struct mvneta_port *pp) 825 { 826 u32 val; 827 int count; 828 829 /* Stop Rx port activity. Check port Rx activity. */ 830 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 831 832 /* Issue stop command for active channels only */ 833 if (val != 0) 834 mvreg_write(pp, MVNETA_RXQ_CMD, 835 val << MVNETA_RXQ_DISABLE_SHIFT); 836 837 /* Wait for all Rx activity to terminate. */ 838 count = 0; 839 do { 840 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 841 netdev_warn(pp->dev, 842 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 843 val); 844 break; 845 } 846 mdelay(1); 847 848 val = mvreg_read(pp, MVNETA_RXQ_CMD); 849 } while (val & 0xff); 850 851 /* Stop Tx port activity. Check port Tx activity. Issue stop 852 * command for active channels only 853 */ 854 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 855 856 if (val != 0) 857 mvreg_write(pp, MVNETA_TXQ_CMD, 858 (val << MVNETA_TXQ_DISABLE_SHIFT)); 859 860 /* Wait for all Tx activity to terminate. */ 861 count = 0; 862 do { 863 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 864 netdev_warn(pp->dev, 865 "TIMEOUT for TX stopped status=0x%08x\n", 866 val); 867 break; 868 } 869 mdelay(1); 870 871 /* Check TX Command reg that all Txqs are stopped */ 872 val = mvreg_read(pp, MVNETA_TXQ_CMD); 873 874 } while (val & 0xff); 875 876 /* Double check to verify that TX FIFO is empty */ 877 count = 0; 878 do { 879 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 880 netdev_warn(pp->dev, 881 "TX FIFO empty timeout status=0x08%x\n", 882 val); 883 break; 884 } 885 mdelay(1); 886 887 val = mvreg_read(pp, MVNETA_PORT_STATUS); 888 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 889 (val & MVNETA_TX_IN_PRGRS)); 890 891 udelay(200); 892 } 893 894 /* Enable the port by setting the port enable bit of the MAC control register */ 895 static void mvneta_port_enable(struct mvneta_port *pp) 896 { 897 u32 val; 898 899 /* Enable port */ 900 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 901 val |= MVNETA_GMAC0_PORT_ENABLE; 902 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 903 } 904 905 /* Disable the port and wait for about 200 usec before retuning */ 906 static void mvneta_port_disable(struct mvneta_port *pp) 907 { 908 u32 val; 909 910 /* Reset the Enable bit in the Serial Control Register */ 911 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 912 val &= ~MVNETA_GMAC0_PORT_ENABLE; 913 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 914 915 udelay(200); 916 } 917 918 /* Multicast tables methods */ 919 920 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 921 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 922 { 923 int offset; 924 u32 val; 925 926 if (queue == -1) { 927 val = 0; 928 } else { 929 val = 0x1 | (queue << 1); 930 val |= (val << 24) | (val << 16) | (val << 8); 931 } 932 933 for (offset = 0; offset <= 0xc; offset += 4) 934 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 935 } 936 937 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 938 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 939 { 940 int offset; 941 u32 val; 942 943 if (queue == -1) { 944 val = 0; 945 } else { 946 val = 0x1 | (queue << 1); 947 val |= (val << 24) | (val << 16) | (val << 8); 948 } 949 950 for (offset = 0; offset <= 0xfc; offset += 4) 951 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 952 953 } 954 955 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 956 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 957 { 958 int offset; 959 u32 val; 960 961 if (queue == -1) { 962 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 963 val = 0; 964 } else { 965 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 966 val = 0x1 | (queue << 1); 967 val |= (val << 24) | (val << 16) | (val << 8); 968 } 969 970 for (offset = 0; offset <= 0xfc; offset += 4) 971 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 972 } 973 974 /* This method sets defaults to the NETA port: 975 * Clears interrupt Cause and Mask registers. 976 * Clears all MAC tables. 977 * Sets defaults to all registers. 978 * Resets RX and TX descriptor rings. 979 * Resets PHY. 980 * This method can be called after mvneta_port_down() to return the port 981 * settings to defaults. 982 */ 983 static void mvneta_defaults_set(struct mvneta_port *pp) 984 { 985 int cpu; 986 int queue; 987 u32 val; 988 989 /* Clear all Cause registers */ 990 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 991 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 992 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 993 994 /* Mask all interrupts */ 995 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 996 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 997 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 998 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 999 1000 /* Enable MBUS Retry bit16 */ 1001 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1002 1003 /* Set CPU queue access map - all CPUs have access to all RX 1004 * queues and to all TX queues 1005 */ 1006 for_each_present_cpu(cpu) 1007 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 1008 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 1009 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 1010 1011 /* Reset RX and TX DMAs */ 1012 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1013 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1014 1015 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1016 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1017 for (queue = 0; queue < txq_number; queue++) { 1018 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1019 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1020 } 1021 1022 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1023 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1024 1025 /* Set Port Acceleration Mode */ 1026 val = MVNETA_ACC_MODE_EXT; 1027 mvreg_write(pp, MVNETA_ACC_MODE, val); 1028 1029 /* Update val of portCfg register accordingly with all RxQueue types */ 1030 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 1031 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1032 1033 val = 0; 1034 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1035 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1036 1037 /* Build PORT_SDMA_CONFIG_REG */ 1038 val = 0; 1039 1040 /* Default burst size */ 1041 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1042 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1043 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1044 1045 #if defined(__BIG_ENDIAN) 1046 val |= MVNETA_DESC_SWAP; 1047 #endif 1048 1049 /* Assign port SDMA configuration */ 1050 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1051 1052 /* Disable PHY polling in hardware, since we're using the 1053 * kernel phylib to do this. 1054 */ 1055 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1056 val &= ~MVNETA_PHY_POLLING_ENABLE; 1057 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1058 1059 if (pp->use_inband_status) { 1060 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1061 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1062 MVNETA_GMAC_FORCE_LINK_DOWN | 1063 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1064 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1065 MVNETA_GMAC_AN_SPEED_EN | 1066 MVNETA_GMAC_AN_DUPLEX_EN; 1067 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1068 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1069 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1070 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1071 } else { 1072 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1073 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1074 MVNETA_GMAC_AN_SPEED_EN | 1075 MVNETA_GMAC_AN_DUPLEX_EN); 1076 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1077 } 1078 1079 mvneta_set_ucast_table(pp, -1); 1080 mvneta_set_special_mcast_table(pp, -1); 1081 mvneta_set_other_mcast_table(pp, -1); 1082 1083 /* Set port interrupt enable register - default enable all */ 1084 mvreg_write(pp, MVNETA_INTR_ENABLE, 1085 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1086 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1087 1088 mvneta_mib_counters_clear(pp); 1089 } 1090 1091 /* Set max sizes for tx queues */ 1092 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1093 1094 { 1095 u32 val, size, mtu; 1096 int queue; 1097 1098 mtu = max_tx_size * 8; 1099 if (mtu > MVNETA_TX_MTU_MAX) 1100 mtu = MVNETA_TX_MTU_MAX; 1101 1102 /* Set MTU */ 1103 val = mvreg_read(pp, MVNETA_TX_MTU); 1104 val &= ~MVNETA_TX_MTU_MAX; 1105 val |= mtu; 1106 mvreg_write(pp, MVNETA_TX_MTU, val); 1107 1108 /* TX token size and all TXQs token size must be larger that MTU */ 1109 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1110 1111 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1112 if (size < mtu) { 1113 size = mtu; 1114 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1115 val |= size; 1116 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1117 } 1118 for (queue = 0; queue < txq_number; queue++) { 1119 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1120 1121 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1122 if (size < mtu) { 1123 size = mtu; 1124 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1125 val |= size; 1126 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1127 } 1128 } 1129 } 1130 1131 /* Set unicast address */ 1132 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1133 int queue) 1134 { 1135 unsigned int unicast_reg; 1136 unsigned int tbl_offset; 1137 unsigned int reg_offset; 1138 1139 /* Locate the Unicast table entry */ 1140 last_nibble = (0xf & last_nibble); 1141 1142 /* offset from unicast tbl base */ 1143 tbl_offset = (last_nibble / 4) * 4; 1144 1145 /* offset within the above reg */ 1146 reg_offset = last_nibble % 4; 1147 1148 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1149 1150 if (queue == -1) { 1151 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1152 unicast_reg &= ~(0xff << (8 * reg_offset)); 1153 } else { 1154 unicast_reg &= ~(0xff << (8 * reg_offset)); 1155 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1156 } 1157 1158 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1159 } 1160 1161 /* Set mac address */ 1162 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1163 int queue) 1164 { 1165 unsigned int mac_h; 1166 unsigned int mac_l; 1167 1168 if (queue != -1) { 1169 mac_l = (addr[4] << 8) | (addr[5]); 1170 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1171 (addr[2] << 8) | (addr[3] << 0); 1172 1173 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1174 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1175 } 1176 1177 /* Accept frames of this address */ 1178 mvneta_set_ucast_addr(pp, addr[5], queue); 1179 } 1180 1181 /* Set the number of packets that will be received before RX interrupt 1182 * will be generated by HW. 1183 */ 1184 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1185 struct mvneta_rx_queue *rxq, u32 value) 1186 { 1187 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1188 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1189 rxq->pkts_coal = value; 1190 } 1191 1192 /* Set the time delay in usec before RX interrupt will be generated by 1193 * HW. 1194 */ 1195 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1196 struct mvneta_rx_queue *rxq, u32 value) 1197 { 1198 u32 val; 1199 unsigned long clk_rate; 1200 1201 clk_rate = clk_get_rate(pp->clk); 1202 val = (clk_rate / 1000000) * value; 1203 1204 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1205 rxq->time_coal = value; 1206 } 1207 1208 /* Set threshold for TX_DONE pkts coalescing */ 1209 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1210 struct mvneta_tx_queue *txq, u32 value) 1211 { 1212 u32 val; 1213 1214 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1215 1216 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1217 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1218 1219 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1220 1221 txq->done_pkts_coal = value; 1222 } 1223 1224 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1225 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1226 u32 phys_addr, u32 cookie) 1227 { 1228 rx_desc->buf_cookie = cookie; 1229 rx_desc->buf_phys_addr = phys_addr; 1230 } 1231 1232 /* Decrement sent descriptors counter */ 1233 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1234 struct mvneta_tx_queue *txq, 1235 int sent_desc) 1236 { 1237 u32 val; 1238 1239 /* Only 255 TX descriptors can be updated at once */ 1240 while (sent_desc > 0xff) { 1241 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1242 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1243 sent_desc = sent_desc - 0xff; 1244 } 1245 1246 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1247 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1248 } 1249 1250 /* Get number of TX descriptors already sent by HW */ 1251 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1252 struct mvneta_tx_queue *txq) 1253 { 1254 u32 val; 1255 int sent_desc; 1256 1257 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1258 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1259 MVNETA_TXQ_SENT_DESC_SHIFT; 1260 1261 return sent_desc; 1262 } 1263 1264 /* Get number of sent descriptors and decrement counter. 1265 * The number of sent descriptors is returned. 1266 */ 1267 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1268 struct mvneta_tx_queue *txq) 1269 { 1270 int sent_desc; 1271 1272 /* Get number of sent descriptors */ 1273 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1274 1275 /* Decrement sent descriptors counter */ 1276 if (sent_desc) 1277 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1278 1279 return sent_desc; 1280 } 1281 1282 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1283 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1284 int ip_hdr_len, int l4_proto) 1285 { 1286 u32 command; 1287 1288 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1289 * G_L4_chk, L4_type; required only for checksum 1290 * calculation 1291 */ 1292 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1293 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1294 1295 if (l3_proto == htons(ETH_P_IP)) 1296 command |= MVNETA_TXD_IP_CSUM; 1297 else 1298 command |= MVNETA_TX_L3_IP6; 1299 1300 if (l4_proto == IPPROTO_TCP) 1301 command |= MVNETA_TX_L4_CSUM_FULL; 1302 else if (l4_proto == IPPROTO_UDP) 1303 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1304 else 1305 command |= MVNETA_TX_L4_CSUM_NOT; 1306 1307 return command; 1308 } 1309 1310 1311 /* Display more error info */ 1312 static void mvneta_rx_error(struct mvneta_port *pp, 1313 struct mvneta_rx_desc *rx_desc) 1314 { 1315 u32 status = rx_desc->status; 1316 1317 if (!mvneta_rxq_desc_is_first_last(status)) { 1318 netdev_err(pp->dev, 1319 "bad rx status %08x (buffer oversize), size=%d\n", 1320 status, rx_desc->data_size); 1321 return; 1322 } 1323 1324 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1325 case MVNETA_RXD_ERR_CRC: 1326 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1327 status, rx_desc->data_size); 1328 break; 1329 case MVNETA_RXD_ERR_OVERRUN: 1330 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1331 status, rx_desc->data_size); 1332 break; 1333 case MVNETA_RXD_ERR_LEN: 1334 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1335 status, rx_desc->data_size); 1336 break; 1337 case MVNETA_RXD_ERR_RESOURCE: 1338 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1339 status, rx_desc->data_size); 1340 break; 1341 } 1342 } 1343 1344 /* Handle RX checksum offload based on the descriptor's status */ 1345 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1346 struct sk_buff *skb) 1347 { 1348 if ((status & MVNETA_RXD_L3_IP4) && 1349 (status & MVNETA_RXD_L4_CSUM_OK)) { 1350 skb->csum = 0; 1351 skb->ip_summed = CHECKSUM_UNNECESSARY; 1352 return; 1353 } 1354 1355 skb->ip_summed = CHECKSUM_NONE; 1356 } 1357 1358 /* Return tx queue pointer (find last set bit) according to <cause> returned 1359 * form tx_done reg. <cause> must not be null. The return value is always a 1360 * valid queue for matching the first one found in <cause>. 1361 */ 1362 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1363 u32 cause) 1364 { 1365 int queue = fls(cause) - 1; 1366 1367 return &pp->txqs[queue]; 1368 } 1369 1370 /* Free tx queue skbuffs */ 1371 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1372 struct mvneta_tx_queue *txq, int num) 1373 { 1374 int i; 1375 1376 for (i = 0; i < num; i++) { 1377 struct mvneta_tx_desc *tx_desc = txq->descs + 1378 txq->txq_get_index; 1379 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1380 1381 mvneta_txq_inc_get(txq); 1382 1383 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1384 dma_unmap_single(pp->dev->dev.parent, 1385 tx_desc->buf_phys_addr, 1386 tx_desc->data_size, DMA_TO_DEVICE); 1387 if (!skb) 1388 continue; 1389 dev_kfree_skb_any(skb); 1390 } 1391 } 1392 1393 /* Handle end of transmission */ 1394 static void mvneta_txq_done(struct mvneta_port *pp, 1395 struct mvneta_tx_queue *txq) 1396 { 1397 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1398 int tx_done; 1399 1400 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1401 if (!tx_done) 1402 return; 1403 1404 mvneta_txq_bufs_free(pp, txq, tx_done); 1405 1406 txq->count -= tx_done; 1407 1408 if (netif_tx_queue_stopped(nq)) { 1409 if (txq->count <= txq->tx_wake_threshold) 1410 netif_tx_wake_queue(nq); 1411 } 1412 } 1413 1414 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1415 { 1416 if (likely(pp->frag_size <= PAGE_SIZE)) 1417 return netdev_alloc_frag(pp->frag_size); 1418 else 1419 return kmalloc(pp->frag_size, GFP_ATOMIC); 1420 } 1421 1422 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1423 { 1424 if (likely(pp->frag_size <= PAGE_SIZE)) 1425 skb_free_frag(data); 1426 else 1427 kfree(data); 1428 } 1429 1430 /* Refill processing */ 1431 static int mvneta_rx_refill(struct mvneta_port *pp, 1432 struct mvneta_rx_desc *rx_desc) 1433 1434 { 1435 dma_addr_t phys_addr; 1436 void *data; 1437 1438 data = mvneta_frag_alloc(pp); 1439 if (!data) 1440 return -ENOMEM; 1441 1442 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1443 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1444 DMA_FROM_DEVICE); 1445 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1446 mvneta_frag_free(pp, data); 1447 return -ENOMEM; 1448 } 1449 1450 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1451 return 0; 1452 } 1453 1454 /* Handle tx checksum */ 1455 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1456 { 1457 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1458 int ip_hdr_len = 0; 1459 __be16 l3_proto = vlan_get_protocol(skb); 1460 u8 l4_proto; 1461 1462 if (l3_proto == htons(ETH_P_IP)) { 1463 struct iphdr *ip4h = ip_hdr(skb); 1464 1465 /* Calculate IPv4 checksum and L4 checksum */ 1466 ip_hdr_len = ip4h->ihl; 1467 l4_proto = ip4h->protocol; 1468 } else if (l3_proto == htons(ETH_P_IPV6)) { 1469 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1470 1471 /* Read l4_protocol from one of IPv6 extra headers */ 1472 if (skb_network_header_len(skb) > 0) 1473 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1474 l4_proto = ip6h->nexthdr; 1475 } else 1476 return MVNETA_TX_L4_CSUM_NOT; 1477 1478 return mvneta_txq_desc_csum(skb_network_offset(skb), 1479 l3_proto, ip_hdr_len, l4_proto); 1480 } 1481 1482 return MVNETA_TX_L4_CSUM_NOT; 1483 } 1484 1485 /* Drop packets received by the RXQ and free buffers */ 1486 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1487 struct mvneta_rx_queue *rxq) 1488 { 1489 int rx_done, i; 1490 1491 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1492 for (i = 0; i < rxq->size; i++) { 1493 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1494 void *data = (void *)rx_desc->buf_cookie; 1495 1496 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1497 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1498 mvneta_frag_free(pp, data); 1499 } 1500 1501 if (rx_done) 1502 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1503 } 1504 1505 /* Main rx processing */ 1506 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1507 struct mvneta_rx_queue *rxq) 1508 { 1509 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1510 struct net_device *dev = pp->dev; 1511 int rx_done; 1512 u32 rcvd_pkts = 0; 1513 u32 rcvd_bytes = 0; 1514 1515 /* Get number of received packets */ 1516 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1517 1518 if (rx_todo > rx_done) 1519 rx_todo = rx_done; 1520 1521 rx_done = 0; 1522 1523 /* Fairness NAPI loop */ 1524 while (rx_done < rx_todo) { 1525 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1526 struct sk_buff *skb; 1527 unsigned char *data; 1528 dma_addr_t phys_addr; 1529 u32 rx_status; 1530 int rx_bytes, err; 1531 1532 rx_done++; 1533 rx_status = rx_desc->status; 1534 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1535 data = (unsigned char *)rx_desc->buf_cookie; 1536 phys_addr = rx_desc->buf_phys_addr; 1537 1538 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1539 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1540 err_drop_frame: 1541 dev->stats.rx_errors++; 1542 mvneta_rx_error(pp, rx_desc); 1543 /* leave the descriptor untouched */ 1544 continue; 1545 } 1546 1547 if (rx_bytes <= rx_copybreak) { 1548 /* better copy a small frame and not unmap the DMA region */ 1549 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1550 if (unlikely(!skb)) 1551 goto err_drop_frame; 1552 1553 dma_sync_single_range_for_cpu(dev->dev.parent, 1554 rx_desc->buf_phys_addr, 1555 MVNETA_MH_SIZE + NET_SKB_PAD, 1556 rx_bytes, 1557 DMA_FROM_DEVICE); 1558 memcpy(skb_put(skb, rx_bytes), 1559 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1560 rx_bytes); 1561 1562 skb->protocol = eth_type_trans(skb, dev); 1563 mvneta_rx_csum(pp, rx_status, skb); 1564 napi_gro_receive(&port->napi, skb); 1565 1566 rcvd_pkts++; 1567 rcvd_bytes += rx_bytes; 1568 1569 /* leave the descriptor and buffer untouched */ 1570 continue; 1571 } 1572 1573 /* Refill processing */ 1574 err = mvneta_rx_refill(pp, rx_desc); 1575 if (err) { 1576 netdev_err(dev, "Linux processing - Can't refill\n"); 1577 rxq->missed++; 1578 goto err_drop_frame; 1579 } 1580 1581 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1582 if (!skb) 1583 goto err_drop_frame; 1584 1585 dma_unmap_single(dev->dev.parent, phys_addr, 1586 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1587 1588 rcvd_pkts++; 1589 rcvd_bytes += rx_bytes; 1590 1591 /* Linux processing */ 1592 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1593 skb_put(skb, rx_bytes); 1594 1595 skb->protocol = eth_type_trans(skb, dev); 1596 1597 mvneta_rx_csum(pp, rx_status, skb); 1598 1599 napi_gro_receive(&port->napi, skb); 1600 } 1601 1602 if (rcvd_pkts) { 1603 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1604 1605 u64_stats_update_begin(&stats->syncp); 1606 stats->rx_packets += rcvd_pkts; 1607 stats->rx_bytes += rcvd_bytes; 1608 u64_stats_update_end(&stats->syncp); 1609 } 1610 1611 /* Update rxq management counters */ 1612 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1613 1614 return rx_done; 1615 } 1616 1617 static inline void 1618 mvneta_tso_put_hdr(struct sk_buff *skb, 1619 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1620 { 1621 struct mvneta_tx_desc *tx_desc; 1622 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1623 1624 txq->tx_skb[txq->txq_put_index] = NULL; 1625 tx_desc = mvneta_txq_next_desc_get(txq); 1626 tx_desc->data_size = hdr_len; 1627 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1628 tx_desc->command |= MVNETA_TXD_F_DESC; 1629 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1630 txq->txq_put_index * TSO_HEADER_SIZE; 1631 mvneta_txq_inc_put(txq); 1632 } 1633 1634 static inline int 1635 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1636 struct sk_buff *skb, char *data, int size, 1637 bool last_tcp, bool is_last) 1638 { 1639 struct mvneta_tx_desc *tx_desc; 1640 1641 tx_desc = mvneta_txq_next_desc_get(txq); 1642 tx_desc->data_size = size; 1643 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1644 size, DMA_TO_DEVICE); 1645 if (unlikely(dma_mapping_error(dev->dev.parent, 1646 tx_desc->buf_phys_addr))) { 1647 mvneta_txq_desc_put(txq); 1648 return -ENOMEM; 1649 } 1650 1651 tx_desc->command = 0; 1652 txq->tx_skb[txq->txq_put_index] = NULL; 1653 1654 if (last_tcp) { 1655 /* last descriptor in the TCP packet */ 1656 tx_desc->command = MVNETA_TXD_L_DESC; 1657 1658 /* last descriptor in SKB */ 1659 if (is_last) 1660 txq->tx_skb[txq->txq_put_index] = skb; 1661 } 1662 mvneta_txq_inc_put(txq); 1663 return 0; 1664 } 1665 1666 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1667 struct mvneta_tx_queue *txq) 1668 { 1669 int total_len, data_left; 1670 int desc_count = 0; 1671 struct mvneta_port *pp = netdev_priv(dev); 1672 struct tso_t tso; 1673 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1674 int i; 1675 1676 /* Count needed descriptors */ 1677 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1678 return 0; 1679 1680 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1681 pr_info("*** Is this even possible???!?!?\n"); 1682 return 0; 1683 } 1684 1685 /* Initialize the TSO handler, and prepare the first payload */ 1686 tso_start(skb, &tso); 1687 1688 total_len = skb->len - hdr_len; 1689 while (total_len > 0) { 1690 char *hdr; 1691 1692 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1693 total_len -= data_left; 1694 desc_count++; 1695 1696 /* prepare packet headers: MAC + IP + TCP */ 1697 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1698 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1699 1700 mvneta_tso_put_hdr(skb, pp, txq); 1701 1702 while (data_left > 0) { 1703 int size; 1704 desc_count++; 1705 1706 size = min_t(int, tso.size, data_left); 1707 1708 if (mvneta_tso_put_data(dev, txq, skb, 1709 tso.data, size, 1710 size == data_left, 1711 total_len == 0)) 1712 goto err_release; 1713 data_left -= size; 1714 1715 tso_build_data(skb, &tso, size); 1716 } 1717 } 1718 1719 return desc_count; 1720 1721 err_release: 1722 /* Release all used data descriptors; header descriptors must not 1723 * be DMA-unmapped. 1724 */ 1725 for (i = desc_count - 1; i >= 0; i--) { 1726 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1727 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1728 dma_unmap_single(pp->dev->dev.parent, 1729 tx_desc->buf_phys_addr, 1730 tx_desc->data_size, 1731 DMA_TO_DEVICE); 1732 mvneta_txq_desc_put(txq); 1733 } 1734 return 0; 1735 } 1736 1737 /* Handle tx fragmentation processing */ 1738 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1739 struct mvneta_tx_queue *txq) 1740 { 1741 struct mvneta_tx_desc *tx_desc; 1742 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1743 1744 for (i = 0; i < nr_frags; i++) { 1745 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1746 void *addr = page_address(frag->page.p) + frag->page_offset; 1747 1748 tx_desc = mvneta_txq_next_desc_get(txq); 1749 tx_desc->data_size = frag->size; 1750 1751 tx_desc->buf_phys_addr = 1752 dma_map_single(pp->dev->dev.parent, addr, 1753 tx_desc->data_size, DMA_TO_DEVICE); 1754 1755 if (dma_mapping_error(pp->dev->dev.parent, 1756 tx_desc->buf_phys_addr)) { 1757 mvneta_txq_desc_put(txq); 1758 goto error; 1759 } 1760 1761 if (i == nr_frags - 1) { 1762 /* Last descriptor */ 1763 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1764 txq->tx_skb[txq->txq_put_index] = skb; 1765 } else { 1766 /* Descriptor in the middle: Not First, Not Last */ 1767 tx_desc->command = 0; 1768 txq->tx_skb[txq->txq_put_index] = NULL; 1769 } 1770 mvneta_txq_inc_put(txq); 1771 } 1772 1773 return 0; 1774 1775 error: 1776 /* Release all descriptors that were used to map fragments of 1777 * this packet, as well as the corresponding DMA mappings 1778 */ 1779 for (i = i - 1; i >= 0; i--) { 1780 tx_desc = txq->descs + i; 1781 dma_unmap_single(pp->dev->dev.parent, 1782 tx_desc->buf_phys_addr, 1783 tx_desc->data_size, 1784 DMA_TO_DEVICE); 1785 mvneta_txq_desc_put(txq); 1786 } 1787 1788 return -ENOMEM; 1789 } 1790 1791 /* Main tx processing */ 1792 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1793 { 1794 struct mvneta_port *pp = netdev_priv(dev); 1795 u16 txq_id = skb_get_queue_mapping(skb); 1796 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1797 struct mvneta_tx_desc *tx_desc; 1798 int len = skb->len; 1799 int frags = 0; 1800 u32 tx_cmd; 1801 1802 if (!netif_running(dev)) 1803 goto out; 1804 1805 if (skb_is_gso(skb)) { 1806 frags = mvneta_tx_tso(skb, dev, txq); 1807 goto out; 1808 } 1809 1810 frags = skb_shinfo(skb)->nr_frags + 1; 1811 1812 /* Get a descriptor for the first part of the packet */ 1813 tx_desc = mvneta_txq_next_desc_get(txq); 1814 1815 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1816 1817 tx_desc->data_size = skb_headlen(skb); 1818 1819 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1820 tx_desc->data_size, 1821 DMA_TO_DEVICE); 1822 if (unlikely(dma_mapping_error(dev->dev.parent, 1823 tx_desc->buf_phys_addr))) { 1824 mvneta_txq_desc_put(txq); 1825 frags = 0; 1826 goto out; 1827 } 1828 1829 if (frags == 1) { 1830 /* First and Last descriptor */ 1831 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1832 tx_desc->command = tx_cmd; 1833 txq->tx_skb[txq->txq_put_index] = skb; 1834 mvneta_txq_inc_put(txq); 1835 } else { 1836 /* First but not Last */ 1837 tx_cmd |= MVNETA_TXD_F_DESC; 1838 txq->tx_skb[txq->txq_put_index] = NULL; 1839 mvneta_txq_inc_put(txq); 1840 tx_desc->command = tx_cmd; 1841 /* Continue with other skb fragments */ 1842 if (mvneta_tx_frag_process(pp, skb, txq)) { 1843 dma_unmap_single(dev->dev.parent, 1844 tx_desc->buf_phys_addr, 1845 tx_desc->data_size, 1846 DMA_TO_DEVICE); 1847 mvneta_txq_desc_put(txq); 1848 frags = 0; 1849 goto out; 1850 } 1851 } 1852 1853 out: 1854 if (frags > 0) { 1855 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1856 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1857 1858 txq->count += frags; 1859 mvneta_txq_pend_desc_add(pp, txq, frags); 1860 1861 if (txq->count >= txq->tx_stop_threshold) 1862 netif_tx_stop_queue(nq); 1863 1864 u64_stats_update_begin(&stats->syncp); 1865 stats->tx_packets++; 1866 stats->tx_bytes += len; 1867 u64_stats_update_end(&stats->syncp); 1868 } else { 1869 dev->stats.tx_dropped++; 1870 dev_kfree_skb_any(skb); 1871 } 1872 1873 return NETDEV_TX_OK; 1874 } 1875 1876 1877 /* Free tx resources, when resetting a port */ 1878 static void mvneta_txq_done_force(struct mvneta_port *pp, 1879 struct mvneta_tx_queue *txq) 1880 1881 { 1882 int tx_done = txq->count; 1883 1884 mvneta_txq_bufs_free(pp, txq, tx_done); 1885 1886 /* reset txq */ 1887 txq->count = 0; 1888 txq->txq_put_index = 0; 1889 txq->txq_get_index = 0; 1890 } 1891 1892 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 1893 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 1894 */ 1895 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 1896 { 1897 struct mvneta_tx_queue *txq; 1898 struct netdev_queue *nq; 1899 1900 while (cause_tx_done) { 1901 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1902 1903 nq = netdev_get_tx_queue(pp->dev, txq->id); 1904 __netif_tx_lock(nq, smp_processor_id()); 1905 1906 if (txq->count) 1907 mvneta_txq_done(pp, txq); 1908 1909 __netif_tx_unlock(nq); 1910 cause_tx_done &= ~((1 << txq->id)); 1911 } 1912 } 1913 1914 /* Compute crc8 of the specified address, using a unique algorithm , 1915 * according to hw spec, different than generic crc8 algorithm 1916 */ 1917 static int mvneta_addr_crc(unsigned char *addr) 1918 { 1919 int crc = 0; 1920 int i; 1921 1922 for (i = 0; i < ETH_ALEN; i++) { 1923 int j; 1924 1925 crc = (crc ^ addr[i]) << 8; 1926 for (j = 7; j >= 0; j--) { 1927 if (crc & (0x100 << j)) 1928 crc ^= 0x107 << j; 1929 } 1930 } 1931 1932 return crc; 1933 } 1934 1935 /* This method controls the net device special MAC multicast support. 1936 * The Special Multicast Table for MAC addresses supports MAC of the form 1937 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1938 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1939 * Table entries in the DA-Filter table. This method set the Special 1940 * Multicast Table appropriate entry. 1941 */ 1942 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1943 unsigned char last_byte, 1944 int queue) 1945 { 1946 unsigned int smc_table_reg; 1947 unsigned int tbl_offset; 1948 unsigned int reg_offset; 1949 1950 /* Register offset from SMC table base */ 1951 tbl_offset = (last_byte / 4); 1952 /* Entry offset within the above reg */ 1953 reg_offset = last_byte % 4; 1954 1955 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1956 + tbl_offset * 4)); 1957 1958 if (queue == -1) 1959 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1960 else { 1961 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1962 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1963 } 1964 1965 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1966 smc_table_reg); 1967 } 1968 1969 /* This method controls the network device Other MAC multicast support. 1970 * The Other Multicast Table is used for multicast of another type. 1971 * A CRC-8 is used as an index to the Other Multicast Table entries 1972 * in the DA-Filter table. 1973 * The method gets the CRC-8 value from the calling routine and 1974 * sets the Other Multicast Table appropriate entry according to the 1975 * specified CRC-8 . 1976 */ 1977 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1978 unsigned char crc8, 1979 int queue) 1980 { 1981 unsigned int omc_table_reg; 1982 unsigned int tbl_offset; 1983 unsigned int reg_offset; 1984 1985 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1986 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1987 1988 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1989 1990 if (queue == -1) { 1991 /* Clear accepts frame bit at specified Other DA table entry */ 1992 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1993 } else { 1994 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1995 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1996 } 1997 1998 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1999 } 2000 2001 /* The network device supports multicast using two tables: 2002 * 1) Special Multicast Table for MAC addresses of the form 2003 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2004 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2005 * Table entries in the DA-Filter table. 2006 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2007 * is used as an index to the Other Multicast Table entries in the 2008 * DA-Filter table. 2009 */ 2010 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2011 int queue) 2012 { 2013 unsigned char crc_result = 0; 2014 2015 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2016 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2017 return 0; 2018 } 2019 2020 crc_result = mvneta_addr_crc(p_addr); 2021 if (queue == -1) { 2022 if (pp->mcast_count[crc_result] == 0) { 2023 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2024 crc_result); 2025 return -EINVAL; 2026 } 2027 2028 pp->mcast_count[crc_result]--; 2029 if (pp->mcast_count[crc_result] != 0) { 2030 netdev_info(pp->dev, 2031 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2032 pp->mcast_count[crc_result], crc_result); 2033 return -EINVAL; 2034 } 2035 } else 2036 pp->mcast_count[crc_result]++; 2037 2038 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2039 2040 return 0; 2041 } 2042 2043 /* Configure Fitering mode of Ethernet port */ 2044 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2045 int is_promisc) 2046 { 2047 u32 port_cfg_reg, val; 2048 2049 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2050 2051 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2052 2053 /* Set / Clear UPM bit in port configuration register */ 2054 if (is_promisc) { 2055 /* Accept all Unicast addresses */ 2056 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2057 val |= MVNETA_FORCE_UNI; 2058 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2059 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2060 } else { 2061 /* Reject all Unicast addresses */ 2062 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2063 val &= ~MVNETA_FORCE_UNI; 2064 } 2065 2066 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2067 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2068 } 2069 2070 /* register unicast and multicast addresses */ 2071 static void mvneta_set_rx_mode(struct net_device *dev) 2072 { 2073 struct mvneta_port *pp = netdev_priv(dev); 2074 struct netdev_hw_addr *ha; 2075 2076 if (dev->flags & IFF_PROMISC) { 2077 /* Accept all: Multicast + Unicast */ 2078 mvneta_rx_unicast_promisc_set(pp, 1); 2079 mvneta_set_ucast_table(pp, rxq_def); 2080 mvneta_set_special_mcast_table(pp, rxq_def); 2081 mvneta_set_other_mcast_table(pp, rxq_def); 2082 } else { 2083 /* Accept single Unicast */ 2084 mvneta_rx_unicast_promisc_set(pp, 0); 2085 mvneta_set_ucast_table(pp, -1); 2086 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2087 2088 if (dev->flags & IFF_ALLMULTI) { 2089 /* Accept all multicast */ 2090 mvneta_set_special_mcast_table(pp, rxq_def); 2091 mvneta_set_other_mcast_table(pp, rxq_def); 2092 } else { 2093 /* Accept only initialized multicast */ 2094 mvneta_set_special_mcast_table(pp, -1); 2095 mvneta_set_other_mcast_table(pp, -1); 2096 2097 if (!netdev_mc_empty(dev)) { 2098 netdev_for_each_mc_addr(ha, dev) { 2099 mvneta_mcast_addr_set(pp, ha->addr, 2100 rxq_def); 2101 } 2102 } 2103 } 2104 } 2105 } 2106 2107 /* Interrupt handling - the callback for request_irq() */ 2108 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2109 { 2110 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2111 2112 disable_percpu_irq(port->pp->dev->irq); 2113 napi_schedule(&port->napi); 2114 2115 return IRQ_HANDLED; 2116 } 2117 2118 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2119 struct phy_device *phy) 2120 { 2121 struct fixed_phy_status status; 2122 struct fixed_phy_status changed = {}; 2123 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2124 2125 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2126 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2127 status.speed = SPEED_1000; 2128 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2129 status.speed = SPEED_100; 2130 else 2131 status.speed = SPEED_10; 2132 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2133 changed.link = 1; 2134 changed.speed = 1; 2135 changed.duplex = 1; 2136 fixed_phy_update_state(phy, &status, &changed); 2137 return 0; 2138 } 2139 2140 /* NAPI handler 2141 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2142 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2143 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2144 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2145 * Each CPU has its own causeRxTx register 2146 */ 2147 static int mvneta_poll(struct napi_struct *napi, int budget) 2148 { 2149 int rx_done = 0; 2150 u32 cause_rx_tx; 2151 struct mvneta_port *pp = netdev_priv(napi->dev); 2152 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2153 2154 if (!netif_running(pp->dev)) { 2155 napi_complete(&port->napi); 2156 return rx_done; 2157 } 2158 2159 /* Read cause register */ 2160 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2161 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2162 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2163 2164 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2165 if (pp->use_inband_status && (cause_misc & 2166 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2167 MVNETA_CAUSE_LINK_CHANGE | 2168 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2169 mvneta_fixed_link_update(pp, pp->phy_dev); 2170 } 2171 } 2172 2173 /* Release Tx descriptors */ 2174 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2175 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2176 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2177 } 2178 2179 /* For the case where the last mvneta_poll did not process all 2180 * RX packets 2181 */ 2182 cause_rx_tx |= port->cause_rx_tx; 2183 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 2184 budget -= rx_done; 2185 2186 if (budget > 0) { 2187 cause_rx_tx = 0; 2188 napi_complete(&port->napi); 2189 enable_percpu_irq(pp->dev->irq, 0); 2190 } 2191 2192 port->cause_rx_tx = cause_rx_tx; 2193 return rx_done; 2194 } 2195 2196 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2197 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2198 int num) 2199 { 2200 int i; 2201 2202 for (i = 0; i < num; i++) { 2203 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2204 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2205 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2206 __func__, rxq->id, i, num); 2207 break; 2208 } 2209 } 2210 2211 /* Add this number of RX descriptors as non occupied (ready to 2212 * get packets) 2213 */ 2214 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2215 2216 return i; 2217 } 2218 2219 /* Free all packets pending transmit from all TXQs and reset TX port */ 2220 static void mvneta_tx_reset(struct mvneta_port *pp) 2221 { 2222 int queue; 2223 2224 /* free the skb's in the tx ring */ 2225 for (queue = 0; queue < txq_number; queue++) 2226 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2227 2228 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2229 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2230 } 2231 2232 static void mvneta_rx_reset(struct mvneta_port *pp) 2233 { 2234 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2235 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2236 } 2237 2238 /* Rx/Tx queue initialization/cleanup methods */ 2239 2240 /* Create a specified RX queue */ 2241 static int mvneta_rxq_init(struct mvneta_port *pp, 2242 struct mvneta_rx_queue *rxq) 2243 2244 { 2245 rxq->size = pp->rx_ring_size; 2246 2247 /* Allocate memory for RX descriptors */ 2248 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2249 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2250 &rxq->descs_phys, GFP_KERNEL); 2251 if (rxq->descs == NULL) 2252 return -ENOMEM; 2253 2254 BUG_ON(rxq->descs != 2255 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2256 2257 rxq->last_desc = rxq->size - 1; 2258 2259 /* Set Rx descriptors queue starting address */ 2260 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2261 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2262 2263 /* Set Offset */ 2264 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2265 2266 /* Set coalescing pkts and time */ 2267 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2268 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2269 2270 /* Fill RXQ with buffers from RX pool */ 2271 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2272 mvneta_rxq_bm_disable(pp, rxq); 2273 mvneta_rxq_fill(pp, rxq, rxq->size); 2274 2275 return 0; 2276 } 2277 2278 /* Cleanup Rx queue */ 2279 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2280 struct mvneta_rx_queue *rxq) 2281 { 2282 mvneta_rxq_drop_pkts(pp, rxq); 2283 2284 if (rxq->descs) 2285 dma_free_coherent(pp->dev->dev.parent, 2286 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2287 rxq->descs, 2288 rxq->descs_phys); 2289 2290 rxq->descs = NULL; 2291 rxq->last_desc = 0; 2292 rxq->next_desc_to_proc = 0; 2293 rxq->descs_phys = 0; 2294 } 2295 2296 /* Create and initialize a tx queue */ 2297 static int mvneta_txq_init(struct mvneta_port *pp, 2298 struct mvneta_tx_queue *txq) 2299 { 2300 txq->size = pp->tx_ring_size; 2301 2302 /* A queue must always have room for at least one skb. 2303 * Therefore, stop the queue when the free entries reaches 2304 * the maximum number of descriptors per skb. 2305 */ 2306 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2307 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2308 2309 2310 /* Allocate memory for TX descriptors */ 2311 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2312 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2313 &txq->descs_phys, GFP_KERNEL); 2314 if (txq->descs == NULL) 2315 return -ENOMEM; 2316 2317 /* Make sure descriptor address is cache line size aligned */ 2318 BUG_ON(txq->descs != 2319 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2320 2321 txq->last_desc = txq->size - 1; 2322 2323 /* Set maximum bandwidth for enabled TXQs */ 2324 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2325 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2326 2327 /* Set Tx descriptors queue starting address */ 2328 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2329 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2330 2331 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2332 if (txq->tx_skb == NULL) { 2333 dma_free_coherent(pp->dev->dev.parent, 2334 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2335 txq->descs, txq->descs_phys); 2336 return -ENOMEM; 2337 } 2338 2339 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2340 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2341 txq->size * TSO_HEADER_SIZE, 2342 &txq->tso_hdrs_phys, GFP_KERNEL); 2343 if (txq->tso_hdrs == NULL) { 2344 kfree(txq->tx_skb); 2345 dma_free_coherent(pp->dev->dev.parent, 2346 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2347 txq->descs, txq->descs_phys); 2348 return -ENOMEM; 2349 } 2350 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2351 2352 return 0; 2353 } 2354 2355 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2356 static void mvneta_txq_deinit(struct mvneta_port *pp, 2357 struct mvneta_tx_queue *txq) 2358 { 2359 kfree(txq->tx_skb); 2360 2361 if (txq->tso_hdrs) 2362 dma_free_coherent(pp->dev->dev.parent, 2363 txq->size * TSO_HEADER_SIZE, 2364 txq->tso_hdrs, txq->tso_hdrs_phys); 2365 if (txq->descs) 2366 dma_free_coherent(pp->dev->dev.parent, 2367 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2368 txq->descs, txq->descs_phys); 2369 2370 txq->descs = NULL; 2371 txq->last_desc = 0; 2372 txq->next_desc_to_proc = 0; 2373 txq->descs_phys = 0; 2374 2375 /* Set minimum bandwidth for disabled TXQs */ 2376 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2377 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2378 2379 /* Set Tx descriptors queue starting address and size */ 2380 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2381 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2382 } 2383 2384 /* Cleanup all Tx queues */ 2385 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2386 { 2387 int queue; 2388 2389 for (queue = 0; queue < txq_number; queue++) 2390 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2391 } 2392 2393 /* Cleanup all Rx queues */ 2394 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2395 { 2396 mvneta_rxq_deinit(pp, &pp->rxqs[rxq_def]); 2397 } 2398 2399 2400 /* Init all Rx queues */ 2401 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2402 { 2403 int err = mvneta_rxq_init(pp, &pp->rxqs[rxq_def]); 2404 if (err) { 2405 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2406 __func__, rxq_def); 2407 mvneta_cleanup_rxqs(pp); 2408 return err; 2409 } 2410 2411 return 0; 2412 } 2413 2414 /* Init all tx queues */ 2415 static int mvneta_setup_txqs(struct mvneta_port *pp) 2416 { 2417 int queue; 2418 2419 for (queue = 0; queue < txq_number; queue++) { 2420 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2421 if (err) { 2422 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2423 __func__, queue); 2424 mvneta_cleanup_txqs(pp); 2425 return err; 2426 } 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void mvneta_start_dev(struct mvneta_port *pp) 2433 { 2434 unsigned int cpu; 2435 2436 mvneta_max_rx_size_set(pp, pp->pkt_size); 2437 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2438 2439 /* start the Rx/Tx activity */ 2440 mvneta_port_enable(pp); 2441 2442 /* Enable polling on the port */ 2443 for_each_present_cpu(cpu) { 2444 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2445 2446 napi_enable(&port->napi); 2447 } 2448 2449 /* Unmask interrupts */ 2450 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2451 MVNETA_RX_INTR_MASK(rxq_number) | 2452 MVNETA_TX_INTR_MASK(txq_number) | 2453 MVNETA_MISCINTR_INTR_MASK); 2454 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2455 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2456 MVNETA_CAUSE_LINK_CHANGE | 2457 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2458 2459 phy_start(pp->phy_dev); 2460 netif_tx_start_all_queues(pp->dev); 2461 } 2462 2463 static void mvneta_stop_dev(struct mvneta_port *pp) 2464 { 2465 unsigned int cpu; 2466 2467 phy_stop(pp->phy_dev); 2468 2469 for_each_present_cpu(cpu) { 2470 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2471 2472 napi_disable(&port->napi); 2473 } 2474 2475 netif_carrier_off(pp->dev); 2476 2477 mvneta_port_down(pp); 2478 netif_tx_stop_all_queues(pp->dev); 2479 2480 /* Stop the port activity */ 2481 mvneta_port_disable(pp); 2482 2483 /* Clear all ethernet port interrupts */ 2484 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2485 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2486 2487 /* Mask all ethernet port interrupts */ 2488 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2489 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2490 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2491 2492 mvneta_tx_reset(pp); 2493 mvneta_rx_reset(pp); 2494 } 2495 2496 /* Return positive if MTU is valid */ 2497 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2498 { 2499 if (mtu < 68) { 2500 netdev_err(dev, "cannot change mtu to less than 68\n"); 2501 return -EINVAL; 2502 } 2503 2504 /* 9676 == 9700 - 20 and rounding to 8 */ 2505 if (mtu > 9676) { 2506 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2507 mtu = 9676; 2508 } 2509 2510 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2511 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2512 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2513 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2514 } 2515 2516 return mtu; 2517 } 2518 2519 /* Change the device mtu */ 2520 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2521 { 2522 struct mvneta_port *pp = netdev_priv(dev); 2523 int ret; 2524 2525 mtu = mvneta_check_mtu_valid(dev, mtu); 2526 if (mtu < 0) 2527 return -EINVAL; 2528 2529 dev->mtu = mtu; 2530 2531 if (!netif_running(dev)) { 2532 netdev_update_features(dev); 2533 return 0; 2534 } 2535 2536 /* The interface is running, so we have to force a 2537 * reallocation of the queues 2538 */ 2539 mvneta_stop_dev(pp); 2540 2541 mvneta_cleanup_txqs(pp); 2542 mvneta_cleanup_rxqs(pp); 2543 2544 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2545 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2546 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2547 2548 ret = mvneta_setup_rxqs(pp); 2549 if (ret) { 2550 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2551 return ret; 2552 } 2553 2554 ret = mvneta_setup_txqs(pp); 2555 if (ret) { 2556 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2557 return ret; 2558 } 2559 2560 mvneta_start_dev(pp); 2561 mvneta_port_up(pp); 2562 2563 netdev_update_features(dev); 2564 2565 return 0; 2566 } 2567 2568 static netdev_features_t mvneta_fix_features(struct net_device *dev, 2569 netdev_features_t features) 2570 { 2571 struct mvneta_port *pp = netdev_priv(dev); 2572 2573 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2574 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2575 netdev_info(dev, 2576 "Disable IP checksum for MTU greater than %dB\n", 2577 pp->tx_csum_limit); 2578 } 2579 2580 return features; 2581 } 2582 2583 /* Get mac address */ 2584 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2585 { 2586 u32 mac_addr_l, mac_addr_h; 2587 2588 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2589 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2590 addr[0] = (mac_addr_h >> 24) & 0xFF; 2591 addr[1] = (mac_addr_h >> 16) & 0xFF; 2592 addr[2] = (mac_addr_h >> 8) & 0xFF; 2593 addr[3] = mac_addr_h & 0xFF; 2594 addr[4] = (mac_addr_l >> 8) & 0xFF; 2595 addr[5] = mac_addr_l & 0xFF; 2596 } 2597 2598 /* Handle setting mac address */ 2599 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2600 { 2601 struct mvneta_port *pp = netdev_priv(dev); 2602 struct sockaddr *sockaddr = addr; 2603 int ret; 2604 2605 ret = eth_prepare_mac_addr_change(dev, addr); 2606 if (ret < 0) 2607 return ret; 2608 /* Remove previous address table entry */ 2609 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2610 2611 /* Set new addr in hw */ 2612 mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def); 2613 2614 eth_commit_mac_addr_change(dev, addr); 2615 return 0; 2616 } 2617 2618 static void mvneta_adjust_link(struct net_device *ndev) 2619 { 2620 struct mvneta_port *pp = netdev_priv(ndev); 2621 struct phy_device *phydev = pp->phy_dev; 2622 int status_change = 0; 2623 2624 if (phydev->link) { 2625 if ((pp->speed != phydev->speed) || 2626 (pp->duplex != phydev->duplex)) { 2627 u32 val; 2628 2629 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2630 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2631 MVNETA_GMAC_CONFIG_GMII_SPEED | 2632 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2633 2634 if (phydev->duplex) 2635 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2636 2637 if (phydev->speed == SPEED_1000) 2638 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2639 else if (phydev->speed == SPEED_100) 2640 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2641 2642 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2643 2644 pp->duplex = phydev->duplex; 2645 pp->speed = phydev->speed; 2646 } 2647 } 2648 2649 if (phydev->link != pp->link) { 2650 if (!phydev->link) { 2651 pp->duplex = -1; 2652 pp->speed = 0; 2653 } 2654 2655 pp->link = phydev->link; 2656 status_change = 1; 2657 } 2658 2659 if (status_change) { 2660 if (phydev->link) { 2661 if (!pp->use_inband_status) { 2662 u32 val = mvreg_read(pp, 2663 MVNETA_GMAC_AUTONEG_CONFIG); 2664 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2665 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2666 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2667 val); 2668 } 2669 mvneta_port_up(pp); 2670 } else { 2671 if (!pp->use_inband_status) { 2672 u32 val = mvreg_read(pp, 2673 MVNETA_GMAC_AUTONEG_CONFIG); 2674 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2675 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2676 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2677 val); 2678 } 2679 mvneta_port_down(pp); 2680 } 2681 phy_print_status(phydev); 2682 } 2683 } 2684 2685 static int mvneta_mdio_probe(struct mvneta_port *pp) 2686 { 2687 struct phy_device *phy_dev; 2688 2689 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2690 pp->phy_interface); 2691 if (!phy_dev) { 2692 netdev_err(pp->dev, "could not find the PHY\n"); 2693 return -ENODEV; 2694 } 2695 2696 phy_dev->supported &= PHY_GBIT_FEATURES; 2697 phy_dev->advertising = phy_dev->supported; 2698 2699 pp->phy_dev = phy_dev; 2700 pp->link = 0; 2701 pp->duplex = 0; 2702 pp->speed = 0; 2703 2704 return 0; 2705 } 2706 2707 static void mvneta_mdio_remove(struct mvneta_port *pp) 2708 { 2709 phy_disconnect(pp->phy_dev); 2710 pp->phy_dev = NULL; 2711 } 2712 2713 static void mvneta_percpu_enable(void *arg) 2714 { 2715 struct mvneta_port *pp = arg; 2716 2717 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 2718 } 2719 2720 static void mvneta_percpu_disable(void *arg) 2721 { 2722 struct mvneta_port *pp = arg; 2723 2724 disable_percpu_irq(pp->dev->irq); 2725 } 2726 2727 static void mvneta_percpu_elect(struct mvneta_port *pp) 2728 { 2729 int online_cpu_idx, cpu, i = 0; 2730 2731 online_cpu_idx = rxq_def % num_online_cpus(); 2732 2733 for_each_online_cpu(cpu) { 2734 if (i == online_cpu_idx) 2735 /* Enable per-CPU interrupt on the one CPU we 2736 * just elected 2737 */ 2738 smp_call_function_single(cpu, mvneta_percpu_enable, 2739 pp, true); 2740 else 2741 /* Disable per-CPU interrupt on all the other CPU */ 2742 smp_call_function_single(cpu, mvneta_percpu_disable, 2743 pp, true); 2744 i++; 2745 } 2746 }; 2747 2748 static int mvneta_percpu_notifier(struct notifier_block *nfb, 2749 unsigned long action, void *hcpu) 2750 { 2751 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 2752 cpu_notifier); 2753 int cpu = (unsigned long)hcpu, other_cpu; 2754 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2755 2756 switch (action) { 2757 case CPU_ONLINE: 2758 case CPU_ONLINE_FROZEN: 2759 netif_tx_stop_all_queues(pp->dev); 2760 2761 /* We have to synchronise on tha napi of each CPU 2762 * except the one just being waked up 2763 */ 2764 for_each_online_cpu(other_cpu) { 2765 if (other_cpu != cpu) { 2766 struct mvneta_pcpu_port *other_port = 2767 per_cpu_ptr(pp->ports, other_cpu); 2768 2769 napi_synchronize(&other_port->napi); 2770 } 2771 } 2772 2773 /* Mask all ethernet port interrupts */ 2774 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2775 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2776 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2777 napi_enable(&port->napi); 2778 2779 /* Enable per-CPU interrupt on the one CPU we care 2780 * about. 2781 */ 2782 mvneta_percpu_elect(pp); 2783 2784 /* Unmask all ethernet port interrupts */ 2785 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2786 MVNETA_RX_INTR_MASK(rxq_number) | 2787 MVNETA_TX_INTR_MASK(txq_number) | 2788 MVNETA_MISCINTR_INTR_MASK); 2789 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2790 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2791 MVNETA_CAUSE_LINK_CHANGE | 2792 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2793 netif_tx_start_all_queues(pp->dev); 2794 break; 2795 case CPU_DOWN_PREPARE: 2796 case CPU_DOWN_PREPARE_FROZEN: 2797 netif_tx_stop_all_queues(pp->dev); 2798 /* Mask all ethernet port interrupts */ 2799 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2800 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2801 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2802 2803 napi_synchronize(&port->napi); 2804 napi_disable(&port->napi); 2805 /* Disable per-CPU interrupts on the CPU that is 2806 * brought down. 2807 */ 2808 smp_call_function_single(cpu, mvneta_percpu_disable, 2809 pp, true); 2810 2811 break; 2812 case CPU_DEAD: 2813 case CPU_DEAD_FROZEN: 2814 /* Check if a new CPU must be elected now this on is down */ 2815 mvneta_percpu_elect(pp); 2816 /* Unmask all ethernet port interrupts */ 2817 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2818 MVNETA_RX_INTR_MASK(rxq_number) | 2819 MVNETA_TX_INTR_MASK(txq_number) | 2820 MVNETA_MISCINTR_INTR_MASK); 2821 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2822 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2823 MVNETA_CAUSE_LINK_CHANGE | 2824 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2825 netif_tx_start_all_queues(pp->dev); 2826 break; 2827 } 2828 2829 return NOTIFY_OK; 2830 } 2831 2832 static int mvneta_open(struct net_device *dev) 2833 { 2834 struct mvneta_port *pp = netdev_priv(dev); 2835 int ret; 2836 2837 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2838 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2839 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2840 2841 ret = mvneta_setup_rxqs(pp); 2842 if (ret) 2843 return ret; 2844 2845 ret = mvneta_setup_txqs(pp); 2846 if (ret) 2847 goto err_cleanup_rxqs; 2848 2849 /* Connect to port interrupt line */ 2850 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 2851 MVNETA_DRIVER_NAME, pp->ports); 2852 if (ret) { 2853 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2854 goto err_cleanup_txqs; 2855 } 2856 2857 /* Even though the documentation says that request_percpu_irq 2858 * doesn't enable the interrupts automatically, it actually 2859 * does so on the local CPU. 2860 * 2861 * Make sure it's disabled. 2862 */ 2863 mvneta_percpu_disable(pp); 2864 2865 /* Elect a CPU to handle our RX queue interrupt */ 2866 mvneta_percpu_elect(pp); 2867 2868 /* Register a CPU notifier to handle the case where our CPU 2869 * might be taken offline. 2870 */ 2871 register_cpu_notifier(&pp->cpu_notifier); 2872 2873 /* In default link is down */ 2874 netif_carrier_off(pp->dev); 2875 2876 ret = mvneta_mdio_probe(pp); 2877 if (ret < 0) { 2878 netdev_err(dev, "cannot probe MDIO bus\n"); 2879 goto err_free_irq; 2880 } 2881 2882 mvneta_start_dev(pp); 2883 2884 return 0; 2885 2886 err_free_irq: 2887 free_percpu_irq(pp->dev->irq, pp->ports); 2888 err_cleanup_txqs: 2889 mvneta_cleanup_txqs(pp); 2890 err_cleanup_rxqs: 2891 mvneta_cleanup_rxqs(pp); 2892 return ret; 2893 } 2894 2895 /* Stop the port, free port interrupt line */ 2896 static int mvneta_stop(struct net_device *dev) 2897 { 2898 struct mvneta_port *pp = netdev_priv(dev); 2899 int cpu; 2900 2901 mvneta_stop_dev(pp); 2902 mvneta_mdio_remove(pp); 2903 unregister_cpu_notifier(&pp->cpu_notifier); 2904 for_each_present_cpu(cpu) 2905 smp_call_function_single(cpu, mvneta_percpu_disable, pp, true); 2906 free_percpu_irq(dev->irq, pp->ports); 2907 mvneta_cleanup_rxqs(pp); 2908 mvneta_cleanup_txqs(pp); 2909 2910 return 0; 2911 } 2912 2913 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2914 { 2915 struct mvneta_port *pp = netdev_priv(dev); 2916 2917 if (!pp->phy_dev) 2918 return -ENOTSUPP; 2919 2920 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 2921 } 2922 2923 /* Ethtool methods */ 2924 2925 /* Get settings (phy address, speed) for ethtools */ 2926 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2927 { 2928 struct mvneta_port *pp = netdev_priv(dev); 2929 2930 if (!pp->phy_dev) 2931 return -ENODEV; 2932 2933 return phy_ethtool_gset(pp->phy_dev, cmd); 2934 } 2935 2936 /* Set settings (phy address, speed) for ethtools */ 2937 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2938 { 2939 struct mvneta_port *pp = netdev_priv(dev); 2940 2941 if (!pp->phy_dev) 2942 return -ENODEV; 2943 2944 return phy_ethtool_sset(pp->phy_dev, cmd); 2945 } 2946 2947 /* Set interrupt coalescing for ethtools */ 2948 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2949 struct ethtool_coalesce *c) 2950 { 2951 struct mvneta_port *pp = netdev_priv(dev); 2952 int queue; 2953 2954 for (queue = 0; queue < rxq_number; queue++) { 2955 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2956 rxq->time_coal = c->rx_coalesce_usecs; 2957 rxq->pkts_coal = c->rx_max_coalesced_frames; 2958 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2959 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2960 } 2961 2962 for (queue = 0; queue < txq_number; queue++) { 2963 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2964 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2965 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2966 } 2967 2968 return 0; 2969 } 2970 2971 /* get coalescing for ethtools */ 2972 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2973 struct ethtool_coalesce *c) 2974 { 2975 struct mvneta_port *pp = netdev_priv(dev); 2976 2977 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2978 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2979 2980 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2981 return 0; 2982 } 2983 2984 2985 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2986 struct ethtool_drvinfo *drvinfo) 2987 { 2988 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2989 sizeof(drvinfo->driver)); 2990 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2991 sizeof(drvinfo->version)); 2992 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2993 sizeof(drvinfo->bus_info)); 2994 } 2995 2996 2997 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2998 struct ethtool_ringparam *ring) 2999 { 3000 struct mvneta_port *pp = netdev_priv(netdev); 3001 3002 ring->rx_max_pending = MVNETA_MAX_RXD; 3003 ring->tx_max_pending = MVNETA_MAX_TXD; 3004 ring->rx_pending = pp->rx_ring_size; 3005 ring->tx_pending = pp->tx_ring_size; 3006 } 3007 3008 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3009 struct ethtool_ringparam *ring) 3010 { 3011 struct mvneta_port *pp = netdev_priv(dev); 3012 3013 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3014 return -EINVAL; 3015 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3016 ring->rx_pending : MVNETA_MAX_RXD; 3017 3018 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3019 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3020 if (pp->tx_ring_size != ring->tx_pending) 3021 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3022 pp->tx_ring_size, ring->tx_pending); 3023 3024 if (netif_running(dev)) { 3025 mvneta_stop(dev); 3026 if (mvneta_open(dev)) { 3027 netdev_err(dev, 3028 "error on opening device after ring param change\n"); 3029 return -ENOMEM; 3030 } 3031 } 3032 3033 return 0; 3034 } 3035 3036 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3037 u8 *data) 3038 { 3039 if (sset == ETH_SS_STATS) { 3040 int i; 3041 3042 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3043 memcpy(data + i * ETH_GSTRING_LEN, 3044 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3045 } 3046 } 3047 3048 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3049 { 3050 const struct mvneta_statistic *s; 3051 void __iomem *base = pp->base; 3052 u32 high, low, val; 3053 int i; 3054 3055 for (i = 0, s = mvneta_statistics; 3056 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3057 s++, i++) { 3058 val = 0; 3059 3060 switch (s->type) { 3061 case T_REG_32: 3062 val = readl_relaxed(base + s->offset); 3063 break; 3064 case T_REG_64: 3065 /* Docs say to read low 32-bit then high */ 3066 low = readl_relaxed(base + s->offset); 3067 high = readl_relaxed(base + s->offset + 4); 3068 val = (u64)high << 32 | low; 3069 break; 3070 } 3071 3072 pp->ethtool_stats[i] += val; 3073 } 3074 } 3075 3076 static void mvneta_ethtool_get_stats(struct net_device *dev, 3077 struct ethtool_stats *stats, u64 *data) 3078 { 3079 struct mvneta_port *pp = netdev_priv(dev); 3080 int i; 3081 3082 mvneta_ethtool_update_stats(pp); 3083 3084 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3085 *data++ = pp->ethtool_stats[i]; 3086 } 3087 3088 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3089 { 3090 if (sset == ETH_SS_STATS) 3091 return ARRAY_SIZE(mvneta_statistics); 3092 return -EOPNOTSUPP; 3093 } 3094 3095 static const struct net_device_ops mvneta_netdev_ops = { 3096 .ndo_open = mvneta_open, 3097 .ndo_stop = mvneta_stop, 3098 .ndo_start_xmit = mvneta_tx, 3099 .ndo_set_rx_mode = mvneta_set_rx_mode, 3100 .ndo_set_mac_address = mvneta_set_mac_addr, 3101 .ndo_change_mtu = mvneta_change_mtu, 3102 .ndo_fix_features = mvneta_fix_features, 3103 .ndo_get_stats64 = mvneta_get_stats64, 3104 .ndo_do_ioctl = mvneta_ioctl, 3105 }; 3106 3107 const struct ethtool_ops mvneta_eth_tool_ops = { 3108 .get_link = ethtool_op_get_link, 3109 .get_settings = mvneta_ethtool_get_settings, 3110 .set_settings = mvneta_ethtool_set_settings, 3111 .set_coalesce = mvneta_ethtool_set_coalesce, 3112 .get_coalesce = mvneta_ethtool_get_coalesce, 3113 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3114 .get_ringparam = mvneta_ethtool_get_ringparam, 3115 .set_ringparam = mvneta_ethtool_set_ringparam, 3116 .get_strings = mvneta_ethtool_get_strings, 3117 .get_ethtool_stats = mvneta_ethtool_get_stats, 3118 .get_sset_count = mvneta_ethtool_get_sset_count, 3119 }; 3120 3121 /* Initialize hw */ 3122 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3123 { 3124 int queue; 3125 3126 /* Disable port */ 3127 mvneta_port_disable(pp); 3128 3129 /* Set port default values */ 3130 mvneta_defaults_set(pp); 3131 3132 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3133 GFP_KERNEL); 3134 if (!pp->txqs) 3135 return -ENOMEM; 3136 3137 /* Initialize TX descriptor rings */ 3138 for (queue = 0; queue < txq_number; queue++) { 3139 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3140 txq->id = queue; 3141 txq->size = pp->tx_ring_size; 3142 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3143 } 3144 3145 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3146 GFP_KERNEL); 3147 if (!pp->rxqs) 3148 return -ENOMEM; 3149 3150 /* Create Rx descriptor rings */ 3151 for (queue = 0; queue < rxq_number; queue++) { 3152 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3153 rxq->id = queue; 3154 rxq->size = pp->rx_ring_size; 3155 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3156 rxq->time_coal = MVNETA_RX_COAL_USEC; 3157 } 3158 3159 return 0; 3160 } 3161 3162 /* platform glue : initialize decoding windows */ 3163 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3164 const struct mbus_dram_target_info *dram) 3165 { 3166 u32 win_enable; 3167 u32 win_protect; 3168 int i; 3169 3170 for (i = 0; i < 6; i++) { 3171 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3172 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3173 3174 if (i < 4) 3175 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3176 } 3177 3178 win_enable = 0x3f; 3179 win_protect = 0; 3180 3181 for (i = 0; i < dram->num_cs; i++) { 3182 const struct mbus_dram_window *cs = dram->cs + i; 3183 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3184 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3185 3186 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3187 (cs->size - 1) & 0xffff0000); 3188 3189 win_enable &= ~(1 << i); 3190 win_protect |= 3 << (2 * i); 3191 } 3192 3193 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3194 } 3195 3196 /* Power up the port */ 3197 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3198 { 3199 u32 ctrl; 3200 3201 /* MAC Cause register should be cleared */ 3202 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3203 3204 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3205 3206 /* Even though it might look weird, when we're configured in 3207 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3208 */ 3209 switch(phy_mode) { 3210 case PHY_INTERFACE_MODE_QSGMII: 3211 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3212 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3213 break; 3214 case PHY_INTERFACE_MODE_SGMII: 3215 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3216 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3217 break; 3218 case PHY_INTERFACE_MODE_RGMII: 3219 case PHY_INTERFACE_MODE_RGMII_ID: 3220 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3221 break; 3222 default: 3223 return -EINVAL; 3224 } 3225 3226 if (pp->use_inband_status) 3227 ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3228 3229 /* Cancel Port Reset */ 3230 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3231 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3232 3233 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3234 MVNETA_GMAC2_PORT_RESET) != 0) 3235 continue; 3236 3237 return 0; 3238 } 3239 3240 /* Device initialization routine */ 3241 static int mvneta_probe(struct platform_device *pdev) 3242 { 3243 const struct mbus_dram_target_info *dram_target_info; 3244 struct resource *res; 3245 struct device_node *dn = pdev->dev.of_node; 3246 struct device_node *phy_node; 3247 struct mvneta_port *pp; 3248 struct net_device *dev; 3249 const char *dt_mac_addr; 3250 char hw_mac_addr[ETH_ALEN]; 3251 const char *mac_from; 3252 const char *managed; 3253 int phy_mode; 3254 int err; 3255 int cpu; 3256 3257 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3258 if (!dev) 3259 return -ENOMEM; 3260 3261 dev->irq = irq_of_parse_and_map(dn, 0); 3262 if (dev->irq == 0) { 3263 err = -EINVAL; 3264 goto err_free_netdev; 3265 } 3266 3267 phy_node = of_parse_phandle(dn, "phy", 0); 3268 if (!phy_node) { 3269 if (!of_phy_is_fixed_link(dn)) { 3270 dev_err(&pdev->dev, "no PHY specified\n"); 3271 err = -ENODEV; 3272 goto err_free_irq; 3273 } 3274 3275 err = of_phy_register_fixed_link(dn); 3276 if (err < 0) { 3277 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3278 goto err_free_irq; 3279 } 3280 3281 /* In the case of a fixed PHY, the DT node associated 3282 * to the PHY is the Ethernet MAC DT node. 3283 */ 3284 phy_node = of_node_get(dn); 3285 } 3286 3287 phy_mode = of_get_phy_mode(dn); 3288 if (phy_mode < 0) { 3289 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3290 err = -EINVAL; 3291 goto err_put_phy_node; 3292 } 3293 3294 dev->tx_queue_len = MVNETA_MAX_TXD; 3295 dev->watchdog_timeo = 5 * HZ; 3296 dev->netdev_ops = &mvneta_netdev_ops; 3297 3298 dev->ethtool_ops = &mvneta_eth_tool_ops; 3299 3300 pp = netdev_priv(dev); 3301 pp->phy_node = phy_node; 3302 pp->phy_interface = phy_mode; 3303 3304 err = of_property_read_string(dn, "managed", &managed); 3305 pp->use_inband_status = (err == 0 && 3306 strcmp(managed, "in-band-status") == 0); 3307 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 3308 3309 pp->clk = devm_clk_get(&pdev->dev, NULL); 3310 if (IS_ERR(pp->clk)) { 3311 err = PTR_ERR(pp->clk); 3312 goto err_put_phy_node; 3313 } 3314 3315 clk_prepare_enable(pp->clk); 3316 3317 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3318 pp->base = devm_ioremap_resource(&pdev->dev, res); 3319 if (IS_ERR(pp->base)) { 3320 err = PTR_ERR(pp->base); 3321 goto err_clk; 3322 } 3323 3324 /* Alloc per-cpu port structure */ 3325 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 3326 if (!pp->ports) { 3327 err = -ENOMEM; 3328 goto err_clk; 3329 } 3330 3331 /* Alloc per-cpu stats */ 3332 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3333 if (!pp->stats) { 3334 err = -ENOMEM; 3335 goto err_free_ports; 3336 } 3337 3338 dt_mac_addr = of_get_mac_address(dn); 3339 if (dt_mac_addr) { 3340 mac_from = "device tree"; 3341 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3342 } else { 3343 mvneta_get_mac_addr(pp, hw_mac_addr); 3344 if (is_valid_ether_addr(hw_mac_addr)) { 3345 mac_from = "hardware"; 3346 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3347 } else { 3348 mac_from = "random"; 3349 eth_hw_addr_random(dev); 3350 } 3351 } 3352 3353 if (of_device_is_compatible(dn, "marvell,armada-370-neta")) 3354 pp->tx_csum_limit = 1600; 3355 3356 pp->tx_ring_size = MVNETA_MAX_TXD; 3357 pp->rx_ring_size = MVNETA_MAX_RXD; 3358 3359 pp->dev = dev; 3360 SET_NETDEV_DEV(dev, &pdev->dev); 3361 3362 err = mvneta_init(&pdev->dev, pp); 3363 if (err < 0) 3364 goto err_free_stats; 3365 3366 err = mvneta_port_power_up(pp, phy_mode); 3367 if (err < 0) { 3368 dev_err(&pdev->dev, "can't power up port\n"); 3369 goto err_free_stats; 3370 } 3371 3372 dram_target_info = mv_mbus_dram_info(); 3373 if (dram_target_info) 3374 mvneta_conf_mbus_windows(pp, dram_target_info); 3375 3376 for_each_present_cpu(cpu) { 3377 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3378 3379 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3380 port->pp = pp; 3381 } 3382 3383 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3384 dev->hw_features |= dev->features; 3385 dev->vlan_features |= dev->features; 3386 dev->priv_flags |= IFF_UNICAST_FLT; 3387 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3388 3389 err = register_netdev(dev); 3390 if (err < 0) { 3391 dev_err(&pdev->dev, "failed to register\n"); 3392 goto err_free_stats; 3393 } 3394 3395 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3396 dev->dev_addr); 3397 3398 platform_set_drvdata(pdev, pp->dev); 3399 3400 if (pp->use_inband_status) { 3401 struct phy_device *phy = of_phy_find_device(dn); 3402 3403 mvneta_fixed_link_update(pp, phy); 3404 3405 put_device(&phy->dev); 3406 } 3407 3408 return 0; 3409 3410 err_free_stats: 3411 free_percpu(pp->stats); 3412 err_free_ports: 3413 free_percpu(pp->ports); 3414 err_clk: 3415 clk_disable_unprepare(pp->clk); 3416 err_put_phy_node: 3417 of_node_put(phy_node); 3418 err_free_irq: 3419 irq_dispose_mapping(dev->irq); 3420 err_free_netdev: 3421 free_netdev(dev); 3422 return err; 3423 } 3424 3425 /* Device removal routine */ 3426 static int mvneta_remove(struct platform_device *pdev) 3427 { 3428 struct net_device *dev = platform_get_drvdata(pdev); 3429 struct mvneta_port *pp = netdev_priv(dev); 3430 3431 unregister_netdev(dev); 3432 clk_disable_unprepare(pp->clk); 3433 free_percpu(pp->ports); 3434 free_percpu(pp->stats); 3435 irq_dispose_mapping(dev->irq); 3436 of_node_put(pp->phy_node); 3437 free_netdev(dev); 3438 3439 return 0; 3440 } 3441 3442 static const struct of_device_id mvneta_match[] = { 3443 { .compatible = "marvell,armada-370-neta" }, 3444 { .compatible = "marvell,armada-xp-neta" }, 3445 { } 3446 }; 3447 MODULE_DEVICE_TABLE(of, mvneta_match); 3448 3449 static struct platform_driver mvneta_driver = { 3450 .probe = mvneta_probe, 3451 .remove = mvneta_remove, 3452 .driver = { 3453 .name = MVNETA_DRIVER_NAME, 3454 .of_match_table = mvneta_match, 3455 }, 3456 }; 3457 3458 module_platform_driver(mvneta_driver); 3459 3460 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3461 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3462 MODULE_LICENSE("GPL"); 3463 3464 module_param(rxq_number, int, S_IRUGO); 3465 module_param(txq_number, int, S_IRUGO); 3466 3467 module_param(rxq_def, int, S_IRUGO); 3468 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3469