xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 #include <linux/inetdevice.h>
20 #include <linux/mbus.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/if_vlan.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/io.h>
27 #include <net/tso.h>
28 #include <linux/of.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/of_address.h>
33 #include <linux/phy.h>
34 #include <linux/clk.h>
35 #include <linux/cpu.h>
36 
37 /* Registers */
38 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
39 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
40 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
41 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
42 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
43 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
44 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
45 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
46 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
47 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
48 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
49 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
51 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
52 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
53 #define MVNETA_PORT_RX_RESET                    0x1cc0
54 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
55 #define MVNETA_PHY_ADDR                         0x2000
56 #define      MVNETA_PHY_ADDR_MASK               0x1f
57 #define MVNETA_MBUS_RETRY                       0x2010
58 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
59 #define MVNETA_UNIT_CONTROL                     0x20B0
60 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
61 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
62 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
63 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
64 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
65 #define MVNETA_PORT_CONFIG                      0x2400
66 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
67 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
68 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
69 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
70 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
71 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
72 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
73 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
74 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
75 						 MVNETA_DEF_RXQ_ARP(q)	 | \
76 						 MVNETA_DEF_RXQ_TCP(q)	 | \
77 						 MVNETA_DEF_RXQ_UDP(q)	 | \
78 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
79 						 MVNETA_TX_UNSET_ERR_SUM | \
80 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
81 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
82 #define MVNETA_MAC_ADDR_LOW                      0x2414
83 #define MVNETA_MAC_ADDR_HIGH                     0x2418
84 #define MVNETA_SDMA_CONFIG                       0x241c
85 #define      MVNETA_SDMA_BRST_SIZE_16            4
86 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
87 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
88 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
89 #define      MVNETA_DESC_SWAP                    BIT(6)
90 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
91 #define MVNETA_PORT_STATUS                       0x2444
92 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
93 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
94 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
95 #define MVNETA_SERDES_CFG			 0x24A0
96 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
97 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
98 #define MVNETA_TYPE_PRIO                         0x24bc
99 #define      MVNETA_FORCE_UNI                    BIT(21)
100 #define MVNETA_TXQ_CMD_1                         0x24e4
101 #define MVNETA_TXQ_CMD                           0x2448
102 #define      MVNETA_TXQ_DISABLE_SHIFT            8
103 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
104 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
105 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
106 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
107 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
108 #define MVNETA_ACC_MODE                          0x2500
109 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
110 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
111 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
112 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
113 
114 /* Exception Interrupt Port/Queue Cause register */
115 
116 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
117 #define MVNETA_INTR_NEW_MASK                     0x25a4
118 
119 /* bits  0..7  = TXQ SENT, one bit per queue.
120  * bits  8..15 = RXQ OCCUP, one bit per queue.
121  * bits 16..23 = RXQ FREE, one bit per queue.
122  * bit  29 = OLD_REG_SUM, see old reg ?
123  * bit  30 = TX_ERR_SUM, one bit for 4 ports
124  * bit  31 = MISC_SUM,   one bit for 4 ports
125  */
126 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
127 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
128 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
129 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
130 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
131 
132 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
133 #define MVNETA_INTR_OLD_MASK                     0x25ac
134 
135 /* Data Path Port/Queue Cause Register */
136 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
137 #define MVNETA_INTR_MISC_MASK                    0x25b4
138 
139 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
140 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
141 #define      MVNETA_CAUSE_PTP                    BIT(4)
142 
143 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
144 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
145 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
146 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
147 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
148 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
149 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
150 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
151 
152 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
153 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
154 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
155 
156 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
157 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
158 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
159 
160 #define MVNETA_INTR_ENABLE                       0x25b8
161 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
162 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000  // note: neta says it's 0x000000FF
163 
164 #define MVNETA_RXQ_CMD                           0x2680
165 #define      MVNETA_RXQ_DISABLE_SHIFT            8
166 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
167 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
168 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
169 #define MVNETA_GMAC_CTRL_0                       0x2c00
170 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
171 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
172 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
173 #define MVNETA_GMAC_CTRL_2                       0x2c08
174 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
175 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
176 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
177 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
178 #define MVNETA_GMAC_STATUS                       0x2c10
179 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
180 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
181 #define      MVNETA_GMAC_SPEED_100               BIT(2)
182 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
183 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
184 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
185 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
186 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
187 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
188 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
189 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
190 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
191 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
192 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
193 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
194 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
195 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
196 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
197 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
198 #define      MVNETA_MIB_LATE_COLLISION           0x7c
199 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
200 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
201 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
202 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
203 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
204 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
205 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
206 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
207 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
208 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
209 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
210 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
211 #define MVNETA_PORT_TX_RESET                     0x3cf0
212 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
213 #define MVNETA_TX_MTU                            0x3e0c
214 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
215 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
216 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
217 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
218 
219 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
220 
221 /* Descriptor ring Macros */
222 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
223 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
224 
225 /* Various constants */
226 
227 /* Coalescing */
228 #define MVNETA_TXDONE_COAL_PKTS		1
229 #define MVNETA_RX_COAL_PKTS		32
230 #define MVNETA_RX_COAL_USEC		100
231 
232 /* The two bytes Marvell header. Either contains a special value used
233  * by Marvell switches when a specific hardware mode is enabled (not
234  * supported by this driver) or is filled automatically by zeroes on
235  * the RX side. Those two bytes being at the front of the Ethernet
236  * header, they allow to have the IP header aligned on a 4 bytes
237  * boundary automatically: the hardware skips those two bytes on its
238  * own.
239  */
240 #define MVNETA_MH_SIZE			2
241 
242 #define MVNETA_VLAN_TAG_LEN             4
243 
244 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
245 #define MVNETA_TX_CSUM_MAX_SIZE		9800
246 #define MVNETA_ACC_MODE_EXT		1
247 
248 /* Timeout constants */
249 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
250 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
251 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
252 
253 #define MVNETA_TX_MTU_MAX		0x3ffff
254 
255 /* TSO header size */
256 #define TSO_HEADER_SIZE 128
257 
258 /* Max number of Rx descriptors */
259 #define MVNETA_MAX_RXD 128
260 
261 /* Max number of Tx descriptors */
262 #define MVNETA_MAX_TXD 532
263 
264 /* Max number of allowed TCP segments for software TSO */
265 #define MVNETA_MAX_TSO_SEGS 100
266 
267 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
268 
269 /* descriptor aligned size */
270 #define MVNETA_DESC_ALIGNED_SIZE	32
271 
272 #define MVNETA_RX_PKT_SIZE(mtu) \
273 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
274 	      ETH_HLEN + ETH_FCS_LEN,			     \
275 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
276 
277 #define IS_TSO_HEADER(txq, addr) \
278 	((addr >= txq->tso_hdrs_phys) && \
279 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
280 
281 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
282 
283 struct mvneta_statistic {
284 	unsigned short offset;
285 	unsigned short type;
286 	const char name[ETH_GSTRING_LEN];
287 };
288 
289 #define T_REG_32	32
290 #define T_REG_64	64
291 
292 static const struct mvneta_statistic mvneta_statistics[] = {
293 	{ 0x3000, T_REG_64, "good_octets_received", },
294 	{ 0x3010, T_REG_32, "good_frames_received", },
295 	{ 0x3008, T_REG_32, "bad_octets_received", },
296 	{ 0x3014, T_REG_32, "bad_frames_received", },
297 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
298 	{ 0x301c, T_REG_32, "multicast_frames_received", },
299 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
300 	{ 0x3058, T_REG_32, "good_fc_received", },
301 	{ 0x305c, T_REG_32, "bad_fc_received", },
302 	{ 0x3060, T_REG_32, "undersize_received", },
303 	{ 0x3064, T_REG_32, "fragments_received", },
304 	{ 0x3068, T_REG_32, "oversize_received", },
305 	{ 0x306c, T_REG_32, "jabber_received", },
306 	{ 0x3070, T_REG_32, "mac_receive_error", },
307 	{ 0x3074, T_REG_32, "bad_crc_event", },
308 	{ 0x3078, T_REG_32, "collision", },
309 	{ 0x307c, T_REG_32, "late_collision", },
310 	{ 0x2484, T_REG_32, "rx_discard", },
311 	{ 0x2488, T_REG_32, "rx_overrun", },
312 	{ 0x3020, T_REG_32, "frames_64_octets", },
313 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
314 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
315 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
316 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
317 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
318 	{ 0x3038, T_REG_64, "good_octets_sent", },
319 	{ 0x3040, T_REG_32, "good_frames_sent", },
320 	{ 0x3044, T_REG_32, "excessive_collision", },
321 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
322 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
323 	{ 0x3054, T_REG_32, "fc_sent", },
324 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
325 };
326 
327 struct mvneta_pcpu_stats {
328 	struct	u64_stats_sync syncp;
329 	u64	rx_packets;
330 	u64	rx_bytes;
331 	u64	tx_packets;
332 	u64	tx_bytes;
333 };
334 
335 struct mvneta_pcpu_port {
336 	/* Pointer to the shared port */
337 	struct mvneta_port	*pp;
338 
339 	/* Pointer to the CPU-local NAPI struct */
340 	struct napi_struct	napi;
341 
342 	/* Cause of the previous interrupt */
343 	u32			cause_rx_tx;
344 };
345 
346 struct mvneta_port {
347 	struct mvneta_pcpu_port __percpu	*ports;
348 	struct mvneta_pcpu_stats __percpu	*stats;
349 
350 	int pkt_size;
351 	unsigned int frag_size;
352 	void __iomem *base;
353 	struct mvneta_rx_queue *rxqs;
354 	struct mvneta_tx_queue *txqs;
355 	struct net_device *dev;
356 	struct notifier_block cpu_notifier;
357 
358 	/* Core clock */
359 	struct clk *clk;
360 	u8 mcast_count[256];
361 	u16 tx_ring_size;
362 	u16 rx_ring_size;
363 
364 	struct mii_bus *mii_bus;
365 	struct phy_device *phy_dev;
366 	phy_interface_t phy_interface;
367 	struct device_node *phy_node;
368 	unsigned int link;
369 	unsigned int duplex;
370 	unsigned int speed;
371 	unsigned int tx_csum_limit;
372 	int use_inband_status:1;
373 
374 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
375 };
376 
377 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
378  * layout of the transmit and reception DMA descriptors, and their
379  * layout is therefore defined by the hardware design
380  */
381 
382 #define MVNETA_TX_L3_OFF_SHIFT	0
383 #define MVNETA_TX_IP_HLEN_SHIFT	8
384 #define MVNETA_TX_L4_UDP	BIT(16)
385 #define MVNETA_TX_L3_IP6	BIT(17)
386 #define MVNETA_TXD_IP_CSUM	BIT(18)
387 #define MVNETA_TXD_Z_PAD	BIT(19)
388 #define MVNETA_TXD_L_DESC	BIT(20)
389 #define MVNETA_TXD_F_DESC	BIT(21)
390 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
391 				 MVNETA_TXD_L_DESC | \
392 				 MVNETA_TXD_F_DESC)
393 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
394 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
395 
396 #define MVNETA_RXD_ERR_CRC		0x0
397 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
398 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
399 #define MVNETA_RXD_ERR_LEN		BIT(18)
400 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
401 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
402 #define MVNETA_RXD_L3_IP4		BIT(25)
403 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
404 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
405 
406 #if defined(__LITTLE_ENDIAN)
407 struct mvneta_tx_desc {
408 	u32  command;		/* Options used by HW for packet transmitting.*/
409 	u16  reserverd1;	/* csum_l4 (for future use)		*/
410 	u16  data_size;		/* Data size of transmitted packet in bytes */
411 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
412 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
413 	u32  reserved3[4];	/* Reserved - (for future use)		*/
414 };
415 
416 struct mvneta_rx_desc {
417 	u32  status;		/* Info about received packet		*/
418 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
419 	u16  data_size;		/* Size of received packet in bytes	*/
420 
421 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
422 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
423 
424 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
425 	u16  reserved3;		/* prefetch_cmd, for future use		*/
426 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
427 
428 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
429 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
430 };
431 #else
432 struct mvneta_tx_desc {
433 	u16  data_size;		/* Data size of transmitted packet in bytes */
434 	u16  reserverd1;	/* csum_l4 (for future use)		*/
435 	u32  command;		/* Options used by HW for packet transmitting.*/
436 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
437 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
438 	u32  reserved3[4];	/* Reserved - (for future use)		*/
439 };
440 
441 struct mvneta_rx_desc {
442 	u16  data_size;		/* Size of received packet in bytes	*/
443 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
444 	u32  status;		/* Info about received packet		*/
445 
446 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
447 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
448 
449 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
450 	u16  reserved3;		/* prefetch_cmd, for future use		*/
451 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
452 
453 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
454 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
455 };
456 #endif
457 
458 struct mvneta_tx_queue {
459 	/* Number of this TX queue, in the range 0-7 */
460 	u8 id;
461 
462 	/* Number of TX DMA descriptors in the descriptor ring */
463 	int size;
464 
465 	/* Number of currently used TX DMA descriptor in the
466 	 * descriptor ring
467 	 */
468 	int count;
469 	int tx_stop_threshold;
470 	int tx_wake_threshold;
471 
472 	/* Array of transmitted skb */
473 	struct sk_buff **tx_skb;
474 
475 	/* Index of last TX DMA descriptor that was inserted */
476 	int txq_put_index;
477 
478 	/* Index of the TX DMA descriptor to be cleaned up */
479 	int txq_get_index;
480 
481 	u32 done_pkts_coal;
482 
483 	/* Virtual address of the TX DMA descriptors array */
484 	struct mvneta_tx_desc *descs;
485 
486 	/* DMA address of the TX DMA descriptors array */
487 	dma_addr_t descs_phys;
488 
489 	/* Index of the last TX DMA descriptor */
490 	int last_desc;
491 
492 	/* Index of the next TX DMA descriptor to process */
493 	int next_desc_to_proc;
494 
495 	/* DMA buffers for TSO headers */
496 	char *tso_hdrs;
497 
498 	/* DMA address of TSO headers */
499 	dma_addr_t tso_hdrs_phys;
500 };
501 
502 struct mvneta_rx_queue {
503 	/* rx queue number, in the range 0-7 */
504 	u8 id;
505 
506 	/* num of rx descriptors in the rx descriptor ring */
507 	int size;
508 
509 	/* counter of times when mvneta_refill() failed */
510 	int missed;
511 
512 	u32 pkts_coal;
513 	u32 time_coal;
514 
515 	/* Virtual address of the RX DMA descriptors array */
516 	struct mvneta_rx_desc *descs;
517 
518 	/* DMA address of the RX DMA descriptors array */
519 	dma_addr_t descs_phys;
520 
521 	/* Index of the last RX DMA descriptor */
522 	int last_desc;
523 
524 	/* Index of the next RX DMA descriptor to process */
525 	int next_desc_to_proc;
526 };
527 
528 /* The hardware supports eight (8) rx queues, but we are only allowing
529  * the first one to be used. Therefore, let's just allocate one queue.
530  */
531 static int rxq_number = 8;
532 static int txq_number = 8;
533 
534 static int rxq_def;
535 
536 static int rx_copybreak __read_mostly = 256;
537 
538 #define MVNETA_DRIVER_NAME "mvneta"
539 #define MVNETA_DRIVER_VERSION "1.0"
540 
541 /* Utility/helper methods */
542 
543 /* Write helper method */
544 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
545 {
546 	writel(data, pp->base + offset);
547 }
548 
549 /* Read helper method */
550 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
551 {
552 	return readl(pp->base + offset);
553 }
554 
555 /* Increment txq get counter */
556 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
557 {
558 	txq->txq_get_index++;
559 	if (txq->txq_get_index == txq->size)
560 		txq->txq_get_index = 0;
561 }
562 
563 /* Increment txq put counter */
564 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
565 {
566 	txq->txq_put_index++;
567 	if (txq->txq_put_index == txq->size)
568 		txq->txq_put_index = 0;
569 }
570 
571 
572 /* Clear all MIB counters */
573 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
574 {
575 	int i;
576 	u32 dummy;
577 
578 	/* Perform dummy reads from MIB counters */
579 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
580 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
581 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
582 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
583 }
584 
585 /* Get System Network Statistics */
586 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
587 					     struct rtnl_link_stats64 *stats)
588 {
589 	struct mvneta_port *pp = netdev_priv(dev);
590 	unsigned int start;
591 	int cpu;
592 
593 	for_each_possible_cpu(cpu) {
594 		struct mvneta_pcpu_stats *cpu_stats;
595 		u64 rx_packets;
596 		u64 rx_bytes;
597 		u64 tx_packets;
598 		u64 tx_bytes;
599 
600 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
601 		do {
602 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
603 			rx_packets = cpu_stats->rx_packets;
604 			rx_bytes   = cpu_stats->rx_bytes;
605 			tx_packets = cpu_stats->tx_packets;
606 			tx_bytes   = cpu_stats->tx_bytes;
607 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
608 
609 		stats->rx_packets += rx_packets;
610 		stats->rx_bytes   += rx_bytes;
611 		stats->tx_packets += tx_packets;
612 		stats->tx_bytes   += tx_bytes;
613 	}
614 
615 	stats->rx_errors	= dev->stats.rx_errors;
616 	stats->rx_dropped	= dev->stats.rx_dropped;
617 
618 	stats->tx_dropped	= dev->stats.tx_dropped;
619 
620 	return stats;
621 }
622 
623 /* Rx descriptors helper methods */
624 
625 /* Checks whether the RX descriptor having this status is both the first
626  * and the last descriptor for the RX packet. Each RX packet is currently
627  * received through a single RX descriptor, so not having each RX
628  * descriptor with its first and last bits set is an error
629  */
630 static int mvneta_rxq_desc_is_first_last(u32 status)
631 {
632 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
633 		MVNETA_RXD_FIRST_LAST_DESC;
634 }
635 
636 /* Add number of descriptors ready to receive new packets */
637 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
638 					  struct mvneta_rx_queue *rxq,
639 					  int ndescs)
640 {
641 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
642 	 * be added at once
643 	 */
644 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
645 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
646 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
647 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
648 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
649 	}
650 
651 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
652 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
653 }
654 
655 /* Get number of RX descriptors occupied by received packets */
656 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
657 					struct mvneta_rx_queue *rxq)
658 {
659 	u32 val;
660 
661 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
662 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
663 }
664 
665 /* Update num of rx desc called upon return from rx path or
666  * from mvneta_rxq_drop_pkts().
667  */
668 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
669 				       struct mvneta_rx_queue *rxq,
670 				       int rx_done, int rx_filled)
671 {
672 	u32 val;
673 
674 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
675 		val = rx_done |
676 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
677 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
678 		return;
679 	}
680 
681 	/* Only 255 descriptors can be added at once */
682 	while ((rx_done > 0) || (rx_filled > 0)) {
683 		if (rx_done <= 0xff) {
684 			val = rx_done;
685 			rx_done = 0;
686 		} else {
687 			val = 0xff;
688 			rx_done -= 0xff;
689 		}
690 		if (rx_filled <= 0xff) {
691 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
692 			rx_filled = 0;
693 		} else {
694 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
695 			rx_filled -= 0xff;
696 		}
697 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
698 	}
699 }
700 
701 /* Get pointer to next RX descriptor to be processed by SW */
702 static struct mvneta_rx_desc *
703 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
704 {
705 	int rx_desc = rxq->next_desc_to_proc;
706 
707 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
708 	prefetch(rxq->descs + rxq->next_desc_to_proc);
709 	return rxq->descs + rx_desc;
710 }
711 
712 /* Change maximum receive size of the port. */
713 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
714 {
715 	u32 val;
716 
717 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
718 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
719 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
720 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
721 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
722 }
723 
724 
725 /* Set rx queue offset */
726 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
727 				  struct mvneta_rx_queue *rxq,
728 				  int offset)
729 {
730 	u32 val;
731 
732 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
733 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
734 
735 	/* Offset is in */
736 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
737 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
738 }
739 
740 
741 /* Tx descriptors helper methods */
742 
743 /* Update HW with number of TX descriptors to be sent */
744 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
745 				     struct mvneta_tx_queue *txq,
746 				     int pend_desc)
747 {
748 	u32 val;
749 
750 	/* Only 255 descriptors can be added at once ; Assume caller
751 	 * process TX desriptors in quanta less than 256
752 	 */
753 	val = pend_desc;
754 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
755 }
756 
757 /* Get pointer to next TX descriptor to be processed (send) by HW */
758 static struct mvneta_tx_desc *
759 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
760 {
761 	int tx_desc = txq->next_desc_to_proc;
762 
763 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
764 	return txq->descs + tx_desc;
765 }
766 
767 /* Release the last allocated TX descriptor. Useful to handle DMA
768  * mapping failures in the TX path.
769  */
770 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
771 {
772 	if (txq->next_desc_to_proc == 0)
773 		txq->next_desc_to_proc = txq->last_desc - 1;
774 	else
775 		txq->next_desc_to_proc--;
776 }
777 
778 /* Set rxq buf size */
779 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
780 				    struct mvneta_rx_queue *rxq,
781 				    int buf_size)
782 {
783 	u32 val;
784 
785 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
786 
787 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
788 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
789 
790 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
791 }
792 
793 /* Disable buffer management (BM) */
794 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
795 				  struct mvneta_rx_queue *rxq)
796 {
797 	u32 val;
798 
799 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
800 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
801 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
802 }
803 
804 /* Start the Ethernet port RX and TX activity */
805 static void mvneta_port_up(struct mvneta_port *pp)
806 {
807 	int queue;
808 	u32 q_map;
809 
810 	/* Enable all initialized TXs. */
811 	q_map = 0;
812 	for (queue = 0; queue < txq_number; queue++) {
813 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
814 		if (txq->descs != NULL)
815 			q_map |= (1 << queue);
816 	}
817 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
818 
819 	/* Enable all initialized RXQs. */
820 	mvreg_write(pp, MVNETA_RXQ_CMD, BIT(rxq_def));
821 }
822 
823 /* Stop the Ethernet port activity */
824 static void mvneta_port_down(struct mvneta_port *pp)
825 {
826 	u32 val;
827 	int count;
828 
829 	/* Stop Rx port activity. Check port Rx activity. */
830 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
831 
832 	/* Issue stop command for active channels only */
833 	if (val != 0)
834 		mvreg_write(pp, MVNETA_RXQ_CMD,
835 			    val << MVNETA_RXQ_DISABLE_SHIFT);
836 
837 	/* Wait for all Rx activity to terminate. */
838 	count = 0;
839 	do {
840 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
841 			netdev_warn(pp->dev,
842 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
843 				    val);
844 			break;
845 		}
846 		mdelay(1);
847 
848 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
849 	} while (val & 0xff);
850 
851 	/* Stop Tx port activity. Check port Tx activity. Issue stop
852 	 * command for active channels only
853 	 */
854 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
855 
856 	if (val != 0)
857 		mvreg_write(pp, MVNETA_TXQ_CMD,
858 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
859 
860 	/* Wait for all Tx activity to terminate. */
861 	count = 0;
862 	do {
863 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
864 			netdev_warn(pp->dev,
865 				    "TIMEOUT for TX stopped status=0x%08x\n",
866 				    val);
867 			break;
868 		}
869 		mdelay(1);
870 
871 		/* Check TX Command reg that all Txqs are stopped */
872 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
873 
874 	} while (val & 0xff);
875 
876 	/* Double check to verify that TX FIFO is empty */
877 	count = 0;
878 	do {
879 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
880 			netdev_warn(pp->dev,
881 				    "TX FIFO empty timeout status=0x08%x\n",
882 				    val);
883 			break;
884 		}
885 		mdelay(1);
886 
887 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
888 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
889 		 (val & MVNETA_TX_IN_PRGRS));
890 
891 	udelay(200);
892 }
893 
894 /* Enable the port by setting the port enable bit of the MAC control register */
895 static void mvneta_port_enable(struct mvneta_port *pp)
896 {
897 	u32 val;
898 
899 	/* Enable port */
900 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
901 	val |= MVNETA_GMAC0_PORT_ENABLE;
902 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
903 }
904 
905 /* Disable the port and wait for about 200 usec before retuning */
906 static void mvneta_port_disable(struct mvneta_port *pp)
907 {
908 	u32 val;
909 
910 	/* Reset the Enable bit in the Serial Control Register */
911 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
912 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
913 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
914 
915 	udelay(200);
916 }
917 
918 /* Multicast tables methods */
919 
920 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
921 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
922 {
923 	int offset;
924 	u32 val;
925 
926 	if (queue == -1) {
927 		val = 0;
928 	} else {
929 		val = 0x1 | (queue << 1);
930 		val |= (val << 24) | (val << 16) | (val << 8);
931 	}
932 
933 	for (offset = 0; offset <= 0xc; offset += 4)
934 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
935 }
936 
937 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
938 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
939 {
940 	int offset;
941 	u32 val;
942 
943 	if (queue == -1) {
944 		val = 0;
945 	} else {
946 		val = 0x1 | (queue << 1);
947 		val |= (val << 24) | (val << 16) | (val << 8);
948 	}
949 
950 	for (offset = 0; offset <= 0xfc; offset += 4)
951 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
952 
953 }
954 
955 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
956 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
957 {
958 	int offset;
959 	u32 val;
960 
961 	if (queue == -1) {
962 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
963 		val = 0;
964 	} else {
965 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
966 		val = 0x1 | (queue << 1);
967 		val |= (val << 24) | (val << 16) | (val << 8);
968 	}
969 
970 	for (offset = 0; offset <= 0xfc; offset += 4)
971 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
972 }
973 
974 /* This method sets defaults to the NETA port:
975  *	Clears interrupt Cause and Mask registers.
976  *	Clears all MAC tables.
977  *	Sets defaults to all registers.
978  *	Resets RX and TX descriptor rings.
979  *	Resets PHY.
980  * This method can be called after mvneta_port_down() to return the port
981  *	settings to defaults.
982  */
983 static void mvneta_defaults_set(struct mvneta_port *pp)
984 {
985 	int cpu;
986 	int queue;
987 	u32 val;
988 
989 	/* Clear all Cause registers */
990 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
991 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
992 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
993 
994 	/* Mask all interrupts */
995 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
996 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
997 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
998 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
999 
1000 	/* Enable MBUS Retry bit16 */
1001 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1002 
1003 	/* Set CPU queue access map - all CPUs have access to all RX
1004 	 * queues and to all TX queues
1005 	 */
1006 	for_each_present_cpu(cpu)
1007 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
1008 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
1009 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
1010 
1011 	/* Reset RX and TX DMAs */
1012 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1013 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1014 
1015 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1016 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1017 	for (queue = 0; queue < txq_number; queue++) {
1018 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1019 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1020 	}
1021 
1022 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1023 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1024 
1025 	/* Set Port Acceleration Mode */
1026 	val = MVNETA_ACC_MODE_EXT;
1027 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1028 
1029 	/* Update val of portCfg register accordingly with all RxQueue types */
1030 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
1031 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1032 
1033 	val = 0;
1034 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1035 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1036 
1037 	/* Build PORT_SDMA_CONFIG_REG */
1038 	val = 0;
1039 
1040 	/* Default burst size */
1041 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1042 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1043 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1044 
1045 #if defined(__BIG_ENDIAN)
1046 	val |= MVNETA_DESC_SWAP;
1047 #endif
1048 
1049 	/* Assign port SDMA configuration */
1050 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1051 
1052 	/* Disable PHY polling in hardware, since we're using the
1053 	 * kernel phylib to do this.
1054 	 */
1055 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1056 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1057 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1058 
1059 	if (pp->use_inband_status) {
1060 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1061 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1062 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1063 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1064 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1065 		       MVNETA_GMAC_AN_SPEED_EN |
1066 		       MVNETA_GMAC_AN_DUPLEX_EN;
1067 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1068 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1069 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1070 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1071 	} else {
1072 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1073 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1074 		       MVNETA_GMAC_AN_SPEED_EN |
1075 		       MVNETA_GMAC_AN_DUPLEX_EN);
1076 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1077 	}
1078 
1079 	mvneta_set_ucast_table(pp, -1);
1080 	mvneta_set_special_mcast_table(pp, -1);
1081 	mvneta_set_other_mcast_table(pp, -1);
1082 
1083 	/* Set port interrupt enable register - default enable all */
1084 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1085 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1086 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1087 
1088 	mvneta_mib_counters_clear(pp);
1089 }
1090 
1091 /* Set max sizes for tx queues */
1092 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1093 
1094 {
1095 	u32 val, size, mtu;
1096 	int queue;
1097 
1098 	mtu = max_tx_size * 8;
1099 	if (mtu > MVNETA_TX_MTU_MAX)
1100 		mtu = MVNETA_TX_MTU_MAX;
1101 
1102 	/* Set MTU */
1103 	val = mvreg_read(pp, MVNETA_TX_MTU);
1104 	val &= ~MVNETA_TX_MTU_MAX;
1105 	val |= mtu;
1106 	mvreg_write(pp, MVNETA_TX_MTU, val);
1107 
1108 	/* TX token size and all TXQs token size must be larger that MTU */
1109 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1110 
1111 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1112 	if (size < mtu) {
1113 		size = mtu;
1114 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1115 		val |= size;
1116 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1117 	}
1118 	for (queue = 0; queue < txq_number; queue++) {
1119 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1120 
1121 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1122 		if (size < mtu) {
1123 			size = mtu;
1124 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1125 			val |= size;
1126 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1127 		}
1128 	}
1129 }
1130 
1131 /* Set unicast address */
1132 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1133 				  int queue)
1134 {
1135 	unsigned int unicast_reg;
1136 	unsigned int tbl_offset;
1137 	unsigned int reg_offset;
1138 
1139 	/* Locate the Unicast table entry */
1140 	last_nibble = (0xf & last_nibble);
1141 
1142 	/* offset from unicast tbl base */
1143 	tbl_offset = (last_nibble / 4) * 4;
1144 
1145 	/* offset within the above reg  */
1146 	reg_offset = last_nibble % 4;
1147 
1148 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1149 
1150 	if (queue == -1) {
1151 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1152 		unicast_reg &= ~(0xff << (8 * reg_offset));
1153 	} else {
1154 		unicast_reg &= ~(0xff << (8 * reg_offset));
1155 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1156 	}
1157 
1158 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1159 }
1160 
1161 /* Set mac address */
1162 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1163 				int queue)
1164 {
1165 	unsigned int mac_h;
1166 	unsigned int mac_l;
1167 
1168 	if (queue != -1) {
1169 		mac_l = (addr[4] << 8) | (addr[5]);
1170 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1171 			(addr[2] << 8) | (addr[3] << 0);
1172 
1173 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1174 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1175 	}
1176 
1177 	/* Accept frames of this address */
1178 	mvneta_set_ucast_addr(pp, addr[5], queue);
1179 }
1180 
1181 /* Set the number of packets that will be received before RX interrupt
1182  * will be generated by HW.
1183  */
1184 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1185 				    struct mvneta_rx_queue *rxq, u32 value)
1186 {
1187 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1188 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1189 	rxq->pkts_coal = value;
1190 }
1191 
1192 /* Set the time delay in usec before RX interrupt will be generated by
1193  * HW.
1194  */
1195 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1196 				    struct mvneta_rx_queue *rxq, u32 value)
1197 {
1198 	u32 val;
1199 	unsigned long clk_rate;
1200 
1201 	clk_rate = clk_get_rate(pp->clk);
1202 	val = (clk_rate / 1000000) * value;
1203 
1204 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1205 	rxq->time_coal = value;
1206 }
1207 
1208 /* Set threshold for TX_DONE pkts coalescing */
1209 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1210 					 struct mvneta_tx_queue *txq, u32 value)
1211 {
1212 	u32 val;
1213 
1214 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1215 
1216 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1217 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1218 
1219 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1220 
1221 	txq->done_pkts_coal = value;
1222 }
1223 
1224 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1225 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1226 				u32 phys_addr, u32 cookie)
1227 {
1228 	rx_desc->buf_cookie = cookie;
1229 	rx_desc->buf_phys_addr = phys_addr;
1230 }
1231 
1232 /* Decrement sent descriptors counter */
1233 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1234 				     struct mvneta_tx_queue *txq,
1235 				     int sent_desc)
1236 {
1237 	u32 val;
1238 
1239 	/* Only 255 TX descriptors can be updated at once */
1240 	while (sent_desc > 0xff) {
1241 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1242 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1243 		sent_desc = sent_desc - 0xff;
1244 	}
1245 
1246 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1247 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1248 }
1249 
1250 /* Get number of TX descriptors already sent by HW */
1251 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1252 					struct mvneta_tx_queue *txq)
1253 {
1254 	u32 val;
1255 	int sent_desc;
1256 
1257 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1258 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1259 		MVNETA_TXQ_SENT_DESC_SHIFT;
1260 
1261 	return sent_desc;
1262 }
1263 
1264 /* Get number of sent descriptors and decrement counter.
1265  *  The number of sent descriptors is returned.
1266  */
1267 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1268 				     struct mvneta_tx_queue *txq)
1269 {
1270 	int sent_desc;
1271 
1272 	/* Get number of sent descriptors */
1273 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1274 
1275 	/* Decrement sent descriptors counter */
1276 	if (sent_desc)
1277 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1278 
1279 	return sent_desc;
1280 }
1281 
1282 /* Set TXQ descriptors fields relevant for CSUM calculation */
1283 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1284 				int ip_hdr_len, int l4_proto)
1285 {
1286 	u32 command;
1287 
1288 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1289 	 * G_L4_chk, L4_type; required only for checksum
1290 	 * calculation
1291 	 */
1292 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1293 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1294 
1295 	if (l3_proto == htons(ETH_P_IP))
1296 		command |= MVNETA_TXD_IP_CSUM;
1297 	else
1298 		command |= MVNETA_TX_L3_IP6;
1299 
1300 	if (l4_proto == IPPROTO_TCP)
1301 		command |=  MVNETA_TX_L4_CSUM_FULL;
1302 	else if (l4_proto == IPPROTO_UDP)
1303 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1304 	else
1305 		command |= MVNETA_TX_L4_CSUM_NOT;
1306 
1307 	return command;
1308 }
1309 
1310 
1311 /* Display more error info */
1312 static void mvneta_rx_error(struct mvneta_port *pp,
1313 			    struct mvneta_rx_desc *rx_desc)
1314 {
1315 	u32 status = rx_desc->status;
1316 
1317 	if (!mvneta_rxq_desc_is_first_last(status)) {
1318 		netdev_err(pp->dev,
1319 			   "bad rx status %08x (buffer oversize), size=%d\n",
1320 			   status, rx_desc->data_size);
1321 		return;
1322 	}
1323 
1324 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1325 	case MVNETA_RXD_ERR_CRC:
1326 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1327 			   status, rx_desc->data_size);
1328 		break;
1329 	case MVNETA_RXD_ERR_OVERRUN:
1330 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1331 			   status, rx_desc->data_size);
1332 		break;
1333 	case MVNETA_RXD_ERR_LEN:
1334 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1335 			   status, rx_desc->data_size);
1336 		break;
1337 	case MVNETA_RXD_ERR_RESOURCE:
1338 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1339 			   status, rx_desc->data_size);
1340 		break;
1341 	}
1342 }
1343 
1344 /* Handle RX checksum offload based on the descriptor's status */
1345 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1346 			   struct sk_buff *skb)
1347 {
1348 	if ((status & MVNETA_RXD_L3_IP4) &&
1349 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1350 		skb->csum = 0;
1351 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1352 		return;
1353 	}
1354 
1355 	skb->ip_summed = CHECKSUM_NONE;
1356 }
1357 
1358 /* Return tx queue pointer (find last set bit) according to <cause> returned
1359  * form tx_done reg. <cause> must not be null. The return value is always a
1360  * valid queue for matching the first one found in <cause>.
1361  */
1362 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1363 						     u32 cause)
1364 {
1365 	int queue = fls(cause) - 1;
1366 
1367 	return &pp->txqs[queue];
1368 }
1369 
1370 /* Free tx queue skbuffs */
1371 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1372 				 struct mvneta_tx_queue *txq, int num)
1373 {
1374 	int i;
1375 
1376 	for (i = 0; i < num; i++) {
1377 		struct mvneta_tx_desc *tx_desc = txq->descs +
1378 			txq->txq_get_index;
1379 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1380 
1381 		mvneta_txq_inc_get(txq);
1382 
1383 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1384 			dma_unmap_single(pp->dev->dev.parent,
1385 					 tx_desc->buf_phys_addr,
1386 					 tx_desc->data_size, DMA_TO_DEVICE);
1387 		if (!skb)
1388 			continue;
1389 		dev_kfree_skb_any(skb);
1390 	}
1391 }
1392 
1393 /* Handle end of transmission */
1394 static void mvneta_txq_done(struct mvneta_port *pp,
1395 			   struct mvneta_tx_queue *txq)
1396 {
1397 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1398 	int tx_done;
1399 
1400 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1401 	if (!tx_done)
1402 		return;
1403 
1404 	mvneta_txq_bufs_free(pp, txq, tx_done);
1405 
1406 	txq->count -= tx_done;
1407 
1408 	if (netif_tx_queue_stopped(nq)) {
1409 		if (txq->count <= txq->tx_wake_threshold)
1410 			netif_tx_wake_queue(nq);
1411 	}
1412 }
1413 
1414 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1415 {
1416 	if (likely(pp->frag_size <= PAGE_SIZE))
1417 		return netdev_alloc_frag(pp->frag_size);
1418 	else
1419 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1420 }
1421 
1422 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1423 {
1424 	if (likely(pp->frag_size <= PAGE_SIZE))
1425 		skb_free_frag(data);
1426 	else
1427 		kfree(data);
1428 }
1429 
1430 /* Refill processing */
1431 static int mvneta_rx_refill(struct mvneta_port *pp,
1432 			    struct mvneta_rx_desc *rx_desc)
1433 
1434 {
1435 	dma_addr_t phys_addr;
1436 	void *data;
1437 
1438 	data = mvneta_frag_alloc(pp);
1439 	if (!data)
1440 		return -ENOMEM;
1441 
1442 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1443 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1444 				   DMA_FROM_DEVICE);
1445 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1446 		mvneta_frag_free(pp, data);
1447 		return -ENOMEM;
1448 	}
1449 
1450 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1451 	return 0;
1452 }
1453 
1454 /* Handle tx checksum */
1455 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1456 {
1457 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1458 		int ip_hdr_len = 0;
1459 		__be16 l3_proto = vlan_get_protocol(skb);
1460 		u8 l4_proto;
1461 
1462 		if (l3_proto == htons(ETH_P_IP)) {
1463 			struct iphdr *ip4h = ip_hdr(skb);
1464 
1465 			/* Calculate IPv4 checksum and L4 checksum */
1466 			ip_hdr_len = ip4h->ihl;
1467 			l4_proto = ip4h->protocol;
1468 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1469 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1470 
1471 			/* Read l4_protocol from one of IPv6 extra headers */
1472 			if (skb_network_header_len(skb) > 0)
1473 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1474 			l4_proto = ip6h->nexthdr;
1475 		} else
1476 			return MVNETA_TX_L4_CSUM_NOT;
1477 
1478 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1479 					    l3_proto, ip_hdr_len, l4_proto);
1480 	}
1481 
1482 	return MVNETA_TX_L4_CSUM_NOT;
1483 }
1484 
1485 /* Drop packets received by the RXQ and free buffers */
1486 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1487 				 struct mvneta_rx_queue *rxq)
1488 {
1489 	int rx_done, i;
1490 
1491 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1492 	for (i = 0; i < rxq->size; i++) {
1493 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1494 		void *data = (void *)rx_desc->buf_cookie;
1495 
1496 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1497 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1498 		mvneta_frag_free(pp, data);
1499 	}
1500 
1501 	if (rx_done)
1502 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1503 }
1504 
1505 /* Main rx processing */
1506 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1507 		     struct mvneta_rx_queue *rxq)
1508 {
1509 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1510 	struct net_device *dev = pp->dev;
1511 	int rx_done;
1512 	u32 rcvd_pkts = 0;
1513 	u32 rcvd_bytes = 0;
1514 
1515 	/* Get number of received packets */
1516 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1517 
1518 	if (rx_todo > rx_done)
1519 		rx_todo = rx_done;
1520 
1521 	rx_done = 0;
1522 
1523 	/* Fairness NAPI loop */
1524 	while (rx_done < rx_todo) {
1525 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1526 		struct sk_buff *skb;
1527 		unsigned char *data;
1528 		dma_addr_t phys_addr;
1529 		u32 rx_status;
1530 		int rx_bytes, err;
1531 
1532 		rx_done++;
1533 		rx_status = rx_desc->status;
1534 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1535 		data = (unsigned char *)rx_desc->buf_cookie;
1536 		phys_addr = rx_desc->buf_phys_addr;
1537 
1538 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1539 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1540 		err_drop_frame:
1541 			dev->stats.rx_errors++;
1542 			mvneta_rx_error(pp, rx_desc);
1543 			/* leave the descriptor untouched */
1544 			continue;
1545 		}
1546 
1547 		if (rx_bytes <= rx_copybreak) {
1548 			/* better copy a small frame and not unmap the DMA region */
1549 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1550 			if (unlikely(!skb))
1551 				goto err_drop_frame;
1552 
1553 			dma_sync_single_range_for_cpu(dev->dev.parent,
1554 			                              rx_desc->buf_phys_addr,
1555 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1556 			                              rx_bytes,
1557 			                              DMA_FROM_DEVICE);
1558 			memcpy(skb_put(skb, rx_bytes),
1559 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1560 			       rx_bytes);
1561 
1562 			skb->protocol = eth_type_trans(skb, dev);
1563 			mvneta_rx_csum(pp, rx_status, skb);
1564 			napi_gro_receive(&port->napi, skb);
1565 
1566 			rcvd_pkts++;
1567 			rcvd_bytes += rx_bytes;
1568 
1569 			/* leave the descriptor and buffer untouched */
1570 			continue;
1571 		}
1572 
1573 		/* Refill processing */
1574 		err = mvneta_rx_refill(pp, rx_desc);
1575 		if (err) {
1576 			netdev_err(dev, "Linux processing - Can't refill\n");
1577 			rxq->missed++;
1578 			goto err_drop_frame;
1579 		}
1580 
1581 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1582 		if (!skb)
1583 			goto err_drop_frame;
1584 
1585 		dma_unmap_single(dev->dev.parent, phys_addr,
1586 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1587 
1588 		rcvd_pkts++;
1589 		rcvd_bytes += rx_bytes;
1590 
1591 		/* Linux processing */
1592 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1593 		skb_put(skb, rx_bytes);
1594 
1595 		skb->protocol = eth_type_trans(skb, dev);
1596 
1597 		mvneta_rx_csum(pp, rx_status, skb);
1598 
1599 		napi_gro_receive(&port->napi, skb);
1600 	}
1601 
1602 	if (rcvd_pkts) {
1603 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1604 
1605 		u64_stats_update_begin(&stats->syncp);
1606 		stats->rx_packets += rcvd_pkts;
1607 		stats->rx_bytes   += rcvd_bytes;
1608 		u64_stats_update_end(&stats->syncp);
1609 	}
1610 
1611 	/* Update rxq management counters */
1612 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1613 
1614 	return rx_done;
1615 }
1616 
1617 static inline void
1618 mvneta_tso_put_hdr(struct sk_buff *skb,
1619 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1620 {
1621 	struct mvneta_tx_desc *tx_desc;
1622 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1623 
1624 	txq->tx_skb[txq->txq_put_index] = NULL;
1625 	tx_desc = mvneta_txq_next_desc_get(txq);
1626 	tx_desc->data_size = hdr_len;
1627 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1628 	tx_desc->command |= MVNETA_TXD_F_DESC;
1629 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1630 				 txq->txq_put_index * TSO_HEADER_SIZE;
1631 	mvneta_txq_inc_put(txq);
1632 }
1633 
1634 static inline int
1635 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1636 		    struct sk_buff *skb, char *data, int size,
1637 		    bool last_tcp, bool is_last)
1638 {
1639 	struct mvneta_tx_desc *tx_desc;
1640 
1641 	tx_desc = mvneta_txq_next_desc_get(txq);
1642 	tx_desc->data_size = size;
1643 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1644 						size, DMA_TO_DEVICE);
1645 	if (unlikely(dma_mapping_error(dev->dev.parent,
1646 		     tx_desc->buf_phys_addr))) {
1647 		mvneta_txq_desc_put(txq);
1648 		return -ENOMEM;
1649 	}
1650 
1651 	tx_desc->command = 0;
1652 	txq->tx_skb[txq->txq_put_index] = NULL;
1653 
1654 	if (last_tcp) {
1655 		/* last descriptor in the TCP packet */
1656 		tx_desc->command = MVNETA_TXD_L_DESC;
1657 
1658 		/* last descriptor in SKB */
1659 		if (is_last)
1660 			txq->tx_skb[txq->txq_put_index] = skb;
1661 	}
1662 	mvneta_txq_inc_put(txq);
1663 	return 0;
1664 }
1665 
1666 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1667 			 struct mvneta_tx_queue *txq)
1668 {
1669 	int total_len, data_left;
1670 	int desc_count = 0;
1671 	struct mvneta_port *pp = netdev_priv(dev);
1672 	struct tso_t tso;
1673 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1674 	int i;
1675 
1676 	/* Count needed descriptors */
1677 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1678 		return 0;
1679 
1680 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1681 		pr_info("*** Is this even  possible???!?!?\n");
1682 		return 0;
1683 	}
1684 
1685 	/* Initialize the TSO handler, and prepare the first payload */
1686 	tso_start(skb, &tso);
1687 
1688 	total_len = skb->len - hdr_len;
1689 	while (total_len > 0) {
1690 		char *hdr;
1691 
1692 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1693 		total_len -= data_left;
1694 		desc_count++;
1695 
1696 		/* prepare packet headers: MAC + IP + TCP */
1697 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1698 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1699 
1700 		mvneta_tso_put_hdr(skb, pp, txq);
1701 
1702 		while (data_left > 0) {
1703 			int size;
1704 			desc_count++;
1705 
1706 			size = min_t(int, tso.size, data_left);
1707 
1708 			if (mvneta_tso_put_data(dev, txq, skb,
1709 						 tso.data, size,
1710 						 size == data_left,
1711 						 total_len == 0))
1712 				goto err_release;
1713 			data_left -= size;
1714 
1715 			tso_build_data(skb, &tso, size);
1716 		}
1717 	}
1718 
1719 	return desc_count;
1720 
1721 err_release:
1722 	/* Release all used data descriptors; header descriptors must not
1723 	 * be DMA-unmapped.
1724 	 */
1725 	for (i = desc_count - 1; i >= 0; i--) {
1726 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1727 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1728 			dma_unmap_single(pp->dev->dev.parent,
1729 					 tx_desc->buf_phys_addr,
1730 					 tx_desc->data_size,
1731 					 DMA_TO_DEVICE);
1732 		mvneta_txq_desc_put(txq);
1733 	}
1734 	return 0;
1735 }
1736 
1737 /* Handle tx fragmentation processing */
1738 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1739 				  struct mvneta_tx_queue *txq)
1740 {
1741 	struct mvneta_tx_desc *tx_desc;
1742 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1743 
1744 	for (i = 0; i < nr_frags; i++) {
1745 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1746 		void *addr = page_address(frag->page.p) + frag->page_offset;
1747 
1748 		tx_desc = mvneta_txq_next_desc_get(txq);
1749 		tx_desc->data_size = frag->size;
1750 
1751 		tx_desc->buf_phys_addr =
1752 			dma_map_single(pp->dev->dev.parent, addr,
1753 				       tx_desc->data_size, DMA_TO_DEVICE);
1754 
1755 		if (dma_mapping_error(pp->dev->dev.parent,
1756 				      tx_desc->buf_phys_addr)) {
1757 			mvneta_txq_desc_put(txq);
1758 			goto error;
1759 		}
1760 
1761 		if (i == nr_frags - 1) {
1762 			/* Last descriptor */
1763 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1764 			txq->tx_skb[txq->txq_put_index] = skb;
1765 		} else {
1766 			/* Descriptor in the middle: Not First, Not Last */
1767 			tx_desc->command = 0;
1768 			txq->tx_skb[txq->txq_put_index] = NULL;
1769 		}
1770 		mvneta_txq_inc_put(txq);
1771 	}
1772 
1773 	return 0;
1774 
1775 error:
1776 	/* Release all descriptors that were used to map fragments of
1777 	 * this packet, as well as the corresponding DMA mappings
1778 	 */
1779 	for (i = i - 1; i >= 0; i--) {
1780 		tx_desc = txq->descs + i;
1781 		dma_unmap_single(pp->dev->dev.parent,
1782 				 tx_desc->buf_phys_addr,
1783 				 tx_desc->data_size,
1784 				 DMA_TO_DEVICE);
1785 		mvneta_txq_desc_put(txq);
1786 	}
1787 
1788 	return -ENOMEM;
1789 }
1790 
1791 /* Main tx processing */
1792 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1793 {
1794 	struct mvneta_port *pp = netdev_priv(dev);
1795 	u16 txq_id = skb_get_queue_mapping(skb);
1796 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1797 	struct mvneta_tx_desc *tx_desc;
1798 	int len = skb->len;
1799 	int frags = 0;
1800 	u32 tx_cmd;
1801 
1802 	if (!netif_running(dev))
1803 		goto out;
1804 
1805 	if (skb_is_gso(skb)) {
1806 		frags = mvneta_tx_tso(skb, dev, txq);
1807 		goto out;
1808 	}
1809 
1810 	frags = skb_shinfo(skb)->nr_frags + 1;
1811 
1812 	/* Get a descriptor for the first part of the packet */
1813 	tx_desc = mvneta_txq_next_desc_get(txq);
1814 
1815 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1816 
1817 	tx_desc->data_size = skb_headlen(skb);
1818 
1819 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1820 						tx_desc->data_size,
1821 						DMA_TO_DEVICE);
1822 	if (unlikely(dma_mapping_error(dev->dev.parent,
1823 				       tx_desc->buf_phys_addr))) {
1824 		mvneta_txq_desc_put(txq);
1825 		frags = 0;
1826 		goto out;
1827 	}
1828 
1829 	if (frags == 1) {
1830 		/* First and Last descriptor */
1831 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1832 		tx_desc->command = tx_cmd;
1833 		txq->tx_skb[txq->txq_put_index] = skb;
1834 		mvneta_txq_inc_put(txq);
1835 	} else {
1836 		/* First but not Last */
1837 		tx_cmd |= MVNETA_TXD_F_DESC;
1838 		txq->tx_skb[txq->txq_put_index] = NULL;
1839 		mvneta_txq_inc_put(txq);
1840 		tx_desc->command = tx_cmd;
1841 		/* Continue with other skb fragments */
1842 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1843 			dma_unmap_single(dev->dev.parent,
1844 					 tx_desc->buf_phys_addr,
1845 					 tx_desc->data_size,
1846 					 DMA_TO_DEVICE);
1847 			mvneta_txq_desc_put(txq);
1848 			frags = 0;
1849 			goto out;
1850 		}
1851 	}
1852 
1853 out:
1854 	if (frags > 0) {
1855 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1856 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1857 
1858 		txq->count += frags;
1859 		mvneta_txq_pend_desc_add(pp, txq, frags);
1860 
1861 		if (txq->count >= txq->tx_stop_threshold)
1862 			netif_tx_stop_queue(nq);
1863 
1864 		u64_stats_update_begin(&stats->syncp);
1865 		stats->tx_packets++;
1866 		stats->tx_bytes  += len;
1867 		u64_stats_update_end(&stats->syncp);
1868 	} else {
1869 		dev->stats.tx_dropped++;
1870 		dev_kfree_skb_any(skb);
1871 	}
1872 
1873 	return NETDEV_TX_OK;
1874 }
1875 
1876 
1877 /* Free tx resources, when resetting a port */
1878 static void mvneta_txq_done_force(struct mvneta_port *pp,
1879 				  struct mvneta_tx_queue *txq)
1880 
1881 {
1882 	int tx_done = txq->count;
1883 
1884 	mvneta_txq_bufs_free(pp, txq, tx_done);
1885 
1886 	/* reset txq */
1887 	txq->count = 0;
1888 	txq->txq_put_index = 0;
1889 	txq->txq_get_index = 0;
1890 }
1891 
1892 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
1893  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
1894  */
1895 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
1896 {
1897 	struct mvneta_tx_queue *txq;
1898 	struct netdev_queue *nq;
1899 
1900 	while (cause_tx_done) {
1901 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1902 
1903 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1904 		__netif_tx_lock(nq, smp_processor_id());
1905 
1906 		if (txq->count)
1907 			mvneta_txq_done(pp, txq);
1908 
1909 		__netif_tx_unlock(nq);
1910 		cause_tx_done &= ~((1 << txq->id));
1911 	}
1912 }
1913 
1914 /* Compute crc8 of the specified address, using a unique algorithm ,
1915  * according to hw spec, different than generic crc8 algorithm
1916  */
1917 static int mvneta_addr_crc(unsigned char *addr)
1918 {
1919 	int crc = 0;
1920 	int i;
1921 
1922 	for (i = 0; i < ETH_ALEN; i++) {
1923 		int j;
1924 
1925 		crc = (crc ^ addr[i]) << 8;
1926 		for (j = 7; j >= 0; j--) {
1927 			if (crc & (0x100 << j))
1928 				crc ^= 0x107 << j;
1929 		}
1930 	}
1931 
1932 	return crc;
1933 }
1934 
1935 /* This method controls the net device special MAC multicast support.
1936  * The Special Multicast Table for MAC addresses supports MAC of the form
1937  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1938  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1939  * Table entries in the DA-Filter table. This method set the Special
1940  * Multicast Table appropriate entry.
1941  */
1942 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1943 					  unsigned char last_byte,
1944 					  int queue)
1945 {
1946 	unsigned int smc_table_reg;
1947 	unsigned int tbl_offset;
1948 	unsigned int reg_offset;
1949 
1950 	/* Register offset from SMC table base    */
1951 	tbl_offset = (last_byte / 4);
1952 	/* Entry offset within the above reg */
1953 	reg_offset = last_byte % 4;
1954 
1955 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1956 					+ tbl_offset * 4));
1957 
1958 	if (queue == -1)
1959 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1960 	else {
1961 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1962 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1963 	}
1964 
1965 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1966 		    smc_table_reg);
1967 }
1968 
1969 /* This method controls the network device Other MAC multicast support.
1970  * The Other Multicast Table is used for multicast of another type.
1971  * A CRC-8 is used as an index to the Other Multicast Table entries
1972  * in the DA-Filter table.
1973  * The method gets the CRC-8 value from the calling routine and
1974  * sets the Other Multicast Table appropriate entry according to the
1975  * specified CRC-8 .
1976  */
1977 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1978 					unsigned char crc8,
1979 					int queue)
1980 {
1981 	unsigned int omc_table_reg;
1982 	unsigned int tbl_offset;
1983 	unsigned int reg_offset;
1984 
1985 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1986 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1987 
1988 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1989 
1990 	if (queue == -1) {
1991 		/* Clear accepts frame bit at specified Other DA table entry */
1992 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1993 	} else {
1994 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1995 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1996 	}
1997 
1998 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1999 }
2000 
2001 /* The network device supports multicast using two tables:
2002  *    1) Special Multicast Table for MAC addresses of the form
2003  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2004  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2005  *       Table entries in the DA-Filter table.
2006  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2007  *       is used as an index to the Other Multicast Table entries in the
2008  *       DA-Filter table.
2009  */
2010 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2011 				 int queue)
2012 {
2013 	unsigned char crc_result = 0;
2014 
2015 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2016 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2017 		return 0;
2018 	}
2019 
2020 	crc_result = mvneta_addr_crc(p_addr);
2021 	if (queue == -1) {
2022 		if (pp->mcast_count[crc_result] == 0) {
2023 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2024 				    crc_result);
2025 			return -EINVAL;
2026 		}
2027 
2028 		pp->mcast_count[crc_result]--;
2029 		if (pp->mcast_count[crc_result] != 0) {
2030 			netdev_info(pp->dev,
2031 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2032 				    pp->mcast_count[crc_result], crc_result);
2033 			return -EINVAL;
2034 		}
2035 	} else
2036 		pp->mcast_count[crc_result]++;
2037 
2038 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2039 
2040 	return 0;
2041 }
2042 
2043 /* Configure Fitering mode of Ethernet port */
2044 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2045 					  int is_promisc)
2046 {
2047 	u32 port_cfg_reg, val;
2048 
2049 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2050 
2051 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2052 
2053 	/* Set / Clear UPM bit in port configuration register */
2054 	if (is_promisc) {
2055 		/* Accept all Unicast addresses */
2056 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2057 		val |= MVNETA_FORCE_UNI;
2058 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2059 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2060 	} else {
2061 		/* Reject all Unicast addresses */
2062 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2063 		val &= ~MVNETA_FORCE_UNI;
2064 	}
2065 
2066 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2067 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2068 }
2069 
2070 /* register unicast and multicast addresses */
2071 static void mvneta_set_rx_mode(struct net_device *dev)
2072 {
2073 	struct mvneta_port *pp = netdev_priv(dev);
2074 	struct netdev_hw_addr *ha;
2075 
2076 	if (dev->flags & IFF_PROMISC) {
2077 		/* Accept all: Multicast + Unicast */
2078 		mvneta_rx_unicast_promisc_set(pp, 1);
2079 		mvneta_set_ucast_table(pp, rxq_def);
2080 		mvneta_set_special_mcast_table(pp, rxq_def);
2081 		mvneta_set_other_mcast_table(pp, rxq_def);
2082 	} else {
2083 		/* Accept single Unicast */
2084 		mvneta_rx_unicast_promisc_set(pp, 0);
2085 		mvneta_set_ucast_table(pp, -1);
2086 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2087 
2088 		if (dev->flags & IFF_ALLMULTI) {
2089 			/* Accept all multicast */
2090 			mvneta_set_special_mcast_table(pp, rxq_def);
2091 			mvneta_set_other_mcast_table(pp, rxq_def);
2092 		} else {
2093 			/* Accept only initialized multicast */
2094 			mvneta_set_special_mcast_table(pp, -1);
2095 			mvneta_set_other_mcast_table(pp, -1);
2096 
2097 			if (!netdev_mc_empty(dev)) {
2098 				netdev_for_each_mc_addr(ha, dev) {
2099 					mvneta_mcast_addr_set(pp, ha->addr,
2100 							      rxq_def);
2101 				}
2102 			}
2103 		}
2104 	}
2105 }
2106 
2107 /* Interrupt handling - the callback for request_irq() */
2108 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2109 {
2110 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2111 
2112 	disable_percpu_irq(port->pp->dev->irq);
2113 	napi_schedule(&port->napi);
2114 
2115 	return IRQ_HANDLED;
2116 }
2117 
2118 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2119 				    struct phy_device *phy)
2120 {
2121 	struct fixed_phy_status status;
2122 	struct fixed_phy_status changed = {};
2123 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2124 
2125 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2126 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2127 		status.speed = SPEED_1000;
2128 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2129 		status.speed = SPEED_100;
2130 	else
2131 		status.speed = SPEED_10;
2132 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2133 	changed.link = 1;
2134 	changed.speed = 1;
2135 	changed.duplex = 1;
2136 	fixed_phy_update_state(phy, &status, &changed);
2137 	return 0;
2138 }
2139 
2140 /* NAPI handler
2141  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2142  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2143  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2144  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2145  * Each CPU has its own causeRxTx register
2146  */
2147 static int mvneta_poll(struct napi_struct *napi, int budget)
2148 {
2149 	int rx_done = 0;
2150 	u32 cause_rx_tx;
2151 	struct mvneta_port *pp = netdev_priv(napi->dev);
2152 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2153 
2154 	if (!netif_running(pp->dev)) {
2155 		napi_complete(&port->napi);
2156 		return rx_done;
2157 	}
2158 
2159 	/* Read cause register */
2160 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2161 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2162 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2163 
2164 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2165 		if (pp->use_inband_status && (cause_misc &
2166 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2167 				 MVNETA_CAUSE_LINK_CHANGE |
2168 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2169 			mvneta_fixed_link_update(pp, pp->phy_dev);
2170 		}
2171 	}
2172 
2173 	/* Release Tx descriptors */
2174 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2175 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2176 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2177 	}
2178 
2179 	/* For the case where the last mvneta_poll did not process all
2180 	 * RX packets
2181 	 */
2182 	cause_rx_tx |= port->cause_rx_tx;
2183 	rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
2184 	budget -= rx_done;
2185 
2186 	if (budget > 0) {
2187 		cause_rx_tx = 0;
2188 		napi_complete(&port->napi);
2189 		enable_percpu_irq(pp->dev->irq, 0);
2190 	}
2191 
2192 	port->cause_rx_tx = cause_rx_tx;
2193 	return rx_done;
2194 }
2195 
2196 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2197 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2198 			   int num)
2199 {
2200 	int i;
2201 
2202 	for (i = 0; i < num; i++) {
2203 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2204 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2205 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2206 				__func__, rxq->id, i, num);
2207 			break;
2208 		}
2209 	}
2210 
2211 	/* Add this number of RX descriptors as non occupied (ready to
2212 	 * get packets)
2213 	 */
2214 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2215 
2216 	return i;
2217 }
2218 
2219 /* Free all packets pending transmit from all TXQs and reset TX port */
2220 static void mvneta_tx_reset(struct mvneta_port *pp)
2221 {
2222 	int queue;
2223 
2224 	/* free the skb's in the tx ring */
2225 	for (queue = 0; queue < txq_number; queue++)
2226 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2227 
2228 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2229 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2230 }
2231 
2232 static void mvneta_rx_reset(struct mvneta_port *pp)
2233 {
2234 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2235 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2236 }
2237 
2238 /* Rx/Tx queue initialization/cleanup methods */
2239 
2240 /* Create a specified RX queue */
2241 static int mvneta_rxq_init(struct mvneta_port *pp,
2242 			   struct mvneta_rx_queue *rxq)
2243 
2244 {
2245 	rxq->size = pp->rx_ring_size;
2246 
2247 	/* Allocate memory for RX descriptors */
2248 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2249 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2250 					&rxq->descs_phys, GFP_KERNEL);
2251 	if (rxq->descs == NULL)
2252 		return -ENOMEM;
2253 
2254 	BUG_ON(rxq->descs !=
2255 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2256 
2257 	rxq->last_desc = rxq->size - 1;
2258 
2259 	/* Set Rx descriptors queue starting address */
2260 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2261 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2262 
2263 	/* Set Offset */
2264 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2265 
2266 	/* Set coalescing pkts and time */
2267 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2268 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2269 
2270 	/* Fill RXQ with buffers from RX pool */
2271 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2272 	mvneta_rxq_bm_disable(pp, rxq);
2273 	mvneta_rxq_fill(pp, rxq, rxq->size);
2274 
2275 	return 0;
2276 }
2277 
2278 /* Cleanup Rx queue */
2279 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2280 			      struct mvneta_rx_queue *rxq)
2281 {
2282 	mvneta_rxq_drop_pkts(pp, rxq);
2283 
2284 	if (rxq->descs)
2285 		dma_free_coherent(pp->dev->dev.parent,
2286 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2287 				  rxq->descs,
2288 				  rxq->descs_phys);
2289 
2290 	rxq->descs             = NULL;
2291 	rxq->last_desc         = 0;
2292 	rxq->next_desc_to_proc = 0;
2293 	rxq->descs_phys        = 0;
2294 }
2295 
2296 /* Create and initialize a tx queue */
2297 static int mvneta_txq_init(struct mvneta_port *pp,
2298 			   struct mvneta_tx_queue *txq)
2299 {
2300 	txq->size = pp->tx_ring_size;
2301 
2302 	/* A queue must always have room for at least one skb.
2303 	 * Therefore, stop the queue when the free entries reaches
2304 	 * the maximum number of descriptors per skb.
2305 	 */
2306 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2307 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2308 
2309 
2310 	/* Allocate memory for TX descriptors */
2311 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2312 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2313 					&txq->descs_phys, GFP_KERNEL);
2314 	if (txq->descs == NULL)
2315 		return -ENOMEM;
2316 
2317 	/* Make sure descriptor address is cache line size aligned  */
2318 	BUG_ON(txq->descs !=
2319 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2320 
2321 	txq->last_desc = txq->size - 1;
2322 
2323 	/* Set maximum bandwidth for enabled TXQs */
2324 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2325 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2326 
2327 	/* Set Tx descriptors queue starting address */
2328 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2329 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2330 
2331 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2332 	if (txq->tx_skb == NULL) {
2333 		dma_free_coherent(pp->dev->dev.parent,
2334 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2335 				  txq->descs, txq->descs_phys);
2336 		return -ENOMEM;
2337 	}
2338 
2339 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2340 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2341 					   txq->size * TSO_HEADER_SIZE,
2342 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2343 	if (txq->tso_hdrs == NULL) {
2344 		kfree(txq->tx_skb);
2345 		dma_free_coherent(pp->dev->dev.parent,
2346 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2347 				  txq->descs, txq->descs_phys);
2348 		return -ENOMEM;
2349 	}
2350 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2351 
2352 	return 0;
2353 }
2354 
2355 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2356 static void mvneta_txq_deinit(struct mvneta_port *pp,
2357 			      struct mvneta_tx_queue *txq)
2358 {
2359 	kfree(txq->tx_skb);
2360 
2361 	if (txq->tso_hdrs)
2362 		dma_free_coherent(pp->dev->dev.parent,
2363 				  txq->size * TSO_HEADER_SIZE,
2364 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2365 	if (txq->descs)
2366 		dma_free_coherent(pp->dev->dev.parent,
2367 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2368 				  txq->descs, txq->descs_phys);
2369 
2370 	txq->descs             = NULL;
2371 	txq->last_desc         = 0;
2372 	txq->next_desc_to_proc = 0;
2373 	txq->descs_phys        = 0;
2374 
2375 	/* Set minimum bandwidth for disabled TXQs */
2376 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2377 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2378 
2379 	/* Set Tx descriptors queue starting address and size */
2380 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2381 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2382 }
2383 
2384 /* Cleanup all Tx queues */
2385 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2386 {
2387 	int queue;
2388 
2389 	for (queue = 0; queue < txq_number; queue++)
2390 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2391 }
2392 
2393 /* Cleanup all Rx queues */
2394 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2395 {
2396 	mvneta_rxq_deinit(pp, &pp->rxqs[rxq_def]);
2397 }
2398 
2399 
2400 /* Init all Rx queues */
2401 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2402 {
2403 	int err = mvneta_rxq_init(pp, &pp->rxqs[rxq_def]);
2404 	if (err) {
2405 		netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2406 			   __func__, rxq_def);
2407 		mvneta_cleanup_rxqs(pp);
2408 		return err;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 /* Init all tx queues */
2415 static int mvneta_setup_txqs(struct mvneta_port *pp)
2416 {
2417 	int queue;
2418 
2419 	for (queue = 0; queue < txq_number; queue++) {
2420 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2421 		if (err) {
2422 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2423 				   __func__, queue);
2424 			mvneta_cleanup_txqs(pp);
2425 			return err;
2426 		}
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 static void mvneta_start_dev(struct mvneta_port *pp)
2433 {
2434 	unsigned int cpu;
2435 
2436 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2437 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2438 
2439 	/* start the Rx/Tx activity */
2440 	mvneta_port_enable(pp);
2441 
2442 	/* Enable polling on the port */
2443 	for_each_present_cpu(cpu) {
2444 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2445 
2446 		napi_enable(&port->napi);
2447 	}
2448 
2449 	/* Unmask interrupts */
2450 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2451 		    MVNETA_RX_INTR_MASK(rxq_number) |
2452 		    MVNETA_TX_INTR_MASK(txq_number) |
2453 		    MVNETA_MISCINTR_INTR_MASK);
2454 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2455 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2456 		    MVNETA_CAUSE_LINK_CHANGE |
2457 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2458 
2459 	phy_start(pp->phy_dev);
2460 	netif_tx_start_all_queues(pp->dev);
2461 }
2462 
2463 static void mvneta_stop_dev(struct mvneta_port *pp)
2464 {
2465 	unsigned int cpu;
2466 
2467 	phy_stop(pp->phy_dev);
2468 
2469 	for_each_present_cpu(cpu) {
2470 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2471 
2472 		napi_disable(&port->napi);
2473 	}
2474 
2475 	netif_carrier_off(pp->dev);
2476 
2477 	mvneta_port_down(pp);
2478 	netif_tx_stop_all_queues(pp->dev);
2479 
2480 	/* Stop the port activity */
2481 	mvneta_port_disable(pp);
2482 
2483 	/* Clear all ethernet port interrupts */
2484 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2485 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2486 
2487 	/* Mask all ethernet port interrupts */
2488 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2489 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2490 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2491 
2492 	mvneta_tx_reset(pp);
2493 	mvneta_rx_reset(pp);
2494 }
2495 
2496 /* Return positive if MTU is valid */
2497 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2498 {
2499 	if (mtu < 68) {
2500 		netdev_err(dev, "cannot change mtu to less than 68\n");
2501 		return -EINVAL;
2502 	}
2503 
2504 	/* 9676 == 9700 - 20 and rounding to 8 */
2505 	if (mtu > 9676) {
2506 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2507 		mtu = 9676;
2508 	}
2509 
2510 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2511 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2512 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2513 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2514 	}
2515 
2516 	return mtu;
2517 }
2518 
2519 /* Change the device mtu */
2520 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2521 {
2522 	struct mvneta_port *pp = netdev_priv(dev);
2523 	int ret;
2524 
2525 	mtu = mvneta_check_mtu_valid(dev, mtu);
2526 	if (mtu < 0)
2527 		return -EINVAL;
2528 
2529 	dev->mtu = mtu;
2530 
2531 	if (!netif_running(dev)) {
2532 		netdev_update_features(dev);
2533 		return 0;
2534 	}
2535 
2536 	/* The interface is running, so we have to force a
2537 	 * reallocation of the queues
2538 	 */
2539 	mvneta_stop_dev(pp);
2540 
2541 	mvneta_cleanup_txqs(pp);
2542 	mvneta_cleanup_rxqs(pp);
2543 
2544 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2545 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2546 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2547 
2548 	ret = mvneta_setup_rxqs(pp);
2549 	if (ret) {
2550 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2551 		return ret;
2552 	}
2553 
2554 	ret = mvneta_setup_txqs(pp);
2555 	if (ret) {
2556 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2557 		return ret;
2558 	}
2559 
2560 	mvneta_start_dev(pp);
2561 	mvneta_port_up(pp);
2562 
2563 	netdev_update_features(dev);
2564 
2565 	return 0;
2566 }
2567 
2568 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2569 					     netdev_features_t features)
2570 {
2571 	struct mvneta_port *pp = netdev_priv(dev);
2572 
2573 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2574 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2575 		netdev_info(dev,
2576 			    "Disable IP checksum for MTU greater than %dB\n",
2577 			    pp->tx_csum_limit);
2578 	}
2579 
2580 	return features;
2581 }
2582 
2583 /* Get mac address */
2584 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2585 {
2586 	u32 mac_addr_l, mac_addr_h;
2587 
2588 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2589 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2590 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2591 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2592 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2593 	addr[3] = mac_addr_h & 0xFF;
2594 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2595 	addr[5] = mac_addr_l & 0xFF;
2596 }
2597 
2598 /* Handle setting mac address */
2599 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2600 {
2601 	struct mvneta_port *pp = netdev_priv(dev);
2602 	struct sockaddr *sockaddr = addr;
2603 	int ret;
2604 
2605 	ret = eth_prepare_mac_addr_change(dev, addr);
2606 	if (ret < 0)
2607 		return ret;
2608 	/* Remove previous address table entry */
2609 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2610 
2611 	/* Set new addr in hw */
2612 	mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
2613 
2614 	eth_commit_mac_addr_change(dev, addr);
2615 	return 0;
2616 }
2617 
2618 static void mvneta_adjust_link(struct net_device *ndev)
2619 {
2620 	struct mvneta_port *pp = netdev_priv(ndev);
2621 	struct phy_device *phydev = pp->phy_dev;
2622 	int status_change = 0;
2623 
2624 	if (phydev->link) {
2625 		if ((pp->speed != phydev->speed) ||
2626 		    (pp->duplex != phydev->duplex)) {
2627 			u32 val;
2628 
2629 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2630 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2631 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2632 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2633 
2634 			if (phydev->duplex)
2635 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2636 
2637 			if (phydev->speed == SPEED_1000)
2638 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2639 			else if (phydev->speed == SPEED_100)
2640 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2641 
2642 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2643 
2644 			pp->duplex = phydev->duplex;
2645 			pp->speed  = phydev->speed;
2646 		}
2647 	}
2648 
2649 	if (phydev->link != pp->link) {
2650 		if (!phydev->link) {
2651 			pp->duplex = -1;
2652 			pp->speed = 0;
2653 		}
2654 
2655 		pp->link = phydev->link;
2656 		status_change = 1;
2657 	}
2658 
2659 	if (status_change) {
2660 		if (phydev->link) {
2661 			if (!pp->use_inband_status) {
2662 				u32 val = mvreg_read(pp,
2663 						  MVNETA_GMAC_AUTONEG_CONFIG);
2664 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2665 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2666 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2667 					    val);
2668 			}
2669 			mvneta_port_up(pp);
2670 		} else {
2671 			if (!pp->use_inband_status) {
2672 				u32 val = mvreg_read(pp,
2673 						  MVNETA_GMAC_AUTONEG_CONFIG);
2674 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2675 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2676 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2677 					    val);
2678 			}
2679 			mvneta_port_down(pp);
2680 		}
2681 		phy_print_status(phydev);
2682 	}
2683 }
2684 
2685 static int mvneta_mdio_probe(struct mvneta_port *pp)
2686 {
2687 	struct phy_device *phy_dev;
2688 
2689 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2690 				 pp->phy_interface);
2691 	if (!phy_dev) {
2692 		netdev_err(pp->dev, "could not find the PHY\n");
2693 		return -ENODEV;
2694 	}
2695 
2696 	phy_dev->supported &= PHY_GBIT_FEATURES;
2697 	phy_dev->advertising = phy_dev->supported;
2698 
2699 	pp->phy_dev = phy_dev;
2700 	pp->link    = 0;
2701 	pp->duplex  = 0;
2702 	pp->speed   = 0;
2703 
2704 	return 0;
2705 }
2706 
2707 static void mvneta_mdio_remove(struct mvneta_port *pp)
2708 {
2709 	phy_disconnect(pp->phy_dev);
2710 	pp->phy_dev = NULL;
2711 }
2712 
2713 static void mvneta_percpu_enable(void *arg)
2714 {
2715 	struct mvneta_port *pp = arg;
2716 
2717 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2718 }
2719 
2720 static void mvneta_percpu_disable(void *arg)
2721 {
2722 	struct mvneta_port *pp = arg;
2723 
2724 	disable_percpu_irq(pp->dev->irq);
2725 }
2726 
2727 static void mvneta_percpu_elect(struct mvneta_port *pp)
2728 {
2729 	int online_cpu_idx, cpu, i = 0;
2730 
2731 	online_cpu_idx = rxq_def % num_online_cpus();
2732 
2733 	for_each_online_cpu(cpu) {
2734 		if (i == online_cpu_idx)
2735 			/* Enable per-CPU interrupt on the one CPU we
2736 			 * just elected
2737 			 */
2738 			smp_call_function_single(cpu, mvneta_percpu_enable,
2739 						pp, true);
2740 		else
2741 			/* Disable per-CPU interrupt on all the other CPU */
2742 			smp_call_function_single(cpu, mvneta_percpu_disable,
2743 						pp, true);
2744 		i++;
2745 	}
2746 };
2747 
2748 static int mvneta_percpu_notifier(struct notifier_block *nfb,
2749 				  unsigned long action, void *hcpu)
2750 {
2751 	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2752 					      cpu_notifier);
2753 	int cpu = (unsigned long)hcpu, other_cpu;
2754 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2755 
2756 	switch (action) {
2757 	case CPU_ONLINE:
2758 	case CPU_ONLINE_FROZEN:
2759 		netif_tx_stop_all_queues(pp->dev);
2760 
2761 		/* We have to synchronise on tha napi of each CPU
2762 		 * except the one just being waked up
2763 		 */
2764 		for_each_online_cpu(other_cpu) {
2765 			if (other_cpu != cpu) {
2766 				struct mvneta_pcpu_port *other_port =
2767 					per_cpu_ptr(pp->ports, other_cpu);
2768 
2769 				napi_synchronize(&other_port->napi);
2770 			}
2771 		}
2772 
2773 		/* Mask all ethernet port interrupts */
2774 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2775 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2776 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2777 		napi_enable(&port->napi);
2778 
2779 		/* Enable per-CPU interrupt on the one CPU we care
2780 		 * about.
2781 		 */
2782 		mvneta_percpu_elect(pp);
2783 
2784 		/* Unmask all ethernet port interrupts */
2785 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2786 			MVNETA_RX_INTR_MASK(rxq_number) |
2787 			MVNETA_TX_INTR_MASK(txq_number) |
2788 			MVNETA_MISCINTR_INTR_MASK);
2789 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2790 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2791 			MVNETA_CAUSE_LINK_CHANGE |
2792 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2793 		netif_tx_start_all_queues(pp->dev);
2794 		break;
2795 	case CPU_DOWN_PREPARE:
2796 	case CPU_DOWN_PREPARE_FROZEN:
2797 		netif_tx_stop_all_queues(pp->dev);
2798 		/* Mask all ethernet port interrupts */
2799 		mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2800 		mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2801 		mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2802 
2803 		napi_synchronize(&port->napi);
2804 		napi_disable(&port->napi);
2805 		/* Disable per-CPU interrupts on the CPU that is
2806 		 * brought down.
2807 		 */
2808 		smp_call_function_single(cpu, mvneta_percpu_disable,
2809 					 pp, true);
2810 
2811 		break;
2812 	case CPU_DEAD:
2813 	case CPU_DEAD_FROZEN:
2814 		/* Check if a new CPU must be elected now this on is down */
2815 		mvneta_percpu_elect(pp);
2816 		/* Unmask all ethernet port interrupts */
2817 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2818 			MVNETA_RX_INTR_MASK(rxq_number) |
2819 			MVNETA_TX_INTR_MASK(txq_number) |
2820 			MVNETA_MISCINTR_INTR_MASK);
2821 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2822 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2823 			MVNETA_CAUSE_LINK_CHANGE |
2824 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2825 		netif_tx_start_all_queues(pp->dev);
2826 		break;
2827 	}
2828 
2829 	return NOTIFY_OK;
2830 }
2831 
2832 static int mvneta_open(struct net_device *dev)
2833 {
2834 	struct mvneta_port *pp = netdev_priv(dev);
2835 	int ret;
2836 
2837 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2838 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2839 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2840 
2841 	ret = mvneta_setup_rxqs(pp);
2842 	if (ret)
2843 		return ret;
2844 
2845 	ret = mvneta_setup_txqs(pp);
2846 	if (ret)
2847 		goto err_cleanup_rxqs;
2848 
2849 	/* Connect to port interrupt line */
2850 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
2851 				 MVNETA_DRIVER_NAME, pp->ports);
2852 	if (ret) {
2853 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2854 		goto err_cleanup_txqs;
2855 	}
2856 
2857 	/* Even though the documentation says that request_percpu_irq
2858 	 * doesn't enable the interrupts automatically, it actually
2859 	 * does so on the local CPU.
2860 	 *
2861 	 * Make sure it's disabled.
2862 	 */
2863 	mvneta_percpu_disable(pp);
2864 
2865 	/* Elect a CPU to handle our RX queue interrupt */
2866 	mvneta_percpu_elect(pp);
2867 
2868 	/* Register a CPU notifier to handle the case where our CPU
2869 	 * might be taken offline.
2870 	 */
2871 	register_cpu_notifier(&pp->cpu_notifier);
2872 
2873 	/* In default link is down */
2874 	netif_carrier_off(pp->dev);
2875 
2876 	ret = mvneta_mdio_probe(pp);
2877 	if (ret < 0) {
2878 		netdev_err(dev, "cannot probe MDIO bus\n");
2879 		goto err_free_irq;
2880 	}
2881 
2882 	mvneta_start_dev(pp);
2883 
2884 	return 0;
2885 
2886 err_free_irq:
2887 	free_percpu_irq(pp->dev->irq, pp->ports);
2888 err_cleanup_txqs:
2889 	mvneta_cleanup_txqs(pp);
2890 err_cleanup_rxqs:
2891 	mvneta_cleanup_rxqs(pp);
2892 	return ret;
2893 }
2894 
2895 /* Stop the port, free port interrupt line */
2896 static int mvneta_stop(struct net_device *dev)
2897 {
2898 	struct mvneta_port *pp = netdev_priv(dev);
2899 	int cpu;
2900 
2901 	mvneta_stop_dev(pp);
2902 	mvneta_mdio_remove(pp);
2903 	unregister_cpu_notifier(&pp->cpu_notifier);
2904 	for_each_present_cpu(cpu)
2905 		smp_call_function_single(cpu, mvneta_percpu_disable, pp, true);
2906 	free_percpu_irq(dev->irq, pp->ports);
2907 	mvneta_cleanup_rxqs(pp);
2908 	mvneta_cleanup_txqs(pp);
2909 
2910 	return 0;
2911 }
2912 
2913 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2914 {
2915 	struct mvneta_port *pp = netdev_priv(dev);
2916 
2917 	if (!pp->phy_dev)
2918 		return -ENOTSUPP;
2919 
2920 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
2921 }
2922 
2923 /* Ethtool methods */
2924 
2925 /* Get settings (phy address, speed) for ethtools */
2926 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2927 {
2928 	struct mvneta_port *pp = netdev_priv(dev);
2929 
2930 	if (!pp->phy_dev)
2931 		return -ENODEV;
2932 
2933 	return phy_ethtool_gset(pp->phy_dev, cmd);
2934 }
2935 
2936 /* Set settings (phy address, speed) for ethtools */
2937 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2938 {
2939 	struct mvneta_port *pp = netdev_priv(dev);
2940 
2941 	if (!pp->phy_dev)
2942 		return -ENODEV;
2943 
2944 	return phy_ethtool_sset(pp->phy_dev, cmd);
2945 }
2946 
2947 /* Set interrupt coalescing for ethtools */
2948 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2949 				       struct ethtool_coalesce *c)
2950 {
2951 	struct mvneta_port *pp = netdev_priv(dev);
2952 	int queue;
2953 
2954 	for (queue = 0; queue < rxq_number; queue++) {
2955 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2956 		rxq->time_coal = c->rx_coalesce_usecs;
2957 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2958 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2959 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2960 	}
2961 
2962 	for (queue = 0; queue < txq_number; queue++) {
2963 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2964 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2965 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2966 	}
2967 
2968 	return 0;
2969 }
2970 
2971 /* get coalescing for ethtools */
2972 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2973 				       struct ethtool_coalesce *c)
2974 {
2975 	struct mvneta_port *pp = netdev_priv(dev);
2976 
2977 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2978 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2979 
2980 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2981 	return 0;
2982 }
2983 
2984 
2985 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2986 				    struct ethtool_drvinfo *drvinfo)
2987 {
2988 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2989 		sizeof(drvinfo->driver));
2990 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2991 		sizeof(drvinfo->version));
2992 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2993 		sizeof(drvinfo->bus_info));
2994 }
2995 
2996 
2997 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2998 					 struct ethtool_ringparam *ring)
2999 {
3000 	struct mvneta_port *pp = netdev_priv(netdev);
3001 
3002 	ring->rx_max_pending = MVNETA_MAX_RXD;
3003 	ring->tx_max_pending = MVNETA_MAX_TXD;
3004 	ring->rx_pending = pp->rx_ring_size;
3005 	ring->tx_pending = pp->tx_ring_size;
3006 }
3007 
3008 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3009 					struct ethtool_ringparam *ring)
3010 {
3011 	struct mvneta_port *pp = netdev_priv(dev);
3012 
3013 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3014 		return -EINVAL;
3015 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3016 		ring->rx_pending : MVNETA_MAX_RXD;
3017 
3018 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3019 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3020 	if (pp->tx_ring_size != ring->tx_pending)
3021 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3022 			    pp->tx_ring_size, ring->tx_pending);
3023 
3024 	if (netif_running(dev)) {
3025 		mvneta_stop(dev);
3026 		if (mvneta_open(dev)) {
3027 			netdev_err(dev,
3028 				   "error on opening device after ring param change\n");
3029 			return -ENOMEM;
3030 		}
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3037 				       u8 *data)
3038 {
3039 	if (sset == ETH_SS_STATS) {
3040 		int i;
3041 
3042 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3043 			memcpy(data + i * ETH_GSTRING_LEN,
3044 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3045 	}
3046 }
3047 
3048 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3049 {
3050 	const struct mvneta_statistic *s;
3051 	void __iomem *base = pp->base;
3052 	u32 high, low, val;
3053 	int i;
3054 
3055 	for (i = 0, s = mvneta_statistics;
3056 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3057 	     s++, i++) {
3058 		val = 0;
3059 
3060 		switch (s->type) {
3061 		case T_REG_32:
3062 			val = readl_relaxed(base + s->offset);
3063 			break;
3064 		case T_REG_64:
3065 			/* Docs say to read low 32-bit then high */
3066 			low = readl_relaxed(base + s->offset);
3067 			high = readl_relaxed(base + s->offset + 4);
3068 			val = (u64)high << 32 | low;
3069 			break;
3070 		}
3071 
3072 		pp->ethtool_stats[i] += val;
3073 	}
3074 }
3075 
3076 static void mvneta_ethtool_get_stats(struct net_device *dev,
3077 				     struct ethtool_stats *stats, u64 *data)
3078 {
3079 	struct mvneta_port *pp = netdev_priv(dev);
3080 	int i;
3081 
3082 	mvneta_ethtool_update_stats(pp);
3083 
3084 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3085 		*data++ = pp->ethtool_stats[i];
3086 }
3087 
3088 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3089 {
3090 	if (sset == ETH_SS_STATS)
3091 		return ARRAY_SIZE(mvneta_statistics);
3092 	return -EOPNOTSUPP;
3093 }
3094 
3095 static const struct net_device_ops mvneta_netdev_ops = {
3096 	.ndo_open            = mvneta_open,
3097 	.ndo_stop            = mvneta_stop,
3098 	.ndo_start_xmit      = mvneta_tx,
3099 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3100 	.ndo_set_mac_address = mvneta_set_mac_addr,
3101 	.ndo_change_mtu      = mvneta_change_mtu,
3102 	.ndo_fix_features    = mvneta_fix_features,
3103 	.ndo_get_stats64     = mvneta_get_stats64,
3104 	.ndo_do_ioctl        = mvneta_ioctl,
3105 };
3106 
3107 const struct ethtool_ops mvneta_eth_tool_ops = {
3108 	.get_link       = ethtool_op_get_link,
3109 	.get_settings   = mvneta_ethtool_get_settings,
3110 	.set_settings   = mvneta_ethtool_set_settings,
3111 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3112 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3113 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3114 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3115 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3116 	.get_strings	= mvneta_ethtool_get_strings,
3117 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3118 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3119 };
3120 
3121 /* Initialize hw */
3122 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3123 {
3124 	int queue;
3125 
3126 	/* Disable port */
3127 	mvneta_port_disable(pp);
3128 
3129 	/* Set port default values */
3130 	mvneta_defaults_set(pp);
3131 
3132 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3133 				GFP_KERNEL);
3134 	if (!pp->txqs)
3135 		return -ENOMEM;
3136 
3137 	/* Initialize TX descriptor rings */
3138 	for (queue = 0; queue < txq_number; queue++) {
3139 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3140 		txq->id = queue;
3141 		txq->size = pp->tx_ring_size;
3142 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3143 	}
3144 
3145 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3146 				GFP_KERNEL);
3147 	if (!pp->rxqs)
3148 		return -ENOMEM;
3149 
3150 	/* Create Rx descriptor rings */
3151 	for (queue = 0; queue < rxq_number; queue++) {
3152 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3153 		rxq->id = queue;
3154 		rxq->size = pp->rx_ring_size;
3155 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3156 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3157 	}
3158 
3159 	return 0;
3160 }
3161 
3162 /* platform glue : initialize decoding windows */
3163 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3164 				     const struct mbus_dram_target_info *dram)
3165 {
3166 	u32 win_enable;
3167 	u32 win_protect;
3168 	int i;
3169 
3170 	for (i = 0; i < 6; i++) {
3171 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3172 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3173 
3174 		if (i < 4)
3175 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3176 	}
3177 
3178 	win_enable = 0x3f;
3179 	win_protect = 0;
3180 
3181 	for (i = 0; i < dram->num_cs; i++) {
3182 		const struct mbus_dram_window *cs = dram->cs + i;
3183 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3184 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3185 
3186 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3187 			    (cs->size - 1) & 0xffff0000);
3188 
3189 		win_enable &= ~(1 << i);
3190 		win_protect |= 3 << (2 * i);
3191 	}
3192 
3193 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3194 }
3195 
3196 /* Power up the port */
3197 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3198 {
3199 	u32 ctrl;
3200 
3201 	/* MAC Cause register should be cleared */
3202 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3203 
3204 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3205 
3206 	/* Even though it might look weird, when we're configured in
3207 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3208 	 */
3209 	switch(phy_mode) {
3210 	case PHY_INTERFACE_MODE_QSGMII:
3211 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3212 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3213 		break;
3214 	case PHY_INTERFACE_MODE_SGMII:
3215 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3216 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3217 		break;
3218 	case PHY_INTERFACE_MODE_RGMII:
3219 	case PHY_INTERFACE_MODE_RGMII_ID:
3220 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3221 		break;
3222 	default:
3223 		return -EINVAL;
3224 	}
3225 
3226 	if (pp->use_inband_status)
3227 		ctrl |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3228 
3229 	/* Cancel Port Reset */
3230 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3231 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3232 
3233 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3234 		MVNETA_GMAC2_PORT_RESET) != 0)
3235 		continue;
3236 
3237 	return 0;
3238 }
3239 
3240 /* Device initialization routine */
3241 static int mvneta_probe(struct platform_device *pdev)
3242 {
3243 	const struct mbus_dram_target_info *dram_target_info;
3244 	struct resource *res;
3245 	struct device_node *dn = pdev->dev.of_node;
3246 	struct device_node *phy_node;
3247 	struct mvneta_port *pp;
3248 	struct net_device *dev;
3249 	const char *dt_mac_addr;
3250 	char hw_mac_addr[ETH_ALEN];
3251 	const char *mac_from;
3252 	const char *managed;
3253 	int phy_mode;
3254 	int err;
3255 	int cpu;
3256 
3257 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3258 	if (!dev)
3259 		return -ENOMEM;
3260 
3261 	dev->irq = irq_of_parse_and_map(dn, 0);
3262 	if (dev->irq == 0) {
3263 		err = -EINVAL;
3264 		goto err_free_netdev;
3265 	}
3266 
3267 	phy_node = of_parse_phandle(dn, "phy", 0);
3268 	if (!phy_node) {
3269 		if (!of_phy_is_fixed_link(dn)) {
3270 			dev_err(&pdev->dev, "no PHY specified\n");
3271 			err = -ENODEV;
3272 			goto err_free_irq;
3273 		}
3274 
3275 		err = of_phy_register_fixed_link(dn);
3276 		if (err < 0) {
3277 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3278 			goto err_free_irq;
3279 		}
3280 
3281 		/* In the case of a fixed PHY, the DT node associated
3282 		 * to the PHY is the Ethernet MAC DT node.
3283 		 */
3284 		phy_node = of_node_get(dn);
3285 	}
3286 
3287 	phy_mode = of_get_phy_mode(dn);
3288 	if (phy_mode < 0) {
3289 		dev_err(&pdev->dev, "incorrect phy-mode\n");
3290 		err = -EINVAL;
3291 		goto err_put_phy_node;
3292 	}
3293 
3294 	dev->tx_queue_len = MVNETA_MAX_TXD;
3295 	dev->watchdog_timeo = 5 * HZ;
3296 	dev->netdev_ops = &mvneta_netdev_ops;
3297 
3298 	dev->ethtool_ops = &mvneta_eth_tool_ops;
3299 
3300 	pp = netdev_priv(dev);
3301 	pp->phy_node = phy_node;
3302 	pp->phy_interface = phy_mode;
3303 
3304 	err = of_property_read_string(dn, "managed", &managed);
3305 	pp->use_inband_status = (err == 0 &&
3306 				 strcmp(managed, "in-band-status") == 0);
3307 	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3308 
3309 	pp->clk = devm_clk_get(&pdev->dev, NULL);
3310 	if (IS_ERR(pp->clk)) {
3311 		err = PTR_ERR(pp->clk);
3312 		goto err_put_phy_node;
3313 	}
3314 
3315 	clk_prepare_enable(pp->clk);
3316 
3317 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3318 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3319 	if (IS_ERR(pp->base)) {
3320 		err = PTR_ERR(pp->base);
3321 		goto err_clk;
3322 	}
3323 
3324 	/* Alloc per-cpu port structure */
3325 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3326 	if (!pp->ports) {
3327 		err = -ENOMEM;
3328 		goto err_clk;
3329 	}
3330 
3331 	/* Alloc per-cpu stats */
3332 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3333 	if (!pp->stats) {
3334 		err = -ENOMEM;
3335 		goto err_free_ports;
3336 	}
3337 
3338 	dt_mac_addr = of_get_mac_address(dn);
3339 	if (dt_mac_addr) {
3340 		mac_from = "device tree";
3341 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3342 	} else {
3343 		mvneta_get_mac_addr(pp, hw_mac_addr);
3344 		if (is_valid_ether_addr(hw_mac_addr)) {
3345 			mac_from = "hardware";
3346 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3347 		} else {
3348 			mac_from = "random";
3349 			eth_hw_addr_random(dev);
3350 		}
3351 	}
3352 
3353 	if (of_device_is_compatible(dn, "marvell,armada-370-neta"))
3354 		pp->tx_csum_limit = 1600;
3355 
3356 	pp->tx_ring_size = MVNETA_MAX_TXD;
3357 	pp->rx_ring_size = MVNETA_MAX_RXD;
3358 
3359 	pp->dev = dev;
3360 	SET_NETDEV_DEV(dev, &pdev->dev);
3361 
3362 	err = mvneta_init(&pdev->dev, pp);
3363 	if (err < 0)
3364 		goto err_free_stats;
3365 
3366 	err = mvneta_port_power_up(pp, phy_mode);
3367 	if (err < 0) {
3368 		dev_err(&pdev->dev, "can't power up port\n");
3369 		goto err_free_stats;
3370 	}
3371 
3372 	dram_target_info = mv_mbus_dram_info();
3373 	if (dram_target_info)
3374 		mvneta_conf_mbus_windows(pp, dram_target_info);
3375 
3376 	for_each_present_cpu(cpu) {
3377 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3378 
3379 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3380 		port->pp = pp;
3381 	}
3382 
3383 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3384 	dev->hw_features |= dev->features;
3385 	dev->vlan_features |= dev->features;
3386 	dev->priv_flags |= IFF_UNICAST_FLT;
3387 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3388 
3389 	err = register_netdev(dev);
3390 	if (err < 0) {
3391 		dev_err(&pdev->dev, "failed to register\n");
3392 		goto err_free_stats;
3393 	}
3394 
3395 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3396 		    dev->dev_addr);
3397 
3398 	platform_set_drvdata(pdev, pp->dev);
3399 
3400 	if (pp->use_inband_status) {
3401 		struct phy_device *phy = of_phy_find_device(dn);
3402 
3403 		mvneta_fixed_link_update(pp, phy);
3404 
3405 		put_device(&phy->dev);
3406 	}
3407 
3408 	return 0;
3409 
3410 err_free_stats:
3411 	free_percpu(pp->stats);
3412 err_free_ports:
3413 	free_percpu(pp->ports);
3414 err_clk:
3415 	clk_disable_unprepare(pp->clk);
3416 err_put_phy_node:
3417 	of_node_put(phy_node);
3418 err_free_irq:
3419 	irq_dispose_mapping(dev->irq);
3420 err_free_netdev:
3421 	free_netdev(dev);
3422 	return err;
3423 }
3424 
3425 /* Device removal routine */
3426 static int mvneta_remove(struct platform_device *pdev)
3427 {
3428 	struct net_device  *dev = platform_get_drvdata(pdev);
3429 	struct mvneta_port *pp = netdev_priv(dev);
3430 
3431 	unregister_netdev(dev);
3432 	clk_disable_unprepare(pp->clk);
3433 	free_percpu(pp->ports);
3434 	free_percpu(pp->stats);
3435 	irq_dispose_mapping(dev->irq);
3436 	of_node_put(pp->phy_node);
3437 	free_netdev(dev);
3438 
3439 	return 0;
3440 }
3441 
3442 static const struct of_device_id mvneta_match[] = {
3443 	{ .compatible = "marvell,armada-370-neta" },
3444 	{ .compatible = "marvell,armada-xp-neta" },
3445 	{ }
3446 };
3447 MODULE_DEVICE_TABLE(of, mvneta_match);
3448 
3449 static struct platform_driver mvneta_driver = {
3450 	.probe = mvneta_probe,
3451 	.remove = mvneta_remove,
3452 	.driver = {
3453 		.name = MVNETA_DRIVER_NAME,
3454 		.of_match_table = mvneta_match,
3455 	},
3456 };
3457 
3458 module_platform_driver(mvneta_driver);
3459 
3460 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3461 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3462 MODULE_LICENSE("GPL");
3463 
3464 module_param(rxq_number, int, S_IRUGO);
3465 module_param(txq_number, int, S_IRUGO);
3466 
3467 module_param(rxq_def, int, S_IRUGO);
3468 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3469